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ABSTRACT 

  Ryanodine receptors (RyRs) are large homotetrameric proteins that in mammals are 

encoded by three genes: RyR1 in skeletal muscle; RyR2 in cardiac and smooth muscle; and RyR3 

which is expressed in a diversity of cell types. RyR channels play a central role in the excitation-

contraction (EC) coupling process by mediating Ca²
+
 release from the sarcoplasmic reticulum 

(SR). RyR1 paralogues are expressed in a fiber type-specific manner in fish skeletal muscles: 

RyR1a in slow-twitch skeletal muscle (red muscle) and RyR1b in fast-twitch skeletal muscle 

(white muscle). RyR1a and RyR1b are classic examples of spatial subfunctionalization, since they 

share an ancestral function, yet are expressed differentially in red and white muscle fibres 

respectively. Gene duplication and subsequent divergence in sequence, expression and interactions 

are considered to be one of the major driving forces in the evolution of diversity. After the 

upstream promoter regions, evolutionarily conserved introns are considered the second most 

important sites containing gene regulatory elements that control tissue-specific expression (gene 

enhancers or gene silencers). Using medaka (Oryzias latipes) as a model organism, I searched the 

noncoding sequences in medaka RyR1 and RyR3 genes to look for conserved noncoding elements 

for RyR co-orthologues and paralogues. The bioinformatic analyses revealed evidence of 

conservation of noncoding elements for RyR co-orthologues and divergence between RyR 

paralogues.  I also analyzed the spatial and developmental expression of the RyR paralogues 

(RyR1a/RyR1b; RyR3a/RyR3b) in medaka.  The expression analyses revealed conserved 

expression patterns for the RyR co-orthologues and divergent expression of the RyR paralogues. 
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1.1 Ryanodine Receptors (RyRs) 

1.1.1 Structure 

       Cytoplasmic Ca²
+
 plays essential roles in cell excitability, neurotransmitter 

release, muscle contraction and other biological processes. The concentration of 

cytoplasmic Ca²
+
 can be increased either by Ca²

+
 entry across the plasma membrane or 

by Ca²
+
 release from intracellular stores (Nakashima et al., 1997). Intracellular Ca²

+
 

release channels (ICRCs) form a superfamily of genes that include two subfamilies: 

the inositol triphosphate receptor (IP3R) and the ryanodine receptor (RyR) genes, 

which encode the largest ion channels known today (Sorrentino et al., 2000). RyRs are 

large homotetrameric proteins with a total molecular mass of approximately 2.2 – 2.3 

million Daltons (Sharma and Wagenknecht, 2004). In mammals, the three RyR 

isoforms (RyR1, RyR2, and RyR3) are encoded by three different genes (Fill and 

Copello, 2002). While mammals encode three RyR genes, fish have duplicated genes 

e.g. RyR1a and RyR1b that are expressed in a tissue-specific manner (Franck et al., 

1998). 

        The RyR channel has two different domains:  the cytoplasmic assembly, 

consisting of loosely-packed protein densities and the transmembrane assembly that 

protrudes from the center of the cytoplasmic assembly (Fig. 1) (Schatz et al., 1999). 

The size and the shape of the ryanodine binding protein complex is similar to that of 

the ‘’feet’’ structures, which appear to physically link the transverse (T) tubule and 

sarcoplasmic reticulum (SR) (Fill and Copello, 2002).  The RyR1 channel has a four-
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fold symmetry that likely reflects its formation by four RyR protein monomers 

(Radermacher et al., 1994).  

 

Figure 1:  Ryanodine receptor structure RyR1 (blue) and RyR3 (green). (A) Solid 

body representations of the 3D reconstruction of RyR1 are seen from the T tubule–

facing side (left), SR-facing side (middle), and from the side (right) with the 

cytoplasmic moiety of the receptor on top, and the transmembrane assembly at the 

bottom  (Samso et al., 1999). (B) 3D reconstructions of RyR3 are shown in three 

different views. On the left: top views of the cytoplasmic surface, which interacts with 

the transverse-tubule in muscle. In the center: bottom views of the surface that would 

face the sarcoplasmic reticulum lumen. On the right: side views. TA, transmembrane 

assembly; SR, sarcoplasmic reticulum (Zheng Liu et al., 2001). 
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1.1.2 RyR Role in Excitation Contraction Coupling 

Excitation contraction (EC) coupling is defined as the physiological process of 

converting an electrical stimulus (excitation) to a mechanical response (muscle contraction) 

(Sandow, 1952). RyRs are large intracellular channels that play an essential role in the EC 

coupling process (Protasi et al., 2000). Dihydropyridine receptors (DHPRs) are L-type Ca²
+
 

channels, which act as voltage sensors in skeletal type EC coupling (Fig. 2) (Protasi et al., 

2000). The primary role of the DHPR in vertebrate skeletal muscles is to act as a voltage sensor 

that directly modulates the activation gate of adjacent RyR1 channels (Fill and Copello, 2002). 

The skeletal DHPR in the T-tubules are arranged in clusters of four, known as tetrads. These 

tetrads are organized in distinct arrays. The RyR1 channels in the SR membrane are arranged in 

a corresponding fashion (Fill and Copello, 2002). Depolarization of the T-tubule membrane 

(i.e., excitation) induces conformational changes in the DHPR that ultimately leads to activation 

of the RyR channel in the SR membrane. The activation of RyR channels leads to massive Ca²
+
 

release from the SR, which in turn initiates contraction (Fill and Copello, 2002). Two distinct 

skeletal muscle ryanodine receptor (RyR1s) are expressed in a fiber type-specific manner in fish 

skeletal muscles: RyR1-slow (RyR1a) from slow-twitch skeletal muscle and RyR1-fast 

(RyR1b) from fast-twitch skeletal muscle (Franck et al, 1998; Hirata et al; 2007; Darbandi and 

Franck, 2009).  Interestingly, it has recently been discovered that zebrafish encodes two DHPR 

genes that are expressed differentially in superficial slow and deep fast musculature. Both 

subunits do not conduct Ca²
+
 but merely act as voltage sensors to trigger opening of the tissue-

specific RyR isoforms. Non- Ca²
+
 conductivity of both DHPR isoforms is found to be a 

common trait of all higher teleosts (Schredelseker et al., 2010).  Cardiac EC coupling processes 

require the presence of extracellular Ca²
+
. In cardiac muscle, the DHPR receptor (L-type 
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Ca²
+
channel) carries a small Ca²

+
 influx that activates the RyR2 channel (Fig. 2) (Fill and 

Copello, 2002).  

 

Figure 2:  Regulation of excitation-contraction coupling. (a) A close contact of the 

transverse-tubule (TT) and sarcoplasmic reticulum (SR) membrane is essential for the 

coupling of extracellular Ca
2+

 entry and intracellular Ca
2+

 release. The 

dihydropyridine receptor (DHPR) located on the (TT) membrane functions as an L-

type Ca
2+

 channel, as well as the voltage sensor of the plasma membrane. The 

ryanodine receptor (RyR) located on the SR membrane functions as the Ca
2+

 release 

channel. (b) In calcium-induced calcium release (CICR), the depolarization of the 

sarcolemma activates gates in the L-type channels in the membrane permitting 

extracellular calcium to enter. The extracellular calcium then acts as a ligand on the 

ryanodine receptor (RyR) resulting in release of calcium from the SR. In 

depolarization-induced calcium release (DICR), the depolarization of the sarcolemma 

affects a conformational change in the L-type calcium channel which mechanically 

opens the RyR of the sarcoplasmic reticulum. (Adapted from Lodish et al, 2000). 
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1.1.3 RyR Expression 

      Recently, it has become clear that all three RyR isoforms are widely expressed in 

both excitable and non-excitable cells (Ta and Pessah, 2006).  RyR1 is expressed 

predominantly in skeletal muscle and at lower levels in cerebellar Purkinje cells, 

gastric smooth muscle and B lymphocytes, among others (Giannini et al, 1995). RyR2 

was originally purified from cardiac muscle (it is the major isoform expressed there), 

but is also robustly expressed in neurons, and in visceral and arterial smooth muscle. 

RyR3 is the least understood of the RyR isoforms and seems to play an essential role 

during development, while in mature cells RyR3 is found in the diaphragm, epithelial 

cells, brain, and smooth muscle (Lanner et al., 2010).  RyRs are expressed in variety 

of nonexcitable tissues, although the function of the RyRs expressed in nonexcitable 

cells is not fully established. They may contribute to the initiation of Ca
2+

  signals 

(pancreatic cells), or act as an agonist-specific (hepatocytes), or they may provide a 

subtle regulation of the magnitude and kinetics of hormone-evoked [Ca
2+

] responses 

(Deborah et al., 1996).  

       Two skeletal muscle ryanodine receptor (RyR1s) are expressed in a fiber 

type-specific manner in fish skeletal muscles: RyR1-slow (RyR1a) in slow-twitch 

skeletal muscle and RyR1-fast (RyR1b) in fast-twitch skeletal muscle (Franck et al, 

1998; Morrissette et. al., 2000).  A recent study performed by Darbandi and Franck 

found that RyR1b and RyR3 are co-expressed at equivalent levels in certain zebrafish 

tissues (2009).  In contrast, mammals express RyR3 at very low levels in skeletal 

muscle (Giannini et al, 1995). The co-expression of RyR1 and RyR3 genes in skeletal 

muscle has implications for EC coupling in fish skeletal muscle.  Recently, Murayama 
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and Kurebayshi (2010) proposed a model whereby RyR3 serves as an uncoupled 

CICR channel in non-mammalian vertebrates. According to their model, calcium 

release from RyR1b in a fast-twitch muscle myocyte would activate the parajunctional 

RyR3 via the CICR mechanism to trigger further release of Ca²
+ 

from the sarcoplasm 

(Fig. 3). 

 

Figure 3: Proposed mechanism of action for RyR3 in zebrafish. In EC coupling, 

acetylcholine is released from the spinal cord motor neurons which binds to the 

acetylcholine receptor and causes action potential in the transverse-tubule (TT). (1.) 

Depolarisation is sensed by the DHPR, which acts as a voltage sensor and triggers (2.) 

the opening of the junctional RyR1b on the sarcoplasmic reticulum (SR) membrane. 

Ca²
+
 released through RyR1b subsequently activates neighbouring parajunctional 

RyR3 and triggers further release of Ca²
+
 via (3.) Calcium induced calcium release 

(CICR) mechanism. The resulting (4.) amplified Ca²
+
  signal is believed to contribute 

to the myofibril organisation directly through obscurin and spontaneous contraction 

indirectly through Ca²
+
 activated contraction-dependent pathway (Adapted from 

Murayama and Kurebayshi, 2010;  Wu, 2011). 
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1.1.4 RyR Role in Disease 

      Two skeletal muscle diseases, malignant hyperthermia (MH) and central 

core disease (CCD) are linked to mutations in the RyR1 gene. The majority of RyR1 

mutations are associated with the MH cluster in the cytoplasmic domain, whereas 

most mutations linked to CCD are in the pore-forming domain 3 (Hamilton, 2005).  

MH is a human autosomal dominant disease with variable penetrance, characterized 

by muscle rigidity, metabolic acidosis, rhabdomyolysis, and/or increase in body 

temperature in response to inhalation anesthetics and depolarizing muscle relaxants 

(Hamilton, 2005). The prevalence of the MH genotype in humans is 1 out of 20,000 

anesthetized adults (Ta and Pessah, 2006). Central core disease (CCD) is a rare 

congenital myopathy, with high intra and interfamilial phenotype variability ranging 

from asymptomatic to severe symptoms. Patient symptoms include hypotonia, delayed 

motor milestones, proximal muscle weakness, and skeletal anomalies such as hip 

dislocation, scoliosis, and foot deformities (Kossugue et. al., 2006). 

    RyR3 mutations results in changes in hippocampal synaptic plasticity, 

without disturbing hippocampal morphology, basal synaptic transmission or 

presynaptic function (Balschun et. al., 1999).  RyR3 knock-out mice show impairment 

of the performance in the contextual fear conditioning test, passive avoidance test, and 

Y-maze learning test (Kouzu et. al., 2000). 

Fish models have contributed significantly to our understanding of vertebrate 

development and, more recently, human disease (Storer and Zon, 2010). Zebrafish 

have organs and cell types similar to mammals.  Organogenesis occurs rapidly and the 
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entire organs are present in the larvae by 5 to 6 days post-fertilization (Robenstien, 

2003). Thus, zebrafish have attracted many researchers in fields of neuroscience, 

hematopoiesis, cardiovascular research, toxicology and drug research, and 

developmental research. Many diseases have been studied using zebrafish as a model 

organism including: muscular dystrophy, Duchenne muscular dystrophy, limb-girdle 

muscular dystrophy, neurodegenerative disease, Alzheimer’s disease, Huntington 

disease, hemophilia, thrombosis, leukemia, inflammation, diabetes and dilated 

cardiomyopathies (Robenstien, 2003; Guyon et al., 2003; Cheng et al., 2006).  The 

disease model can be generated by either knocking down the gene or using a chemical 

that can induce a disease state (Robenstien, 2003). Medaka have also been utilized as 

a disease model.  Medaka possesses several biological advantages over zebrafish 

(Table 2) which makes it a perfect organism for a disease model. Recently, medaka 

has been used as a model organism in the study of certain human diseases (e.g. 

oncology, endocrine, muscle dystrophy, and polycystic kidney disease), toxicological 

research, molecular genetics, organogenesis and developmental research (Kinoshita et 

al., 2009; Wittbrodt et al., 2002; Takeda et al., 2011). 
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1.2 Evolution of Duplicated Genes 

1.2.1 Overview 

Gene duplications are considered an essential driving force in the evolution of 

genetic diversity. Gene duplicates represent 8–20% of the genes in eukaryotic 

genomes, and the gene duplication rate is estimated between 0.2% and 2% per gene 

per million years (Moore and Purugganan, 2003). Duplicate genes are important for 

acquiring new gene functions but to date, little is known about the early stages of the 

evolution of duplicated gene pairs (Moore and Purugganan, 2003). Two evolutionary 

forces drive the fixation and early evolution of duplicate loci: positive selection and 

neutral genetic drift (Moore and Purugganan, 2003). Theoretical studies suggest that 

the importance of these two evolutionary forces differs depending on the ultimate 

functional fate of the duplicate gene pair (Lynch et al., 2001). The fish-specific 

genome duplication (FSGD) hypothesis predicts that fish have more genes than other 

vertebrates that do not share this genome duplication (Ohno, 1970; Van De Peer et al., 

2001). The first round of genome duplication may have occurred shortly before the 

Cambrian explosion (about 590 million years ago) and the second genome duplication 

probably took place a surprisingly long time afterwards up to 150 million years later 

(Wang and Gu, 1999). According to this estimation, the majority of genes persisted 

without being lost for the 150 million years in between these two genome duplication 

events and most genes appear to have survived since the second genome-duplication 

in the Devonian more than 440 million years ago (Meyer and Schart, 1999). Large 

scale or whole genome duplications is evidenced by the conservation of gene order or 
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gene synteny surrounding duplicate genes. The RyR2 and RyR3 genes have conserved 

synteny and are believed to be the result of the second round (2R) of genome 

duplication (Franck et al., in preparation; Fig. 4).  The RyR2a/RyR2b and 

RyR3a/RyR3b paralogues found in fish are also believed to the result of the FSGD as 

they have conserved synteny (Franck et al., in preparation).  The RyR1a and RyR1b 

paralogues, however, do not show conserved synteny and are therefore believed to 

have resulted from a local gene duplication event.  Medaka has two paralogous copies 

of RyR1 (RyR1a and RyR1b) as do fugu and zebrafish. The RyR1 gene duplication 

likely occurred early in the evolution of teleost fish as the paralogues are encoded in 

the genome of bichir, a basal ray-finned fish (Fig. 4) (Darbandi and Franck, 2009; 

Darbandi, 2010).    



