THB UNIVERSITY OF CALGARY

NON REPETITIVE WALKS IN GRAPHS AND DIGRAPHS

by

JAMES D. CURRIE

A THESIS
 SUBMITTED TO THE FACULTY OF GRADUATE STUDIBS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA
JUNE 1987
(C) JAMES D. CURRIE, 1987

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise - reproduced without his/hels written permission.

L'autorisation' a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse $n i$ de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled, "Non Repetitive Walks in Graphs and Digraphs" submitted by James D. Currie in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

B. Sands, supervisor, Dept. of Maths. \& Stats.

R.E. Woodrow, Maths. \& Stats.

N. Saver, Maths. \& Stats.
W. Vollmerhaus, Computer Science

J.A.R. Anis, Survey Engineering

G. McNulty, external dxaminer University of South Carolina

Doris: fun e 29/87

Abstract

A word w over alphabet Σ is non-repetitive if we cannot write $w=a b b c ; a, b, c \in \Sigma^{*}, b \neq \epsilon$. That is, no subword of w appears twice in a row in w. In 1906, Axel Thue, the Norwegian number theorist, showed that arbitrarily long non-repetitive words exist on a three letter alphabet.

Call graph or digraph G versatile if arbitrarily long non-repetitive words can be walked on G. This work deals with two questions:
(1) Which graphs are versatile?
(2) Which digraphs are versatile?

Our results concerning versatility of digraphs may be considered to give information about the structure of non-repetitive words on finite alphabets.

We attack these questions as follows:
(I) We introduce a partial ordering of digraphs called mimicking. We show that if digraph G mimics digraph H, then if H is versatile, so is G.
(II) We then produce two sets of digraphs MIN and MAX, and show that every digraph of MIN is versatile (These digraphs are intended to be minimal in the mimicking partial order with respect to being versatile.) and no. digraph of MAX is versatile. (The digraphs of MAX are
intended to be maximal with respect to not being versatile.)
(III) In a lengthy classification, we show that every digraph either mimics a digraph of MIN, and hence is versatile, or "reduces" to some digraph mimicked by a digraph of MAX, and hence is not versatile.

We conclude that a digraph is versatile exactly when it. mimics one of the digraphs in the finite set MIN. The set MIN contains eighty-nine (89) digraphs, and the set MAX contains twenty-five (25) individual digraphs, and one infinite family of digraphs.

Acknowledgements

Hearty thanks (if not a co-authorship, as one reader has suggested, are due to my wife Kathy Davis who drew the figures. Without her work this thesis could not exist.

Thanks also to my superisor Dr. Bill Sands for his meticulous proof reading, and for giving me the push needed to finish a thesis of this size. *

Thanks to the Math Department secretaries who patiently helped me use the word processor, copiers, etc.

Finally, thanks to those who let me talk to them about this work, and to all those who gave other help or encouragement.

SOLO DEO GLORIA

Table of Contents

Page
Abstract iii
Acknowledgements v
Table of Contents vii
List of Figures viii
Chapter 1: Introduction 1
Chapter 2: Graphs 12
Chapter 3: Digraph Chassification. 32
Chapter 4: Three Hump Digraphs 52
Chapter 5: Two Hump Digraphs 77
Chapter 6: One Hump Digraphs 158
Chapter 7: Lemmas About Substitutions 196
Chapter 8: Substitutions 212
Chapter 9: Non-versatility of MAX 225
Bibliography 280
Appendix I: Digraphs of MIN 283
Appendix II: Digraphs of MAX 314

List of Figures

Figure Page
Figure 2.1 16
Figure 2.2 18
Figure 2.3 19
Figure 2.4 27
Figure 3.1 48
Figure 3.2 48
Figure 4.1 53
Figure 4.2. 55
Figure 4.3 57
Figure 4.4 60
Figure 4.5 60
Figure 4.6 60
Figure 4.7 62
Figure 4.8 62
Figure 4.9 62
Figure 4.10 63
Figure 4.11 63
Figure 4.12 63
Figure 4.13 65
Figure 4.14 65
Figure 4.15 65
Figure 4.16 65
Figüre 4.17 65
Figure 4.18 67
Figure 4.19 67
Figure 4.20 67
Figure 4.21 67
Figure 4.22 69
Figure 4.23 69
Figure 4.24 69
Figure 4.25 69
Figure 4.26 69
Figure 4.27 71
Figure 4.28 73
Figure 4.29 73
Figure 4.30 73
Figure 4.31 75
Figure 4.32 75
Figure 4.33 75
Figure 4.34 75
Figure 5.1 78
Figure 5.2. 80
Figure 5.3 82
Figure 5.4 82
Figure 5.5 84
Figure 5.6 84
Figure 5.7 86
Figure 5.8 89
Figure 5.9. 89
Figure 5.10. 91
Figure 5.11 93
Figure 5.12 93
Figure 5.13 93
Figure 5.14 93
Figure 5.15 95
Figure 5.16 95
Figure 5.17 95
Figure 5.18 95
Figure 5.19 95
Figure 5.20 97
Figure 5.21 99
Figure 5.22 101
Figure 5.23 101
Figure 5.24: 101
Figure 5.25 101
Figure 5.26 103
Figure 5.27 103
Figure 5.28 105
Figure 5.29 105
Figure 5.30 105
Figure 5.31 107
Figure 5.32 107
Figure 5.33 107
Figure 5.34 109
Figure 5.35 111
Figure 5.36 111
Figure 5.37 111
Figure 5.38 113
Figure 5.39 113
Figure 5.40 113
Figure 5.41 113
Figure 5.42 113
Figure 5.43 115
Figure 5.44 115
Figure 5.45 117
Figure 5.46 117
Figure 5.47 117
Figure 5.48 117
Figure 5.49 117
Figure 5.50 119
Figure ,5.51 119
Figure 5.52 119
Figure 5.53 121
Figure 5.54 121
Figure 5.55 121
Figure 5.56 122
Figure 5.57 122
Figure 5.58 122
Figure 5.59 124
Figure 5.60 124
Figure 5.61 +24
Figure 5.62 125
Figure 5.63 125
Figure 5.64 125
Figure 5.65 127
Figure 5.66 127
Figure 5.60 127
Figure 5.68 128
Figure 5.69 128
Figure 5.70 128
Figure 5.71 130
Figure 5.72 130
Figure 5.73 130
Figure 5.74 130
Figure 5.75 130
Figure 5.76 133
Figure 5.77. 133
Figure 5.78 133
Figure 5.79 133
Figure 5.80 133
Figure 5.81 135
Figure 5.82 135
Figure 5.83 135
Figure 5.84 137
Figure 5.85 137
Figure 5.86 137
Figure 5.87 139
Figure 5.88 139
Figure 5.89 139
Figure 5.90 141
Figure 5.91 141
Figure 5.92 141
Figure 5.93 143
Figure 5.94 143
Figure 5.95 145
Figure 5.96 145
Figure 5.97 145
Figure 5.98 145
Figure 5.99 145
Figure 5.100 147
Figure 5.101 147
Figure 5.102 147
Figure 5.103 148
Figure 5.104 148
Figure 5.105 148
Figure 5.106 150
Figure 5.107 150
Figure 5.108 150
Figure 5.109 151
Figure 5.110 151
Figure 5.111 151
Figure 5.112 153
Figure 5.113 153
Figure 5.114 153
Figure 5.115 153
Figure 5.116 153
Figure 5.117 155
Figure 5.118 155
Figure 5.119 157
Figure 5.120 157
Figure 5.121 157
Figure 5.122 157
Figure 6.1 160
Figure 6.2 160
Figure 6.3 160
Figure 6.4 162
Figure 6.5 164
Figure 6.6 164
Figure 6.7 166
Figure 6.8.- 168
Figure 6.9 168
Figure 6.10 168
Figure 6.11 168
Figure 6.12 170
Figure 6.13 170
Figure 6.14 172
Figure 6.15 172
Figure 6.16 172
Figure 6.17 174
Figure 6.18 174
Figure 6.19 174
Figure 6.20 176
Figure 6.21 177
Figure 6.22 177
Figure 6.23 177
Figure 6.24 180
Figure 6.25 180
Figure 6.26 180
Figure 6.27 180
Figure 6.28 180
Figure 6.29 181
Figure 6.30 181
Figure 6.31 183
Figure 6.32 183
Figure 6.33 183
Figure 6.34 185
Figure 6.35 185
Figure 6.36 185
Figure 6.37 185
Figure 6.38 185
Figure 6.39 187
Figure 6.40 187
Figure 6.41 189
Figure 6.42 189
Figure 6.43 189
Figure 6.44 190
Figure 6.45 190
Figure 6.46 190
Figure 6.47 190
Figure 6.48 190
Figure 6.49 192
Figure 6.50 192
Figure 6.51 192
Figure 6.52. 192
Figure 6.53 194
Figure 6.54 194
Figure 6.55 194
Figure 6.56 195
Figure 6:57 195
Figure 6.58 195
MIN. 1 284
MIN. 2 284
MIN. 3 284
MIN. 4 285
MIN. 5 285
MIN. 6 285
MIN. 7 286
MIN. 8 286
MIN. 9 286
MIN. 10 287
MIN. 11 287
MIN. 12 287
MIN. 13 288
MIN. 14 288
MIN. 15 288
MIN. 16 289
xvii
MIN. 17 289
MIN. 18 289
MIN. 19 290
MIN. 20 290
MIN. 21 290
MIN. 22 291
MIN. 23 291
MIN. 24 291
MIN. 25 292
MIN. 26 292
MIN. 27 292
MIN. 28 293
MIN. 29 293
MIN. 30 293
MIN. 31 294
MIN. 32 294
MIN. 33 294
MIN. 34 295
MIN. 35 295
MIN. 36 295
MIN. 37 296
MIN. 38 296
MIN. 39 296
MIN. 40 297
MIN. 41 297
MIN. 42 297
MIN. 43 298
MIN. 44 298
MIN. 45 298
MIN. 46 299
MIN. 47 299
MIN. 48 299
MIN. 49 300
MIN. 50 300
MIN. 51 300
MIN. 52 301
MIN. 53 301
MIN. 54 301
MIN. 55 302
MIN. 56 302
MIN. 57 302 \%
MIN. 58 303
MIN. 59 303
MIN. 60 303
MIN. 61 304
MIN. 62 304
MIN. 63 304
MIN. 64 305
MIN. 65 305
MIN. 66 305
MIN. 67 306
MIN. 68 306
MIN. 69 306
MIN. 70 307
MIN. 71 307
MIN. 72 307
MIN. 73 308
MIN. 74 308
MIN. 75 308
MIN. 76 309
MIN. 77 309
MIN. 78 309
MIN. 79 310
MIN. 80 310
MIN. 81 310
MIN. 82 311
MIN. 83 311
MIN. 84 311
MIN. 85 312
MIN. 86 312
MIN. 87 312
MIN. 88 313
MIN. 89 313
MAX. 1 315
MAX. 2 315
MAX. 3 315
MAX. 4 316
MAX. 5 316
MAX. 6 316
MAX. 7 317
MAX. 8 317
MAX. 9 317
MAX. 10 318
MAX. 11 318
MAX. 12 318
MAX. 13 319
MAX. 14 319
MAX. 15 319
MAX. 16 320
MAX. 17 320
MAX. 18 320
MAX. 19 321
MAX. 20 321
MAX. 21 321
MAX. 22 322
MAX. 23 322
\qquad
MAX. $25 .$. 323
MAX. $26 . .$. 323

