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ABSTRACT 
 

Relaxin family peptides are a diverse family of signalling molecules that play important 

roles in the regulation of reproductive and neuroendocrine processes in vertebrates. The 

signalling of relaxin peptides is mediated by G protein-coupled receptors of two distinct 

classes, small peptide receptors and leucine-rich repeat-containing receptors. The origins 

and evolutionary history of both relaxin family peptides and their receptors have been a 

matter of debate for several reasons, among which the small size of peptide molecules (~ 

60 aa, often providing insufficient information for phylogenetic reconstructions) and low 

coverage of vertebrate taxa by functional studies have been most prominent. In this study, 

I combined traditional bioinformatic approaches with ancestral genome reconstructions to 

reassess some of the debated aspects of the evolution of relaxin peptides and their 

receptors. To cover a broad range of taxa, I performed thorough data mining of the focal 

genes in 29 publicly available genome databases of both vertebrate and invertebrate 

deuterostomes. Ancestral genome reconstruction-based analyses provided clear evidence 

for the strong influence of whole genome duplications (WGDs) on the diversification of 

the relaxin signaling system from a tripartite system, consisting of one hormone and two 

receptor-encoding genes in the vertebrate ancestor, to the present day system. The results 

presented here indicate that relaxin family peptide systems are more diverse than 

previously thought, in particular with respect to the number of genes present in different 

vertebrate lineages. Based on the duplication model presented here, I propose that the 

ancestral tripartite signaling system had a dual function which was partitioned after the 

first round of WGD such that two sets of ligand-receptor pairs subfunctionalized into 
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predominantly neuroendocrine- or reproductive-focused functions. My further analyses 

indicated that the suite of four ligand-receptor pairs common to the majority of modern 

mammals and teleosts, and already present in their gnathostome ancestor, have mostly 

evolved under similar selection pressures, suggesting a similar function of the genes 

across vertebrates. However, there are some distinct patterns of selection and evidence of 

differential codon-specific selection in mammals versus teleosts. Lastly, the 

reconstruction of the ancestral states of relaxin family peptides demonstrates how the 

ancestral structure shared by all four peptides has changed over time and in different 

lineages to acquire the specific structural characteristics of the peptides that we are 

familiar with today. Overall, by creating an evolutionary framework for future analyses, 

this study should facilitate further investigation into the properties of relaxin family 

peptides and their receptors.   
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GENE/PROTEIN NOMENCLATURE 
 

 

The following gene/protein naming guidelines were followed in this thesis:  

 

 All gene- and/or mRNA-related names are italicized (e.g. RLN), proteins are not 

italicized (e.g. RLN); 

 All mammalian gene/protein names are written in capitals (e.g. INSL4), other 

vertebrate genes/proteins are in lower case (e.g. rln3);  

 When a group of genes/proteins is described, it is written in capitals if the 

discussed group contains mammalian sequences (e.g. INSL5 Tetrapods), 

otherwise it is written in lower case (e.g. insl5 Teleosts); 

 The names for ancestral genes/proteins are in mixed case (e.g. Rln) and may have 

a prefix “Anc” (e.g. AncRln) 

 

 





BACKGROUND 

 

Relaxin family hormones: what are they? 

 

Among the many types of mammalian signaling molecules, and particularly hormones, 

relaxin family peptides may well be one of the least familiar to the public. Although the 

first member of this hormone family was discovered shortly after insulin (Hisaw 1926), 

progress in the relaxin research field has until recently lagged behind the advances made 

in, for instance, our understanding of insulin (INS) and insulin-like growth factors (IGF), 

which are closely related to relaxin peptides both through their structural similarities and 

shared evolutionary origins. Notwithstanding, recent progress in molecular biology, the 

availability of whole genome sequence data and the emergence of novel research tools 

such as bioinformatics, have recently contributed enormously to our knowledge about the 

signaling systems regulated by the relaxin hormones and their receptors.    

We now know that the repertoire of human relaxin family hormones consists of 7 

molecules: three Relaxin-like (RLN) and four Insulin-like (INSL) peptides. Notably, the 

subdivision of relaxin hormones into 2 classes (RLN and INSL) is based primarily on 

early structural data and the order of their discovery (Sherwood 2004), and it does not 

take into account their evolutionary origins or physiological differences. Here, for 

simplicity, relaxin peptides will be introduced from the genomic perspective, i.e. 

according to the genes that encode them in the human genome.  

The RLN/INSL-encoding genes in humans, as in many other tetrapods, exist in 4 distinct 

clusters. The largest cluster is made up of 4 loci: RLN1, RLN2, INSL4 and INSL6, situated 

in tandem on human chromosome 9 (Hsap-9). This cluster of genes, “the RLN-cluster” 
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arose from multiple local gene duplications that occurred in the ancestor of placental 

mammals (Wilkinson et al. 2005b). The products of these genes are primarily associated 

with reproductive functions, such as the relaxation of uterine musculature and of the 

pubic symphysis during labor (RLN1 & RLN2), the progression of spermatogenesis 

(INSL6) and possibly trophoblast development (INSL4) (Millar et al. 2005). At the same 

time human RLN2 (equivalent to RLN in other mammals), has more general functions 

than RLN1, and participates in collagen metabolism and angiogenesis in both 

reproductive and non-reproductive tissues. The other three RLN/INSL genes exist as 

single loci in two linkage groups: RLN3 (Hsap-19), INSL3 (Hsap-19, 3.8 Mb apart from 

RLN3) and INSL5 (Hsap-1). 

The physiological action of RLN and INSL3 has been quite well studied in human and 

mouse, but the functions of INSL5 and RLN3 are relatively unexplored, especially 

outside of placental mammals. Both RLN3 and INSL5 are thought to play important roles 

in neuroendocrine regulation. In the case of INSL5 this hypothesis is based on its 

expression (and also co-expression with its receptor) in the central nervous system 

(CNS), intestine and lymph nodes. At the same time, RLN3 is predominantly localized in 

the brain and locally affects selected regions of the CNS, such as those responsible for the 

sense of appetite and stress regulation. Moreover, it has been shown that RLN3 

stimulates the hypothalamic-pituitary-gonadal (HPG) axis and hence affects the levels of 

luteinizing hormone (LH) in the blood (McGowan et al. 2008). LH is essential for normal 

functioning of both male and female reproductive systems, where it triggers ovulation (in 

females) or stimulates production of testosterone (in males). 
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Finally, INSL3 is highly expressed in gonads, where it enhances the survival of germ cells 

(Kawamura et al. 2004). In males, the levels of INSL3, secreted by testicular Leydig 

cells, are significantly higher than those in females, in which the hormone is probably 

produced by ovarian theca cells. Thus, in both males and females, INSL3 is implicated in 

germ cell survival, but may play a more central role in cell development in males 

(Kawamura et al. 2004). Interestingly, the INSL3 secreted by fetal Leydig cells is a 

crucial factor regulating the descent of testicles in some placental mammals (Feng et al. 

2009), such as mice, but this role of INSL3 in humans has not been fully established. 

 

Structure of RLN/INSL peptides 

 

Most members of the human relaxin peptide family in their mature form consist of two 

~30 amino acid long peptide chains, named “A” and “B”-chains, interlinked by disulfide 

bridges. The exception is INSL4, which contains an insertion and is longer than the other 

peptides. The double-chain structure, characteristic of members of the insulin 

superfamily, is a result of post-translational modification of the RLN/INSL-gene products 

(Figure B1).  

 

The receptors of relaxin family hormones 

 

The endogenous signals transmitted by Relaxin family hormones reach their target tissues 

by different means. While some of these peptides (e.g. INSL3 and RLN3) are believed to 

be mostly paracrine (Kawamura et al. 2004) and exert their effect primarily on the cells 

surrounding the hormone producing site, others (e.g. RLN2) are of endocrine nature and 

may affect multiple tissues by being transported in the blood stream (Sherwood 2004). 
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Regardless of how a hormone reaches its target cell, it will eventually have to bind a 

specific receptor to initiate communication with the cell. The receptors for most of the 

human relaxin hormones have been established and only INSL4 and INSL6 remain 

“orphan” (Kong et al. 2010).  

The receptors for the RLN/INSL peptides are collectively called “Relaxin family peptide 

receptors (RXFPs)”. RXFPs were discovered relatively recently, and, somewhat 

surprisingly, have been found to regulate signaling pathways that differ significantly from 

those employed by the insulin and IGF receptors. There are two distinct families of 

RXFPs, all of which are cell membrane-associated and coupled to G-proteins (hence they 

are known as G protein-coupled receptors [GPCRs]). All GPCR-type receptors are 

embedded in the plasma membrane with the aid of seven transmembrane (7TM) spanning 

helices and they interact with G proteins via their intracellular parts (Fredriksson et al. 

2003). Although there is evidence that some relaxin hormones may also be able to 

interact with glucocorticoid-type nuclear receptors, which are found floating freely 

between the cytoplasm and nucleoplasm (Dschietzig et al. 2006), in this study these 

receptors will not be covered due to limited information available about them.   

The most thoroughly studied RXFP family in humans consists of two members, RXFP1 

and RXFP2, which are closely related to the receptors of glycoprotein hormones (Figure 

B2). This class of receptors has a distinctly large domain consisting of a number of 

leucine-rich repeats (LRR) on the N-terminus, which in vivo is situated extracellularly 

and plays a key role in ligand recognition (Halls et al. 2007). 



 

 

Figure B1. Structural characteristics of relaxin family peptides. 

RLN/INSL genes contain 2 exons and a single intron. The mature RLN/INSL mRNA is 

translated into a preprohormone with a signal peptide (SP) that is co-translationally 

removed yielding a prohormone (consisting of domains named B-, C- and A-chains), 

which is further processed by prohormone convertases to produce a double-chained 

mature peptide, which is ready to be released from the cell.  

 

 

The endogenous ligands of RXFP1 and RXFP2 are RLN1-2 and INSL3 peptides 

respectively. The other class of human RXFP receptors also has only two members, 

RXFP3 and RXFP4. These receptors are both structurally and functionally distant from 

RXFP1/2s, and are more related to the receptors of small peptides, such as somatostatin, 
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angiotensin and bradykinin (Figure B3). The endogenous ligands of RXFP3 and RXFP4 

are RLN3 and INSL5 respectively. Notably, although RXFP1-RLN2, RXFP2-INSL3, 

RXFP3-RLN3 and RXFP4-INSL5 are well established endogenous receptor-ligand pairs 

in human, the ligands overlap in their abilities to bind the receptors in vitro. For instance, 

RLN2 can bind RXFP1 and RXFP2, and RLN3 can bind RXFP1, RXFP3 and RXFP4 

(Figure B2). The promiscuous interaction of RLN/INSL with the two diverse classes of 

RXFP receptors is unique among GPCR ligands and its evolutionary significance has yet 

to be clarified (Gloriam et al. 2009).  

Interestingly, before the discovery of RXFP-type receptors (which occurred only several 

years ago), it was thought that the receptors of RLN/INSL peptides should be similar to 

those of their closest relative, INS and IGF, based on the general rule that signaling 

molecules of similar structure pair with similar receptors (Halls et al. 2007). As it turned 

out, the receptors of RLN/INSL share little with the tyrosine kinase-type INS/IGF 

receptors. Moreover, the latter do not express any binding affinity toward relaxin-like 

peptides and appear evolutionarily very distant to both subgroups of RXFPs (Halls et al. 

2007).  

To this extent I have introduced the members of the RLN/INSL-RXFP signaling system 

as they exist in humans. Relatively little is currently known about the biology of this 

system in non-human vertebrates. 



 

Figure B2. Receptor-ligand interactions among relaxin family peptides and their 

receptors in human. 

RLN/INSL peptides are promiscuous in their interactions with their receptors. Thus, 

although each peptide is believed to endogenously interact with a single specific receptor 

(shown with thick arrows), RLN (both RLN1 and RLN2 in human) and RLN3 show 

affinity toward additional receptors (shown with narrow arrows). Note that structurally 

RXFP1/2 are different from RXFP3/4 receptors owing primarily to the longer and more 

complex N-terminus, which consists of the LRR and LDL domains (see text). The 7TM 

domains are colored in either black or grey to distinguish between receptors of same class. 

Based on the functional affinities of relaxin peptides and their receptors as described in 

Halls et al. (2007). The receptor images used with permission from John Wiley & Sons, Inc. 

 

 

Figure B3. The receptors of relaxin family peptides belong to two evolutionarily 

distant groups of Rhodopsin class GPCR receptors. 

The receptors of relaxin family peptides belong to two evolutionarily distant groups of 

Rhodopsin class GPCR receptors. RXFP1/2 (also known as LGR7 and LGR8, green 

boxed) receptors are classified as subclass delta (δ) receptors and are related to 

glycoprotein receptors (e.g. FSHR) and other LRR-containing GPCRs (LGR4-6). 

RXFP3/4 (for which the alternative name is SALPR and GPR100, green boxed) receptors 

are in the gamma (γ) subclass of Rhodopsin GPCRs, which also includes bradykinin 

(BDKRB), angiotensin (AGTR) and other receptors with small peptide ligands (e.g. 

chemokine receptors, CCR). SALPR: Somatostatin and Angiotensin-Like Peptide 

Receptor; GPR: G protein-coupled receptor. Adopted from Fredriksson et al. (2003), with 

permission from ASPET Journals Department. 

 



Figure B3 (Legend on previous page) 



The molecular evolution of the RLN/INSL-RXFP ligand-receptor systems: 
current opinions 

 
The emergence of new signaling pathways that coordinate novel functions in biological 

systems is an important part of the evolutionary process. At the molecular level, the 

appearance of new functional networks is often associated with the expansion of gene 

families through gene duplications and ensuing neo- or subfunctionalization (Lynch and 

Conery 2000) and the relaxin family peptide and their receptor systems do not seem to be 

exceptional in this regard. However, the roles of gene duplication, gene loss, gene 

retention, and selection in the diversification of these signaling systems have only 

recently attracted the attention of researchers. Even then, studies on the evolutionary 

history of the family have predominantly focused on the evolution of ligands, in most 

cases avoiding the receptors, and have not addressed the question of how the RLN/INSL-

RXFP system evolved as one biological unit throughout evolutionary history.       

Previous work identified that four distinct RLN/INSL loci, RLN, RLN3, INSL3 and INSL5, 

were present prior to the divergence of teleosts and tetrapods (Good-Avila et al. 2009, 

Park et al. 2008). The three additional relaxin family genes in humans and apes (RLN1, 

INSL4 and INSL6) are the result of recent local duplications of the more ancient RLN2 

locus. It has been proposed that the peptide family and its receptors originated from the 

ancestral RLN3-RXFP3 system and that the INSL5-RXFP4 pair arose from this ancestral 

ligand-receptor pair as a result of a duplication of both the ligand and receptor genes 

(Wilkinson and Bathgate 2007). The other two members of the relaxin family, RLN and 

INSL3, were hypothesized to also have arisen from RLN3 (Park et al. 2008, Wilkinson 

and Bathgate 2007) and to subsequently have recruited a new pair of receptors, RXFP1 
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and RXFP2, that are associated with reproductive processes specific to placental 

mammals (Wilkinson and Bathgate 2007).  

More recently, it was hypothesized that the diversification of relaxin family genes in 

vertebrates occurred as early as 550 million years ago (MYA) through the two rounds of 

whole genome duplication (2R, WGD) that took place in early chordate evolution 

(Hoffmann and Opazo 2011). In addition, it was proposed that the family arose via 

duplication of the ancestral insulin/IGF locus in the common ancestor of urochordates 

and modern vertebrates and originally functioned using an insulin receptor-related 

receptor, prior to switching to a RXFP-type GPCR (Olinski et al. 2006b). Genomic 

analyses of protochordates (Holland et al. 2008, Olinski et al. 2006a) further indicated 

that the chromosomal regions hosting multiple insulin-like peptide (ilp) genes in a 

tunicate, Ciona intestinalis, and amphioxus, Branchiostoma floridae, share equal 

amounts of synteny with both vertebrate relaxin and insulin families of genes. Despite the 

interest in the evolutionary history of the family, no clear method has been available to 

resolve the origins of both RLN/INSL peptides and their receptors and the knowledge of 

the evolutionary history of this ligand-receptor pair has remained equivocal.  

Evolution of gene families through gene duplication 

 

The fate of duplicated genes: gene loss and gene retention 

 

Gene duplication is considered to be one of the major forces of molecular evolution 

(Lynch and Conery 2000). Genes may duplicate as a consequence of polyploidization, i.e. 

doubling of the complete DNA set of already diploid cells (otherwise known as whole 

genome duplication, WGD), or as a result of an amplification of a short stretch of a 
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chromosomal segment containing one or several genes (small-scale duplication, SSD). 

Following a duplication event and depending on the mechanism involved (WGD or 

SSD), the resulting duplicates may experience different evolutionary fates. For instance, 

while the majority of duplicates are essentially lost from the genome due to accumulation 

of missense mutations in their coding sequence (“pseudogenization”), others may be 

retained and even acquire novel functions. The process of gene loss and gene retention 

plays a key role in shaping metabolic networks across lineages. Thus, studying the 

retention patterns of gene families in a broad range of taxa may be helpful for 

understanding the co-evolutionary processes among different gene families.     

Interestingly, because polyploidization has the power to amplify entire metabolic 

networks of genes while conserving the individual gene niches, there is a general 

tendency for WGD-duplicates to be retained more frequently than for their SSD-

counterparts, which find themselves “looking for new jobs” in the unchanged genomic 

environment (Hakes et al. 2007). Moreover, WGDs are thought to have had a strong 

influence on the evolution of ligand-receptor systems because of their ability to duplicate 

both ligands and their receptor genes (assuming that both ligand and receptor are gene-

encoded proteins) avoiding the necessity of genetic linkage (Huminiecki and Heldin 

2010).  
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Figure B4. A hypothetical perspective on the fate of genes arising via duplication. 

Following a gene duplication event, the parent gene gives rise to two daughter genes, which 

are functionally identical to their progenitor and to each other. Depending on different 

factors (see text) both daughter genes may either be retained in the genome or one of them 

can be lost. In the event of loss of one of the descendant genes, the retained duplicate will 

keep performing the function of the original parent gene. Alternatively, in the event of 

retention of both daughter genes, at least three possible scenarios of gene evolution could be 

expected to take place: 1) both duplicates remain functionally identical, which leads to an 

increase in the amount of produced protein product; 2) subfunctionalization, where the 

ancestral gene function (black-and-white) is split between the two duplicates (one becomes 

white, the other black), thus reducing their functional overlap; 3) neofunctionalization, 

where one of the duplicates acquires a function which is not directly related to that of the 

ancestral gene (neither white, nor black), while the other duplicate retains the function of the 

ancestral gene (black-and-white). Over long evolutionary time scales it may be difficult to 

discern the difference between sub- and neofunctionalization processes. Dashed arrows 

depict less frequently occurring, while bold arrows represent more frequently occurring 

processes.   



 13 

The fate of duplicated genes: sub- and neofunctionalization 

 

The retention of novel duplicate genes is driven by the needs of the genome and organism 

at large: “novice” genes may be recruited to perform one of the functions of the parent 

gene (subfunctionalization) or to fill a niche previously unoccupied by any other genes 

(neofunctionalization) (Figure B4). Whereas subfunctionalization may lead to an 

increasing complexity of gene regulation, neofunctionalization expands the functional 

boundaries of the organism’s molecular machinery (Force et al. 1999). It is also thought 

that subfunctionalization is a more frequently occurring process, because splitting a 

parent gene’s function into two components is considered a more likely event than the 

adoption of a completely novel function by one of the daughter genes. However, even 

though subfunctionalization may occur first, as time passes and the two genes evolve 

independently, one of the subfunctionalized genes may acquire novel functions, i.e. 

become neofunctionalized (Force et al. 1999).  

In this regard, an illustrative example of duplication followed by subfunctionalization is a 

two gene system composed of a ligand and its receptor, which duplicates and gives rise to 

a four gene system (2 ligands and 2 receptors, Figure B5).  
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Figure B5. Subfunctionalization in a two component receptor-ligand system. 

The duplication of a ligand-receptor system encoded by 2 genes, the ligand gene (L) 

and the receptor gene (R). After gene duplication, both daughter ligand (L’ and L”) and 

receptor genes (R’ and R”) subfunctionalize. The ancestral “black-and-white” function 

is split among the daughter genes, such that L’-R’ (black) and L”-R” (white) become 

novel ligand-receptor pairs (shown with arrows). 

 

At first, the ligand-receptor interactions in this system will be promiscuous, i.e. due to 

their structural identity both receptors will be capable of interacting with both ligands. 

Then, unless the redundancy of the system has a selective advantage, the system will 

either split its original function between its two subcomponent receptor-ligand pairs or it 

will rid itself of redundancy by means of gene loss.  

 

Exploring gene evolution: bioinformatics tools 

 

With the availability of whole genome sequence data from a variety of vertebrates, the 

task of characterizing the relaxin family peptide system in non-human species has 

become more achievable using traditional bioinformatics approaches. Multiple authors 
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have used methods in bioinformatics to address unclear aspects in the evolution of relaxin 

family peptides, although not all of them successfully resolved their questions (see, for 

example, the discussion of Hoffman et al.’s (2011) work in Chapter 2). Therefore, a 

major goal of this thesis was to further demonstrate the utility of synteny, phylogeny and 

selection analyses in deciphering the mechanisms involved in the diversification of the 

relaxin peptides. A second aim was to focus on the evolution of their receptors, a subject 

that has received much less attention using other methodologies such as analyses of 

selection and ancestral state reconstruction.  

Data mining 

Most, if not all, bionformatic studies begin with data mining, which involves searching 

various databases with the goal of obtaining the protein or DNA sequences of interest for 

further analyses. In this study, the data mining for the relaxin family peptides and their 

receptor genes was carried out using publicly available databases of both raw and 

processed genomic data. The novelty of this study is largely attributable to the novel and 

unannotated sequences that were for the first time analyzed here thanks to the multiple 

publicly available sequenced and assembled genomes of vertebrates and invertebrates. 

These databases are Ensembl and Pre-Ensembl (maintained by the European 

Bioinformatics and Welcome Trust Sanger Institutes), GenBank in NCBI (National 

Center for Biotechnology Information) and DOE JGI (Joint Genome Institute, USA) just 

to name a few (for a complete list of databases refer to supplementary materials). Albeit 

the degree of gene/protein annotation in some databases (for instance in the human or 

mouse genome assemblies in Ensembl or NCBI) allows for gene identification with the 

easiness of modern internet search engines, this is not the case with most other genome 
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assemblies, where the useful coding sequences of genes may be “hidden” in the midst of 

“junky” non-coding material of chromosomes. To aid with gene identification and 

comparison, this study employed various software algorithms, such as the BLAST 

package available through NCBI, along with syntenic and phylogenetic analyses, which 

are briefly described below.  

Phylogeny 

The most intuitive way to determine the evolutionary relatedness of DNA or protein 

molecules is to compare their nucleotide (in the case of DNA) or amino acid (in the case 

of protein) sequences side by side. The more similar the sequences are the more confident 

one can be regarding the relatedness of the sequences. The results inferred from such 

comparisons of gene sequences are often depicted using clustering methods resulting in 

diagrams called “phylogenetic trees” (see Figure B3 for an example of a tree depicting 

the evolutionary relationships among rhodopsin class GPCR receptors). However, 

phylogenetic comparisons have some caveats, like any other analyses, and a major caveat 

relevant to this study is their inability to correctly identify the evolutionary relatedness of 

short genes under selection pressures. It is always a good idea, hence, to supplement 

phylogenetic analyses with other methodologies. 

