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Abstract
We study the structure of automata accepting the greedy representations of N in
a wide class of numeration systems. We describe the conditions under which such
automata can have more than one strongly connected component and the form of
any such additional components. Our characterization applies, in particular, to
any automaton arising from a Bertrand numeration system. Furthermore, we show
that for any automaton A arising from a system with a dominant root β > 1,
there is a morphism mapping A onto the automaton arising from the Bertrand
system associated with the number β. Under some mild assumptions, we also
study the state complexity of the trim minimal automaton accepting the greedy
representations of the multiples of m ≥ 2 for a wide class of linear numeration
systems. As an example, the number of states of the trim minimal automaton
accepting the greedy representations of mN in the Fibonacci system is exactly
2m2.

1This author is currently a post-doctoral fellow at the David R. Cheriton School of Computer
Science of the Faculty of Mathematics of the University of Waterloo.
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1. Introduction

Cobham [11] showed that ultimately periodic sets of non-negative integers are the
only sets that are recognized by a finite automaton in every integer base numeration
system. The ultimately periodic sets are also exactly the sets definable by first or-
der formulas in the Presburger arithmetic 〈N,+〉. In the context of a non-standard
numeration system U , if N is U -recognizable, then U is easily seen to be a linear
numeration system, that is, U satisfies a linear recurrence with integer coefficients
[24]. For linear numeration systems, ultimately periodic sets are all recognized by
finite automata if and only if N is (see Theorem 2 below). Conditions on a linear
numeration system U for N to be U -recognizable are considered in [16, 21]. From
the point of view of the Chomsky hierarchy, a U -recognizable set X of integers can
be considered as having a low computational complexity: the greedy representations
of the elements in X in the numeration system U have simple syntactical properties
recognized by some finite automaton, i.e., repU (X) is a regular language. Since the
seminal work of Alan Cobham [11] many properties of U -recognizable sets have been
investigated, e.g., algebraic, logical or automatic characterizations of U -recognizable
sets for integer base numeration systems [7], extensions of these characterizations to
systems based on a Pisot number [6], study of the normalization map [14], introduc-
tion of abstract numeration systems [19], . . . Among linear numeration systems for
which N is U -recognizable, the class of systems whose characteristic polynomial is
the minimal polynomial of a Pisot number has been widely studied [6]. An example
of such a system is given by the Fibonacci numeration system (see Example 11).
In particular, the automata accepting these numeration languages are well-known.
Another well-known class of numeration languages, which has given rise to many
successful applications concerning β-numerations, consists of the languages arising
from Bertrand systems associated with a Parry number (see Section 2) [5, 15].

Currently little is known about the automata accepting other kind of numeration
languages. In the first part of this paper we study the structure of these automata for
a wide class of numeration systems. In Section 2 we review the needed background
concerning numeration systems. Then in Section 3 we provide several examples in
order to illustrate the different types of automata that can arise from these numer-
ation systems. In Section 4 we describe the conditions under which such automata
can have more than one strongly connected component and the form of any such
additional strongly connected component. In the case where the numeration system
has a dominant root β > 1 (see the next section for the definition), we are able to
provide a more specific description of the structure. For instance, we show that for
any automaton A arising from a numeration system with a dominant root β > 1,
there is a morphism mapping A onto the automaton arising from the Bertrand
system associated with the number β.

Our primary motivation is to understand the state complexity of languages of the
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form 0∗ repU (mN), that is, the language of the representations of the multiples of m
in a given numeration system U (see [1, 18]), in connection with the following decid-
ability problem. Let U be a linear numeration system and X be a U -recognizable
set of non-negative integers given by some deterministic finite automaton recogniz-
ing the greedy representations of elements of X . For integer base systems, Honkala
proved that one can decide whether or not X is ultimately periodic [17]. Another,
shorter proof of this result can be found in [2]. For a wide class of linear numeration
systems containing the Fibonacci numeration system, the same decidability ques-
tion is answered positively in [10, 3]. For all the above mentioned reasons ultimately
periodic sets of integers and, in particular, the recognizability of a given divisibility
criterion by finite automata deserve special interest.

Lecomte and Rigo [19] showed the following: given a regular language L = {w0 <
w1 < · · · } genealogically ordered, extracting from L words whose indices belong to
an ultimately periodic set I ⊂ N is a regularity-preserving operation defining a
language LI . Krieger et al. [18] considered the state complexity of this operation.
If the minimal automaton of L has n states, it is natural to give bounds or try to
estimate the number of states of the minimal automaton of LI as a function of n, the
preperiod and period of I. Such results could be useful in solving the decidability
question mentioned in the last paragraph. For example, Alexeev [1] recently gave
the following formula for the number of states of the minimal automaton of the
language 0∗ repb(mN), that is, the set of b-ary representations of the multiples of
m ≥ 1. The GCD of two integers a and b is denoted by (a, b). Let N,M be such that
bN < m ≤ bN+1 and (m, 1) < (m, b) < · · · < (m, bM ) = (m, bM+1) = (m, bM+2) =
· · · . The minimal automaton of 0∗ repb(mN) has exactly

m

(m, bN+1)
+

inf{N,M−1}∑

t=0

bt

(m, bt)
(1)

states.

In the second part of this paper, we study the state complexity for the divisibility
criterion by m ≥ 2 in the framework of linear numeration systems. Under some mild
assumptions, Theorem 34 gives the number of states of the trim minimal automaton
of 0∗ repU (mN) from which infinitely many words are accepted. As a corollary, we
show that, for a certain class of numeration systems, we can give the precise number
of states of this automaton. For instance, for the Fibonacci numeration system, the
corresponding number of states is 2m2, see Corollary 39. Finally we are able to give
a lower bound for the state complexity of 0∗ repU (mN) for any numeration system.

Note that the study of state complexity could possibly be related to the length
of the formulas describing such sets in a given numeration system. It is noteworthy
that for linear numeration systems whose characteristic polynomial is the minimal
polynomial of a Pisot number, U -recognizable sets can be characterized by first
order formulas of a convenient extension of 〈N,+〉, see [6].
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This paper is a combined and expanded version of [8, 9].

2. Background on Numeration Systems

In this paper, when we write x = xn−1 · · ·x0 where x is a word, we mean that xi is
a letter for all i ∈ {0, . . . , n− 1}.

An increasing sequence U = (Un)n≥0 of integers is a numeration system, or a
numeration basis, if U0 = 1 and CU := supn≥0(

Un+1

Un
) < +∞. We let AU be the

alphabet {0, . . . , CU − 1}. A greedy representation of a non-negative integer n is a
word w = w!−1 · · ·w0 over AU satisfying

!−1∑

i=0

wiUi = n and ∀j ∈ {1, . . . , "},
j−1∑

i=0

wiUi < Uj .