Chapter 1: Introduction

Definitions and Preliminaries:

A word is a finite sequence of elements of some finite set Σ. We call the set Σ an alphabet, the elements of Σ letters. The set of all words over Σ is denoted by Σ^{*}, the set of words of positive length over Σ by Σ^{+}. We take a naive view of words as strings of letters; thus the concatenation of two words w and v, written $w v$, is simply the string consisting of the letters of w followed by the letters of v. Say that v is a subword of w if we can write $w=u v z ; u, v, z \in \Sigma^{*}$. We say v is a prefix (suffix) of w if con write $w=v z(z v) ; v, z \in \Sigma^{*}$. The empty word, denoted ϵ, is the word with no letters in it. Denote by | w | the length of w, equal to the number of letters in w.

Let Σ, T be alphabets. A substitution $h: \Sigma^{*} \rightarrow r^{*}$ is a function generated by its values on Σ. That is, if w is a word on $\Sigma, w=a_{1} a_{2} \ldots a_{m}, a_{i} \in \Sigma, 1 \leq i \leq m$ then' $h(w)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{m}\right)$.

Define a word of type ω, to be a countable sequence of letters over some alphabet Σ. If $h: \Sigma^{*} \rightarrow \Sigma^{*}$ is some substitution with b a prefix of $h(b)$ for some $b \in \Sigma$, and $h(b)$ longer than b, then denote by $h^{\omega}(b)$ be the word of
type w having initial segment $h^{n}(b)$ for every n. This limit makes sense, as $h^{n}(b)$ will be a prefix of $h^{n+1}(b)$ for each n.

A word wover alphabet Σ is non-repetitive if we cannot write $w=a b b c ; a, b, c e z^{*}, b \neq c$. That is, no subword of w appears twice in a row in w. The term square-free is also used for such words in the literature.

For the purposes of this thesis, a graph (digraph) $G=\langle V, E\rangle$ consists of a finite set V of vertices, together with a set E of unordered (ordered) pairs of vertices. If G is a graph, denote by vert(G) the set of vertices of G. If $a, b \in V$, and $(a, b) \in E$, then we say the edge $a b$ is in G. An edge of the form a, a, G, is called a loop. For teghnical reasons to become apparent later (See Lemma 3.5), we allow digraphs to contain loops. However, we only consider graphs not containing loops.

If G is a graph or digraph we may consider
$V=\operatorname{vert}(G)$ to be an alphabet. We say that the word $w \in V^{*}$ is a walk on G if whenever $a b$ is a two letter subword of w, then $a b$ is an edge of G. We say that w can be walked on G, or G allows walk w. A graph or digraph G is called versatile if arbitrarily long non-repetitive
words can be walked on G. This work deals with two questions:
(1) Which graphs are versatile?
(2) Which digraphs are versatile?

Background: In 1906, Axel Thue, the Norwegian number theorist, showed that arbitrarily long non-repetitive words exist on a three letter alphabet. (See [19].) This result has been rediscovered many times, by Arshon [1], Morse and Hedlund [12] and Hawkins and Mientka [10], for example.

This result of Thue is counter-intuitive, and interesting for its own sake. It is also useful for the construction of pathological objects and counterexamples. An important example of a use of Thue's result is in the solution of the Burnside problem by Novikov and Adjan [13].

There is a large literature concerning. non-repetitive words (See the bibliography of Bean, Ehrenfeucht and McNulty [3].) By Konig's lemma, the existence of arbitrarify long non-repetitive words on a finite alphabet is equivalent to the existence of a non-repetitive word of type ω on that alphabet. Shelton
and Soni [16], [17], [18] investigate the structure of the set of non-repetitiye ω words on a three letter alphabet, showing the set to be perfect with respect to a natural metric.

Call a word w over alphabet Σ strongly cube-free if we cannot write $w=a b b \beta c$, where $a, b, c \in \Sigma^{*}, \beta \in \Sigma$, and β is the first letter of b. If Σ is, a two letter alphabet and r a three letter alphabet, then a strongly cube-mee word of type ω over Σ gives rise to a non-repetitive word of type ω over r in a natural way, and vice versa. (See Eraunholtz [5].) Fife [9] shows that the strongly cube-free words of type w over a two letter alphabet form a Cantor set under a natural metric.

The study of words which are non-repetitive or strongly cube-free is generalized in Bean, Ehrenfeucht and McNulty [3]. Here the question of words avoiding an arbitrary pattern is considered. A word $w \in \Sigma^{*}$ avoids the word $v=b_{1} b_{2} \ldots b_{m}$ if we cannot write $w=a h\left(b_{1} b_{2} \ldots b_{m}\right) c$ where $a, c \in \Sigma^{*}$, and h is a substitution not mapping any of the b_{i} to the empty word. An algorithm is given to determine whether, given v, there exists a natural number n, so that there exist arbitrarily long words avoiding v on an n letter alphabet. If such an n exists, v is said to be avoidable. If v is avoidable, it is natural to
attempt to bound the n mentioned above. This problem is attacked in the paper Baker; McNulty, Taylor [2]. From [2], the follwing question naturally arises: On which directed graphs can arbitrarily long non-repetitive words be walked?

As mentioned, this question is the subject of the present thesis. In a different light, one may consider this question to be in the spirit of the investigations of Shelton, Soni and Fife: What can we say about the structure of non-repetitive words?

* Let w be a word of type ω over alphabet Σ. Baker, McNulty and Taylor define the transition digraph of w to be that digraph having vertex set Σ, and an edge $a_{i} a_{j}$, $a_{i}, a_{j} \in \Sigma$, exactly when $a_{i} a_{j}$ is a subword of w. It is shown in [2] that if w is a non-repetitive word of type ω on the three letter alphabet $\{a, b, c\}$; then w must have a transition digraph with edges $a b, b a, a c, c a, b c$, $c b$. Equivalently, a digraph on vertices a, b, c is versatile only if it contains the six edges $a b, a c, b a$, bc, ca, cb. Our results concerning versatility of digraphs may thus be considered to give information about the structure of non-repetitive words on finite alphabets.