Synteny 

In classical genetics, synteny describes the physical co-localization of genetic loci on the 

same chromosome within an individual or species. In modern bioinformatic terms 

synteny refers to the similarity in the genetic background among two or more genes of 

http://en.wikipedia.org/wiki/Classical_genetics
http://en.wikipedia.org/wiki/Locus_(genetics)
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Species


 

  
Figure B6. Diagram showing the syntenic relationships among the RXFP1 

genes of the five species of teleost fish, frog (Xenopus) and human. 

The RXFP1 genes across taxa have similar genetic backgrounds, i.e. they share a 

number of flanking genes (e.g. TMEM144 or SV2A), which indicates that these 

RXFP1 genes are orthologs, i.e. they are derived from one ancestral gene. Arrows 

depict chromosomes, boxes and circles depict genes. Gene names are shown on 

the right with numbers indicating their chromosomal locations in Mb. 

Scaff=scaffold.   

 



interest (or focal genes). The degree of similarity (or synteny) is measured by looking at 

the loci flanking the focal genes and by counting the number of flanking loci shared 

among the genes of interest. Generally, the more syntenic similarity there is between two 

focal genes, the more evolutionarily related they are. Figure B4, for example, shows the 

syntenic relationships among the RXFP1 orthologs of different vertebrates.    

Selection analyses 

Depending on the level of functional constraint experienced by proteins, they may evolve 

slowly and be subject primarily to purifying selection in which mutations are purged 

from populations. Alternatively, if the protein is subject to less functional constraint, then 

some mutations, especially synonymous mutations (i.e. those resulting in non-radical 

changes in the amino acids of the protein) may become fixed within lineages, and 

peptides from different lineages will exhibit greater sequence divergence caused by 

neutral evolution of the proteins. Lastly, some proteins, or a few codon positions within 

otherwise more conserved proteins, may be subject to positive selection in which an 

amino acid replacement becomes favoured within a lineage. Traditionally, the extent of 

functional constraint on a protein is measured by calculating the average number of 

mutations resulting in non-synonymous (dN, amino acid residue changing) to 

synonymous (dS, silent mutations) changes. If dN>dS, proteins are said to be subject to 

positive selection. If dN=dS, proteins are said to be evolving neutrally, whereas if 

dN<dS, they are subject to purifying selection (Hughes L. A. and Nei 1988). 

Additionally, more recently, tests of codon-specific positive selection have frequently 

been employed   because positive selection frequently operates at a local scale, on select 

amino acids or lineages (Zhang et al. 2005). Thus, selection analyses provide yet another 



 19 

perspective on the diversification of genes by giving an estimate of the rates at which 

orthologous and paralogous genes evolve in different lineages or within the same lineage. 

Ancestral gene reconstruction 

Ancestral gene reconstruction is a method that allows one, with some caveats, to study 

the properties of long lost genes and their products from ancestral organisms. This 

method makes use of the phylogenetic reconstructions of the evolutionary relationships 

among related genes to infer the structure of the gene(s) that gave rise to the gene 

family(ies) of interest. There are a number of methodological approaches to performing 

ancestral state reconstruction. In this work, for instance, I employ maximum likelihood 

(ML) methods to infer the ancestral peptide sequences of relaxin family genes at distinct 

points in their evolutionary history.  

 

Brief overview of the contents of this thesis 

 

Chapter 1: Written as an independent manuscript and consists of four sections: 

introduction, methods, results and discussion. Here I describe a novel method to study the 

evolutionary origins of both relaxin family peptides and their receptors using ancestral 

deuterostome genome reconstruction models. Principally, this method takes advantage of 

the large-scale synteny analyses performed on both vertebrate and invertebrate 

deuterostome genomes. By combining the information about chordate ancestral linkage 

groups with small-scale synteny and phylogenetic analyses, I resolved some controversial 

issues regarding the evolution of RLN/INSL genes in early vertebrates. In addition, I 

reconstructed the evolutionary relationships among RXFP genes and show, for the first 
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time, that there are multiple duplicates of RXFP genes that arose independently during 

vertebrate evolution. Finally, I looked for evidence of the presence of RLN/INSL-RXFP 

system genes in invertebrate deuterostomes, such as protochordates and echinoderms. 

 

Chapter 2: Here I discuss the results of a thorough bioinformatic survey of vertebrate 

RXFP genes (performed in Chapter 1) and expand upon previous analyses of RLN/INSL 

genes to show how both whole genome and small-scale duplications coupled with 

differential gene loss resulted in the diverse array of relaxin system genes among 

vertebrate lineages. In addition, I use the model of duplication of RLN/INSL (ligand) and 

RXFP (receptor) genes as a theoretical basis to explain the functional diversification of 

relaxin peptide systems through subfunctionalization in vertebrates. This chapter consists 

of three sections: introduction, methods and results & discussion.  

 

Chapter 3: Written as an independent manuscript and consists of four sections: 

introduction, methods, results and discussion. In this chapter, I examine the influence of 

purifying, neutral and positive selection on the relaxin family peptides and their 

receptors. Co-evolutionary theory predicts that ligands and receptors with functions that 

are conserved across lineages, should exhibit similar levels and types and selection within 

and between lineages. I thus estimated the proportion of amino acids subject to different 

forms of selection for all ligand and receptor genes in teleost and mammalian lineages 

and examined whether selection has played a similar role in the distinct ligand-receptor 

pairs in the two groups. Then, I assessed the role of codon-specific selection on both 

ligand and receptor genes to assess 1) the main regions of the receptor genes that have 
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been targets of positive selection in vertebrates and 2) if there is evidence of lineage-

specific codon-selection, particularly in mammalian versus teleostean lineages. The 

presence of lineage-specific codon selection would suggest that positive selection might 

have lead to sub- or neo-functionalization of genes between lineages. 

 

Chapter 4: Here I focus on the early state of the RLN/INSL peptides and hypothesize 

about their early structura l and functional evolution. Thus I reconstructed the ancestral 

states of all four RLN/INSL ohnologs. I also looked for evidence of selection on codons to 

assess the role of selection on RLN/INSL genes over evolutionary time and in distinct 

vertebrate lineages. This chapter consists of three sections: introduction, methods and 

results & discussion.  

 

Supplementary materials:  

 The detailed methods explaining the use of ancestral genome reconstructions to trace 

the evolutionary history of individual focal genes (Appendix A); 

 All accession numbers and map locations for genes used in the study (Appendix B); 

 The supplementary figures, Figures C1-C2, cited in Chapter 1 (Appendix C); 

 The supplementary figures, Figures D1a and D1b, cited in Chapter 2 (Appendix D) 

 The supplementary table, Table E1, with additional data for Chapter 3 (Appendix E) 
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CHAPTER 1: Uncovering the origin, linkage 
relationships and duplication history of the relaxin 

family hormones and their receptors  
 

INTRODUCTION 

Analyses of whole genome sequence data suggest that three rounds of WGD occurred 

and contributed immensely to the diversification of vertebrates (Abi-Rached et al. 2002, 

Dehal and Boore 2005, Jaillon et al. 2004); two rounds of WGD (2R) occurred in early 

chordate evolution, probably before the divergence of agnathans and gnathostomes 

(Kuraku et al. 2009), while a third round (3R) of WGD occurred only at the base of the 

teleostean lineage. Even though gene duplication has long been recognized as a major 

factor in the evolution of biological diversity (Ohno 1970, Taylor and Raes 2004), 

determining the evolutionary relationships among members of gene families that arose 

via duplication is not always easy because individual genes originated via both small-

scale and whole genome duplication events, could have been modified by selection or 

concerted evolution, and may have experienced differential loss across lineages (Nei et 

al. 1997, Ohno 1970, Taylor and Raes 2004). Although the ready availability of small-

scale synteny data has facilitated the determination of the orthologous and paralogous 

relationships among genes, and thus the factors influencing gene diversification, some 

aspects of gene family evolution, such as their ancient origins and the timing and kind of 

duplication events they underwent, continue to elude investigation and are difficult to 

resolve using traditional bioinformatic approaches. 
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Recently, large-scale synteny analyses comparing entire genomes of evolutionarily 

distant taxa have been employed to reconstruct the karyotypes of extinct ancestors and to 

look back at the events that shaped the appearance of modern genomes (Muffato and 

Roest Crollius 2008). Ancestral genome reconstruction models depict metazoan 

chromosomes as composed of segments, originating from one or more linkage groups of 

a distant ancestor, which became united following repeated chromosomal fission and 

fusion events to form the karyotypes of modern taxa. By tracing the syntenic 

relationships among such chromosomal segments from two or more extant taxa, it is 

possible to reconstruct the linkage groups of their common ancestor at the time of taxon 

divergence. For example, comparison of the genomes of tetrapods and teleosts allows one 

to infer the chromosomes of the hypothetical ~450 MY old gnathostome ancestor and to 

also outline the linkage groups of the ~500 MY old ancestor of all extant vertebrates 

(Nakatani et al. 2007).  

Reconstructions of ancestral genomes in the chordate lineage are particularly interesting, 

because they shed light on important WGD events and the intensive karyotype 

rearrangements that played key roles in the evolution of the vertebrate genetic portfolio. 

Although it has been suggested that genome reconstructions provide principally a 

heuristic tool for understanding genome evolution (Muffato and Roest Crollius 2008), in 

this chapter I demonstrate how such models can be used to trace the evolutionary history 

and linkage relationships of genes, thereby giving further power to elucidate both the 

origin and duplication history of gene families. Although it has been shown that 

orthologous copies of four RLN/INSL genes (RLN, INSL3, INSL5 and RLN3) are present 



 24 

in teleosts and mammals, the exact mechanisms giving rise to their diversification in non-

placental vertebrates have remained elusive (see Background) 

In this chapter, I employ ancestral genome reconstruction models to examine the origin 

and linkage relationships of RLN/INSL peptide and RXFP receptor genes, and to 

determine the role of WGDs in their diversification. This chapter provides evidence that 

WGDs played a central role, larger than previously appreciated, in the evolution of the 

family and suggests that the system originated in the chordate ancestor from a trio of 2 

receptors with a single ligand, in which the ligand and one receptor were initially linked. 

In addition, this chapter also sheds light on the origin of the gene ancestral to all members 

of relaxin family genes (AncRln-like) in protochordates and echinoderms. Since AncRln-

like is believed to have arisen from the duplication of the Insulin locus, I discuss the 

evolution of the insulin-relaxin superfamily as a whole in deuterostomes. I find support 

for the hypotheses generated from the ancestral genome reconstruction models by using 

traditional small-scale synteny analyses and phylogenetic reconstructions performed on a 

broad repertoire of focal genes, and ultimately show the broad utility, with some caveats, 

of incorporating ancestral genome reconstruction data for understanding the evolution of 

gene families.  

METHODS 

Tracing of the duplication history of RLN/INSL, INS/IGF and RXFP genes 

 

Detailed methods used to trace the evolutionary history of genes are provided in 

Appendix A. A brief overview of the procedure is given here: first, using their exact map 

positions, I mapped the RLN/INSL, RXFP and INS/IGF genes found in human, medaka 
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and chicken to their corresponding chromosomal segments. These chromosomal 

segments were then matched to the linkage groups in ancestral genomes primarily 

according to Nakatani et al.’s (2007) model, but I also invoked other vertebrate genome 

reconstructions (Kasahara et al. 2007, Kemkemer et al. 2009) as needed. Finally, I 

compared the results obtained for each of the three taxa to resolve the positions of the 

focal genes at consecutive stages of the vertebrate genome evolution. Where 

discrepancies arose and the genes reported as “orthologous” were traced to different 

ancestral linkage groups, I performed small-scale synteny analyses (details below) to 

clarify the relationship of individual genes among taxa.    

Identification of RLN/INSL and RXFP(-like) sequences across vertebrates 

 

All annotated RLN/INSL and RXFP coding sequences with their genomic positions were 

retrieved from the Ensembl v.60 database (http://ensembl.org) for 13 mammals (11 

placentals, opossum and platypus), three reptiles (anole lizard, chicken and zebrafinch), 

two amphibians (clawed frog and edible frog) and five teleosts (Tables B1-B5 in 

Appendix B). The annotated sequences for rhesus monkey were obtained from NCBI 

(http://ncbi.nlm.nih.gov/gene). When multiple splice variants were available, the longer 

variant was chosen, unless shorter variants had been confirmed to be functional. For five 

placental species, the RLN locus was found to be duplicated 1-5 times (Table B2), of 

those only one gene was retained for phylogenetic analyses. 

Using the more or less complete sets of human, mouse, zebrafish and medaka sequences 

as reference, I performed searches of the databases at both Ensembl and NCBI to look for 

unannotated and/or yet unidentified genes in other tetrapods and teleosts using the NCBI 

BLAST package (Altschul et al. 1997). Additionally, to either confirm the identity of 
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sequences obtained using the above procedure or to search for other difficult to identify 

genes, I searched the genomic regions syntenic to previously determined human/teleost 

RLN/INSL (Good-Avila et al. 2009) or RXFP genes in Ensembl by using the Genscan 

tool or the MIT Genscan server (http://genes.mit.edu/GENSCAN.html) in combination 

with the conserved-domain search tool (http://ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), 

or by blasting the entire syntenic regions via BLASTn in NCBI with a RLN/INSL query. 

The synteny analysis for the RXFP genes was done using either the Genomicus v.60.01 

server (http://dyogen.ens.fr/genomicus-60.01/cgi-bin/search.pl), the appropriate Ensembl 

tools and/or manual identification of orthologous regions through subjecting genes to 

BLASTp at NCBI. 

RXFP-type and Insulin-Relaxin superfamily genes in pre-2R taxa 

 

Three ilp sequences were retrieved from GenBank for the tunicate C. intestinalis and 

used to perform additional searches on the C. intestinalis and C. savignyi proteomes 

using PHI-BLAST (Altschul et al. 1997) at NCBI (details below). For C. intestinalis, 

eight rxfp1/2-type genes were retrieved from Ensembl and two candidate rxfp3/4-type 

genes were obtained from ANISEED (http://crfb.univ-mrs.fr/aniseed). Two C. productum 

ilp genes were obtained from McRory and Sherwood (McRory and Sherwood 1997). 

PHI-BLAST searches in the Ciona genome 

 

Successful PHI-BLAST searches were conducted in the Ciona genome; analogous 

searches were performed in other invertebrate deuterostomes, but either did not yield any 

result at all (as in sea urchin) or only confirmed the known gene sets (as in amphioxus). 

For the PHI-BLAST searches, vertebrate RLN/INSL, INS/IGF and starfish rln-like 
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(“GSS”-gonad stimulating substance) peptide sequences were used as queries along with 

the amino acid patterns constructed using both the A and B-chains of RLN/INSL and 

INS/IGF peptide sequences based on their alignment and the GSS sequence from starfish. 

This led to the identification of one novel C. intestinalis candidate rln-like sequence that 

was then used to identify a similar rln-like gene in the C. savignyi database in Ensembl. 

Analysis of the Ciona proteome with the traditional vertebrate RLN/INSL B-chain 

pattern “CGR-x(3)-R-x(5)-CG” did not yield any results. At the same time using a more 

simplified B-chain pattern “C-X(11)-C” yielded numerous sequences rich in cysteines, 

most of which however did not possess the two-chain peptide structure characteristic to 

the Insulin-Relaxin superfamily. Using the A-chain pattern “CC-x(2)-GC-x(8)-C” 

derived from the combined alignment of the starfish and vertebrate RLN/INSL sequences 

with various (vertebrate and starfish) Rln/Insl as queries, yielded a RLN/INSL-like 

protein predicted as a functional gene in Ensembl. According to the ANISEED database 

(http://crfb.univ-mrs.fr/aniseed) this gene is expressed in the nervous system of C. 

intestinalis. Interestingly, the hits in the search performed with this pattern also contained 

ins-l1 and ins-l3. Using the INS/IGF A-chain pattern “CC-x(3)-C-x(8)-C” and INS/IGF 

sequences as queries yielded ins-l1 as the first hit and also identified the RLN/INSL-like 

gene as the second hit. 

The six ilp genes from the amphioxus database were previously analyzed and shown to 

have syntenically shared genes with the vertebrate Insulin-Relaxin loci (Holland et al. 

2008). VISTA Point (http://pipeline.lbl.gov/cgi-

bin/gateway2?bg=Brafl1&selector=vistapoint) was used to further look at the synteny 
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between the amphioxus scaffolds hosting ilp genes and the human genome (Appendix A). 

Five amphioxus rxfp1/2-type genes were retrieved from GenBank.  

My searches in the sea urchin database (http://www.spbase.org/SpBase/) yielded 27 

rxfp1/2-like sequences, but no ilp sequences. Two ilp sequences were retrieved for two 

lancelet species (Branchiostoma belcheri and B. californiensis) and one ilp, GSS, 

obtained for starfish (Asterina pectinifera) from GenBank; seven ilp and two rxfp1/2-like 

genes (lgr3 and lgr4) were obtained from Ensembl Metazoa (http://metazoa.ensembl.org) 

for fruit fly (Drosophila melanogaster). All accession numbers for the pre-2R taxa are 

available in Tables B6-B8 in Appendix B. The vertebrate INS/IGF sequences used to root 

the RLN/INSL phylogeny (described below) were retrieved from GenBank (Tables B9-

B10).  

 

Phylogenetic reconstruction of the relation among RLN/INSL and RXFP genes  

 

The amino acid alignment of RLN/INSL and INS/IGF was performed as outlined in 

Good-Avila et al. (2009). The alignment of RXFP proteins was accomplished using 

MUSCLE (Edgar 2004) as implemented in MEGA v. 5.01 (Tamura et al. 2011) and 

through manual adjustments. Phylogenetic reconstruction of protein sequences was 

carried out in Phyml (Guindon et al. 2010) using: for RXFP genes, the LG model of 

sequence evolution and with estimated or fixed values for G, the shape parameter for the 

gamma distribution, and I, the proportion of invariant sites, depending on what was 

determined to be the best model of amino acid sequence evolution using AIC as 

implemented in ProtTest (Abascal et al. 2005); for RLN/INSL genes, the JTT model with 

G=1.063 and I=0.045. Confidence in the phylogenetic reconstruction was assessed using 
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1000 replicate bootstrap samples. The phylogenetic relationship among invertebrate 

rxfp1/2-type genes was reconstructed separately following the methods described above 

for the vertebrate RXFP sequences.  

 

RESULTS 

In the first part of this study, I inferred the origins of the RLN/INSL and RXFP gene sets 

by comparing the ancestry of large chromosomal fragments in a teleost fish (Japanese 

medaka), a bird (chicken) and human using a model of vertebrate genome evolution 

(Nakatani et al. 2007), the “N-model” (for a full explanation of the method, see Appendix 

A). Since, with some exceptions, RLN/INSL-RXFP genes in non-mammals have been 

primarily characterized by automated gene scan tools and are poorly annotated, I 

searched a number of available vertebrate genomes (25 species) for the focal genes (235 

total genes) to ensure that all potential ligand and receptor ohnologs were considered (see 

Tables B1-B5, Appendix B). Thus for human, chicken and medaka, I mapped the 

genomic positions of 4, 3 and 6 RLN/INSL (ligand) and 6, 4 and 9 RXFP (receptor) genes 

(or pseudogenes), respectively, onto the linkage groups composing each of the 3 

vertebrate genomes (according to the N-model) and “traced” their origins to the 

gnathostome ancestor chromosomes (GAC), i.e. linkage groups of the hypothetical post-

2R ancestor of jawed (and possibly jawless, see Kuraku et al. (2009) vertebrates. 

According to the N-model, each of the 40 post-2R reconstructed GACs (A0-J1) originate 

from 10 vertebrate ancestral chromosomes (VAC, A-J), i.e. linkage groups that existed in 

the hypothetical pre-2R genome. For 3 of the VACs (A, B and F), Nakatani et al. 

(Nakatani et al. 2007) were able to reconstruct the major chromosomal fission events that 
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multiplied the chromosome numbers in the pre-1R, post-1R and post-2R vertebrate 

ancestor genomes. The occurrences of several of my genes-of-interest on these GACs 

allowed me to not only trace their pre-2R origins, but also to assess the number and 

linkage relationships of ligand and receptor genes in the intermediate post-1R vertebrate 

ancestor. In their work, Nakatani et al. (2007) proposed two alternative scenarios for the 

duplication and rearrangement history of VAC “A” (found to host the predecessors of 

both RLN/INSL and RXFP3/4 genes, see below). I considered both scenarios and adopted 

the more parsimonious one, which minimizes the overall gene loss and duplication 

concerning our focal genes. As described in detail in Appendix A, the primary difference 

of the main (“fusion”) and the alternative (“fission”) models concerns the time of 

duplication of AncRln-I/AncRln-II and AncRxfp3-I/AncRxfp3-II genes. In the alternative 

scenario these duplication events occurred in the proto-pre-2R genome, while in the main 

model, they occurred commensurate with 1R. Not only is the model adopted here more 

parsimonious, but it is also supported by the phylogenetic data (see below and Figure 

1.5a), which indicates a short evolutionary period (measured in branch lengths) 

separating the divergence of AncRxfp3-I/AncRxfp3-II (the 1R event in the main model) 

from the divergence of Rxfp3-1/Rxfp3-2 and Rxfp3-3/Rxfp3-4 (the 2R event). 
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Figure 1.1. Reconstruction of the genetic events that led to the diversification of RXFP3-

type receptors and RLN/INSL hormones in vertebrates. 

The genomic origins of the hypothetical ancestral relaxin (AncRln-like) and Rxfp3/4 receptor 

(AncRxfp3/4) genes can be traced to a single chromosome in the vertebrate ancestor that had 

not yet been through the two rounds of WGD, 2R (Pre-2R vertebrate ancestor). The ancestral 

linkage group harbouring AncRln-like and AncRxfp3/4 genes sequentially underwent 

duplication, fission and another duplication yielding 5 distinct linkage groups (agnathan and 

gnathostome ancestor) harbouring the ligand and receptor genes. Subsequently, tetrapods 

completely lost RXFP3-2 and often RXFP3-3 genes, but retained all of the post-2R RLN/INSL 

gene duplicates. Teleosts, on the other hand, retained all of the ligand and receptor post-2R 

gene duplicates, suggesting that RXFP3-2 and RXFP3-3 acquired important functions in the 

pre-3R teleost ancestor. The duplicates of rxfp3-2 and rxfp3-3 were again retained in the post-

3R teleost ancestor along with those of rln3 and insl5 (indicating their possible ligand-receptor 

relationships). Lastly, in placentals the RLN locus underwent multiple local duplications 

(depicted as multiple boxes in the human RLN locus), resulting in the emergence of INSL4 in 

all eutherians, and INSL6 and RLN1 only in apes, whose RLN2 is orthologous to RLN of other 

eutherians. For simplicity, tetrapod and eutherian ancestor linkage groups are only shown to 

contain the fragments (e.g. A0, A2-A5) harbouring the genes of interest; thus they should not 

be confused with actual chromosomes. Blue circles and squares represent receptor and their 

ligand genes respectively. Crossed circles represent pseudogenes (red, if they are verified in 

databases, blue if they are hypothetical). SSD: small-scale duplication. The first letter of 

ancestral gene names is capitalized. 





RLN/INSL and RXFP3/4 originate from one ancestral linkage group, while RXFP1/2 

originates from another 

 

Tracing of human, medaka and chicken genes to ancestral chromosomes revealed that 

RLN, RLN3, INSL3, INSL5 and their orthologs in teleosts originated from one location in 

VAC “A” in the pre-2R vertebrate ancestor (see Table A1, Appendix A). Since each of 

the four RLN/INSL genes can be mapped to 4 distinct 2R-derived GACs (A0, A1, A2 and 

A3), I infer that modern vertebrate relaxin family genes arose from a single ancestral 

gene, AncRln-like, as a result of 2R (Figure 1.1). 