We denote the greedy representation of n > 0 satisfying w!−1 ,= 0 by repU (n).
By convention, repU (0) is the empty word ε. The language repU (N) is called the
numeration language. A set X of integers is U -recognizable if repU (X) is reg-
ular, i.e., accepted by a finite automaton. If N is U -recognizable, then we let
AU = (QU , qU,0, FU , AU , δU ) denote the trim minimal automaton of the language
0∗ repU (N) having #AU states. The numerical value map valU : A∗

U → N maps any
word d!−1 · · · d0 over AU to

∑!−1
i=0 diUi. For example, if (U0, U1, U2) = (1, 2, 3) and

AU = {0, 1}, then valU (100) = 3 and val−1
U (3) = {11, 100}.

Definition 1. A numeration system U = (Un)n≥0 is said to be linear, if there exist
k ≥ 1 and a0, . . . , ak−1 ∈ Z such that

∀n ∈ N, Un+k = ak−1Un+k−1 + · · ·+ a0Un. (2)

We say that k is the length of the recurrence relation.

Theorem 2. [4, Proposition 3.1.9] Let p, r ≥ 0. If U = (Un)n≥0 is a linear
numeration system, then

val−1
U (pN+ r) = {w ∈ A∗

U | valU (w) ∈ pN+ r}

is accepted by a deterministic finite automaton that can be effectively constructed. In
particular, if N is U -recognizable, then any eventually periodic set is U -recognizable.

Let u, v be two finite words of the same length (resp. two infinite words) over
an alphabet A ⊂ N. We say that u is lexicographically less than v and we write
u < v, if there exist p ∈ A∗, a, b ∈ A with a < b and words u′, v′ over A such
that u = pau′, v = pbv′. If u and v are two finite words (not necessarily of the
same length), then we say that u is genealogically less than v if either |u| < |v|, or
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|u| = |v| and u < v (with respect to the lexicographic order). We also write u < v
to denote the genealogical order. Note that if U is a numeration system, then for all
m,n ∈ N, we have m < n if and only if repU (m) is genealogically less than repU (n).

Observe that if uv is a greedy representation, then so is v. However, if u is a
greedy representation, there is no reason for u0 to still be greedy. As an example,
if U0 = 1, U1 = 3 and U2 = 5, then 2 is a greedy representation but 20 is not.

Definition 3. A numeration system U = (Un)n≥0 is a Bertrand numeration system
if, for all w ∈ A+

U , w ∈ repU (N) ⇔ w0 ∈ repU (N).

Let us recall the theorems of Bertrand [5] (also see [22, Thm. 7.3.8]) and Parry
[23] (also see [22, Thm. 7.2.9]). Let β > 1 be a real number. The β-expansion of a
real number x ∈ [0, 1] is the sequence dβ(x) = (xi)i≥1 ∈ Nω satisfying

x =
+∞∑

i=1

xiβ
−i

and which is the maximal element in Nω having this property with respect to the
lexicographic order over N. Note that the β-expansion is also obtained by using
the greedy algorithm and that it only contains letters in the canonical alphabet
Aβ = {0, . . . , /β0}. Also observe that, for all x, y ∈ [0, 1], we have x < y ⇔ dβ(x) <
dβ(y). The set Fact(Dβ) is the set of factors occurring in the β-expansions of the
real numbers in [0, 1). If dβ(1) = t1 · · · tm0ω, with t1, . . . , tm ∈ Aβ and tm ,= 0, then
we say that dβ(1) is finite and we set d∗β(1) = (t1 · · · tm−1(tm − 1))ω. Otherwise,
we set d∗β(1) = dβ(1). If d∗β(1) is ultimately periodic, then β is said to be a Parry
number.

The following lemma is not difficult to prove. It will be used in the proof of
Theorem 20.

Lemma 4. Let x = xk−1 · · ·x0 be a word over N. We have

∀" ∈ {1, . . . , k}, x!−1 · · ·x00
ω

{
<
≤ dβ(1) ⇔ ∀" ∈ {1, . . . , k},

!−1∑

i=0

xiβ
i−!

{
<
≤ 1.

Theorem 5 (Bertrand [5]). Let U = (Un)n≥0 be a numeration system. There exists
a real number β > 1 such that 0∗ repU (N) = Fact(Dβ) if and only if U is a Bertrand
numeration system. In that case, if d∗β(1) = (ti)i≥1, then

Un = t1Un−1 + · · ·+ tnU0 + 1. (3)

Note that if β is a Parry number, then (3) defines a linear recurrence sequence
and β is a root of its characteristic polynomial.

Theorem 6 (Parry [23]). A sequence s = (si)i≥1 over N is the β-expansion of a
real number in [0, 1) if and only if (sn+i)i≥1 is lexicographically less than d∗β(1) for
all n ∈ N.
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As a consequence of the previous two theorems, with any Parry number β is
canonically associated a deterministic finite automaton Aβ = (Qβ , qβ,0, Fβ , Aβ , δβ)
accepting the language Fact(Dβ). Let d∗β(1) = t1 · · · ti(ti+1 · · · ti+p)ω where i ≥ 0
and p ≥ 1 are the minimal preperiod and period respectively. The set of states of
Aβ is Qβ = {qβ,0, . . . , qβ,i+p−1}. All states are final. For every j ∈ {1, . . . , i + p},
we have tj edges qβ,j−1 → qβ,0 labeled by 0, . . . , tj − 1 and, for j < i+ p, one edge
qβ,j−1 → qβ,j labeled by tj . There is also an edge qβ,i+p−1 → qβ,i labeled by ti+p.
See, for instance, [13, 15, 20]. Note that in [22, Thm. 7.2.13], Aβ is shown to be the
trim minimal automaton of Fact(Dβ). A deterministic finite automaton is trim if
it is accessible and coaccessible, i.e., any state can be reached from the initial state
and from any state, a final state can be reached.

Example 7. Let β be the dominant root of the polynomial X3−2X2−1. We have
dβ(1) = 2010ω and d∗β(1) = (200)ω. The automaton Aβ is depicted in Figure 1.

1 2 3

0, 1

2 0

0

Figure 1: The automaton Aβ for d∗β(1) = (200)ω.

Definition 8. Let U be a linear numeration system. If limn→+∞ Un+1/Un = β
for some real β > 1, then U is said to satisfy the dominant root condition and β is
called the dominant root of the recurrence.

