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ABSTRACT

Federated Learning (FL) has emerged as a revolutionary paradigm in the field of ma-

chine learning, enabling multiple participants to collaboratively train models without

compromising the privacy of their individual training data. However, the distributed

and decentralized nature of FL also exposes it to a diverse array of poisoning at-

tacks, wherein adversaries inject malicious updates to compromise the integrity and

accuracy of the global model.

In this thesis, we embark on a critical exploration of defense strategies against

poisoning attacks in FL. Our primary focus lies in proposing and evaluating a robust

defense mechanism, aptly named Credit-Based Client Selection (CBCS). Leveraging

a credit-based system, CBCS judiciously assigns credit scores to participating clients

based on the accuracy and consistency of their historical model updates. By selec-

tively incorporating reliable clients with higher credit scores into the model aggre-

gation process, while subjecting low-credit clients to thorough scrutiny or exclusion,

CBCS fortifies the defense against adversarial disruptions.

To further enhance our research comprehensiveness, we extend our evaluation to

other scenarios that can be explored, such as normal conditions. We carefully assess

the efficacy of these strategies across various FL settings.

Through an extensive series of experiments conducted on non-iid image classifi-

cation datasets, we rigorously evaluate the performance of the CBCS defense mech-

anism. The results show that CBCS effectively identifies and excludes adversarial

clients, maintaining model accuracy and data confidentiality in federated learning.

The outcomes of our research underscore the profound impact of robust defense strate-

gies on securing federated learning and their pivotal role in advancing collaborative

and privacy-preserving machine learning applications.The proposed CBCS defense

mechanism illuminates new avenues for enhancing the resilience and security of fed-

erated learning systems in the face of adversarial threats.As the world continues to

embrace decentralized and privacy-focused learning approaches, our research con-

tributes significantly to the safe and trustworthy deployment of federated learning

across diverse domains.
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Chapter 1

Introduction

Federated Learning (FL) represents a revolutionary approach in the field of machine

learning, empowering thousands, or even millions, of participants to collaboratively

train deep learning models [32, 43]. At the core of FL lies the idea of a decentralized

learning process, where a central server coordinates the joint training of a global

model, while individual clients locally train their models using their private data. The

power of FL lies in its ability to harness the collective knowledge of diverse clients

without compromising data privacy. By aggregating contributions from all clients,

the central server constructs the global model, which is a collective representation of

the distributed knowledge from the participants.

This decentralized approach brings numerous advantages, especially in terms of

computational efficiency. FL achieves significant computational savings on the server

side by outsourcing and parallelizing the model training process. Furthermore, data

privacy is strictly maintained, as only local model updates are transmitted between

clients and the central server, ensuring that raw training data remains confidential

and is not shared with the service provider or other clients.

The flexibility and versatility of FL have spurred its wide adoption across various

domains and applications. Technology giants like Google [25, 69] have embraced FL

as a powerful tool for next-word prediction on Android Gboard as depicted in Figure

1.1, while Apple harnesses its potential to develop highly accurate voice recognition

models [23] .

These real-world applications showcase the immense promise of FL in enabling

collaborative intelligence while safeguarding data ownership and privacy. The working

process of federated learning is given in Figure 1.2 [50].

However, despite its potential, FL also faces significant security challenges, par-
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Figure 1.1: Next word predictions in Gboard. Based on the context “I love you”, the
keyboard predicts “and”, “too”, and “so much” [25]

Figure 1.2: Federated learning working process [50]

ticularly in the form of model poisoning attacks as depicted in Figure 1.3 [50]. The

distributive nature of FL exposes it to potential threats from malicious clients, which

may manifest as either compromised legitimate participants or malicious clients in-

serted by attackers. These adversaries strategically manipulate model updates during



3

the training process, intending to compromise the integrity and accuracy of the global

model. Consequently, the testing accuracy of the overall system may be compromised

due to the influence of these malicious updates [17, 7, 16].

Figure 1.3: Vulnerable Federated Learning system [50]

One of the widely-used algorithms in FL, known as FedAvg [43], is especially

used in most applications. FedAvg relies on computing the global model through a

weighted average of model parameters contributed by each client. Alarming research

findings indicate that if clients are compromised, the resulting global model can be

arbitrarily manipulated by adversaries [7].

In response to these pressing security concerns, this research aims to explore a

robust defense strategy that effectively safeguard FL systems against adversarial dis-

ruptions. By identifying and mitigating the impact of malicious model updates, we

aspire to fortify the integrity and accuracy of the global model within the collabora-

tive learning environment. Our proposed defense strategy, the ”Credit-Based Client

Selection (CBCS),” is designed to identify and select trustworthy clients for model

aggregation. The CBCS mechanism leverages a credit-based system, where clients

are assigned credit scores based on the accuracy and consistency of their historical

model updates. Trustworthy clients with higher credit scores are given more signif-

icant contributions during model aggregation, while clients with lower credit scores

undergo rigorous scrutiny or may even be excluded from the aggregation process
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altogether. Through extensive experiments and evaluations on non-iid image classifi-

cation datasets, we assess the efficacy of the CBCS defense strategy, along with other

scenarios and mechanisms integrated into the aggregation rule(FedAvg) of FL.

Securing FL against model poisoning attacks is of utmost importance to enable

privacy-preserving, collaborative machine learning. The research presented here high-

lights the critical significance of developing robust defense strategies that effectively

counteract adversarial disruptions, paving the way for the continued growth and ad-

vancement of federated learning in diverse domains.

1.1 Problem Definition

Numerous prior studies have proposed Byzantine robust aggregation algorithms with

the primary goal of mitigating the impact of model poisoning attacks [3, 7, 11, 16,

67, 70]. These defense mechanisms operate by detecting and eliminating outliers

among model updates before incorporating them into the global model. However, a

significant drawback of many of these aggregation algorithms is their reliance on the

assumption of independent and identically distributed (iid) training data, which does

not hold in real-world scenarios where non-iid datasets are prevalent [18, 55]. Recent

research has shown that these existing defenses are inadequate in preventing poisoning

attacks in Federated Learning (FL), particularly when faced with non-iid datasets.

Furthermore, previous defense approaches assume a fixed number of malicious clients

participating in the process, leading to the removal of a specific number of model

updates in every training round. Additionally, many implementations rely on random

client selection as the client selection strategy, potentially leading to the exclusion of

a substantial number of benign updates. Consequently, the aggregation algorithms

such as Krum or Median, may inadvertently cause a decrease in the global model’s

accuracy, even in the absence of attackers.

In this thesis, one of our contributions lies in the development of a generic model

poisoning attack against FL. Our attack methodology employs a simple yet effective

poisoning technique, generating malicious updates for integration into the aggregation

process. We frame this attack as model poisoning attack, drawing parallels with prior

research efforts [18, 55, 6]. The results of our experiments indicate that this attack

method, used as the first step in our defense design, can significantly reduce the

accuracy of models employing random client selections, leading to a decrease in the

global model’s testing accuracy by approximately 50%. As previously highlighted,
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we encountered an additional challenge linked to the inherent nature of the federated

learning algorithm proposed by Google, namely FedAvg. In this algorithm, clients

are selected randomly during each round, leading to a query about the algorithm’s

credibility. In response, we chose to adopt this algorithm as our base and fortified its

performance through the integration of our credit-based client selection mechanism.

This strategic augmentation significantly enhanced the outcomes of the algorithm.

1.2 Proposed Approach

In addition to exploring the attack aspect, we propose a new defense framework known

as Credit-Based Client Selection (CBCS) to effectively counter untargeted model poi-

soning attacks. Our defense mechanism is designed to identify and select trustworthy

clients while excluding potentially malicious or compromised clients from the model

aggregation process. The core principle behind CBCS is to assign credit scores to

individual clients based on their historical behavior and model update contributions.

Clients with higher credit scores are considered more reliable and are given greater

influence during the model aggregation, while those with lower credit scores undergo

more stringent scrutiny or may be excluded altogether.

Our extensive evaluation demonstrates that our defense achieves only a slight re-

duction in testing accuracy (less than 3% ) compared to FedAvg under non-adversarial

settings, while offering significantly improved robustness. To thoroughly assess the

defense’s effectiveness, we conducted evaluations using three datasets, considering

various scenarios involving normal poisoning attacks. By comparing the dataset’s

performance before and after implementing our defense strategies, the results confirm

the efficacy of CBCS in fortifying Federated Learning against model poisoning at-

tacks, thereby enhancing the security and accuracy of collaborative machine learning

systems.

1.3 Contributions

The main contributions of this work are outlined as follows:

• We evaluate the performance of the FedAvg aggregation rules on three datasets

(Mnist, FMnist, and CIFAR-10) under both benign and adversarial threat sce-
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narios to emphasize the impact of poisoning attacks in federated learning sys-

tems.

• We propose a new defense approach, namely Credit-Based Client Selection

(CBCS), to effectively counter untargeted model poisoning attacks in federated

learning.

• We conducted a comprehensive evaluation of our defense strategy under model

poisoning attacks and demonstrated the effectiveness of our credit-based client

selection mechanism using three datasets, namely Mnist, FMnist, and CIFAR-

10, under normal and benign conditions.

1.4 Thesis Layout

The rest of this thesis organized as follows:

Chapter 2 provides an overview of important concepts in federated learning.

Chapter 3 Provides a theoretical framework for data and model poisoning attacks,

and most importantly provides extensive details about our proposed defence

strategy.

Chapter 4 explains the three datasets used as a case study in this thesis.

Chapter 5 gives experiments conducted on the datasets with various scenarios fol-

lowed by a discussion of the results.

Chapter 6 concludes the thesis and provides future research directions.
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Chapter 2

Background Concepts

Federated Learning (FL) is a groundbreaking approach to train deep neural networks

(DNNs) across multiple decentralized devices or servers while keeping the data locally

on these devices. The core idea behind FL is to enable collaborative learning without

the need to share raw data with a central server, thereby preserving user privacy and

data security.

In the context of DNNs, the FL process begins with a central server, often referred

to as the aggregator, initiating the model training. This central server maintains a

global model that serves as the starting point for all participants. These participants

can be individual mobile devices, edge servers, or other remote nodes.

2.1 Deep Neural Networks(DNNs)

A deep neural network (DNN) is a powerful architecture used in modern machine

learning to process complex data and make predictions across various tasks [52]. It is

comprised of multiple layers, each responsible for extracting increasingly abstract and

meaningful features from the input data. These layers consist of learnable parameters,

namely weights and biases, which are optimized during the training process.

In a DNN classifier, the ultimate objective is to map inputs, denoted as x ∈ X ⊆
Rd , to their corresponding class labels, represented as y ⊆ Rk, where K is the

number of distinct classes. This mapping is realized by a function f : X → Y, which
assigns likelihood scores to input data for each class. The output layer of the DNN

employs the softmax activation function, which transforms the likelihood scores into

a vector of real values within the range [0, 1], where the sum of the values equals
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1. Consequently, the output can be interpreted as the probabilities of the input

belonging to each prediction class, facilitating the classification decision.

To train the DNN classifier effectively, a differentiable loss function ℓ is typically

employed to quantify the discrepancy between the model’s predictions and the actual

ground-truth labels. The training process aims to minimize this loss function over the

model parameter w with respect to the training dataset D. Mathematically, the em-

pirical loss on the model parameter w is defined as l(ω) = 1
N

∑
(xi,yi)∈D L(f(xi;ω), yi),

where N is the number of training samples. The objective is to find the optimal model

parameter ω that minimizes the empirical loss, thereby maximizing the accuracy of

the predictions.

To achieve this optimization, the mini-batch stochastic gradient descent (SGD)

algorithm is widely used. During each iteration of the algorithm, a mini-batch of

training samples is randomly selected, and the backpropagation algorithm is applied

to compute the gradient of the loss function with respect to the model’s weights. This

gradient information guides the update of the model weights, nudging them in the

direction of the local minimum. By iteratively repeating this process over the entire

training dataset, the DNN learns to better generalize from the training data to make

accurate predictions on new, unseen data.

The versatility and adaptability of DNNs have enabled them to achieve impres-

sive results in various machine learning tasks, such as image and speech recognition,

natural language processing, and recommendation systems. Their ability to automat-

ically learn hierarchical representations from data has been instrumental in pushing

the boundaries of artificial intelligence, making DNNs a foundational element in con-

temporary deep learning research.

2.2 Federated Learning

Federated Learning (FL) [32, 43] represents a groundbreaking paradigm in the field

of machine learning, offering a distributed approach where multiple data owners col-

laboratively train a global machine learning model without the need to share their

private data [20]. This innovative setting addresses the significant privacy concerns

associated with traditional centralized machine learning approaches, where sensitive

data is centralized, raising potential security risks.

In the FL framework, we consider N clients, each possessing its local training

dataset, denoted as Di. Every client maintains a local machine learning model, and
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the model parameters are determined by solving the optimization problem argminω l(ω)

on its specific dataset, using a designated loss function L. By doing so, each client

tailors its model to the intricacies of its local data, ensuring a more personalized and

context-aware model.

A central server plays a crucial role in the FL ecosystem, acting as a coordinator

to facilitate the collective learning process. This server maintains the global model

by aggregating the locally trained models from all participating clients. The global

model, which represents the summation of knowledge from diverse data sources, offers

a more comprehensive and robust model.

The FL process unfolds iteratively in rounds, allowing for continuous learning and

adaptation. In each FL round, the server strategically selects a subset of n clients

from the total N clients and shares the current global model weights ωt
g with this

cohort. The selected clients then perform fine-tuning on ωt
g using their local datasets,

iteratively updating their models over a fixed number of epochs E to obtain new local

models ωt
k .

After the fine-tuning process on the selected clients, each of the n clients computes

its model update ∆t
k = ωt

k−ωt
g and transmits ∆t

k back to the server. At this stage, the

server employs an aggregation algorithm, denoted as fagg, which combines all client

updates to obtain the aggregate update ∇⃗tg = fagg

(
{∇⃗tk : k ∈ [n]}

)
. This aggregate

update represents the collective intelligence from the selected clients and constitutes

the refined global model.

The updated global model with the new weights ωt+1
g = ωt

g + ∇⃗t
g is broadcast to

a fresh subset of selected clients in the subsequent round, and the process continues

iteratively until convergence. The iterative nature of FL allows the global model

to benefit from the cumulative knowledge contributed by all participating clients,

leading to enhanced performance and generalization.