The origins of the receptor RXFP3 and RXFP4 genes from tetrapods and teleosts were 

traced to four GACs (A0, A1, A4 and A5; two of which, A0 and A1, are the same as those 

hosting RLN and INSL3), which suggests that vertebrate receptors RXFP3 and RXFP4 

originated from one gene, AncRxfp3/4-like, located on VAC “A” (see Table A1 in 

Appendix A). This indicates that the ancestral genes for RLN/INSL and RXFP3/4 were 

physically linked before 2R took place (Figure 1.1).  

The high number of receptor rxfp3-type genes in teleosts is explained by the post-2R 

retention of all four rxfp3/4 ohnologs in the teleost ancestor. Additionally, the fish-

specific 3R coupled with a few local duplications increased the number of rxfp3-like 

genes in teleosts to 7 (Figure 1.1 and Tables B4-B5 in Appendix B). Interestingly, my 

data mining uncovered that a few tetrapods retained RXFP3-3, but RXFP3-2 appears to 

have been completely lost in the early tetrapod ancestor (Figure 1.1 and Tables B1-B3, 

Appendix B). Using the available RXFP3-3 sequences from opossum, cow and pig, the 

RXFP3-3 pseudogene was located in human and its common origin (GAC “A4”) with its 

medaka orthologs (Table A1, in Appendix A) was confirmed. 
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The tracing of the ancestral origins of RXFP1 and RXFP2 receptors in human and 

medaka showed that both of these genes originated from VAC “C” (Table A1, Appendix 

A). Thus I concluded that 2R led to the duplication of an ancestral gene, AncRxfp1/2 with 

the retention of only 2 orthologs (RXFP1 and RXFP2) in human and medaka (Figure 1.2). 

Interestingly, duplicates of rxfp1 and rxfp2 were also lost after 3R in stickleback 

(Gasterosteus aculeatus), tetraodon (Tetraodon nigroviridis) and fugu (Takifugu 

rubripes), but were partly retained in zebrafish, in which I found two rxfp2 orthologs 

(Figure C1 in Appendix C; Tables B4-5, Appendix B). 

The two genes reported as RXFP1 and RXFP2 in chicken, turned out to have an 

evolutionary history that was slightly different from that of their counterparts in other 

vertebrates. Chicken RXFP1 was traced to GAC “C1” (implying its orthology to the 

RXFP1 of human and medaka), but the chicken RXFP2 gene was traced to a different 

ancestral linkage group (GAC “B0” or “F4”) than the expected GAC “C2” (Table A1 in 

Appendix A). Further analyses confirmed that this gene does not share synteny with 

either RXFP1 or RXFP2 and I therefore rename it RXFP2-like. Subsequently, I identified 

an ortholog of this RXFP2-like gene in some other vertebrates, such as zebrafish and 

opossum, and found a pseudogene of the RXFP2-like gene on the human X chromosome 

next to STARD8, its neighbouring gene in chicken (Table B3 in Appendix B). 

Convincingly, BLASTn searches also revealed a pseudogene of RXFP2 in the region of 

the chicken genome orthologous to that hosting RXFP2 in other vertebrates. The tracing 

of RXFP2-like to a separate VAC (“B” or “F”) from that of AncRxfp1/2 (VAC “C”) 

indicates that either it originated from a pre-2R locus independent from that of 

AncRxfp1/2 or that it is the ohnolog of RXFP1/2 and was translocated shortly after  



Figure 1.2 (Legend on next page) 



Figure 1.2. Reconstruction of the genetic events that led to the diversification of 

RXFP1/2-type receptor genes in vertebrates. 

Symbols and linkage group numbering same as in Figure 1.1 

 

duplication from one of the RXFP1/2 loci. Here I adopt an origin-based nomenclature for 

the novel genes identified in this study, in which I aim to reflect their relationship to their 

hypothetical ancestors while retain, as much as possible, the traditional naming scheme 

for the RLN/INSL peptide and their RXFP receptor genes (Table 1.1). 

Linkage relationships among RLN/INSL and RXFP genes have changed over 

evolutionary time 

In the pre-2R vertebrate ancestor, AncRxfp3/4 (receptor) was in the same linkage group as 

AncRln-like (ligand). My reconstruction shows that two of the RXFP3 2R-ohnologs 

(RXFP3-1 and RXFP3-2) were linked to RLN and INSL3 (Figure 1.1), while the 

remaining ohnologs became unlinked. These ancestral genetic linkage relationships have 

mostly persisted in teleosts (Figure 1.3 and Figure C1 in Appendix C), but they have 

dynamically changed in tetrapods resulting in different combinations of linkage pairs 

such as INSL5-RXFP4, RLN3-INSL3 and RXFP1-RXFP2-like to name a few (Figure 1.4). 

RXFP phylogenetic reconstruction supports strong role of WGDs in gene duplication 

events 

 

The second goal of this study was to use other types of analysis, such as phylogeny and 

small-scale synteny, to corroborate the above model of evolution of the vertebrate 

RLN/INSL-RXFP systems in a broader range of vertebrates. I created a protein database 

and subsequently phylogenetic trees of RLN/INSL and RXFP-type genes for vertebrates 

and a few pre-2R diverging taxa, based on publicly annotated genes and included a few 
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that I identified de novo (Tables B1-B5 for post-2R vertebrates, Tables B6-B8 for pre-2R 

deuterostomes, in Appendix B). Overall, I find that the phylogenetic relationship of the 

receptor RXFP3/4 sequences clearly recapitulates their proposed WGD-driven 

diversification: the 1R descendants cluster into two groups, AncRxfp3-I versus AncRxfp3-

II, while the 2R descendants are sister clades, i.e. RXFP3-1/RXFP3-2 and RXFP3-

3/RXFP3-4 as expected (Figure 1.5a). Because most tetrapods lost half of their post-2R  

RXFP3 ohnologs, the RXFP3-2 and RXFP3-3 clades mostly contain teleostean 

sequences.  

The RXFP1/2 phylogenetic tree (Figure 1.5b) also generally supports the reconstruction 

model: there are 3 distinct clades for RXFP1, RXFP2 and RXFP2-like, and the RXFP2-

like clade is sister to RXFP2, a clustering that supports the ohnologous nature (i.e. their 

orthology and origination by means of WGD) of the relationship between RXFP2-like 

and RXFP1/2 genes, rather than the pre-2R origins of RXFP2-like. To examine this more 

closely, I analyzed several vertebrate RXFP1/2 and RXFP2-like sequences together with 

invertebrate rxfp1/2-type proteins, and found that all vertebrate sequences clustered 

together (Figure C3, Appendix C), indicating that all 3 genes (i.e. RXFP1, RXFP2 and 

RXFP2-like) originated after the divergence of protochordates.  

Lastly, as found in previous studies (e.g. Good-Avila et al. (2009) , the RLN/INSL 

phylogeny does not clearly reflect their WGD ancestry: the small size and differential 

selection pressures on peptides in tetrapod versus teleostean lineages renders it 

impossible to resolve orthologous relationships among RLN/INSL genes across 

vertebrates in the absence of synteny data. Here I combined phylogeny with small-scale 

synteny and also used a reconstruction of the ancestral chordate karyotype



Figure 1.3 (Legend on next page) 



Figure 1.3. The evolution and genetic linkage of RLN/INSL (ligand) and RXFP3/4 

(receptor) loci in the pre-3R teleost ancestor and three species of teleost fish. 

Notice that among the three analyzed fish species, medaka’s genome and rln/insl-rxfp gene 

sets are the most preserved and resemble those of the teleost ancestor. Tetraodon 

experienced lineage-specific loss of two genes, rln3a and rxfp3-1, which may indicate their 

co-evolution as a ligand-receptor pair. The rxfp4 gene in zebrafish seems to have been 

replaced with an extra (zebrafish-specific) copy of an rxfp3-3 gene. Alternatively, rxfp3-3 

could be a product of gene conversion that occurred between rxfp4 and one of the rxfp3-3 

paralogs. Overall this scheme demonstrates that the rln/insl-rxfp system in teleosts has 

taken a slightly different, and seemingly more complicated, evolutionary pathway 

compared to other vertebrates. Chromosome numbers in extant species are shown as 

numbers and in the teleost ancestor as letters (Kasahara et al. (2007) nomenclature). 

 

(Putnam et al. 2008) to explore the evolutionary pathway of the entire insulin 

superfamily in deuterostomes. This was done to determine whether the observed trends, 

such as the number of potential RLN/INSL-like sequences in pre-2R organisms, fit into 

the model of evolution proposed for relaxin family peptides in post-2R vertebrates.  

Presence of both RLN/INSL-like and INS/IGF-like genes in amphioxus, but only 

INS/IGF-like in tunicates: loss of RLN/INSL in the common ancestor of ascidians?  

 

There are 2 classes of ins-like genes in protochordates and echinoderms. Both lancelets 

and tunicates possess proteins clustering inside the vertebrate INS/IGF clade (Figure 

C2a, Appendix C); whereas starfish, 2 Ciona species (C. intestinalis and C. savignyi) and 

amphioxus have proteins that group sister to the vertebrate RLN/INSL clade (1 starfish 

gss and 3 amphioxus insulin-like peptides (ilps) or just outside it (amphioxus ilp6 and 

ciona ilp3-ilp4) (Figure 1.7; Figure C2a-b, Appendix C). Somewhat surprisingly, 

amphioxus ilp5 clusters in the vertebrate INSL5 clade (Figure 1.7).  

Mapping the amphioxus scaffolds hosting ilp genes to ancestral chordate linkage groups 

(CLG) as outlined by Putnam et al. (2008) revealed that three of these genes (ilp1-3) 

originate from the same ancestral linkage group as the human INS/IGF loci, while the 
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other 3 ilp genes either do not share CLGs with any genes coding for members of the 

human relaxin-insulin superfamily (ilp6) or no CLG could be assigned to them due to 

insufficient information available in the short scaffolds of amphioxus (ilp4-5, Figure A4, 

Appendix A). These findings imply that the AncIns/Igf gene may have duplicated before 

the emergence of cephalochordates to give rise to one ins-type and five rln/insl-type 

genes (through multiple duplications) in lancelets. While the ancestral chordate Ins gene 

survived until the emergence of vertebrates (later giving rise to the ancestor of Igf as a 

result of local duplication); it is unclear whether one of the amphioxus rln/insl-type 

genes is orthologous to the predecessor gene of the vertebrate relaxin family or whether a 

later duplication of the ins locus (i.e. after the divergence of cephalochordates) gave rise 

to an AncRln-like gene. 

 

 

 

 

 

 

 

  

 

 

 

Figure 1.4. Dynamic changes in the chromosomal linkage relationships of RLN/INSL 

and RXFP genes in tetrapods. 

Each bar represents a chromosome (IDs not shown for simplicity). Symbols and linkage 

numbering are as in Figure 1.1. 



Figure 1.4 (Legend on previous page) 



a) 



 

Figure 1.5. Phylogenetic reconstruction of the evolutionary relationship among 

vertebrate RXFP protein sequences. 

a) RXFP3/4. Reconstruction performed as outlined in methods with G=0.91 and I=n/a. 

Numbers at each node indicate the bootstrap values (only values exceeding 50% shown). 

Teleost rxfp3-2 underwent duplication yielding two 3R-paralogs, rxfp3-2a and rxfp3-2b, 

while teleostean ancestral rxfp3-3 was duplicated typically giving rise to three rxfp3-3 loci 

in modern teleosts: 3R generated rxfp3-3a and rxfp3-3b, while a local duplication 

generated rxfp3-3a1 and rxfp3-3a2 (Table 1.1, Tables B4-5 in Appendix B). Solely in 

zebrafish, rxfp3-3a2 duplicated again giving rise to rxfp3-3a3, an event which appears to 

have occurred coincidently with the exclusive loss (or gene conversion, see Chapter 2) of 

rxfp4 in zebrafish. b) RXFP1/2. Phylogenetic tree reconstructed as outlined in methods 

with G=0.958 and I=0.034. Numbers at each node indicate the bootstrap values (only 

values exceeding 50% shown). Due to their incomplete nature, not all sequences were 

included in this tree (e.g. zebrafish rxfp2a and rxfp2b and medaka rxfp2). 

b) 



 44 

Origins of the vertebrate INS/IGF locus 

 

To determine whether AncRln-like and the AncIns/Igf loci possibly occupied the same 

linkage group in the pre-2R vertebrate ancestor, the “N-model” tracing procedure (see 

Appendix A) was applied to the INS/IGF genes from tetrapods and teleosts. This revealed 

some surprising findings about vertebrate INS/IGF genes. Tetrapods possess three 

INS/IGF genes, two of which (INS and IGF2) are tightly linked on the chromosomal 

segment traceable to GAC “D0” and the third one, IGF1, is located in a different linkage 

group, traceable to GAC “D1”(Figure 1.8), indicating that IGF1 and IGF2 are ohnologs. 

On the other hand, in teleosts, the ins locus is not linked to igf, and the number of insulin 

genes ranges from 2-3, raising the question of the orthology of teleost and tetrapod INS 

genes. To investigate this, I used the genome reconstruction performed on Tetraodon 

nigroviridis (Kasahara et al. 2007) due to insufficient genomic data for medaka. 

Tetraodon has two igf genes (igf1 and igf2) and two ins genes (ins1 and ins2). Tracing of 

the chromosomal segments hosting igf loci in tetraodon indicated that the tetraodon igf 

genes share origins with their tetrapod counterparts. 

 

 

 

 

Figure 1.6. Phylogenetic reconstruction of RXFP1/2 sequences from vertebrates, 

protochordates and an echinoderm. 

All of the amphioxus rxfp1/2-like genes cluster closely to vertebrate RXFP1/2’s and 

RXFP2-like genes, while two of the 27 sea urchin rxfp1/2-like genes are found in a clade 

with fruit fly lgr3 and lgr4 in another sister clade to RXFP1/2-like genes. The Ciona 

rxfp1/2-like genes appear distantly related to the entire protostome-deuterostome RXFP1/2 

cluster. 



Figure 1.6 (Legend on previous page) 
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To the contrary, the GACs for ins-hosting chromosomes were ambiguously mapped to 

three GACs (B0, C2 or F4), which do not host any ins-igf loci in other vertebrates, a 

situation reminiscent of that for RXFP2-like in chicken (see above). However, further 

syntenic (not shown) and phylogenetic (Figure 1.7) analyses of teleost ins genes could 

not clearly resolve their evolutionary pathway. Although, I find that some teleost ins loci 

share synteny with human chromosome 11 (Hsap11) that hosts INS/IGF2, others share 

synteny with certain regions of Hsap10 and Hsap5, which have no detectable relationship 

to the insulin superfamily loci. Notably, zebrafish insb (and ins-l, which appears to be a 

pseudogene) along with tetraodon ins1 appear to be phylogenetically most distant from 

the rest of the ins genes (Figure 1.7), which may indicate that certain teleost-specific 

evolutionary pressures on the ins locus could have fostered the duplication and 

subsequent translocation of ins-duplicates. Overall my analyses make it clear that 

AncIns/Igf and AncRln-like loci were already in separate linkage groups before the onset 

of 2R, but leave unresolved the origin of several teleost ins-duplicates.  

 

DISCUSSION 

Although it is now widely accepted that the two rounds of WGD that took place early in 

vertebrate evolution played a crucial role in the diversification of many vertebrate gene 

families (Kasahara 2007), the processes by which WGD-driven gene family evolution 

occurred are not easy to determine. This has been shown to be true for the three 

vertebrate gene families encoding relaxin hormones and their receptors (RLN/INSL, 

RXFP1/2 and RXFP3/4), whose duplication history and invertebrate origins I analyzed 

here.



 

Figure 1.7. The relationship among vertebrate and invertebrate Insulin superfamily 

protein sequences depicted using an extremely collapsed phylogenetic tree. 

Only for the most conserved peptide, RLN3, do all vertebrate orthologs cluster together, 

while for the remaining peptides (INSL3, RLN, and INSL5) differential selection pressures 

and the small size of the ligand peptides prevent the orthologs from grouping together across 

lineages (Good-Avila et al. 2009). Within the strongly supported clade (at 95%) that contains 

all vertebrate RLN/INSL sequences, there are additionally 4 ilps from amphioxus and the 

relaxin-like peptide (gss) from starfish (ilps4-5 are boxed, ilp2-3 and gss shown with bracket 

“a”), providing support that all of these sequences are of the RLN/INSL-type rather than 

INS/IGF-type. The tree was rooted with the clade containing five of the seven Fruitfly dilp 

peptides. Probably due to the known phenomena that divergent sequences tend to group 

together (so-called “long-branch attraction”), the two Ciona ilp genes (ilp3 and ilp4) group 

with dilp7, although the latter has been hypothesized to have “relaxin-like” reproductive 

roles in fruitflies , shown with “b”. For expanded versions of this phylogeny see Figure C2 in 

Appendix C. ilp: insulin-like peptide; dilp: drosophila insulin-like peptide 
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By combining information from ancestral genome reconstructions with phylogenetic and 

syntenic data, I was able to elucidate the origin of the RLN/INSL-RXFP genes. My study 

also revealed the intriguing linkage of the ancestral RLN/INSL (ligand) and RXFP3/4 

(receptor) loci in the pre-2R vertebrate ancestor genome, and the strong role of both 2R 

and 3R in the diversification of the focal genes.   

The reconstruction of the RLN/INSL-RXFP gene history was principally based on 

Nakatani et al.’s (2007) model of the pre-2R vertebrate genome. It has been proposed that 

the major vertebrate novelties, such as their structurally complex nervous, immune and 

reproductive systems, arose as a result of the massive amplification of genes that 

occurred during 2R (Huminiecki and Heldin 2010, Kasahara 2007). By making the 

necessary assumption that my focal genes remained in the given linkage groups since the 

pre-2R vertebrate ancestor, I deduced that the diversification of RLN/INSL and RXFP 

genes was coincidental with 2R events, suggesting that the roles played by the RLN/INSL 

hormones in neuroendocrine and reproductive regulation were important in early 

vertebrate evolution. Interestingly, two of the post-2R RLN/INSL ohnologs, RLN and 

INSL3, that derived from one of the 1R duplicates (AncRln-I) are both involved in 

reproductive functions, while the other 2R ohnologs, INSL5 and RLN3, play roles in the 

neuroendocrine system (Halls et al. 2007). This suggests that the pre-2R duplicates 

(AncRln-I and AncRln-II) probably differed from the original AncRln-like locus in the 

tissues they targeted: i.e. they were subfunctionalized for expression in either 

reproductive or neuroendocrine tissues following 1R. This provides an explanation for 

the retention of the 1R duplicates and may reflect the evolutionary origin of the systems 

as will be discussed below.  
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Figure 1.8. Reconstruction of the possible genetic events that led to the 

diversification of INS and IGF genes in vertebrates. 

Symbols and linkage numbering are as in Figure 1.1. The origin and evolutionary 

relationships of ins-genes in extant teleost fish are unclear. 

 

I also observe that the teleost-specific 3R, which strongly contributed to the genetic 

richness of teleosts and their biological success, further increased the number of rln/insl 

and rxfp genes in teleosts. However, in contrast to the 1R and 2R events, only those genes 

potentially involved in neuroendocrine regulation (rln3, insl5 and half of the rxfp3/4-type 

receptors), but not reproduction (rln, insl3 and rxfp1/2-type receptors) were retained after 

3R in teleosts. The post-3R retention of rln3 and insl5 was paralleled by the retention of 

duplicates of rxfp3-2 and rxfp3-3 suggesting both co-functioning but also 

subfunctionalization of their neuroendocrine functions. Overall, I demonstrate that the 

large number of teleost receptor rxfp3 genes is only partly attributable to teleost-specific 
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duplications (which was proposed as the sole factor driving their diversification 

(Wilkinson et al. 2005a), but rather also resulted from the loss of RXFP3 ohnologs in 

tetrapods.  

By thus elucidating the origin of genes, my model underscores the somewhat artificial 

nature of both ligand and receptor nomenclature, which is primarily based on the early 

physiological data. For ligands, I show that all INSL (insulin-like) genes independently a 

from RLN (relaxin-like) genes, and not from an ancestral INSL gene, as previously 

hypothesized (Hoffmann and Opazo 2011). For receptors, currently only 4 RXFP genes 

(RXFP1-4) are recognized, those present in humans and some other placentals, while, in 

fact, there are at least seven RXFP genes of independent origin in vertebrates (three 

RXFP1/2 and four RXFP3/4-type), at least six of which are ohnologs, and six of which 

are present in at least one copy in tetrapods. I also show that RLN3 and INSL3 are 

ohnologs, and not closely related genes that arose from a tandem duplication event as 

previously hypothesized (Park et al. 2008). Furthermore, all four RLN/INSL ohnologs 

were retained after 2R, which contradicts a less parsimonious scenario discussed by 

Hoffman and Opazo (2011), in which one of RLN/INSL genes is lost in all vertebrates. 

Overall, my model for RLN/INSL evolution in vertebrates is consistent with the 

hypothesis postulating that INSL3 and RLN evolved as a subfamily distinct from that 

formed by RLN3 and INSL5 (Wilkinson and Bathgate 2007). My model, however, dates 

the diversification of the two subfamilies back to the agnathan and gnathostome 

ancestors, while Wilkinson and Bathgate (2007) refer it to the more recent appearance of 

mammals.   
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Pre-vertebrate relaxin peptides 

 

My study clearly indicates that the RLN/INSL and INS/IGF loci were already separate 

before the onset of 2R, but my search for AncRln-like genes in protochordates and 

echinoderms produced equivocal results. Both invertebrate deuterostomes and 

protostomes possess genes coding for insulin-like peptides (ilp’s) recognized by the 

presence of disulfide bond-forming cysteines. Nevertheless, invertebrate proteomes are 

devoid of peptides with traditional RXFP-binding “R-XXX-R-I/V” motifs (Wilkinson et 

al. 2005b). Historically vertebrate RLN/INSL genes and their products have been 

characterized and classified according to the presence of their B-chain motif. Authors 

have therefore assumed that molecules without the motif could not bind the relaxin 

receptors, and therefore should not be considered to be related to vertebrate RLN/INSL 

(Wilkinson et al. 2005b). However, this assumption seems to contradict the co-

evolutionary process of hormones with their cognate receptors, and I propose a different 

evolutionary model for early relaxin family peptides and their receptors.  

I explored the origin of the RLN/INSL genes in early deuterostomes and found evidence 

of multiple relaxin-like genes, contrary to previous claims of an absence of rln/insl-like 

genes in invertebrates (Wilkinson and Bathgate 2007). Three of the amphioxus ilp 

peptides are phylogenetically close to a relaxin-like peptide, termed gonad stimulating 

substance (GSS), which is produced by the radial nerves in starfish and induces oocyte 

maturation and ovulation (Mita et al. 2009). Two of the amphioxus peptides, ilp4 and ilp5 

(their genes are linked in one scaffold), cluster in close proximity or inside the vertebrate 

RLN/INSL clade, which may hint at their orthology with vertebrate RLN/INSL genes. 