Remark 9. If U is a linear numeration system satisfying the dominant root con-
dition and if repU (N) is regular, then the dominant root β is a Parry number [16].

In the case where U has a dominant root β > 1, some connections between AU

and Aβ have been previously explored by several authors [15, 20, 22]. Our aim in
this paper is to provide a more comprehensive analysis of the relationship between
these two automata.

Recall [12] that the states of the minimal automaton of an arbitrary language
L over an alphabet A are given by the equivalence classes of the Myhill-Nerode
congruence ∼L, which is defined by

∀w, z ∈ A∗, w ∼L z if and only if {x ∈ A∗ | wx ∈ L} = {x ∈ A∗ | zx ∈ L}.

Equivalently, the states of the minimal automaton of L correspond to the sets
w−1L = {x ∈ A∗ | wx ∈ L}. In this paper the symbol ∼ will be used to denote
Myhill-Nerode congruences.

Remark 10. In Theorem 22 we will describe a map between a restriction of AU

and Aβ . Note that similar observations have been considered in other contexts
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[13, 6]. For example, if U is the Bertrand numeration system associated with a Pisot
number β, then for any U -recognizable set X of integers, there exist an automaton
recognizing X and a morphism mapping this automaton onto AU = Aβ [6].

3. Examples of Automata AU

The first two examples present the well-known Fibonacci numeration system and its
generalization to an "-order recurrence relation. Note that in the first four examples,
Examples 11 to 14, the automaton AU is exactly an automaton of the kind Aβ .

Example 11 (Fibonacci numeration system). With Un+2 = Un+1+Un and U0 = 1,
U1 = 2, we get the usual Fibonacci numeration system associated with the Golden
Ratio. The dominant root is β = (1 +

√
5)/2. For this system, AU = {0, 1} and

AU accepts all words over AU except those containing the factor 11. Moreover, we
have dβ(1) = 110ω and d∗β(1) = (10)ω.

0

1

0
Figure 2: The automaton AU for the Fibonacci numeration system.

Example 12 ("-bonacci numeration system). Let " ≥ 2. Consider the linear re-
currence sequence defined by

∀n ∈ N, Un+! =
!−1∑

i=0

Un+i

and for i ∈ {0, . . . , " − 1}, Ui = 2i. For this system, AU = {0, 1} and AU accepts
all words over AU except those containing the factor 1!. We have dβ(1) = 1!0ω and
d∗β(1) = (1!−10)ω.

0

1 1 1

0

0

0

Figure 3: The automaton AU for the 4-bonacci numeration system.

The third example is also classical. Compared to the previous examples where
the β-expansions of the real numbers in [0, 1) avoid a single factor, here the β-
expansions avoid factors in an infinite regular language.
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Example 13 (Square of the Golden Ratio). With Un+2 = 3Un+1−Un, U0 = 1 and
U1 = 3, we get the Bertrand numeration system associated with β = (3 +

√
5)/2

(the square of the Golden Ratio). We have AU = {0, 1, 2} and 21∗2 is the set of
minimal forbidden factors. Moreover dβ(1) = d∗β(1) = 21ω.

0, 1 1

2

0

Figure 4: The automaton AU for the Bertrand system associated with (3 +
√
5)/2.

The recurrence involved in the following example will show some interesting
properties and is related to Example 30.

Example 14. With Un+2 = 2Un+1 + Un, U0 = 1, U1 = 3, we have the Bertrand
numeration system

(Un)n≥0 = 1, 3, 7, 17, 41, 99, 239, . . .

associated with β = 1 +
√
2. We have dβ(1) = 210ω and d∗β(1) = (20)ω. The

corresponding automaton AU is depicted in Figure 5.

q0 q1

0, 1

2

0

Figure 5: The automaton AU for the Bertrand system associated with 1 +
√
2.

The next example reveals some interesting properties and should be compared
with the usual Fibonacci system. Observe that we have the same strongly connected
component as for the Fibonacci system but the automaton in Figure 6 has one more
state, from which only finitely many words may be accepted.

Example 15 (Modified Fibonacci system). Consider the sequence U = (Un)n≥0 de-
fined by the recurrence Un+2 = Un+1+Un of Example 11 but with the initial condi-
tions U0 = 1, U1 = 3. We get a numeration system (Un)n≥0 = 1, 3, 4, 7, 11, 18, 29, 47, . . .
which is no longer Bertrand. Indeed, 2 is a greedy representation but 20 is not be-
cause repU (valU (20)) = 102. For this system, AU = {0, 1, 2} and AU is depicted in
Figure 6.

The following example illustrates the case where β is an integer.

Example 16. Consider the numeration system U = (Un)n≥0 defined by Un+1 =
3Un + 2 and U0 = 1. We have AU = {0, 1, 2, 3, 4}. This system is linear and has
the dominant root β = 3. We have dβ(1) = 30ω and d∗β(1) = 2ω. The automaton
AU is depicted in Figure 7.
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1 2

3

0

1

2
0

Figure 6: The automaton AU for the modified Fibonacci system.

1 2 3

0, 1, 2

3 1

0

4

Figure 7: The automaton AU for Un+1 = 3Un + 2 and U0 = 1.

As a prelude to Theorem 19, the next example shows that when the initial
conditions are changed, the automaton AU may have the same transition graph as
the canonical automaton Aβ , but the set of final states may change.

Example 17. Consider the recurrence relation Un+3 = 2Un+2 + Un. If we choose
(U0, U1, U2) = (1, 3, 7), we get the Bertrand numeration system U such that AU is
exactly the automaton Aβ from Example 1 depicted in Figure 1. If (U0, U1, U2) =
(1, 2, 4), we get the same graph but only state 1 is final. If (U0, U1, U2) = (1, 2, 5),
we get the same graph but only states 1 and 3 are final. Finally, with (U0, U1, U2) =
(1, 3, 6), states 1 and 2 are final.

4. Structure of the Automaton AU

In this section we give a precise description of the automaton AU when U is a linear
numeration system satisfying the dominant root condition and such that repU (N)
is regular.

Definition 18. A directed graph is strongly connected if for all pairs of vertices
(s, t), there is a directed path from s to t. A strongly connected component of a
directed graph is a maximal strongly connected subgraph. Such a component is
said to be non-trivial if it does not consist of a single vertex with no loop.

For instance, state 3 in Figure 6 is not a non-trivial strongly connected component
and state 2 in Figure 7 is a non-trivial strongly connected component.

Theorem 19. Let U be a linear numeration system such that repU (N) is regular.