12 

 

 

 

Figure 4: Evolution of the Ryanodine receptor gene family (Adapted from Darbandi, 

2010). Medaka has two paralogues copies of RyR1 (RyR1a and RyR1b) as in fugu and 

zebrafish. The RyR1 gene duplication may be the result of a local or single gene 

duplication event that occurred at the base of the ray-finned lineage and multiple copies 

of RyR2 and RyR3 are results of Fish-Specific Genome-Duplication events during the 

evolution of teleosts. WGD, whole genome duplication; SGD, single gene duplication; 

FSGD, fish specific genome duplication. 
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1.2.2 Evolutionary Fate of Duplicate Genes 

Gene duplication can lead to several functional relationships between duplicate 

gene copies, including: loss of gene function by pseudogene formation; redundancy 

(Nowak et al., 1997); diversification of gene function by means of 

neofunctionalization; or partitioning of ancestral gene function by the process of 

subfunctionalization (Lynch et al., 2001). Both pseudogenes and completely redundant 

unlinked genes are fixed by neutral genetic drift (Walsh, 1995). Gene preservation by 

neofunctionalization or functional divergence, however, appears to be driven by 

selective advantage of the duplicate locus (Walsh, 1995). The fixation mechanism of 

duplicated loci depends on several factors, including the relative levels of adaptive, 

neutral and deleterious mutations acting on duplicate gene pairs, the selection 

coefficients on duplicate loci, and the effective population size (Lynch et  al., 2001).  

       Lynch and Conery (2000) and Lynch (2002) estimate that the half-life of a 

duplicated gene is only of the order of 4.0 million years and the increase in the number 

of genes in genomes due to small-scale tandem duplications is counteracted by a short 

half-life and high rate of gene loss. The evolutionary rate can differ remarkably 

between gene paralogues; usually one of the paralogues evolves faster than the other 

one (Van de Peer et al. 2001). This phenomenon can lead to problems in phylogenetic 

reconstruction, and also lower the efficiency of degenerate PCR primers, and can 

therefore result in a biased amplification of only one copy (Hoegg et al., 2004). 
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1.2.3 Contributions of Gene Duplication to Genomic and Organismal Evolution 

      Gene duplication allows each daughter gene to adopt one ancestral 

function, and further changes under positive selection can refine the functions 

(Hughes, 1999). Both positive selection and relaxation of purifying selection are 

necessary in the functional divergence of duplicate genes (Zhang, 2003). Without gene 

duplication, the plasticity of a genome or species in adapting to changing 

environments would be limited, because no more than two variants (alleles) exist at 

any locus within a (diploid) individual (Zhang, 2003). Gene duplication has also 

contributed to the evolution of gene networks in such a way that advanced expression 

regulations can be established (Wagner, 1994). Gene duplication has promoted species 

divergence and the acquisition of species-specific features (Zhang, 2003). 

1.3 Evolution of Conserved Noncoding Elements (CNEs) 

1.3.1 Overview 

     Temporal and Spatial regulation of gene expression is important during 

vertebrate development (McEwen et al., 2006). This regulation is expected to be 

mediated by coordinated binding of transcription factors to specific noncoding DNA 

sequences, allowing the integration of multiple signals to regulate the expression of 

specific genes (McEwen et al., 2006). These sequences, known as cis-regulatory 

elements (CREs) are often located away from the transcription start site of the target 

gene sometimes in the introns of neighboring genes (Aparicio et al. 2002; Lettice et al. 

2003).  Conserved noncoding elements (CNEs) are usually detected around genes that 

regulate development and most of the discovered CNEs are found to act as tissue-
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specific enhancers during embryonic development (Vavouri and Lehner, 2009). After 

the upstream promoter regions, evolutionarily conserved introns are considered the 

second most common important site containing gene regulatory elements that control 

tissue-specific expression (gene enhancers or gene silencers) (Jegga and Aronow, 

2006).  Regulatory elements are short DNA sequences that determine the timing, 

location, and level of gene expression (Liu et al. 2004).  CNEs are only 5 to 20 bp in 

length, but are vital for understanding gene regulation (Liu et al. 2004).  3.5% of the 

human genome contains CNEs, which comprise the majority of the estimated 5% of 

the noncoding sequences that has been subject to purifying selection throughout 

mammalian evolution (Xie et al., 2006).  0.1% of mammalian CNEs are conserved in 

the genomes of fish, while none are recognized in invertebrates such as insects and 

worms (Xie et al., 2006).  Recently, it has been shown that 3.5% of noncoding DNA 

sequence is substantially conserved across diverse mammals (Siepel et al., 2005), and 

that a smaller amount of noncoding sequence is also shared with more distant 

vertebrates including chicken and fish (Bejerano et al., 2004). 

1.3.2 Cis-Regulatory Elements 

       Cis-regulation is a term used to describe the control of gene expression by 

elements on the same DNA molecule as the target gene, as opposed to trans-

regulation, which describes control by other molecules (Watson et al., 2007).  Cis-

regulation includes processes such as alternative splicing and the control of 

transcription initiation through the binding of transcription factors to DNA 

(Watson et al., 2007).  These noncoding elements contain binding sites for 

transcription factors that control the amount of transcription of the target genes 
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(Levine and Tjian, 2003). There are four functional classes of transcriptional cis-

regulatory elements: promoters, enhancers, repressors, and insulators (Levine and 

Tjian, 2003). They are named for their effect on the target gene: enhancers activate 

transcription, repressors repress transcription, and insulators prevent other cis-

regulatory elements from acting on the gene (Blackwood and Kadonaga, 1998). 

The promoter is the region immediately proximal to the transcription start site of a 

gene (Alberts et al., 2002). The proximal promoter region of a gene includes the 

region within a few hundred bases upstream of the transcription start site (Levine 

and Tjian, 2003).  The function of the promoter is to directly initiate the 

transcription complex RNA Pol II to the start site (Alberts et al., 2002). The 

remaining three classes of cis-regulatory noncoding elements are grouped together 

and are collectively referred to as distal cis-regulatory elements, due to the highly 

variable distance from their target genes (Blackwood and Kadonaga, 1998). For 

example some cis-regulatory elements can be found millions of bases away from 

their target genes (Lettice et al., 2003). The three-dimensional spaces of the 

nucleus can contribute to the regulation of gene expression. A dynamic role for 

chromatin in transcriptional regulation is materializing: enhancer elements interact 

with promoters forming loops that often bridge considerable distances and 

genomic loci, even located on different chromosomes, undergo chromosomal 

associations this associations form an extensive 'transcriptional interactome' 

(Schoenfelder et al., 2010). 
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1.3.3 Transcription Factors (TFs) 

There are three different eukaryotic RNA polymerases (RNA Pol), and each 

RNA polymerase is responsible for a different class of transcription: PolI 

transcribes ribosomal RNA (rRNA), PolII transcribes messenger RNA (mRNA), 

and PolIII transcribe transfer RNA (tRNA) and other small RNAs (Ait-si-ali et al., 

2002). Any protein that is required for the initiation of transcription is defined as a 

transcription factor. Transcription factors act by recognizing and binding to cis-

acting sites that are parts of promoters or enhancers (Ait-si-ali et al., 2002).  

Transcription factors have three major domains: the first one is the DNA-binding 

domain (recognition of particular DNA sequence), the second one is the trans-

activating domain (activates or suppresses the transcription of the gene), and the 

third one which is the protein-protein interaction domain that allows the 

transcription factor’s activity to be adjusted by other transcription factors (Gilbert, 

2000).  Functional diversification among paralogues is thought to be through 

alterations in their expression patterns (Singh and Hannenhalli, 2010). 

Transcription factor binding sites and nucleosome occupancy have an important 

role in explaining the mechanisms underlying expression divergence (Singh and 

Hannenhalli, 2010). Positive selection on gene expression patterns and protein 

sequence in duplicate genes seems to be of a higher magnitude compared to 

orthologues genes and is reflected by accelerated rates of both cis-regulatory 

element and protein evolution (Castillo-Davis et al., 2004). 
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1.3.4 Properties and Proposed Functionality of CNEs 

CNEs have been identified for groups of vertebrates and invertebrates 

separately. Although no sequence identity has been discovered so far between CNEs 

in vertebrates and CNEs in invertebrates, they share characteristics such as: 

• High levels of identity (higher than that of protein-coding genes in most cases), 

across a wide range of species (Bejerano et al., 2004). 

• Clustering around genes: The density of CNEs is higher in gene-rich regions in 

humans (Bejerano et al., 2004, Sandelin et al., 2004, Woolfe et al., 2005) and 

nematodes (Vavouri et al., 2007), with several CNEs clustered around each gene. 

• Association with developmental genes: Gene association is determined by looking 

for the transcription start site nearest to each CNE. CNE-associated genes seem to be 

enriched for regulators of development such as transcription factors and signalling 

genes (Sandelin et al., 2004, McEwen et al., 2006). 

1.3.5 Evolution of Conserved Noncoding Elements in Duplicated Genes 

         Many CNEs discovered in vertebrate genomes are found to function as 

tissue-specific enhancers (Lee et al., 2011). Lee et al., (2011), reported that 78-83% of 

CNEs have diverged in teleost fishes and only 24% and 40% have been lost in chicken 

and mammalian lineages, respectively.   In comparison with bony vertebrates, teleost 

fish CNEs have been evolving at a remarkably higher rate and 68% of CNEs were lost 

before the divergence of the teleosts.  This rapid rate of CNEs evolution has had an 

effect on the expression pattern of their target genes (Lee et al., 2011). The fish-
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specific whole-genome duplication (FSGD) has a role in the accelerated evolution and 

the loss of a large number of both copies of duplicated CNEs in teleost fishes (Lee et 

al., 2011).  Recent comparative analyses showed that many conserved sequences are 

often located in noncoding regions (Lee et al., 2011). Most of the conserved 

noncoding elements (CNEs) are located near genes responsible for the regulation of 

transcription and development (Sandelin et al. 2004; Woolfe et al., 2005). Functional 

analyses of many CNEs have shown that they function as cis-regulatory elements (or 

enhancers) of tissue-specific expression during early stages of development (Woolfe et 

al., 2005).  The FSGD in the ray-finned fish lineage has led to duplication of genes 

that are single-copy in mammals (Lee et al., 2011). Lee and colleagues (Lee et al., 

2011) showed that a similar proportion of CNEs were lost in both single and 

duplicated genes.  The loss percentage was (38–41%) in singleton and (39–42%) in 

duplicate genes in stickleback, medaka, and fugu. However, in zebrafish, duplicate 

genes have lost a higher percentage (34%) of CNEs than singleton genes (27%) 

suggesting a relaxed constraint on both copies of duplicated CNEs (Lee et al., 2011). 

In the Lee et al. study, the authors showed that 68% of CNEs had disappeared in the 

ray-finned fish lineage before the divergence of zebrafish and the three 

acanthopterygians (stickleback, medaka, and fugu). These fishes are closely related 

species and their subdivisions together include 95% of living teleosts (Nelson 2006).  

68% of CNEs have disappeared in the common ancestor of these fishes which could 

be explained by the majority of the CNEs diverging before the diversification of 

teleost fishes (Lee et al., 2011). There is now evidence that the FSGD occurred in the 

ray-finned fish lineage before the diversification of teleost fishes (Hoegg et al. 2004; 
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Jaillon et al. 2004; Crow et al. 2006).  The FSGD that occurred in the ancestor of 

teleost fishes is therefore believed to be a contributing factor in the diversification of 

teleost fishes (Hoegg et al. 2004; Meyer and Van de Peer 2005; Crow et al. 2006; 

Santini et al. 2009). The whole-genome duplication event allows relaxed constraint on 

one or both copies of duplicated genes resulting in loss of a large number of 

duplicated genes and an asymmetric rate of evolution of genes retained in duplicate 

(Lynch and Conery 2000; Semon and Wolfe 2007). Consistent with this prediction, 

analysis of the evolutionary rate of protein-coding genes has indicated that both 

singleton and duplicate genes in teleost fishes have been evolving at a faster rate than 

their orthologues in mammals (Jaillon et al. 2004; Steinke et al. 2006). The accelerated 

rate of nucleotide substitution in teleosts is triggered by the fish-specific genome 

duplication and led to rapid divergence of protein-coding sequences and CNEs 

(McEwen et al., 2006). The higher substitution rate in some CNEs could be due to 

positive selection acting on these CNEs (McEwen et al., 2006). Evolutionary changes 

have been observed in the duplicated conserved noncoding elements (CNEs) within a 

genome in both nucleotide sequence and length than orthologous CNEs between 

genomes (McEwen et al., 2006). This indicates that 50–150 Mya following the 

duplication of these cis-regulatory elements and their associated genes, there was an 

increased rate of change within both the protein coding (Hughes and Friedman 2004) 

and regulatory sequences reflecting a possible relaxation of evolutionary constraint in 

one of the gene copies  (McEwen et al., 2006) (Fig. 5). 
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Figure 5:  Evolution of CNEs in vertebrates. Modern bony vertebrates evolved from 

the chordate lineage between 650 and 450 Mya, during a period of rapid 

morphological change (represented here in blue). During this period an early ancestral 

vertebrate underwent one, or possibly two, whole genome duplications. The 

appearance of CNEs in vertebrate genomes (red boxes adjacent to gene loci, depicted 

as dark boxes) can be dated prior to these large-scale duplication events. This 

evolution must have occurred rapidly following duplication (orange arrows) over a 

relatively short evolutionary period (∼50–150 Mya) In contrast, in the period since the 

teleost–tetrapod divergence (∼450 Mya) (blue arrows), duplicated CNEs have had a 

remarkably slow mutation rate and have remained practically unchanged (green 

arrows) (Adapted from McEwen et al., 2006). 