It is crucial to note that FL can be classified into two primary types: cross-silo

and cross-device. In cross-silo FL [26], organizations, such as financial or medical

institutions, act as clients, and a trusted third-party entity serves as the global server

to coordinate the training process. In contrast, cross-device FL encompasses scenarios

with numerous mobile or IoT devices, where only a fraction of clients participate in

each training round due to resource constraints and varying availability.

In the context of this thesis, our focus is on studying the vulnerability of FL

to poisoning attacks, specifically honing in on the cross-device setting. In such set-

tings, clients are often highly unreliable due to factors like intermittent connectivity,
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hardware limitations, or malicious behavior. Consequently, comprehending and mit-

igating the risks of poisoning attacks are of paramount importance for ensuring the

robustness, privacy, and security of the FL framework. By exploring effective defense

strategies against poisoning attacks, we aim to bolster the reliability and trustwor-

thiness of FL models in these challenging cross-device scenarios.

2.3 Privacy Concerns

Federated Learning (FL) has emerged as a promising paradigm for collaborative ma-

chine learning without the need to share raw data. In FL, multiple participants,

often referred to as clients, collectively train a global machine learning model while

keeping their local data securely on their devices, as depicted in Figure 2.1 [22]. This

decentralized approach ensures that sensitive data remains private and is not exposed

to a central server or any other third-party entity. FL presents a powerful solution

to address privacy concerns associated with traditional centralized machine learning

approaches, where aggregating data from various sources may lead to potential data

breaches and privacy violations.

Figure 2.1: Comparison between the classical centralized ML approach and central-
ized or P2P FL [22]

However, despite its inherent privacy advantages, FL is not immune to privacy

challenges and potential threats. Privacy risks can arise in scenarios where adversaries

attempt to infer sensitive information about individual users based on the aggregated

model updates. These privacy attacks, often referred to as membership inference

attacks or model inversion attacks, can exploit the statistical information present

in the model updates to determine if a particular client’s data was used during the
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training process.

To mitigate such privacy risks, researchers and practitioners have been exploring

various privacy-preserving techniques [8] and robust aggregation algorithms in FL.

Differential Privacy is one such technique that aims to inject noise into the model

updates to prevent the inference of individual data points. By adding carefully cali-

brated noise to the updates, differential privacy offers a strong guarantee of privacy

while still enabling effective global model training.

Additionally, federated learning frameworks can incorporate secure communica-

tion protocols, such as homomorphic encryption and secure multi-party computation

(SMPC) [63], to further protect sensitive gradients during transmission. These crypto-

graphic methods allow clients to collaborate without explicitly sharing their updates,

ensuring that the aggregated model remains secure and privacy-preserving.

2.4 Aggregation Rules

In the domain of federated learning, an aggregation algorithm plays a critical role

in combining the results obtained from training multiple smart models on individual

clients’ local data. This algorithm handles the fusion of local client updates and

updates the global model accordingly [46]. The typical learning process in federated

learning involves the following steps:

1. The central server establishes connections with the clients and distributes the

initial global model.

2. Each client receives a copy of the initial model, performs training using its local

data, and sends the updated models back to the central server.

3. The central server collects the locally trained models from all clients and aggre-

gates them using the designated algorithm.

4. Based on the aggregation results, the central server updates the global model

and sends the updated version back to the respective clients.

5. Lastly, the central server collects the locally trained models from all clients and

aggregates them using the designated algorithm.
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The above steps are iteratively repeated until the global model converges or until

the server decides to terminate the process. The underlying architecture, entities,

and steps of this federated learning process are depicted in Figure 2.2 [46].

Figure 2.2: Federated Learning process and environment [46]

This iterative process of training, aggregating, and updating enables the central

server to learn from the collective knowledge of all participating clients without ac-

cessing their raw data directly. It ensures privacy and data security, making FL

an appealing approach for collaborative machine learning applications in distributed

environments.

2.4.1 Federated Averaging

Federated Averaging (FedAvg) [40] is a widely used aggregation algorithm in feder-

ated learning, and it offers several key advantages over other algorithms that make

it an attractive choice for many scenarios. FedAvg operates in a decentralized man-

ner [60], allowing multiple participants (e.g., devices, edge nodes, or clients) to train

their local models using their private data without sharing raw data centrally. In-

stead, participants only send their model gradients to a central server (e.g., a cloud

or coordinator) for aggregation. At the end of this section, we will compare the

advantages of FedAvg to other algorithms.
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The equation for Federated Averaging (FedAvg) in federated learning involves the

aggregation of model gradients from multiple participants. Let’s break it down step

by step: [45]

1. Local Model Update: In the local training phase, each participant (e.g., device

or client) performs training on its private data using the current global model.

After training, it computes the gradient of the model’s loss function with respect

to its local parameters. Let’s denote the local model’s parameters for participant

i as θi , and the corresponding gradient as gi.

2. Aggregation Phase: After local training, participants send their gradients to a

central server (e.g., a cloud or coordinator) for aggregation. During this phase,

the gradients are combined to form the updated global model.

3. Federated Averaging: The central server aggregates the gradients received from

all participants using a simple averaging process. Given N participants, the

aggregation equation for FedAvg can be represented as:

θnew =
1

N

N∑
i=1

gi (2.1)

Here, θnew represents the updated global model parameters after aggregation, N is

the total number of participants, and
∑N

i=1 gi represents the sum of all gradients gi

received from the N participants. The resulting θnew becomes the new global model,

which is then sent back to the participants for the next round of training. Federated

Averaging ensures that each participant’s contribution is equally weighted in updating

the global model, making it a fair and privacy-preserving approach for collaborative

learning without directly sharing raw data.

2.4.2 Krum

Krum, proposed by [7], is an aggregation algorithm utilized in federated learning to

select one update among the n updates that has the lowest score based on the ℓ2

distance. The score of the ith update is calculated using the following equation:

Score(∇i) =
∑
∇j∈P

∥∇i −∇j∥22 (2.2)



14

where m is an estimation of the upper bound on the number of malicious clients,

and P represents the set of the n−m− 2 neighboring updates of ∇i. The underlying
rationale behind this approach is to identify malicious updates, which would need

to be far from benign updates to have a significant impact in poisoning the global

model. Multi-krum [7]represents a notable variant of the Krum aggregation algorithm,

distinguished by its significantly higher global model accuracy. The process of Multi-

krum involves iteratively selecting updates from the remaining set multiple times,

following the same approach as Krum. This iterative selection procedure yields a

selection set S, comprising c updates, where c < n − 2m − 2, with n being the total

number of clients and m being an estimation of the upper bound on the number of

malicious clients.

2.4.3 Median

Median [70] represents another aggregation algorithm used in federated learning,

which performs aggregation along each dimension of the updates. The Median al-

gorithm aggregates the updates by calculating the median of the values along each

dimension. Similar to the trimmed-mean aggregation rule, the Median approach also

achieves an error rate when the objective function is strongly convex. The Median

algorithm is used when dealing with highly non-linear objective functions or scenarios

where the data distributions across clients are diverse and non-identically distributed.

By taking the median along each dimension, the algorithm can mitigate the impact of

outliers and provide a robust global model. Given a set of updates {∇1,∇2, . . . ,∇n},
where ∇i represents the update from the ith client, the Median aggregation along

each dimension can be expressed as follows:

Median(d) = median({∇1d,∇2d, ...,∇nd}) (2.3)

Where Median(d) represents the aggregated value along the dth dimension of the

updates and ∇id represents the value of the dth dimension of the update from the ith

client. The Median algorithm computes the median value of each dimension across all

client updates, resulting in a new update that represents the aggregated information

along each dimension.
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2.4.4 Trimmed-Mean

Trimmed-mean [70] is a coordinate-wise aggregation algorithm used in federated

learning. For each dimension k, the trimmed-mean method sorts the values in the kth

dimension of the n vectors and removes the m smallest and largest values. After this

trimming process, dimensional-wise averaging is performed on the remaining n− 2m

vectors. The intuition behind this approach is to reduce the impact of extreme values

or outliers in the aggregation process, thereby enhancing the robustness of the global

model.

Dong et al [70] provided theoretical evidence that the trimmed-mean aggregation

achieves order-optimal statistical error rates, particularly when dealing with convex

loss functions. This property makes trimmed-mean a choice for aggregation in sce-

narios where the objective function exhibits strong convexity, and it has shown good

performance in practice as well. For a given dimension k and a set of n vectors

{∇1k,∇2k, . . . ,∇nk}, the trimmed-mean aggregation is computed as follows:

Trimmed-mean(dk) =
1

n− 2m

n−m∑
i=m+1

∇ik (2.4)

where n is the total number of vectors (updates) in the set, m is the number of vectors

removed from the smallest and largest values in the dimension k before aggregation,

and ∇⃗ik represents the value of the kth dimension of the ith vector in the set.

2.4.5 Advantages of FedAvg

In this chapter, we present an in-depth analysis of aggregation rules used in Federated

Learning (FL) experiments, with a primary focus on the widely used Federated Aver-

aging (FedAvg) algorithm. We explore the merits of FedAvg in comparison to other

robust aggregation rules, such as Krum, Median, and Trimmed Mean. Our investiga-

tion aims to identify the strengths and weaknesses of these aggregation methods in

the context of FL, and justify the choice of FedAvg as the algorithm used in our exper-

iments. In federated learning, Federated Averaging (FedAvg) has many advantages

[19, 58, 14] over other (Krum, Trimmed mean and median) aggregation methods:

1. Robustness to Outliers: FedAvg is more robust to outliers compared to

Krum and Median aggregation. In Krum and Median or trimmed mean, a

single malicious or faulty participant can significantly impact the final model,
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whereas FedAvg mitigates this by averaging gradients from multiple partici-

pants, reducing the impact of outliers.

2. Communication Efficiency: FedAvg typically requires less communication

compared to Krum and Median. In Krum, participants need to exchange infor-

mation about their gradients, and in Median, they need to transmit their entire

model. In contrast, FedAvg only requires exchanging gradients, making it more

communication-efficient.

3. Scalability: FedAvg is more scalable as the number of participants increases.

Krum’s communication overhead grows quadratically with the number of partic-

ipants, while Median’s communication cost increases linearly. FedAvg’s linear

communication cost makes it more suitable for larger federated learning setups.

4. Ease of Implementation: FedAvg is relatively straightforward to implement,

making it a popular choice in federated learning research and applications.

Krum and Median require additional steps to handle outliers and secure com-

munication, which can be more complex to implement.

5. Privacy-Preserving: FedAvg provides inherent privacy preservation since

participants only share their gradients, not their raw data. This reduces the risk

of exposing sensitive information during the aggregation process. On the other

hand, Krum and Median may require more data sharing or model parameters,

potentially raising privacy concerns.

6. Lower Computational Overhead: FedAvg often has lower computational

overhead at the participant’s end compared to Krum and Median. In Krum,

participants need to compute distances between gradients, and in Median, they

need to sort gradients, both of which can be computationally expensive, espe-

cially in resource-constrained devices.

7. Model Convergence: FedAvg tends to achieve better model convergence in

many scenarios. By averaging gradients from multiple participants, it can lever-

age a larger and more diverse dataset, leading to improved generalization and

convergence properties.

8. Simplicity in Handling Non-IID Data: FedAvg is known to handle non-

IID (non-identically distributed) data across participants better than Krum
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and Median. Non-IID data arises when participants have different data distri-

butions, and FedAvg’s averaging mechanism helps balance the impact of such

differences.

2.4.6 Disadvantages of Robust Aggregation Algorithms

While secure aggregation methods like Krum, trimmed mean or Median can enhance

privacy and security in federated learning, they do have many disadvantages [12, 68,

44]:

1. Increased computation overhead: Secure aggregation requires additional

cryptographic operations, which can lead to higher computational costs and

longer training times, especially when dealing with large-scale models and datasets.

2. Communication overhead: Secure aggregation methods often involve ex-

changing encrypted data and cryptographic keys between the participating de-

vices or nodes, leading to increased communication overhead. This can be

particularly challenging in low-bandwidth or high-latency environments.

3. Vulnerability to Byzantine attacks: While these methods aim to handle

malicious participants (Byzantine nodes), they may not be completely robust

against sophisticated adversaries who actively manipulate their model updates

to mislead the aggregation process.

4. Limited scalability: As the number of participating devices or nodes in-

creases, secure aggregation techniques may face scalability issues, impacting

the overall performance and convergence of the federated learning process.

5. Reduced model convergence speed: secure aggregation methods introduce

noise or additional computations during aggregation, which may slow down

the convergence rate of the federated learning process compared to traditional

aggregation techniques.

6. Increased model size: Cryptographic techniques can increase the size of the

model updates, leading to larger communication overhead, especially for low-

bandwidth or resource-constrained devices.
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Chapter 3

The Proposed Defence Model

In this chapter, we explore attacks in federated learning, specifically data poisoning

and model poisoning attacks. We critically examine the advantages and disadvantages

of these attack strategies, emphasizing their potential impact on the global model’s

integrity and performance. While our primary objective in this paper is to evaluate

defense mechanisms in FL, we briefly introduce a simple model poisoning attack to

showcase its effect on the system’s vulnerability.

Then, we present the Credit-Based Client Selection (CBCS) defense, which utilizes

a credit-based system to identify reliable clients for model aggregation. We outline

the steps taken to enhance the effectiveness of this defense mechanism. By conducting

a rigorous examination of our defense strategy, we aim to contribute valuable insights

into the robustness and efficacy of the defense mechanism in FL. Our research en-

deavor seeks to enhance the understanding of the security landscape in federated

learning and foster the development of more resilient and privacy-preserving machine

learning systems.

3.1 Adversarial Attacks in Federated Learning

Existing research has demonstrated that Federated Learning (FL) is susceptible to

various poisoning attacks [18, 6, 55, 47, 28, 62]. These attacks can be broadly catego-

rized into two types based on the adversary’s goal: targeted and untargeted attacks.

In targeted attacks, the adversary aims to reduce the model’s accuracy on specific

inputs. Conversely, untargeted attacks are designed to minimize the model’s accuracy

on any test data, thus undermining the overall performance of the FL system.
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A specific subset of targeted attacks is known as backdoor attacks [17] wherein

the attacker alters the model’s behavior only on selected inputs known as backdoor

triggers while keeping the model’s accuracy intact on the primary FL learning task.

Backdoor attacks can be particularly dangerous as they can introduce subtle biases

into the model, leading to incorrect predictions on specific inputs without raising

suspicion during normal use.