(i) The automaton AU has a non-trivial strongly connected component CU con-
taining the initial state.
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(ii) If p is a state in CU , then there exists N ∈ N such that δU (p, 0n) = qU,0 for
all n ≥ N . In particular, if q (resp. r) is a state in CU (resp. not in CU) and
if δU (q,σ) = r, then σ ,= 0.

(iii) If CU is the only non-trivial strongly connected component of AU , then we
have lim

n→+∞
Un+1 − Un = +∞.

(iv) If lim
n→+∞

Un+1 − Un = +∞, then the state δU (qU,0, 1) belongs to CU .

Proof. (i) The initial state qU,0 has a loop with label 0 and therefore AU has a
non-trivial strongly connected component CU containing qU,0.

(ii) Let p be a state in CU . There exist u, v ∈ A∗
U such that δU (qU,0, u) = p and

δU (p, v) = qU,0. We have

∀x ∈ A∗
U , uvx ∈ 0∗ repU (N) ⇔ u0|v|x ∈ 0∗ repU (N).

Indeed, if uvx is a greedy representation, so is u0|v|x. Furthermore, if u0|v|x is a
greedy representation, so is x, which must be accepted from qU,0 = δU (qU,0, uv).
Hence, uvx is a greedy representation. In other words, uv ∼0∗ repU (N) u0|v| and
δU (p, 0|v|) = qU,0. Since qU,0 has a loop labeled by 0, we obtain the desired result.

(iii) Assume that AU has only one non-trivial strongly connected component CU .
Since 10n is a greedy representation for all n, infinitely many words are accepted
from δU (qU,0, 1), and so δU (qU,0, 1) belongs to CU . From (ii), there exists a minimal
t ∈ N such that δU (qU,0, 10t) = qU,0. Observe that Un is the number of words
of length n in 0∗ repU (N). For each word x (resp. y) in 0∗ repU (N) of length n
(resp. n− t), the word 0x (resp. 10ty) has length n+ 1 and belongs to 0∗ repU (N).
Therefore, we obtain Un+1 ≥ Un + Un−t for all n ≥ t.

(iv) Assume that lim
n→+∞

Un+1−Un = +∞. It is enough to show that there exists

" such that δU (qU,0, 10!) = qU,0. That is, we have to show that

there exists " ∈ N, ∀x ∈ A∗
U , 10!x ∈ 0∗ repU (N) if and only if x ∈ 0∗ repU (N).

Since we can always distinguish two states by a word of length at most g = (#AU )2,
it is equivalent to show that

there exists " ∈ N, ∀x ∈ A≤g
U , 10!x ∈ 0∗ repU (N) if and only if x ∈ 0∗ repU (N),

where A≤g
U denotes the set of the words of length at most g overAU . Since Un+1−Un

tends to +∞, there exists " such that for all n ≥ ", we have Un+1 − Un > Ug − 1,
which shows that 10!x is a greedy representation for any greedy representation x
of length less than or equal to g. The other direction is immediate.

Theorem 20. Let U be a linear numeration system, having a dominant root β > 1,
such that repU (N) is regular. Let x be a word over AU such that infinitely many
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words are accepted from δU (qU,0, x). Then y0ω ≤ dβ(1) for all suffixes y of x.
Furthermore, the state δU (qU,0, x) belongs to CU if and only if y0ω < dβ(1) for
all suffixes y of x. In particular, in this case, the word x only contains letters in
{0, . . . , (β) − 1}.

Remark 21. Let q be a state of AU distinct from qU,0. Since AU is minimal, there
exists a word wq that distinguishes qU,0 and q: that is, either wq is accepted from
qU,0 and not from q, or wq is accepted from q and not from qU,0. Let us show that
in the setting of numeration languages the second situation never occurs. Let x
be such that δU (qU,0, x) = q. Assume that xwq is accepted by AU . Then wq is a
greedy representation which must be accepted from qU,0.

Proof of Theorem 20. To prove the result we use Lemma 4. Let x = xk−1 · · ·x0 be
a word over AU such that infinitely many words are accepted from δU (qU,0, x). Due
to the greediness of the representations, there exist infinitely many n such that x0n

is a greedy representation. We obtain

∀" ∈ {1, . . . , k},
!−1∑

i=0

xiUi+n < U!+n

for infinitely many n. Dividing by U!+n and letting n tend to infinity, we get

∀" ∈ {1, . . . , k},
!−1∑

i=0

xiβ
i−! ≤ 1.

Now assume that δU (qU,0, x) belongs to CU . From (ii) and (iv) of Theorem 19,
there exist m,N ∈ N such that for all n ≥ N , we have δU (qU,0, x0m10n) = qU,0,
which is a final state. By the same reasoning as before, we obtain that

∀" ∈ {1, . . . , k},
!−1∑

i=0

xiβ
i−! + β−!−m−1 ≤ 1.

This implies that

∀" ∈ {1, . . . , k},
!−1∑

i=0

xiβ
i−! < 1.

To show the other direction, now assume that δU (qU,0, x) does not belong to
CU . For all n ∈ N, we have δU (qU,0, x0n) ,= qU,0. Therefore, by Remark 21, for all
n ∈ N, there exists a greedy representation w(n) of length at most (#AU )2 such that
x0nw(n) is not a greedy representation. Hence, by the pigeonhole principle, there
exists a greedy representation w of length at most (#AU )2 such that for infinitely
many n, the word x0nw is not a greedy representation. Therefore

∃" ∈ {1, . . . , k},
!−1∑

i=0

xiUi+n+|w| + valU (w) ≥ U!+n+|w|
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for infinitely many n. We conclude that

∃" ∈ {1, . . . , k},
!−1∑

i=0

xiβ
i−! ≥ 1.

Using Lemma 4, we obtain the desired result.

Theorem 22. Let U be a linear numeration system, having a dominant root β > 1,
such that repU (N) is regular. There exists a map Φ : CU → Qβ such that Φ(qU,0) =
qβ,0, and for all states q and all letters σ such that q and δU (q,σ) are states in CU ,
we have Φ(δU (q,σ)) = δβ(Φ(q),σ). Furthermore, if q is a state in CU and σ is the
maximal letter that can be read from Φ(q) in Aβ, then for any letter α in AU , the
state δU (q,α) is in CU if and only if α ≤ σ.

Proof. Consider the automaton whose transition diagram is the subgraph induced
by CU and where all states are assumed to be final. From Theorems 5, 6 and 20,
the language accepted by this automaton is exactly the same as the one accepted
by Aβ . Note that Aβ is a trim minimal automaton [22, Theorem 7.2.13]. From
a classical result in automata theory (see, for instance, [12, Chap. 3, Thm. 5.2]),
such a map Φ exists.