Unfortunately synteny data was unavailable to confirm this. However, although I find 
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evidence for relaxin-like genes in starfish and amphioxus, I failed to identify any rln/insl-

type genes in the later-diverging tunicates. I confirm the presence of ins/igf-type genes in 

Chelyosoma productum (a tunicate), whose two ilp peptides cluster with lancelet ins/igf-

like peptides (Figure C2a, in Appendix C), but the four ilp genes identified in Ciona 

intestinalis appear to be lineage-specific duplicates of the ins locus: two of them cluster 

basal to the INS/IGF-like peptides of other deuterostomes while the remaining two are 

intermediate between INS/IGF and RLN/INSL-type peptides. Olinski et al. (2006b) 

hypothesized that one of the Ciona ilp genes could be ancestral to vertebrate RLN/INSL, 

but I find no evidence for (or against) this although the lack of synteny and sequence 

identity I observe may be due to the accelerated evolution of the Ciona genome (Hughes 

A.L. and Friedman 2005). I advocate further studies in other tunicates such as C. 

productum to clarify this missing stage in the evolutionary pathway of the insulin 

superfamily between cephalochordates and pre-2R vertebrates. 

Pre-vertebrate relaxin receptors 

 

With respect to the origin of the RXFP receptors, I find that while both amphioxus and 

sea urchin genomes seem to be devoid of rxfp3-type genes (Nordstrom et al. 2008, 

Sodergren et al. 2006), and the two rxfp3-type genes in C. intestinalis are very divergent 

from their vertebrate analogs (Figure 1.5a), early deuterostome lineages witnessed many 

lineage-specific expansions of the Rxfp1/2 locus (Figure 1.6). Intriguingly, three of the 

five amphioxus rxfp1/2-type genes appear orthologous to human RXFP1 and RXFP2 

based on synteny. Thus collectively, given the observation of multiple rln/insl and 

rxfp1/2-type genes, which are unmistakably evolutionarily related to their vertebrate 

counterparts, combined with the virtual absence of rxfp3-type genes in echinoderms and 
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cephalochordates, I propose that the signaling of the ancestral RLN/INSL peptide in the 

chordate ancestor occurred via RXFP1/2-type receptors. Only at the onset of 2R, was the 

RXFP3/4-type receptor recruited to produce a signaling system encoded in total by three 

genes and composed of two receptors and a single ligand. It is tempting to hypothesize 

that this ancestral two-receptor system had a dual function and played a role both in the 

regulation of reproduction (using RXFP1/2-type receptor), and in neuroendocrine 

processes (via RXFP3/4-type receptor). This hypothesis is supported by several lines of 

evidence: 1) the dual functionality of human RLN3, i.e. its integration of neuropeptide 

signaling with the ability to trigger reproductive response (McGowan et al. 2008), 2) the 

discovery of relaxin-like nature of a starfish gonadotropin which is produced by the 

echinoderm’s nervous system and directly influences the maturation of eggs in the ovary 

of starfish (Mita et al. 2011) and 3) my prediction that the 1R duplicates of the AncRln-

like gene were subfunctionalized into reproductive and neuroendocrine functions (see 

above). 

Genetic linkage of receptors and their ligands 

 

To the best of my knowledge, this is the first study to reveal the dynamic nature of the 

changing linkage relationships among the genes encoding relaxin family peptides and 

their receptors. The association of RXFP3/4 genes with the RLN/INSL paralogon was first 

documented by Olinski et al. (2006a) and the linkage of human INSL5 and RXFP4 on one 

chromosome also mirrors their ligand-receptor interaction (Liu et al. 2005) . 

Nevertheless, I show that INSL5 and RXFP4 occupied different linkage groups in the 

gnathostome and tetrapod ancestors and only became linked in the eutherian ancestor 

(Figure 1.1). Chromosomal linkage of receptor and ligand genes has been known for a 
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number of unrelated gene families and is more common in the human genome than 

expected by chance (Hurst and Lercher 2005). To explain this phenomenon, it has been 

proposed that receptor-ligand linkage could be advantageous for the creation of new 

receptor-ligand pairs when they result from block duplications (Hurst and Lercher 2005). 

However, this beneficial effect of linkage would not pertain to genes duplicated via 

WGDs, as is the case of RLN/INSL-RXFP loci. Instead, I propose that the RXFP3/4-

RLN/INSL linkage may reflect the original need for connection during the recruitment of 

a new receptor by the AncRln-like peptide product. This linkage may have caused their 

co-expression and, consequently, increased the frequency of their interaction. Although 

the original linkage was disrupted in one of the post-1R ohnologs, linkage of certain 

RLN/INSL-RXFP3 pairs has been conserved in some organisms, e.g. in medaka, while not 

in others, such as in rat (Figures 1.3 and 1.4). In this regard, it is interesting that the 

chromosomal sections harboring the INSL/RLN paralogons contain many other conserved 

gene families, such as the major histocompatibility complex genes, whose origins are 

traceable to singular pre-2R ancestor genes (Kasahara 2007). This suggests that 

conservation of the linkage relationship among the RLN/INSL-RXFP genes may result 

from conservation of synteny at a larger-scale. At the same time, vertebrates have also 

acquired novel and lineage-specific gene linkages, such as that of RLN3-INSL3 in 

opossum, human and pig and RXFP1-RXFP2-like in chicken (Figure C2), which could be 

explained by other factors such as recurrent evolutionary chromosomal breaks in the 

fragile parts of genomes containing these genes (Bailey et al. 2004).  

Finally, the difficulty in resolving the origin of two genes examined in this study, 

RXFP2-like and teleost ins, highlights an important weakness of the approach. If a gene 
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maps to a different ancestral linkage group than expected, it is difficult to determine if 1) 

this gene has independent origins from its expected ohnologs or whether 2) it underwent 

a single-gene translocation that caused it to move from its authentic chromosomal 

fragment. For RXFP2-like it seems possible that there were two genes present in the 

ancestral pre-2R genome, because there are many rxfp1/2-type genes in primitive 

chordates (Figure 1.6). However, the few RXFP2-like genes from vertebrates cluster 

closely within the vertebrate RXFP1/2 sequences (Figure 1.6), suggesting that RXFP2-

like is an ohnolog of RXFP1/2 that was translocated from its authentic position in the 

gnathostome ancestor. In the case of teleost insulin, I encountered an unexpected result: 

although some of the teleost ins genes seem to share their origin with the tetrapod insulin 

gene, some clearly do not. Again, based on the overall similarity of the teleost and 

tetrapod insulin genes, I favor the translocation hypothesis. However, it is also possible 

that teleost ins genes arose as local duplicates and subsequently moved to locations 

syntenically unrelated to the original chromosomal location of INS/IGF in the ancestor 

teleost genome. There is a documented example of a similar translocation of a duplicated 

insulin gene in rodents (Shiao et al. 2008). When traced using the N-model the murid-

specific INS-paralog maps to an ancestral linkage group different from the expected VAC 

“D”(not shown here) owing to a single gene-translocation that took place early in the 

evolution of mice and rats (Shiao et al. 2008). Two resolve the origins of the vertebrate 

INS/IGF loci, examination of a wide range of taxa using independent methods should be 

performed. 
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Table 1.1. Explanation of the nomenclature used for the hypothetical ancestral 

genes that gave rise to the three gene families discussed in this study 

 

Origin Gene Family: RXFP3/4  

Pre-2R AncRxfp3/4 

Post-1R 

paralogs 
AncRxfp3-I AncRxfp3-II 

Post-2R 

paralogs 
RXFP3-1 RXFP3-2 RXFP3-3 RXFP3-4* 

Post-3R 

paralogs 
rxfp3-1 † rxfp3-2a rxfp3-2b rxfp3-3a‡   rxfp3-3b rxfp4 † 

Origin Gene Family: Rxfp1/2  

Pre-2R AncRxfp1/2 

Post-1R 

paralogs 
AncRxfp1 AncRxfp2 

Post-2R 

paralogs 
RXFP1 

† 

RXFP2 

[RXFP2-like]** 
Post-3R 

paralogs 
rxfp1 † rxfp2a rxfp2b 

Origin Gene Family: RLN/INSL (Relaxin peptides) 

Pre-2R AncRln-like 

Post-1R 

paralogs 
AncRln-I AncRln-II 

Post-2R 

paralogs 
RLN INSL3 RLN3 INSL5 

Post-3R 

paralogs 
rln † insl3 † rln3a rln3b insl5a insl5b 

 

*  I show that the gene known as “RXFP4” is one of the three ohnologs of RXFP3-1, hence based 

on its origin it should be termed “RXFP3-4”; 

** The origins of RXFP2-like (present in zebrafish, amphibians, reptiles and marsupials) remain 

controversial, it is possible that RXFP2-like is a post-2R descendant of AncRxfp2, in which case it 

should be called "RXFP2-2", while the ortholog of human RXFP2 should be called "RXFP2-1"; 

‡   rxfp3-3a was locally duplicated in the Post-3R ancestor of zebrafish, medaka, stickleback and 

pufferfishes (hence rxfp3-3a and rxfp3-3b); in zebrafish there are three paralogous rxfp3-3a 

genes: 3-3a1, 3-3a2 and 3-3a3;  

†   Gene loss                                                                    



CHAPTER 2: Gain and loss of RLN/INSL and RXFP 
genes across vertebrate lineages and roles of 

duplication and subfunctionalization in the 
diversification of the signaling systems 

 

INTRODUCTION 

 

In the previous chapter, I introduced the duplication history of the relaxin family peptides 

and their receptors throughout vertebrate evolution. Briefly, I postulated that a receptor-

ligand system encoded by three genes (AncRln/Insl, AncRxfp1/2 and AncRxfp3/4) already 

existed in the vertebrate ancestor before the onset of the two rounds (2R) of whole 

genome duplication (WGD) ~550 MY ago (see Figure 2.1 for a summary). In addition, 

using the model of vertebrate karyotype evolution, I demonstrated that the genetic 

origination of the RLN/INSL-RXFP system throughout vertebrate evolution has been 

strongly influenced by WGD events, which amplified the numbers of both ligand and 

receptor genes. The modern sets of genes present in vertebrate genomes were ultimately 

defined by differential gene loss and retention across lineages. For instance, in teleosts 

post-3R gene loss primarily affected the ligand-receptor pairs potentially involved in 

reproduction (rln-rxfp1, insl3-rxfp2), whereas rln3/insl5 ligand and rxfp3/4 receptor 

genes (potentially involved in neuroendocrine regulation) experienced comparably high 

retention rates. The other group of vertebrates, tetrapods, experienced a significantly 

higher loss of RXFP3/4 receptors in comparison to teleosts, and in some tetrapods, gene 

loss reduced the size of relaxin peptide and their receptor families to, probably, a 

biological minimum (as in reptiles, which will be discussed further in this chapter).  
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To date, the functional diversification of relaxin family peptides and their receptors has 

remained enigmatic, primarily due to insufficient information available on the molecular 

biology of the signaling system in non-placental vertebrates. One notable property of 

relaxin peptides, which has remained unexplained in evolutionary terms, is their ability to 

promiscuously interact with various receptors. Thus, although RLN/INSL3 and 

RLN3/INSL5 appear to belong to two functionally distinct signaling niches, one member 

of each peptide pair expresses a strong overlap in its binding ability of RXFP receptors 

from one or both classes (Figure B2). Hence, while the endogenous receptor of RLN3 is 

RXFP3, this peptide is also capable of activating RXFP4 and RXFP1 receptors in 

mammals (Halls et al. 2007) and, moreover, rxfp1 in zebrafish (Park et al. 2008). Another 

peptide, RLN, apart from its cognate receptor RXFP1, can also induce RXFP2-mediated 

signaling. Conversely, neither human INSL3 nor INSL5 show promiscuity in their 

interactions with RXFP receptors (Figure B1, in Background). The question arising from 

this is whether the observed promiscuity in ligand-receptor interactions of relaxin 

peptides and RXFPs is an artifact of shared ancestral origins of the four RLN/INSL 

ohnologs or whether this property was acquired de novo to accommodate certain needs of 

the vertebrate organism.  

In this chapter I demonstrate how knowledge about the origins of the individual 

components of the system has a potential to predict the functional relationships among 

yet poorly understood genes in vertebrates. In particular, here I will: 

a) look in detail at the loss and retention of both RLN/INSL (ligand) and RXFP 

(receptor) genes in different taxa, such as reptiles (including birds), non-placental 

mammals and teleosts, which have been, for the most part, neglected in the 
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literature, to gain further insight into the ligand-receptor co-evolutionary process. 

In addition, I will discuss the novel RLN/INSL and RXFP genes found in elephant 

shark and lamprey. 

b) In addition I will use the RLN/INSL-RXFP duplication model established in 

Chapter 1 as a theoretical basis to explain the functional diversification of relaxin 

peptide systems in vertebrates. 

 

 

 

 

 

 

 

Figure 2.1. The number and identity of RLN/INSL (ligand) and RXFP (receptor) genes 

found and/or predicted in major extant and ancestral vertebrate taxa. 

It has been postulated that the pre-2R vertebrate ancestor probably had two RXFP (AncRxfp3/4 

and AncRxfp1/2) genes and a single RLN/INSL (AncRln-like) gene. The first round of WGD 

(1R) duplicated the original set of genes to produce a total of 6 post-1R genes. The second 

round of WGD raised the number of RLN/INSL and RXFP genes to 12. The third round of 

WGD in teleosts led to another increase in numbers of both ligand and receptor genes. Crossed 

circles indicate gene loss. 



Figure 2.1 



METHODS 

Retrieval of sequences for lamprey and cartilaginous fish 

 

Tetrapod and teleost gene and protein sequences analyzed in this chapter are part of the 

dataset created for Chapter 1. Lamprey and elephant shark whole genome sequences 

(WGS) were searched in the NCBI Trace Archives 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using discontiguous megaBLASTn (Altschul et 

al. 1997) with teleost/tetrapod RLN/INSL and RXFP sequences as queries. The resulting 

trace hits were then checked for the presence of RLN/INSL and RXFP amino acid  

signatures by manual inspection and by employing the NCBI conserved-domain search 

tool or BLASTp (Altschul et al. 1997). Where necessary, multiple traces were combined 

based on overlapping regions. The lamprey candidate sequences were mapped to the pre-

assembled lamprey genome (http://pre.ensembl.org) and were also used to blast the 

lamprey EST database. Due to the low quality of the current shark database, my findings 

were limited to shark rln/insl-like B-chain sequences. Additionally, rln/insl-like 

sequences were retrieved from GenBank (http://www.ncbi.nlm.nih.gov/GenBank) for 

four cartilaginous fishes (dogfish, sand tiger shark, little skate and Atlantic stingray, one 

peptide sequence per species). Phylogenetic reconstruction was performed using the 

methodology presented in Chapter 1. 

RESULTS and DISCUSSION 

Part 1- Gene Loss and Gene Gain in Vertebrates 

 



 62 

A close inspection of gene gain and loss patterns among different vertebrate taxa revealed 

interesting patterns of loss/retention and sometimes duplication of RLN/INSL (ligand) and 

RXFP (receptor) genes. The following briefly describes some of the highlights of the data 

mining (performed as part of Chapter 1) in teleost fish and tetrapods. In addition, gene 

gain and gene loss across placental mammals are discussed by looking at 12 placentals of 

different evolutionary origins.     

TELEOSTS 

 

Due to high retention rates and 3R duplication of both rln/insl (ligand) and rxfp (receptor) 

genes, the gene set in teleosts is the largest among vertebrates. Data mining and other 

analyses performed in this study in five teleost genomes confirmed that after 3R, teleosts 

retained 50% of the rxfp3/4 and all of the rln3 and insl5 duplicates. At the same time, 

teleosts only retained single copies of rln and insl3 and their receptors rxfp1 and rxfp2.  

Zebrafish differs from the other four analyzed percomorphan species- stickleback, 

takifugu, tetraodon and medaka (Kinoshita et al. 2009) - in that it has retained both 

rxfp2b (3R duplicate of rxfp2) and rxfp2-like (2R-ohnolog, lost in most other vertebrates), 

but lost rxfp4. Additionally, a local duplication event in zebrafish led to the origination of 

rxfp3-3a3 from duplication of rxfp3-3a2 (Figure 2.3). The loss of rxfp4 with the co-

incidental gain of rxfp3-3a3 in zebrafish, coupled with no changes in the number of their 

ligands, suggests that zebrafish rxfp3-3a3 may work with one or both copies of insl5. 

Differences between zebrafish and other teleosts are not limited to the existence of 

 

 

 

 





Figure 2.2. Synteny map depicting rearrangements in the structure of the RXFP4 

paralogon in teleosts and human. 

The hypothetical ancestral chromosome is shown to highlight the various 

recombination/duplication/deletion events that occurred in fish and human. 3R-

paralogs in teleosts are denoted in orange and red. Colored boxes outline clusters of 

genes shared between organisms. The “LSSV” cluster of 4 genes (LIX1L, SV2A, SP3B4 

and VPS72) is linked to the RXFP4 gene in all organisms but zebrafish, which seems to 

have lost its rxfp4 gene together with the LSSV cluster. Alternatively the rxfp4 gene in 

zebrafish may have undergone gene conversion (see Figure 2.10). Chromosomes 

depicted as arrows pointing upstream. Not to scale.   

 

lineage-specific duplicates, but are also mirrored in phylogenetic trees, where zebrafish 

proteins are always found basal to other teleosts’ proteins (see Figure 1.5). Such 

differences are attributable to the early divergence of zebrafish (~320 MYA) from the rest 

of the teleost lineage (Percomorphans diversified ~190 MYA) (Kasahara et al. 2007). 

Data mining of the smallest known teleost genome, the genome of of Tetraodon 

nigroviridis, was unable to identify rln3b or a pseudogene of it, but detected the presence 

of an rxfp3-1 pseudogene. This suggests that, at least in tetraodon, rln3b could be a 

cognate ligand of rxfp3-1 and that this ligand-receptor system became non-functional in 

this species. This observation is interesting in light of the results of the experimental 

work on the expression of rln3 genes in teleosts, which point at the subfunctionalization 

of teleost rln3 paralogs and hence, most likely, also of their rxfp3 receptors (see section 

“Subfunctionalization in teleosts” below).   



 

 

 

TETRAPODS 

 

Many tetrapods have experienced loss of both RLN/INSL (ligand) and RXFP (receptor) 

genes. Notably, apart from the expansion of the RLN locus in placental mammals, 

differential retention of RLN3/INSL5 genes and RXFP3/4 ohnologs is the main cause of 

differences in the genes present in the relaxin peptide systems of tetrapods and teleosts. 

For instance, while teleosts fully retained (and duplicated) the post-2R repertoire of 

rxfp3/4 ohnologs and rln3/insl5 genes, tetrapod RXFP3-2 completely disappeared while 

Figure 2.3. Post-3R gene loss and gain in five teleost fish species. 

Teleosts start with the gene set composed of ten receptors and six ligands. Zebrafish, which 

diverged early from the ancestral teleost lineage, retain most of the focal genes, except 

rxfp4. At the same time, possibly as a replacement for rxfp4, zebrafish gain an additional 

copy of the rxfp3-3 gene. Other teleosts lose rxfp2-like and also the 3R-duplicate rxfp2b. 

SSD: small-scale (local) duplication. Phylogeny and classification of fish adapted from 

Kinoshita, et al. (2009). 
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RXFP3-3 was retained only in a few tetrapod groups, such as cow, pig and opossum 

(Figures 2.4 and 2.5). The presence of 4 ligands and 4 receptors in many tetrapods 

therefore implies a 1-to-1 ligand-receptor interaction, while in teleosts, in which the 

number of rxfp3/4 receptors exceeds that of their ligands, these interactions appear more 

promiscuous.  

 

Figure 2.4. Post-2R gene loss and gain in tetrapods. 

Tetrapods start with the gene set composed of seven receptors and four ligands. 

RXFP3-2 is lost before the divergence of all extant tetrapod taxa. Interestingly, 

opossum is the only tetrapod (of the ones analyzed here), which has preserved the 

number of RLN/INSL-RXFP genes hypothesized to exist in the tetrapod ancestor. 

Massive gene loss occurred in reptiles (including the loss of the rxfp2-insl3 receptor-

ligand pair in all reptiles and of rln3 in birds) and in platypus. See Figure 2.5 for an 

expanded view of the situation in placental mammals.  

 

While the phylogenetic relationships I observe among most tetrapod sequences are in 

agreement with other studies, there are also some unexpected findings, which include the 

relaxin from anole lizard (discussed below) and armadillo RLN branching off the base of 

the entire RLN/INSL clade (Figure 2.7). It is interesting that armadillo is well-known for 



 

 

Figure 2.5 



Figure 2.5. Gene loss and gain in placentals. 

The evolution of placental RLN/INSL-RXFP systems is marked by a complete 

loss of RXFP2-like. Many placental lineages also lost the RXFP4-INSL5 

receptor-ligand pair and most (except cow and pig) did not retain RXFP3-3, 

suggesting that their role has diminished in these lineages. At the same time, the 

RLN-locus tremendously expanded in multiple placental lineages through 

independent local duplications. Note: the branching of this tree reflects the 

branching order (adapted from Prasad et al. (2008), but not the timing of the 

divergence of taxa. SSD: small-scale duplication.   

 

its ability to give birth to monozygotic quadruplets in every litter (Cyranoski 2009). This 

strategy is thought to be advantageous for overcoming the physical constraints imposed 

by the shape of the mammal’s reproductive tract (Cyranoski 2009) and may potentially 

involve the functioning of RLN.       

Reptiles (both reptiles per se and birds) present a particularly interesting model in which 

to study the diversification of the relaxin system. In addition to the gene loss encountered 

in other tetrapods, all reptiles appear to have lost the insl3-rxfp2 system and birds 

additionally lost rln3. The insl3-rxfp2 system has been shown to be important in the 

regulation of testicular descent in placental mammals (Feng et al. 2009) and is involved 

in the survival of both male and female germ cells in mammals (Kawamura et al. 2004). 

Furthermore, in teleosts, the expression and localization of insl3 hormone and rxfp2 

receptor are similar to those in mammals (Good-Avila et al. (2009); Dr. J. Bogerd, 

personal communication). Thus it appears that the insl3-rxfp2 system plays an ancient 

role in germ cell survival and therefore the observed loss of both the insl3 (ligand) and 

rxfp2 (receptor) genes in reptiles implies that they use mechanisms different from other 

vertebrates for the regulation of germ cell survival.  

Interestingly, while the loss of INSL5 and RXFP4 in rat was used to infer ligand-receptor 

specificity of the molecules in mammals (Wilkinson et al. 2005b), reptiles have lost rxfp4 
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but seem to have a functional insl5. Moreover, in birds insl5 is the only ligand that could 

potentially function via the single rxfp3/4-type receptor, rxfp3-1, retained in these 

organisms. Although RXFP3-1 is known to be the primary receptor for RLN3 in 

mammals (Halls et al. 2007), the finding that rxfp3-1 probably functions with insl5 in 

birds, suggests that either a switch in the ligand-receptor pairings occurred in reptiles, or 

that the rxfp3/4-type receptors can act promiscuously with either rln3 or insl5 ligands.  

Another interesting finding pertaining to the reptilian relaxin signaling peptides is the 

high sequence similarity of lizard rln and other vertebrate INSL5 peptides (Figure 2.7), 

suggesting that either gene conversion or selection has strongly influenced the evolution 

of the lizard rln. Overall these findings show that the reptile rln/insl-rxfp systems have 

evolved in a lineage-specific way, apparently different from other vertebrates, and that 

there may have been rearrangements in traditional receptor-ligand interactions.    