While targeted and backdoor attacks result in the model misclassifying specific

input samples, untargeted attacks are intended to degrade the overall utility of both

the global model and individual client models. Although existing Byzantine-robust

aggregation algorithms offer asymptotic bounds on the error rates of the global model

up to a constant factor, such guarantees do not necessarily ensure empirical robustness

of the model [12]. For instance, even when robust aggregation algorithms (RAA) are

employed, a successful untargeted attack can lead to a significant reduction of more

than 20% in the global model’s accuracy on datasets like CIFAR-10, making the

model unsuitable for practical use [44].

Given the severity of the threat posed by untargeted attacks, this thesis concen-

trates on exploring defenses against this category of attacks. Understanding and

countering untargeted attacks are crucial since they pose a more severe challenge to

the practical applicability of FL. Depending on the adversary’s capabilities, two types

of FL poisoning attacks can be identified: data poisoning attacks and model poison-

ing attacks. Data poisoning attacks involve manipulating the data used for training,

while model poisoning attacks alter the model’s updates or parameters directly. Ad-

dressing both these types of attacks is essential to ensure the security and privacy of

FL systems in real-world scenarios.

3.1.1 Data Poisoning Attacks

Data poisoning attacks have been extensively studied in the centralized setting of

machine learning [47, 28]. In data poisoning attacks, the adversary indirectly manip-

ulates the model updates by injecting poisoning data into the local training datasets

of compromised clients. Fang et al. [18] adapted the simple label flipping attack to

the federated learning (FL) settings. In this attack, the adversary alters the labels of

the local data on compromised clients, replacing them with false labels to introduce

malicious behavior into the FL process. A data poisoning attack can be formulated
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as an optimization problem as shown in the following equations:

argmax
Dm

k∈[m]
⊂D
∥∇b − fagg(∇m

{k∈[m]} ∪∇{k∈[m+1,n]})∥, (3.1)

∇m
k∈[m] = τ(ωg, D

m
k∈[m])− ωg, ∇b = Avg(∇{k∈[n]}) (3.2)

In this context, τ represents a training algorithm, specifically Stochastic Gradient De-

scent (SGD), which utilizes the malicious input data Dm ⊂ D to fine-tune the current

model weight ωg and obtain the new weight. However, Fang et al. [18] demonstrated

that using gradient-based optimization to compute Dm is time-consuming and not

very effective.

Shejwalkar et al. [56], on the other hand, proposed an alternative approach for

data poisoning attacks. They suggest using label-flipped data to replace the com-

promised client’s dataset and carefully optimizing the number of data samples based

on the server’s aggregation algorithm. This approach aims to improve the efficiency

and effectiveness of data poisoning attacks in the federated learning setting. In our

study, we observe that data poisoning attacks can be transformed into model poi-

soning attacks. By training the local model on a poisoned dataset and considering

the changes in model weights as malicious model updates, we can effectively carry

out model poisoning attacks. Additionally, previous research [18, 6, 55] has indicated

that model poisoning attacks tend to be more impactful in various federated learning

settings compared to data poisoning attacks. Consequently, our focus in this thesis is

on investigating untargeted model poisoning attacks, as they pose a more significant

threat in the context of federated learning such as manipulating the model update’s

weight, which is what we did in our simple model poisoning attack to demonstrate

the effectiveness of our defence approach.

3.1.2 Model Poisoning Attacks

In the context of federated learning, the distributed nature of the process introduces

a new vulnerability to poisoning attacks compared to the centralized setting. Model

poisoning attacks are a type of attack in which the adversary directly manipulates

the model updates sent from compromised clients to the server. This class of attacks

is particularly concerning as they can have a significant impact on the accuracy of

the global model due to the increased capabilities of the attacker. Various model
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poisoning attacks have been proposed in the literature [5, 18, 55]. One such attack

is the Little Is Enough (LIE) attack [5], which introduces a small perturbation noise

to each dimension of the averaged benign updates. To carry out this attack, the

adversary requires knowledge of the benign updates. Initially, the attacker computes

the dimensional-wise average of the available benign updates ∇b and then adds cali-

brated noises based on the standard deviation σ of the benign updates. The resulting

poisoned update is constructed as ∇m = ∇b + zσ, a scalar value determined by the

number of malicious and total clients. Baruch et al. [5] demonstrated that LIE effec-

tively evades the detection of many robust aggregation algorithms, enabling successful

poisoning of the global model.

Fang [18] and Shejwalkar et al. [55] proposed a tailored attack formulation, con-

sidering the scenario where the attacker has knowledge of the aggregation algorithm

used in the Federated Learning (FL) system. In this attack, the adversary aims to

maximize the discrepancy between the final aggregated update and a reference update

computed from available benign updates. The tailored attack starts by calculating

the average of the available benign updates, which serves as the reference update

denoted as ∇b. Next, the attacker determines a malicious perturbation direction,

denoted as ∇p, by taking the sign of the reference update ∇b. This direction indi-

cates the adversarial direction in which the updates will be perturbed. The malicious

update ∇m is then constructed as a perturbed version of the reference update ∇b in

the direction of ∇p, i.e., ∇p ← sign(∇b). The optimization objective is to maximize

the distance between the final aggregated update after aggregation and the reference

update ∇b. Mathematically, the tailored attack can be formulated as follows [55]:

argmax
γ
∥∇b − fagg(∇m

k∈[m] ∪∇k∈[m+1,n])∥ (3.3)

∇m
k∈[m] = ∇b + γ∇p,∆b = Avg(∇k∈[n]) (3.4)

In the tailored attack, the adversary aims to find an optimal scalar γ that evades

the server’s aggregation algorithm. This attack assumes that the aggregation algo-

rithm, denoted as fagg, is known to the attacker, allowing them to check whether the

tailored malicious update ∇m is selected by fagg. The objective of the optimization

is to maximize the distance between the reference update ∇m and the final update

after aggregation.

The tailored attack starts by initializing γ to a large value and gradually de-
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creases it until the adversarial objective is achieved. The algorithm uses a line search

approach for the optimization, as fagg is typically non-differentiable. The attack

computes the reference update ∇b as the dimensional-wise average of available be-

nign updates (∇⃗k∈[n]) Then, it sets a malicious perturbation direction ∇⃗p ← sign(∇⃗b),

where sign∇b denotes the element-wise sign function applied to ∇b.

The poisoned update ∇m is constructed as ∇⃗m = ∇⃗b + γ∇⃗p, where γis the scalar

parameter being optimized. By tuning γ, the attacker can effectively manipulate the

aggregated update to achieve their adversarial goal. The optimization process aims

to find the optimal γ that maximizes the distance between ∇b and the aggregated

update selected by fagg.

Shejwalkar et al. [55] enhance this attack by utilizing more advanced line search

techniques and considering alternative choices for the perturbation vectors ∇p, such

as a normalized version of ∇b. These improvements make the tailored attack more

effective and difficult to detect, posing a significant threat to the security of federated

learning systems. In scenarios where the underlying aggregation algorithm is hidden

from the adversary, this makes it difficult to compute the result of the aggregation.

Shejwalkar et al. [55] proposed two Agg-agnostic attacks known as Min-max and

Min-sum. These attacks utilize the same construction of the malicious vector ∇m

as the tailored attack described earlier. The main concept behind both attacks is

to ensure that the malicious updates lie close to the clique of benign updates. The

Min-max attack aims to maximize the scalar γ while ensuring that the maximum

distance between the malicious update and any other updates is upper bounded by

the maximum distance between any two benign updates. In mathematical terms, it

ensures the following3.5:

max
i∈[m+1,n]

∥∇m −∇i∥2 ≤ max
i,j∈[m+1,n]

∥∇i −∇j∥2 (3.5)

On the other hand, Min-sum attack ensures that the sum of distances between

the malicious update and all the benign gradients is upper bounded by the sum of

distances between any benign gradient and the other benign gradients. This is defined

formally as: ∑
i∈[m+1,n]

∥∇m −∇i∥2 ≤
∑

i,j∈[m+1,n]

∥∇i −∇j∥2 (3.6)

Shejwalkar [55] presents empirical evidence demonstrating that Min-max and Min-

sum attacks have a more significant impact on various defenses compared to the LIE
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attack.

3.2 Defence Methods in Federated Learning

In this chapter, we discuss about defences against poisoning attacks in federated

learning, then introduce our own defence strategy and process. Also, for comparison

purposes, we briefly explain two other defence strategies that are used in federated

learning.

3.2.1 Background Knowledge

Adversary’s Knowledge

Attacker’s Ability: In untargeted model poisoning attacks, the adversary aims

to compromise the global model’s accuracy on any test input by crafting malicious

updates on a subset of participating clients. We assume that the attacker has control

over a fraction, P , of the total N clients in the Federated Learning (FL) system [17,

5, 6, 18]. These clients can be either normal clients that are compromised by the

attacker or fake clients injected into the FL system. To maintain the effectiveness of

used algorithms, we usually constrain the malicious fraction q = P
N

to be less than

50%. The attacker can manipulate the updates sent from the compromised clients to

the central server during each FL round, allowing them to inject malicious information

into the model. In our case, we injected the malicious updates for the attacker.

Attacker’s Knowledge: The attacker possesses basic knowledge about the FL

system [10, 18, 55], including access to the local training code, training dataset, and

model updates of the compromised clients. Figure 3.1 [30] shows the steps of a single

round of the attack. Additionally, in adversarial FL settings, researchers consider two

other dimensions of the attacker’s knowledge: knowledge of the aggregation algorithm

and knowledge of other benign model updates.

The knowledge of the aggregation algorithm is a relatively strong assumption for

the adversary, as it enables them to tailor attacks to exploit vulnerabilities in the

aggregation process. Similarly, having knowledge of other benign model updates can

be advantageous for crafting more effective attacks.

In the literature, tailored attacks typically assume full knowledge of the aggre-

gation algorithm [18, 55], while the LIE algorithm [5] assumes full knowledge of the

benign updates. In our scenario, our focus is to demonstrate the capability of our
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Figure 3.1: An overview of a single round of federated learning with an adversarial
client [30]

defence strategy, but our defence can also be used in scenarios where there is no

threat as it is also effective for cost saving and time consumption. Hence, our attack

approach involves an attacker who has the capability to manipulate the weight of

the client in order to decrease the performance of the model, which was helpful to

demonstrate the effectiveness of the defence strategy.

Defender’s Knowledge

Defender’s Goal: The defender’s objective is two-fold. Firstly, the global model

should exhibit robustness against various threat models, ensuring that it maintains

high accuracy on the main task even in the presence of potential attackers. Secondly,

the defense mechanism should not compromise the model’s accuracy when there are

no attacks, preserving fidelity. Unfortunately, many existing defense algorithms focus

solely on robustness and overlook fidelity as we gathered from other research papers;

they only consider using robust algorithms that require heavy computational resources

and consume time, which is why we focused on using FedAvg algorithm [43] in our

work. As we discussed before, FedAvg is still the algorithm that Google is using

in its projects [59]. For example, research shows that using Krum [7] leads to

a significant drop in testing accuracy (over 20%) on the Mnist dataset, rendering
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the model practically useless. We delve into the common weaknesses of existing

defenses. Hence, when devising defense mechanisms, it is crucial to compare the

model’s accuracy in the absence of attacks with a baseline algorithm such as FedAvg,

as shown in chapter 5. To address the robustness challenges, we design our defense

under adversarial settings where the attacker has complete knowledge of the benign

updates. Additionally, we propose an attack scenario where the defense algorithm is

disclosed to the attacker.

Defender’s Knowledge: The defender in our paper lacks any client-side infor-

mation, including access to local training data. Unlike previous approaches, we also

assume that the server does not require knowledge of the upper bound of the malicious

fraction q. The server can solely access the model updates received from participating

clients in each round. To ensure both fidelity and robustness, we assume the server

possesses a tiny clean labeled dataset. This only eliminates the threats of the data

poisoning attacks. Although this dataset comes from a similar domain, it may not

follow the same distribution as the training data, and it does not need to be inde-

pendent and identically distributed (iid) and may even be skewed. Our experiments

in chapter 5 demonstrate that a very small dataset (e.g., 100 samples for Mnist and

FMnist) suffices to achieve our objectives. Such a small dataset can often be collected

from the public domain and manually labeled, making it a feasible approach.

3.2.2 Proposed Defence Approach: Credit-Based Client Se-

lection

Our defence strategy is inspired by the algorithm that was first proposed in the end

of 2021 (recall that in 2019, Google open-sourced the Federated Learning framework,

making it accessible to a broader community of researchers and developers). This

move encouraged further research and innovation in the field, including client selection

approaches.

Client Selection as depicted in Figure 3.2 [29], is an essential aspect of Federated

Learning defense mechanisms. The idea of utilizing the historical behavior of clients

to assess their trustworthiness has become more prominent in recent years as FL faces

security challenges. Value-based client selection gained traction as a defense strategy

in the mid-2021s. The idea of assigning value to clients based on their past contribu-

tions and behavior was proposed as an effective way to detect and mitigate poisoning

attacks. As research in Federated Learning defense progressed, various metrics and
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algorithms for computing values were proposed [65]. Researchers experimented with

different weighting schemes and update mechanisms to enhance the accuracy of the

model. Client selection became a crucial component of adversarial defense strategies

in FL. By excluding clients with low values, the defense mechanism aimed to improve

the robustness of the global model against poisoning attacks.

Figure 3.2: Client selection process in Federated Learning by involving credit scores

In our defense strategy, we explored existing client selection strategies and drew

inspiration from a method that credits clients based on their performance. Initially, we

decided to assign each client’s model accuracy as their corresponding score. However,

we later decided to incorporate the loss function of each client’s model into the score

calculation. We then implemented a sorting mechanism in the credit algorithm, where

clients with low credit scores are excluded from the training round, and only clients

with high accuracy and low loss metrics are allowed to participate.

Through extensive validation experiments involving two different model architec-

tures and three datasets, our approach demonstrated stability over non-iid data and

under imbalanced distribution. The proposed method aims to enhance the use of fed-

erated learning in training environments, particularly in addressing privacy concerns.

The objective is to achieve a higher accuracy of the aggregated global model (final

model) by disregarding poorly performing models or models that do not contribute

significantly to the overall improvement.

It is worth mentioning that the excluded models could be provided by two cate-

gories of users: 1) malicious users who may attempt data poisoning attacks, and 2)

cooperative users who might contribute data of poor quality. The proposed frame-
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work aims to eliminate the contributions of these user sets, as illustrated in Figure 3.3.

The process involves calculating a Credit score for each user, representing their con-

tributions and performance.