 

1.4 Comparative Genomics 

     Distinguishing between orthologues and paralogues is necessary to compare 

genome organization in different organisms. Orthologues are homologous genes in 

different species that encode a protein with the same function and which have evolved 

by direct vertical descent (Primrose and Twyman, 2003).  Paralogues are homologous 

genes within an organism encoding proteins with related but non-identical functions. 
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Orthologues evolve simply by the gradual accumulation of mutations, whereas 

paralogues arise by gene duplication followed by mutation accumulation (Primrose 

and Twyman, 2003).  Comparative genomics is the study of the similarities and 

differences between genome sequences of different species (Koonin, 2005). The 

structure of a protein determines its function (Hegyi and and Gerstein, 1999), and 

protein coding genes with shared ancestry but highly divergent sequences can have 

very similar structure and function (Wilson et al., 2000).  Similar to protein-coding 

genes, noncoding sequences and their associated secondary structure information can 

help to define their homologies (Gardner et al., 2009; Meynert, 2010).  Functional 

noncoding elements are more likely than non-functional DNA sequences to be under 

selective pressure to remain the same over time, as mutations might change or destroy 

their functionality (Miller et al., 2004). It is frequently assumed that noncoding 

elements with a high degree of sequence similarity between different genomes are 

likely to be homologous and functional (Miller et al., 2004). 

1.5 Model Organism 

1.5.1 Overview 

Medaka (Oryzias latipes) is a small egg-laying freshwater teleost fish that is 

primarily endemic to Japan, Korea, Taiwan, and China (Wittbrodit et al., 2002). The 

adult fish are approximately 3 cm long, and the female lays a cluster of eggs (10-30 

eggs) every day (Wittbrodit et al., 2002). The embryos develop externally and both the 

embryo and chorion are transparent.  Medaka embryos hatch eight days after 

fertilization at 26 °C and grow to sexual maturity within 2 to 2.5 months (Takeda and 
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Shimada, 2010). Medaka is hardy and tolerates a wide range of temperatures (10- 40 

°C); it is easy to breed and highly resistant to common fish disease (Wittbrodit et al., 

2002). Male and females are easily distinguished by a clearly dimorphic dorsal fin. 

Because the eggs are connected to the female body by attachment filaments, 

reproductively active females can be easily identified and propagated (Witbrodit et al., 

2002). Medaka is perfect for genetic studies because its genome is estimated to be 800 

Mb, one quarter of the human genome and one half of the zebrafish genome and it is 

the first fish to prove that Mendelian laws are valid in vertebrates as early as 1913 

(Wittbrodt et al., 2002). 

1.5.2 Developmental Stages 

The natural breeding season of Oryzias latipes extends from mid-April to late 

September in Japan. Oocyte maturation occurs at night (Iwamatsu, 1965 and 

Iwamatsu, 1974), and ovulation occurs at dawn (Egami, 1954 and Iwamatsu, 1978). 

Under regular daily photoperiod with more than 13 hours of artificial lighting 

(Yoshioka, 1963), ovulation occurs about 1 hour before the onset of the light period, 

and oviposition occurs for 1 hour before and after the onset of the light period 

throughout the year. Careful observation of the process of embryonic development by 

light microscopy identified 39 stages based on diagnostic features of the developing 

embryos (Iwamatsu, 2004) (Fig. 6). The principal diagnostic features are the number 

and size of blastomeres, form of the blastoderm, extent of epiboly, development of the 

central nervous system, number and form of somites, optic and otic development, 

development of the notochord, heart development, blood circulation, the size and 
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movement of the body, development of the tail, membranous fin (fin fold) 

development, and development of such viscera as the liver, gallbladder, gut tube, 

spleen and swim (air) bladder (Iwamatsu, 2004). After hatching, development of the 

larvae (fry) and young can be divided into six stages based on such diagnostic features 

as the fins, scales and secondary sexual characteristics (Iwamatsu, 2004). Table 1 

describes the developmental process occurring in each stage.  
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Figure 6: Medaka (Oryzias latipes) embryos developmental stages (Iwamatsu, 2004).  

Medaka embryos go through 45 developmental stages and they usually hatch within 9 

days. Day1: stage1-stage 24, Day2: stage 25- stage 28, Day3: stage 29- stage 31, 

Day4: stage 32- stage 34, Day5: stage 35, Day6: stage 36, Day7: stage37, Day8: 

38,and Day9: stage 39- stage 45 (Photographs by author). 
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Table 1: Developmental processes occurring during different developmental stages in Medaka 

(Oryzias latipes) embryos (Iwamatsu, 2004). 

Days Stage Developmental processes 

First 21 hours 

(stage 1 – stage 16) 

Stage 1 Activated egg stage  

Stage 2 Blastodisc stage : formation of 

zygot nucleus appearance and 

division of chromosomes  

Stage 3 – stage 7 Blastomeres formation and 

cell cleavage (2 cell stag – 32 

cell stage) 

Stage 8 – stage 9 Morula stage 

Stage 10 – stage 11 Blastula stage 

Stage 12 – stage 16 Gastrula stage  

Day 1 

(stage 17 –  stage 24) 

Stage 17 – stage 18  Neurula stage 

Stage 19 – stage 21 Somite stage: optic and 

auditory differentiation  

Stage 22 – stage 24  Somite stage: formation  of 

tubular heart and start of heart 

beating 

Day 2 

(stage 25 – stage 28) 

Stage 25 18 – 19 somite stage: 0nset of 

blood circulation 

Stage 26 22 somite stage: development 

of notochord and 

differentiation of eye. 

Stage 27 24 somite stage: appearance 

of pectoral fin bud. Formation 

of liver and gut. 

Stage 28  30 somaite stage: onset of 

retinal pigmentation  

Day 3 

(stage 29 – stage 31) 

Stage 29 34 somite stage: internal ear 

formation, atrium and 

ventricle differentiation. Aorta 

formation 

Stage 30  35 somite stage: blood vessels 

development to supply gills, 

kidneys, brain,muscle and 

liver. Formation of swim 

bladder.  

Stage 31 

 

 

 

 

 

 

Gill blood vessels formation 

stage. Formation of 

gallbladder  
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Table 1 Continued 

Day 4 

(stage 32 – stage34)  

Stage 32  

 

 

Somite completion stage: 

formation of pronephros and 

air bladder. 

Stage 33 Stage at which notochord 

vacuolization is completed. 

Stage 34 Pectoral fin blood circulation 

stage. 

Day 5 

(stage 35) 

Stage 35 Formation of visceral blood 

vesseles 

Day 6 

(stage 36) 

Stage 36  Heart development stage. 

Day 7 

(stage 37) 

Stage 37 Pericardial cavity formation 

stage. 

Day 8 

(stage 38) 

Stage 38 Spleen development stages. 

Differentiation of caudal fin 

begins. 

Day 9 

(stage 39 – stage 45) 

Stage 39 Hatching stage 

Stage 40  First fry stage 

Stage 41 Appearance of fin rays of 

dorsal and anal fins. 

Stage 42 Vascularization of the artery 

and the vein and extend to 

formation of shape of all fins. 

Stage 43 Appearance of ray nodes of 

dorsal and venteral fins. 

Stage 44 Formation of single 

dichotomous blanching at the 

distal end of fin ray of fins. 

Appearance of secondary sex 

characteristics such as 

urogenital protuberance and 

papillar processes on fin rays.  

Stage 45 Three rotations of the gut and 

formation of double 

dichotomus blanching of the 

distal end of fin rays of all 

fins. 
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    1.5.3 Anatomy and Dissection  

       In the lateral view, the anterior portion of the abdominal cavity is occupied 

by three prominent organs: the heart, liver and kidney (Fig. 7D. I).  The heart is 

surrounded by the pericardial cavity, which is separated from the abdominal 

cavity (Fig. 7D). The heart is positioned slightly to the right of the ventral 

midline. The liver is pink and stretches from the anterior one-third to one-fourth 

of the abdominal cavity (Fig. 7I). The reddish kidneys are located most dorsal 

in the abdominal cavity, just ventral to the spinal cord. Gonads are seen 

antroventral to the transparent air bladder (Fig. 7G). The oocytes in the ovary 

are discernible clearly from the right in females. The gut can be observed from 

both lateral and ventral sides (Fig. 7E, F).  

       In the dorsal view, the brain and spinal cord appears as a yellowish 

structure in the midline (Fig. 7A, C). In the gill, the fine comb-like structure of 

the branchial arches and their associated primary lamellae can be viewed 

through the operculum (Fig. 7H). 
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Figure 7: Dissected adult male medaka (Oryzias latipes) (A). Top view showing 

dissected medaka belly from anus to the chest (B). Dissected brain and eyes in ventral 

view (C). Top view showing dissected open chest with arrow pointing to the heart (D). 

Dissected belly showing gut (E). Surgically removed gut and pancreas (F). Dissected 

testis (G). Top view showing dissected gills (H). Opened abdomen showing liver and 

spleen (I).  sc, spinal column; b, brain; e, eyes; h, heart; gu, gut; t, testis; g, gills; s, 

spleen; li, liver; p, pancreas (Photographs by author).    
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1.5.4 Advantage of Medaka as a Model Organism  

       There are three main fish model organisms commonly used, zebrafish 

(Danio rerio); medaka (Oryzias latipes); and fugu (Takifugu rubripes). Their major 

features and evolutionary relationship are compared in Table 2 and Fig. 8, 

respectively.  

Recently, medaka has been used as a model organism in the study of certain 

human diseases (e.g. oncology, endocrine, and muscle dystrophy), toxicological 

research, molecular genetics, organogenesis and developmental research. The fact that 

medaka and zebrafish were separated from their common ancestor 110 Mya positions 

them as important models for comparative studies (Fig. 8).  This evolutionary distance 

is reflected in many aspects of their biology, including early development and sex 

determination. Both fish models offer several advantages and both combine the power 

of genetics with experimental embryology and molecular biology (Wittbrodit et al., 

2002). Early medaka development is rapid; whereas zebrafish larvae hatch after 2–3 

days, medaka embryos are enclosed in a tough chorion that protects them in their 

natural habitat until they hatch as feeding young adults after 7 days. All zebrafish 

techniques including single-cell injections, transplantation and morpholino 

knockdown technology, also apply to medaka (Wittbrodit et al., 2002). 

         Medaka is the most genetically polymorphic vertebrate (3-4 % sequence 

divergence among regional populations).  This large genetic polymorphism among 

regional populations is not found in other vertebrate models (Kinoshita et al., 2009). 
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The estimated genome size of medaka is about 800 million base pairs (Mbp) and that 

of zebrafish is 1700 Mbp (Kinoshita et al., 2009). 

 

Table 2: Biological characteristics and availability of experimental tools in three teleost fish 

model organisms (Ishikawa, 2000). 

Biological 

Characteristics  

Zebrafish Medaka  Fugu 

Genome size 1700 Mb 800 Mb 400 Mb 

Chromosome number 

of 2n 

50 48 - 

Sex determination  - XY type - 

Life cycle 3 month 3 month - 

Outdoor breeding  no yes yes 

Crossing in 

laboratories 

yes yes No  

Linkage map  yes yes no 

The number of inbred 

strain  

0 12 0 

The number of mutant 

strains 

2000 120 0 

Transgenic fish yes yes no 
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Figure 8: Evolutionary relationships among fish models. This evolutionary tree 

illustrates that the last common ancestor of medaka and zebrafish lived more than 110 

million years ago (Mya). Notably, medaka is a much closer relative to fugu than it is 

to zebrafish, or than zebrafish is to fugu (Wittbrodit et al., 2002). 
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1.6 Objectives 

      The expression of RyR1 and RyR3 genes has been extensively studied in 

many model organisms including mouse and zebrafish but to date nothing is 

known about the expression of RyR1 and RyR3 genes in medaka. The first 

objective of my research is to search for evidence of divergence between 

regulatory elements in noncoding regions (introns) of the RyR paralogues that 

could be the basis for differential expression.  The noncoding sequences (introns) 

are important after the upstream promoter region in controlling gene expression 

and harboring transcription factors binding sites. Previous multisequence 

alignments for RyR1 and RyR3 promoter sequences in zebrafish show no 

conservation with other co-orthologues including medaka (Kasloff, 2009; 

Vanderhooft, 2009).  I decided to search the noncoding sequence of medaka RyR1 

and RyR3 genes, looking for conserved noncoding regions with co-orthologues 

and within paralogues as well. This can be achieved using a multisequence 

alignment to compare medaka RyR1 and RyR3 co-orthologues including fugu, 

zebrafish, mouse, and human to determine whether any sequence conservation is 

present. Intron sequences obtained from the Ensembl (Stalker et al., 2004) database 

were first imported to the mVISTA (Loots and Ovcharenko, 2004) bioinformatics 

program to look for conserved noncoding regions. Conserved regions were 

assessed for transcription factors binding sites (TFBSs) using the rVISTA 

bioinformatics program.  
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         The second objective of my research was to analyze the expression of the 

RyR paralogues (RyR1a/RyR1b; RyR3a/RyR3b) in developing medaka embryos 

to investigate whether temporal differences exist in their expression profile. 

Quantitative real time PCR (qRT-PCR) is utilized to measure the expression of the 

RyR paralogues both temporally (developmental stages) and spatially (dissected 

tissues).  The overall objective of this part of the research was to look for evidence 

of divergence between paralogues and conservation with co-orthologues with 

respect to gene expression. 
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2.1 Conserved Noncoding Elements (CNEs) in RyR 1 and RyR3 genes 

Intron sequences were located by database searching for RyR1 and RyR3 

genes of medaka (Oryzias latipes), fugu (Takifugu rubripes) and zebrafish (Danio 

rerio). These sequences were analyzed together using a program called main VISTA 

(mVISTA) to identify areas of sequence conservation between introns. Regulatory 

VISTA (rVISTA) was utilized to search for transcription factor binding site hits in the 

sequences (Loots and Ovcharenko, 2004). The RyR1 and RyR3 introns were surveyed 

for a selection of 20 different TF sites. The identities of the RyR1 and RyR3 

orthologues, located on the Ensembl genome browser, are listed in table 6 and table 7. 