Choffrut and Culik [7] consider the following
problem: Let Σ be a finite alphabet, $w_{1}, w_{2}, \ldots, W_{m}$ words over Σ. Do there exist arbitrarily long words over Σ not including any of the w_{i} as subwords? Thus while Bean, Ehrenfeucht and McNulty consider the problem ovoiding patterns, Choffrut and Culik wish to avoid specific words. The present work may be considered a hybrid of these two approaches: If D is a digraph with vertices v_{1}, v_{2}, \ldots, v_{n}, we wish if possible to find arbitrarily long words on $\left\{v_{1}, y_{2}, \ldots, v_{n}\right\}$ avoiding the pattern $x x$, and simultaneously avoiding the specific words $v_{i} v_{j}$, where $v_{i} v_{j}$ is any non-edge of D.

Outline: Having motivated our work in the previous section, we make some remarks concerning our attack:
(I) We introduce a partial ordering of digraphs ealled-mimicking. We show that if digraph G mimics digraph H, then if H is versatile, so is G.
(II) We then produce two sets of digraphs MIN and MAX, and show that every digraph of MIN is versatile (These digraphs are intended to be minimal in the mimicking partial order with respect to being versatile.) and every digraph of MAX is not versatile. (The digraphs of MAX are intended to be maximal with respect to not being versatile.)
(III) In a lengthy classification, we show that
every digraph either mimics a digraph of MIN, and hence is versatile, or "reduces" to some digraph mimicked by a digraph of MAX, and hence is not versatile.

We conclude that a digraph is versatile exactly when it mimics one of the digraphs in the finite set MIN.

Step (II) naturally presupposes the construction of certain non-repetitive words. From Axel The on down, those wishing to construct squarefree words have used substitutions. A substitution $h: \Sigma^{*} \rightarrow r^{*}$ is called square-free if whenever $w \in \Sigma^{*}$ is non-repetitive, so is $h(w)$. Axil The showed that the substitution $h:\{a, b, c\}^{*} \rightarrow\{a, b, c\}^{*}$ given by

$$
\begin{aligned}
& h(a)=a b c a b \\
& h(b)=a c a b c b \\
& h(c)=a c b c a c b
\end{aligned}
$$

is squarefree. It follows that $h^{\omega}(a)$ is a non-repetitive word of type ω on Σ. On the other hand, the substitution $g:\{a, b, c\}^{*} \rightarrow\{a, b, c\}^{*}$ given by

$$
\begin{aligned}
& g(a)=c \\
& g(b)=b c a \\
& g(c)=b a
\end{aligned}
$$

is not square-free. In fact $g(b c b)=$ bcababca, which contains the repetition abib. Nonetheless, the fact that $g^{\omega}(b)$ is non-repelitive was proved by Arshon [1] in the

1930's. Crochemore [8], defines a concept of weak square-freeness for substitutions. Let Σ be an alphabet. Then $h: \Sigma^{*} \rightarrow \Sigma^{*}$ is weakly square-free if there exist x, w, where $x \in \Sigma, W \in \Sigma^{+}$, such that $h(x)=x w$, and $h^{\omega}(x)$ is non-repetitive. Although g is not square-free, g is weakly square-free.

Let $\mathrm{f}:(1,2,3)^{*} \rightarrow \Sigma^{*}$ be a substitution. In the body of this thesis (see Lemma 2.4.), we prove that under certain conditions on $f, f\left(g^{\omega}(b)\right)$ is non-repetitive, with g given as above. These conditions do not force f to be square-free, in fact $f(b c b)$, $f(a c a)$ are explicitly allowed to contain repetitions. This result is used to produce non-repetitive words of type ω. Except in one case, all of the many non-repetitive walks used in this thesis are of the form $f\left(g^{\omega}(a)\right)$ for such an f. In the other case we generate a non-repetitive word using weakly squarefree substitutions on a five element alphabet.

Müch work has been done on square-free substitutions, and cube-free substitutions, which are defined analogously. References may be found in the bibliographies of Berstel [4] and Crochemore [8]. We give an example of a particularly beautiful result of Karhumaki [11]:

Theorem: Let $h:(a, b)^{*} \rightarrow(a, b)^{*}$ be a substitution such that $h(a)$ begins with an a. Then the word $h^{\omega}(a)$ is cube-free if and only if the word $h^{10}(a)$ is cube-free.

One last remark is in order, of interest to those following the work of Robertson, Seymour [15]: One might ask why we consider graphs separately from digraphs, since a graph G may be considered to be simply a symmetric digraph. It turns out that the solution of the graph case of our problem allows us to find a nice classification scheme for digraphs. Moreover, it follows from the work of Robertson, Seymour on graph minors that the graph case will have a nice solution: From the weaving lemma of chapter 2 one may deduce that if G does not allow arbitrarily long non-repetitive walks, then neither does any minor of G. Thus [15] implies that there is an excluded minor characterization of those graphs not allowing arbitrarily long non-repetitive walks. We know of no generalization of the work of [15] to digraphs.

Open Problems: (1) It was remarked above that of the digraphs on three vertices a, b, c, only a digraph including edges $a b, b a, b c, c b, c a, a c$ allows arbitrarily long non-repetitive walks. We can show that if w is a
non-repetitive word of typ \Leftrightarrow on three letters a, b, c, then w must contain as subwords all of the words in one of the following sets (up to a permutation of letters): $H_{1}=$ (aba, abc, acb, bab, bac, bca, cab, cac, cba, cbc | $H_{2}=$ \{ abc, aca, acb, bac, bca, bcb, cac, cab; cba, cbc \}

A non-repetitive word of type ω all of whose three letter subwords are in H_{1} is $g^{\omega}(b)$ where g is Arshon's substitution, given above.

A non-repetitive word of type ω all of whose three letter subwords are in H_{2} is $g\left(f^{\omega}(1)\right)$ where f, g are given by
$f(1)=142$
$f(2)=1435$
$f(3)=143532$
$f(4)=1532$
$f(5)=1535$
$g(1)=a c$
$g(2)=a c b$
$g(3)=a c b c$
$g(4)=a b c$
$g(5)=a b c b$

That $g\left(f^{\omega}(1)\right)$ is non-repetitive may be proved using
the methods of Chapter 7 although this fact is pot used in this thesis. In general, if w is a non-repetitive word of type ω on n letters, what k-letter subwords must w contain? (This question could be phrased in the language of hypergraphs.)
(2) Call a word w strongly non-repetitiye if we cannot write $w=a b c d, a, b, c, d \in \Sigma^{*}, b \neq \epsilon$, a permutation of b. There exists a strongly non-repetitike word of type ω on a five letter alphabet. Whether such a word exists on four letters is an open problem. (See [6], [14]) On which digraphs can arbitrarily long strongly
non-repetitive words be walked?

Chapter 2: Graphs.

We start this chapter with some definitions concerning graphs and digraphs.

Let G be a graph (digraph) with vertex set V, $a, b e V$. We say that the word $p e(V \backslash\{a, b))^{*}$ is a (directed) path in G from a to b if the word apb is a walk in G,and no vertex of G appears in p twice. The graph P_{i} whose vertex set is $\{1,2, \ldots, i\}$ and whose edges are $12,23, \ldots,(i, i)$ is called the path on i vertices.

A graph or digraph G is connected if for every $a, b \in V, a \neq b$, there is either a path in G from a to b, or a path in G from b to a. A digraph G is strongly connected if for every $a, b \in V$, there is a path in G from a to b and a path in G from b to a.

Let G be a graph (digraph) with vertex set V, $a \in \mathcal{V}$, Let $p \in(V \backslash\{a))^{*}$ be a word, $p \neq \epsilon$. If no vertex of V appears twice in p, and both ap and pa are walks in G, then we say that the word ap is a cycle of G based at a, or simply, a cycle of G. (Various terms exist in the literature. Others are circuit, and simple cycle.) A graph C whose vertices are $\left\{c_{1}, c_{2}, \ldots, c_{m}\right.$) and whose edges are $c_{1} c_{2}, c_{2} c_{3}, \ldots$, $c_{m-1} c_{m}, c_{m} c_{1}$ is called a cycle.

If G is a graph (digraph), $a, b \in V$, then if $a b$ is an edge of G, say that b is a neighbour of $a(b$ is a successor of a, a is a predecessor of b). The degree (indegree, outdegree) of a is the number of neighbours (predecessors, successors) of a in G.