Figure 3.3: Federated Learning with our defensive strategy

In a federated learning scheme involving a base station and a set of C clients,

the clients collaborate with the base station to execute federated learning. Federated

learning ensures that the base station and users learn a shared learning model collab-

oratively while keeping all datasets locally on the clients’ devices. Each client trains

its local model using the data generated locally. The global model is aggregated at

the base station and distributed as a shared learning model. This shared federated

learning model is used to improve each client’s local model without transmitting their

data to a central server. The global federated learning model is generated at the base

station using the local model parameters from each client, which are uploaded from

the client to the base station, and then downloaded by each client’s device.

In a setting with N clients, we denote e as the number of epochs and i as the

identifier of a local client that participates in training. The data related to each
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client is stored in the dictionary Local[i], which includes information such as accuracy,

training loss, and accuracy score during the training process. Specifically, the training

results of a particular client in the e− th epoch are saved in Local[i][e]. On the other

hand, the global model features are stored in the dictionary Global[].

Algorithm 1 outlines the overall process of our proposed credit-based client selec-

tion. The selection of clients to participate in training in the current epoch is based on

the credit score of the models updated by the selected clients in previous epochs. This

credit score considers the accuracy and performance of each client’s model over time

and helps determine their eligibility for participation in the current training round

and will process a sorting algorithm in the rounds to determine the best updates and

clients with the best performance in each round.

Algorithm 1: Credit-Based Client Selection Procedure

Data: Data of local model, dictionary Local[]
Result: L: list of client IDs

1 for i in N users do
2 if Local[clienti] is an empty dictionary; /* First epoch or first time

this client being selected */

3 then
4 L← L ∪ {i}
5 else
6 e← number of epochs
7 loop over e
8 Let ni be the total of (Local[clienti][e][

′CreditScore′] > 0)
9 if ni < ni−1 then

10 z = ni;
11 ni−1 = ni;
12 ni = z;
13 ignore i from L;
14 Sorted;

Now, we are going to describe how to calculate the credit score, but first we are

going to give a brief mathematical description of how federated learning works and

also explain the loss function that we used for calculating our credits for the clients.

According to [71], the federated learning training process can be summarized into

three steps: initialization, local model training, and global aggregation.

1. Step 1: Initialization. The federated learning process begins with the param-

eter server determining the architecture of the global model. The parameters
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of the global model are then initialized either randomly or through pretraining

on a public dataset, this approach is the normal process of federated learning

randomly choosing the clients, that is why we decided to implement our own ap-

proach and choosing the clients based on their performance and not randomly.

After that, the clients will train depending on the specific training task. Sub-

sequently, the parameter server distributes the initial global model parameters

ω0 to the selected clients.

2. Step 2: Local model training. In the t-th communication round, each

selected client updates its local model parameters ωi
t based on the received global

model parameters ωt and using its local dataset. After local model training, the

updated local model parameters ωi
t+1 are sent back to the parameter server.

The objective of client i in the tth round is to minimize the empirical loss F (ωi
t)

based on its local dataset, according to Equation 3.7 and Equation 3.8, to make

its local model well fit to the data as well. In equation 3.8, |Di| denotes the

number of samples in dataset Di.

ωi
t = argmin

ωi
t

F (ωi
t), (3.7)

F (ωi
t) =

1

|Di|
∑
j∈Di

fj(ω
i
t), (3.8)

The update process in each client can be achieved by performing stochastic

gradient descent (SGD) with mini-batches sampled from its local dataset Di, as

per Equation 3.9. The local model parameters ωi
t in the t-th round are updated

as per Equation 3.9, where ∇F (ωi
t) represents the gradient of the loss function

with respect to the local model parameters ωi
t, and η is the learning rate. The

update is performed to minimize the empirical loss function F (ωi
t) based on the

local dataset Di.

ωi
t = ωi

t − η · ∇F (ωi
t), (3.9)

3. Step 3: Global Aggregation. In each round, the parameter server aggregates

the locally updated parameters from selected clients and replaces the global

model with the average model. The updated global model parameters ωi
t are

then sent back to the selected clients. The aim is to minimize the global loss
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function, which can be expressed as follows:

F (ωt) =
1

|D|

N∑
i=1

|Di| · F (ωi
t), where i ∈ {1, 2, . . . , N}, (3.10)

This iterative process continues for multiple rounds until the global model converges

or a stopping criterion is met. The aim is to collaboratively learn a shared learning

model across all clients without sharing their raw data, thereby achieving privacy

preservation while improving the overall performance of the global model. These

steps are repeated until the desired accuracy is achieved. Compared to traditional

model training approaches, federated learning offers several advantages such as pri-

vacy preservation, Efficient resource utilization and lower inference latency.

Now that we have explained how federated learning works and what a loss function

is, we are going to describe the credit score used in our defense method.

Credit score: It serves as an assessment of each local model’s suitability for ag-

gregation into the global model. It plays a crucial role in identifying underperforming

models and malicious users, thereby ensuring the accuracy of the global model. At

the beginning of each epoch, every user’s credit score is calculated. The following

equation shows the parameters we used to calculate the credit score.

CreditScore = F (Wacc,Wloss) = W1(acc)−W2(µ× loss), (3.11)

Algorithm 2 outlines the entire process of calculating the credit score, which takes

into account two key parameters: accuracy and loss, and more importantly, the sorting

process that will take place. These parameters are used to determine the contribution

of each local model, influencing their credit score.

The training process halts either when the learning curve converges or when the

system exhausts the available local users, or when it reaches the appointed number of

clients. The evaluation of each local model’s test accuracy is done using two metrics

to determine their credit score (equation 3.11).

First, the test accuracy of local models in each epoch is compared to compute an

average test accuracy while appending the loss of their desired performance. Models

that perform below the average are given a lower credit, while those that outperform

the average are favored.

Second, the test accuracy of each local model is compared to the rest of the clients
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Algorithm 2: Computation of Credit-Score in the local model in epoch e

Data: Data of local model, dictionary Local[]
Result: Local[i][e][Credit− Score]

1 for all users i do
2 total += Local[i][e][accuracy]

3 average = total
n

4 for all user i do
5 if Global[e-1] has no value then
6 Local[clienti][e][Credit-Score] =

(Local[clienti][e][accuracy])× w1− (µ×Global[e][Loss])× w2
7 else
8 e← number of epochs
9 loop over e

10 Let ni be the total of (Local[clienti][e][
′CreditScore′] > 0)

11 if Local[clienti][e][Credit-Score] < Local[clienti−1][e][Credit-Score] then
12 Store = Local[clienti−1][e][Credit-Score];
13 Local[clienti−1][e][Credit-Score] = Local[clienti][e][Credit-Score];
14 Local[clienti][e][Credit-Score = Store;
15 ignore i from L;
16 Sorted;

credit score; if a local model performs worse than other clients, it receives a negative

contribution to its credit score. This metric helps in selecting the best models at each

epoch, eliminating poor models with negative credit score before they are aggregated

into the global model. However, they will have a chance to come back at the next

epoch.

Third, each client’s weight is compared to other nine clients to assess its improve-

ment. A positive comparison indicates a positive contribution to the credit score,

and this is done via the sorting algorithm and signifying an improvement over the

previous global model.

By considering these two metrics, a positive credit score indicates a positive con-

tribution from the local model. Conversely, a poorer performance compared to the

other clients’ weights or lack of improvement over the previous global model would

result in a negative impact on the credit score. As local models are trained further

after each epoch, their performance is likely to improve, leading to positive contri-

butions to their credit score. The sorting algorithm used in our research is called

”argsort.” It is a function provided by the NumPy library in Python. The argsort
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function performs an indirect sort on an array and returns the indices that would sort

the array in ascending order.

In the context of the code, the argsort function is used to sort the clients based on

their current credit scores, or most importantly, client weights in descending order.

The line sortedclients = np.argsort(clientweights) performs the argsort operation

and stores the indices of the clients in the sorted order with the highest credit score

at the beginning of the sortedclients list.

By sorting the clients based on their credit scores, the code ensures that the clients

with the highest credit or highest scores are considered first during the federated

learning process, allowing their model updates to have a greater influence on the

global model. This sorting strategy is an essential part of our credit-based client

selection mechanism and helps prioritize reliable clients with better performance in

the federated learning process.

Of course, this will raise the question about the clients that do not participate in

the current round; if a client does not participate in the current round (i.e., it is not

selected for model update in the current round), it will not have any effect on the

global model for that round. The client’s model will not be updated with new data,

and its model update will not be included in the computation of the global model.

As we mentioned, during the federated learning process, the clients are selected

based on their credit scores (clientweights) and are sorted in descending order of

their credit scores using the argsort function. The clients with the highest credit

scores are selected first and used for model updates, while the clients with lower

credit scores may not be selected in the current round. After calculating the credit

scores, the clientweights list is populated with the credit scores, which act as weights

for the clients during the federated averaging process. These weights are normalized

to ensure they sum up to 1, effectively determining the contribution of each client to

the global model.

As a result, clients that are not selected in a particular round will keep their

models unchanged, and their previous model updates will not be considered in the

aggregation of the global model for that round. However, these clients will still

be considered for future rounds, and their credit scores may change based on their

performance in subsequent rounds. The hyperparameter that we used µ, and the term

0.5 × loss in the credit score calculation is an arbitrary coefficient used to balance

the contribution of accuracy and loss in the overall credit score. Our goal was to

combine both accuracy and loss metrics into a single credit score that reflects the
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client’s performance in the federated learning process. Here, ”accuracy” represents

the accuracy of the client’s model on the test data, and loss represents the loss (in

this case, the cross-entropy loss) of the client’s model on the same test data. The

loss metric measures how well the model’s predictions match the true labels, while

accuracy measures the overall correctness of the model’s predictions.

By subtracting 0.5× loss from accuracy, the credit score gives more weight to ac-

curacy while still taking the loss into account. The coefficient 0.5 is chosen arbitrarily

and can be adjusted based on the application or desired behavior. For example, a

higher coefficient for loss might be used if the loss is considered to be more critical in

certain scenarios.

The idea behind including both accuracy and loss in the credit score is to in-

centivize clients to not only improve their accuracy but also to reduce their model’s

loss during the federated learning process. This helps in selecting clients with better-

performing models for model aggregation and potentially improving the overall per-

formance of the global model.
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Chapter 4

Datasets

In our study, we draw inspiration from existing research in Federated Learning (FL)

[5, 18, 55, 56, 62] and we focus on three widely used image classification datasets:

Mnist [38], FMnist [13], and CIFAR-10 [33].

4.1 Mnist

The Mnist dataset [38, 39] is a widely recognized and extensively used 10-class

grayscale digit image classification dataset as shown in Figure 4.1 [4]. It comprises a

total of 70,000 images, out of which 60,000 images are designated for training, and

the remaining 10,000 images are reserved for testing purposes. Each image in the

dataset is of dimensions 28× 28 pixels.

For the purpose of our research, we distribute the training data among 10 clients

and 100 clients, with each client receiving an equal subset of the number of samples.

This distribution ensures that each client has a representative and diverse set of

training examples to develop robust and accurate local models. By dividing the

data among multiple clients, we aim to explore federated learning scenarios where

each client trains its model locally without sharing their raw data, enabling privacy-

preserving collaborative model training.

The Mnist dataset’s popularity arises from its simplicity, making it an excellent

benchmark for evaluating various image classification algorithms, including tradi-

tional machine learning methods and deep learning techniques. Its manageable size

and balanced class distribution contribute to its suitability for exploring federated

learning approaches and providing valuable insights into model performance across
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Figure 4.1: Example of the Mnist database [4]

decentralized environments. Below is a full description and history of the Mnist

database:

1. Name: Mnist (Modified National Institute of Standards and Technology) Dataset

2. Source: The Mnist dataset is derived from the original NIST Special Database

19, which was collected by the National Institute of Standards and Technology

(NIST) for the purpose of developing and evaluating optical character recogni-

tion (OCR) algorithms. The Mnist dataset, as used in this study, is a processed

and modified version of the NIST dataset to fit the requirements of machine

learning applications.

3. Description: The Mnist dataset is a well-known and widely used benchmark

dataset in the machine learning community. It consists of a collection of grayscale

images of handwritten digits (0 to 9) [4], with each image represented as a

28 × 28 pixel matrix. The images have been normalized and centered, making

the dataset suitable for machine learning tasks, particularly image classification.

4. Size: The Mnist dataset comprises a total of 70,000 samples, which are further

divided into 60,000 training samples and 10,000 test samples. The division of

data into training and test sets allows for the evaluation and comparison of

various machine learning models in a controlled manner.
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5. Image Format: Each image in the Mnist dataset is represented as a grayscale im-

age, where each pixel’s intensity value ranges from 0 (black) to 255 (white). The

grayscale representation simplifies the input for machine learning algorithms by

reducing the complexity of color-based information.

6. Label Format: Each image in the Mnist dataset is associated with a correspond-

ing label, indicating the digit (0 to 9) it represents. The digit labels are used

as the ground truth for the training and evaluating of classification models.

7. Data Distribution: The Mnist dataset is carefully constructed to ensure a bal-

anced distribution, where each digit class is equally represented, resulting in

approximately 7,000 samples per digit class. This balanced distribution en-

sures that machine learning models do not exhibit biases towards specific digits

during training and testing.

8. Purpose: The primary purpose of the Mnist dataset is to serve as a benchmark

for evaluating the performance of various machine learning algorithms, partic-

ularly in the domain of image classification. It has been widely used to assess

the effectiveness of different approaches, including traditional machine learning

methods and deep learning models.

9. Difficulty Level: While the Mnist dataset is considered relatively simple com-

pared to more complex real-world datasets, it remains a valuable resource for in-

troductory machine learning tasks and serves as a stepping stone for researchers

and learners to grasp fundamental concepts in image recognition and classifica-

tion.

10. Use Case: The Mnist dataset is commonly employed in training and testing

classifiers to recognize handwritten digits. It finds applications in optical char-

acter recognition (OCR) systems, digit classification tasks, and various other

image recognition scenarios.

11. Relevance: Despite being introduced in the late 1990s, the Mnist dataset re-

mains relevant as a standard benchmark in the machine learning community.

Its popularity stems from its simplicity, which facilitates quick experimenta-

tion and comparison of different algorithms, making it a valuable resource for

educational purposes and initial model testing.
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The Mnist dataset’s longevity and widespread usage can be attributed to its ability

to provide valuable insights into the performance and limitations of various machine

learning models, making it an essential component of machine learning research and

experimentation.

