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Abstract

We can compress the word ‘banana’ as xyyz, where x = ‘b’, y = ‘an’,z = ‘a’. We
say that ‘banana’ encounters yy. Thus a ‘coded’ version of yy shows up in ‘banana’. The
relation ‘u encounters w’ is transitive, and thus generates an order on words. We study
antichains under this order. In particular we show that in this order there is an infinite
antichain of binary words avoiding overlaps.
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1 Introduction

The study of words avoiding patterns is an area of combinatorics on words reaching back at
least to the turn of the century, when Thue proved [29] that one can find arbitrarily long words
over a 3 letter alphabet in which no two adjacent subwords are identical. If w is such a word,
then w cannot be written w = xyyz with y a non-empty word. In modern parlance, we would
say that w avoids yy. A word which can be written as xyyz is said to encounter yy. Thue
also showed that there are arbitrarily long words over a 2 letter alphabet avoiding yyy. One can
quickly check that no word of length 4 or more over a 2 letter alphabet avoids yy. We say that
yyy is avoidable on 2 letters, or 2-avoidable whereas yy is unavoidable on 2 letters. On the
other hand, yyy is certainly 3-avoidable, because any word avoiding yy must avoid yyy also.

Bean, Ehrenfeucht and McNulty [4], and independently Zimin [30], characterized words which
are avoidable on some large enough finite alphabet. If p is a word over an n letter alphabet, then
∗This work was supported by an NSERC operating grant.
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p is avoidable on some finite alphabet if Zn avoids p, where words Zn are defined recursively by

Z1 = 1
Zn+1 = Zn(n+ 1)Zn, n ∈ IN.

Thus the pattern abcacb is a pattern over a 3 letter alphabet, and is avoided by Z3 = 1213121.
It follows that abcacb is avoidable on some large enough finite alphabet. The size of the smallest
alphabet on which abcacb is avoidable isn’t known. No avoidable pattern is known which is not
4-avoidable. The following conjecture is given by Baker [2]:

Conjecture 1.1 Every avoidable pattern is 4-avoidable.

The following problem has been open since 1979 [4]:

Problem 1.2 Find an algorithm which given a word p determines the smallest k such that p
is k-avoidable.

Cassaigne and Roth [8, 27] studied avoidable binary and ternary patterns p, giving when
possible the smallest k for which p is k-avoidable. In such work, the most important patterns
are the minimal ones; as discussed above, yyy is 3-avoidable because it contains yy. Similarly,
if w is 3-avoidable, then so is wR, the reverse of w. It follows from the work of Cassaigne and
Roth that a binary pattern is 2-avoidable exactly when it encounters one of xxx, xyxyx, xyxxy,
xxyxyy, xyxyyx and xxyyx. Consideration of minimal k-avoidable patterns leads to problems
such as the following, posed in [3]:

Problem 1.3 Write u ≥ w if u encounters w or the reversal of w. This relation is a quasi-order,
and factoring out the resulting equivalence relation gives a partial order. Let µ(w) be the size
of the smallest alphabet on which w is avoidable. For avoidable w, is there an infinite antichain
on µ(w) letters such that each member of the antichain avoids w?

Perhaps the posing of this problem is too ambitious. An affirmative solution would imply
that for any avoidable word w, it takes no more letters to avoid w and wR simultaneously than it
does to avoid w alone. Strong evidence to the contrary is provided by the example w = abcacb.
It seems likely that abcacb is 2-avoidable; there are words of length 1000 over {0, 1} avoiding
abcacb. However, abcacb and bcacba are not simultaneously 2-avoidable.1

For this reason, it seems that a better question to ask is the following:

Problem 1.4 Write u ≥ w if u encounters w. For avoidable w, is there an infinite antichain on
µ(w) letters such that each member of the antichain avoids w?

This question was answered in the affirmative in the case where w is 2-avoidable in [18] Note
that for the sake of studying antichains it is unnecessary to move from the quasi-order to a
partial order.

In a related paper [9] it was shown that for any ε > 0 there is an infinite antichain of such
ternary words avoiding xk for 7/4 < k < 7/4 + ε. Note that 7/4 is the threshold of repetition

1Thanks to Kirby Baker for the use of his software which allowed the author to make these discoveries
concerning abcacb.
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for words over a 3 letter alphabet; if r < 7/4, we can find at most finitely many words over a 3
letter alphabet avoiding xr.