If G_{1}, G_{2} are graphs (digraphs) with vertex sets V_{1}, V_{2} and edge sets E_{1}, E_{2} then denote by $G_{1} \cap G_{2}$ the graph with vertex set $V_{1} \cap V_{2}$ and edge set $E_{1} \cap E_{2}$. Analogously define $G_{1} \cup G_{2}$.

1
In this chapter, we answer the question: Which graphs are versatile? We restrict our attention to connected graphs, since a word v can be walked on a graph G if and only if v can be walked on a connected component of G. We prove the following theorem:

Theorem 2.1: A connected graph G is versatile unless G is a path on four or fewer vertices.

The following observation proves useful.
Lemma 2.1 (a) (Weaving Lemma): Let $v=a_{1} a_{2} \ldots a_{r}$ be a non-repetitive word, $a_{1}, a_{2}, \ldots, a_{r} \in S$, some alphabet. Let $b_{1}, b_{2}, \ldots, b_{r+1}$ be non-repetitive words on alphabet T, where S and T are disjoint. We permit some or all of the b_{i} to be empty. Then $w=b_{1} a_{1} b_{2} a_{2} \ldots b_{r} a_{r} b_{r+1}$ is a
non-repetitive word.
Proof: Suppose w contains a repetition, say $w=u y y z, y \neq 6$. Then yy contains some a_{j}, for otherwise yy is a subword of one of the b_{i}, contradicting the fact
that the b_{i} are non-repetitive.
Now if p is a word on $S \cup T$, denote by $p \mid S$ the word formed by deleting from p all the letters of T. Thus the above paragraph remarks that $y_{\mid S} \neq \epsilon$; however, $a_{1} a_{2} \ldots a_{r}=w\left|s={ }^{u}\right| S^{y}\left|S^{y}\right|, S^{z} \mid S$ and therefore $v=a_{1} a_{2} \ldots a_{r}$ contains a repetition, namely $y_{\mid S} y_{\mid S}$, which is a contradiction.

We thus conclude that w is a non-repetitive word. a Let v be a word of type ω on some alphabet $S={ }^{\prime}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Let G be $a \operatorname{graph}$ (digraph) including S among its vertex set. Suppose that whenever $a_{i} a_{j} \in S^{*}$ is a subword of v there is a path $P\left(a_{i}, a_{j}\right)$ in G from a_{i} to a_{j} such that no vertex of $P\left(a_{i}, a_{j}\right)$ is in S. We say that v can be walked in G modulo paths. The weaving lemma will often be applied in the following way:

Lemma 2.1 (b) (Second Weaving Lemma): Let v be a non-repetitive word of type ω, G a graph (digraph). If v can be walked on G modulo paths, then G is versatile.

Proof: Pick $n>0$. Let $b_{1} b_{2} \ldots b_{n}$ be the initial segment of v of length n. The word where

$$
w=b_{1} P\left(b_{1}, b_{2}\right) b_{2} P\left(b_{2}, b_{3}\right) b_{3} \ldots b_{n-1} P\left(b_{n-1}, b_{n}\right) b_{n}
$$

will be a non-repetitive word by the weaving lemma. By construction, w is a non-repetitive walk on G of length n or more. Thus G allows arbitrarily long non-repetitive walks.

We now commence the proof of Theorem 2.1, proving a series of lemmas.

Lemma 2.2: Let G be a graph with a vertex v with degree(v) ≥ 3. Then G is versatile.

Proof: Let three neighbours of v be a, b, c. Let w be any non-repetitive word of type ω on $\{a, b, c\}$. Then w can be walked'on G modulo paths, with
$P(a, b)=P(b, a)=P(b, c)=P(c, b)=P(c, a)=P(a, c)=v$
(See Figure 2.1) Thus, by the second weaving lemma, G is versatile.

Restating Lemma 2.2, any graph which is not versatile must have the degree of every vertex being 2 or less. In the case of connected graphs, we are left with paths and cycles.

Lemma 2.3: Let $C=c_{1} c_{2} \ldots c_{m}(m \geq 3)$ be a cycle. Then C is versatile.

Proof: Again we use the second weaving lemma. Here let v be any non-repetitiv word of type ω on $\left\{c_{1}, c_{2}, c_{3}\right\}$. Then v can be walked on C modulo paths,

年:

Figure 2.1
where

$$
\begin{aligned}
& P\left(c_{1} c_{2}\right)=P\left(c_{2} c_{1}\right)=P\left(c_{2} c_{3}\right)=\epsilon P\left(c_{3} c_{2}\right)=\epsilon \\
& P\left(c_{3} c_{1}\right)=c_{4} c_{5} \cdots c_{m} \\
& P\left(c_{1} c_{3}\right)=c_{m} c_{m-1} \cdots c_{4}
\end{aligned}
$$

(See Figure 2.2) Thus G is versatile.a
We have seen that every connected graph which is not a path is versatile. To conclude our examination of graphs we consider paths. Paths on four or fewer vertices do not allow arbitrarily long non-repetitive walks. It suffices to show this for P_{4}, since P_{4} contains shorter paths as subgraphs.

Suppose that P_{4} allows arbitrarily long non-repetitive walks. Then let v be a non-repetitive word of type w which can be walked on P_{4}. We chop v up into blocks starting with 1 . That is, consider the possible subwords of v commencing with 1 , ending with 2 , and containing exactly one 1. (See Figure 2.3). Clearly these are $a=12, b=1232, c=123432$. However a moment's thought shows that block a cannot appear in v since the words $a a, a b, a c$ all contain the repetition $a a$, and if v contains block a, then it must contain one of these longer words.

Thus v must be composed entirely of the two blocks b and c. However any non-repetitive word on two letters is

Figure 2.2

Figure 2.3

finite, hence v must be a finite word. This is a contradiction. Thus P_{4} does not allow arbitrarily long non-repetitive walks.

Definition: Let $S=\left\{x_{1}, x_{2}, x_{3}\right\}, T$ be alphabets and let $h: S^{*} \rightarrow T^{*}$ be a substitution. Say that h is suitable if

1) $\left|h\left(x_{i}\right)\right| \leq\left|h\left(x_{j}\right)\right|+\left|h\left(x_{k}\right)\right|$ for
$1 \leq i, j, k \leq 3, i, j, k$ distinct.
2) For $^{2} \leq i \leq 3$ one cannot write $h\left(x_{i}\right)=u w=w z$, $u, w, z \in T^{*}, u, w, z \neq \in$.
3). If w e S^{*} is a non-repetitive word with $|w|=3$ and $w^{\prime} \neq x_{2} x_{3} x_{2}, x_{1} x_{3} x_{1}$, then $h(w)$ is non-repetitive.

To show that P_{5} allows arbitrarily long non-repetitive walks, we introduce another lemma for producing new roñ-repetitive words from old. In fact this lemma will be one of the main tools of this thesis.

Lemma 2.4 (Substitution Lemma): Let S be the alphabet $\left\{x_{1}, x_{2}: x_{3}\right\}$. Let $v \in S^{*}$ be a non-repetitive word, such that $x_{2} x_{3} x_{2} ; x_{1} x_{3} x_{1}$ are not subwords of v. If h is suitable, then $h(v)$ is non-repetitive.

Proof: Suppose v fulfills the conditions of the lemma and h is, suitable. Let $v=a_{1} a_{2} \ldots a_{m}$. For each $i, 1 \leq i \leq m$, say $h\left(a_{i}\right)=e_{i}$. For the sake of a contradiction,
suppose $h(v)=e_{1} e_{2} \ldots e_{m}=a b b c$, some $a, b, c \in T^{*}$, b $\neq \epsilon$.

Without loss of generality, shortening v if
necessary, write
. $e_{1} e_{2} \ldots e_{j-1} e_{j}^{\prime}=e_{j}^{\prime \prime} e_{j+1} \ldots e_{m-1} e_{m}^{\prime}=b \ldots$ (*)
where $e_{1}=e_{1}^{\prime} e_{1}^{\prime \prime}, e_{j}=e_{j}^{\prime} e_{j}^{\prime \prime}, e_{m}=e_{m}^{\prime} e_{m}^{\prime \prime}$
$e_{1}^{\prime \prime}, e_{j}^{\prime}, e_{m}^{\prime} \neq \epsilon$.
Since $h(v)$ is repetitive, $m>3$. Otherwise, by condition 3^{\prime}) of the definition of suitability, $e_{1} e_{2} e_{3}$ is $x_{1} x_{3} x_{1}$ or $x_{2} x_{3} x_{2}$, contrary to our assumptions on v. Also j > 1, otherwise

- $\left|e_{1}\right|>\left|e_{2}\right|+\left|e_{3}\right|$ by line $(*)$ and the fact that m > 3. Similarly, $j<m$.