4.2 Fashion Mnist (FMnist)

FEMnist [13, 53], short for Federated Extended Mnist, is an augmented version of

the Mnist dataset, encompassing a more extensive and diverse collection of hand-

written character digits. The dataset is notably larger, comprising a total of 814,255

grayscale images. These images are derived from handwritten examples provided by

3400 individuals, and each example is converted into a standardized 28×28 pixel im-

age format. Also there is a second version of FEMnist called Fashion Mnist(FMnist)

dataset as shown in Figure 4.2 [66], which is a popular image classification dataset

used as a benchmark for machine learning and computer vision tasks. It serves as a

direct replacement for the classic Mnist dataset but offers more diverse images. The

dataset comprises 10 distinct classes, each representing a different fashion item: a.

T-shirt/top, b. Trouser, c. Pullover, d. Dress, e. Coat, f. Sandal, g. Shirt, h.

Sneaker, i. Bag and j. Ankle boot. Fashion Mnist is commonly used to evaluate

the performance of various machine learning and computer vision algorithms, such as

deep learning models and image classifiers.

What sets FMnist apart from Mnist is the inclusion of 62 distinct classes in the

dataset. These classes encompass both upper and lower case letters, along with the

traditional digits. Specifically, there are 52 classes representing various alphabetic

characters and an additional 10 classes corresponding to numerical digits.

The expansion of classes in FMnist not only increases the dataset’s complexity but

also adds greater variability and challenges for model training and classification tasks.

This augmentation makes FMnist an excellent choice for evaluating the performance

and robustness of federated learning models across a more diverse set of image recog-

nition tasks. As with Mnist, FMnist facilitates the exploration of privacy-preserving

collaborative model training approaches, where individual client data remains locally

secure, yet contributes collectively to the development of a more accurate and versatile

global model. Hence, it is perfect for federated learning settings.

Below, we provide a detailed overview and history of FMnist, covering 11 aspects

of the dataset:
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Figure 4.2: Class names and example images in FMnist database [66]

1. Dataset Origin: FMnist is generated by collecting handwritten character digits

from a diverse group of 3400 individuals.

2. Image Format: Each example in FMnist is represented as a grayscale image of

dimensions 28× 28 pixels.

3. Dataset Size: FMnist is substantially larger than the original Mnist dataset,

comprising a total of 814,255 images.

4. Number of Classes: Unlike Mnist, which contains 10 classes representing nu-

merical digits (0 to 9), FMnist expands the class set to include a broader range

of characters.

5. Class Distribution: FMnist encompasses 62 distinct classes, organized into dif-

ferent categories: a. 52 classes represent uppercase and lowercase letters of the
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alphabet. b. 10 classes represent numerical digits (0 to 9).

6. Class Imbalance: Due to the inclusion of multiple alphabetic characters, FMnist

exhibits class imbalance, with some classes having more samples than others.

7. Handwriting Variation: As FMnist is derived from real handwritten examples,

it captures natural variations in writing styles, shapes, and sizes.

8. Privacy Preservation: FMnist is designed for federated learning scenarios, where

data privacy is crucial. Each individual’s data is kept locally on their respective

devices, ensuring privacy while contributing collectively to model training.

9. Federated Learning Setting: The dataset is intended for evaluating and devel-

oping federated learning algorithms, where local models on individual devices

are updated and aggregated to create a more accurate global model.

10. Multiclass Classification: FMnist presents a challenging multiclass classification

task, with models required to identify both letters and numerical digits.

11. Real-World Application: FMnist is well-suited for testing federated learning in

real-world applications, where users’ devices collectively collaborate in model

training without sharing raw data.

Overall, FMnist provides a valuable resource for researchers and practitioners

in the field of federated learning. Its larger size, diversified classes, and privacy-

aware nature make it a suitable benchmark dataset for evaluating the performance

and robustness of federated learning algorithms in handling real-world scenarios and

protecting data privacy.

4.3 Cifar-10

CIFAR-10 [33] is a well-known color image classification dataset, widely used in the

field of machine learning and deep learning. The dataset consists of images, which

are divided into a training set and a test set as shown in Figure 4.3 [2].

The CIFAR10 dataset, created by the Canadian Institute For Advanced Research,

comprises ten distinct classes, each containing 60,000 color images of 32×32 resolu-

tion. The dataset is further divided into 50,000 training images and 10,000 testing

images. Within the testing dataset, in most cases (not our case) there are precisely



40

Figure 4.3: Visualization of the CIFAR 10 Train Dataset in the Deep Lake UI [2]

1,000 images randomly selected from each class, ensuring a balanced representation

of all categories during evaluation [34, 35]. On the other hand, the training datasets

may exhibit slight variations in the number of images per class, but on average, they

contain 5,000 images per class. This variability arises due to the random arrangement

of images, which adds diversity to the training process and fosters a more robust and

generalizable model. Below is a detailed overview of the dataset:

1. Training Set: The training set comprises 50,000 color images, carefully labeled

with corresponding class labels. These images are used to train machine learning

models and neural networks to recognize various object categories.

2. Test Set: The test set consists of 10,000 color images, used for evaluating the

performance of the trained models. It serves as an unseen dataset during train-

ing, enabling researchers to assess the generalization capabilities of their models.

3. Image Format: Each image in the CIFAR-10 dataset is represented in RGB

(Red, Green, Blue) color space, allowing for rich color information to be cap-

tured. This makes it suitable for tasks that involve color-based classification.
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4. Image Size: The images are standardized to a resolution of 32× 32 pixels. This

relatively small size presents a challenge for models, as they need to infer object

categories from limited spatial information.

5. Class Labels: CIFAR-10 consists of ten distinct classes, each representing a

specific object category. The classes include: Airplane, Automobile, Bird, Cat,

Dee, Dog, Frog, Horse, Ship and Truck.

6. Class Distribution: The dataset maintains a balanced distribution of samples

across its ten classes. Each class contains an equal number of images, totaling

6,000 images per class.

7. Real-World Data: CIFAR-10 is composed of real-world images, depicting var-

ious everyday objects encountered in daily life. The diversity of object cat-

egories enhances the dataset’s ability to address real-world image recognition

challenges.

8. Benchmarking: Due to its challenging nature and wide range of object cate-

gories, CIFAR-10 serves as a prominent benchmark dataset for evaluating the

performance of image classification algorithms. Researchers often use it to com-

pare and assess the effectiveness of different models and techniques.

9. Data Augmentation: To augment the dataset and increase the robustness of

models, data augmentation techniques are commonly applied during training.

These techniques include random rotations, translations, flips, and color trans-

formations, enabling models to generalize better to unseen data.

10. Research Impact: CIFAR-10 has significantly contributed to the advancement

of computer vision research, particularly in the development of deep learning

algorithms. It has been used to train state-of-the-art convolutional neural net-

works (CNNs) and explore various techniques, such as transfer learning and

network architectures.

In conclusion, CIFAR-10 is a valuable and widely recognized dataset that offers

researchers an opportunity to study image classification tasks in real-world scenarios.

Its diverse object categories, realistic images, and challenging characteristics make it

an essential resource for advancing the field of computer vision and machine learning.
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4.4 Data Preprocessing

Preprocessing refers to the series of steps and techniques applied to raw data before it

is used in a machine learning or data analysis task. The main purpose of preprocessing

is to clean, transform, and format the data in a way that makes it suitable for further

analysis and model training [15, 21]. Preprocessing is a critical step in the data science

workflow, as the quality and structure of the data directly impact the performance

and accuracy of machine learning models. Some common preprocessing steps are

shown in Figure 4.4 [21] and include:

Figure 4.4: Visualization of data preprocessing steps [21]

• Data Cleaning: Removing or handling missing data, outliers, or noisy data

points that could negatively impact model performance.

• Data Normalization or Scaling: Scaling the data to a similar range or normaliz-

ing it to have a mean of zero and a standard deviation of one. This step ensures

that features with different scales do not dominate the model training process.

• Feature Selection: Selecting relevant features or attributes from the data to

reduce dimensionality and focus on the most important information.

• Feature Engineering: Creating new features or transforming existing ones to

extract meaningful information and improve model performance.

• Encoding Categorical Variables: Converting categorical variables into numerical

representations that machine learning algorithms can understand.
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• Handling Imbalanced Data: Addressing class imbalances in classification tasks

to prevent bias towards the majority class.

• Splitting the Data: Dividing the data into training, validation, and testing sets

to evaluate the model’s performance accurately. Handling Text and Image Data:

For natural language processing (NLP) tasks, tokenizing and vectorizing text

data.

For image processing tasks, the steps also include resizing and normalizing image

data. The specific preprocessing steps and techniques used depend on the nature of

the data and the machine learning algorithm being applied. Proper preprocessing

ensures that the data is in the best possible form for accurate model training and

reliable insights.

4.4.1 Preprocessing Mnist

For preprocessing the Mnist dataset [61, 64], we first loaded the Dataset, The Mnist

dataset is loaded using TensorFlow’s tf.keras.datasets.Mnist.load data() function. This

function directly provides the train and test images along with their corresponding

labels. Second is data Splitting: the loaded training images and labels are combined

into a list of tuples called federated train data, where each tuple contains an image

and its corresponding label. The entire dataset is then split into 100 shards using

the np.array split() function. Each shard represents a subset of the dataset, which

simulates the distribution of data among multiple clients in federated learning. Third,

the model architecture is defined using tf.keras.Sequential. It consists of three layers:

a Flatten layer, a hidden Dense layer with ReLU activation, and an output Dense

layer with Softmax activation. This architecture is designed to handle the 28x28 pixel

images of Mnist, then we start the training on Shards; The train on shard() function

is defined to train the model on a shard of the dataset. The function takes the shard

data (images and labels) and the model as inputs. The images and labels are con-

verted to numpy arrays using np.array() for efficient processing, and then the model

is trained on this shard for one epoch using model.fit().

4.4.2 Preprocessing FMnist

The preprocessing of the Fashion Mnist dataset [41] is done using the TensorFlow and

NumPy libraries, same as the Mnist dataset as they both has the similar structure.
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Here’s a step-by-step description of the preprocessing [36].Loading the Dataset:The

Fashion Mnist dataset is loaded using TensorFlow’s built-in function tf.keras.datasets.

fashion Mnist.load data().This dataset contains images of clothing items like shirts,

trousers, dresses, etc. Data Split: The loaded dataset is divided into two sets: the

federated training data and the test data. The federated training data is further split

into 100 shards using np.array split() function. The model architecture is defined

using TensorFlow’s Sequential API, the same as Mnist dataset. The model consists

of a Flatten layer to convert the 28 × 28 image data into a 1D array, followed by a

Dense layer with 128 units and a ReLU activation function. The final layer is another

Dense layer with 10 units (equal to the number of classes in Fashion Mnist) and a

softmax activation function to predict the class probabilities. Training the Model

on a Shard: The function train on shard() is defined to train the model on a single

shard of the federated training data. The function takes a shard of images and their

corresponding labels, converts them to NumPy arrays, and fits the model on the data

for one epoch.

4.4.3 Preprocessing Cifar-10

The preprocessing of Cifar-10 is slightly different [51]. In our research, the CIFAR-10

dataset is loaded and preprocessed before being used for federated learning. The

preprocessing steps include loading the dataset, splitting the data into shards, and

defining the model architecture, so the steps are same as the Mnist abd FMnist

databases. First is loading the CIFAR-10 dataset. The implementation uses the

tf.keras.datasets.cifar10.load data() function to load the CIFAR-10 dataset. Then

the dataset is split into training and testing sets, containing images and correspond-

ing labels. Sharding the data into 100 shards: The federated train data variable is

created as a list of tuples, where each tuple contains an image (32 × 32 × 3 array)

and its corresponding label (single integer). The data is then split into 100 shards

using the np.array split() function. This step is specific to federated learning, where

data is divided into non-overlapping subsets (shards) to simulate distributed clients.

Lastly is defining the model Architecture: The model architecture is defined using

tf.keras.Sequential, which is a linear stack of layers. The model starts with three

Convolutional layers (Conv2D) with ReLU activation, followed by two Max Pooling

layers (MaxPooling2D). Then, a Flatten layer is added to convert the 3D feature

maps into a 1D vector. After that, a Dense layer with ReLU activation is used as
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a hidden layer, followed by the output Dense layer with 10 neurons using Softmax

activation for 10 classes. Compilation of the Model: The model is compiled using

the compile() method of the Keras model. The optimizer used is ’adam’, a popular

optimization algorithm based on adaptive learning rates. The loss function is set to

’sparse categorical crossentropy’ since the dataset contains integer labels. The met-

rics are defined as ’accuracy’ to monitor the model’s performance during training.

These preprocessing steps prepare the CIFAR-10 dataset for the federated learning

process [51]. The federated learning process includes training models on shards of the

dataset, aggregating models using federated averaging, and updating client weights

based on credit scores that we described in chapter 3.
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Chapter 5

Experiments, Results, and

Discussion

In this chapter, we present the setup for our implementation, the frameworks utilized

in our experiments, and the parameters explored during our study. We demonstrate

the results of employing the credit-based client selection approach both with and

without attacks. We conduct experiments under normal settings and investigate the

impact of varying parameters for the attack weight and loss function. Through this

analysis, we showcase how these mechanisms and parameter choices influence the

performance of the model.

5.1 Federated Learning Parameters and Settings

In our experiments, we set the number of clients N to 100 for the Mnist and CIFAR-

10 datasets, and for the larger FMnist dataset, we consider N as 500 to simulate

the cross-device federated learning scenario. In each federated learning round, we

select n clients to participate based on our state-of-the-art credit-based client selection

mechanism, where n is set to 30 for Mnist and CIFAR-10, and 50 for FMnist. But for

demonstration purposes, we are going to simulate 10 clients for each dataset so we

can demonstrate the results in the tables. To represent malicious clients, we assume

a default malicious fraction which is the malicious weight ω equal to 0.1, but we also

investigate the impact of varying ω values. Most importantly, to represent the impact

of our defence, we incorporated ζ as a parameter for our loss function in our equation,

the initial value is 0.5, but we test our results with different values.
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For training the Mnist and CIFAR-10 datasets, we employ the SGD optimizer

with a learning rate initialized to 0.01. The training process is carried out for a total

of R = 100 FL epochs, and the learning rate is reduced after every 30 epochs. As

for FMnist, we conduct R = 100 FL epochs with a learning rate of 0.02. An epoch

is one complete pass through the entire training dataset during the training process.