The threshold of repetition for a 2 letter alphabet is 2. A word containing no subwords of
the form xk for k > 2 is called overlap-free. A word is overlap-free exactly when it avoids both
the patterns xxx and xyxyx.

In this note we prove that any binary word which avoids overlaps is an element of an infinite
antichain of binary words avoiding overlaps.

2 Preliminaries

An alphabet Σ is a set whose elements are called letters. A word w over Σ is a finite string
of letters from Σ. The length of word w is the number of letters in w, denoted by |w|. Thus
|banana| = 6, for example. The language consisting of all words over Σ is denoted by Σ∗.
If x, y ∈ Σ∗, the concatenation of x and y, written xy, is simply the string consisting of x
followed by y. The word with no letters is called the empty word and is denoted by ε. Suppose
w ∈ Σ∗. We call word x a prefix of w if w = xy, some y ∈ Σ∗. Similarly word y is a suffix of w
if we can write w = xy, some x ∈ Σ∗. We call y a subword of w if we can write w = xyz, some
x, z ∈ Σ∗. In the case that x and z are non-empty, y is an internal subword of w.

Let Σ, T be alphabets. A substitution h : Σ∗ → T ∗ is a function generated by its
values on Σ. That is, suppose w ∈ Σ∗, w = a1a2 . . . am; ai ∈ Σ for i = 1 to m. Then
h(w) = h(a1)h(a2) . . . h(am). A substitution is non-erasing if for every a ∈ Σ, |h(a)| 6= ε.

Let w, v be finite words over some alphabet Σ. We say that w encounters v if w = xh(v)y
for some non-erasing substitution h : Σ∗ → Σ∗. Otherwise we say that w avoids v. If x is a word
we denote by xn the word consisting of x repeated n times in a row. Thus x2 = xx, x3 = xxx
and so on. We call a word w a k-power if w = xk, some x 6= ε. A 2-power is also called a
square. An overlap is a word of form xxx or xyxyx for some words x and y. A word w is
k-power free if we cannot write w = xyz, where y is a k-power. Thus w is k-power free if w
avoids xk. Similarly one speaks of square-free or overlap-free words.

An ω-word over alphabet Σ is an infinite sequence of letters of Σ. If w = {wi}i∈IN is an
ω-word over Σ, then each finite initial segment w1, w2, . . . , wn of w will correspond to some word
w1w2 . . . wn of Σ∗. In this case we say that w1w2 . . . wn is a prefix of ω-word w. If u is an
ω-word over Σ we say that u encounters w if some finite prefix of u encounters w. Otherwise,
we say that u avoids w.

We say that w is k-avoidable if the set of words over Σ avoiding w is infinite, for some,
hence for any, alphabet Σ of size k. Equivalently, w is k-avoidable if there is an ω-word over
an alphabet of size k which avoids w. If w is k-avoidable for some k ∈ IN we say that w is
avoidable. Otherwise, w is unavoidable. Let S be a set of words. We say that v avoids S if
v avoids each w ∈ S.

Fix an alphabet Σ. The relation ‘w encounters v’ is a quasi-order on Σ∗ which we will
abbreviate by w ≥ v. We will be interested in the quasi-ordered set 〈Σ∗,≥〉.
Lemma 2.1 Suppose that A ⊆ Σ∗ is an infinite antichain. Then there is an ω-word over Σ
avoiding A.
Proof: Let A = {wi}∞i=1. If w is a non-empty word, denote by w′ the word obtained from w by
deleting the last letter.



the electronic journal of combinatorics 2 (1995), #R21 4

We claim that for each i ∈ IN, w′i avoids A : If v ≤ w′i then v ≤ wi by transitivity. Thus if
j 6= i, then w′i avoids wj , because wj and wi are incomparable. On the other hand, since w′i is
shorter than wi, certainly w′i avoids wi.

Since A is an infinite set of words over a finite alphabet, A contains arbitrarily long words.
Thus the set A′ = {w′i}∞i=1 contains arbitrarily long words of Σ∗ avoiding A. It follows by König’s
Infinity Lemma that there is an ω-word over Σ avoiding A.2

Lemma 2.2 Let S be a finite set of avoidable words. Then there is an ω-word over a finite
alphabet avoiding S.

Proof: This is proved in [4, 30]. Let S = {si : 1 ≤ i ≤ m}. For each i pick ni ∈ IN
and an ω-word wi = {wij}∞j=1 over an alphabet Σi of size ni avoiding si. Then the word
w = {(w1j, w2j , . . . , wmj)}∞j=1 over the alphabet

∏m
i=1 Σi avoids s.2

To avoid S it suffices to avoid a maximal antichain of minimal elements of S. Thus we could
get by with a version of this lemma in which S was restricted to be an antichain.