Example 23. Consider the same recurrence relation as in Example 17 but with
(U0, U1, U2) = (1, 5, 6). In Example 7 (see also Example 17), the automatonAβ with
dβ(1) = 2010ω and AU had the same transition graph. Here we get a more complex
situation described in Figure 8. The non-trivial strongly connected component CU
consists of the states QU \ {g}. The map Φ is the map that sends the states a,b, c
onto 1; the states d, e onto 2; and the states f onto 3; where {1,2,3} is the set of
states of the automaton Aβ given in Figure 1.

a d f

b

c

e

g

0

2 0

0

1

3, 4

1

2

2

0

1

0

0

Figure 8: The automaton AU for (U0, U1, U2) = (1, 5, 6).
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Theorem 24. Let U be a linear numeration system, having a dominant root β >
1, such that repU (N) is regular. If there exists a non-trivial strongly connected
component distinct from CU , then dβ(1) is finite. In this case, if s denotes the
longest prefix of dβ(1) which does not end with 0, then δU (qU,0, u) ∈ CU for all
proper prefixes u of s and δU (qU,0, s) /∈ CU . In addition, if x is a word over AU

such that δU (qU,0, x) is a state not in CU leading to such a component, then there
exists a word y over {0, . . . , (β)−1} such that δU (qU,0, y) ∈ Φ−1(qβ,0) and x = ys0n

for some n. In particular, the number of non-trivial strongly connected components
distinct from CU is bounded by #Φ−1(qβ,|s|−1).

Proof. Assume that there exists a non-trivial strongly connected component distinct
from CU . Consider a state q not in CU leading to such a component and a word
u over AU such that δU (qU,0, u) = q. Take the longest prefix x of u such that
δU (qU,0, x) ∈ CU . Hence from Theorem 20 x ∈ A∗

β and if σ ∈ AU and v ∈ A∗
U are

such that u = xσv, then δU (qU,0, xσ) /∈ CU . Using Theorem 20, there exists a suffix
z of x such that dβ(1) = zσ0ω, and so dβ(1) is finite. The longest prefix of dβ(1)
which does not end with 0 is s = zσ. Furthermore, by Theorem 20 again, we see
that v belongs to 0∗.

We still have to show that if x = yz, then δU (qU,0, y) belongs to Φ−1(qβ,0), or
equivalently in view of Theorem 22, δβ(qβ,0, y) = qβ,0. This is immediate by the
definitions of Aβ and dβ(1).

Example 25. We give an illustration of the fact that if AU contains more than
one strongly connected component, then all components other than CU consist of
cycles labeled by 0. Here we are able to build a cycle with label 0t for all t ∈ N.
Consider the sequence defined by U0 = 1, Utn+1 = 2Utn+1 and Utn+r = 2Utn+r−1,
for 1 < r ≤ t. This is a linear recurrence sequence and we get 0∗ repU (N) =
{0, 1}∗ ∪ {0, 1}∗2(0t)∗.

Theorem 26. Let U be a linear numeration system, having a dominant root β > 1,
such that repU (N) is regular. If Un+1/Un → β− as n tends to infinity, then the only
non-trivial strongly connected component is CU .

Proof. Suppose that Un+1/Un → β− but AU has more than one non-trivial strongly
connected component. Let x = xk−1 · · ·x0 be a word such that δ(qU,0, x) is not in
CU and such that there exists an infinite sequence j1 < j2 < · · · such that for all
n ≥ 1, the word x0jn is a greedy representation. Thus

∀" ∈ {1, . . . , k}, ∀n ≥ 1,
!−1∑

i=0

xi
Ui+jn

U!+jn
< 1. (4)
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Since Un+1/Un → β− and by Theorem 20, we see that

!−1∑

i=0

xi
Ui+jn

U!+jn
−→

(
!−1∑

i=0

xiβ
i−!

)+

= 1+ as n → +∞,

which is not possible in view of (4).

Theorem 27. Let U be a linear numeration system, having a dominant root β > 1,
such that repU (N) is regular. If the following conditions hold:

(1) Un+1/Un → β+, as n tends to infinity,

(2) there exists infinitely many n such that Un+1/Un ,= β, and

(3) dβ(1) is finite,

then AU has more than one non-trivial strongly connected component. Note that, if
β /∈ N, then (2) holds true.

Proof. From (3), we may assume that dβ(1) = s0ω, where s = sk−1 · · · s0 is a word
over Aβ . In view of Theorem 24, to show that there is a second strongly connected
component, it suffices to show that for infinitely many n the words s0n are greedy
representations. Equivalently, it suffices to show that for infinitely many n, we have

∀" ∈ {1, . . . , k},
!−1∑

i=0

si
Ui+n

U!+n
< 1. (5)

Let " ∈ {1, . . . , k}. We have

β!−k
!−1∑

i=0

siβ
i−! =

!−1∑

i=0

siβ
i−k =

k−1∑

i=0

siβ
i−k −

k−1∑

i=!

siβ
i−k = 1−

k−1∑

i=!

siβ
i−k ≤ β!−k

since dβ(1) is obtained by using the greedy algorithm. Applying the hypotheses (1)
and (2), we obtain (5), as required.

Example 28. The numeration systems of Example 25 satisfy the hypotheses of
the previous theorem and we have already shown that the corresponding automata
have more than one non-trivial strongly connected component.

5. State Complexity for Divisibility Criterion

We now turn to second issue of this paper. Namely we will study the state com-
plexity of 0∗ repU (mN).
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Definition 29. Let U = (Un)n≥0 be a numeration system and m ≥ 2 be an inte-
ger. The sequence (Un mod m)n≥0 satisfies a linear recurrence relation of minimal
length. This integer is denoted by kU,m or simply by k if the context is clear. This
quantity is given by the largest t such that

detHt ,≡ 0 (mod m), where Ht =





U0 U1 · · · Ut−1

U1 U2 · · · Ut
...

...
. . .

...
Ut−1 Ut · · · U2t−2




.

Example 30. Let m = 2 and consider the sequence introduced in Example 14. The
sequence (Un mod 2)n≥0 is constant and trivially satisfies the recurrence relation
Un+1 = Un with U0 = 1. Therefore, we get kU,2 = 1. For m = 4, one can check
that kU,4 = 2.