In other words, it is the number of times the model sees the entire dataset. For

example, if we have 100 training samples and you train your model for 10 epochs, it

means the model will go through the entire dataset 10 times during training. The

local batch size B is set to 10 for Mnist and FMnist, while for CIFAR-10, it is set to

32. The batch size is the number of samples that are processed by the model at each

iteration during training. Instead of updating the model’s weights after processing

each individual sample, the model computes the gradients based on a small batch

of samples and updates the weights after each batch. The batch size is typically a

hyperparameter that can be adjusted to control the trade-off between computation

efficiency and convergence speed. Larger batch sizes can be more computationally

efficient, but smaller batch sizes may offer better generalization and convergence. And

lastly, the number of local epochs is defined as 10 for Mnist, CIFAR-10, and also 10

for FMnist. Table 5.1 presents a summary of the federated learning parameters and

their default values used in our experiments unless stated otherwise.

Table 5.1: Federated Learning parameter values for all datasets

Parameter Name Mnist CIFAR-10 FMnist
N (Total # of Clients ) 100 100 500
n (Total # of Participents) 30 30 50
R (# of FL Rounds) 100(10) 100(10) 100(10)
B (Batch Size) 32 32 32
ω (Malicious Weight) 0.2 0.2 0.2
ζ (loss) 0.5 0.5 0.5
r (Local Epochs) 10 10 10

5.2 Model Artitucture

We employ diverse model architectures tailored to each dataset. Specifically, for Mnist

and FMnist, we utilize a convolutional neural network (CNN) with the architecture
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presented in Table 5.2 [37]. As for CIFAR-10, we adopt the VGG-11 [57] network

which is presented in Table 5.3. It is important to note that all clients use the same

model architecture as the global model for consistency and fair comparison.

Table 5.2: The CNN architecture for Mnist and FMnist

Layer Size
Input 1× 28× 28
Conv 1 +Relu 5× 5× 10
Max Pooling 2× 2
Conv 2 +Relu 5× 5× 20
Max Pooling 2× 2
FC1 +Relu 50
FC 2 10

Table 5.3: The CNN architecture for Cifar 10

Layer Size
Input 3× 32× 32
Conv 1 + Relu 30× 30× 32
Max Pooling 15× 15× 32
Conv 2 + Relu 13× 13× 64
Max Pooling 6× 6× 64
FC 1 + Relu 64
FC 2 10

The CNN layers are described as follows:

• The input size of the model refers to the dimensions of the input data that the

model expects to receive. For example, for the setting dataset, the input size

is (32, 32, 3). The first two numbers, 32x32, represent the spatial dimensions

of the input image. Each image is 32 pixels wide and 32 pixels high. The

last number, 3, represents the number of color channels in the input image. It

indicates that the images are in RGB format, with three color channels (Red,

Green, and Blue). So, the model expects input images with a resolution of

32x32 pixels and three color channels, which is a common size for images in the

CIFAR-10 dataset [54, 27, 48, 1, 42, 49, 31, 24].
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• The Convolutional Layer 1 + ReLU size refers to the output size of the first

convolutional layer in the model after applying the Rectified Linear Unit (ReLU)

activation function. The ReLU activation function introduces non-linearity,

allowing the model to learn complex patterns and representations from the

input data.

• The Max Pooling Layer 1 reduces the spatial dimensions of the input tensor.

In Cifar 10 artitecture, the Max Pooling Layer 1 is applied after Convolutional

Layer 1. The Max Pooling operation helps in reducing the number of param-

eters and computational complexity in the network while preserving the most

important features.

• The Convolutional Layer 2 + ReLU size refers to the spatial dimensions of

the output tensor after applying Convolutional Layer 2 followed by the ReLU

activation function. In Cifar 10, the second Convolutional Layer is defined with

64 filters, each having a kernel size of (3, 3), and the ReLU activation function

is applied after the convolution operation.

• The Fully Connected Layer 1 + ReLU refers to the number of neurons in the

layer after applying the first fully connected (dense) layer followed by the ReLU

activation function. In our setting, the first fully connected layer is defined with

64 neurons, and the ReLU activation function is applied after this dense layer.

• In our experiment, the ”Fully Connected Layer 2” refers to the last layer of the

neural network, also known as the output layer. This layer is a fully connected

layer with 10 neurons, corresponding to the 10 classes in the settings. The

output of this layer is used to make predictions for the input images. Each

neuron in this layer represents a different class, and the final predicted class is

the one with the highest activation value among these neurons.

5.3 Experiments

All experiments were conducted on an ASUS TUF Laptop equipped with a 3.30 GHz

Intel Core i7 CPU, 1TB GB hard disk, and 8GB of memory. The experiments were

performed on a Windows 10 Professional operating system with a 64-bit architecture.

The code used for the experiments was implemented in Python 3.7, and the libraries

used were TensorFlow 2.3.4 and TensorFlow federated 0.17.0; also, we used Keras and
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numpy libraries with TensorFlow datasets. for experimental purposes, be advised that

the pip must be updated in order to have the required libaries and packages such as

grpcio, h5py, tensorboard and wheel.

5.4 Evaluation Metrics

To assess the performance of our proposed credit-based client selection method in

federated learning, we employ two key evaluation metrics, the Accuracy and Loss

functions. These metrics help us gauge the effectiveness and robustness of our ap-

proach. The accuracy metric as per equation (1) measures the overall performance

of the global model on the test dataset. We evaluate the global model’s accuracy

before and after applying our client selection method. The goal is to observe how the

accuracy is affected when only a subset of clients, specifically 10 out of 100 clients, are

selected to participate in each round of federated learning under different conditions.

We perform 100 rounds of federated learning to obtain reliable results.

In addition to accuracy, we also consider the loss function in equation (2) as an

evaluation metric. The loss function measures the discrepancy between the predicted

outputs of the model and the actual labels of the data points in the training dataset.

Similar to accuracy, we evaluate the global model’s loss function before and after ap-

plying the client selection method to assess the impact on model performance under

various conditions. By analyzing the accuracy and loss function of the global model

under different rounds and using our client selection method, we aim to demonstrate

the effectiveness and efficiency of our approach in improving the performance of fed-

erated learning while reducing computational and communication overhead.

Overall, our evaluation process is designed to provide insights into the performance

of our client selection method, considering accuracy, loss function, and the impact of

selecting a subset of clients on the global model’s performance over 100 rounds of

federated learning. The calculation of Precision and Recall is also given in Equations

(3) and (4), respectively, as one of the common metrics for evaluating the performance

of the models. Let True Positive (TP) be the number of instances that are correctly

classified as positive by the model. In other words, these are the instances that

belong to the positive class, and the model correctly predicted them as positive. True

Negative (TN) be the number of instances that are correctly classified as negative

by the model. These are the instances that belong to the negative class, and the

model correctly predicted them as negative. Let False Positive (FP) be the number
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of instances that are incorrectly classified as positive by the model. These are the

instances that belong to the negative class, but the model incorrectly predicted them

as positive. Lastly, let False Negative (FN) be the number of instances that are

incorrectly classified as negative by the model. These are the instances that belong

to the positive class, but the model incorrectly predicted them as negative.

Accuracyc =
True Positive + True Negative

True Positive + True Negative + False positive + False Negative
(1)

Lossc = L = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (2)

Precisionc =
True Positive

True Positive + False Positive
(3)

Recallc =
True Positive

True Positive + False Negative
(4)

5.5 Evaluation of the Defense Mechanisms

Firstly, we evaluated the performance of our model under normal conditions with the

aggregation algorithm Federated averaging (FedAvg), without the credit-based client

selection algorithm to determine the benchmark for our mechanism. Then, we eval-

uated our attack with different malicious weights and different numbers of poisoning

rounds to demonstrate the impact of the attack without the defence mechanism. In

the context of our attacks, the objective of the attacker is to reduce the global model’s

accuracy on any input data. Thus, in this study, we quantify the impact of the attack

by evaluating the difference in the global model’s testing accuracy before and after

the attack. Then, we evaluated our model without the presence of the attacker, using

our credit-based client selection approach to showcase the fidelity of our mechanism.

Lastly, we consider the worst-case adversarial conditions for our defense mechanism to

emphasize the robustness of our method, using different poisoning rounds and various

malicious weights when applying our credit-based client selection method.

Note that we used the qualifying method for considering the clients; in each round,

there are 10 clients out of 100 that participate in the current rounds, but our algorithm

chooses different clients in each round. For demonstration purposes, we assigned
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numbers 1 to 10 to the clients in each round, i.e., client number 1 in round number

2 is the client who had the first results in round number 2, so client number 1 in our

table does not mean client with index 1 in the dataset, it means first client that was

displayed in our output.

5.5.1 Experiments with FedAvg Algorithm without Credit-

Based Client Selection

In this section, we present the benchmark results obtained from our experiments. The

Federated Averaging algorithm (FedAvg) yielded an impressive accuracy of 90.1% on

the Mnist dataset as seen in table 5.4, while for the FMnist dataset, we achieved an

accuracy of 84.5% as shown in table 5.5. For the CIFAR-10 dataset in table 5.6, we

evaluated two architectures, and the VGG-11 model emerged as the most successful

one as seen in table 5.7, achieving a high accuracy of 69.8%. These benchmark results

serve as the foundation for comparing the performance of our proposed approaches

under different scenarios. In Figure 5.2 and Figure 5.1 we show the comparison of

three datasets with their accuracy and also the comparison of the accuracy of Cifar-10

with two architectures.

Table 5.4: Mnist global model accuracy with FedAvg algorithm

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 80.6 80.5 80.4 79.6 80.9 81.6 80.7 79.3 80.4 80
Round 11-20 81.9 82.9 82.7 83.6 83.1 83.9 84 83.4 83 83.5
Round 21-30 83.5 84.9 84 84.1 84.3 84.7 83.6 83.9 83.5 83.6
Round 31-40 84.3 84.1 84.5 83.9 84.7 84.5 84.6 84.7 84.1 85
Round 41-50 84.9 85.1 85.3 85.7 85.9 85.6 85.9 85.1 85.7 85.6
Round 51-60 86.1 86.7 86.2 86.3 86.1 86.4 86.9 86.8 87 86.9
Round 61-70 86.9 87.1 87.6 87.9 87 87.3 87.4 87.5 87.6 87.6
Round 71-80 87.5 88.1 88.3 88.6 87.6 88.2 88.4 88.1 88.6 88.9
Round 81-90 89.3 89.1 89.5 89.4 89.7 89.1 89.6 89.3 89.1 89.4
Round 91-100 89.9 90.5 90.8 90.7 90.6 90.4 90.7 90.6 90.9 90.8
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Table 5.5: FMnist global model accuracy with FedAvg algorithm

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 79.9 79.8 79.7 79.9 79.5 79.6 79.5 79.6 79.8 79.1
Round 11-20 79.9 79.7 80.2 80.5 79.9 80.9 80.7 80.8 80.6 80.1
Round 21-30 80.2 80.7 80.9 80.6 80.7 80.9 80.3 80.7 80.8 80.9
Round 31-40 81.1 80.9 81.3 81.4 81.8 81.7 81.6 81.6 81.7 81.6
Round 41-50 81.9 82 81.8 81.6 81.7 82.3 82.1 82 82.1 82.2
Round 51-60 82.3 82.6 82.4 82 82 82.1 82.4 82.7 82.5 82.6
Round 61-70 82.9 82.8 82.9 82.7 82.6 82.9 82.6 83.1 83 83.3
Round 71-80 83.2 83.6 83.6 83.9 83.9 83.8 83.7 83.8 83.9 83.4
Round 81-90 83.9 83.8 83.8 83.9 83.7 83.6 83.4 83.9 83.4 83.5
Round 91-100 84.9 84.3 84.7 84.9 84.6 84.7 84.1 84 84.4 84.3

Table 5.6: Cifar-10 global model accuracy with FedAvg algorithm

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 56.5 56.6 56.9 56.1 56.9 57.1 57.1 56.9 56.8 56.9
Round 11-20 57.5 57.8 57.8 57.6 57.2 57.6 57.3 57.9 57.8 57.9
Round 21-30 58.1 57.9 58.2 58.6 58.5 58.8 58.8 58.9 58.8 58.9
Round 31-40 58.8 58.7 59.1 59.3 59.4 59.6 59.4 59.1 59.2 59.3
Round 41-50 59.6 59.9 59.8 59.7 59.8 59.8 60.1 60.2 60.4 60.5
Round 51-60 60.3 60.5 60.9 61 61.3 61.8 61.9 61.7 61.9 61.9
Round 61-70 62.2 62.6 62.4 62.8 62.9 62.8 63 63.1 63.3 63.2
Round 71-80 63.4 63.6 63.8 63.9 63.3 63 63.4 63.7 63.5 63.7
Round 81-90 63.9 63.8 64.1 64.2 64.1 64.5 64.9 64.8 64.7 64.7
Round 91-100 64.5 64.8 64.7 64.2 64.5 64.3 64.4 64.8 64 64.1

Figure 5.1: Testing accuracy of Mnist, FMnist and Cifar-10

5.5.2 Experiments with FedAvg Algorithm with Credit-Based

Client Selection

In these experiments, we assessed the accuracy of the clients on three datasets: Mnist,

FMnist, and CIFAR-10 (Tables 5.8, 5.9, and 5.10, respectively). Implementing the

credit-based client selection method under normal circumstances showed almost iden-

tical results to the normal Federated Averaging (with less than 2% deviation). This
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Table 5.7: Cifar-10 global model accuracy with VGG-1 with FedAvg algorithm

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 61.8 61.7 61.5 61.6 61.4 61.3 61.2 60.9 60.6 61.1
Round 11-20 62.9 62.8 62.6 62.9 62.5 62.3 62.4 62.7 62.8 62.8
Round 21-30 64.5 63.9 63.8 63.5 63.6 63.4 63.7 63.6 63.2 63
Round 31-40 64.9 64.8 64.7 64.5 64.8 64.8 64.5 64.8 64.8 64.2
Round 41-50 64.9 64.8 65.1 65.2 65 64.8 64.9 64.9 64.8 64.7
Round 51-60 66.7 66.8 66.9 66.5 66.3 66.5 65.9 65.7 65.6 65.6
Round 61-70 67.5 67.2 67.3 67.1 66.9 66.8 66.9 66.8 66.9 66.7
Round 71-80 67.9 68.1 68.1 67.4 67.5 67.8 67.5 67.3 67.5 67.6
Round 81-90 69.1 68.8 68.4 68.5 68.6 68.4 68.4 68.5 68.5 68.2
Round 91-100 69.3 69.1 69.7 69.3 69 68.9 69.2 69.8 68.9 69.7

Figure 5.2: CNN and VGG-1 for Cifar-10

significant finding highlights one of the key contributions of our work, which is the

preservation of model fidelity. Unlike many other defense approaches, where model

performance typically decreases by more than 10%, our proposed method preserves

the model’s accuracy. Furthermore, in Figure 5.3, we visually demonstrate the accu-

racy of these datasets using the credit-based client selection algorithm. The compar-

ison of accuracy with and without the implementation of our approach is shown in

Figures 5.4, 5.5, and 5.6, further illustrating the fidelity of our experimental results.
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Table 5.8: Mnist global model accuracy with FedAvg algorithm with credit-based
client selection

