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Abstract

Legendre Moment has been applied in image reconstruction since early

years. In this research, a numerical integration method is proposed to im-

prove the computational accuracy of Legendre moments. To clarify the im-

proved computation scheme, image reconstructions from higher orders of

Legendre moments, up to 240, are conducted. With the more accurate gen-

erated moments, the distributions of image information in a finite set of

Legendre moments is investigated. We have concluded that each individual

finite set of Legendre moments will represent the unique image features in-

dependently, while the even orders of Legendre moments describe most of

image characteristics.
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Chapter 1

Introduction

In our daily life, we are surrounded with a huge amount of different kinds

of information. Information relies on different media to be transferred, pro-

cessed, and analyzed. The digital image is one type of media that plays a

very important role in information transmission as a communication tool.

A two-dimensional image represents a finite set of digital values called pix-

els. A common digital image contains information and features through the

values of pixels and can be used in many different industrial areas such as

medicine, social media networks and security environments. The interpreta-

tion of image information is significantly important. Therefore, the need for

image processing and analysis methods has increased rapidly.

Since Hu introduced the concept of image moments in 1962[8], many

new achievements in theory of moments have been presented. The image

moments are particularly calculated values of the image intensities and rep-
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resent different types of information and global geometrical features of the

image. Hu proposed the 2-D Geometric moments of an image as a structured

element called ”moment invariants”, and constructed these invariants with

low order moments, while the information in higher orders of moments were

not utilized.

In 1980, Teague[16] introduced the orthogonal moments and proposed

Zernike moments and Legendre moments, which utilize the Zernike polyno-

mials and Legendre polynomials as the kernel functions. Teaque provided

a foundation of orthogonal moment methods as the solution to the short-

coming of Geometric moments. The inverse moment transforms of these two

orthogonal moments determine how well an image can be reconstructed from

a set of moments.

Different types of conventional continuous orthogonal moments defined

in a rectangular region have been investigated as the unique image shape

features for applications in fields of pattern recognition and image analy-

sis. As one of the important continuous orthogonal moments, the Legendre

moment has been well investigated since the earlier years of moment-based

descriptors studies[16][18][9]. However, some computational issues have bot-

tlenecked the further development of efficient applications driven by Legendre

moment-based techniques. The objective of this research is to study the im-

age representing characteristics of Legendre moments and demonstrate their

potential usefulness in the field of image analysis.

In this research, we have analyzed the computational errors and have
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proposed an efficient method to improve the accuracy of Legendre moments

computing, especially for the higher order moments. With the substantially

improved accurate Legendre moments, the image reconstructions from Leg-

endre moments, up to the order of 240, are performed with highly satis-

factory results. We have also conducted the image reconstructions from a

finite set and individual Legendre moments. This leads to the clarification

that the lower order of Legendre moments mainly contain fundamental im-

age information, while the higher order of Legendre moments preserve more

detailed image information. We refer to books written by Mukundan and

Ramakrishnan[11], Pawlak[13], and Flusser et al. [5] as background studies

of moment methods for this research.

The organization of this thesis is as follows: Chapter 2 will overview

the general concept of moments; Chapter 3 will review the general proper-

ties of Legendre moments and the computational errors in Legendre moment

computing. In Chapter 4 will verify more accurate Legendre moment com-

putational results and some reconstructed images from the higher orders of

Legendre moments are represented. The investigation of representing charac-

teristics of a partial set of Legendre moments in image analysis is performed

in Chapter 5. Finally, the conclusions and suggested future studies are re-

ported in Chapter 6.
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Chapter 2

Moments Methods

2.1 Introduction

The concept of moments has been around for many years and widely ap-

plied in many scientific fields such as mechanics and statistics.

The methods of image moments were introduced by Hu[8] in 1962. His

Uniqueness Theorem states that the moment sequence of an image function

f(x, y), {Mpq}, is defined by

Mpq =

∫ +∞

−∞

∫ +∞

−∞
xp yq f(x, y) dxdy, p, q = 0, 1, 2, 3..., (2.1)

is uniquely determined by f(x, y); and conversely, f(x, y) is uniquely de-

termined by {Mpq}. It is assumed the image function f(x, y) is piecewise

continuous and can have nonzero values only in the finite part of the (x, y)
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plane.

Hu[8] derived a set of seven invariant moments which contains the invari-

ant properties under image translation, rotation, scaling, and skew. Since

then, many new achievements in the theory of moments have been presented.

Each moment method has its own specific functions to be advantageous on

different applications. In 1980, Teague[16] introduced the orthogonal mo-

ments and proposed two important orthogonal moments, Zernike moments

and Legendre moments, in image analysis as a solution to the inherent draw-

back of Geometric moments.