PLACENTALS 

 

Placental mammals are the largest source of information about the relaxin peptide 

signaling systems. In fact, to date the majority of the functional and bioinformatic studies 

on the RLN/INSL ligand and RXFP receptors has been done in a narrow range of 

placental taxa, such as murids, apes and human, which has ultimately limited our current 

understanding of the signaling system’s diversification to a few organisms. In this study, 

screening of multiple recently sequenced placental genomes has revealed that the 

placental RLN/INSL and RXFP gene sets are less uniform than previously thought, which 

implies that this signaling system has assumed various roles in different placental 

lineages to allow for lineage-specific adaptations. For instance, many placental mammals 

lost RXFP4 and INSL5 genes, and only a few (cetartiodactylans: cow and pig) have 
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retained RXFP3-3 in addition to RXFP3-1 (Figure 2.5). Another example is that several 

placental taxa appear to possess lineage-specific duplicates of the RLN locus (Figure 

2.5). While a few such duplicate genes (INSL6 in all placentals, INSL4 in catarrhines and 

apes and RLN1 in apes) were documented well by other authors and are believed to 

represent neofunctionalizations of the RLN locus (Wilkinson et al. 2005b), there are 

additionally multiple lineage specific duplications of the RLN locus that appear to have 

occurred independently. Specifically, there are three copies of a RLN-like gene in shrew, 

two in pig, two in armadillo and six in rabbit (Figure 2.5). Since some of the duplicate 

RLN genes could be attributed to errors in the current genome assemblies, further 

investigation into their properties is deemed important to establish their identities and 

possible roles. 

Origins of INSL4 in placental mammals 

 

Previous bioinformatic analyses revealed that the appearance of INSL4, at least in 

catarrhines, has been associated with the viral retroposition of the RLN locus that resulted 

in a tandem duplication (Bieche et al. 2003). Despite searching for the presence of 

INSL4-type genes, Bièche et al (2003) failed to find sequence evidence of INSL4 in 

earlier diverging mammals. Recently, Hoffman and Opazo (2011) proposed that the 

duplication of the RLN locus that gave rise to INSL4 occurred long before the emergence 

of catarrhines. Based on phylogenetic evidence in which catarrhine INSL4 always groups 

basal to RLN1/RLN2, the authors suggested that INSL4 appeared for the first time in 

Euarchontoglires (~103 MYA), but then was lost in all lineages with the exception of 

catarrhines and apes (which diverged ~ 30 MYA). One problem with the Hoffman and 

Opazo (2011) hypothesis is that it is based purely on phylogenetic evidence. When a gene 
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has an accelerated rate of evolution compared to its ancestor, as is the case for INSL4 

(see Background), which underwent neofunctionalization relative to its progenitor RLN 

(Wilkinson et al. 2005b), the branch often comes out basal to a clade (because purifying 

selection is relaxed, and the gene diverges), and indeed this is one way that pseudogenes 

are detected. Consequently, the phylogenetic position of catarrhine/ape INSL4 as basal to 

the RLN clade is not unexpected. 

Second, both the bioinformatic analyses by Bièche et al. (2003) and the database 

screening performed here failed to find any evidence of INSL4 in earlier diverging 

placental mammals, such as murids. Third, a problem in the analyses of the INSL4 locus 

is that its peptide product is longer than the other RLN/INSL peptides, and the C-peptide 

can be included as part of the mature peptide. Phylogenetic analyses of the pre-propeptide 

forms (containing the C-peptide, normally excised during post-translational modification, 

see Figure B1) of INSL4 and other RLN-locus duplicates, suggest that catarrhine/ape 

INSL4 is sister group to more recently derived RLN molecules (Figure 2.5), leading to 

further evidence that Hoffman and Opazo’s (2011) hypothesis is incorrect. Lastly, if 

Hoffman and Opazo’s hypothesis were correct, INSL6 and INSL4 would have duplicated 

and diverged both at ~ 100 MYA and we would expect them to be approximately equally 

divergent from the RLN locus; however this is clearly not the case (see Figure 2.6). 

In contrast to INSL4, INSL6 was present in most of the placental mammals examined, and 

is relatively well conserved suggesting that after duplication and divergence from the 

progenitor RLN molecule, it acquired its new function relatively quickly. Experimental 

evidence shows that INSL4 is highly expressed only in placenta (Bieche et al. 2003), 

while INSL6 is highly expressed exclusively in testis (Ivell and Grutzner 2009). On the 
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other hand, RLN has more general expression in reproductive tissues with high 

expression patterns in prostate (Samuel et al. 2003). That INSL4 and INSL6 were subject 

to neofunctionalization related to the appearance of novel reproductive functions in 

placentals is further suggested by their switch to new, and still undiscovered, receptors 

(Kong et al. 2010). Given that RLN in placental mammals is highly divergent from its 

ortholog in teleosts (see Chapter 3), it appears that the entire locus containing RLN and its 

local duplicates has been the target of selection. 

 

    

 

Figure 2.6. Phylogeny of the RLN peptides in mammals including sequences for 

RLN (together with RLN1/2 in humans), INSL4 (only present in monkey and 

primates), and INSL6.  

RLN3 was used as outgroup. 



 73 

 

Gene sets in lamprey and elephant shark.  

 

To gain insight into the status of the relaxin ligand-receptor systems in early diverging 

vertebrates, such as agnathans and cartilaginous fish, I searched the sequenced genomes 

of lamprey and elephant shark using traditional database search strategies. These searches 

led to the discovery of two RLN/RLN3-like (ligand) genes in both lamprey and shark and 

four RXFP-like (three RXFP3/4-like and one RXFP1/2-like) genes in lamprey. Owing to 

the still poor assembly of the lamprey database and unassembled nature of the elephant 

shark genome, it seems unlikely that the sets of rln/insl and rxfp genes obtained for 

lamprey and shark are complete. The timing of divergence of lampreys and hagfish 

(collectively known as jawless fish or agnathans) in respect to the WGD events has been 

debated and presently agnathans are believed to have diverged post-2R (Kasahara 2007), 

which implies that these organisms must possess a set of rln/insl and rxfp genes of similar 

size (but not necessarily identical, because of lineage-specific gene loss and gain) to that 

of gnathostomes. 

The novel RXFP3-like genes identified in lamprey, rxfp3-L1 and rxfp3-L2, cluster 

together outside the vertebrate RXFP3-1 and RXFP3-2 clades, while lamprey rxfp3-L3 is 

unplaced at the base of the tree (Figure D1a, Appendix D). It is possible that lamprey 

rxfp3-L1 and rxfp3-L2, which appear very similar structurally, are products of the same 

gene (e.g. they could be products of two alleles of a single gene; alternatively, if they are 

two distinct genes, gene conversion may have taken place- Dr. Campbell, personal 

communication). The lamprey RXFP1/2-like protein groups with RXFP2 and RXFP2-

like sequences from other vertebrates (Figure D1b, Appendix D). The two novel lamprey 
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rln/insl peptides that I identified cluster closely with rln from non-mammals and RLN3 

providing good support for the orthologous relationship of these genes.   

Two of the three RLN/INSL-like sequences experimentally identified by Schwabe’s 

research group, from dogfish and sand tiger shark (Reinig et al. 1981, Steinetz et al. 

1998), cluster outside the RLN/RLN3 clade, whereas another sequence from little skate 

branches off the INSL5 clade. At the same time the peptide from atlantic stingray, 

somewhat surprisingly, groups in the placental RLN clade. The elephant shark sequences 

showed a slightly different grouping: while one of them clustered in the RLN3 clade, the 

other clustered outside the RLN/RLN3 clade (Figure 2.7). In summary, it is clear that 

further studies must be conducted to more accurately define the identities of the novel 

genes from elephant shark and lamprey. Thus the constantly updated lamprey database 

(which has recently been added to the rapidly growing list of Ensembl genomes) holds 

promise to achieve enough chromosome coverage to allow the identification of lamprey 

rln/insl and rxfp genes through syntenic analyses.  

 

 

 

 

 

 
Figure 2.7. Reconstruction of phylogenetic relationships among insulin-

relaxin superfamily peptides of both deuterostomes (vertebrates and 

invertebrates) and protostomes (fruitfly). 

Blue squares show novel relaxin family peptide-like (rfpl) sequences from 

lamprey and cartilaginous fish. Red squares surround anomalous tetrapod 

sequences which branch differently from their orthologs in other organisms. 

See a less collapsed version of this tree in Chapter 3.  
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Figure 2.7 (Legend on previous page) 
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Part 2- The subfunctionalization of RLN/INSL and RXFP genes: 
hypothetical models 

 

Subfunctionalization in a tripartite receptor-ligand-receptor system 

 

Sub- and neofunctionalization as processes that are involved in the evolution of 

duplicated genes were introduced in Background using a scenario for a two-component 

system encoding a receptor and its ligand (Figure B5). There are at least two possible 

scenarios for the subfunctionalization of a more complex ligand-receptor system 

composed of one ligand and two receptors (Figure 2.8). The presence of two receptors in 

such a system implies that the sole ligand has a dual function. Thus it may regulate one 

kind of physiological process by signaling via one kind of receptor (e.g. receptor “R”, 

Figure 2.8), and at the same time this same ligand may perform a different function using 

the other receptor (e.g. receptor “S”, Figure 2.8). The duplication of both ligand and 

receptor genes will produce three pairs of daughter genes (R’-R”, S’-S” and L’-L”). Since 

the two daughter ligands are structurally identical, each of them can potentially function 

via 4 receptors. Subsequently, based on the needs of the genome and associated selection 

pressures (and assuming there is no receptor loss), the two ligands can form two daughter 

three-component signaling systems. Depending on whether there is a need to retain a 

dually functioning signaling system controlled by a ligand and two different kinds of 

receptors, the daughter systems may contain receptors of the same or different kinds 

(Figure 2.8).   

The duplication model of RLN/INSL and RXFP genes (Chapter 1) proposes that the 

ancestral pre-duplication system was represented by a dually functioning ligand (AncRln-

like) that used two receptors (AncRxfp3/4 and AncRxfp1/2). Furthermore, the modern 
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vertebrate RLN/INSL-RXFP systems are the products of the two duplication events 

which amplified the genes for both ligands and receptors. Hence, if the evolution of the 

vertebrate relaxin ligand-receptor systems occurred via the processes of duplication and 

subsequent subfunctionalization, which of the two scenarios presented in Figure 2.8 did it 

most likely follow?   

 

 

Figure 2.8. The two possible outcomes (B and C) of a subfunctionalization 

process taking place among the post-duplication descendants of a three-

component receptor ligand system. 

A) An ancestral system encoded by one ligand gene (L) and two receptor genes (R 

and S). After duplication, there are a total of six genes, which can subfunctionalize in 

at least two different ways: B) Each daughter ligand subfunctionalizes to work with 

only one type of daughter receptors (either R or S); or C) both ligands retain the 

ability to function via both types of receptors.     
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Using the theory of subfunctionalization to explain the functional diversification of the 

RLN/INSL-RXFP ligand-receptor system. 

 

Our current knowledge about the endogenous receptor-ligand pairing of relaxin-like 

peptides and their receptors dictates that in mammals two of the four ohnologous peptides 

(RLN and INSL3) function via one kind of relaxin receptor (RXFP1/2-type, RXFP1 and 

RXFP2), while the other two ligands (RLN3 and INSL5) function via another kind of 

relaxin receptors (RXFP3/4, RXFP3 and RXFP4). The two kinds of relaxin peptide 

receptors are only distantly related and the exact mechanism by which the recruitment of 

such diverse receptors occurred has remained unclear. Taking into account that both 

ligand gene pairs, RLN/INSL3 and RLN3/INSL5, are 2R products of two different post-1R 

ancestral genes, AncRln-I and AncRln-II (Figure 2.1), it can be hypothesized that the post-

WGD daughter RLN/INSL genes subfunctionalized by specializing on one type of 

receptor (Figure 2.8B). This hypothesis further implies that relaxin peptides became 

distinctly paired with two different receptors already following 1R, when AncRln-I and 

AncRln-II subfunctionalized to interact with AncRxfp1/AncRxfp2 and AncRxfp3-

I/AncRxfp3-II receptors (Figure 2.9A). The subfunctionalization of the post-1R system 

may have been triggered by the need to separate the two functions performed by the 

ancestral tripartite signaling system to produce two more systems specialized in 

reproductive (AncRln-I and AncRxfp1/2) and neuroendocrine regulation (AncRln-II and 

AncRxfp3-I/II).           

The second round of WGD completed the process of formation of modern vertebrate 

relaxin peptide gene sets by duplicating AncRln-I to produce RLN and INSL3 and 

AncRln-II to produce RLN3 and INSL5. While RLN3 became coupled with RXFP3-1 and 

RXFP3-2, INSL5 became coupled with RXFP3-3 and RXFP3-4. Notably, while most 
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tetrapods lost RXFP3-2 and RXFP3-3, all four RXFP3/4 receptor ohnologs (and thus the 

three-component nature of the systems) were preserved in the teleost ancestor. At the 

same time, the evolution of the 2R products of AncRln-I ligand and AncRxfp1/2 

receptors has taken very similar routes in both tetrapods and teleosts. In fact in all 

vertebrates there is a single RXFP1 gene and in most vertebrates there is only one RXFP2 

gene, which indicates that the tripartite nature was not favored for these genes in modern 

vertebrates.        

 

Figure 2.9. The diversification of the RLN/INSL and RXFP genes in the ancestor of 

jawless and jawed vertebrates. 

 A) The pre-1R three gene system duplicates to give rise to two ligands and two pairs of 

receptors. After duplication, both ligands and receptors are structurally and functionally 

identical, which is favorable for promiscuous ligand-receptor interactions. Such 

unobstructed ligand-receptor interaction in combination with certain selective pressures 

may have triggered the subfunctionalization of ligand genes, favoring the establishment 

of AncRln-I-AncRxfp1 and 2 and AncRln-II-AncRxfp3-I and -II as ligand-receptor 

pairs. Note that here I stress that the two post-1R AncRln (ligand) genes 

subfunctionalize to work with the two different types of receptors. Alternatively, each 

of the daughter ligand genes could have formed a system which would imitate the 

ancestral receptor-ligand system in that each ligand would still work with two different 

types of receptors.      

B) Further subfunctionalization of the AncRln-I 2R-products: RLN, which 

subfunctionalizes to work with RXFP1 and INSL3, whose physiological target becomes 

RXFP2. On the basis of proposed relatedness of RXFP2-like to RXFP2, I hypothesize 

that RXFP2-like could, at least shortly after 2R, function as a receptor of INSL3. 

C) Subfunctionalization of post-2R AncRln-II duplicates resulting in RLN3 and INSL5 

which subfunctionalize to function via RXFP3-1/3-2 and RXFP3-3/3-4 receptors 

respectively. Since all tetrapods lost RXFP3-2 and most of them also lost RXFP3-3, 

their ligand-receptor pairs lost their ancestral three-component nature and became two-

component, i.e. RLN3-RXFP3-1 and INSL5-RXFP4. Teleosts, on the other hand 

retained all post-2R RXFP3/4 receptors and seem to have experienced further 

subfunctionalization with the formation of complex ligand-receptor relationships. 
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Subfunctionalization of the system in teleosts 

 

Teleost fish are different from other vertebrates in that they experienced an additional 

round of WGD, which amplified the gene sets established in the post-2R gnathostome 

ancestor. Post-3R selective gene loss and lineage-specific duplications determined the 
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look of modern teleost genomes. The implication of this is that studying the gene systems 

of teleosts and comparing them to their tetrapod counterparts is illustrative for 

understanding the mechanisms involved in post-WGD evolution of genes and signaling 

networks.  

There are 6 rln/insl genes in teleosts: rln, insl3, rln3a, rln3b, insl5a and insl5b, two thirds 

of which (i.e. rln3a/b and insl5a/b) are the products of 3R. The relaxin peptides that 

technically were lost after 3R (rln and insl3) are counterparts of tetrapod RLN and INSL3 

which are involved in reproduction and whose receptors are RXFP1 and RXFP2 

respectively. Both rxfp1 and rxfp2 receptors in most teleosts (like their putative ligands 

rln and insl3) have no 3R paralogs and are hence found as single copies. The latter 

implies that, like in tetrapods, rln-rxfp1 and insl3-rxfp2 are also endogenous ligand-

receptor pairs in teleosts, which is supported by emerging experimental evidence from 

zebrafish (Dr. J. Bogerd, personal communication).  

The situation with the counterparts of tetrapod RLN3/INSL5 and their RXFP3/4 

receptors in teleosts is rather complex, because: 1) teleosts retained all rln3/insl5 3R 

duplicates and half of the rxfp3/4 receptor duplicates, and 2) post-3R lineage specific 

small-scale duplications further increased the number of rxfp3/4 (receptor) genes without 

affecting the number of ligand genes. Thanks to these changes in the number of genes, 

the ligand-to-receptor ratio of relaxin peptide systems in teleosts is intermediate between 

that of tetrapods (approximately 1:1 in most) and the pre-3R teleost ancestor (1:2, Figure 

2.9). Interestingly, the intensive diversification of rxfp3-2 and rxfp3-3 receptors observed 

in teleosts is the opposite of almost complete loss of these receptors in tetrapods, which 

implies more intricate relationships among teleost rxfp3/4-receptor systems.  
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Experimental studies performed in zebrafish (Donizetti et al. 2009) and eel (Hu et al. 

2011) indicate that rln3a and rln3b exhibit the signs of spatial subfunctionalization, in 

that one of the paralogs (rln3a) is expressed in a broader range of tissues than the other 

(rln3b). Whether rln3a and rln3b subfunctionalized to function with different receptors in 

vivo has yet to be determined, but ongoing expression studies of teleost rxfp (receptor) 

genes already imply that this could be the case (Dr. Jan Bogerd, personal 

communication). Here I present a hypothetical model for the functional 

subfunctionalization of rln3 paralogs to work with rxfp3-1 and rxfp3-2 receptors (Figure 

2.9A). Similar to the models previously derived for the subfunctionalization of 

RLN/INSL hormones and their receptors in the common ancestor of teleosts and 

tetrapods (Figure 2.8), it is assumed here that Rln3 peptide and Rxfp3-1 and Rxfp3-2 

receptors form a tripartite ancestral teleost ligand receptor system, which is duplicated by 

means of 3R. Due to post-duplication loss of one rxfp3-1 paralog, but retention of both 

duplicates of rxfp3-2, there are a total of 3 receptors which potentially function with rln3a 

and rln3b. Taking into account that in one of the percomorphan teleosts, in tetraodon, the 

loss of rln3b coincides with the pseudogenization of rxfp3-1 (see above), I propose that 

rln3b is a cognate ligand of rxfp3-1, while rln3a has specialized to function with two 

receptors, rxfp3-2a and rxfp3-2b (Figure 2.9A). 
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Figure 2.10. The diversification of rln3 and insl5 signaling systems in teleosts. 

Pre-3R teleost ancestor had two receptor-ligand-receptor trio systems, Rln3-Rxfp3-1/3-2 

and Insl5-Rxfp3-3/3-4. Note that in both systems 3R ligand duplicates were completely 

retained, whereas only a half of receptor duplicates was kept. The receptor paralogs that 

were retained are descendants of rxfp3-2 and rxfp3-3. A) Applying the principles outlined 

earlier in this chapter, one can hypothesize a functional specialization of the two rln3 

paralogs to work with rxfp3-1 (rln3a) and two rxfp3-2 genes. B) rxfp3-3 and rxfp3-4 

receptors in percomorphans C) Zebrafish has lost its rxfp3-4 (i.e. rxfp4) receptor but has an 

extra copy of rxfp3-3a3, which may imply that the receptor of insl5b is rxfp3-3a3. There 

are two mutually exclusive ways (SSD, small-scale duplication, shown with number 1 

(black) and gene conversion, shown as “2” [in red]) through which rxfp3-3a3 may have 

arisen. Note that in B) and C) insl5 paralogs are chosen arbitrarily and their interaction 

with receptors can be reversed, i.e. insl5a may function with rxfp3-4 and insl5b may 

interact with rxfp3-3 receptors.  

 

At the same time the high structural similarity of rln3a and rln3b is probably associated 

with their equal ability to bind both kinds of receptors in vitro in the absence of spatial 

limitations characteristic to in vivo systems.  

The story of insl5 paralogs and rxfp3-3 and rxfp3-4 receptors (Figure 2.10B) seems 

startlingly similar to that of rln3 and its putative receptors (Figure 2.10A) in that the 3R 

duplicates of only one class of receptor (rxfp3-3) survive gene loss (and go through 

additional lineage-specific duplications), while the other receptor (rxfp3-4) is retained in 

one copy in Percomorphans (Figure 2.9B) and is completely lost (according to the SSD 

scenario) or converted into a rxfp3-3-like gene (according to the gene conversion 

scenario) in zebrafish (Figure 2.9C). Thus here I hypothesize that while the endogenous 

receptor of one of the insl5 paralogs is rxfp3-4, the other insl5 gene uses three rxfp3-3 

receptors.   
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CHAPTER 3: Evidence of co-evolution between ligand-
receptor pairs: analysis of the types and strengths of 
selection on RLN/INSL and RXFP genes in mammals 

versus teleosts  
 

INTRODUCTION 

The ultimate sources of gene evolution are mutation and recombination.When mutations 

occur in protein coding genes, they may have negative, neutral or positive effects. When 

mutations occur at so-called degenerate sites, they do not cause changes to the peptide 

sequence, and are called silent or synonymous changes. Since these mutations are not 

“perceived” by the organisms, they tend to evolve at a rate largely dictated by the rate of 

mutation/substitution, i.e. they are neutral, although for proteins exhibiting high 

functional constraint even synonymous substitutions can be selected against(Nei and 

Kumar 2000). On the other hand, when mutations cause amino acid changes, so called 

non-synonymous changes, they may result in conservative or radical amino acid changes, 

and this can have negative or occasionally positive effects. Usually, these 

nonsynonymous changes have negative impacts on protein structure and/or function and 

they are selected against, a process known as purifying selection. However, sometimes 

these mutations may lead to amino acid changes that are favoured by the organisms in 

which they exist and this leads to a rapid fixation of such substitutions as the result of 

positive selection. Since ligands and receptors co-evolve, it is assumed that if an amion 

acid change is selected in one member of the ligand-receptor pair, a concomitant change 

will occur in the other member of the pair(Nei and Kumar 2000). One of the tenets of co-

evolutionary theory of ligand-receptor pairs, is that they should exhibit similar types and 



 86 

rates of evolution and selection(Fraser et al. 2002), since a radical change in the active 

site of one member of the pair should be mirrored by a concomitant change in the other 

member.. 

Given this, a variety of authors have proposed that a test for co-evolution of ligand-

receptors pairs is to calculate the evolutionary distance among putative ligand and 

receptor pairs for a suite of taxa . Potentially co-interacting pairs should exhibit similar 

rates of evolution, and thus have a correlation coefficient close to one, as has been shown 

for several co-evolving ligand-receptor pairs(Cyranoski 2009, Prasad et al. 2008). One of 

the assumptions of this test is that, aside from being assured that one is comparing 

orthologous genes and true ligand-receptor pairs(Braasch et al. 2009), is that the same 

selective forces operate among all taxa included in the analyzed group. A second 

potential caveat is that it assumes that a similar proportion of amino acids are subject to 

selection in each ligand-receptor pair, which may not be true, particularly if an entire 

binding pocket is the unit of selection in a receptor whereas only a few key residues are 

points of selection for the ligand. Nevertheless, tests of positive correlation among ligand 

and receptor pairs have been fruitfully employed in several studies. The correlation 

coefficient employed in these cases is normally calculated as the average amino acid 

distance among putative ligand-receptor pairs for the taxa included in the analysis (Goh 

et al. 2000), however, the test ould be employed for other parameters, such as the 

proportion of sites under purifying, neutral or positive selection in ligands and receptors 

respectively. 