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 78.6 78.5 78.5 77.6 78.9 79.7 79.7 77.4 78.4 78
Round 11-20 79.9 80.8 80.8 81.6 81.1 81.8 82 81.3 81 79.5
Round 21-30 82.5 82.9 82.2 82.1 82.4 83.6 81.6 81.8 82.5 79.6
Round 31-40 82.3 82.1 82.6 81.8 82.7 82.4 82.6 82.9 82.1 81
Round 41-50 82.9 83.1 83.4 83.8 83.7 83.6 83.8 83.2 83.7 83.6
Round 51-60 84.2 84.8 84.3 84.3 84.1 84.5 84.8 84.8 85 84.9
Round 61-70 84.8 85.1 85.5 85.9 85 85.4 85.6 85.5 85.6 85.6
Round 71-80 85.5 861 86.3 86.6 85.6 85.2 85.4 85.1 85.6 85.9
Round 81-90 86.3 86.1 86.5 86.4 86.7 86.1 86.6 86.3 86.1 86.4
Round 91-100 87.2 87.5 87.8 87.8 86.6 86.6 87.7 87.6 87.9 87.5

Table 5.9: FMnist global model accuracy with FedAvg algorithm with credit-based
client selection

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 77.8 77.8 77.6 77.9 77.5 77.6 77.5 77.6 77.8 77.8
Round 11-20 77.8 77.7 78.1 78.5 77.9 78.9 78.7 78.8 78.6 78.1
Round 21-30 78.1 78.7 78.8 78.6 78.7 78.9 78.3 78.5 78.8 78.4
Round 31-40 79 78.9 79.4 79.4 79.8 79.4 79.4 79.5 79.7 79.5
Round 41-50 79.8 80 79.9 79.6 79.7 80.3 80.1 80 80.1 80.1
Round 51-60 80.2 80.6 80.8 80.4 80 80.1 80.5 80.7 80.5 80.7
Round 61-70 80.8 80.8 80.5 80.7 80.5 80.9 80.6 81.1 81 81.5
Round 71-80 81.1 81.6 81.4 81.9 81.9 81.8 81.7 81.8 81.9 81.2
Round 81-90 81.8 81.8 81.9 81.9 81.2 81.6 81.4 81.9 81.1 81.1
Round 91-100 82.8 82.3 82.7 82.9 82.6 82.7 82.1 82 82.4 82.9

Figure 5.3: Testing accuracy of Mnist, FMnist and Cifar-10 with credit-based client
selection
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Table 5.10: Cifar-10 global model accuracy with FedAvg algorithm with credit-based
client selection

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 59.4 59.7 59.5 59.6 59.4 59.3 59.2 58.9 58.6 59.3
Round 11-20 60.5 60.8 60.6 60.9 60.5 60.3 60.4 60.7 60.8 60.6
Round 21-30 63.7 61.9 61.8 61.5 61.6 61.4 61.7 61.6 61.2 61.3
Round 31-40 62.6 62.5 62.5 62.5 62.6 62.8 62.6 62.8 62.5 62.2
Round 41-50 62.1 62.2 62.2 62.3 63.6 63.8 63.7 63.6 63.9 63.1
Round 51-60 64.7 64.9 64.1 64.1 64.3 64.3 63.3 63.4 63.5 63.6
Round 61-70 65.4 65.2 65.3 65.3 64.9 64.1 64.9 64.2 64.9 64.6
Round 71-80 65.3 66.1 66.2 65.4 65.5 65.5 65.5 65.3 65.4 65.3
Round 81-90 67.2 66.4 66.4 66.5 66.6 66.2 66.4 66.3 66.5 66.1
Round 91-100 67.9 67.8 67.7 67.7 67 66.8 67.2 67.8 66.9 67.2

Figure 5.4: Testing accuracy of Mnist with and without credit-based client selection

5.5.3 Experiments with FedAvg Algorithm under our Attack

Model without Credit-Based Client Selection

In this section, we present a comprehensive evaluation of our attack model’s impact on

the accuracy of the global model over 100 rounds. The results showcased in the tables

below (Mnist (Tables: 5.11 and 5.12), FMnist (Tables: 5.13 and 5.14) and Cifar-10

(Tables: 5.15 and 5.17)) demonstrate the effectiveness of our attack in decreasing the

global accuracy for all three datasets: Mnist, FMnist, and CIFAR-10. We conducted

experiments with two different malicious weights (ω) for each dataset, with the value

of ω = 0.3 and ω = 10. The results clearly indicate that the higher positive value of

the malicious weight (ω) leads to a greater impact on the final round. In other words,

a higher malicious weight enables the attacker to exert more influence on the global

model, resulting in a more pronounced decrease in accuracy.
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Figure 5.5: Testing accuracy of FMnist with and without credit-based client selection

Figure 5.6: Testing accuracy of Cifar-10 with and without credit-based client selection

To implement our attack, we strategically chose one of the poor-performing clients

from each dataset as the poisoned dataset. Since multiple clients in most datasets have

poor data that can potentially degrade the global model accuracy, we leveraged this

flaw by evaluating the accuracy of each client over 100 rounds and selecting those with

the lowest accuracy for poisoning as our poisoned data. In addition, we demonstrate

a comparison of the impact of different malicious weights for each dataset through

Figures 5.7, 5.8, and 5.9. These visual representations illustrate how the malicious

weight ω affects the accuracy, emphasizing the increasing impact with higher weight
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values.

Table 5.11: Testing accuracy of Mnist with our attack model (ω = 0.3) in %

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 50.3 49.6 48.7 49.3 49.8 50.1 50.3 50.7 49.4 49.2
Round 11-20 40.1 40.6 40.8 40.6 40.4 40 40.7 40.5 40.8 40.1
Round 21-30 38.5 38.6 38.4 38.6 38.4 35.6 38.1 38.2 37.6 37.5
Round 31-40 36 36.5 36.7 35.6 31.6 33.8 33.7 35.1 36.5 36.1
Round 41-50 33.6 33.5 34.5 36.1 35.1 32.1 32.9 33.6 33.7 31.2
Round 51-60 31.5 31.6 31.5 31.6 31.8 31.9 31.7 30.1 30.2 30.4
Round 61-70 29.6 29.4 28.6 28.6 28.1 28.7 28.1 29.3 27.6 25.9
Round 71-80 27.3 27.6 28.1 28.3 27.6 27.1 26.3 26.1 27 26.7
Round 81-90 26.9 26.6 26.4 26.1 27.5 26.3 27.9 27.8 27.6 27.1
Round 91-100 27.3 27.6 27.6 27.1 27.2 27.4 27.5 27.4 27.9 27.1

Table 5.12: Testing accuracy of Mnist with our attack model (ω = 10) in %

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 45.7 45.6 45.3 45.6 45.7 45.1 44.9 44.1 44.8 44.4
Round 11-20 40.1 40.6 40.3 40.9 40.6 40.9 40.1 39.1 39.1 39
Round 21-30 40.9 39.1 39.2 37 36.1 36.8 36.5 36.8 35.1 34.1
Round 31-40 27.6 27.9 27.1 27.6 27 26.6 26.1 26.8 26.2 26.7
Round 41-50 25.7 25.8 25.6 25.1 25.7 25.1 27.9 27 24.3 27.1
Round 51-60 30.5 31.6 28.8 29.9 28 25 24.9 24.1 25.3 26.8
Round 61-70 21.6 24.3 22.4 23.1 22.6 22.1 21.5 24.6 24.2 24.1
Round 71-80 27.2 25.1 27.6 24.3 27.9 27.6 21.6 20.9 20.4 20.7
Round 81-90 25.4 24.9 25.6 25.4 25.9 25.5 24.8 25 25.1 25.6
Round 91-100 24.3 24.3 24.8 24.6 25.1 23.9 24.6 24.5 24.4 24

Table 5.13: Testing accuracy of FMnist with our attack model (ω = 0.3) in %

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 48.2 48.5 48.2 48.3 48.8 48.9 48.1 48.3 48.1 48
Round 11-20 34.3 34.2 34.1 34.8 34.1 34.8 34.8 33.1 34.6 33.1
Round 21-30 29.5 29.1 28.5 28.9 27.5 25 27.9 28.1 28.8 27.6
Round 31-40 27.2 27.1 27.6 27.1 27.9 27.6 27.1 27.6 27.1 27.6
Round 41-50 32.3 32.6 32.5 32.6 32.8 32.6 30.8 30.9 31.6 30.9
Round 51-60 26.3 26.8 26.7 26.3 26.7 26.8 26.1 26.7 26.9 26.1
Round 61-70 30.2 30.6 30.7 30.5 30.7 30.6 30.3 30 30 30.1
Round 71-80 28.9 28.6 28.1 28.5 28.1 28.6 28.1 28.6 28.3 28
Round 81-90 25.4 25.6 25.1 25.9 25.1 25.3 25.7 25.3 25.1 25.7
Round 91-100 27.1 27.6 27.6 27 26.6 27.9 27.7 27.8 27.1 26.2
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Table 5.14: Testing accuracy of FMnist with our attack model (ω = 10) in %

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 55.3 55.6 55.1 55.8 55.5 55 54.1 55.2 54.9 54.2
Round 11-20 28.2 28.6 28.1 28.3 28.1 28.7 28.6 28.1 28.6 28.3
Round 21-30 27.2 27.6 27.1 27.5 27.6 27.1 27.9 27.1 27.6 27.6
Round 31-40 24.6 24.9 24.6 24.8 24 24.6 23.9 24.7 24 24.1
Round 41-50 24.8 24.6 24.6 24.8 23.9 24.1 23.8 23.3 24.1 24
Round 51-60 24.6 23.6 23.9 23.7 23.5 22.1 22.9 22.7 22.5 22
Round 61-70 27.1 26.5 27.1 27.6 27.1 27.9 27.2 27.6 27.8 27.1
Round 71-80 20.3 20.6 20.6 20.9 20.1 20.7 20.6 20.5 19.7 18.9
Round 81-90 19.1 18.6 17.6 19.2 19.9 18.5 17.6 17.9 17.8 17.6
Round 91-100 17.3 17.8 17.6 17.1 17.5 17.8 17.1 17.3 17.5 17.8

Table 5.15: Testing accuracy of Cifar-10 with our attack model (ω = 0.3) in %

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 30 29.6 29.7 29.5 30.1 30.5 29.9 29.4 29.3 29.8
Round 11-20 28.3 28.1 28.9 27.9 29.1 28.6 28.1 28.1 28 27.9
Round 21-30 26.9 26.8 26.1 26.7 26.8 26.1 26 25.7 25.1 25.5
Round 31-40 23.2 24.1 23.5 23.1 24.1 23.9 24.1 24.5 23.4 24.2
Round 41-50 19.6 19.8 18.4 17.5 16.8 17.7 16.8 17 16.9 16.7
Round 51-60 13.4 12.9 12.9 12 12.7 13.7 13.5 13.1 12.8 13
Round 61-70 11.5 11.6 11.8 11.7 11.7 11.8 11.7 11.8 11.9 11.2
Round 71-80 12.6 12 12 13.4 12.4 12.5 13.1 12.9 12.1 11.9
Round 81-90 11.6 11.5 11.6 11.4 11.6 11.7 11.8 11.5 11.6 11.8
Round 91-100 10.3 11.1 11.8 11.5 10.5 10.7 10.8 10.6 10.7 10

Figure 5.7: Testing accuracy of Mnist under attack (ω = 0.3 and ω = 10)

Furthermore, we evaluate the performance of each dataset under three different sce-

narios: the normal Federated Averaging algorithm, the Federated Averaging algo-

rithm with credit-based client selection, and under the attack model. Figures 5.10,

5.11, and 5.12 provide a comprehensive comparison of these scenarios, demonstrat-
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Table 5.16: Testing accuracy of Cifar-10 with our attack model (ω = 10) in %

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 27.5 27.1 27.6 27.8 27.9 27.1 27.8 27.2 27.1 27
Round 11-20 20.6 19.3 19.8 20.8 20.7 20.3 20.5 20.9 20.4 19.8
Round 21-30 20.3 20.8 20.2 20.7 20.6 20.6 20 20 21.1 20.7
Round 31-40 19.6 19.8 19.6 19.7 19.2 19.3 19.7 19.3 19.7 19.2
Round 41-50 14.2 14.8 14.6 14.2 14.9 14.1 14.3 15.1 14.8 14.9
Round 51-60 15.6 15.7 15.6 15.7 15.9 15.1 15.3 15.2 15.7 15.3
Round 61-70 12.5 12.1 11.9 12.5 12.5 12.9 12 12.3 12.1 12.8
Round 71-80 11.3 11.8 11.8 11.7 11.9 11.1 11.6 11.8 10.9 11.1
Round 81-90 10.3 10.5 10.9 10.8 9.9 9.7 9 10.1 10.2 10.8
Round 91-100 8.1 7.5 8.3 8.6 8.7 8 8 7.5 7.1 8.2

Figure 5.8: Testing accuracy of FMnist under attack (ω = 0.3 and ω = 10)

ing the effectiveness of our attack in downgrading the model’s accuracy, while also

showcasing the benefits of credit-based client selection in maintaining model fidelity

under normal circumstances.