Claim: The two expressions $e_{1}^{\prime} e_{2} \ldots e_{j}^{\prime}$ and $e_{j}^{\prime \prime} e_{j+1} \ldots e_{m}^{\prime}$ "match up " in the natural way; ie.

$$
\begin{aligned}
& e_{j}^{\prime}=e_{m}^{\prime} \\
& e_{1}^{\prime \prime}=e_{j}^{\prime \prime} \\
& m=2 j-1 \text { and } \\
& e_{1+i}=e_{j+i} \text { for } i=1 \text { to } j-2 .
\end{aligned}
$$

Proof of Claim: If. $e_{j}^{\prime} \neq e_{m}^{\prime}$ suppose that
$\left|e_{m}^{\prime}\right|>\left|e_{j}^{\prime}\right|$. Say that $e_{m}^{\prime}=e_{k}^{\prime \prime} e_{k+1} \ldots e_{j}^{\prime}$ for some $k<j$, and $e_{k}=e_{k}^{\prime} e_{k}^{\prime \prime}, e_{k}^{\prime \prime} \neq \epsilon$. Then $h\left(a_{k} a_{m}\right)=e_{k} e_{m}=$ $e_{k}^{\prime} e_{k}^{\prime \prime} e_{k}^{\prime} e_{k+1} e_{k+2} \cdots e_{j}^{\prime} e_{m}^{\prime \prime}$ which contains the repetition $e_{k}^{\prime \prime} e_{k}^{\prime \prime}$. By condition 3) on h we must halve $a_{k}=a_{m}$. However now
$e_{k}^{\prime} e_{k}^{\prime \prime}=e_{k}=e_{m}=e_{m}^{\prime} e_{m}^{\prime \prime}=e_{k}^{\prime \prime} e_{k+1} \cdots e_{j}^{\prime} e_{m}^{\prime \prime}$. Note that
$e_{j}^{\prime} \neq \epsilon$, so that condition 2) is contradicted for $h\left(\mathbf{a}_{\mathbf{k}}\right)$, which commences and ends with e_{k}.

We get a similar contradiction if $\left|e_{m}^{\prime}\right|<\left|e_{j}^{\prime}\right|$. Thus $e_{m}^{\prime}=e_{j}^{\prime}$ and $e_{1}^{\prime \prime} \ldots e_{j-1}=e_{j}^{\prime \prime} \ldots e_{m-1}$. Repeating this argument we show that

$$
\begin{aligned}
& e_{1+i}=e_{j+i} \text { for } i=1 \text { to } j-2 . \\
& e_{j}^{\prime \prime}=e_{1}^{\prime \prime}, \text { and } 2 j-1=m, \text { as desired. }
\end{aligned}
$$

Note that $e_{1+i}=e_{j+i}$ implies that $a_{1+i}=a_{j+i}$, since h is suitable. From the -claim,
$h\left(a_{1} a_{j} a_{m}\right)=e_{1} e_{j} e_{m}=e_{1}^{\prime} e_{1} e_{j}^{\prime} e_{j}^{\prime} e_{m}^{\prime} e_{m}^{\prime \prime}$ $=e_{1}^{\prime} e_{1}^{\prime} e_{j}^{\prime} e_{1}^{\prime} e_{j}^{\prime} e_{m}^{\prime \prime}$
which repeats $e_{1}^{"} e_{j}^{\prime} \$$ Since $\left|a_{1} a_{j} a_{m}\right|=3$, one of the following cases must arise:

A: $\quad a_{1}=a_{j}$
B: $\quad a_{j}=a_{m}$
C: $\quad a_{1}=x_{1}, a_{j}=x_{3}, a_{m}=x_{1}$
D: $\quad a_{1}=x_{2}, a_{j}=x_{3}, a_{m}=x_{2}$.
In case A, v contains the subword
$a_{1} a_{2} \ldots a_{j-1} a_{1} a_{2} \ldots a_{j-1}$, which is a contradiction, as v
is non-repetitive. Similarly case B cannot occur, as v
would contain a repetition.
Suppose case C occurs. (Case D is similar.) Since
$m \geq 4$, and m is odd, $m \geq 5$. Therefore $j \geq 3$.
Now $a_{2}=a_{j+1}$. But since v is non-repetitive,
$a_{2} \neq a_{1}=x_{1}$ and $a_{j+1} \neq a_{j}=x_{3}$. Thus $a_{2}=a_{j+1}=x_{2}$.
Also $a_{j-1}=a_{m-1}$ so that $x_{3}=a_{j} \neq a_{j-1}$ and
$a_{m-1} \neq a_{m}=x_{1}$. We conclude that $a_{j-1}=a_{m-1}=x_{2}$.
Therefore $a_{j-1} a_{j}{ }^{a}{ }_{j+1}=x_{2} x_{3} x_{2}$, contradicting our assumptions on v.

The assumption that $h(v)$ repeats leads to a contradiction. Therefore $h(v)$ contains no repetition.

Remarks: Several variations have been proved of a lemma with stronger conditions than the above, and a stronger conclusion. For example, in Bean, Ehrenfeucht and McNulty [3], the following lemma is proved.

Lemma 2.5: Let Σ, τ be alphabets. Suppose that $h: \Sigma^{*} \rightarrow r^{*}$ is a substitution such that

1') If $x, y \in \Sigma$ and $h(y)$ is a subword of $h(x)$, then $\mathrm{y}=\mathrm{x}$.

3') If w \& Σ^{*} is a non-repetitive word with
$|w|=3$ then $h(w)$ is non-repetitive.
Then if $v \in \Sigma^{*}$ is non-repetitive, so is $h(v)$.

The proof is essentially that of Lemma 2.4 , with。
condition (') sufficing to prove the claim. In fact our claim, with slight renaming, comes from [3]. We have stated this result of [3] as a lemma, as we will refer to it later.

Lemma 2.4 , in comparison with Lemma 2.5 , restricts h less, and v more. When $\Sigma=S$, dondition 3^{\prime}) necessitates the checking of $h(w)$ for twelve three letter words w, whereas condition (3 only requires good behaviour from h on ten of these twelve triples.

Next we fhow how to produce arbitrarily long words v on $S, S=\left\{x_{1}, x_{2}, x_{3}\right\}$ satisfying the conditions of the substitution lemma. Consider the substitution
$h: S^{*} \rightarrow S^{*}$ where
$h\left(x_{1}\right)=x_{3}$
$h\left(x_{2}\right)=x_{2} x_{3} x_{1}$
(Sub 2.1)
$h\left(x_{3}\right)=x_{2} x_{1}$
Clearly h meets conditions 1) and 2) of the definition of suitability. $\&$ We point out that h does not meet condition 1^{\prime} above.) That h also meets condition 3) of suitability is verified by checking the action of h on triples of S.

$$
\begin{aligned}
& h\left(x_{1} x_{2} x_{1}\right)=x_{3} x_{2} x_{3} x_{1} x_{3} \\
& h\left(x_{1} x_{2} x_{3}\right)=x_{3} x_{2} x_{3} x_{1} x_{2} x_{1}
\end{aligned}
$$

$h\left(x_{1} x_{3} x_{1}\right)=x_{3} x_{2} x_{1} x_{3}$
$h\left(x_{1} x_{3} x_{2}\right)=x_{3} x_{2} x_{1} x_{2} x_{3} x_{1}$
$h\left(x_{2} x_{1} x_{2}\right)=x_{2} x_{3} x_{1} x_{3} x_{2} x_{3} x_{1}$
$h\left(x_{2} x_{1} x_{3}\right)=x_{2} x_{3} x_{1} x_{3} x_{2} x_{1}$
$h\left(x_{2} x_{3} x_{1}\right)=x_{2} x_{3} x_{1} x_{2} x_{1} x_{3}$
$h\left(x_{2} x_{3} x_{2}\right)=x_{2} x_{3} x_{1} x_{2} x_{1} x_{2} x_{3} x_{1}$
$h\left(x_{3} x_{1} x_{2}\right)=x_{2} x_{1} x_{3} x_{2} x_{3} x_{1}$
$h\left(x_{3} x_{1} x_{3}\right)=x_{2} x_{1} x_{3} x_{2} x_{1}$
$h\left(x_{3} x_{2} x_{1}\right)=x_{2} x_{1} x_{2} x_{3} x_{1} x_{3}$
$h\left(x_{3} x_{2} x_{3}\right)=x_{2} x_{1} x_{2} x_{3} x_{1} x_{2} x_{1}$
Only $h\left(x_{2} x_{3} x_{2}\right)$ contains a repetition: $x_{1} x_{2} x_{1} x_{2}$.
Let v be any non-repetitive word on S. Any x_{3}
appearing internally in $h(v)$ either comes from $h\left(x_{2}\right)$
and appears in the context $x_{2} x_{3} x_{1}$, or comes from $h\left(x_{1}\right)$
and appears in the context $x_{1} x_{3} x_{2}$. Thus the words $x_{1} x_{3} x_{1}$
and $x_{2} x_{3} x_{2}$ are not subwords of $h(v)$.
Now suppose $v \in S^{*}$ has no repetition and doesn't
contain $x_{1} x_{3} x_{1}$ or $x_{2} x_{3} x_{2}$ as subwords. By the substitution
lemma, $h(v)$ contains no repetition. By our last
observation, $h(v)$ contains neither $x_{1} x_{3} x_{1}$ nor $x_{2} x_{3} x_{2}$.Thus
by induction $h^{n}\left(x_{2}\right)$ has no repetitions, and does not.
contain $x_{1} x_{3} x_{1}$ or $x_{2} x_{3} x_{2}$. We therefore see that the word
$h^{n}\left(x_{2}\right)$ fulfills the substitution lemma's conditions on
v, and can be made arbitrarily long.