Previous studies done in Dr. Franck’s lab, show little conservation in the RyR3 

promoter region of zebrafish in comparison with other vertebrates including humans. 

The noncoding intron regions are considered the second most important areas after the 

promoter to look for TFBSs. Regions with more than 70% conservation between 

medaka and fugu (RyR1a, RyR1b, RyR3a, and RyR3b) were submitted to the rVISTA 

program to search for transcription factor binding sites (TFBS) hits. The following list 

of TFBSs was used to search for conserved hits: FOX, MEF-2, MUSCLE, MYOD, 

MYOGENIN, STAT, CART-1, CLOX, EVI-1, GATA, HANDIE47, HNF-1, HNF-3, 

HNF-3α, HNF-4, HNF4-α, HNF-6, MYC, MYCMAX, MYOGNF-1, NKX6-1, 

NKX6-2, OCT, and TATA (Abbreviations and Nomenclature).  These transcription 

factors were selected according to analysis with the matinspector software program 

(Genomatix) results (Cartharius et al., 2005). Matinspector software uses a wide 

library of matrix descriptions for TFBDs to locate matches in DNA sequences through 

assigning a quality rating to each match, this will facilitate for quality-based filtering 
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and selection of matches based on its grouping of transcription factor binding sites 

into matrix families based on functional similarity. Mismatches may be avoided by 

toggling the parameter “core similarity”, a term used to describe a TFBDs sequence 

identity to a precomputated, highly conserved four base pair sequence in the anchored 

center of a given matrix. A decrease in core similarity allows for a lower degree of 

specificity for the core region of a specific TF, while an increase in core similarity 

causes the program to overlook potential matches.  

2.2 RNA Extraction  

Homogenization of 100 mg of whole medaka fish tissue was performed in 1 

mL of TRIzol reagent (Invitrogen Life Technologies). The tissues were homogenized 

with a motorized teflon pestle and glass mortar. Total RNA was precipitated from the 

supernatant with 95% ethanol, pelleted by centrifugation at maximum speed (14,000 

×g) and dried by speed-vacuum evaporation. The dried RNA pellet was resuspended 

in 50 μL of RNase free water, and quantified using a nanophotometer (UV260 was 

measured; Birds, 2005). 

2.3 cDNA Synthesis 

A 20 μL solution of 10 – 20 μg of total RNA was mixed with 0.05 μg/μL of 

Oligo dT 15 primer (to synthesize the first strand of cDNA) and heated to 95°C for 

five minutes and immediately chilled on ice. Next,  12 μL of 5X Oligo dT 15 buffer, 2 

μL of 10 mM dNTPs, 24 μL double distilled H2O (ddH2O), 1 μL RNAsin and 1 μL of 

reverse transcriptase (SS II RT) were added and mixed. The solution was then 

incubated at room temperature for 15 minutes, followed by 30 minutes incubation at 
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37°C. 40 μL of 10X TE buffer was added to stop the reaction at room temperature (pH 

8.0). The first strand cDNA was precipitated by adding 10 μL of 3M sodium acetate 

and 250 μL of 95% ethanol. The cDNA was precipitated at -20°C over night then 

pelleted by centrifugation at 14,000 ×g for 15 minutes, washed with 95% ethanol and 

centrifuged again at 3,000 – 4,000 ×g for 5 minutes. The pellet was dissolved in 100 

μL of distilled, RNase and DNase free water (Invitrogen Life Technologies). 

2.4 Identification of RyR1 and RyR3 Genes via Database Searching 

A preliminary search was performed using Ensembl database website 

(http://www.ensembl.org). The RyR1a gene (ID ENSORLT00000008002) is located 

on chromosome 14, reverse strand. The total length of the predicted transcript is 

14,880 bp with 110 exons with a predicted protein sequence of 4,959 amino acids. The 

RyR1b gene (ID ENSORLT00000001305) is located on chromosome 13, reverse 

strand. The predicted transcript length is 15,038 bp with 109 exons and the 

corresponding protein has 4,863 amino acids. The RyR3a gene (ID 

ENSORLT00000021133) is located on chromosome 22, reverse strand. The predicted 

transcript length is 13,497 bp with 100 exons with a predicted protein sequence of 

4,498 amino acids. The RyR3b gene (ID ENSORLT00000022370) is located on 

chromosome 24, reverse strand. The predicted transcript length is 14,604 bp with 110 

exons and the corresponding protein is 4,498 amino acids. 

2.5 Primer Design 

Primer pairs were designed for each gene by searching the terminal 1,000 bp of 

the predicted transcript using the Primer 3 program (Rozen et al., 2000). The primers 
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amplified products of 906 bp for RyR1a, 520 bp for RyR1b, 523 bp for RyR3a, and 

916 bp for RyR3b (Table 3). 

2.6 Polymerase Chain Reaction (PCR) 

 Primers in Table 3 were used to amplify RyR messages from whole Medaka 

cDNA. 22.5 μL of master mix and 2 μL of template (equivalent of approximately 3 ng 

of cDNA template) were used for each PCR reaction. The master mix contained 2.5μL 

of 10X PCR buffer (Invitrogen Life Technologies), 0.75 μL of 50 mM MgCl2, 0.5 μL 

of 10 mM dNTPs, 1.5 μL of each primers, 0.2 μL recombinant Taq DNA Polymerase 

(0.5 U) and 15 μL of ddH2O (RNase free water). The thermal conditions for PCR 

reaction are listed in table 4.  PCR reaction products were then fractionated on a 1% 

low melting point agarose gel containing 0.5 μg/μL ethidium bromide and viewed on a 

Bio-Rad UV transilluminator (Universal Hood II), and purified with the S.N.A.P. Gel 

Purification Kit (Invitrogen Life Technologies) following the manufacturer’s protocol. 

Table 3: Primers used for PCR amplification of RyR1 and RYR3 in Medaka fish, 

Oryzias latipes 

Target 

genes 

Accession number Primer sequence              Product 

size (bp) 

RyR1a ENSORLT00000008002 F: GCGTTTTCTGGCTCTGTTTC 906 

  R: TCATCCTCGTCTTCGCTCTT  

RyR1b ENSORLT00000001305 F:  TGACCCACGGAAAGAAACCC 520 

  R:  ACGAGCTGTACCGCGTGGTC  

RyR3a ENSORLT00000021133 F:  CATCACCGACCAGCCGTCTG 523 

  R:  ACCTCTACACAGTGGTGGCC  

RyR3b ENSORLT00000022371 F:  AGGTGACGAGAACACGCTCT 916 

  R: ATGAGGACGAGCCGGACATG  

*-The letter “F” in the primer name indicates a forward primer and an “R” indicates a 

reverse primer. 
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Table 4: Thermal conditions used for PCR reaction. 

Steps Temperature (° C ) Time 

1.Initial 

denaturation/enzyme 

activation 

95 5 minutes 

2. Denaturation 95 1 minute 

3. Annealing 57 1 minute and 30 seconds 

4. Extension 72 1 minute 

5. Repeat step 2 to 4 for 35 

more cycles 

  

6. Final extension 72 7 minutes 

 

2.7 Cloning of PCR products 

     After purification, the PCR products were ligated with pGEM– T Easy 

vectors (Promega Biotech, Appendix 1). Ligation reactions were transformed into 

competent Escherichia coli JM109 cells (E. coli JM109; Promega Biotech). 

Transformed cells were plated on NZCYM growth media supplemented with 50 

μg/mL ampicillin, 40 μg/mL X-gal and 0.1 mM IPTG (IPTG acted as an inducer of 

the lac operon in E. coli while X-gal was a visual indicator of β-galactosidase 

activity). The activity of IPTG in combination with X-gal allowed for screening of 

colonies. The plates then were incubated at 37°C overnight. Colonies with a functional 

lac operon appeared blue; while the recombinant colonies appeared white due to 

disruption of the β-galactosidase gene. Because the pGEM– T Easy vectors contain an 

ampicillin antibiotic resistance gene, the media was supplemented with ampicillin (50 

μg/ml) to prevent the growth of non-transformed bacteria. 
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2.8 PCR Detection of Recombinants and Plasmid Purification 

         Bacterial colonies were randomly selected with a sterile pipette tip from 

each plate. The tip was then used to inoculate a PCR tube containing 15 μL of PCR 

master mix. The  PCR master mix contain 1.5 μL 10X PCR buffer, 0.9 μL 50 mM 

MgCl2, 0.075 μL of 100 μM M13 forward primer, 0.075 μL of 100 μM M13 reverse 

primer, 11.925 μL ddH2O, and 1.5 μL Taq DNA Polymerase, for approximately one 

minute at room temperature. PCR was performed using M13 forward (5´-

GTTTTCCCAGTCACGAC-3´) and M13 reverse (5´ CAGGAAACAGCTATGAC-

3´) primer pairs to amplify the cloned insert. The tip was subsequently used to 

inoculate a culture tube containing 3 ml of NZCYM media supplemented with 0.5 

mg/ml ampicillin.  The PCR program consisted of an initial denaturation step at 95°C 

for five minutes. The second step was at 95°C for one minute, followed by an 

annealing step of 57°C for thirty seconds and an extension step at 72°C for one 

minute. The second, third and fourth steps were cycled 35 times. The reaction 

products were fractionated on a 1.5% agarose gel containing 0.5 μg/μL ethidium 

bromides and viewed on a Bio-Rad UV transilluminator (Universal Hood II). Bacterial 

cultures corresponding to PCR products of expected size were grown overnight in 

NZCYM broth containing 50 μg/mL ampicillin.  
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2.9 Sequencing 

      Recombinant plasmids were sent to The Centre for Applied Genomics (The 

Hospital for Sick Children, University of Toronto) for sequencing. DNA sequences 

were aligned using the CLUSTALX (Thompson et al., 1994) and Genedoc software 

(Nicholas et al., 1997).  

2.10 Medaka Embryo Collection 

       Medaka were kept in the animal complex in special breeding tanks on 

daily photoperiod of 16 hours light, 8 hours dark. Ovulation is expected to occur about 

1 hour before the onset of the light period (Iwamatsu, 2004). Fish were fed with Brine 

shrimp (Artemia) along with dry food two times daily to increase the efficiency of 

breeding. Eggs were separated from the females using a small camel hair brush and 

pipettes for sorting and separating the eggs. The embryos were then transferred to a 

special culture dish where they were washed in 0.5% bleach to minimize the chance of 

bacterial growth. Embryos were incubated in culture medium of 10g/100ml of NaCl, 

0.3g/100ml of KCl, 0.4g/100ml of CaCl2.H2O, 1.63g/100ml of MgSO4.7H2O and 

0.01g/100ml of Methylene blue to prevent fungal growth) (Shultz, 2009). The 

collected embryos were placed in the culture medium (1 ml/egg/plate). The medium 

was changed daily for each plate.  The eggs develop to the hatching stage within 8 

days at 26 °C (Iwamatsu, 2004). RNA was extracted from all developmental stages. 

Eggs were stored in RNA later reagent and RNA was extracted using TRIzol reagent.  

First strand cDNA was synthesized as per the protocol described previously. PCR 

reactions were performed using the same primers listed in Table 1. 
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2.11 Medaka Fish Dissection 

Medaka were obtained from Trent University. Fish were sacrificed following a 

protocol approved by the University of Winnipeg Senate Animal Care Committee. 

Fish were euthanized immediately by immersion in 0.6 mg/ml MS222 (Tricaine 

Sulfate; 300 mg MS222 dissolved in 500 mL of ddH2O; pH adjusted to 7.0 by adding 

1 M NaOH). Tissues were dissected from the specimens using a dissecting 

microscope. White muscle (fast twitch), red muscle (slow twitch), cardiac muscle, 

brain, spinal cord, ovaries, testes and liver were carefully dissected. The dissected 

tissues were kept in RNA Later solution (Ambion) at -80°C for later usage. RNA was 

extracted using 1000 μL of TRIzol per 100 mg of tissue weight.  TRIzol-digested 

tissues were extracted with 200 μL chloroform for each 1 ml  of TRIzol and 

precipitated with 1000 μL 75% ethanol for each 1 ml TRIzol used, and 500 μL of 

isopropyl alcohol was used for the washing step. All the centrifugation steps were 

done at 4°C. Then cDNA synthesis and PCR amplification for all the above samples 

were done and fractionated on 1.5% agarose gel. 

2.12 Quantitative Real Time PCR (qRT-PCR)  

The expression level of the medaka RyR genes was measured relative to the 

average expression of 18S rRNA and beta-actin housekeeping genes. Primers used for 

quantification of housekeeping gene, RyR1 and RyR3 paralogues are listed in Tables 

3 and 5 respectively. A 15 μL total reaction volume was used for each qRT-PCR 

reaction, consisting of 7.5 μL SYBR Green master mix, 1.5 μL each of forward and 

reverse primers at 10 μM concentration, 1 μL cDNA template and 3.5 μL ddH2O. A 

single peak was indicative of a single PCR product in the reaction well. The results of 
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the qRT-PCR analysis were collected and analyzed using the CFX Monitor software 

(Bio-Rad). Efficiency of designed primers in binding and amplifying the target gene 

was determined by generating a standard curve from undiluted and 10
−1

, 10
−2

, 10
−3

 

and 10
−4

 dilutions of cDNA template. Trials were run in triplicates (3 experimental 

sets) and the average concentration threshold (Ct) value was plotted against the log 

(dilution). The slope for RyR1 and RyR3 paralogues as well as for housekeeping 

genes was calculated to determine the efficiency (E) value (E = 10⁻¹/slope). The 

efficiency of the four target genes and housekeeping genes was very close to 2.  The 

tissue with the highest Ct value was chosen as a calibrator. A relative fold expression 

of the four genes in each adult and developmental tissue was calculated using 2
-

CT 

method using the following equation: 

Relative expression =2
-

CT 

Where ΔCT target = Ct (target, calibrator) - Ct (target, test) 

ΔCT Reference = Ct (Reference, calibrator) - Ct (Reference, test) 

ΔΔCT = ΔCT Reference - ΔCT target   

Standard deviation and standard error for reference and target genes where calculated 

using the following formula:  
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Where X is the individual sample mean,  X is the average samples mean, S is the 

standard deviation and SE is the standard error.

Table 5: Primers used for amplification of housekeeping genes (18S and Actin) and 

qRT-PCR (Zhang and hu, 2007). 