The general definition of the moment functions Φpq with (p+ q) order of

the image function f(x, y) is given by [11]:

Φpq =

∫ +∞

−∞

∫ +∞

−∞
Ψpq(x, y) f(x, y) dxdy, p, q = 0, 1, 2, 3..., (2.2)

where p, q are non-negative integers and (p+ q) is the order of moment Φpq.

Ψpq(x, y) is known as the moment weighting kernel, which consists the prod-

uct of the polynomial basis function. For example, Zernike moments corre-

sponds to Zernike polynomial function and Legendre moments corresponds

to Legendre polynomial function.

This chapter provides an overview of some important moments and their

properties.
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2.2 Geometric Moments

The (p + q)th order of Geometric moments of an image function f(x, y) are

defined as[11]:

Mpq =

∫ +∞

−∞

∫ +∞

−∞
xp yq f(x, y) dxdy, p, q = 0, 1, 2, 3..., (2.3)

where p, q = 0,1,2,3,...,∞, and xpyq is the weighting kernel of this moment.

Geometric moment is easily computed and implemented. As mentioned in

the previous section, the Uniqueness Theorem states the fact that the values

of moments can uniquely describe the information contained in image.

In general, the lower orders of Geometric moments represent the main

fundamental characteristics of image intensity distribution. The zeroth-order

moment, M00, of the image function f(x, y)

M00 =

∫ a2

a1

∫ b2

b1

f(x, y) dxdy, (2.4)

represents the total mass of the image f(x, y). For a digital image, the

zeroth-order moment represents the total area of image region.

The first-order moments, M10 and M01, defined as

M10 =

∫ a2

a1

∫ b2

b1

x f(x, y) dxdy, (2.5)
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and

M01 =

∫ a2

a1

∫ b2

b1

y f(x, y) dxdy, (2.6)

describe the centre of mass of the image function f(x, y). In term of moment

values, the central coordinates (x0, y0) are

x0 =
M10

M00

(2.7)

y0 =
M01

M00

(2.8)

The second-order moment is known as moments of inertia[5] in mechan-

ics. It can be used to determine the orientation of image function f(x, y).

Orientation usually describes the position and the direction of the image in

the field of the view. If θ represents an orientation angle of the principal

axis, it is defined by[7]:

θ =
1

2
tan−1 (

2µ11

µ20 − µ02

) (2.9)

where θ is in the range of [−π
4
, π
4
] and the µ11,µ20 and µ02 are the second-order

central moments of an image in its actual image reference frame.

The image projection onto x and y axes is a special characteristic fea-

ture of moments that represents from a set of Mp0 and M0q moment values.

Figure 2.1 shows the illustration of moments set projections. This concept

will be further addressed in Chapter 5 by applying a partial set of Legendre

moments with a maximum order of 240 on a digital image sized 256× 256.

7



Figure 2.1: The moment projections
.

The lower orders of moments show the essential characteristics of an image

function and the higher orders of moments represent more detailed image

information.
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2.3 Legendre Moments

The Legendre polynomial is the basis set for Legendre moment. The m-th

order Legendre polynomial [14] is defined by the Rodrigues formula

Pm(x) =
1

2mm!

dm

dxm
(x2 − 1)m, (2.10)

and its recurrent formula is

Pm+1(x) =
2m+ 1

m+ 1
xPm(x)− m

m+ 1
Pm−1(x). (2.11)

The polynomial expressions for {Pm(x)} up to sixth order are given below

and Figure 2.2 represents their plots:

P0(x) = 1 (2.12)

P1(x) = x (2.13)

P2(x) =
3x2 − 1

2
(2.14)

P3(x) =
5x2 − 3x

2
(2.15)

P4(x) =
35x4 − 30x2 + 3

8
(2.16)

P5(x) =
63x5 − 70x3 + 15x

8
(2.17)

P6(x) =
231x6 − 315x4 + 105x2 − 5

16
(2.18)

9



Figure 2.2: The plots for function {Pm(x)}, m=1 to 6 on interval [-1,1].

The Legendre polynomials {Pm(x)}[13] are a complete orthogonal basis

set defined on the interval [-1, 1]

∫ +1

−1
Pm(x)Pn(x)dx =

2

2n+ 1
δmn, (2.19)

where δmn is the Kronecker symbol.

The (m,n)-th order of Legendre moment of an image function f(x, y) is

defined on the square [−1, 1]× [−1, 1] by

λmn =
(2m+ 1)(2n+ 1)

4

∫ +1

−1

∫ +1

−1
f(x, y)Pm(x)Pn(y) dxdy, (2.20)

where m,n = 0, 1, 2, ....

Figure 2.3 shows the distributions of some lower orders of Pm(x)Pn(y) in

10



(a) (b )

(c) (d)

Figure 2.3: The plots of lower m,n values of two-dimensional Pm(x)Pn(y)
Legendre polynomials. (a)P2(x)P2(y), (b)P4(x)P4(y), (c)P8(x)P8(y) and
(d)P10(x)P10(y)

the region of [−1, 1]× [−1, 1], while Figure 2.4 represents the plots of higher

orders of two-dimensional Pm(x)Pn(y) Legendre polynomials.