We are now ready to show that P_{5} allows arbitrarily long non-repetitive walks. Consider the following substitution.
$g: S^{*} \rightarrow T^{*}$
$g\left(x_{1}\right)=12345432$
$g\left(x_{2}\right)=.123432345432123454323432$ (Sub 2.2)
$g\left(\mathrm{x}_{3}\right)=1234323454323432$
Clearly $g(v)$ is a walk on P_{5} whenever $v \in S^{*}$. (See Figure 2.4)

Further, g is suitable. The only condition difficult to check is condition 3). One must check these words for non-repetitiveness:

```
g( }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{})=12345432123443234543212345432343212345432,
```



```
    1234323454323432
    g( (\mp@subsup{x}{1}{\prime}\mp@subsup{x}{3}{}\mp@subsup{x}{1}{})
```



```
        123454323432
        g(x
        12343234543212.3454323432
```



```
        1234323454323432
```



```
        123432345432343212345432
```


Figure 2.4

$$
1
$$

?

$$
\begin{aligned}
& g\left(x_{2} x_{3} x_{2}\right)=123432345432123454323432- \\
& 1234323454323432123432345432123454323432 \\
& g\left(x_{3} x_{1} x_{2}\right)=123432345422343212345432123432345432- \\
& 123454323432 \\
& g\left(x_{3} x_{1} x_{3}\right)=1234323454323432123454321234323454323432 \\
& g\left(x_{3} x_{2} x_{1}\right)=1234323454323432123432345432 \text { - } \\
& 12345432343212345432 \\
& g\left(x_{3} x_{2} x_{3}\right)=1234323454323432123432345432 \text { - } \\
& 1234543234321234323454323432
\end{aligned}
$$

As an example, we show that $w=g\left(x_{1} x_{2} x_{1}\right)$ is non-repetitive. Suppose not. Then w must contain a repetition $v v$. Being a repetition, vv contains the symbol 1 exactly four, two or no times. We can rule out vv containing no 1 's, since then $v v$ would be entirely contained in one of $g\left(x_{1}\right), g\left(x_{2}\right), g\left(x_{3}\right)$, which can each be checked to be non-repetitive.

If ve contains exactly.four 1 's, then the first and third 1 's of w are " matched " by vv:
$\hat{12345432} 123432345432 \hat{12} 345432343212345432$
However, as indicated in the above scheme, this cannot happen, as the subwords of w commencing at the first and third 1 's don't agree for long enough. (The extent of their agreement is underlined.)

Suppose vv contains then exactly two 1 's. If the
first 1 of w is contained in $v v$; it must be matched with the second 1 of w :
$\hat{12345432 \hat{1} 2343234543212345432343212345432}$
We see that this is impossible.
Suppose that $v v$ matches the second and third 1 's of w.
$1 \underline{2345432 \hat{1} 234} 3 \underline{2345432 \hat{1} 2345432343212345432}$
Again we see that this is impossible; the underlined "zones" of agreement for these two $1^{\prime} s$ do not meet.

The second 1 of cannot be matclild with the fourth 1, since then $v v$ would also contain the third 1. However then vv would contain all four 1 's, which is impossible, as mentioned.

The final possibility is that the third and fourth 1 's of would match. However, we note that wi is a palindrome. Since the second and third 1's could not match, neither can the third and fourth.

By arguments of this type, all the listed words except for $g\left(x_{2} x_{3} x_{2}\right)$ can be shown to be non-repetitive. Alternatively, g can be shown to be suitable by invoking the Long/Short Lemma of Chapter 7.

As g is suitable, $g\left(h^{n}\left(x_{2}\right)\right)$ gives an arbitrarily
long non-repetitive walk on P_{5} by choosing n as large as desired. Thus P_{5} is versatile. Since any path on more than five vertices contains P_{5} as a subgraph, such paths are also versatile. We have thus proved Theorem 2.5.

Versatility of MIN. 1 - MIN. 4: Since we have the substitutions h and g handy, this is a convenient point in the thesis at which to show that MIN. 1 - MIN. 4 are versatile digraphs. Let $v=h^{\omega}\left(x_{2}\right)$, $w=g\left(h^{\omega}\left(x_{2}\right)\right)$.

Recall from Chapter 1 the concept of a transition digraph: given a word u of type ω over a finite alphabet Σ, the transition digraph of u has as vertices those letters of Σ appearing in u, and a directed edge from letter x to letter y exactly when $x y$ is a subword of u. Thus MN. 1 is isomorphic to the transition'digraph of v, and MIN. 3 is precisely the transition digraph of w. I.t follows that MIN. 1 and MIN. 3 are versatite digraphs.

As we remarked earlier, v does not contain sûbwords $x_{2} x_{3} x_{2}$ or $x_{1} x_{3} x_{1}$. Whenever x_{3} occurs in v it is either in the context $x_{2} x_{3} x_{1}$ or $x_{1} x_{3} x_{2}$. Let v, be the word of type ω arising from v by replacing x_{3} by x_{4} wheneyer x_{3} occurs in context $x_{1} x_{3} x_{2}$. Clearly v, will be a non-repetitive
word of type ω. One checks that MIN. 2 is isomorphic to the transition digraph of v^{\prime}, and thus is versatile.

Similarly, one checks that w does not contain subwords 232 or 434 . Whenever 3 occurs ${ }^{2} n$ it is either in the context 234 or 432 . Let w be the word of type w arising from w by replacing 3 by 3 , whenever 3 occurs in context 432. Again w^{\prime} will be a non-repetitive word of type w. One checks that MIN. 4 is the transition digraph of w^{\prime}, and thus is versatile.

Chapter 3: Digraph Classification

In this chapter we ask the following question: Which digraphs are yersatile? In analogy to chapter 2 , we are only interested in strongly connected digraphs.

Lemma 3.1: Let G be a digraph. Then G is versatile if and only if one of G 's strongly connected components is versatile.

Proof: Clearly if a component of G is versatile, so is G. Suppose that G is versatile. Let v be a non-repetitive word of type ω which can be walked on G.

We show that whenever x and y are vertices in different components of G then a final segment of v can be walked in one of $G \backslash\{x\}$ or $G \backslash(y)$. It will follow by induction on the size of G that a non-repetitive walk of type ω exists in one of G's components.

Suppose then that x and are vertices of G and there is no directed $x y$ path in G. If v contains no x, then v can be walked in $G \backslash\{x)$ and we are done. If v contains an x, then a final segment v, of v contains no y, and v^{\prime} can be walked in $G \backslash\{y\} . \square$

A strongly connected digraph can be written as a union of cycles. In the following lemma we relate the interstction of these cycles to the existence of
non-repetitive walks.
Lemma 3.2 (Intersection Lemma): Let X, Y be directed cycles in the digraph G so that vert(X) \cap vert(Y$) \neq \phi$. Then either

1) $\mathrm{X} \cap \mathrm{Y}$ is connected
or
2) $X \cup Y$ is versatile.

Proof: In fact if 1) does not hold, then $X U Y$ "contains" one of the versatile digraphs MIN 1 or MIN 2, in a sense to be made precise later. We show that -1$) \rightarrow$ 2). First note that X (similarly Y) gives a circular order to the vertices of vert(X) \cap vert(Y).

Case A: The circular orders given to vert(X) \cap vert(Y) by X and Y are different.