Definition 31. Let U = (Un)n≥0 be a numeration system and m ≥ 2 be an integer.
Let k = kU,m. Consider the system of linear equations

Hk x ≡ b (mod m)

where Hk is the k×k matrix given in Definition 29. We let SU,m denote the number
of k-tuples b in {0, . . . ,m − 1}k such that the system Hk x ≡ b (mod m) has at
least one solution x.

Example 32. Again take the same recurrence relation as in Example 14 andm = 4.
Consider the system

{
1 x1 + 3 x2 ≡ b1 (mod 4)
3 x1 + 7 x2 ≡ b2 (mod 4)

We have 2x1 ≡ b2 − b1 (mod 4). Hence for each value of b1 in {0, . . . , 3}, b2 can
take at most 2 values. One can therefore check that SU,4 = 8.

Remark 33. Let " ≥ k = kU,m. Then the number of "-tuples b in {0, . . . ,m− 1}!
such that the system H! x ≡ b (mod m) has at least one solution equals SU,m. Let
us show this assertion for " = k + 1. Let H ′

! denote the " × k matrix obtained by
deleting the last column of H! and let x′ denote the k-tuple obtained by deleting
the last element of x. Observe that the "-th column of H! is a linear combination of
the other columns of H!. It follows that if b = (b0, . . . , bk−1, b)T ∈ {0, . . . ,m− 1}!
is an "-tuple for which the system H ′

!x
′ ≡ b (mod m) has a solution, then b′ =

(b0, . . . , bk−1)T ∈ {0, . . . ,m − 1}k is a k-tuple for which the system Hkx′ ≡ b′

(mod m) also has a solution. Furthermore, the "-th row ofH ′
! is a linear combination

of the other rows of H ′
!, so for every such b′, there is exactly one b such that

H ′
!x

′ ≡ b (mod m) has a solution. This establishes the claim.
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We define two properties that AU may satisfy in order to get our results:

(H.1) AU has a single strongly connected component denoted by CU ,

(H.2) for all states p, q in CU , with p ,= q, there exists a word xpq such that
δU (p, xpq) ∈ CU and δU (q, xpq) ,∈ CU , or, δU (p, xpq) ,∈ CU and δU (q, xpq) ∈ CU .

Theorem 34. Let m ≥ 2 be an integer. Let U = (Un)n≥0 be a linear numeration
system satisfying the recurrence relation (2) such that

(a) N is U -recognizable and AU satisfies the assumptions (H.1) and (H.2),

(b) (Un mod m)n≥0 is purely periodic.

Then the number of states of the trim minimal automaton AU,m of the language

0∗ repU (mN)

from which infinitely many words are accepted is

(#CU )SU,m.

From now on we fix an integer m ≥ 2 and a numeration system U = (Un)n≥0

satisfying the recurrence relation (2) and such that N is U -recognizable. Let k =
kU,m.

Definition 35. We define a relation ≡U,m over A∗
U . For all u, v ∈ A∗

U ,

u ≡U,m v ⇔
{

u ∼0∗ repU (N) v and
∀i ∈ {0, . . . , k − 1}, valU (u0i) ≡ valU (v0i) (mod m)

where ∼0∗ repU (N) is the Myhill-Nerode equivalence for the language 0∗ repU (N) ac-
cepted by AU .

Lemma 36. Let u, v, x ∈ A∗
U . If u ≡U,m v and ux, vx ∈ 0∗ repU (N), then ux ≡U,m

vx and in particular, valU (ux) ≡ valU (vx) (mod m).

Proof. By assumption, for all i ∈ {0, . . . , k − 1}, valU (u0i) ≡ valU (v0i) (mod m).
Hence, for all i ∈ {0, . . . , k−1}, ai valU (u0i) ≡ ai valU (v0i) (mod m) where the ai’s
are the coefficients in (2). Assume that u = u!−1 · · ·u0. Note that

k−1∑

i=0

ai valU (u0
i) =

!−1∑

j=0

uj

k−1∑

i=0

aiUj+i =
!−1∑

j=0

ujUj+k = valU (u0
k).

Therefore, we can conclude that valU (u0k) ≡ valU (v0k) (mod m). Iterating this
argument, we have

∀n ≥ 0, valU (u0
n) ≡ valU (v0

n) (mod m). (6)
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Since the Myhill-Nerode relation is a right congruence, we have that

ux ∼0∗ repU (N) vx.

Let i ∈ {0, . . . , k − 1}. From (6), we deduce that

valU (u0
|x|+i) + valU (x0

i) ≡ valU (v0
|x|+i) + valU (x0

i) (mod m)

and therefore valU (ux0i) ≡ valU (vx0i) (mod m).

Proposition 37. Assume that the numeration system U satisfies the assumptions
of Theorem 34. Let u, v ∈ A∗

U be such that δU (qU,0, u) and δU (qU,0, v) belong to CU .
We have u ≡U,m v if and only if u ∼0∗ repU (mN) v.

Proof. From (b) the sequence (Un mod m)n≥0 is purely periodic, say of period p.

Assume that u ,≡U,m v. Our aim is to show that there exists a word y ∈ A∗
U that

distinguishes u and v in the minimal automaton of 0∗ repU (mN), i.e., either uy ∈
0∗ repU (mN) and vy ,∈ 0∗ repU (mN), or uy ,∈ 0∗ repU (mN) and vy ∈ 0∗ repU (mN).

As a first case, assume u ,∼0∗ repU (N) v. Since δU (qU,0, u) and δU (qU,0, v) both
belong to CU , this means that δU (qU,0, u) and δU (qU,0, v) are two different states in
CU . By (H.2), without loss of generality, we may assume that there exists a word x
such that

δU (qU,0, ux) ∈ CU and δU (qU,0, vx) ,∈ CU .

Since by (H.1) AU contains only one strongly connected component, only finitely
many words may be accepted from δU (qU,0, vx). Let T be the length of the longest
word accepted from δU (qU,0, vx). Let i ∈ {1, . . . ,m} be such that valU (ux) + i ≡ 0
(mod m). Using properties (ii)–(iv) from Theorem 19 i times and the fact that
δU (qU,0, 1) is final, there exist r1, . . . , ri > 0 such that the word

y = x(0r1p−11)(0r2p−11) · · · (0rip−11)

has a length larger than T + |x| and is such that uy is a greedy representation.
Moreover, due to the periodicity of (Un mod m)n≥0, we have valU (uy) ≡ 0 (mod m)
and therefore uy belongs to 0∗ repU (mN). Hence, the word y distinguishes u and v
for the language 0∗ repU (mN).