Target genes GenBank 

Accession no. 

Primer sequence Product 

size (bp) 

18S rRNA AB105163 F: CGTTCAGCCACACGAGATTG 56 

  R: CCGGACATCTAAGGGCATCA  

ß-actin S74868 F: TCCACCTTCCAGCAGATGTG 76 

  R: AGCATTTGCGGTGGACGAT  
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CHAPTER 3 

RESULTS 
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3.1 Bioinformatic Analyses of CNEs 

    3.1.1 mVISTA 

 A multisequence alignment of the co-orthologues RyR1a, RyR1b, RyR3a and 

RyR3b intron sequences from medaka, zebrafish, mouse, human and fugu was done 

using mVISTA. Fugu RyR1a, RyR1b, RyR3a and RyR3b sequences were used as a 

baseline for the co-orthologues from the other species. The number of introns for each 

gene is given in table 6 and table 7.  

Table 6: RyR1a and RyR1b intron numbers. 

 Ensembl ID Number of 

introns 

Medaka RyR1a: 

ENSORLT00000008002 

110 

RyR1b: 

ENSORLT00000001305 

109 

Zebrafish RyR1a: 

ENSDART00000014749 

105 

RyR1b: 

ENSDART00000036015 

104 

Fugu RyR1a: 

ENSTRUT000000043571 

107 

RyR1b:  

ENSTRUT00000039120 

107 

Mouse RyR1: 

ENSMUST00000032813 

106 

Human RyR1: ENST00000359596 106 
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Table 7: RyR3a and RyR3b intron numbers 

 Ensembl ID Number of 

introns 

Medaka RyR3a: 

ENSORLT00000021133 

99 

RyR3b: 

ENSORLT00000022371 

109 

Zebrafish RyR3: 

ENSDART00000147464 

97 

Fugu RyR3a: 

ENSTRUT00000036458 

105 

RyR3b:  

ENSTRUT00000046340 

107 

Mouse ENSMUST00000091818 103 

Human ENST00000415757 103 

 

The mVISTA analysis identifies conserved regions with more than 70% 

sequence identity between the RyR1a orthologues (Fig. 9). Intron 73 in fugu RyR1a is 

conserved with intron 74 in medaka and intron 72 in zebrafish. The orthology of the 

introns is confirmed by alignment of the local protein sequences in the flanking exons 

(Fig. 10). 
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Figure 9: Analysis of conserved noncoding sequences (CNSs) in RyR1a orthologues. 

The takifugu RyR1a sequence is the baseline used for comparison. HCNS exceeding 

70% between orthologues are shaded in red. 

 

 

Figure 10: Local amino acid alignment for the RyR1 orthologues from human (RyR1), 

mouse (RyR1), zebrafish (RyR1a), medaka (RyR1a) and fugu (RyR1a). Fugu RyR1a 

intron number 73 is conserved with medaka RyR1a intron number 74. 
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Figure 11 illustrates the conserved regions identified using mVISTA with more 

than 70% conservation between RyR1b co-orthologues. Intron 72 in fugu RyR1b is 

found to be conserved with intron number 73 in medaka and intron 71 in zebrafish. 

The orthology of the introns is confirmed by alignment of the local protein sequences 

within the flanking exons (Fig. 12). 

 

 

Figure 11: Analysis of conserved noncoding sequences (CNSs) in RyR1b co-

orthologues. The takifugu RyR1b sequence is the baseline used for comparison. CNSs 

exceeding 70% between orthologues are shaded in red. 
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Figure 12: Local amino acids alignment for RyR1b co-orthologues. Fugu RyR1b 

intron 72 is conserved with medaka RyR1b intron 73. 

 

         Figure 13 illustrates the conserved intron regions found with more than 

70% conservation between RyR3a co-orthologues. Intron 75 in fugu RyR3a is found 

to be conserved with intron 76 in medaka and intron 69 in zebrafish. The orthology of 

the introns is confirmed by alignment of the local protein sequences in the flanking 

exons (Fig. 14). 
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Figure 13: Analysis of conserved noncoding sequences (CNSs) in RyR3a co-

orthologues. The takifugu RyR3a sequence is the baseline used for comparison. CNSs 

exceeding 70% between co-orthologues are shaded in red. 

 

Figure 14: Local amino acids alignment for RyR3a co-orthologues. Fugu RyR3a 

intron 75 is conserved with medaka RyR3a intron 76. 
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Figure 15 illustrates the conserved region found with more than 70% 

conservation between RyR3b co-orthologues. Intron 78 in fugu RyR3b is conserved 

with intron 79 in medaka and intron 69 in zebrafish. To confirm the orthology of the 

introns a local protein sequence alignment was done to demonstrate the amino acid 

conservation in the flanking exons (Fig. 16). 

 

Figure 15: Analysis of conserved noncoding sequences (CNSs) in RyR3b co-orthologues. The 

takifugu RyR3b sequence is the baseline used for comparison. CNSs exceeding 70% between 

co-orthologues are shaded in red. 
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Figure 16: Amino acids alignment for RyR3b co-orthologues. Fugu RyR3b intron 78 

is conserved with medaka RyR1a intron 79. 

 

A pairwise sequence alignment using mVISTA between medaka RyR1a and 

RyR1b genes (Fig. 17) reveals divergence between the medaka RyR1 paralogues 

(RyR1a and RyR1b). Only one conserved region could be found between medaka 

RyR1a and RyR1b in contrast with 5 conserved regions found between medaka and 

fugu RyR1a (Fig. 9) and two conserved noncoding regions between medaka and fugu 

RyR1b (Fig. 11). 

         RyR3 paralogues (RyR3a and RyR3b) show evidence of divergence which is 

demonstrated in Fig. 18. A pairwise sequence alignment between medaka RyR3a and 

RyR3b noncoding (introns) sequences reveals one region of conservation between the 

sequences, whereas 6 regions of CNSs are found between medaka RyR3a and fugu 

RyR3a co-orthologues (Fig. 13) and 7 regions between medaka and RyR3b co-

orthologues (Fig. 15).   
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Figure 17: Evidence of divergence between Medaka RyR1a and RyR1b paralogues.  

 

Figure 18: Evidence of divergence between Medaka RyR3a and RyR3b paralogues. 
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3.1.2 rVISTA Analysis: Search for Transcription Factor Binding Sites 

      I searched those sites with more than 70% conservation between fugu 

RyR1a and medaka RyR1a, fugu RyR1b and medaka RyR1b, fugu RyR3a and 

medaka RyR3a, and fugu RyR3b and medaka RyR3b using rVISTA to search for 

transcription factors binding sites (TFBs) conservation. Conserved TFBs for RyR1a, 

RyR1b, RyR3a and RyR3b are shown in Figs. 19, 20, 21 and 22 respectively. The 

following list of TFBSs was used for the search: FOX MEF-2, MUSCLE, MYOD, 

MYOGENIN, STAT, CART-1, CLOX, EVI-1, GATA, HANDIE47, HNF-1, HNF-3, 

HNF-3α, HNF-4, HNF4-α, HNF-6, MYC, MYCMAX, MYOGNF-1, NKX6-1, 

NKX6-2, OCT, and TATA. A list of the transcription factors along with their function 

are shown in table 10.  

Using a threshold cutoff of 85% core similarity from MatInspector 

(Genomatix) results, these RyR1a, RyR1b RyR3a and RyR3b noncoding regions were 

surveyed for a selection of 20 different TF sites.  

      Table 8 lists the transcription factors that have been found in association 

with RyR1a and RyR1b. For RyR1a, clustering was observed for HNF4, HNF1, EVI1 

followed by Muscle, HNF3 and HANDIE47. Other TFBSs including MEF2, NKX62, 

TATA, FOX, and GATA were not found. In contrast, RyR1b shows a higher level of 

HNF4 followed by EVI1 and Muscle. Little conservation has been found in 

HANDIE47, MOD, MYOGENIN and GATA. No conservation has been found 

between other TFBs including OCT, TATA, STAT, MEF2 and NKX62. 
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Legends for figures on following pages: 

 

Figure 19: Transcription factors conserved between fugu RyR1a and medaka RyR1a 

genes. Clustering was observed of HNF4, HNF1, EVI1 followed by Muscle, HNF3 

and HANDIE47. Other TFBSs including MEF2, NKX62, TATA, FOX, and GATA 

were not found. 

 

Figure 20: Transcription factors conserved between fugu RyR1b and medaka RyR1b 

genes. RyR1b higher hits level of HNF4 followed by EVI1 and Muscle. Little 

conservation has been found in HANDIE47, MOD, MYOGENIN and GATA. No 

conservation has been found between other TFBs including OCT, TATA, STAT, 

MEF2 and NKX62. 

 

Figure 21: Transcription factors conserved between fugu RyR3a and medaka RyR3a 

genes. Clustering was observed of HNF4, OCT. few clustering have been observed in 

FOX, Muscle, MYC MAX, STAT, TATA, NKX62 and HANDIE47. No conservation 

has been found in GATA and CART1 sites. 

 

Figure 22: Transcription factors conserved between fugu RyR3b and medaka RyR3b 

genes. RyR3b shows clustering in HNF4, HNF1, and HNF3, EVI1 followed by few 

clusters in CART1, GATA, MYC MAX, STAT, TATA, NKX62 and HANDIE47. 
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Table 8: Transcription factors binding site hits associated with RyR1a and RyR1b. 

Transcription factor Number of Hits 

RyR1a RyR1b 

EVI1 47 18 

FOX 6 ---- 

GATA 11 3 

HNF1 57 11 

HNF3 34 13 

HNF3 ALPHA 11 1 

HNF4 170 93 

MUSCLE 34 15 

MYC 1 2 

MYOD 3 1 

MYOGENIN 2 1 

OCT 35 ---- 

STAT 6 ---- 

TATA 12 ---- 

MEF2 5 ---- 

NKX62 3 ---- 

HAND1E47 ----- 5 
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Conserved TFBSs for RyR3a and RyR3b are shown in Table 9.  For RyR3a, 

clustering was observed for HNF4 and OCT TFs.  Fewer hits were observed for FOX, 

Muscle, MYC MAX, STAT, TATA, NKX62 and HANDIE47. No conservation has 

been found in GATA and CART1 sites. RyR3b shows clustering in HNF4, HNF1, and 

HNF3, EVI1 followed by fewer hits for CART1, GATA, MYC MAX, STAT, TATA, 

NKX62 and HANDIE47.  

Table 9: Transcription factors binding site hits associated with RyR3a and RyR3b. 

Transcription factor Number of Hits 

RyR3a  RyR3b 

CART1 ---- 3 

EVI1 47 34 

FOX 9 8 

GATA ---- 2 

HNF1 32 65 

HNF3 19 34 

HNF3 ALPHA 9 7 

HNF4 81 155 

MUSCLE 8 34 

MYC MAX 4 7 

OCT 19 12 

STAT 4 6 

TATA 11 9 

NKX62 5 3 

HAND1E47 2 ---- 
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Table 10: Transcription factors binding sites found in association with 

RyR1a, RyR1b, RyR3a and RyR3b along with their functions.   

Gene Transcription 

factors 

Role 

RyR1a HNF1  

HNF 3  

HNF-3 alpha 

HNF-4 

Development and metabolic homeostasis 

MYOD 

Myogenin 

MYC-Max 

Myogenesis 

RyR1b HANDIE47 Cell proliferation and differentiation 

RyR3a EVI-1 Body patterning and neurodifferentiation. 

OCT-1 DNA repair 

HNF Development and organogenesis 

RyR3b Myc Cell growth 
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3.2 PCR Amplification of RyR1 and RyR3 Paralogues in Developmental Stages 

       RyR1a, RyR1b, RyR3a and RyR3b messages were amplified in different 

developmental stages using the primers listed in Table 1. Amplified bands showed the 

same size as those in dissected tissues (Fig. 23).  

 

Figure 23: PCR amplification of developmental stages cDNA for RyR1a, RyR1b, and RyR3a 

and RyR3b genes. Row 1 represent 18S housekeeping gene amplification in all medaka 

developmental stages (product size 56 bp), row 2 shows RyR1a (906 bp , RyR1b in row 3 (520 

bp), RyR3a in row 4 (523 bp), and RyR3b in row 5 (916 bp).  
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3.3 PCR Amplification of RyR1 and RyR3 Paralogues in Dissected Tissues 

RyR1a, RyR1b, RyR3a and RyR3b genes were amplified in different dissected 

tissues including red muscle, white muscle, heart, brain, spinal column, ovaries, testes 

and biliary system (liver and gallbladder) using the primers listed in Table 1. 

Amplified bands were in the expected size of 906 bp for RyR1a, 520 bp for RyR1b, 

523 bp for RyR3a, and 916 bp for RyR3b (Fig. 24).  

 

Figure 24: PCR amplification of dissected tissues cDNA for RyR1a, RyR1b, and 

RyR3a and RyR3b genes. Row 1 represent 18S housekeeping gene amplification in all 

medaka (product size 56 bp), row 2 beta- actin HKG (76 bp), row 3 shows RyR1a 

(906 bp , RyR1b in row 4 (520 bp), RyR3a in row 5 (523 bp), and RyR3b in row 6 

(916 bp).  
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3.4 Sequencing and Alignment 

     Amplified PCR products of the four genes from whole medaka were sent 

for direct sequencing. The resulting sequences were aligned with other sequences 

obtained from the ensembl database using Genedoc software (Nicholas et al., 1997). 

The sequence alignments for RyR1a, RyR1b, RyR3a and RyR3b are shown in 

Appendix 2, 3, 4 and 5 respectively. 

3.5 Temporal qRT-PCR analyses for RyR1 and RyR3 in Developing Medaka 

The fold expression for RyR1 and RyR3 paralogues were estimated relative to 

the expression of the 18S rRNA housekeeping gene in developmental stages using 2
-


CT method. RyR1 paralogues average expressions with standard errors are shown in 

Fig. 25 and Table 11. RyR3 paralogues fold expressions are shown in Fig. 26. 
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Figure 25: RyR1a and RyR1b developmental fold expression normalized to the 

expression of 18S housekeeping gene. Average fold expression for RyR1a (purple) 

and RyR1b (pink) are plotted with standard errors.  Stage with highest Ct value was 

used as a calibrator (day 2). RyR1a/RyR1b ratio shows no significance according to 

the fold ratio criteria (fold ratio ≥ 4 and P-Value <0.01). Standard errors (SE) are 

small because there are no true replicates.  
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Figure 26: RyR3a and RyR3b fold expression normalized to the expression of 18S 

housekeeping genes. Average fold expression for RyR3a (dark blue) and RyR3b (light 

blue) are plotted with standard errors.  Stages with highest Ct value were used as a 

calibrator (day 2 and day 3). No significance found for RyR3a/RyR3b ratio according 

to the fold ratio criteria (fold ratio ≥ 4 and P-Value <0.01). Standard errors (SE) are 

small because there are no true replicates.  
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Table 11: Average fold expression of RyR1 and RyR3 paralogues in different developmental 

stages relative to 18S housekeeping gene with standard errors. 