In the case of digital image processing, the double integration in (2.20)

needs to be replaced by double summations. Assuming a digital image is

11



(a) (b )

(c) (d)

Figure 2.4: The plots of higher m,n values of two-dimensional
Pm(x)Pn(y) Legendre polynomials. (a)P100(x)P100(y), (b)P150(x)P150(y), (c)
P200(x)P200(y) and (d) P240(x)P240(y)

sized M ×N , (2.20) becomes

λmn =
(2m+ 1)(2n+ 1)

MN

M∑
i=1

N∑
j=1

f(xi, yj)Pm(xi)Pn(yj) ∆x∆y, (2.21)

where f(xi, yj) is the discrete version of f(x, y). ∆x and ∆y are sampling

intervals in the x and y directions.

12



Chapter 3

Legendre Moments Computing

3.1 Introduction

In digital image processing, we can only observe an image function f(x, y)

at discrete pixels, so the discrete version of f(x, y) becomes f(xi, yj). There-

fore, the double integration in (2.20) need to be approximated by double

summations. In Legendre moment computing, it has been a common prac-

tice to apply (2.21) directly. However, when the order of Legendre moments

increases, ∆x∆y in (2.21) can no longer produce an accurate result.

13



3.2 Computation of Legendre Moments

3.2.1 Approximation Error

The (m,n)-th order of Legendre moment of an image function f(x, y) is

defined in (2.20)

λmn =
(2m+ 1)(2n+ 1)

4

∫ +1

−1

∫ +1

−1
f(x, y)Pm(x)Pn(y) dxdy, (3.1)

where m,n = 0, 1, 2, ..., and the m-th order Legendre polynomial defined in

(2.10) is[14]

Pm(x) =
1

2mm!

dm

dxm
(x2 − 1)m. (3.2)

To improve the accuracy of Legendre moment computation, we approxi-

mate λmn by [1]

λ̂mn =
M∑
i=1

N∑
j=1

f(xi, yj)hmn(xi, yj), (3.3)

where

hmn(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

Pm(x)Pn(y) dxdy. (3.4)

Considering that Pm(x) and Pn(y) are independent, (3.4) can be rewritten

as

hmn(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

Pm(x) dx

∫ yj+
∆y
2

yj−∆y
2

Pn(y) dy. (3.5)

Figure 3.1 shows the distributions of Legendre polynomials in the corner

14



pixels of a 256×256 image. It is obvious that the integration of P100(x)P100(y)

within each of the corner pixels is different from ∆x∆y. If only one point of

a pixel value is used for the moment calculation, it will generate significant

computational errors. By using some well-known techniques of numerical

integration, the integrations in (3.4) can be approximated with various ac-

curacies. For example, the alternative extended Simpson’s rule was applied

to compute Legendre moments[4][9]. In this research, however, a straightfor-

ward k × k numerical scheme is utilized to calculate the double integrations

in (3.4) [19]. By dividing a pixel into k×k sub regions with the same weights,

we can reduce the computation errors of Legendre polynomials substantially.

How much errors were reduced by increasing k × k value can be evaluated

by PSNR values. In Chapter 4 will show PSNR results of the different k× k

numerical schemes for each testing image’s reconstruction performances.

3.2.2 Efficiency

Although computer technology has improved extremely in recent years,

the process of computing higher order moments is still very time consuming.

In this research, a desktop computer with CPU of 3.40GHz and 8.0 GB RAM

was used.

One of the important tasks in this research is to reduce the computing

hours. To avoid duplicative Legendre polynomial calculating, we have stored

the values of all Legendre polynomial in an array. Retrieving the Legendre

polynomial values directly from the array to compute the Legendre moments

15



(a) (b )

(c) (d)

Figure 3.1: The distribution of P100(x)P100(y) in four different corner pixels
of a 256 × 256 image. (a)Left top corner (b)Right top corner (c) Left low
corner (d)Right low corner

has significantly increased the efficiency of the computational procedure.

For an image sized at 256× 256, Table 3.1 shows the computing time of

Legendre moments of order 240 with different k × k numerical schemes.

Table 3.1: Computing time of order 240 Legendre moments for an image
sized at 256× 256 with different k × k numerical schemes.