Now assume that u ∼0∗ repU (N) v and there exists j ∈ {0, . . . , k − 1} such that
valU (u0j) ,≡ valU (v0j) (mod m). There exists i < m such that valU (u0j) + i ≡ 0
(mod m) and valU (v0j)+i ,≡ 0 (mod m). As in the first case there exist s1, . . . , si >
0 such that the word

y = (0s1p−11)(0s2p−11) · · · (0sip−11)

distinguishes u and v.
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Consider the other implication and assume that u ≡U,m v. Let x be a word
such that ux ∈ 0∗ repU (mN). From Lemma 36, we only have to show that vx is
a greedy representation, which is true since u ∼0∗ repU (N) v. Hence the conclusion
follows.

Proof of Theorem 34. If u is a word such that δU (qU,0, u) belongs to CU , then with
the same reasoning as in the proof of Proposition 37, there exist infinitely many
words x such that ux ∈ 0∗ repU (mN). On the other hand, by (H.1), if v is a
word such that δU (qU,0, v) does not belong to CU , there exist finitely many words
x such that vx ∈ 0∗ repU (mN). Therefore, the number of states of the trim mini-
mal automaton of the language 0∗ repU (mN) from which infinitely many words are
accepted is the number of sets u−10∗ repU (mN) where u is a word over AU such
that δU (qU,0, u) belongs to CU . Hence, as a consequence of Proposition 37, this
number is also the number of equivalence classes [u]≡U,m with u being such that
δU (qU,0, u) ∈ CU . What we have to do to conclude the proof is therefore to count
the number of such equivalence classes.

First we show that there are at most #CUSU,m such classes. By definition, if
u, v ∈ A∗

U are such that δU (qU,0, u) ,= δU (qU,0, v), then u ,≡U,m v. Otherwise,
u ,≡U,m v if and only if there exists " < k such that valU (u0!) ,≡ valU (v0!) (mod m).

Let u = ur−1 · · ·u0 ∈ A∗
U . We let bu denote the k-tuple (b0, . . . , bk−1)T ∈

{0, . . . ,m− 1}k defined by

∀s ∈ {0, . . . , k − 1}, valU (u0
s) ≡ bs (mod m). (7)

Using the fact that the sequence (Un)n≥0 satisfies (2), there exist α0, . . . ,αk−1 such
that

∀s ∈ {0, . . . , k − 1}, valU (u0
s) =

r−1∑

i=0

uiUi+s =
k−1∑

i=0

αiUi+s. (8)

Using (7) and (8), we see that the system Hkx ≡ bu (mod m) has a solution
x = (α0, . . . ,αk−1)T .

If u, v ∈ A∗
U are such that δU (qU,0, u) = δU (qU,0, v) but u ,≡U,m v, then bu ,= bv.

From the previous paragraph the systems Hkx ≡ bu (mod m) and Hkx ≡ bv

(mod m) both have a solution. Therefore, there are at most #CUSU,m infinite
equivalence classes.

Second we show that there are at least #CUSU,m such classes. Let c = (c0, . . . ,
ck−1)T ∈ {0, . . . ,m−1}k be such that the system Hkx ≡ c (mod m) has a solution
xc = (α0, . . . ,αk−1)T . Let q be any state in CU . Our aim is to build a word y over
AU such that

δU (qU,0, y) = q and, for all s ∈ {0, . . . , k − 1}, valU (y0
s) ≡ cs (mod m).

Since AU is accessible, there exists a word u ∈ A∗
U such that δU (qU,0, u) = q.

With this word u is associated a unique bu = (b0, . . . , bk−1)T ∈ {0, . . . ,m − 1}k
given by (7). The system Hkx ≡ bu (mod m) has a solution denoted by xu.
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Define γ0, . . . , γk−1 ∈ {0, . . . ,m − 1} by xc − xu ≡ (γ0, . . . , γk−1)T (mod m).
Thus

Hk(xc − xu) ≡ c− bu (mod m). (9)

Using properties (ii)–(iv) from Theorem 19 from the initial state qU,0, there exist
t1,1, . . . , t1,γ0 such that the word

w1 = (0pt1,1−11) · · · (0pt1,γ0−11)

satisfies δU (qU,0, w1) ∈ CU ∩FU and valU (w1) ≡ γ0U0 (mod m). We can iterate this
construction. For j ∈ {2, . . . , k}, there exist tj,1, . . . , tj,γj such that the word

wj = wj−1(0
ptj,1−j10j−1) · · · (0ptj,γj−j10j−1)

satisfies δU (qU,0, wj) ∈ CU ∩ FU and valU (wj) ≡ valU (wj−1) + γj−1Uj−1 (mod m).
Consequently, we have

valU (wk) ≡ γk−1Uk−1 + · · ·+ γ0U0 (mod m).

Now take r and r′ large enough such that δU (qU,0, wk0rp) = qU,0 and r′p ≥ |u|.
Such an r exists by (ii) in Theorem 19. The word

y = wk0
(r+r′)p−|u|u

is such that δU (qU,0, y) = δU (qU,0, u) = q and taking into account the periodicity of
(Un mod m)n≥0, we get

valU (y) ≡ valU (wk) + valU (u) (mod m).

In view of (9), we obtain

∀s ∈ {0, . . . , k − 1}, valU (y0
s) ≡

k−1∑

i=0

γiUi+s + bs ≡ cs − bs + bs = cs (mod m).

Corollary 38. Assume that the numeration system U satisfies the assumptions of
Theorem 34. Assume moreover that AU is strongly connected (i.e., AU = CU). Then
the number of states of the trim minimal automaton of the language 0∗ repU (mN)
is (#CU )SU,m.

Proof. We use the same argument as in the beginning of the proof of Theorem 34.
Since AU = CU , all of the sets u−10∗ repU (mN) are infinite. Hence, infinitely many
words are accepted from any state of AU,m.
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Corollary 39. Let " ≥ 2. For the "-bonacci numeration system U = (Un)n≥0

defined by Un+! = Un+!−1+ · · ·+Un and Ui = 2i for all i < ", the number of states
of the trim minimal automaton of the language 0∗ repU (mN) is "m!.

Proof. First note that the trim minimal automaton of 0∗ repU (N) consists of a
unique strongly connected component made of " states (see Figure 2) and AU sat-
isfies all the required assumptions. The matrix H! has a determinant equal to ±1.
Therefore, for all b ∈ {0, . . . ,m−1}!, the system H!x ≡ b (mod m) has a solution.
There are m! such vectors b. We conclude by using Corollary 38.