Corollary 2.3 Suppose that A ⊆ Σ∗ is a finite antichain. Then there is an ω-word over some
finite alphabet avoiding A.

Remark 2.4 It is striking that infinite antichains over finite sets are easier to avoid than finite
antichains! That is, to avoid a finite antichain over S it may be necessary to move to a larger
alphabet, whereas this is not the case with infinite antichains. To give a concrete example, let
S be the set of all words of length 7 over Σ = {a, b}. Each word of S is 2-avoidable, but any
binary word of length 7 or more encounters an element of S.

An image of xxx or xyxyx under a non-erasing substitution is called an overlap. Note that a
prefix of an overlap will be a square.

Theorem 2.5 There is an infinite antichain of binary words avoiding overlaps.

Proof: Following Thue [29], Define the map h : {a, b}∗ → {a, b}∗ by h(a) = ab, h(b) = ba. Let l
= aabaab. Thus lR = baabaa. We see that the prefixes of l which are suffixes of lR are exactly
a, aa, aabaa.

Lemma 2.6 Word l is avoided by hω(a).

Proof: This was proved by Cassaigne [8, Section 2.6, Théorème 2.2]. 2

Corollary 2.7 The word lR, the reverse of l, is avoided by hω(a).

Let n ∈ IN. Then we can write h2n+2(a) = abbabaabunbaababba for some word un. Let
mn = aabaabunbaabaa.

Remark 2.8 Word l is a prefix and suffix of each mn, but every internal subword of mn is a
subword of hω(a). It follows that l doesn’t appear in mn internally. We note that for each n,
mn is a palindrome.

Lemma 2.9 Let n ∈ IN. Then the word mn is overlap-free.
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Proof: Every internal subword of mn is a subword of hω(a), and is overlap-free. It remains to
show that no prefix or suffix of mn is an overlap. As mn is a palindrome, we need only show
that no prefix of mn is an overlap.

First note that no prefix of mn is a square of length 12 or greater; otherwise the prefix of mn

of length 6 reappears internally, i.e. mn contains an l internally, which is impossible. It follows
that the shortest overlap which is a prefix of mn has length at most 11, and is a prefix of m1.
Inspection shows that no prefix of m1 of length 11 or less is an overlap.2

Theorem 2.10 The set {mn}n∈IN is an antichain.

Proof: Let i, j ∈ IN, i < j. Clearly mi doesn’t encountermj sincemj is longer thanmi. Suppose,
for the sake of a contradiction, that mj encounters mi. Say that mj = αf(mi)β where f is a
non-erasing substitution.

If α 6= ε then an internal subword of mj encounters the prefix l of mi. Thus a subword of
hω(a) encounters l. This is impossible by Lemma 2.6. Thus α = ε. Symmetrically, β = ε.

Since a is a prefix of mi, f(a) is a prefix of mj. Thus l and f(a) are both prefixes of mj ,
and one must be a prefix of the other. Since a is an internal subword of mi, f(a) is an internal
subword of mj . Thus l is not a prefix of f(a). We conclude that f(a) is a proper prefix of l.
Symmetrically, f(a) must be a proper suffix of lR, the reverse of l. Thus f(a) = a, aa or aabaa.
However, aa is a subword of mi, so that f(aa) is a subword of the overlap-free word mj . We
conclude that f(a) = a.

We have so far determined f(a). Now consider f(b). Since f(mi) = mj is longer than mi,
the length of f(b) is greater than 1. Since aab and baa are subwords of mi, both aaf(b) and
f(b)aa are subwords of mj . It follows that f(b) has b as a prefix and a suffix, since otherwise
aaa appears in mj, a contradiction since mj is overlap-free.

Since aab is a prefix of mi, f(aab) = aaf(b) is a prefix of mj . However, another prefix of
mj is aabaab. Thus one of f(b) and baab is a prefix of the other. Since f(b) begins and ends
with a b, we conclude that baab is a prefix of f(b). As aab appears internally in mi, we conclude
that f(aab) occurs internally in mj. A prefix of f(aab) is aabaab = l. It follows that l appears
internally in mj , and hence that l is a subword of hω(a). This contradicts Lemma 2.6.

The supposition that mj encounters mi leads to a contradiction. We conclude that mi and
mj are incomparable, and that in fact {mn}n∈IN is an antichain. 2.
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