Order(Mmax) Hours

1× 1 5.150
3× 3 16.597
5× 5 38.829
7× 7 71.597
9× 9 115.540

11× 11 170.910
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3.3 Legendre Moments Calculation

Algorithm 1
Legendre Polynomial
MaxOrder = The Maximum order of Legendre Moments

to be calculated
SizeH = Image Height in Pixels
SizeW = Image Width in Pixels
k = Numerical number of points on each side of pixel
Const = ((2 ∗m) + 1) ∗ ((2 ∗ n) + 1))/(SizeH ∗ SizeW )
delta = 2/256
Compute Legendre Polynomial Values for each ∆x and ∆y
T (x) = Legendre polynomial array for ∆x
T (y) = Legendre polynomial array for ∆y
For m = 0 to MaxOrder
For i = 1 to Size
For h = 1 to k
xi = (−1) + ((i− 1) ∗ delta) + (delta/2 ∗ k) + ((h− 1) ∗ (delta/k))
yi = (1)− ((i− 1) ∗ delta)− (delta/2 ∗ k)− ((h− 1) ∗ (delta/k))
T (x) = LegendreP (m,xi)
T (y) = LegendreP (m, yi)
End

End
End

Compute Legendre Moments of the image
TM = A table to store moments for a image
For m = 0 to MaxOrder
For n = 0 to MaxOrder −m
hmn = (

∑∑
Pm,x Pn,y) /(k ∗ k)

λmn =
∑∑

hmn f(x, y)
TM = λmn * Const
End

End
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λ0,0 0 0 · · · 0
λ1,0 λ0,1 0 · · · 0
λ2,0 λ1,1 λ0,2 · · · 0

...
...

...
. . .

...
λm,0 λm−1,1 λm−2,2 · · · λ0,m


Figure 3.2: The Legendre Moment Matrix

Algorithm 1 shows the algorithm to compute Legendre methods in this

research and Legendre moments are produced in a matrix shown in Figure

3.2. For effective calculation time, the moment values were stored in a flat

text file for image reconstruction computing. In this research, two different

types of images were used, square and rectangle.
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Chapter 4

Image Reconstruction from

Legendre Moments

4.1 Introduction

To verify our proposed solutions for more accurate Legendre moment com-

putation, we examine the image reconstruction determined by

f̂Mmax(x, y) =
Mmax∑
m=0

m∑
n=0

λ̂m−n,n Pm−n(x)Pn(y), (4.1)

with the Legendre moments λm−n,n replaced by their approximations given by

(3.3). It is important to note that when the given highest Legendre moment

order Mmax is increased, the previously determined λ̂m−n,n does not change.

The verification is presented in the following sections.
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4.2 Image Reconstruction Theory

As stated in Chapter 2, the Legendre polynomials {Pm(x)}[13] are a com-

plete orthogonal basis set defined on the interval [-1, 1]

∫ +1

−1
Pm(x)Pn(x)dx =

2

2n+ 1
δmn, (4.2)

where δmn is the Kronecker symbol.

According to the orthogonality property of the Legendre moments, we can

reconstruct an original image from an infinite series of its Legendre moments

by

f(x, y) =
∞∑
m=0

m∑
n=0

λm−n,n Pm−n(x)Pn(y), (4.3)

where the (m,n)− th order of Legendre moment of an image function f(x, y)

is defined in (2.20)

λmn =
(2m+ 1)(2n+ 1)

4

∫ +1

−1

∫ +1

−1
f(x, y)Pm(x)Pn(y) dxdy.

In practice, however, we have to truncate the infinite series expressed in

(4.3). If only Legendre moments of order ≤ Mmax are given, the original

image function f(x, y) can be approximated by the truncated series

f(x, y) ' fMmax(x, y) =
Mmax∑
m=0

m∑
n=0

λm−n,n Pm−n(x)Pn(y). (4.4)
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4.3 Error Measurement Methods

Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) meth-

ods are often used as measurements to compare two images in image pro-

cessing.

4.3.1 Mean Square Error (MSE)

In statistics, Mean Square Error (MSE) is used to determine the differ-

ence between the estimator and what is estimated. Being applied in image

processing, MSE is defined as[6]

MSE =
1

MN

M∑
i=1

N∑
j=1

[f(xi, yj)− f̂(xi, yj)]
2, (4.5)

where M ×N is the size of image, and f(x, y) and f̂(xi, yj) are the original

and restored estimated images, respectively. The lower MSE value indicates

the higher quality of restored image.

4.3.2 Peak Signal to Noise Ratio (PSNR)

Peak Signal to Noise Ratio(PSNR) is the ratio between the maximum

power of the signal and the affecting noise, and is defined as

PSNR = 10 log10(
G2
Max

MSE
) (4.6)
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where GMax is the maximum gray level of the image, which is 255 in our

case, and MSE is the Mean Square Error defined in (4.5).

To compare the reconstructed images with the original testing image, we

have adopted the Peak Signal to Noise Ratio (PSNR) as the measurement,

which is image independent and can be used to evaluate the reconstruction

performance generally. The higher PSNR value indicates the higher quality

of a restored image.