Overall, our evaluation sheds light on the success of our attack model in reducing

the global model’s accuracy and highlights the significance of malicious weight ω

in determining the level of impact. Additionally, the comparison among different

scenarios underscores the robustness of our proposed approach in adversarial settings

and its potential to enhance the security of federated learning systems.
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Figure 5.9: Testing accuracy of Cifar-10 under attack (ω = 0.3 and ω = 10)

Figure 5.10: Testing accuracy of Mnist, Mnist with CBCS, Mnist under attack

5.5.4 Experiments with FedAvg Algorithm and our Attack

Model with Credit-Based Client Selection

In this section, we present the evaluation of our defense strategy under the most

challenging conditions, wherein we employ poisoning attacks in every round with

the highest malicious weight, denoted as ω = 10. To assess our defense strategy,

we conduct experiments by varying the loss parameter ζ with two different values,

ζ = 0.1 and ζ = 10, on three datasets: Mnist, FMnist, and CIFAR-10. Tables
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Figure 5.11: Testing accuracy of FMnist, FMnist with CBCS, FMnist under attack

Figure 5.12: Testing accuracy of Cifar-10, Cifar-10 with CBCS, Cifar-10 under attack

5.17 and 5.18 illustrate the results for the Mnist dataset, while Tables 5.19 and 5.20

depict the outcomes for FMnist, and Tables 5.21 and 5.22 represent the results for

CIFAR-10.
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Table 5.17: Mnist global model accuracy under attack (ω = 10) with credit-based
client selection (ζ = 0.1)

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 78.5 77.5 78.5 77.6 77.9 78.7 79.7 77.4 78.4 78
Round 11-20 79.9 80.8 80.8 81.6 81.1 81.8 81 81.3 81 79.5
Round 21-30 82.5 82.9 81.2 82.1 82.4 81.6 81.6 81.8 82.5 79.6
Round 31-40 82.3 82.0 82.5 81.8 82.7 82.4 82.6 82.9 82.1 81
Round 41-50 82.9 82.1 82.1 83.8 82.7 83.6 83.8 83.2 83.7 82.6
Round 51-60 84.2 83.8 83.1 84.2 84.1 84.5 84.8 84.8 84 83.9
Round 61-70 84.6 85.1 84.4 84.9 84 85.4 85.6 84.5 84.6 83.6
Round 71-80 85.5 861 86.2 86.6 85.6 85.2 85.4 85.1 85.6 84.9
Round 81-90 85.3 86.1 86.5 85.4 85.7 86.1 86.6 86.3 85.1 86.4
Round 91-100 88.2 88.5 88.8 87.8 86.6 86.6 87.7 87.6 87.9 87.5

Table 5.18: Mnist global model accuracy under attack (ω = 10) with credit-based
client selection (ζ = 10)

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 78.1 77.5 78.5 77.6 78.9 78.7 78.7 76.4 78.4 77
Round 11-20 79.1 79.8 80.8 81.6 81.1 81.8 82 81.3 81 78.5
Round 21-30 82.8 81.9 82.2 82.1 82.4 82.6 81.6 81.8 82.5 78.6
Round 31-40 82.6 82.1 82.6 81.8 82.7 82.4 82.6 82.9 82.1 80
Round 41-50 82.6 83.1 82.4 83.8 83.7 83.6 83.8 83.2 83.7 82.6
Round 51-60 84.1 83.8 83.3 84.3 84.1 83.5 84.8 83.8 85 83.9
Round 61-70 84.4 84.1 84.5 83.9 83 83.4 84.6 85.5 84.6 84.6
Round 71-80 85.1 85.1 86.3 85.6 84.6 85.2 85.4 85.1 85.6 84.9
Round 81-90 85.2 85.1 85.5 85.4 85.7 85.1 85.6 85.3 85.1 84.4
Round 91-100 85.1 85.5 85.8 85.8 85.6 85.6 85.7 85.6 85.9 85.5

From our findings, two key insights emerge. Firstly, decreasing the value of ζ

maintains high accuracy levels and yields more stable results. This observation val-

idates the importance of incorporating the loss parameter in our credit-based score

calculation, as it indicates the model’s performance on the given dataset. Higher loss

values for clients in the model would result in significant differences between ζ = 0.1

and ζ = 10. However, the marginal difference in our results demonstrates the robust-

ness of our model and highlights the significance of the loss parameter in determining

the best-performing clients.

Additionally, we compare our credit-based client selection method under different

ζ values in the presence of the attack. Figure 5.13 showcases the results for the

Mnist dataset, Figure 5.14 for FMnist, and Figure 5.15 for CIFAR-10. The slight

differences observed in the accuracies for different ζ values emphasize the consistency

of our approach.
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Table 5.19: FMnist global model accuracy under attack (ω = 10) with credit-based
client selection (ζ = 0.1)

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 80.7 79.8 79.6 79.9 80.5 80.6 80.5 80.6 80.8 80.8
Round 11-20 80.7 80.7 80.1 80.5 80.9 80.9 81.7 81.8 81.6 80.1
Round 21-30 80.6 81.7 78.8 78.6 81.7 81.9 81.3 81.5 80.8 80.4
Round 31-40 81.5 81.9 81.4 81.4 81.8 80.4 81.4 81.5 82.7 81.5
Round 41-50 79.4 80 79.9 81.6 81.7 80.3 80.1 80 80.1 82.1
Round 51-60 80.3 80.6 80.8 80.4 80 80.1 80.5 80.7 80.5 82.7
Round 61-70 80.7 80.8 80.5 81.7 81.5 79.9 79.6 79.1 79 82.5
Round 71-80 80.1 79.6 80.4 80.9 80.9 80.8 80.7 80.8 80.9 83.2
Round 81-90 80.9 81.8 81.9 81.9 81.2 81.6 81.4 80.9 82.1 83.1
Round 91-100 83.9 83.3 83.7 82.9 82.6 83.7 83.1 83 82.4 83.9

Table 5.20: FMnist global model accuracy under attack (ω = 10) with credit-based
client selection (ζ = 10)

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 77.7 77.8 77.6 77.9 77.5 77.6 77.5 77.6 77.8 77.8
Round 11-20 78.7 77.7 78.1 78.5 77.9 78.9 78.7 78.8 78.6 78.1
Round 21-30 78.2 78.7 78.8 78.6 78.7 78.9 78.3 78.5 78.8 78.4
Round 31-40 79.3 78.9 79.4 79.4 79.8 79.4 79.4 79.5 79.7 79.5
Round 41-50 79.7 80 79.9 80.6 79.7 80.3 80.1 80 80.1 80.1
Round 51-60 80.7 80.6 80.8 80.4 80 80.1 80.5 80.7 80.5 80.7
Round 61-70 81.4 81.8 81.5 81.7 80.5 81.9 80.6 81.1 81 81.5
Round 71-80 81.2 81.6 80.4 81.9 81.9 80.8 81.7 81.8 81.9 81.2
Round 81-90 81.4 81.8 81.9 81.9 81.2 81.6 81.4 81.9 81.1 81.1
Round 91-100 80.5 81.3 81.7 82.9 81.6 82.7 82.1 82 80.4 81.9

Figure 5.13: Comparison of accuracy of Mnist under attack (ω = 10 ) using our
credit-based client selection defence (ζ = 0.1 and ζ = 10)

Finally, we present a comparison of three conditions: (1) Training our model with

the Federated Averaging (FedAvg) algorithm without any attack or client selection

approach, (2) Training our model with federated averaging and the client selection
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Table 5.21: Cifar-10 global model accuracy under attack (ω = 10) with credit-based
client selection (ζ = 0.1)

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 59.6 59.7 59.5 59.6 59.4 59.3 59.2 58.9 58.6 59.3
Round 11-20 60.4 60.8 60.6 60.9 60.5 60.3 60.4 60.7 60.8 60.6
Round 21-30 61.3 60.9 61.8 60.5 61.6 61.4 61.7 61.6 60.2 61.3
Round 31-40 61.4 62.5 62.5 62.5 62.6 62.8 62.6 62.8 61.5 62.2
Round 41-50 61.7 62.2 62.2 62.3 63.6 61.8 62.7 62.6 62.9 62.1
Round 51-60 62.8 62.9 26.1 63.1 63.3 63.3 62.3 63.4 63.5 63.6
Round 61-70 63.1 65.2 63.3 63.3 64.9 63.1 64.9 63.2 64.9 63.6
Round 71-80 64.3 64.1 64.2 65.4 65.5 65.5 65.5 64.3 65.4 64.3
Round 81-90 65.4 65.4 65.4 65.5 66.6 65.2 66.4 66.3 66.5 65.1
Round 91-100 66.7 66.8 66.7 66.7 65 66.8 66.2 65.8 66.9 66.2

Table 5.22: Cifar-10 global model accuracy under attack (ω = 10) with credit-based
client selection (ζ = 10)

Rounds Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
Round 1-10 59.3 59.7 59.5 59.6 59.4 59.3 59.2 58.9 58.6 59.3
Round 11-20 59.7 59.8 60.6 59.9 59.5 59.3 60.4 60.7 59.8 59.6
Round 21-30 59.2 60.9 61.8 59.5 61.6 60.4 61.7 60.6 61.2 60.3
Round 31-40 59.7 60.5 60.5 59.5 60.6 61.8 60.6 60.8 60.5 60.2
Round 41-50 60.2 60.2 59.2 60.3 60.6 60.8 60.7 60.6 60.9 61.1
Round 51-60 61.5 61.9 60.1 60.1 61.3 61.3 60.3 61.4 60.5 60.6
Round 61-70 61.6 61.2 61.3 61.3 61.9 61.1 61.9 61.2 61.9 61.6
Round 71-80 62.1 62.1 61.2 63.4 62.5 62.5 61.5 61.3 62.4 62.3
Round 81-90 63.9 62.4 62.4 62.5 63.6 62.2 62.4 62.3 62.5 63.1
Round 91-100 63.3 63.8 64.7 64.7 63 64.8 63.2 64.8 64.9 63.2

Figure 5.14: Comparison of accuracy of FMnist under attack (ω = 10 ) using our
credit-based client selection defence (ζ = 0.1 and ζ = 10)

method, and (3) Training our model under attack using credit-based client selection.

Figures 5.16, 5.17, and 5.18 showcase the results for each dataset. This comparison

underscores the effectiveness of our credit-based client selection method and high-
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Figure 5.15: Comparison of accuracy of Cifar-10 under attack (ω = 10 ) using our
credit-based client selection defence (ζ = 0.1 and ζ = 10)

lights its significance in improving model performance and mitigating the impact of

poisoning attacks.

Figure 5.16: Comparsion of Mnist with FedAvg, Mnist with CBCS, Mnist with only
the attack and Mnist with attack + CBCS (ω = 10 and ζ = 0.1)
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Figure 5.17: Comparsion of FMnist with FedAvg, FMnist with CBCS, FMnist with
only the attack and FMnist with attack + CBCS (ω = 10 and ζ = 0.1)

Figure 5.18: Comparsion of Cifar-10 with FedAvg, Cifar-10 with CBCS, Cifar-10 with
only the attack and Cifar-10 with attack + CBCS (ω = 10 and ζ = 0.1)
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Chapter 6

Conclusion and Future Work

In this thesis, we introduce a credit-based client selection method for federated learn-

ing, aimed at enhancing model performance while effectively countering the impact

of poisoning attacks. Our approach involves calculating a credit score that consid-

ers both the accuracy and loss metrics of each client’s local model. By strategically

eliminating poorly performing models and potential attackers, we achieve a more

robust and accurate global model. Extensive experiments conducted on three di-

verse datasets, namely Mnist, FMnist, and CIFAR-10, demonstrate the effectiveness

and stability of our approach even in the presence of non-IID and imbalanced data

distributions.

The key highlight of our research lies in the ability of our credit-based client se-

lection to maintain the fidelity of the global model, even under challenging attack

scenarios. The incorporation of loss as a crucial factor in the credit score calcula-

tion proves instrumental in identifying the most reliable and high-performing clients.

Moreover, our method exhibits remarkable consistency across diverse parameter set-

tings, rendering it a reliable defense strategy. However, our contributions extend

beyond the introduction of credit-based client selection. We conducted an in-depth

evaluation of the performance of the widely-used Federated Averaging (FedAvg) al-

gorithm under various scenarios. This allowed us to understand its limitations and

pave the way for the development of our new defense strategy.

As we look towards the future, our credit-based client selection holds great promise,

this method offers a promising solution to enhance federated learning, striking a del-

icate balance between security and efficiency., but there are still opportunities for

further exploration and enhancements. An exciting avenue involves testing the ro-

bustness of our defense strategy against more advanced adversarial attacks, including



69

membership inference attacks. Additionally, optimizing the selection of hyperparam-

eters like the loss parameter ζ and malicious weight ω can potentially amplify the

performance of our approach.

Furthermore, scalability remains a critical consideration, and we plan to extend

our evaluation to larger-scale federated learning settings with a diverse range of clients

and data distributions. Real-world applicability is also a crucial aspect to explore,

especially in resource-constrained environments. Addressing any computational over-

heads and evaluating the efficiency of our approach in practical scenarios will be

valuable for its broader adoption.

It is important to acknowledge that federated learning is a rapidly evolving field [9].

As we draw inspiration from recent research in the area, it becomes evident that our

innovative approach holds immense potential. With technology advancing rapidly, we

anticipate exciting developments and new opportunities to explore federated learn-

ing in various domains, including privacy-sensitive applications and edge computing

environments.
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Appendix A

Selected Code Snapshots

In this appendix, we provide different sections of our Python code for demonstration

purposes. These sections showcase key functionalities and algorithms implemented in

our code-base.

A.1 Attack Model

As previously mentioned, the provided code demonstrates the implementation of our

attack model, which incorporates the attacker weight and the poisoned data of the

FMnist dataset. This allows us to showcase the effectiveness of our attack strategy

and its impact on the model’s performance as shown in figures A.1 and A.2.

Figure A.1: Python code for the implementation of the attack model
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Figure A.2: Python code for the implementation of the attack model (continued)

A.2 Calculation of Credit-Based Client Selection

In the provided Figures A.3 and A.4, we illustrate the step-by-step implementation of

our defense strategy, including the calculation of our credit score and the incorporation

of the sorting mechanism. This visualization highlights the key components of our

credit-based client selection method and showcases how we determine the credit of

each client and select the most reliable ones for aggregation into the global model.

Figure A.3: Python code for the implementation of our credit-based client selection
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Figure A.4: Python code for the implementation of our credit-based client selection
(continued)

A.2.1 Softmax Function

In our work, the softmax function is used for the evaluation of the model’s predictions

and the calculation of the loss during the training process. The softmax function is

commonly used in multi-class classification tasks, which is the case for the datasets we

utilized (e.g., Mnist, FMnist, CIFAR-10). It converts the model’s raw output scores

(logits) into probabilities, assigning a probability value to each class, representing

the model’s confidence in its prediction. In the context of our defense strategy, the

softmax function plays a vital role in computing the cross-entropy loss, which is a

standard loss function used in classification tasks. The loss quantifies how different

the predicted probabilities are from the ground truth labels. By minimizing this loss

during training, the model learns to make more accurate predictions. Moreover, the

softmax function is used in evaluating the accuracy of the local models of individual

clients. It helps measure the certainty of each client’s predictions and is a crucial

factor in calculating their credit scores. Clients with higher accuracy and lower loss

values will have higher credit scores, making them more likely to be selected for model

aggregation. Overall, the softmax function shown in figure A.5 is an integral part of

our thesis, as it contributes to the model’s training, evaluation, and the calculation

of the credit scores for our credit-based client selection method.
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Figure A.5: Softmax Function
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