 Gene Relative expression to HKG (18S ) ±SE 

Day 3 

(Stage 29 - 31) 

RyR1a 8.316±0.122346 

 

RyR1b 1.929±0.28564 

Day 4 

(Stage 32 – 34) 

RyR1a 9.893±0.53860 

RyR1b 9.948±0.07646 

RyR3a 5.502±0.186965 

RyR3b 4.122±0.16842 

Day 5 

(Stage 34 – 35) 

RyR1a 8.061±0.3271 

RyR1b 6.207±0.4642 

RyR3a 1.327±0.264225 

RyR3b 1.611±0.24297 

Day 6 

(Stage 36) 

RyR1a 48.765±0.136647 

RyR1b 16.908±0.30306 

RyR3a 7.295±0.15117 

RyR3b 20.658±0.14748 

Day 7 

(Stage 37) 

RyR1a 20.742±0.23982 

RyR1b 11.717±0.18292 

RyR3a 4.597±0.0986 

RyR3b  20.686±0.03855  
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Table 11 continued 

Day 8 

(Stage 38) 

RyR1a 39.391±0.44491 

 RyR1b 15.381±1.386 

 RyR3a 9.2707±0.06514 

 RyR3b 30.474±0.2473 

Day 9 – Fry 

(Stage 39 – 45) 

RyR1a 57.015±0.0289 

RyR1b 14.722±0.25334 

RyR3a 10.721±0.20865 

RyR3b 82.412±0.95953 
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3.6 Spatial qRT-PCR analyses for RyR1 and RyR3 in Selected Medaka Tissues 

The level of expression for RyR1 and RyR3 paralogues was estimated relative 

to the average expression of two housekeeping genes: 18S and Actin in dissected 

tissues using the 2
-

CT method. RyR1 paralogues expressions with standard errors 

are shown in figure 27 and table 12 and RyR3 paralogues fold expression levels are 

illustrated  in figure 28. 

 

Figure 27: RyR1a and RyR1b tissues fold expression normalized to the average 

expression of 18S and Actin housekeeping genes. Average fold expression for 

RyR1a (purple) and RyR1b (pink) are plotted with standard errors.  A tissue with the 

highest Ct value was used as a calibrator (testes). * indicates RyR1a/RyR1b 

significance according to the fold ratio criteria (fold ratio ≥ 4 and P-Value <0.01). 

Standard errors (SE) are small because there are no true replicates.  
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Figure 28: RyR3a and RyR3b tissues fold expression normalized to the average 

expression of 18S and Actin housekeeping genes. Average fold expression for 

RyR3a (dark blue) and RyR3b (light blue) are plotted with standard errors.  Tissues 

with the highest Ct value were used as a calibrator (eyes and gills). * indicates 

RyR1a/RyR1b significance according to the fold ratio criteria (fold ratio ≥ 4 and P-

Value <0.01). Standard errors (SE) are small because there are no true replicates.  
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Table 12: Average fold expression of RyR1 and RyR3 paralogues in dissected tissues 

relative to 18S and Actin housekeeping gene with standard errors. 
 Gene Relative fold expression to HKG (18S and Actin) 

±SE 

Red muscle RyR1a 76.409 ± 0.803 

 

RyR1b 21.812 ±0.2.29 

RyR3a 1.397 ±0.0.1855 

RyR3b 22.469 ±0.398 

White muscle RyR1a 9.967 ±0.0727 

RyR1b 134.141 ±0.383 

RyR3a 20.958 ±0.183 

RyR3b 16.205 ±0.2438 

Brain RyR1a 9.115 ±0.1364 

 RyR1b 5.665 ±0.666 

 RyR3a 10.389 ±0.5587 

 RyR3b 13.346 ±0.277 

Spinal column RyR1a 5.888 ±0.1226 

 RyR1b 94.885 ±0.26455 

 RyR3a 12.096 ±0.3047 

 RyR3b 76.909 ±0.1769 

Heart RyR1a 1.253 ±2.095 

 RyR1b 12.277 ±0.2578 

 RyR3a 5.0375 ±0.2855 

 RyR3b 2.569 ±0.0285 
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Table 12 continued 

Ovaries RyR1a 1.990 ±0.3923 

 RyR1b 9.014 ±0.1412 

 RyR3a 3.152 ±0.3910 

 RyR3b 2.580 ±0.0794 

Testes RyR3a 1.945 ±0.25609 

RyR3b 5.156 ±0.4521 

Biliary system 

(Liver-

Gallbladder) 

RyR1a 1.541 ±0.2794 

RyR1b 3.094 ±0.2109 

RyR3a 3.010 ±0.7352 

RyR3b 4.463 ±0.3268 
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3.7 Statistical Analyses 

The significance of RyR1a/RyR1b fold expression ratio as well as 

RyR3a/RyR3b fold ratio was calculated using a two-tailed z test for developmental 

stages and different tissues. It has become increasingly common to require that 

differentially expressed genes satisfy a modest level of statistical significance (P < 

0.01) then ranked significant genes by fold-change with a cut-off of  4 (McCarthy and 

Smyth, 2009). 
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4.1 Conserved noncoding sequences (CNSs) 

4.1.1 Evidence of Conserved Noncoding Regions Between RyR Orthologues 

The RyR1a and RyR1b genes are believed to be the result of a local gene 

duplication event (Franck et al, in prep.) whereas the RyR3 gene is the result of the 

fish-specific genome duplication event during the evolution of teleosts (Fig. 4) (Meyer 

and Schartl, 1999). Previous studies have demonstrated that RyR1a and RyR1b 

paralogues are expressed in a tissue-specific manner (Franck et al, 1998; Darbandi and 

Franck, 2009).  Darbandi and Franck (2009) also demonstrated that the RyR1a and 

RyR1b paralogues are expressed at different levels in adult zebrafish tissues. The 

objective of my research was to search for evidence of divergence between regulatory 

elements in the noncoding regions (introns) of the RyR paralogues that could be the 

basis for differential expression.  I also analyzed the expression of the RyR paralogues 

in developing medaka to investigate whether temporal differences exist in their 

expression profile. Multisequence alignments between medaka and fugu co-

orthologues introns revealed 5 conserved noncoding regions for RyR1a (Fig. 9), 2 

regions for RyR1b (Fig. 11), 6 regions for RyR3a (Fig. 13), and 7 regions for RyR3b 

(Fig. 15). In contrast, only one conserved noncoding region is found between fugu and 

zebrafish for each of the four genes (RyR1a, RyR1b, RyR3a, and RyR3b. These 

observations indicate conservation between medaka and fugu RyR co-orthologues 

which is explained in Figure 8 by the close relation between medaka and fugu that 

diverged from zebrafish 110 Mya. 

 



79 

 

4.1.2 Evidence of Divergence Between RyR Paralogues. 

The divergence of RyR noncoding regions is found between medaka 

paralogues, conservation is detected between co-orthologues of divergent species (e.g. 

medaka and fugu). Pairwise alignment between RyR1 paralogues (RyR1a vs RyR1b) 

and RyR3 paralogues (RyR3a vs RyR3b) reveal only one conserved region for both 

comparisons (Figs 17 and 18). Whereas, pairwise alignment between fugu and medaka 

reveals 5 conserved regions between RyR1a co-orthologues (Fig. 9), 2 regions in 

RyR1b (Fig. 11), 6 regions in RyR3a (Fig. 13), and 7 regions in RyR3b (Fig. 15). The 

lack of sequence similarity between the noncoding regions of paralogues and the 

higher degree of sequence conservation between noncoding sequences in co-

orthologues suggests a rapid divergence of RyR noncoding regions followed by 

fixation of cis-acting regulatory elements (Ghanem et al., 2003). 

4.2 Cis-regulatory Elements (CREs) 

   4.2.1 Evidence of Conserved Noncoding Elements Between RyR Orthologues 

Highly conserved noncoding regions between Fugu and medaka RyR genes for 

TFBSs also revealed identical hits for transcription factors that regulate development 

and gene expression. Several studies have demonstrated that regulatory modules are 

under purifying selection and, therefore, are often conserved between related species 

(Loots and Ovcharenko, 2004). 
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 4.2.2 Evidence of Divergence Between RyR Paralogues 

Bioinformatic analyses to identify TFBSs hits show evidence of divergence in 

RyR1 and RyR3 paralogues. It seems likely that the whole-genome duplication 

allowed a relaxed constraint on the duplicated CNEs leading to the rapid divergence of 

their sequences. The fish-specific whole-genome duplication that occurred in the 

ancestor of teleost fishes is considered to be responsible for the diversification of 

teleost fishes (Hoegg et al. 2004; Meyer and Van de Peer 2005; Crow et al., 2006). It 

is therefore likely that the fish-specific genome duplication might have triggered an 

accelerated rate of nucleotide substitution in teleosts resulting in rapid divergence of 

protein coding sequences and CNEs. 

4.3 Role of CNEs in Regulation of Temporal and Spatial Gene Expression 

Regulation of gene expression in a spatial and temporal manner is crucial 

during vertebrate development. Such complex transcriptional regulation is thought to 

be mediated by the coordinated binding of transcription factors to discrete, typically 

noncoding DNA sequences, allowing the integration of multiple signals to regulate the 

expression of specific genes (McEwen et al., 2006). 

It is widely accepted that gene duplication is a major source for the evolution 

of novel gene function, resulting ultimately in increased organismal complexity and 

speciation. Mutations in subsets of regulatory elements in either one of the duplicated 

paralogues may result in post duplication spatial and temporal partitioning of 

expression patterns (subfunctionalization) between them. As a result, both paralogues 



81 

 

can fulfill only a subset of complementary functions of the ancestral gene, and will 

thus be retained by selection and not be lost secondarily (Hadzhiev et al., 2007). 

In the previous section I present evidence of conservation between noncoding 

sequences (intron) from orthologous RyR genes and divergence of noncoding 

sequences between RyR paralogues.  In the next section I will discuss the expression 

of medaka RyR1 and RyR3 paralogues in developing and adult tissues in medaka. 

4.4 Temporal Expression of RyR Paralogues 

      4.4.1 RyR1a and RyR1b 

RyR1 paralogues expression is noticed as early as stage 22-24 (early somite 

stage) with very low expression and starting to increase from mid to late 

developmental stages. RyR1a average fold expression (Table 11 and fig. 25) is higher 

than RyR1b in the following stages: stage 34-35 (8.061), stage 36 (48.765), stage 37 

(20.742), stage 38 (39.391) and stage (39-45) is (57.015). RyR1b, show similar pattern 

of fold expression with marked expression over RyR1a in a few stages (32-34) where 

fold expression is (9.948). Other stages show lower levels than RyR1a, 16.908 in stage 

36, 11.717 in stage 37, 15.381 in stage 38 and 14.722 in stage 39-45. Using the fold 

ratio criteria I have calculated the RyR1a/b ratio in different developmental stages 

then I calculated z-score and p-value to test for significant differences. Ratios that 

meet fold criteria (fold ratio >2, P-value < 0.01) were considered significant.   

4.4.2 RyR3a and RyR3b 

  RyR3a and RyR3b demonstrate expression patterns that range from mid to late 

stages (Table 11 and figure 26). The average fold expression for RyR3a is higher 
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RyR3b in stage (32-34) with fold increase of 5.502. The remaining stages show lower 

expression than RyR3b in stage (34-35) the fold expression is 1.3273, stage 36 fold 

expression is 7.295, stage 37 was 4.597, stage 38 9.2707 and stage (39-45) 10.7219. 

For RyR3b, the average fold expression was lower than RyR3a in stage (32-34) with 

fold expression of 4.1221. Otherwise, RyR3b has a high expression levels in other 

stages: 1.6119 in stage (34-35), 20.658 in stage 36, 20.686 in stage 37, 30.474 in stage 

38 and 82.412 in stage 39-45. 

 4.5 Spatial Expression of RyR Paralogues  

     4.5.1 RyR1a and RyR1b 

RyR1a is highly expressed over RyR1b in red muscle (slow-twitched muscle) 

(Fig. 27 and table 12) with fold expression of 76.409 and in the brain with 9.115 fold 

expression. RyR1b is highly expressed over RyR1a in white muscle (fast-twitched 

muscle) with fold expression of 134.141 followed by spinal column tissues with fold 

expression 94.885, heart 12.277, ovaries 9.014, and then biliary system tissues with 

fold expression of 3.094. This muscle expression in medaka is similar to that for 

zebrafish (Darbandi and Franck, 2009).  However, Darbandi and Franck (2009) 

limited their analyses to only four selected tissues, namely red muscle, white muscle, 

cardiac and brain tissues.  Using the fold ratio criteria I have calculated the RyR1a/b 

ratio in different adult tissues and calculated the z-score and p-value. Ratios that meet 

fold criteria (fold ratio >2, P-value < 0.01) are considered significant.  
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4.7.2 RyR3a and RyR3b 

RyR3a is expressed more than RyR3b in white muscle (fold expression 

20.958) followed by heart (fold expression 5.0375) and ovaries (fold expression 

3.152) (Fig. 28 and table 12). RyR3b is highly expressed over RyR3a in red muscle 

(fold expression 22.469), then spinal column tissues (fold expression 76.909), brain 

(fold expression 13.346), testes (fold expression 5.156), and then biliary system 

tissues with fold expression of 4.463. The spinal column tissues shows high 

expression level of RyR1b (fold expression 94.885) and RyR3b (fold expression 

76.909). Similarly, red muscle express RyR1a (fold expression 76.40) and RyR3b 

(fold expression 22.469) in high levels. White muscle highly express RyR1b (fold 

expression 134.141) and RyR3a (fold expression 20.958). Brain tissues express 

RyR3b (fold expression 13.346) and RyR1a (fold expression 9.115) in high levels. 

Heart show more expression of RyR1b (fold expression 12.277) and RyR3a (fold 

expression 5.0375). Ovaries have high expression of RyR1b (fold expression 9.014) 

and RyR3a (fold expression 3.152). Biliary tissues demonstrates increased levels of 

RyR3b (fold expression 4.463) and RyR1b (fold expression 3.094). 