4.4 Image Reconstruction Computing

According to (4.4), an image can be approximated reconstructed by

fMmax(x, y) =
Mmax∑
m=0

m∑
n=0

λm−n,n Pm−n(x)Pn(y), (4.7)

where λm−n,n is retrieved from Legendre Moment Matrix. Algorithm 2 shows

how to perform the image reconstruction from Legendre moments.
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Algorithm 2
Reconstruction using Legendre Moments
MaxOrder = The Maximum order of Legendre Moments

to be calculated
sizeW = The width of Image in Pixels
sizeH = The height of Image in Pixels
k = Numerical number of points on each side of pixel
ReImg = Table to store restored image data
size = Image size

Compute Legendre Polynomial Values for each ∆x and ∆y
T (x) = Legendre polynomial array for ∆x
T (y) = Legendre polynomial array for ∆y
deltax = 2/size

For m = 0 to MaxOrder
For j = 1 to sizeW
xi = (−1) + (deltax/2) + ((i− 1) ∗ deltax)
T (x) = LegendreP (m,xi)

End
End
For m = 0 to MaxOrder
For i = 1 to sizeH
yi = (−1) + (deltax/2) + ((i− 1) ∗ deltax)
T (y) = LegendreP (m, yi)

End
End

Compute Reconstruction for an Image
TM = A table to store restored image data
For i = 1 to sizeW
For j = 1 to sizeH
TM =

∑Mmax

m=0

∑m
n=0 λm−n,n Pm−n(x)Pn(y)

End
End
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4.5 Image Reconstruction Results

4.5.1 Square Images

Figure 4.1 shows four testing images utilized in this research. All images

are sized 256 × 256 with 256 different gray levels. The four testing images

represent different levels of information detail within each image.

(a) (b )

(c) (d)

Figure 4.1: Four testing images of 256× 256 with 256 different gray levels.

We have conducted the image reconstructions from different maximum

Legendre moment orders with various k × k numerical schemes. Figure 4.3

shows the plotting of PSNR values from the Legendre moment reconstruction

performances on testing image Figure 4.1 (a) with different maximum orders

and k×k numerical schemes, while Table 4.1 displays some values presented

in Figure 4.3.
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Figure 4.2: Some reconstructed images from different Ledendre moments
orders with various k × k numerical schemes on Figure 4.1 (a).
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Figure 4.3: PSNRs of the reconstructed Figure 4.1 (a) with different Legendre
moment orders and k × k numerical schemes.

Table 4.1: PSNRs of different k × k numerical schemes for reconstruction
performances on Figure 4.1 (a)

Order(Mmax) 10 40 80 120 150 180 210 240

1× 1 16.987 21.460 20.681 13.676 13.184 9.994 8.455 6.331
3× 3 16.987 21.591 24.098 25.798 26.575 25.748 22.438 21.042
5× 5 16.987 21.593 24.144 25.902 26.961 27.743 27.845 28.055
7× 7 16.987 21.593 24.154 25.922 27.006 27.934 28.609 28.833
9× 9 16.987 21.593 24.156 25.942 27.008 27.927 28.839 29.283

11× 11 16.987 21.593 24.157 25.952 27.013 27.931 28.822 29.637

Table 4.2 shows some selected PSNR values from image reconstruction

performances on testing image Figure 4.1 (b) with the 11 × 11 numerical

scheme and different maximum Legendre moment orders.

26



Figure 4.4: Some reconstructed images from different Ledendre moments
orders with the 11× 11 numerical scheme on Figure 4.1 (b).
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Figure 4.5: PSNRs of the reconstructed Figure 4.1 (b) with different Legendre
moment orders and k × k numerical schemes.

Table 4.2: PSNR values of the 11× 11 numerical scheme for reconstruction
performances on Figure 4.1 (b)

Order(Mmax) 10 40 80 120 150 180 210 240
1× 1 19.641 25.384 28.760 31.103 32.577 34.096 35.794 37.871
3× 3 19.641 25.384 28.759 31.097 32.599 34.048 35.676 37.588
5× 5 19.641 25.384 28.759 31.096 32.556 34.041 35.658 37.548
7× 7 19.641 25.384 28.759 31.096 32.556 34.039 35.654 37.537
9× 9 19.641 25.384 28.759 31.095 32.555 34.038 35.652 37.532

11× 11 19.641 25.384 28.759 31.095 32.555 34.037 35.651 37.530

Figure 4.2 demonstrates some images reconstructed from Figure 4.1 (a)

with various k × k numerical schemes and different maximum Legendre mo-

ment orders. It can be observed that the images reconstructed from higher

28



Figure 4.6: Some reconstructed images from different Ledendre moments
orders with various k × k numerical schemes on Figure 4.1 (c).
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Figure 4.7: PSNRs of the reconstructed Figure 4.1 (c) with different Legendre
moment orders and k × k numerical schemes.