Additionally, sometimes ligand-receptor pairs undergo lineage-specific selection. For 

example, the teleostean peptide rln is highly similar to rln3 (in teleosts), while its 
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mammalian counterpart (RLN) is highly divergent. This strongly suggests that the 

hormone RLN underwent positive selection in early mammalian history. To look for 

evidence of differential strengths of selection across genes or lineages, one can compare 

the ratio of the mean number of non-synonymous (dN=amino acid replacing) to 

synonymous (dS=silent sites that do cause a change in the amino acid) changes across the 

entire peptide. For proteins that are subject to strong purifying selection, this ratio is 

typically close to 0 (0<dN/ dS <0.2, while for proteins subject to strong positive selection 

it is greater than 1.0 (i.e. dN/ dS >1), with values between 0 and 1 indicating intermediate 

levels of selection (Nei and Kumar 2000). Because different parts of a protein are 

typically subject to different forms of selection, and because the active sites of proteins 

may be subject to novel forms of selection in distinct lineages, a better test of lineage 

specific selection is to look for evidence that specific amino acid exhibit a ratio of dN/ dS 

>1.  Zhang et al. (Zhang et al.) developed a test look for this, called the branch-site test of 

positive selection, in which one looks for evidence of codon-specific positive selection 

within monophyletic clades as specified on a phylogenetic tree. 

In this chapter, I will look at the role of selection by comparing the relative proportion of 

sites under purifying, neutral or positive selection in relaxin family peptide and receptor 

genes in both tetrapods and teleosts and examine if there is evidence of codon-specific 

positive selection in distinct lineages. The goal of the first part of the analyses is two-

fold: by comparing the relative strength of purifying, neutral and positive selection in the 

focal genes in teleosts and tetrapods, I can assess whether orthologous ligand and 

receptor genes have experienced similar selective pressures in the two lineages. If they 

have, this suggests that the ligands and receptors may play similar roles in the two 
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groups. Second, I calculate the correlation coefficient of putative ligand-receptor pairs 

separately for tetrapods and teleosts, to test whether putative ligand-receptor pairs have 

undergone similar levels of selection in the two lineages. If they have, this again, 

suggests that the proposed ligands and receptors function together and that their main 

roles have been preserved in the two lineages. Because the number of focal genes in 

teleosts is higher, this analysis is restricted to the orthologs of the teleost genes present in 

tetrapods, and I also assume that the probable ligand-receptor pairings in all teleosts and 

tetrapods are those that predominate in humans (i.e. RLN-RXFP1; INSL3-RXFP2; 

RLN3-RXFP3; INSL-RXFP4). Third, I present a phylogenetic reconstruction of the 

relationship among all relaxin family ligands to illustrate the evolutionary relationship 

among the sequences in the light of the results of the analyses of the selective forces that 

have shaped the appearance of modern genes. Lastly, I perform tests of codon-specific 

positive selection on the receptor (this chapter) and ligand genes (Chapter 4) to determine 

the amino acid positions and regions of the receptor genes that have undergone selection 

luding those genes that are teleost specific. 

METHODS 

Given the assumption that ligand and receptor pairs experience similar kinds and levels 

of selection, I calculated the proportion of amino acids in ligand and receptor pairs 

estimated to be subject to purifying, neutral or positive selection. These data were used 

to: 1) graph the proportion of sites under each kind of selection in all tetrapod and teleost 

genes and 2) plot the proportion of sites under each kind of selection for the four 

orthologs hypothesized to be ligand and receptor pairs in both tetrapods and teleosts. 

Second, to assess whether teleoestean ligand or receptor genes have been subject to 
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lineage specific positive selection, I estimated the number and position of amino acids 

subject to positive selection in all genes.  Both of these analyses were performed using 

the branch-site model A (Zhang et al. 2005), which tests whether the members of a user-

defined clade (branch) on a phylogenetic tree exhibit evidence of codon-specific selection 

for the gene under study.  The application of this model requires that the user specify a 

priori which branch is being tested for evidence of positive selection, the so-called 

foreground branch, while the remaining groups are defined as background branches. 

Tests of positive selection were made by comparing the branch-site model A in which 

(dn/ds) >1 (alternative hypothesis) to the model A in which dn/ds = 1 fixed (null 

hypothesis) and setting the foreground branch to the base of the clade containing the 

relaxin family ortholog in teleosts and the background branch to the same ortholog in 

mammals or tetrapods (depending on the tree structure) or vice versa. Analysis of the 

branch-site model A was done using CODEML from the PAML package (PAML v. 4.2); 

models were compared using the Likelihood Ratio Test with 1 degree of freedom and, 

where significant, the posterior probability that a codon was under positive selection was 

estimated using the Bayes empirical Bayes (BEB) procedure (Zhang et al. 2005).   

Additionally, to further illustrate how selection has modified the perceived similarity of 

the relaxin family peptides, a phylogenetic tree was reconstructed based on the alignment 

of all relaxin family peptides (except insl4, see Appendix B), and including insulin and 

IGF–like peptides from diverse metazoan taxa to root the tree. The alignment of peptide 

sequences was performed using the algorithm MUSCLE as implemented in MEGA 5.01 

(Tamura et al. 2011).The best model of sequence evolution was chosen using Maximum 

Likelihood inference as implemented in the program PROTEST (Abascal et al. 2005) and 
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the RLN/INSL phylogeny was inferred using Maximum Likelihood methods as 

implemented in MEGA v. 5.01 (Tamura et al. 2011) using the JTT + Γ model of 

sequence evolution. 

RESULTS 

Using the proposed ligand-receptor pairings presented in Chapter 2, putative ligand-

receptor pairs were graphed adjacent to one another, with the exception of the receptor 

rxfp2-like, whose ligand is unknown. If ligands and receptors co-evolve, we expect to 

observe a correlation of the rates and types of selection on ligand-receptor pairs, which is 

easily visualized on a histogram (Figure 3.1). Similarity between selection at ligand and 

receptor genes is observed for some loci but not others (Figure 3.1). For example, the 

patterns of selection for RLN3-RXFP3-1, INSL3-RXFP2, and INSL5-RXFP4 in mammals 

are broadly similar: RLN3-RXFP3-1 both evolve slowly and are characterized by 

purifying selection, INSL3-RXFP2 evolve somewhat faster but have very similar 

selection profiles, but mammalian INSL5 has more neutrally evolving sites than RXFP4, 

and the overall INSL5-RXFP4 system exhibits relaxed evolutionary pressures compared 

to RLN3-RXFP3-1 and INSL3-RXFP2 (Figure 3-1A).  While these three ligand-receptor 

pairs have similar selection profiles, the same cannot be said of the mammalian RLN-

RXFP1 system: RLN has more selected sites than any other gene, while RXFP1 exhibits 

a similar rate of evolution to RXFP2 and RXFP4.  

 The analysis of co-evolution of rln/insl and rxfp genes in teleosts, including those 

arising during 3R, was somewhat inconclusive (Figure 3-1B). In teleosts, the ligand rln 

was found to have a high number of neutrally evolving sites, although this may be an 

artifact of it being compared to mammalian rln (see Discussion). On the other hand, the 
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number of selected sites in the proposed ligand-receptor pairs insl3-rxfp2, and 

rln3a/rln3b-rfp3-1 and rxfp3-2b look similar. In Chapter 2, I proposed that rxfp3-2a and 

rxfp3-2b are both potential receptors for rln3a and rln3b, and based on the selection 

analyses presented here it appears that the selection profile of rxfp3-2b parallels that of 

both ligands (rln3a/rln3b), while that for rxfp3-2a has more selected sites, haring a 

selection profile more like that of insl3.  

In teleosts, as in mammals, insl5 exhibits higher rates of neutral evolution than the 

other ligands. However, none of the proposed receptors for insl5 exhibit the same high 

rate of neutral evolution: rxfp4 is the fastest evolving potential receptor, while all of the 

rxfp3-3 receptors are quite slowly evolving (Figure 3-1B). Thus, although teleost insl5 

and rxfp4 genes have similar selection profiles to those of mammals, suggesting a 

conserved function between the two lineages, the other three proposed receptors for insl5 

exhibit strong purifying selection and do not closely parallel the selection profile of 

teleost insl5.  

In the second analysis, I plotted the relationship between the proportion of sites 

under purifying, neutral or positive selection in ligand versus receptor pairs using the 

following pairing rules: rln-rxfp1, insl3-rxfp2, rln3-rxfp3-1, and insl5-rxfp4 in both 

tetrapods and teleosts.  Those values falling along the (0,0; 1,1) plane of the XY-plot 

exhibit similar kinds and strengths of selection between ligand-receptor pairs. 

Observation of a similar X,Y value for the same gene for mammals and teleosts for the 

same gene, further suggests that the pair may play similar roles in the two lineages. As 

Figure 3.2A clearly shows, the extent of purifying selection has been highly similar 

between mammals and teleosts for all RLN/INSL and RXFP genes. Moreover, the values 
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of purifying selection are highly similar for both the ligand and receptor genes for RLN3-

RXFP3 and INSL3-RXFP2 suggesting co-evolution, while for the remaining two genes, 

RLN-RXFP1 and INSL5-RXFP4, the proportion of sites under purifying selection is 

higher for the receptor genes (between 0.7 and 0.92), than the ligands (ranging from 0.4 

to 0.95), suggesting a more diffuse co-evolution (or no co-evolution) 
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Figure 3.1. The proportion of sites in ligand and receptor genes subjected to 

different kinds of selection in mammals (panel A) and teleosts (panel B). 

 

Selection types: purifying (light purple), neutral (dark purple) and positive (yellow).  
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 On the other hand, there are significantly fewer sites, not surprisingly, which are 

evolving neutrally (Figure 3.2B) or are subject to positive selection (Figure 3.2C). For the 

receptor genes, from 3 to 20% of the sites were found to be evolving neutrally (Figure 

2.3B), and from 2 to 13% were subject to positive selection; RXFP3 exhibits the fewest 

neutral or positively selected sites, RXFP4 has the highest proportion of sites under 

neutral evolution and RXFP2 exhibits the highest proportion under positive selection.  

Due largely to the anomalous nature of asymmetric selection on the RLN-RXFP1 ligand-

receptor system in mammals, the extent of neutral and positive selection among ligand 

genes varied more widely, primarily because teleost rln was found to have a large number 

of sites evolving neutrally, whereas mammalian RLN has a large proportion of sites 

subject to positive selection (Figure 3.2B and 3.2C respectively). Thus, with the 

exception of the RLN-RXFP1 system, teleost and mammalian ligand-receptor pairs 

continue to reveal similar levels of neutral and positive selection suggesting similarity in 

their function.  
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B) Proportion of sites under neutral evolution 
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C) Proportion of sites under positive selection 
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Figure 3.2. Estimated proportion of sites in the ligand (X-axis) and receptor (Y-axis) 

evolving under a) purifying b) neutral and c) positive selection in putative ligand-

receptor pairs of the RLN/INSL-RXFP system in mammals and teleosts. 

Those values falling along the XY: 0,0:1,1 plane represent pairs in which the same 

proportion of sites are observed to be under selection in both the ligand and receptor.  
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Imprint of selection on the phylogeny of relaxin family peptides 

 

The signature of the different kinds and degrees of selection acting on the relaxin family 

peptides can be seen in a phylogenetic reconstruction of the relationship among this 

family of peptides (Figure 3.3). At the top of the tree, all of the INSL5 genes group 

together, with moderate support, into three well supported subclades (mammals + 

amphioxus, skate, teleosts, frog and reptiles). The branch lengths within each subclade 

are long, indicating that there is considerable variation among sequences, predominantly 

caused by neutral divergence of INSL5 genes as shown above. Subtending this clade, is a 

clade containing the RLN3 sequences of all vertebrates included in the analysis. This 

clade has high bootstrap support and exhibits the shortest branch lengths of any relaxin 

family peptide, a characteristic of genes subject to strong purifying selection. Clustering 

as a sister group to vertebrate RLN3, is a clade containing teleostean, amphibian (frog) 

and bird (chicken) rln. As described more fully in Chapter 4, rln sequences of non-

mammals are highly similar to panvertebrate RLN3, and, as shown here, are 

characterized by purifying and neutral evolution. While these teleost and early vertebrate 

rln sequences are highly rln3-like, marsupial and monotreme RLNs are divergent from 

their teleost counterparts, and placental RLN is so divergent that it falls into its own 

clade, as a sister group to INSL6 (Figure 2.7). The clade containing placental RLN does 

not group with its teleostean, or marsupial/monotreme, orthologs because of the action of 

positive selection which has caused it to diverge so significantly that it appears as an 

independent gene. The long branches that characterize the clade containing mammalian 

RLNs is also caused by the high sequence divergence of the peptides which, in this case, 

is caused by positive, rather than neutral, evolution (see Chapter 4).  Lastly, the action of 
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moderate levels of positive selection on the INSL3 peptides is responsible for the loose 

clustering of the peptides from teleosts, mammals, monotremes and amphibians, although 

each subclade is characterised by long branches as expected for the divergent sequences 

included in them.  

Thus, collectively, the relaxin family peptides are an interesting example of the diverse 

forms of selection that can act on peptides. They illustrate a classic example of the 

difference between gene trees versus species trees, since without the aid of synteny data, 

it would be very difficult to determine which genes are orthologs versus paralogs based 

on the phylogenetic reconstruction alone (discussed in Good-Avila et al., 2009).  . 
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Figure 3.3. Phylogenetic reconstruction of the evolutionary relationships among the 

insulin-relaxin superfamily peptides.  
Nodes shown (blue box) pertain to the ancestral reconstruction performed in Chapter 4. 
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Codon-specific positive selection in receptors 

The test for lineage-specific codon selection revealed that the number of amino acids 

subject to positive selection varied considerably according to the region in which the 

amino acids were located. When all tetrapod RXFP1/2 genes were compared, the 

proportion of positively selected sites was found to be, in general, higher in LDLa (Low 

density lipoprotein-a) and the LRR (Leucine-rich repeat) than in the 7TM (seven 

transmembrane) domains. Intracellular loop 3 (ICL3) exhibited the highest proportion of 

sites under positive selection with 50% of the sites in the domain showing evidence of 

positive selection in across vertebrate lineages (Figure 3.4) 
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Figure 3.4. Area plot of the number of amino acids per region of the RXFP1/2-

type receptors that showed evidence of positive selection when comparing 

teleost and tetrapod RXFP1/2 proteins. 

The specific amino acids estimated to be under selection are shown in Figure 3.7.  
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Figure 3.5. Histogram of the proportion of amino acids per region of the RXFP1/2 

and RXFP3/4 receptors that showed evidence of positive selection for the branch-

site test of positive selection comparing teleost and tetrapod genes. 

Only those regions shared between RXFP1/2 (A) and RXFP3/4-type (B) receptors are 

included (e.g. the LRR region unique to RXFP1/2’s was excluded). The difference 

between the proportions of amino acids selected per region is shown in panel C. The 

specific amino acids estimated to be under selection are given in Figure 3.6.  

 

To compare the number of amino acids selected in RXFP1/2 versus RXFP3/4 type genes, 

I plotted the number of amino acids subject to positive selection among vertebrate 

lineages for only those domains common to the two receptor types (TM, ICL and ECL-

Extracellular loop). I additionally subtracted the number of positively selected sites per 

domain in RXFP3/4 (which generally exhibited more sites under selection) from those in 

RXFP1/2 (Figure 3.5). In summary Figure 3.5 indicates that:  

 ICL3 is the domain subject to the most positive selection among lineages for both 

receptor types (Figure 3.5A and 3.5B); 

 ICL1 has a high proportion of selected sites for RXFP3/4 type receptors (Figure 

3.5B), which is particularly evident when the receptor types are compared (Figure 

3.5C).   

 The only domain for which RXFP1/2 type genes appear to have more selection than 

RXFP3/4 type genes is ECL2, in which ~10% more amino acids are under 

selection for RXFP1/2 type genes (Figure 3.5C). 

Of the 883 amino acids in the RXFP1/2 type molecules, 156 sites were found to have 

evidence of positive selection in one or more lineages of the vertebrate tree (Figure 3.6).  

Interestingly, of these selected amino acids, 29 were found to be selected in more than 

one receptor (i.e. RXFP1 and 2 or RXFP 1 and 2-like) within distinct lineages.  

Additionally, frequently selected amino acid positions were found adjacent to each other 
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collectively suggesting that there are definite cold and hot spots of selection (Figure 3.5)  

In total, 41, 43 and 43 amino acids were found to be positively selected within either 

RXFP1, RXFP2 or RXFP2-like respectively (Figure 3.6). This indicates that similar 

levels of selection have taken place in the three RXFP1/2 type genes, and that there are 

common sites/areas of the proteins that are the targets of selection. Comparing the 

number of positively selected sites among lineages, slightly more positively selected sites 

were observed in teleosts for both RXFP1 (30) and RXFP2 (27) compared to mammals 

(22 in each).   

For the RXFP3/4 genes, slightly more differences were observed among genes and 

lineages. Of the 297 amino acids in the RXFP3/4 alignment, 19 showed evidence of 

positive selection for RXFP3, 41 for RXFP4 and 26 for RXFP3-3 genes (Figure 3.6).  Of 

these sites, mammalian RXFP3 showed evidence of positive selection at 12 amino acids 

compared to only 4 selected sites in teleosts (and 3 in chicken) while 23 amino acids 

showed evidence of selection in teleosts for RXFP4  but only 18 sites in mammalian 

RXFP4.  Thus, overall there has been more selection in RXFP4 than RXFP3, although 

mammalian RXFP3 showed some evidence of selection, with five of the changes 

occurring in ICL3, an important domain as shown above. 

 

 















 
 

Figure 3.6. Amino acid positions found to be subject to positive selection in the 

foreground lineages when compared to those in the background lineage for 

RXFP1/2 and RXFP3/4 receptors. 

Colored boxes surround the sites under positive selection (see description of symbols 

above). First four diagrams show RXFP1/2 receptors, last two diagrams show 

RXFP3/4 receptors.  

 

 

 

DISCUSSION 

 

The analyses in this Chapter showed that both RLN/INSL hormone and RXFP receptor 

genes exhibit every kind of selection: some of the genes are subject to strong purifying 

selection (RLN3), others are evolving relatively neutrally (INSL5), one ligand has been 

subject to strong positive selection (RLN), while another ligand has experienced more 

limited, but detectable, levels of positive selection (INSL3). Moreover, the analyses of 

the types and extent of selection operating on both ligand and receptor genes show that: 

1) most, but not all, ligand-receptor pairs are evolving similarly in mammalian and 
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teleostean lineages, 2) some ligand-receptor pairs show evidence of co-evolution, as 

assessed by a strong correlation in the proportion of sites under selection for ligand-

receptor pairs, and 3) there is evidence of codon-specific positive selection for all 

receptor genes in most lineages and evidence that there is differential selection in 

mammalian and teleostean lineages. 

I examined whether mammalian and teleostean orthologs of RLN/INSL and RXFP genes 

experienced similar kinds and degrees of selection by graphing the proportion of sites 

estimated to be under purifying, neutral or positive selection. I found that for all genes 

except relaxin (RLN), putative ligand-receptor pairs experienced similar levels of 

selection in both mammalian and teleostean lineages. This suggests that, in general, the 

genes may play similar roles in these two lineages. However, as will be discussed below, 

many amino acids exhibit differential selection in mammalian versus teleostean lineages 

suggesting that there have been different selective pressures in the two lineages.  

The only gene pair for which there was a poor correlation in the nature of selection was 

for the comparison between mammalian and teleostean RLN: mammalian and teleost 

RXFP1 have evolved in similar ways, but the relaxin gene has been subject to purifying 

and neutral evolution in teleosts, while it has been the target of strong positive selection 

in mammals (see Figure 3.2 and Figure 3.3). Approximately 50% of the amino acid 

positions in mammalian RLN show evidence of positive selection, whereas no sites in 

teleost rln do. The role of selection on the mammalian rln locus is more fully discussed 

in the next chapter. 

Additionally, I examined the nature of selection in all teleostean genes to look for 

evidence of which ligands and receptors may function together based purely on the 



 110 

hypothesis that ligand-receptor pairs should exhibit the same kinds and extent of 

selection. While most of the putative teleostean orthologs of mammalian RLN-RXFP 

genes have evolved under similar forms of selection, many of the teleost 3R receptor 

genes are dominated by purifying selection. Earlier (see Chapter 2) I proposed that the 

two teleost 3R duplicates of rln3, namely rln3a and rln3b, function with rxfp3-1 (the 

ortholog of mammalian RXFP3), but also with the 3R paralogs, rxfp3-2a and rxfp3-2b. 

Both rln3a and rln3b are subject to strong purifying selection, and their proposed 

receptor genes have also predominantly evolved under purifying selection, with the 

exception of rln3-2b which shows a small proportion of sites that have been subject to 

positive selection. These findings are in agreement with previous studies (Wilkinson et 

al. 2005b)and further support the hypothesis about the highly conserved nature of the 

RLN3-RXFP3 system due to its neuroendocrine function.  

On the other hand, I also proposed that the potential receptors for the two 3R-products of 

insl5, teleost insl5a and insl5b, are rxfp4, rxfp3-3a1, rxfp3-3a2 and rxfp3-3a3. As 

discussed, and as shown in a previous study from our lab (Good-Avila et al. 2009), insl5 

genes in both teleosts and mammals are evolving relatively neutrally. However, while the 

selection profile of rxfp4 matches that of its two 3R duplicated ligands in teleosts, all 

three rxfp3-3 receptors are dominated by purifying selection and have selection profiles 

similar to those of rln3. Thus, it is unclear which receptors are cognate to insl5a and 

insl5b based on the selection data alone.   

The situation for teleost insl3-rxfp2 is simpler: their selection profiles are similar, 

suggesting a co-functioning of peptide and receptor. Additionally, rxfp2-like (which 

among teleosts is only present in zebrafish) also has a similar selection profile to insl3, 
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suggesting that it may be a receptor for insl3 as well.  Lastly, although the selection 

profile for teleost rln indicates that it has been subject predominantly to neutral 

evolution, this result may have been caused by the fact these values are calculated 

against a background of what has occurred to mammalian RLN which, as described, has 

been the subject to strong positive selection. The true selection profile for teleost rln is 

probably more similar to rln3 (as teleost rln3 and rln are structurally very similar) and is 

probably more closely defined by predominant purifying selection, with some neutral 

evolution as shown for its putative receptor, rxfp1. 

The analysis of codon-specific positive selection revealed, not surprisingly, that some 

receptor domains are the targets of more selection than others. For this analysis, sites 

were deemed to be subject to codon-specific selection if, when comparing a particular 

branch of the phylogenetic tree for that gene, there was evidence that certain amino acids 

were selected to be different from those in the “background” lineage for the same gene. 

By analyzing the genes in this way, I found that for the RXFP1/2-type genes, the LDLa-

LRR region of the N-terminus generally showed high levels of selection, which is 

perhaps not surprising because of the roles these domains play in receptor-ligand 

signaling (Halls et al. 2007). The LRR region is important for the binding of the cognate 

ligand, while the LDLa module is essential for cAMP accumulation which takes place 

after the ligand is recognized and bound (Halls et al. 2007). Approximately 20% of the 

amino acid sites in LDLa, LRR2, LRR4, LRR8, LRR8 and LRR11 were found to be 

subject to positive selection, and at least 30% of the sites were under selection for LRR 

flanking, LRR3, LRR5, LRR6, LRR7 and LRR9.  Apart from these regions, the only 

other two regions which were identified as having more than 20% of the sites under 
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selection for the RXFP1/2 type genes were ICL3 and ECL2.  