Remark 40. Compared to Alexeev’s result (1) the previous formula is much sim-
pler. This can be explained by the fact that the last coefficient in the recurrence
relation defining the "-bonacci numeration system is equal to 1, which is invertible
modulo m for all m ≥ 2.

To build the minimal automaton of repU (mN), one can use Theorem 2 to first
have an automaton accepting the reversal of the words over AU whose numerical
value is divisible by m. We consider the reversal representations, that is least
significant digit first, to be able to handle the period2 of (Un mod m)n≥0. Such an
automaton has m times the length of the period of (Un mod m)n≥0 states. Then
minimizing the intersection of the reversal of this automaton with the automaton
AU , we get the expected minimal automaton of 0∗ repU (mN).

Taking advantage of Proposition 37, we get an automatic procedure to obtain
directly the minimal automaton AU,m of 0∗ repU (mN). States of AU,m are given
by (k + 1)-tuples. The state reached by reading w has as first component the
state of AU reached when reading w and the other components are valU (w) mod
m, . . . , valU (w0k−1) mod m.

Example 41. Consider the Fibonacci numeration system and m = 3. The states of
AU depicted in Figure 2 are denoted by q0 and q1. The states of AU,3 are r0, . . . , r17.
The transition function of AU,3 is denoted by τ and is described in Table 1.

All the systems presented in Examples 11, 12 and 14 are Bertrand numeration
systems. As a consequence of Parry’s theorem [23], the canonical automaton Aβ

associated with β-expansions is a trim minimal automaton (therefore, any two dis-
tinct states are distinguished) which is moreover strongly connected. The following
result is therefore obvious.

Proposition 42. Let U be the Bertrand numeration system associated with a non-
integer Parry number β > 1. The set N is U -recognizable and the trim minimal
automaton AU of 0∗ repU (N) fulfills properties (H.1) and (H.2).

2Another option is to consider a non-deterministic finite automaton reading most significant
digits first.
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w r = (δU (q0, w), valU (w), valU (w0)) τ(r, 0) τ(r, 1)
ε, 0, 10310 r0 = (q0, 0, 0) r0 r1

1 r1 = (q1, 1, 2) r2
10, 10100 r2 = (q0, 2, 0) r3 r4

100 r3 = (q0, 0, 2) r5 r6
101 r4 = (q1, 1, 1) r7

1000, (10)3 r5 = (q0, 2, 2) r8 r9
1001 r6 = (q1, 0, 1) r10

1010, (100)2 r7 = (q0, 1, 2) r2 r11
104, 10410 r8 = (q0, 2, 1) r12 r13

1031 r9 = (q1, 0, 0) r0
10010, 107 r10 = (q0, 1, 1) r7 r14
10101 r11 = (q1, 0, 2) r5
105 r12 = (q0, 1, 0) r15 r16
1041 r13 = (q1, 2, 2) r8

100101 r14 = (q1, 2, 1) r12
106 r15 = (q0, 0, 1) r10 r17
1051 r16 = (q1, 1, 0) r15
1061 r17 = (q1, 2, 0) r3

Table 1: The transition function of AU,3.

We can therefore apply Theorem 34 to the class of Bertrand numeration systems.

Finally, we give a lower bound when the numeration system satisfies weaker
hypotheses than those of Theorem 34.

Proposition 43. Let U be any numeration system (not necessarily linear). The
number of states of AU,m is at least | repU (m)|.

Proof. Let n = | repU (m)|. For each i ∈ {1, . . . , n}, we define pi (resp. si) to be the
prefix (resp. suffix) of length i (resp. n− i) of repU (m). We are going to prove that
for all i, j ∈ {1, . . . , n}, we have pi ,∼0∗ repU (mN) pj . Let i, j ∈ {1, . . . , n}. We may
assume that i < j. Obviously, the word pjsj belongs to 0∗ repU (mN). On the other
hand, observe that |pisj | ∈ {1, . . . , n− 1}. Therefore the word pisj does not belong
to 0∗ repU (mN) since it cannot simultaneously be greedy and satisfy valU (pisj) ≡ 0
(mod m). Hence, the word sj distinguishes pi and pj.

6. Perspectives and Conjectures

• We use the same notation as in Theorem 19. In the case where the nu-
meration system U has a dominant root β > 1, if dβ(1) is finite, then
d∗β(1) = (t1 · · · tm−1(tm − 1))ω where tm ,= 0 and then we clearly have
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#Φ−1(qβ,i) ≥ #Φ−1(qβ,i+1) for all i ∈ {0, . . . ,m − 2}. We conjecture that,
in this case, #Φ−1(qβ,m−1) = 1. In other words, we conjecture that, in this
case, AU has at most two non-trivial strongly connected components.

• When the numeration system U does not satisfy the dominant root condition,
we have not provided a precise description of AU . In this case, new kinds of
phenomena may appear. For instance, in the following two examples, there
exist more than one non-trivial strongly connected components containing
transitions not labeled by 0. Furthermore, thanks to the first example, we see
that AU may have more than two non-trivial strongly connected components.

Example 44. Consider the numeration system (Un)n≥0 defined by Un+3 =
24Un and (U0, U1, U2) = (1, 2, 6). The corresponding trim minimal automaton
is depicted in Figure 9. States in the same strongly connected component have
the same label: 1, 2 and 3, respectively.

1

2 2 2

3 3 30, 1

2
0, 1 0, 1

3

0, 1, 2 0, 1

2, 3
3

0, 1, 2, 3

0, 1, 2

2

Figure 9: An automaton AU for a numeration system U = (Un)n≥0 not satisfying
the dominant root condition.

Example 45. Consider the numeration system (Un)n≥0 defined by Un+4 =
3Un+2+Un and (U0, U1, U2, U3) = (1, 2, 3, 7). The corresponding trim minimal
automaton is depicted in Figure 10. Again, states in the same strongly con-
nected component have the same label: 1 and 2, respectively. Even though
the sequence Un+1/Un does not converge, we have limn→+∞ U2n+2/U2n =
limn→+∞ U2n+3/U2n+1 = (3 +

√
13)/2. Note that the latter observation is

consistent with Hollander’s conjecture [16].

• With the same assumptions as in Theorem 34, can we count the number of
states from which only finitely many words are accepted?

• Can we weaken the assumptions of Theorem 34?

• If X is a finite union of arithmetic progressions, can we give bounds for the
number of states of the trim minimal automaton accepting 0∗ repU (X)?
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1 1 2 2 2 2

0

1

0

1 0

1

0

0, 1

2

2

0

Figure 10: An automaton AU for a numeration system U = (Un)n≥0 not satisfying
the dominant root condition.
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