Table 4.3: PSNRs of different k × k numerical schemes for reconstruction
performances on Figure 4.1 (c)

Order(Mmax) 10 40 80 120 150 180 210 240

1× 1 16.360 21.069 22.503 17.542 17.394 13.875 12.914 10.818
3× 3 16.355 21.105 24.951 27.463 28.639 28.565 26.346 25.113
5× 5 16.355 21.100 24.982 27.498 28.920 29.996 30.614 30.994
7× 7 16.355 21.099 24.984 27.523 28.838 30.341 31.099 31.958
9× 9 16.355 21.098 24.984 27.544 28.843 30.346 31.484 32.344

11× 11 16.355 21.097 24.983 27.555 28.867 30.345 31.540 32.653

orders of Legendre moments with 7×7 and 11×11 numerical schemes appear

to be very close to the original Figure 4.1 (a).

Figure 4.4 presents some reconstructed images from Figure 4.1 (b) with
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Figure 4.8: Some reconstructed images from different Ledendre moments
orders with various k × k numerical schemes on Figure 4.1 (d).
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Figure 4.9: PSNRs of the reconstructed Figure 4.1 (d) with different Legendre
moment orders and k × k numerical schemes.

Table 4.4: PSNRs of different k × k numerical schemes for reconstruction
performances on Figure 4.1 (d)

Order(Mmax) 10 40 80 120 150 180 210 240

1× 1 18.184 23.418 27.188 28.025 28.717 27.039 25.945 24.106
3× 3 18.184 23.421 27.370 30.293 32.114 33.560 34.333 34.981
5× 5 18.184 23.421 27.371 30.298 32.135 33.716 35.181 36.668
7× 7 18.184 23.421 27.371 30.298 32.137 33.726 35.241 36.751
9× 9 18.184 23.421 27.371 30.299 32.137 33.725 35.257 36.794

11× 11 18.184 23.421 27.371 30.300 32.137 33.725 35.255 36.824

the 11 × 11 numerical scheme and different maximum Legendre moment

orders.

32



4.5.2 Rectangle Images

To prove the same algorithm for square image should apply to non-square

image like rectangle image, we selected two types of rectangle images with

different image size of M × N as showing in Figure 4.10. Figure 4.10 (a) is

sized 88× 256 and Figure 4.10 (b) is sized 256× 174. Both images have 256

different gray levels. The PSNR result for Figure 4.10 (a) and (b) are shown

in Figure 4.12, 4.14 and Table 4.5, 4.6.

(a) (b )

Figure 4.10: Two testing images with 256 different gray levels: (a) is sized
182× 256 and (b) is sized 256× 174.
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Figure 4.11: Some reconstructed images from different Legendre moments
orders with various k × k numerical schemes on Figure 4.10 (a).
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Figure 4.12: PSNRs of the reconstructed Figure 4.10 (a) with different Leg-
endre moment orders and k × k numerical schemes.

Table 4.5: PSNRs of different k × k numerical schemes for reconstruction
performances on Figure 4.10 (a)

Order(Mmax) 10 40 80 120 150 180 210 240

1× 1 16.360 21.069 22.503 17.542 17.394 13.875 12.914 10.818
3× 3 16.355 21.105 24.951 27.463 28.639 28.565 26.346 25.113
5× 5 16.355 21.100 24.982 27.498 28.920 29.996 30.614 30.994
7× 7 16.355 21.099 24.984 27.523 28.838 30.341 31.099 31.958
9× 9 16.355 21.098 24.984 27.544 28.843 30.346 31.484 32.344

11× 11 16.355 21.097 24.983 27.555 28.867 30.345 31.540 32.653
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Figure 4.13: Some reconstructed images from different Ledendre moments
orders with various k × k numerical schemes on Figure 4.10 (b).
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Figure 4.14: PSNRs of the reconstructed Figure 4.10 (b) with different Leg-
endre moment orders and k × k numerical schemes.

Table 4.6: PSNRs of different k × k numerical schemes for reconstruction
performances on Figure 4.10 (b)

Order(Mmax) 10 40 80 120 150 180 210 240

1× 1 11.240 17.838 20.161 15.706 15.423 12.175 11.029 8.956
3× 3 11.237 17.840 21.518 24.615 26.083 26.246 24.317 23.423
5× 5 11.237 17.836 21.569 24.531 26.228 27.973 28.902 29.661
7× 7 11.237 17.835 21.585 24.565 26.166 27.991 29.461 30.775
9× 9 11.237 17.834 21.591 24.597 26.169 27.914 29.547 31.204

11× 11 11.237 17.834 21.594 24.615 26.186 27.902 29.474 31.491

37



4.6 Summary

To verify the proposed solutions for more accurate Legendre moment com-

puting in Chapter 3, we have examined the image reconstructions in this

section.