In general, lineage-specific selection was higher for the RXFP3/4 type genes: all 

domains were found to have more than 20% of the amino acids subject to positive 

selection except for the TM1, TM2, TM3, TM7 and ECL1, the latter having exactly 20% 

of its sites estimated to be under selection across lineages. Of particular interest, is the 

fact that for the RXFP3/4 type genes, ICL1 is equally important as ICL3 in terms of 

selection.  The finding that ICL3 (both receptor types) and ICL1 (RXFP3/4 type 

receptors) are targets of selection suggests that a major component of selection for the 

RXFP receptors concerns downstream receptor signaling rather than selection for ligand 

binding per se.  

Ligand binding in the rhodopsin class GPCR receptors has been associated with the set 

of 40 amino acids composing the “transmembrane binding pocket (Gloriam et al. 2009). 

Interestingly, my analyses did not detect any significant difference in the number of 

selected sites between the binding pocket and other major domains of RXFP receptors. 

This may be due to high conservation of the amino acids involved in ligand binding, or it 

could also imply that the 40 amino acids may not necessarily be key to the specific 

ligand binding of RXFP receptors.  

In addition to observing certain domains as the targets of selection, I also find that 

different domains have been the targets of selection in mammals versus teleosts. 

Although the numbers of amino acid changes were similar between mammalian and 

teleostean lineages, for all orthologs of the receptor genes, with the exception of RXFP3, 

teleosts were observed to have more amino acid sites under selection than mammals. For 

example, mammalian RXFP4 shows strong evidence of selection in both ICL1 and ICL3 
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suggesting that novel pathways for intracellular signaling may have been selected. On 

the other hand, selection in teleost rxfp4 occurs mostly in the TM domain and in ECL2 

and ECL3 suggesting that, for teleosts, selection has operated mostly on ligand binding. 

In contrast, mammalian RXFP3 shows evidence of selection in both ICL3 and at several 

sites in the TM and ECL domains suggesting that both ligand binding and intracellular 

signaling have been targets of selection, while very few sites have been positively 

selected in teleost rxfp3, consistent with the highly conserved nature of rln3 paralogs 

(particularly rln3a) in teleosts.  

The pattern of selection for RXFP1/2-type genes is less clear, but most of the amino 

acids selected in mammalian RXFP1 occurred at the N-terminus between the LDLa 

domain and LRR2, or in ICL3, while for teleostean rxfp1, the selected sites were 

scattered throughout the receptor domains. Lastly, the majority of selected amino acids 

for both teleostean and mammalian RXFP2 genes occurred in either the LRR flanking 

region, LRR6 or else were scattered throughout the TM/ICL and ECL domains. 

However, as for RXFP4, there was tendency for mammalian RXFP2 to have more 

selected sites in ICL3, while teleostean rxfp2 had no selected sites on ICL3, but several 

on the ECL domains. Collectively, these data suggest that despite overall similarity in 

many of the selective processes among teleostean and mammalian genes, there is 

evidence that distinct signaling pathways have been selected in different groups and that 

some lineages have been selected to modify ligand-binding while other lineages have had 

more changes in intracellular signaling pathways. It will be interesting to see whether 

experimental work supports these hypotheses. 
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CHAPTER 4: Reconstruction of the structure of 
ancestral relaxin family peptides. Selection on RLN/INSL 

loci. 
 

INTRODUCTION 

Thus far, I have looked at the duplication history and origins of the relaxin family 

peptides and their receptors (Chapter 1), discussed the main highlights of their 

diversification in different vertebrate lineages (Chapter 2) and established hypotheses to 

explain the functional specialization and co-evolutionary processes by which they 

evolved (Chapter 2). In addition, to test the hypotheses derived in Chapter 2, I looked at 

the effects of natural selection on the evolution of relaxin family peptides and their 

receptors in teleosts and human (Chapter 3). However, the story of a gene family’s 

evolution could not be complete without a description of the structural changes that have 

taken place during the evolutionary history of the concerned molecules. Therefore in this 

Chapter, I use the established dataset of vertebrate RLN/INSL ligand sequences to 

reconstruct the primary structures of ancestral peptides at different periods of vertebrate 

evolution and in different vertebrate lineages to show how they have changed over time. 

The ancestral structure of relaxin peptide receptors is not discussed here (for reasons 

described further below), but it is suggested that the ancestral state reconstruction of both 

RXFP1/2 and RXFP3/4 be done in future studies.  

Ancestral gene reconstruction is a method that allows, with some caveats, one to study 

the properties of long lost genes and their products from ancestral organisms. This 

method can be used, for example, to investigate and compare the functions of genes from 
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modern species with their orthologs from more ancient organisms, or to study the 

functional characteristics of an ancestral gene that gave rise to a specific gene family 

(Thornton 2004). Major advances in the field of ancestral gene reconstruction have been 

made in recent years thanks to the progress in bioinformatics and nucleic acid synthesis. 

The procedure of resurrecting an ancestral gene principally consists of two stages 

(Thornton 2004): 1) the sequence of the hypothetical ancestral sequence is derived based 

on the set of genes/proteins available from extant taxa; 2) the predicted ancestral 

sequence is synthesized using oligonucleotide synthesis technologies with consequent 

use of bacterial or yeast cell culture to produce an intact protein (if such is needed).  

Whereas the second stage of the procedure requires the application of complex 

laboratory equipment and methodologies, the first step of ancestral resurrection is 

performed using bioinformatic algorithms and software. Here, for instance, the set of 

characterized vertebrate RLN/INSL peptides was analyzed using the ML algorithm. 

First, the relationship among the extant vertebrate peptide sequences was reconstructed 

using phylogenetic inference. Second, using the topology of the resulting phylogenetic 

tree, ML methods were employed. These ML methods used the individual amino acid 

sequences to estimate the most likely ancestral structures for each set of compared 

sequences. Third, at selected nodes in the tree (which represent ancestral clades on the 

generated phylogeny), the ancestral states of RLN/INSL peptides were reconstructed by 

choosing the most statistically supported structure given the model of sequence evolution 

employed (Figure 4.1). The statistical confidence with which a peptide sequence for a 

given ancestral clade is reconstructed is the product of the probabilities of each 

individually predicted ancestral amino acid state, which generally means that shorter 
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peptides will be the reconstructed with statistically more reliable results. Conversely, the 

longer the reconstructed molecule, the lower is the probability that it actually existed.  

The size of the mature relaxin peptides (~ 60 aa) is ideal for ancestral gene reconstruction 

(Thornton 2004). However this is not the case with relaxin peptide receptors (400-800 aa 

long), whose size renders the reconstruction process statistically weak. For the purposes 

of co-evolutionary studies, it would be more practical to reconstruct the parts of RXFP 

receptors which directly participate in ligand binding. Since only a few of the 

functionally important sites in RXFP receptors have been identified to date, I leave the 

task of reconstructing their ancestral states to future studies.  

As mentioned above, ancestral reconstruction has some caveats which should be 

considered with caution. Thus the results of a reconstruction can be influenced by the 

assumed model of evolution of genes and taxa, tree topology and orthologous/paralogous 

relationships among members of protein families. The effect of one of the above 

mentioned factors, the assumed model of gene duplication, will be discussed further in 

this chapter using Park et al.’s (2008) study focusing on the evolution of INSL3 as an 

example. 



 

Figure 4.1 



Figure 4.1. Ancestral state reconstruction of the four relaxin family peptide ohnologs 

which existed in the post-2R vertebrate organism (the ancestor of euteleostomi) before 

the diversification of modern vertebrate lineages. 

It seems possible that AncRln-like may have acquired the classical relaxin family motifs, such 

as its receptor-binding cassette, just before the onset of 2R, because this motif is not found in 

the members of the insulin-relaxin superfamily in primitive deuterostomes (Chapter 1). 

Receptor binding sites of peptides (boxed) were obtained from the literature. Amino acids are 

shown as circles, amino acid changes (substitutions) that occurred in ohnologs are classifies as 

follows:  

 change in polarity → from nonpolar (neutral) to polar and vice versa (brown) 

 change in size → from relatively small to relatively large and vice versa (orange) 

 change to amino acid with similar characteristics → change occurs within groups of 

amino acids of same polarity and similar size (yellow)  

 

METHODS 

Ancestral state reconstruction and evidence of codon-specific selection in the ancestral 

genes of RLN/INSL peptides 

 

The ancestral states of specific nodes on the RLN/INSL phylogeny were inferred 

using Maximum Likelihood methods as implemented in MEGA v. 5.01 (Tamura et 

al. 2011) using the JTT+G matrix-based model of sequence evolution (the model 

chosen based on AIC criterion using ML inference as implemented in the program 

Prottest, (Abascal et al. 2005)) and after excluding highly divergent sequences 

(shown in Figure 4.4). The ancestral nodes selected for reconstruction are shown in 

Figure 4.4. As shown previously (Good-Avila et al. 2009, Park et al. 2008, 

Wilkinson et al. 2005b), RLN/INSL loci have been subject to diverse selection 

pressures and to further assess the role of selection during lineage specific 

diversification of the peptides, the amino acid sites subject to codon-specific 

selection were estimated using the branch-site model A on orthologous gene 

families from distinct vertebrate lineages. Tests of positive selection were made by 
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comparing the branch-site model A in which ω (dn/ds) ≥ 1 (alternative hypothesis) 

to the model A in which ω = 1 fixed (null hypothesis) and setting the foreground 

branch to be that of a strongly supported vertebrate clade (teleost, 

marsupial/monotreme, birds/lizards and/or mammals depending on the gene) while 

the background branch was then left as the remaining vertebrate genes/clades. The 

analysis was done using the CODEML package from PAML (PAML v. 4.2); 

models were compared using the Likelihood Ratio Test with 1 degree of freedom 

and, where significant, the posterior probability that a codon was under positive 

selection was estimated using the Bayes empirical Bayes (BEB) procedure (Zhang 

et al. 2005) 

RESULTS and DISCUSSION 

Ancestral state reconstruction and evidence of codon-specific selection in the ancestral 

genes coding for RLN/INSL peptides 

 

To elucidate the structure of the pre-2R Rln/Insl peptide and to address when and how the 

relaxin family hormones diverged over time and in different lineages, the following 

ancestral states of relaxin family peptides were reconstructed:  

1) the pre-2R peptide (also named AncRln-like); 2) the four RLN/INSL 2R ohnologs 

(RLN, RLN3, INSL3 and INSL5) that existed shortly after 2R in the ancestor of all 

euteleostomi [the term “ancestor of euteleostomi” and not “gnathostome ancestor” is used 

here because jawless and cartilaginous fish relaxin peptide sequences were omitted from 

this ancestral reconstruction due to their incompleteness], and 3) the RLN/INSL ancestors 

in specific vertebrate clades supported by the phylogenetic tree.  
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Additionally, as described in Chapter 3, the branch-site test of positive selection was 

conducted on the ancestral ligand peptides. In this test, branches on the phylogenetic tree 

are specified a priori by the user to be “foreground” branches, and then the amino acids 

that show evidence of positive selection are identified in that lineage by comparing the 

amino acids changes in the lineage to those in a similarly selected background branch, 

which is chosen to consist of sequences of the same peptide but in a different branch. 

Thus, in a sense, this test is complementary to the ancestral state reconstruction, because 

it ultimately looks for evidence of positive selection in amino acid positions at the 

ancestral nodes of the phylogenetic tree.  

The ancestral state reconstruction presented in Figure 4.1 shows that the AncRln-like 

peptide strongly resembles today’s vertebrate RLN3 and non-placental RLN peptides. 

Most of the changes in the structure of RLN3 were acquired in a period following 2R and 

before the divergence of multiple vertebrate taxa, after which RLN3 evolved in a 

remarkably conserved fashion in most vertebrates (for example, zebrafish rln3 is ~70 % 

similar to that of human). According to Wilkinson et al. (2005), the highly conserved 

nature of RLN3 across multiple vertebrate taxa mirrors its conserved role as a 

neuropeptide, which also implies that the function of RLN3 in the CNS was established 

early in vertebrate evolution.  

Somewhat surprisingly, it appears that RLN exhibited a slower rate of evolution than 

RLN3 (Figure 4.2b), but acquired a few lineage specific mutations, predominantly in its 

A-chain in the ancestors of teleosts and most tetrapods (Figure 4.2b). Then, 

exceptionally, in placental mammals a burst of mutations in both the B- and A-chains 

occurs and a remarkable 23 amino acids show evidence of codon-specific positive 
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selection including sites in the B-chain pro-hormone cleavage site (Figure 4.2b). This 

placental-specific sudden leap in the slow paced evolution of vertebrate RLN seems to 

have been coincident with: 1) the diversification of placentals as a group and 2) the 

massive local duplications of the RLN locus (see Chapter 2).    



Figure 4.2A 



Figure 4.2B 
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Figure 4.2 and its legend. Ancestral state reconstruction of relaxin peptides in the 

ancestors of main vertebrate lineages. 

A) RLN3 and INSL5; B) INSL3 and RLN. The amino acid symbols and classification of 

amino acid substitution are as in Figure 4.1.  

 

Both INSL5 and INSL3 acquired several changes immediately following 2R but then 

seem to have evolved steadily in different lineages (Figure 4.2), with evidence of codon-

specific positive selection in the ancestor of teleosts and marsupial/placental mammals. In 

the case of INSL5 only one codon in each teleosts and marsupials/placentals (S and R 

respectively in Figure 4.2A) was selected, and the A-chain pro-hormone cleavage site 

was additionally found to be under selection in mammals. In the case of INSL3, one 

codon (the highly variable site “X” in the B-chain in Figure 4.2B) shows evidence of 

selection in marsupials/placentals, and three sites plus the A-chain pro-hormone cleavage 

site are subject to lineage-specific selection in teleosts (Figure 4.2).   

Ancestral gene reconstruction requires clear understanding of evolutionary pathways: 

Park et al.’s study  

 

The present study is not the first one to look at the ancestral states of relaxin family 

peptides. Although previous attempts to reveal the structure of the ancestral peptides 

were inevitably constrained by the absence of a unified and correct model for the 

duplication history of RLN/INSL genes, they still had a big impact at the understanding of 

the evolution of relaxin family peptides. One such study is the well-known work of Park 

et al. (2008), in which the authors aimed to delineate the evolutionary origins of INSL3-
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mediated testicular descent in mammals. Park et al. (2008) proposed that INSL3 emerged 

in the monotreme ancestor as a result of a small-scale duplication from an ancestral RLN3 

gene. The authors further hypothesized that ancestral RLN3 originally functioned via two 

kinds of receptors, RXFP1 and RXFP2. Subsequent to the duplication of the ancestral 

gene, they propose that its products, RLN3 and INSL3, subfunctionalized by type of 

receptors to produce RLN3-RXFP1 and INSL3-RXFP2 ligand-receptor pairs (Figure 

4.3A).  

To explore their hypotheses, Park et al (2008) used a set of vertebrate RLN3 and INSL3 

sequences and reconstructed the structure of the hypothesized peptide ancestral to both 

RLN3 and INSL3. The functional analyses of the reconstructed peptide indicated that it 

was capable of activating both RXFP1 and RXFP2 human receptors, which the authors 

took as inarguable evidence in support of their hypotheses. But were they right?      

 

 

Figure 4.3. Diagrammatic representation of Park et al.’s hypotheses. 

A) The hypotheses of Park et al.’s describing the origin of RLN3 and INSL3 genes from an 

ancestral RLN3-like gene and the subfunctionalization of RLN3 and INSL3 to function 

with RXFP1 and RXFP2 respectively. SSD: small-scale duplication; and B) the result of 

the ancestral gene reconstruction performed by Park et al. (2008). Red circles represent the 

genes that were used in the reconstruction (vertebrate RLN3 and INSL3). Red arrows depict 

the evolutionary pathway to the gene ancestral to both RLN3 and INSL3, which was 

reconstructed by Park et al.(2008) and which in fact is equivalent to AncRln-like.     



127 

 

Keeping in mind that the four vertebrate relaxin family loci arose ~550 MYA as a 

result of 2R and not as a consequence of a local duplication in the monotreme 

ancestor, it becomes obvious that Park et al.’s reconstructed ancestral peptide is 

nothing else but the common ancestor of all four relaxin peptides, equivalent to the 

AncRln-like peptide reconstructed here (Figure 4.1). Interestingly, the B-chain of 

Park et al.’s ancestral peptide is identical to that of AncRln-like. The major flaw in 

Park et al.’s work was hence the use of a wrong model of evolution for RLN3 and 

INSL3, which dated their emergence to the more recent history of RLN/INSL 

peptides.   

An interesting ramification of this conclusion is that it means that the ancestral 

relaxin peptide, synthesized by Park et al’s lab, and predicted to be the ancestor of all 

relaxin family genes here, is capable of binding both RXFP1/2- and RXFP3/4-type 

receptors. Such serendipitous support provided by Park et al.’s reconstructed peptide, 

lends further weight to the hypothesis presented earlier in this work about the dual 

functionality of AncRln-like and its ability to work via two distinct kinds of receptors 

(see Chapters 1 and 2).  
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CONCLUSIONS 
 

In the last decade we have witnessed enormous progress in the fields of molecular 

biology and evolution. The relaxin field has not been excluded from this progress, 

although many of the aspects of molecular evolution of relaxin peptides and their 

receptors have to date been unclear and confusing to the scientific community. For 

instance, it has until very recently been believed that three of the four distinct relaxin 

family peptides (i.e. RLN, INSL3 and INSL5) are specific to mammals and have no 

orthologs in other vertebrates (Wilkinson et al. 2005), which was lately shown not to be 

the case (Good-Avila et al. 2009). In another instance, it was even once claimed that 

relaxin is not susceptible to evolution and that its structure has remained static for 500 

MY(Georges and Schwabe 1999)! 

This study provides evidence in support of the WGD-driven model for the origination of 

relaxin hormones and their two distinct classes of receptors in vertebrates. I postulate that 

the relaxin hormone-receptor signaling system in the pre-2R ancestor consisted of three 

components, one ligand and two receptors, and had a dual (reproductive and 

neuroendocrine regulatory) function. The genetic linkage of RLN/INSL and RXFP3/4 

genes, which is still highly conserved in teleosts, probably played a role in the original 

establishment of ligand-receptor interactions between ancestral RLN/INSL peptides and 

RXFP3/4 peptides in invertebrate deuterostomes. I show that most of the ligand and 

receptor genes duplicated during 2R (or 3R) and that, compared to tetrapods, teleosts 

have had significantly higher post-2R retention rates of RXFP genes.  
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Overall, this study highlights the utility of incorporating ancestral genome data into 

investigations of the origin, linkage relationship and duplication history of gene families. 

The methodology employed here (such as the use of ancestral genome reconstructions) 

will hopefully be useful in similar studies, where traditional approaches may fail to 

clearly resolve the origin and diversification of genes due to their small size, strong roles 

of selection or insufficient synteny data. Presently, however, a major drawback of the 

method is the absence of a unified scheme, which would avoid having to perform the 

time consuming and tedious manual inspection of multiple ancestral genome 

reconstruction models. In the future this problem could be resolved by designing 

appropriate computer software. Thus, rather than being viewed as a primarily heuristic 

tool for studying large scale genome evolution, ancestral genome reconstructions have a 

potential to form the basis of an instrument that could be routinely consulted to 

supplement traditional bioinformatic analyses.  

Much of the current knowledge on relaxin family peptides and their receptors has come 

from the studies performed in rodents and humans. My searches of public databases 

indicated that both the ligands and receptors have had different fates throughout the 

evolution of vertebrates and that the human/rodent-derived properties of the family may 

not be applied to every mammal, not to mention other vertebrates. 

Ligand-receptor signaling systems present interesting cases in which to study the 

evolution of genes, partly because they represent clearly defined sets of interacting 

molecules, whose origin and co-evolutionary dynamics can be investigated within a well-

defined context. Both the relaxin family peptides, the RXFP3/4–type receptors and, to a 

lesser extent, the RXFP1/2-type receptors exhibit high rates of post-WGD retention. This 
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finding is less surprising in light of the finding that GPCRs, in general, appear to have 

played an important role in the evolution of vertebrate signaling networks  and were 

preferentially retained during the 2R (Semyonov et al. 2008). It is interesting that the 

RXFP1/2 receptors are more conserved than their RXFP3/4 counterparts and that the 

RXFP1/2 genes differ from RXFP3/4 genes in their rates of WGD-duplicated gene 

retention with RXFP3/4 paralogs having been retained more often.  

As I elucidate in Chapter 3, analysis of the levels of functional constraint on RLN/INSL 

and RXFP genes suggests that 1) the RLN3-RXFP3-1 and INSL3-RXFP2 systems appear 

to be co-evolving based on the similarity of the selection profiles of ligand and receptor 

genes and 2) mammalian and teleost genes have somewhat similar roles in mammals and 

teleosts based on the observation of highly similar selection profiles for all focal genes 

with the notable exception of the RLN-RXFP1 system.  

The analysis of codon and lineage-specific positive selection also highlighted differences 

in the functional domains of the RXFP genes that are under selection and potential 

differences between diversifying selection among teleost and mammalian genes.  

Chapter 4 furthered our knowledge about the duplication history of relaxin family 

peptides to reveal the ancestral states of each of the four ohnologous RLN/INSL peptides.  

The findings about the evolution of relaxin hormones and their receptors will hopefully 

facilitate further research on this system in various vertebrates, including both placental 

and non-placental taxa. For instance, the discussed 2R-driven model of evolution should 

raise questions about the number of involved genes in early diverging vertebrates, such as 

jawless fish, whose status in relation to 2R has been debated (Kasahara 2007).   
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APPENDIX A: Using ancestral genome reconstructions to 
resurrect the duplication history of gene families 

 

Multiple studies have been conducted in the last several years with the goal of 

understanding the evolution of genomes in the chordate lineage (Muffato and Roest 

Crollius 2008). I used the two most recent ancestral genome reconstruction models by 

Nakatani et al. (2007) and Putnam et al. (2008) (therein referred to as “N” and “P” model 

respectively) to clarify how the three rounds of whole genome duplications (1R, 2R and 

3R) and subsequent genome rearrangements could have influenced the evolution of the 

RLN/INSL and RXFP families. In addition, I used the work by Kasahara et al. (Kasahara et 

al. 2007) to shed light on the effects of teleost-specific genome rearrangements on my 

genes of interest in medaka, tetraodon and zebrafish. I also referred to the reconstruction 

of the Eutherian ancestor genome to reconstruct the eutherian state (Kemkemer et al. 

2009). Because I principally employ the Nakatani et al. (2007) model, and it includes two 

alternative scenarios for the genomic rearrangements that ensued between the pre-1R to 

the post 2R vertebrate genomes, in this appendix I also include the alternative scenarios 

for the gene duplication of my focal genes, which are not shown in main text.  

 

The N-model reconstructs a later stage (compared to the P-model) in the evolution of 

chordate genome. 

 

Although both the N- and P-models were constructed based on similar methodologies, the 

models differ in the number of ancestral chromosomes they predict and ultimately 

reconstruct two different ancestral genomes (Table A4). In particular, there is a significant 

difference in the conclusions made by each model about the pre-1R ancestor linkage 

groups: for example, the number of chordate linkage groups (CLGs, P-model) equals 17 

while the number of vertebrate ancestral chromosomes (VACs, N-model) is in the range of 

10-13. The discrepancies between the two reconstructions can be explained by the 

inaccuracy of either or both models and by the evolutionary distance between the 

reconstructed genomes.  