4.8 Role of RyR1 in Development and EC Coupling 

Medaka encodes two copies of RyR1 as is the case for zebrafish and fugu. Wu 

(2011) recently published his PhD thesis online describing the expression of RyR 

genes in developing zebrafish. Wu’s analysis is based solely on in situ hybridization to 

whole mount embryos and does not include qRT-PCR analysis.  Wu shows that 

RyR1a first appears at 11 hpf (3- to 6-somite stage; early segmentation), prior to 
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RyR1b and that RyR1a is exclusively expressed in slow muscle and the slow muscle 

pioneers at 24 hpf (pharyngula period; late segmentation).  This result is consistent 

with the report from Hirata and colleagues (2007). Wu’s in situ study reveals that 

RyR1b is expressed in both the slow and fast muscle fibres of zebrafish embryos. My 

research of RyR expression in medaka agrees with the findings of both Wu (2011) and 

Hirata et al. (2007) for zebrafish. Developing medaka embryos, like zebrafish, show 

early expression of the RyR1a gene starting from stage 1 to 25 that increases until 

hatching (Figure 29 and 30) while RyR1b is expressed from stage 25 onward which is 

similar to zebrafish RyR1a and RyR1b temporal expression (Wu, 2011). Comparison 

between medaka and zebrafish developmental stages is described in figure 33. This 

early expression of RyR1a and RyR1b indicates their functional significance during 

the early stages of development. The relatively early expression of RyR1a in slow 

muscle may reflect the fact that the RyR1a receptor is required by these muscles prior 

to the fast skeletal muscle fibres. Embryonic development of fast and slow muscles in 

zebrafish originate from different cell lineages, and the latter is differentiated at early 

developmental stages from adaxial cells located on both sides of the notochord 

(Devoto et al., 1996; Daggett et al., 2007). Adaxial cells migrate radially from either 

sides of the notochord to the superficial part in the trunk, where slow muscle-specific 

proteins are expressed, and finally developed to slow muscle in a superficial region 

beneath the skin or remain as muscle pioneers in the horizontal myoseptum 

(Felsenfeld et al., 1991; Devoto et al., 1996; Ono et al., 2010). The red slow twitch 

muscle has important physiological functions in fish because they are used to power 

slow- and medium-speed movements while both slow fibers and the faster (white) 
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fibers are used during rapid movement (Jayne and Lauder., 1994).  The conserved 

noncoding regions for the RyR1a and RyR1b described in section 4.2.1 have a 

predominance of binding sites for transcription factors involved in organogenesis 

(Table 8). Divergence of the RyR1a and RyR1b expression patterns, both temporal 

and spatial, could be related to the observed sequence divergence between noncoding 

regions in the genes.  

 

 

Figure 29: Developmental expression of RyR1a gene in medaka embryos normalized 

to the expression of 18S housekeeping genes.  RyR1a shows early expression with low 

levels in qRT-PCR starting day 2. Day 2 has been used as a calibrator for calculation 

of the fold expression levels. Relative expression (RE) of RyR1a in day 1 and day 2 

was meseaured using 2
-∆∆

CT method (RE in day1 = 0.000049, and in day 2 = 

0.00001). Day 1: stage 1-stage 24, Day 2: stage 25- stage 28, Day 3: stage 29- stage 

31, Day 4: stage 32- stage 34, Day 5: stage 35, Day 6: stage 36, Day 7: stage 37, Day 

8: 38,and Day 9: stage 39- stage 45. 
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Figure 30: Developmental expression of RyR1b gene in medaka embryos normalized 

to the expression of 18S housekeeping genes.  RyR1b shows early expression with 

low levels in qRT-PCR starting day 2. Day 2 has been used as a calibrator for 

calculation of the fold expression levels. Relative expression (RE) of RyR1b in day 2 

was meseaured using 2
-∆∆

CT method (RE = 0.000073). Day 1: stage1-stage 24, Day 2: 

stage 25- stage 28, Day 3: stage 29- stage 31, Day 4: stage 32- stage 34, Day 5: stage 

35, Day 6: stage 36, Day 7: stage37, Day 8: 38,and Day 9: stage 39- stage 45.  

 

4.9 Role of RyR3 in Development and EC Coupling 

RyR3 regulation and expression has been extensively studied using many 

model organisms including: zebrafish, mouse and human. Unlike medaka, all of the 

three models have one copy of the RyR3 gene. In a recent study done by Wu, 2011 

using zebrafish shows that temporary RyR3 mRNA was observed to be maternally 

expressed quite strongly at 1-2 hpf (cleavage stage), then very weakly from 5.3 hpf 
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(gastrula stage ) through to 18 hpf (mid-segmentation stage) and after which the level 

of expression became much stronger through to adulthood.  In contrast, medaka 

encodes 2 copy of RyR3 which are first expressed in stage 25-31 (early to mid-somite 

stage) with low levels. RyR3a expression increases from stage 32 (late somite stage) 

and became much stronger through to adulthood. Similarly, RyR3b is expressed at low 

levels in early developmental stages and starts to increase significantly from stage 35 

onward up to adulthood (Figs. 31 and 32).  

 

Figure 31: Developmental expression of RyR3a gene in medaka embryos normalized 

to the expression of 18S housekeeping genes.  RyR3a shows early expression with low 

levels in qRT-PCR starting day 2. Day 2 has been used as a calibrator for calculation 

of the fold expression levels. Relative expression (RE) of RyR3a in day 2 was 

meseaured using 2
-∆∆

CT method (RE = 0.000073) Day 1: stage1-stage 24, Day 2: 

stage 25- stage 28, Day 3: stage 29- stage 31, Day 4: stage 32- stage 34, Day 5: stage 

35, Day 6: stage 36, Day 7: stage37, Day 8: 38,and Day 9: stage 39- stage 45. 
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Figure 32: Developmental expression of RyR3b gene in medaka embryos normalized 

to the expression of 18S housekeeping genes.  RyR3b shows early expression with 

low levels in qRT-PCR starting day 2. Day3 has been used as a calibrator for 

calculation of the fold expression levels. Relative expression (RE) of RyR3b in day 2 

and day 3 was meseaured using 2
-∆∆

CT method (RE in day2 = 0.0002, and in day 3 = 

0.00006). Day 1: stage1-stage 24, Day 2: stage 25- stage 28, Day 3: stage 29- stage 31, 

Day 4: stage 32- stage 34, Day 5: stage 35, Day 6: stage 36, Day 7: stage37, Day 8: 

38,and Day 9: stage 39- stage 45. 

 

Based on the temporal expression pattern reported above, it is evident that both 

RyR3a and RyR3b are expressed very early (18 somite stage in medaka), which could 

implicate functional significance during the early stages of medaka development.  

RyR3 gene knockdown in zebrafish embryos causes significant developmental 
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deformities from 10 hpf (late gastrula stage) onwards (Wu, 2011). Wu reports a 

significant difference in the spontaneous movement activity between the RyR3 

morphants and the control injected embryos, indicative of disrupted neuromuscular 

development in the RyR3 knockdown embryos. Wu shows that RyR3 is solely 

expressed in the fast muscle fibres (red muscle) throughout the myotome at 24 hpf 

(late segmentation stage). Wu also observed that RyR3 knockdown results in defects 

like disorganised muscle fibres alignment, suggesting that RyR3 may have a role in 

myofibril organisation, which could be required for subsequent spontaneous 

movements in the developing embryos. My observation for RyR3a and RyR3b spatial 

expression in medaka shows that RyR3a is expressed more in fast muscle (white 

muscle) while RyR3b is expressed predominantly in slow muscle fibers (red muscle) 

(Fig. 28). Recently, RyR3 has found to function as an uncoupled CICR channel in 

non-mammalian vertebrates (Murayama and Kurebayshi, 2010). According to this 

finding, it is expected that the calcium release from RyR1b in fast-twitch muscle 

myocytes would activate the parajunctional RyR3 via a CICR mechanism to trigger 

further release of Ca²
+  

from the sarcoplasm (Fig. 3). RyR3b gene is also the 

predominant paralouge expressed in brain and spinal cord (neurological) tissues. 

Neurological development in medaka begins in stage 17, with the head (rudimentary 

brain) being recognizable anteriorly in the distinct embryonic body. Brain and nerve 

cord formation start in stage 18. The neurological development proceeds in stage 20 in 

which three parts of the brain (the fore-, the mid- and the hind-brain) are discernible. 

In stage 26, blood circulation to brain is established. The notochord is completely 

vacuolized to the end of the tail in stage 33 (Iwamatsu, 2004). Relating the anatomical 
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nervous system development to RyR3a and RyR3b expression, both genes start to be 

expressed in stage 25 with higher expression of RyR3b. At this stage, the hind and 

mid brain are well established and blood circulation to the brain is started. Later on in 

development, RyR3b is expressed in higher levels in the brain and spinal column 

tissues. Importantly, the RyR3a and RyR3b noncoding regions mentioned in section 

4.2.1 show greater hits for regulatory elements responsible for cell differentiation 

(HNF) and neurodifferentiation (EVI1).  

 

Figure 33 (on following page): Comparison between medaka and zebrafish 

developmental stages. Medaka and zebrafish progress through the same 

developmental stages including: cleavage, blastula, gastrula, segmentation, 

organogenesis, and hatching stages. Zebrafish does not have a distinct "neurula 

period" because the times of neurulation and segmentation overlap so extensively. 

Medaka embryos hatch within 9 days while zebrafish hatch after 72 hours. hpf, hour 

post fertilization; MED, medaka; zf, zebrafish.  
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5.1 Project Summary 

The differential spatial expression pattern for the duplicate RyR genes is a 

classic example of gene subfunctionialization in which duplicate genes partition the 

function of the ancestral gene. Gene duplication is integral to evolution, providing 

novel opportunities for organisms to diversify in function. A fundamental pathway of 

functional diversification among paralogues is via alterations in their expression 

patterns. Bioinformatic analyses of the RyR orthologues from zebrafish, medaka, and 

fugu (Takifugu rubripes) reveal evidence for cis-regulatory divergence of the 

duplicated genes. Additionally, conserved noncoding elements (CNEs) are found in 

the introns of orthologous RyR genes. Compared to orthologues, duplicate genes are 

unique in that they exhibit dramatically accelerated rates of both cis-regulatory and 

protein evolution. Ryanodine receptors have been extensively studied using other 

model organisms such as zebrafish, mouse and human. Medaka encodes 5 RyR genes 

(RyR1a, RyR1b, RyR2, RyR3a and RyR3b). This thesis shows evidence of diversity 

between RyR1a and RyR1b as well as between RyR3a and RyR3b in their CNSs. This 

divergence reflected on the differential expression, both temporally and spatially. 

Temporally, expression of the RyR1a gene starts from stage1 to 25, increasing until 

hatching, while RyR1b is expressed from stage 25 onward. Both RyR3a and RyR3b 

are expressed very early (18 somite stage in medaka).  This early expression of RyR1a 

and RyR1b indicates their functional significance during the early stages of 

development. RyR1a and RyR3b were found to be highly expressed in red muscle 

(slow-twitch muscle) compared to RyR1b and RyR3a in white muscle (fast-twitch 
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muscle). Spinal column tissues show high expression levels of RyR1b and RyR3b 

genes over RyR1a and RyR3a.  

5.2 Future Directions 

5.2.1. Transgenesis 

Future work will be done to amplify all the CNSs found in the four genes from 

genomic DNA of medaka fish and to determine if they function as enhancer 

sequences. My research, which is based on a combination of bioinformatics and 

expression analyses suggests a role in gene regulation. It is imperative, however, to 

confirm whether they are in fact enhancer sequences.  This may be accomplished by 

ligation of these regions into the Tol2 transposase vector.  The Tol2 vector can be used 

to inject both zebrafish and medaka embryos.  The Tol2 element is a naturally 

occurring active transposable element found in vertebrate genomes. The Tol2 

transposon system has been shown to be active from fish to mammals and is 

considered to be a useful gene transfer vector in vertebrates (Urasaki et al., 2006). 

This method takes advantage of the increased efficiency of genome integration that is 

afforded by this intact DNA transposon, activity that is mediated by the corresponding 

transposase protein (Fisher et al., 2006).  This research would permit us to test 

whether the CNSs function as enhancers. 

5.2.2. Morpholino Knockdown (RyR3a and RyR3b) 

The divergent RyR3 paralogues, RyR3a and RyR3b, are expressed 

differentially both temporally and spatially in medaka.   Further studies should be 

done to clarify their functional roles.  This could be done by designing anti-sense 
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oligonucleotides (Morpholino oligonucleotides) to knockdown protein expression. 

Morpholino oligonucleotide (MO) knockdown is the most widely used anti-sense 

knockdown tool utilized in the zebrafish community (Bill et al., 2009). Morpholinos 

are designed to block translation of selected messenger RNAs (the sense strand) and 

are commonly called antisense oligos (Summerton and Weller, 1997). Two types of 

MO applications exist: splice blocking and translational blocking (Bill et. al., 2009). 

Splice blockers can be used to target specific transcripts by annealing and inhibiting 

specific splice sites (Bill et al., 2009). Translational blocking MOs bind to the mRNA 

sequence within the 5’ untranslated region (UTR) near the translational start site 

hindering ribosome assembly (Bill et al., 2009).   

The splice site blocking application may be the preferred technique for RyR 

genes for several practical reasons.  Morpholino knockdown experiments involving 

translation blocks require one to perform a rescue experiment with synthetic mRNA 

transcripts for the gene of interest. The mRNA is injected into the embryo after 

knocking down the gene to determine if gene function can be regained. The rescue 

experiment therefore confirms that the gene of interest was specifically targeted.  This 

might be impractical for the RyR gene since the message is extremely long, 16 kbp, 

and would be difficult to synthesize in vitro as well as ensure that it remains intact 

following injection into the embryo.  With the splice site block, the effect of the MO 

can be confirmed by simply using primers to amplify the region around the splice site 

and determine if the intron was spliced out or not.  