Both square and rectangle images, sized at 256 × 256, 88 × 256, and

256×174 with 256 gray levels are employed as testing images in this research.

We have reconstructed all testing images with Legendre moments up to 240

and with various k × k numerical schemes. The Peak Signal to Noise Ratio

(PSNR) was used as the measurements to evaluate the image reconstruction

performance. Overall, the image reconstructions from the proposed more

accurate Legendre moment computing are very encouraging.

In general, the PSNR values of reconstructed Figure 4.1 (b) and (d) are

higher than those of Figure 4.1 (a) and (c). This reflects the fact of Fig-

ure 4.1 (b) and (d) contain less detail information and can be reconstructed

accurately with lower orders of Legendre moments.

It needs to be noted that to achieve high accuracy of moment computing,

the efficiency issue is one of the biggest challenges. In our experiment, it

takes about 170 hours computing time to reconstruct a 256×256 image from

the Legendre moments of order 240 with the 11× 11 numerical scheme.
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Chapter 5

Image Reconstruction from a

Partial Set of Legendre

Moments

5.1 Introduction

According to the general moment theory expressed in Chapter 2, for a dig-

ital image, the lower order moments represent its fundamental features while

the higher order moments characterize its details. Based on the previously

presented moment computation techniques and precisely reconstructed im-

ages, we are able to investigate the individual contributions by a partial set
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of Legendre moments.

To examine the image reconstructions determined by a limited band of

Legendre moments, we adapt the formula

f̂band(x, y) =
Mmax∑

m=Mmin

m∑
n=0

λ̂m−n,n Pm−n(x)Pn(y) (5.1)

to perform the image reconstructions. In (5.1), Mmax and Mmin denote the

highest and lowest orders of Legendre moments involved in image recon-

structions. The same two testing images shown in Figure 4.1 (a) and (b) are

utilized in this section.

5.2 Image Reconstruction with Different Band

of Legendre Moments

The sub-figures (a) to (d) of Figure 5.1 show the images of the recon-

structed Figure 4.1 (a) from partial sets of Legendre moments of orders 0 to

40, 41 to 80, 81 to 120, and 121 to 200. The numerical scheme k = 11 is

adopted to compute Legendre moments in this experiment. Figure 5.1 (e)

presents the reconstructed image of orders 0 to 200, and Figure 5.1 (f) dis-

plays the result of direct addition operation of images Figure 5.1 (a) to (d).

All sub-figures illustrated in Figure 5.1 are the direct reconstructed results

without any image enhancement for display. As expected, the images pre-

sented in Figure 5.1 (e) and Figure 5.1 (f) are identical.
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Figure 5.1: Sub-figures (a) to (f) are the reconstructed images of Fig-
ure 4.1 (a), with applying 11 x 11 numerical scheme, from Legendre moments
of orders 0 to 40, 41 to 80, 81 to 120, 121 to 200, 0 to 200, and the direct
addition operation of images (a) to (d).

The results shown in Figure 5.1 have clarified the general moment theory

that the lower order Legendre moments represent fundamental features of an

image, while the higher order Legendre moments describe its details.

To address the issue of image reconstruction from a partial set of Legendre

moments further, we have conducted more investigations with the testing

image Figure 4.1 (b).

Figure 5.2 shows some reconstructed images from using lower order of
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Figure 5.2: Sub-figures (a) to (f) are the reconstructed images of Fig-
ure 4.1 (b), with applying 11×11 numerical scheme, from Legendre moments
of orders 51, 52, 53, 54, 55, and 51 to 55. The gray levels of all image pixels
are multiplied by 10.

individual Legendre moments, 51, 52, 53, 54, 55, and the set of 51 to 55.

The histograms of those reconstructed images show that all of the image

pixels have gray level values of 25 or less. For a better display of image

details, we have re-scaled these images using a multiplier of 10.

Figure 5.3 shows some images reconstructed by using higher order of

individual Legendre moments, 196, 197, 198, 199, 200, and the set of 196

to 200. Since the highest gray level of all images is 9, a multiplier of 25 is

applied for display.

From the experimental results shown in Figure 5.2 and Figure 5.3, we
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Figure 5.3: Sub-figures (a) to (f) are the reconstructed images of Fig-
ure 4.1 (b), with applying 11×11 numerical scheme, from Legendre moments
of orders 196, 197, 198, 199, 200, and 196 to 200, respectively. The gray levels
of all image pixels are multiplied by 25.

have made some observations about the characteristics of individual orders

of Legendre moments in image representation. First, each individual order

of moments represents the unique image details independently. Second, the

even orders of Legendre moments describe more image details than the odd

orders of Legendre moments do. To emphasize this discovery, we have con-

ducted the image reconstructions from all even and odd orders of Legendre

moments between 0 and 240, and displayed the results in Figure 5.4 (a) and

Figure 5.4 (b).