In this case there are vertices x_{1}, x_{2}, x_{3} of $X \cap Y$ occurring in the order x_{1}, x_{2}, x_{3} in the cyole x, and in the order x_{1}, x_{3}, x_{2} in the cycle Y. Now we use the Second Weaving Lemma, Lemma 2.1(b). As in the last part of Chapter 2, let v be $h^{\omega}\left(x_{2}\right)$. The Second Weaving Lemma requires us to walk v on $X \cap Y$ modulo peths. We let the paths $P\left(x_{1}, x_{2}\right), P\left(x_{2}, x_{3}\right), P\left(x_{3}, x_{1}\right)$ be arcs in cycle x. We require that none of these paths contain x_{1}, x_{2} or x_{3}. However, this is fulfilled because of the assumed circular order of these vertices in X. For example, the vertex x_{3} cannot be on the arc of X between
x_{1} and x_{2}. The required paths $P\left(x_{1}, x_{3}\right), P\left(x_{3}, x_{2}\right)$, $P\left(x_{2}, x_{1}\right)$ are chosen in Y. Then v can be walked on $X \cap$ Y modulo these paths, and by the Second Weaving Lemma, X $\cap \mathrm{Y}$ is versatile.

Case B: The circular orders on vert(X) n vert(Y) given by X and Y are the same. Suppose that $X \cap Y$ is not connected. Then choose vertices x_{1}, x_{2} which are in different components of $X \cap Y$. Let $P_{X}\left(x_{1}, x_{2}\right)$ be the $x_{1} x_{2}$ path in $X, P_{Y}\left(x_{1}, x_{2}\right)$ the $x_{1} x_{2}$ path in Y. Since these two paths are not equal, we have
vert($\left.P_{X}\left(x_{1}, x_{2}\right)\right) \neq \operatorname{vert}\left(P_{Y}\left(x_{1}, x_{2}\right)\right)$.
Let $x_{4} \in \operatorname{vert}\left(P_{X}\left(x_{1}, x_{2}\right)\right) \oplus \operatorname{vert}\left(P_{Y}\left(x_{1}, x_{2}\right)\right.$). Úsing similar definitions, let $x_{3} \epsilon \operatorname{vert}\left(P_{X}\left(x_{2}, x_{1}\right)\right.$) $\oplus \operatorname{vert}\left(P_{Y}\left(x_{2}, x_{1}\right)\right)$.

We again wish to apply the Second Weaving Lemma,
Lemma $2.1(b)$, with $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Instead of v, we use v^{\prime}, the word arising from v by replacing x_{3} by x_{4} wherever x_{3} occurs in context $x_{1} x_{3} x_{2}$.

As remarked at the end of Chapter $2 \mathrm{v}^{\prime}$ is non-repetitive. Also the only two letter subwords of v ' are $x_{1} x_{2}, x_{2} x_{1}, x_{1} x_{4}, x_{2} x_{3}, x_{4} x_{2}, x_{3} x_{1}$. We must now show that we can walk v^{\prime} in $X U Y$ modulo paths. There exists an $x_{1} x_{2}$ path in $X \cup Y$ not through x_{4}, since x_{4} is not on both $P_{X}\left(x_{1}, x_{2}\right)$ and $P_{Y}\left(x_{1}, x_{2}\right)$. Also x_{3} is not on
$P_{X}\left(x_{1}, x_{2}\right)$ or $P_{Y}\left(x_{1}, x_{2}\right)$, because x_{3} is between x_{2} and x_{1} on one of X and Y. We may thus choose one of $P_{X}\left(x_{1}, x_{2}\right)$ or $P_{Y}\left(x_{1}, x_{2}\right)$ to serve as a path $P\left(x_{1}, x_{2}\right)$ having no vertex in S.

Preparjing to use the second weaving lemma, with
$S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, we have shown that the required path $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right.$) exists. Further, since x_{4} is between x_{1} and x_{2} on one of X and Y, there is an $x_{1} x_{4}$ path in $X \cup Y$ not through x_{2}. Again x_{3} is not on this path, for otherwise x_{3} is between x_{1} and x_{4}, hence x_{1} and x_{2}. Arguing similarly, the existence of paths $P\left(x_{1}, x_{2}\right)$, $P\left(x_{1}, x_{4}\right), P\left(x_{4}, x_{2}\right), P\left(x_{2}, d\right), P\left(x_{2}, x_{1}\right)$, $P\left(x_{3}, x_{1}\right)$ may be shown. We may thus walk v, on $X \cup Y$ modulo paths and therefore $X \cup Y$ is versatile.

We have shown that certain digraphs are versatile. We use this intersection lemma to delineate the digraphs requiring further investigation.

Lemma 3.3 (Classification Lemma): Let G be a strongly connected digraph. Then G is of one of the following types:
(1) vert $(G)=\operatorname{vert}(X)$ for some directed cycle X of G. In this case, say G is a one hump digraph.
(2) G is not of type (1), but vert(G)=
vert ($X \cup Y$) where X and Y are directed cycles, and $X \cap Y$ is connected and non-empty. In this case, say G is a two hump digraph.
(3) G is not of types (1) or (2), but vert($G)=\operatorname{vert}(X \cup Y \cup Z)$ where X, Y, Z are directed cycles, $X \cap Y$ and $Y \cap Z$ are connected and non-empty, and $X \cap Z=$. In this case, say G is a three hump digraph.
(4) G is versatile.

Remark: In fact, unless G falls under one of cases (1), (2) or (3), G "contains", in a sense to be made precise later, one of the versatile digraphs MIN. 1 , MIN. 2 or MIN. 3 .

Proof: If G is versatile, then G falls under case (4) and we are finished. Thus suppose that G is not versatile. Since G is strongly connected, write vert(G) $=u_{i=1}^{m}$ vert(C_{i}) where the C_{i} are directed cycles of G, and for each $j, 2 \leq j \leq m$,
there exists $i<j$ such that $C_{j} \cap C_{i} \neq \varnothing$. Do this so that m is as small as possible.

If $m=1$, then G is of type (1) and we are done. If $m=2$ then G is of type (2), for by the intersection lemma, since G is not versatile, $C_{1} \cap C_{2}$ must be connected.

$$
\text { If } m=3, C_{1} \cap C_{2} \neq \oplus \text {. Suppose without loss of }
$$

generality that $C_{2} \cap \mathrm{C}_{3} \neq \emptyset$. Otherwise $\mathrm{C}_{2} \cap \mathrm{C}_{3}=$ so that $C_{3} \cap C_{1} \neq \phi$, and we interchange the roles of C_{1} and C_{2}.

Because G.is not versatile, by the intersection lemma, $C_{1} \cap C_{2}, C_{2} \cap C_{3}$ are connected. It remains to show that $C_{3} \cap C_{1}=\varnothing$. Suppose not.

Let $x_{1} \in \operatorname{vert}\left(C_{1}\right) \backslash$ vert $\left(C_{2} \cup C_{3}\right)$. Such an x_{1} exists, for otherwise we could write vert(G) $=\operatorname{vert(} C_{2}$ $\cup C_{3}$) where $C_{2} \cap C_{3}$ is non-empty. This contradicts the minimality of m.

Similarly we can choose $x_{2} \in \operatorname{vert}\left(C_{2}\right)$ \} vert $\left(C_{1} \cup C_{3}\right)$ and $x_{3} \in \operatorname{vert}\left(C_{3}\right) \backslash \operatorname{vert}\left(C_{2} \cup C_{1}\right)$.

Now we use the second weaving lemma. Let $s=1 x_{1}$, x_{2}, x_{3}, and $v=h^{\omega}\left(x_{2}\right)$ as before. The required path $P\left(x_{1}, x_{2}\right.$) follows C_{1} from x_{1} to $C_{1} \cap C_{2}$, then C_{2} to x_{2}. We see that x_{3} is not on $P(x, y)$ because $x_{3} \Leftrightarrow C_{1} \cup C_{2}$. Similarly we can find $P\left(x_{2}, x_{1}\right), P\left(x_{2}, x_{3}\right)$, $P\left(x_{3}\right.$, $\left.x_{2}\right), P\left(x_{3}, x_{1}\right), P\left(x_{1}, x_{3}\right)$. We can walk v on G modulo the $P\left(x_{i}, x_{j}\right)$, contradicting our assumption that G is not versatile. Here G is cognate, in some sense, to the triangle, MIN. 1.

We conclude that if $m=3$, then $C_{1} \cap C_{3}=\varnothing$, and G
is a three hump digraph
If $m \geq 4$, we must get a contradiction. We will
consider the cycles $C_{1}, C_{2}, C_{3}, C_{4}$. As in the previous case, we may assume $C_{1} \cap C_{2} \neq \oplus, C_{2} \cap C_{3} \neq \emptyset$, and $C_{3} \cap C_{1}$ $=$.