Putnam et al. (2008) compared vertebrate genomes to the genome of amphioxus to 

reconstruct the linkage groups ancestral to both amphioxus and vertebrates, or more 

accurately, olfactores (ancestor of tunicates and modern vertebrates). On the other hand, 

Nakatani et al. (2007) used protein-coding genes from Ciona and sea urchin to outline 

groups of paralogs in vertebrates without directly comparing the synteny between 

vertebrate and invertebrate genomes.  

Overall, it is clear that the P-model reconstructs an earlier stage in the evolution of 

chordate karyotype (a “pre-1R protokaryotype”) compared to the N-model, which shows a 

pre-1R genome that is structurally very close to its modern vertebrate counterpart. The 

evolutionary separation between the N- and P-model (“P”) genomes should therefore be 

significant (Figure A1).  

Given these assumptions, it can be hypothesized that the amphioxus-olfactores ancestral 

genome underwent several chromosomal fusions which led to a decrease in the number of 

chromosomes in the pre-1R vertebrate ancestor from 17 to 10-13 (See below and Figure 
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A4). Alternatively, the difference in the number of linkage groups may be attributable to 

the inaccuracy of one or both of the models. 

 

How accurate are ancestral reconstructions? 

 

Ancestral reconstructions, like any analyses indeed, are prone to errors. The accuracy of 

ancestral genome reconstruction is dependent on multiple factors among which the utilized 

methods and considered evolutionary scales are among the more prominent ones. Hence I 

sought for phylogenetic and small-scale synteny data confirmation for all results derived 

from the tracing of the history of the focal genes in this work.  
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Figure A1. Simplified phylogenetic tree showing the evolutionary relationships among the 

groups of organisms discussed in this paper. The hypothetical ancestral genome predicted 

by the N-model (“N”) probably belongs to an organism that existed just before 2R in early 

vertebrates. Tree topology adapted from Putnam et al (2008). 

 

Tracing of the evolutionary history of genes in vertebrates using the N-model: 

 

First, I mapped all medaka rln/insl-rxfp genes to ancestral pre-3R teleost chromosomes 

(Table A1: a-m). Each of the pre-3R teleost chromosomes as well as the human and 

chicken chromosomes can be inferred to be composed of GACs (gnathostome ancestor 

chromosomes, e.g. A0-A5, J0-J1), which themselves arose from duplications of the 

ancestral vertebrate chromosomes A-J. This allows one to compare the sets of GACs 

between human and medaka, and, given that the genomic location of the focal genes are 

known in human, chicken and the ancestor of medaka, it is then possible to trace the 
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chromosomal origins of the genes in the common ancestor of teleosts, human and chicken 

(osteichtyan ancestor). 

Thus, secondly I determined which GACs host each of the RLN/INSL and RXFP genes. I 

did this by comparing GACs assigned to each of the genes in the human, medaka and 

chicken [Table A1: GAC(H), GAC(M) and GAC(C)]and identifying the ones common to at 

least 2 of the analyzed genomes. For example, the comparison of the human, medaka and 

chicken GACs for RXFP3-1, RXFP3-3 and RXFP3-4 led us to conclude that these genes 

originate from 3 post-2R GACs (A0, A4 and A5, respectively) (Table A1). This supported 

my conclusion about the ohnologous nature of RXFP3-1, RXFP3-3 and RXFP3-4, which 

appear paralogous on the phylogenetic tree (Figure 1.5a).    

 

Genes that exist in only one of the analyzed species were assigned to a GAC with the aid 

of other phylogenetic and syntenic data. For example, the rxfp3-2 genes, which have been 

found in all studied teleosts, but have no traceable orthologs in human or chicken, were 

assigned to GAC “A1” using the following rationale. The medaka rxfp3-2 gene belongs to 

the pre-3R chromosome “m”, which is a mosaic of genes from 7 GACs (A1, A2, B0, B5, 

F0, J1 and E1) (Table A1). Due to absence of GAC data for this gene from human and 

chicken, it is not possible to deduce the GAC hosting rxfp3-2 solely based on the 

information available for medaka. The phylogeny shows that the teleost rxfp3-2 genes 

cluster together, in close proximity, to the RXFP3-1 cluster (Figure 1.5a), suggesting that 

RXFP3-1 and 3-2 are paralogs. Hence, the next step was to determine whether the teleost 

rxfp3-2 gene was ohnologous to vertebrate RXFP3/4 genes.  

Although RXFP3-2 has no tetrapod orthologs, its neighboring genes do have tetrapod 

orthologs, and the synteny of these neighboring genes allowed us to estimate the ancestral 

linkage of RXFP3-2. For example, medaka rxfp3-2a has two neighboring genes, sirt6 

(sirtuin 6, ENSORLG00000014983) and eef2 (eukaryotic elongation factor-2, 

ENSORLG00000015009), and their chicken orthologs (ENSGALG00000001245 and 

ENSGALG00000001830) are found in chromosome 28 (see ENSEMBL genome 

browser). Since chicken chromosome 28 is syntenic only to GAC “A1” (Nakatani et al., 

2007), we infer that RXFP3-2 belongs to GAC “A1”. In addition, because the four 

RXFP3/4 genes are mapped to 4 duplicated GAC chromosomes (A0, A1, A4 and A5), I 

conclude that they are likely to be ohnologs. 

 

An  approach similar to the one described above was used to trace the ancestral origins of 

INS/IGF  genes to clarify whether the relaxin and insulin/IGF genes were situated on one 

pre-1R VAC (vertebrate ancestral chromosome) and whether they arose from one ancestral 

pre-1R gene. 

 

Two scenarios of the duplication and rearrangement history of VAC “A” (N-model) 

 

In their work, Nakatani et al. (2008) proposed two scenarios for the duplication and 

rearrangement history of VAC “A”. According to one scenario (the “fission scenario”, 

which I adopt as the framework for my analyses), a single chromosome in the pre-2R 

vertebrate ancestor is duplicated by 1R to produce two daughter chromosomes. One of 

these daughter chromosomes is further split into two linkage groups (one of them 

containing AncRln-II and the other- AncRxfp3-II in Figure 1.1). Hence before the onset of 
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2R, the post-1R vertebrate genome had a total of 3 VAC “A” descendants, which are 

duplicated by 2R to give rise to six post-2R chromosomes (GAC “A0-A5”). 

According to the alternative scenario of VAC “A” evolution (the “fusion scenario”, see 

Figure S2), the pre-2R vertebrate had two chromosomes (VAC “A-I” and VAC “A-II”), 

which after 1R yielded four post-1R linkage groups (A-Ia/b and A-IIa/b in Figure A2). 

Two of the post-1R chromosomes undergo fusion, which brings the total number of 

chromosomes down to 3, equaling the number of chromosomes at the onset of 2R 

described by the first scenario. Identical to the first scenario, 2R yields six GAC 

chromosomes (GAC “A0-A5”).  

 

Essentially, the main conclusions (e.g. about the evolutionary relationships among 

RLN/INSL and RXFP3/4 genes, their WGD-driven origination, and linkage of ancestral 

RXFP3/4 and RLN/INSL genes) of this work are not altered by choosing either of the two 

scenarios. I adopt the “fission” scenario for the main text because it explains the 

derivation of my genes of interest using the fewest number of gene losses (compare: 4 

losses in the fusion model with none in the fission model) and does not assume that an 

additional duplication took place in the proto-pre-2R vertebrate ancestor; i.e. the “fission” 

scenario is more parsimonious and is thus presented in the main text. The two major 

differences between the two scenarios are:         

- The origination of modern RLN/INSL and RXFP3/4 genes was primarily driven by the 

second round of WGD in the “fusion” scenario, whereas the “fission” scenario tells us 

that the origination of these genes was driven by both rounds of WGD.   

- In the “fusion” scenario, two pairs of RLN/INSL ligand and RXFP3/4 receptor genes 

existed in two separate linkage groups before the onset of 2R, whereas according to the 

“fission” scenario the two single ancestral genes were located in one linkage group in the 

pre-2R vertebrate ancestor.  
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Figure A2. The alternative scenario of duplication and rearrangement history for VAC 

“A” according to the N-model. While the number and identity of post-2R daughter 

chromosomes in both scenarios (see Figure 1.1 for the scenario adopted here) is the same, 

the introduction of a fusion event (red box) and elimination of a fission event (red boxed in 

Figure 1.1) in this scenario results in two pre-2R chromosomes (A-I and A-II) each 

carrying a pair of genes (a ligand and a receptor). Hence, according to this scenario the 

pre-1R vertebrate already had two Rln/Insl ligand and two Rxfp3/4 receptor genes (there is 

one of each according to the other scenario) and 1R did not play a major role in the 

duplication of the gene families. This scenario also implies that the twin ligand and 

receptor genes arose as a result of duplication in the earlier proto-pre-2R ancestor (gray 

boxed, question mark (“?”) refers to the unknown duplication event).     

 

 

The “fission” scenario is more supported by the sequence and phylogenetic data.  
 

The phylogenetic reconstruction of RXFP3/4 genes (Figure 4a, main text) shows that the 

divergence of AncRxfp3-I from AncRxfp3-II occurs shortly before the divergence of 

Rxfp3-1/3-2 and Rxfp3-3/3-4. In the fission model, these duplication events are associated 

with 1R and 2R respectively, which are known to have occurred less than 50 MY apart 

from each other [6]. On the other hand, the fusion model would suggest that AncRxfp3-I 

and AncRxfp3-II were already present in the proto-pre-2R genome and had two separate, 

more ancient, origins.  
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My conclusions (N-model): 

 Good-Avila et al. (2009) previously demonstrated that the RLN/INSL genes of 

teleosts and vertebrates are orthologous. Here I confirmed the synteny among the human, 

medaka and chicken genes (along with other vertebrate genes, see Appendix B), and by 

mapping them to the N-model I show that RLN(2), RLN3, INSL3 and INSL5 originated 

from one gene, which I call AncRln-like, in the pre-1R vertebrate ancestor and that they 

multiplied into four loci commensurate with the 2R events. Thus these 4 loci can be 

described as “ohnologs” based on their WGD-related evolutionary descent.  

 According to the fission scenario (Figure 1.1), all four RLN/INSL genes arose as a 

result of 2R. After 1R, the AncRln-like gene duplicated giving rise, in the first instance, to 

the ancestor of the RLN/INSL3 genes and, in the second instance, to the ancestor of the 

RLN3/INSL5 genes. After 2R, these ancestral genes again duplicated giving rise to the 4 

genes common to teleosts and tetrapods: Rln, Insl3, Rln3 and Insl5. 

 According to the fusion scenario (Figure A2), RLN and INSL3 are 2R-ohnologs as 

are RLN3 and INSL5, but AncRln-I and AncRln-II originate from an unknown duplication 

event in the proto-pre-2R ancestor.   

 RXFP3 and RXFP4 receptors arose from one ancestral gene.  

o The fission scenario dictates that all RXFP3/4 genes are 2R-ohnologs.  

[The fusion scenario implies that while RXFP3-1 and RXFP3-2 are ohnologs as are 

RXFP3-3 and RXFP3-4, their parent genes, AncRxfp3-I and AncRxfp3-II, again arose in 

the proto-pre-2R ancestor as a result of a duplication event of an unknown nature.] 

 Both RLN/INSL and RXFP3/RXFP4 genes originated from one VAC named “A” by 

Nakatani et al. (2007) While RLN(2) and INSL3 can be traced to the same gnathostome 

ancestor chromosomes (GACs) as RXFP3-1 and RXFP3-2, RLN3, INSL5, RXFP3-3 and 

RXFP4 are situated on different GACs. According to the fission scenario, a logical 

explanation for this is that the pre-1R vertebrate ancestor had one RLN3/INSL5-like gene 

and one RXFP3/RXFP4-like gene which were linked on one chromosome. 2R duplicated 

the genes, but chromosomal rearrangements disrupted their linkage, thus the ligands and 

receptors were unlinked at the end of 2R.  

 RXFP1 and RXFP2 are ohnologs. 

 RXFP1/2 and RXFP2-like originated from 2 VACs that are different from that 

hosting RXFP3/RXFP4 and RLN/INSL genes (VAC “A”). These chromosomes are known 

as “C” (AncRxfp1/2) and B or F (AncRxfp2-like). See main text for the discussion of the 

Rxfp2-like origins. 

 Two different scenarios could explain the origin of RXFP1/RXFP2: these are 

shown in Figure A2.  

 Although the tracing of the INS/IGF genes was problematic due to insufficient data 

available for medaka and other teleosts, these genes seem to have originated from an 

ancestral vertebrate chromosome “D” that is different from both VAC “A” and “C” that 

carried the ancestors of RLN/INSL and RXFP genes. 
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Figure A3. Two alternative scenarios for the 2R-driven duplication of the AncRxfp1/2 

gene. Note that based on the phylogenetic evidence (Figure 4b, main text), RXFP2-like is 

the paralog of RXFP2, in which case the two genes may have arisen as a result of 2R in 

CLGs “C0” and “C2”. The scenario on the right was hence adopted in the main text as 

more explanatory.    

 

Search for the evidence of the presence of regions orthologous to RLN/INSL and 

RXFP loci in the amphioxus ancestor using the P-model: 

 

Using their known genomic locations, each of the human RLN/INSL and RXFP genes were 

mapped to a chromosomal segment (Table A3: “Segment ID”). The identified 

chromosomal segments were then traced to CLGs using the oxford grid provided [3]. 

Additionally, the scaffold locations of amphioxus ilp and rxfp1/2-type genes were also 

traced, where possible, to CLGs using the oxford grid (Table A3). Since the oxford grid 

incorporates map locations from only two organisms, i.e. human and amphioxus, and 

because the identities of the amphioxus genes are still to be established, this method 

allowed us to use the genomic information pertaining only to the genes present in the 

human genome. In other words, the CLG origins of genes such as Rxfp3-2 that have not 

been identified in humans (but exist in teleosts for example) could not be traced using this 

model.   

 

My conclusions (P-model): 

 All human RLN/INSL genes were traced to the same chordate linkage group 

(CLG), CLG1, agreeing with the N-model that all RLN family genes arose from a single 

ancestral gene. 

 Only RXFP3-1 was traced to CLG1, RXFP3-3 was localized to CLG2, and the 

location of RXFP4 is unclear. 

 Both RXFP1 and RXFP2 were mapped to CLG8, while RXFP2-like was mapped to 

CLG9 

 INS and IGF2 were clearly mapped to a CLG different from those occupied by the 

RLN/RXFP genes confirming that the ancestral INS/IGF2 and RLN/INSL have separate 

ancestral chromosome origins. Also one could conclude that the ancestral INS/IGF2 genes 

were in a separate linkage group from ancestral RLN/INSL before the split of the 

amphioxus and olfactores lineages. (Following from this conclusion it is tempting to 
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revisit the identities of the three INS/IGF/RLN-like genes previously identified in C. 

intestinalis as linked on one chromosome [7]).  

 Some of the amphioxus candidate rln/insl, ins/igf and rxfp1/2 genes that were 

obtained from public databases (Appendix B) were assigned to the same CLGs as their 

human counterparts (the ins/igf-like and rxfp1/2-like groups). I was unable to identify any 

rxfp3/4-like genes in the amphioxus databases.  

 

Gene gain/loss and genomic rearrangements in the pre-2R ancestor and/or 

inaccuracy of ancestral genome reconstruction models may account for the difference 

in the results obtained using the two models: 

 

According to the results of the gene tracing method using the P-model, RXFP3 and 

RXFP4-type genes originate from at least 2 different CLGs and only one of them, RXFP3-

1, appears to have been linked to the ancestral RLN/INSL gene on CLG1. This would 

suggest that RXFP4 has a different evolutionary origin from RXFP3. On the contrary, the 

N-model gene tracing method predicts that all RXFP4 and RXFP3-type genes originated 

from one ancestral receptor gene that was linked to the ancestral RLN/INSL gene (VAC 

“A”, as described above). 

How can this conflict be explained? 

As discussed above, the ancestor linkage groups reconstructed in the P- and N-models are 

not equivalent. It is possible that some of the CLGs of the amphioxus-olfactores ancestor 

fused to produce “multi-CLG” chromosomes of the vertebrate ancestor. For instance, 

CLG1, CLG2 and could have fused together and with other unknown CLGs, resulting in 

the so-called VAC “A” reconstructed by Nakatani et al. (2007). Intriguingly, amphioxus 

does not seem to possess rxfp3/4-type genes which implies that these genes appeared after 

the divergence of cephalochordates.     

Alternatively the observed discrepancy could stem from inaccurate ancestral genome 

reconstruction.   

 

 

Figure A4. Comparison of the results obtained using two ancestral genome 

reconstructions top: Tracing of human RLN/INSL and RXFP-like genes in chordate 
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linkage groups (CLG) using P-model; bottom: Tracing of human RLN/INSL and RXFP 

genes in pre-2R vertebrate ancestor chromosomes. 

 

Origins of the Rxfp-Rln/Insl system in early Deuterostomes 

 

To further explore the genomic background of insulin-related genes in invertebrate 

chordates I employed the synteny tool in VISTA-Point (http://pipeline.lbl.gov/cgi-

bin/gateway2?bg=Brafl1&selector=vistapoint) and compared the four Amphioxus 

scaffolds containing Rln/Insl-like genes to the human genome.  

Each scaffold shows different levels of synteny to various regions of different human 

chromosomes. By looking at specific regions of human chromosomes and using Nakatani 

et al.’s work I determined the relationship of the amphioxus scaffolds to the pre-2R 

vertebrate ancestor chromosomes. I find that the two scaffolds predicted by the P-model to 

have originated from CLG14 do indeed share a significant amount of synteny with GACs 

A1, A3, D0-D3. The other two scaffolds containing a total of three Rln/Insl-like genes are 

distinct and exhibit synteny to different regions of the human genome (Figure A4). 

Probably due to its small size, the syntenic information available for scaffold 372 is not 

sufficient to determine its origins. 
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Table A4. Comparison of the two reconstruction models used in this study. 
 N-model P-model 

Brief outline of  

The procedure used 

Used the C. intestinalis and S. 

purpuratus genomes to outline 

ohnologs in human, mouse, dog, 

and pufferfishes (tetraodon and 

fugu); grouped ohnologs into 

GACs 

Compared human versus 

medaka and pufferfishes to 

determine the effect of WGD3 

and subsequent rearrangements 

on the teleost chromosome 

evolution. 

Chicken genome was employed 

to verify the correctness of the 

reconstructed amniote ancestral 

genome 

 

Compared the paralogons of 

human, chicken, stickleback, 

fugu and amphioxus 

Subdivided vertebrate 

chromosomes into segments 

based on the identified 

paralogons 

Employed the information 

from the amphioxus genome 

to directly reconstruct the 

chordate linkage groups 

Predicted numbers of chromosomes in the ancestral genomes 

Pre-1R 

ancestors 

Olfactores-

amphioxus  
n/a 17 

Vertebrate  10-13 n/a 

Post-2R 

ancestors 

Gnathostome  40 69 

Osteichtyan  31 37-49 

Amniote  26 ? 

Pre-3R 

ancestor 
Teleost 13 12 
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Figure A5. A) Four amphioxus scaffolds hosting ilp genes. Phylogenetically ilp1 is the 

closest to the vertebrate INS gene, ilp5 structurally resembles vertebrate INSL5 and ilp4 is 

found outside the vertebrate RLN/INSL clade (see Figure 1.4). Interestingly, both ilp2 and 

ilp3, which seem to have originated from a duplication of ilp1, appear to be orthologous to 

the starfish relaxin-like gene (GSS). Overall, amphioxus seems to possess a set of genes 

which represents a continuity of evolution from the more conserved INS/IGF-type gene to 

more divergent RLN/INSL-type genes. Length of scaffolds shown in Mb. B) Phylogenetic 

tree is based on global alignment done in MLAGAN (VISTA-Point), it confirms the 

common origin of scaffolds 59 and 302 (CLG14); C) Genomic location of ilp genes in 

C.intestinalis. ilp4 is a novel gene for the first time identified in this study. Olinski et al. 

(2006) proposed that ilp2 and ilp3 are orthologous to the vertebrate INS/IGF locus (based 

on the close linkage of these gene pairs), while ilp1 is the ortholog of vertebrate 

RLN/INSL. Note that phylogenetically both ilp1 and ilp2 are close to the amphioxus ilp1 

gene, and ilp3-ilp4 cluster with a fruifly "relaxin-like" gene possbly due to long-branch 

attraction (Figure 1.4, main text). Taking into account that another tunicate (C. 

productum) possesses 2 ilp genes which are phylogenetically close to amphioxus ilp1, it is 

more likely that the Ciona ilp genes are highly divergent duplicates of the amphioxus ilp1-

like gene.    

TH: tyrosine hydroxylase gene, typically found next to the vertebrate INS/IGF loci. 
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APPENDIX B: Database IDs, genomic locations and other information pertaining to the genes used in the study 
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APPENDIX C: Supplementary Figures (Chapter 1) 
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Figure C1. Linkage relationships among rxfp1/2-type genes in teleosts 

 

 

Figure C2 (next two pages). The expanded versions of Figure 5 (in main text). a) Tree showing the “INS-IGF Vertebrates 

& Protochordates” clade in detail. b) Tree showing the “RLN/INSL Vertebrates & ilp5 Amphioxus” clade in detail.   
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Figure C2a (Legend on previous page) 
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APPENDIX D: Supplementary Figures (Chapter 2) 

 

 

Figure D1a (Legend on next page) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D1. Phylogenetic reconstruction of evolutionary relationships among 

the RXFP receptors of tetrapods, teleosts and novel lamprey rxfp sequences. 

a) (previous page) lamprey rxfp3-L1 and rxfp3-L2 (“A”) are at the base of the 

RXFP3-1/3-2 clade, the rxfp3-L3 sequence (“B”); b) (above) rxfp1/2 (“A”) is 

at the base of the RXFP2/RXFP2-like clade.  
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APPENDIX E: Selection analyses (Chapter 3) 

 

 

Table E1. Raw data used to build histograms in Chapter 3. 

 Type of Selection  Type of Selection 

 purifying neutral positive  purifying neutral positive 

rln 0.39257 0.08531 0.52212 rln 0.43781 0.56219 0 

rxfp1 0.79686 0.11583 0.08732 rxfp1 0.81697 0.12334 0.05969 

insl3 0.73771 0.10518 0.1571 insl3 0.71866 0.16757 0.11376 

rxfp2 0.74526 0.15082 0.08643 rxfp2 0.72576 0.19448 0.0629 

rxfp2-

like 
0.6448 0.1495 0.2057 rxfp2-like* 0.6448 0.1495 0.2057 

rln3 0.92972 0.03525 0.03503 rln3a 0.9693 0.0241 0.0066 

rxfp3-1 0.90509 0.03581 0.05685 rln3b 0.96403 0.01761 0.01836 

insl5 0.60042 0.33076 0.06883 rxfp3-1 0.92523 0.05126 0.02228 

rxfp4 0.79991 0.07244 0.12766 insl5a 0.60428 0.39572 0 

    insl5b 0.57975 0.38124 0.03902 

    rxfp4 0.7616 0.12558 0.11282 

    rxfp3-2a 0.85722 0.02068 0.1121 

    rxfp3-2b 0.93831 0.06169 0 

    rxfp3-3a1 0.89025 0.04174 0.06802 

    rxfp3-3a2 0.93659 0.0444 0.01906 

    rxfp3-3b 0.92527 0.04924 0.02549 

 

 

 

 

 

 

 

 