We can observe that Figure 5.4 (b) has presented very limited information
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Figure 5.4: Images reconstructed from (a) all even number orders 0 to 240,
(b) all odd number orders from 1 to 239, and (c) all orders from 0 to 240.

from the original testing image Figure 4.1 (b). The PSNR value between

Figure 5.4 (b) and Figure 5.4 (c) is 6.061. On the other hand, the PSNR

value between Figure 5.4 (a) and Figure 5.4 (c) is 39.219, which indicates

that the similarity of an image reconstructed from even orders and that of

all orders of Legendre moments is very high.

To address this interesting characteristic of Legendre moments further, we

have conducted the image reconstructions from the even orders of Legendre

moments only. Figure 5.5 presents some reconstructed Figure 4.1 (b) from

the even orders of Legendre moments. Compared with each of the sub-

figures displayed in Figure 4.4, the two sets of reconstructed images appear

very similar. Figure 5.6 shows the PSNR values calculated from the image

reconstructions displayed in both of Figure 4.4 and Figure 5.5.
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Figure 5.5: Images reconstructed from different even orders of Legendre mo-
ments with the 11× 11 numerical scheme on Figure 4.1 (b).
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Figure 5.6: PSNRs of the reconstructed Figure 4.1 (b) displayed in Figure 4.4
and Figure 5.5.
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5.3 Image Reconstruction with Different Sets

of Legendre Moments

In this section, we will discuss the results of experiment that will demon-

strate the theory of image projection discussed in Chapter 2. Figure 5.7 and

Figure 5.8 show the subset of Legendre moments with m−n = 0 and n = 0.

The results of applying different subsets of Legendre moments to reconstruct

Figure 4.1 (b) are represented in Figure 5.9.

We can observe the contribution of subset Legendre moments from m−

n = 0 projects different direction as from n = 0. Futher more on diffferent

subset Legendre moments like m− n = 1 vs n = 1 and m− n = 2 vs n = 2

also present the same characteristic.
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Figure 5.7: A set of λ Values for m-n=0 when minimum order = 0 and
maximum order = 40
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Figure 5.8: A set of λ Values for n=0 when minimum order = 0 and maximum
order = 40
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Figure 5.9: Image reconstructed with 1 × 1 numerical scheme on Minimum
order 0 and Maximum Order 40 by applying different set of λ Values on
Figure 4.1 (b) followed by different m-n or n values.
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5.4 Summary

In this section, we have clarified that every Legendre moment value pre-

serves different information of the original image function, meaning that Leg-

endre moments give the feature of different moment orders describing differ-

ent parts of the image [12]. The lower order Legendre moments represent

the basic fundamental features, while the higher order Legendre moments

emerge image details.

We have also discovered an interesting and important Legendre moment

characteristics that the even orders of moments contain most of image details.

Furthermore, we have conducted image reconstructions by adopting com-

bination of different Legendre moment subsets and clarified the concept of

image projection described in Chapter 2.
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Chapter 6

Conclusions and Future Study

6.1 Conclusions

In this research, an innovative attempt was used to improve the compu-

tational accuracy of Legendre moments was conducted. Based on the more

accurate computed Legendre moments, we have analyzed digital images with

the Legendre moments.

To examine the more accurately computed Legendre moments, we have

performed image reconstructions from higher orders of Legendre moments

with satisfactory results.

By conducting image reconstructions from a partial set of Legendre mo-

ments, we have clarified that the lower orders of moments mainly contain

the fundamental information of the original image, while the higher orders

moments preserve the detailed image information.
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We have concluded that each individual finite set of Legendre moments

will represent unique image details independently.

We have also discovered that the even orders of Legendre moments de-

scribe most of the image characteristics, while the odd orders of Legendre

moments would only present very limited information from the original im-

age.

Although the Legendre moments were studied in this research, the de-

tected representing characteristics of individual moments in image analysis

are also expected to be present in other conventional continuous orthogonal

moments as well.

6.2 Future Study

Even though the results from this thesis have demonstrated the efficient

and accurate approach for image reconstruction using Legendre moments, it

could be extended further in some ways. Here are some recommendations

for future studies.

Extending our approaches in this research to other or-

thogonal moments

Legendre moment is only one of the important orthogonal moments. In

principle, other orthogonal moments, particularly the moments defined in a

rectangular region, will very likely have some similar image representation
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characteristics. Applying our approaches to other orthogonal moments may

produce some similar results as we have discovered in this research.

Improving computational efficiency

One of the major issues that limits our work in this research is the long

computing time for many of our moment computational experiments. If

researchers can develop new computational algorithms to use graphics pro-

cessing units (GPUs) in moment calculation processing, it will improve the

efficiency of Legendre moment computing substantially. If there is break-

through on this issue, more new results on the investigation of Legendre

moment are highly expected.
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