Knocking down the RyR3 paralogues (RyR3a and RyR3b) is important to 

determine the physiological process that control channels activity. The physiological 
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factors controlling the expression for RyR1 gene paralogues (RyR1a and RyR1b) and 

RyR3 have been studied using zebrafish and other vertebrate models. On the other 

hand, this information is lacking for medaka. Previous studies performed by Darbandi 

and Franck found that RyR1b and RyR3 are co-expressed at equivalent levels in 

certain zebrafish tissues (2009). In medaka fast and slow twitch muscle types there are 

two different pairings of the RyR1 and RyR3 isoforms. In white muscle RyR1b is co-

expressed at equivalent levels with RyR3a whereas in red muscle the RyR1a and 

RyR3b genes are co-expressed at equivalent levels. Previous studies (Murayama and 

Kurebayshi, 2010; Wu, 2011) in zebrafish have suggested that the RyR3 channel is 

gated by the release of calcium from the mechanically gated RyR1 channel. In the 

case of fugu and medaka this model could still apply but the tissue-specific RyR3 

paralogues, RyR3a and RyR3b, may have different sensitivities to calcium and other 

ligands (e.g. caffeine) and also may have different inactivation thresholds. In 

mammals, RyR1 is activated with low Ca²
+
 concentrations (nanomolar) while RyR3 

needs micromolar Ca²
+
 concentration in order to be activated. This increase in Ca²

+
 

concentration will cause deactivation of the RyR1 isoform channel located in the same 

triad. The RyR3 has low sensitivity to high Ca²
+
 concentration, which is important to 

maintain a sustained Ca²
+
 release after deactivation of RyR1; this would explain the 

RyR3 properties of RyR1 signal amplification through CICR (Sonnleitner et al., 

1998). Moreover the slope conductance in zebrafish for both isoforms was higher than 

that of the mammalian RyR1 (this would help in maintaining high Ca²
+
 release from 

intracellular stores) and compared to mammals, zebrafish RyRs are found to be more 

resistant to inhibition with high Ca²
+
 concentrations. (Koulen et al., 2001). Similar to 
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mammals, non-mammalian vertebrates RyR3 gating kinetics differ from that of RyR1, 

where RyR3 exhibits longer open-time constants (Chen et al., 1997) and is also found 

to be more resistant to inhibition by Mg²
+
 than RyR1 (Morrissette et al., 2000). 

 In summary, my research has revealed evidence for both conservation of 

noncoding sequences between RyR orthologues and divergence of noncoding 

sequences between RyR paralogues e.g. RyR1a vs RyR1b and RyR3a vs. RyR3b.  

Additionally, transcription factor binding motifs are conserved between RyR co-

orthologues from medaka and fugu.  The bioinformatic evidence for divergence 

between paralogues is reflected by the expression analyses where marked different 

expression is evident both spatially and temporally.  The temporal and spatial 

expression patterns show paralogue-specific expression which is consistent for both 

medaka and zebrafish species.   
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APPENDIX 1: pGEM® - T Easy Vector Map 
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APPENDIX 2: RyR1a nucleotide sequence alignment with RyR1a sequence obtained from 

ensemble database. 
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APPENDIX 3: RyR1b nucleotide sequence alignment with RyR1b sequence obtained from 

ensemble database. 
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APPENDIX 4: RyR3a nucleotide sequence alignment with RyR1b sequence obtained from 

ensemble database. 
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APPENDIX 5: RyR3b nucleotide sequence alignment with RyR1b sequence obtained from 

ensemble database. 
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APPENDIX 6: Medaka RyR1a nucleotide sequence conserved more than 70% with fugu 

RyR1a. 

Region1 

TAAATTCCTGTAGCTTTCCAGAAAGGGATGTGTGAGCAGCAGGTGCAGGAGCCTGA

AATAGAGAGCAAAGGGGGCGGAGGCTTGGAATGACATAGACAACAAG 

Region2 

TATTCTCTCTCTGACTGTCCACTGTCTTCTTCTGTTGGGTTGCTGCTGGGTTTCCAGG

GCGGGGACACAGAGGTTAGAATTTGTTTCTGCACGACCGCTGTGCTGATCGCATGG

CACCTC A-

CTTTGGGGGAACTTTTCATCAACCCCCCCAGCACACTGGCACATCTGATCCAAATAT

-ACCCTAATGTATAGACACACAAATATATATA 

Region 3 

CACAAAGCATCAATGGACAAATGGGGAGGCCAGGTGTATAAGCCAAACCCAGTCC

TGCCAGTGTGTGAGGGGGGGAGTCTGGAGGCGCTTGATGAAAGTACACAGCTGTA

GAGTTGGGCTCATGACACTGAGCTTTACATAAAGCCCAACGTGGCAGTGAGAGCTC

AGTGCCATCATGCTTTCACTGCATTTGCTCTTTTTT-

AATCATAGATGTACAAGTATTTTACTTTGTCTTACTTTTTTTTTTAT 

Region 4 

TGCCCTTTGAGGTGCGACAGTCAGAACTGGTAATGGGCGGCCAGGGGCAGGGGAC

CAGGAACACAGTGGAGCGGTAGCTCTCGACGCATTGAGTGGCCTCATCATTA---

GAGCCTCACATTCAAACCACATCTCTCC 

Region 5 

TTGCCATGGAATGTTGTTAATCT CCCC 

TCCTCATCTCTTAGTCCTCAACTGTTGTCACCACACTGATCCTTTCTCCTTTCCCCAC

GATCACTGCCACCTCTCCCCTTGTCCCTCCATTTATGGTCCTCAGACTTGAACCTAG

ATCGGGGTAAATCATGTTTCTCTCCA 
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APPENDIX 7: Medaka RyR1b nucleotide sequence conserved more than 70% with fugu 

RyR1b. 

Region1 

AGTGTTTTTCTAACTGTGCTCTCCCCTTTGATCCTGTGTCGGGGTTGGACGCCGGGC

GTCTAGGTCAGATTGGGTTTGTGCACGAGCGCTGTGCTGACCGCATGGCACACTG 

Region2 

CCACCAGGTGCGACAGACAGAGATGGTATGGGGGGACCA GGGGA-

GGGGACACAGGGGAGCCGGCGAGGACGCAGCTCGCCGCCCCACCGAGTGACCACA

ACGTGACATCACACCCGGCACACCCCCCCCACCCCA----CTCTTTCCA 
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APPENDIX 8: Medaka RyR3a nucleotide sequence conserved more than 70% with fugu 

RyR3a. 

Region1 

ATGAAAATATCCACTTAAATACAAAGTTATAAAAAGA GGTAGAATTTTACTG---

TCAC-AGAAGCCTGTTCATCATCTTGCTTTCTCTTTTATAAT 

TTGCTGTTCACAACTAAA---GAGGGTAAGTGACAAGAACACTC--ATTTTTTATGATC-

--AACGGTTTTCATATCACCCATAGAA 

Region2 

TCTCT--CAGTCCTTTAAGGAAAAGGTAA-----CAATGTGCATGAGCTGT 

TTGCTTGCCAGCTTATTGGCTTC-----

TGCTCTTTAGTCAGCAGGCAGAGGAGCCAATAGCTTGTGCT 

Region 3 

TGTCTAGCCTGCAGCTGTTCCTTGCATACAGCAGTAGTGAAAAATGGACTCTGGCA

ATTTCATGGGCCGTTGCTTCCTTACAGAGTCACAGGAAGTTGGGGTGGAGAGCTAA

AGCAGCGAGGAAAACAATTATAAGGCACAACCTTGGGGTGCCTGTGCTCAATATGG 

GCTCACACCATGATTCC 

Region 4 

CTCTTCAGGCACAAAAATAATAATTACTTCCTGAATATCTACCGACACTTTTGGCTG

GAGGTAATACATGAAAACACCGACTATGACAGTCTGCTCTCAATGCTGACGGTAAC

GT 

Region 5 

AAACTAACCAGCACCAACCCGCTCTGAAATGAAACCTCTTCCCTCCTTTTGCGCTTC

TCCTCTCTAACCCAGGCTAATCTCCTCTCCCCCACTTCCCAGGTA 

Region 6 

TAGTG-ACAGTCCTTCTCTGTT--------TTCT 

GATTGAATCTAAATGTGTTCTCCTTTGCTTATGTCTGCTTTT-

GTTTTGTTTGTTCCCTT CTGGTCATATTTTT-

ATGTCATCGGTCGCAGTCAACGTGAGTGAGCGGGGTAAATACACG GTTTAGA 
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APPENDIX 9: Medaka RyR3b nucleotide sequence conserved more than 70% with fugu 

RyR3b (part 1). 

Region1 

TTCTTTTTTTTCCCCCCAGGAGAGAACAAGGAGGGCGAGGAGGCCAAAGGAGAAGT

GTTGGCTGTGGCCGGGGAGAAGGAGGAGGTGAGCAAGAACGAGGAGAAGGCTGTG

GAGGCAGGAGAGGAGG 

 

 

Region2 

CTTCTCTTGACTGTGTG-CTGGTGCAAAACCCA--TCACCCTGTCCTTATTGACCCTCT-

CTCTGTGTTGTTTTCTTGCATAACACTT 

CCTCAACCCCCCCCAGATACAAAAATAATAATTACTTCCTGAATGGCTATCGGGAG

GTTTGGCTGGAAAGGGCATTCAAAGCCTCCAGCTTTGACCGCCTGTTCTCCCTGCTG

ACGGTAAAGTGACGCCGCAGGGCGTGGCCTTCATCTGTTAAAC-------

CCCGCCCACCA 

Region 3 

TGACCATTCAGAG GAGCCAGTGGATCCT-

CATTGACCAATCACAACCCCCCCCCTGCCTGAAACGCACCTCCT G-

AACACCTCCCCTTCCCCTGACATTCCTA-----------CCTGTTGCCTCCAAA--CT 

CACCAGAACACACCCTAATTCCACTGTACCTCCCTCCCAACTACCTCCC----

CCACCTC CCCTTCCC-

AGGTAAGTACTGGGCTCGGCCTGCCTGTGCCCCCCGTGCCCTGTGTTGGCA 

CCCCTCTGCCAGTCCTGTTTGCAGAGTGCTTCTTTAGCCCGC------TCGAGCCTTGGG 

AG------CAGGCAGGGACC------AAAGCGCCCAGGGGCCCCCGCTATAGGTGCACTA  

AACCCCCCAGACAGAGATCCGTCAGGGGTCAGAGGCTGCATGAGCGACTCAGCAG

ACGCC 

CGGCGAGCTCCGGCGCCCACAGCTGTAGAAAGGCAGGCTTTGTGGTTGCGGCAGCA

GCGG TAAGGAGGCGCCGCGCTGCAG 

Region 4   

TTCATCTCTCTTCGTTTGGTAACCGCCTGTCCTCTCTCTTTGCTTGTGTCCTT 

GGTGTGTTGTTCGTCTCCTTCCCATCTCTATA-

AAAACCCATCGATGGCAGCCCACACTGGACGGGGTAAATAACAAGTTTAGATCATC

CTGACATGGCTGTGCTTCCTCCCTGAATGCCCCCCTCCATTGTTGTAGTC 
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APPENDIX 9: Medaka RyR3b nucleotide sequence conserved more than 70% with fugu 

RyR3b (part 2). 

Region 5 

TCCTTGTGGGTCT GTCAGTGCCACCGACCCCCCA--------

GGTTTGACTGAAGGTCTGTGGGCTAGTCCAC 

AGCTTAAGCAAAGCTTTGTCTTGCTTTGGATTTGGGGCCTTTTTCACAAAGCTGGTT

CC------ACATA-GTTCTAACTTTCACATGGTT 

Region 6 

AACCTCGCCTATCCGCTGCTTTT CTTAGTGT------------

TGATCAGGCCCAGCGGCGGCCTGCATGTGAAAGTTATCAA 

GCTTCCTCCAGCTTATGGAAATGTCCTGGTGT 

Region 7 

CTTTGGATTCAGTTGTCATTCTGCAATCTAAAGGCTTTGGACTTCA--------

ACAGTGTTTTGAACATGAGACCTGGCCTGC 
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 APPENDIX 10: Medaka RyR1a nucleotide sequence conserved more than 70% with zebrafish 

RyR1a. 

GTCCTGCCAGTGTGTGAGGGGGGGAGTCTG----GAGGCGCTTGATGAAAGT 

ACACAGCTGTAGAGTTGGGCTCATGACACT 

 

 

APPENDIX 11: Medaka RyR1b nucleotide sequence conserved more than 70% with zebrafish 

RyR1b. 

GGATAACCTTTTCATTTTGGTGTGTAACCCTGCTAGATGCTCCCTGATCCAGGACAA

CGAAACGGCGTAA-GATTCT GTGTTTTGCCTCGTTTTAGACCCTTCA----

TGCTTTCATGAAA 

 

APPENDIX 12: Zebrafish RyR3 nucleotide sequence conserved more than 70% with fugu 

RyR3a. 

ACAAAAATAATAATTACTTCCTGAATGGCTATCGGTACGTTTGGCTGGAAAAGGTG

T ACCATACCTCTAGCTTTGACCGTCTGTTCTCCATGCTAACGGTAA 

 

APPENDIX 13: Zebrafish RyR3 nucleotide sequence conserved more than 70% with fugu 

RyR3b. 

CTTCCTCCTCCTAAAGCCTGTCC-CTTTCTGTTGT----CTCCATAACACACT-----------

TCAGATACAAAAATAATAATTACTTCCTGAATGGCTATCGGTACGTTTGGCTGGAA

AAGGTGTACCATACCTCTAGCTTTGACCGTCTGTTCTCCATGCTAACGGTAATGTGA 
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APPENDIX 14: Composition of used reagents  

1% Agarose gel 

0.5g Agarose, 50ml TAE buffer, and 2.5 UL Ethidum bromides 

2% Agarose gel 

1g Agarose , 50ml TAE buffer , and 2.5 UL Ethidum bromide 

Purification gel 

0.5 g low melting point agarose powder, 50 ml TAE buffer, and 2.5 UL Ethidum bromides 

1Kb ladder 

20 UL of 1kb ladder stock, 10 UL loading dye, and 80 UL ddH2O 

dNTP  

10 UL of 100 mM dTTP,  10 UL of 100mM dCTP , 10 UL of 100mM dATP, 10 UL of 100 mM dGTP, and  

60UL ddH2O 

Fresh Oligo 

10 UL Oligo dNTP stock in 90 UL ddH2o 

Ethanol 75% preparation 

79 ml 95% Alcohol in 21 ml ddH2o   

1X TAE buffer  

50 ml 10X TAE buffer stock in 450 ml ddH2O 

50X TAE buffer 

121 g Tris, 28.6 ml Glacial acetic acid, and 18.6 g EDTA adjust ddH2O to 500 ml. 

Low mass Ladder 

4 UL low mass ladder stock, and 1 UL lodind dye 

MS-222 

300 mg MS-222 in 500 ml ddH2O (adjust PH to 7.0 by adding NaOH) 

 