Case A: $\mathrm{C}_{4} \cap \mathrm{C}_{2} \neq \star$.
Then pick $x_{1} e \operatorname{vert}\left(C_{4}\right)$ vert $\left(C_{1} \cup C_{2} \cup C_{3}\right)$. We can do this by minimality of m. Pick $x_{2} \in \operatorname{vert}\left(C_{3}\right)$ \ vert($\left.C_{1} \cup C_{2} \cup C_{4}\right)$. Such a x_{2} exists, otherwise m could be reduced by discarding C_{3}. Again, pick $x_{3} \in \operatorname{vert}\left(C_{1}\right)$ \backslash vert($C_{2} \cup C_{3} \cup C_{4}$)

Again use the second weaving lemma with $S=1 x_{1}$, $\left.x_{2}, x_{3}\right)$ and $v=h^{\omega}\left(x_{2}\right)$. We can let $P\left(x_{1}, x_{2}\right)$ be a path from x_{1} through C_{4} to $C_{4} \cap C_{2}$, through C_{2} to $C_{2} \cap C_{3}$, through C_{3} to x_{2}. Clearly x_{3} is not on this path. Similarly we choose $P\left(x_{1}, x_{3}\right), P\left(x_{2}, x_{1}\right)$, * $P\left(x_{2}, x_{3}\right), P\left(x_{3}, x_{1}\right), P\left(x_{3}, x_{2}\right)$.

By the second weaving lemma, G is versatile, which
is a contradiction. (This case is cognate to the undirected graph case where G has a vertex v of degree 3 or greater. Here, C_{2} plays the role of vertex v.)

Case B: $C_{4} \cap C_{2}=\varnothing$.
Suppose without loss of generality that $C_{4} \cap C_{3} \neq \varnothing$. Otherwise interchange the roles of C_{1} and C_{3}. Now pick a vertex 1 , with $1 \in \operatorname{vert}\left(C_{1}\right) \backslash \operatorname{vert}\left(C_{2} \cup C_{3} \cup C_{4}\right)$. Such a vertex exists because m is minimal. Pick vertex
$2 \in \operatorname{vert}\left(C_{1} \cap C_{2}\right)$, vertex $3 \in \operatorname{vert}\left(C_{2} \cap C_{3}\right)$, vertex $4 \in \operatorname{vert}\left(C_{3} \cap C_{4}\right)$, and vertex $5 \in \operatorname{vert}\left(C_{4}\right)$ \ vert($\left.C_{1} \cup C_{2} \cup C_{3}\right)$. Let $S=(1,2,3,4,5)$, and walk $w=g\left(h^{\omega}\left(x_{2}\right)\right.$) on G modulo paths, where h, g are substitutions 2.1 and 2.2 from chapter 2.

The two letter subwords of v are $12,23,34,45,54$, $43,32,21$. Choose the paths $\mathrm{P}(1,2), \mathrm{P}(2,1)$ in C_{1}. Since $C_{1} \cap C_{3}=\varnothing, 3$ and 4 are not on $P(1,2)$ or $\mathrm{P}(2,1)$. Also $5 \in \mathrm{C}_{1}$ so that 5 is not on $\mathrm{P}(1,2)$ or $P(2,1)$. Let $P(2,3)$ and $P(3,2)$ be paths in C_{2}. These paths avoid 1 and 2 which are not on C_{2}, and 4 and 5 which are on C_{4}, as $\mathrm{C}_{2} \cap \mathrm{C}_{4}=$. Choose $\mathrm{P}(3,4)$, $\mathrm{P}(4,3)$ in C_{3} and $\mathrm{P}(4,5), \mathrm{P}(5,4)$ in C_{4}. By arguments symmetrical to those used with the first four paths, these last four paths satisfy the conditions of the second weaving lemma. Thus G is versatile, which is a contradiction. The reader will perceive that we treat G as though it were a five element path. (MIN. 3) a

The intersection and classification lemmas can be invoked to show that certain classes of digraphs are versatile. To show that an individual digraph is not versatile, it suffices to exhaust the non-repetitive walks on that particular digraph. Next, we provide ways
to show that classes of digraphs do not allow arbitrarily long non-repetitive walks.

Lemma 3.4 (Compressible Paths Lemma): Let
$a_{1} a_{2} \ldots a_{n}, n \geq 2$, be a directed path in a digraph G with
outdegree $\left(a_{1}\right)=1$,
degree $\left(a_{i}\right)=2$, $i=2$ to $n-1$,
indegree($\left.a_{n}\right)=1$.
Then G is versatile if and only if G ' is, where G ' is obtained from G by removing $a_{2}, a_{3}, \ldots, a_{n}$, and adding an edge in G 'from a_{1} to every successor of a_{n}. (i. e. We identify the vertices of the path.)

Proof: The result will follow by induction if we prove the lemma for $n=2$. Suppose then, that $n=2$.

Clearly if G, is versatile then G is, by the weaving lemma.

Suppose G is versatile. Let w be any non-repetitive walk in G with the sole restriction that w does not start with a_{2} or end with a_{1}. Consider $w^{\prime}={ }^{\text {w }}$ |vert ($\left.G\right) \backslash\left(a_{2}\right)^{\prime}$ the word obtained from w by deleting all occurrences of a_{2}. Clearly w^{\prime} will be a walk on G '. If we can show that w^{\prime} is non-repetitive, we shall be done, for $\left|w^{\prime}\right| \geq|w| / 2$, which can be made arbitrarily large.

If v is any word on vert $(G) \backslash\left\{a_{2}\right\}$, then let $p(v)$ be the word obtained from v by replacing each occurrence of a_{1} in v by $a_{1} a_{2} \ldots$ Then clearly, $p\left(w^{\prime}\right)=w$.

Now suppose for the sake of contradiction that w^{\prime} is repetitive, say that $w^{\prime}=a b b c$ for some
$a, b, c \in \operatorname{vert}(G) \backslash\left\{a_{2}\right\}, b \neq \in$. But then $p\left(w^{\prime}\right)=p(a) p(b) p(b) p(c)$, and w contains a repetition, which is a contradiction.a
, Definition: Let G be a digraph so that all the vertices of G lie on a directed path P of G. Let ij be a directed edge of G not on P. If j precedes i in P, then the edge ij is a back edge (with respect to P). Otherwise, the edge ij is a forward edge (with respect to P).

Definition: Let G be a digraph with all its vertices on a directed path P, so that vert(G) is ordered. Let ij be a back edge of G. We say that edge ij is useful if one of the following cases arises:
(i) A forward edge $k l$ of G has a vertex between j and $i ; j \leq l \leq i$ or $j \leq k \leq i(o r$ both $)$.
(ii) There are two back edges of $G, i^{\prime} j^{\prime}$ and $i^{\prime \prime} j^{\prime \prime}$, such that $j \leq j^{\prime}<j^{\prime \prime} \leq i^{\prime}<i^{\prime \prime} \leq i, b u t$ not both $j=j$ and $i^{\prime \prime}=$ i. We say that $i^{\prime} j^{\prime}$ and i " j " form an M under $i . j$.
(iii) A back edge k l of G intersects $i j$; that is, $1<j \leq k<i$ or $j<1 \leq i<k$. We say that $k 1$ and i, j form an M.

Otherwise say that $i j$ is useless.

Lemma 3.5 (M lemma): Let G be a digraph with all its vertices on a directed path P. Let $i j$ be a useless edge of G. Then G is versatile if and only if $G \backslash i j$ is, where G \ij is the graph obtained from G by removing the edge ij.

Proof: First note that removing an edge from G never makes another edge useful.

Next let Q be the set of back edges of G with partial order $\supset: i^{\prime \prime} j^{\prime \prime} \supset i^{\prime} j^{\prime}$ if $j^{\prime \prime} \leq j^{\prime} \leqslant i^{\prime} \leq i^{\prime \prime}, v i z$. the ends of the smaller edge are between those of the larger.

It suffices to prove the lemma in the case that $i j$ is minimal with respect to this order. Suppose that the lemma has been proved in this case and $k l$ is any useless edge of G. Let the set of useless edges of G less than or equal to $k l$ be $\left.S=\left(i_{1} j_{1}, i_{2} j_{2},\right) \ldots, i_{n} j_{n}, k l\right\}$. Then $G \backslash S$ is versatile if and only if G is; we simply remove the edges of S from G one at a time, at each step removing a minimal edge. To get $G \backslash k l$, we add the edges of $S \backslash\{k l\}$ to $G \backslash S$, starting with maximals.

Suppose then that $i j$ is a useless edge of G, minimal in the order given. Let v b non-repetitive word of type
ω walkable on G. If $i j$ appears only finitely often in v, then a final segment of v can be walked on' $\backslash i j$, and we are done. Thus assume that ij appears infinifely often as a subword in v. We can then find arbitrarily long subwords w of v such that w has i as a suffix.

Claim:' Any long enough subword w of v having i as a suffix must have suffix $j(j+1)(j+2) \ldots\left(\frac{1}{i}-1\right) i$. (Here $j+1$ is the successor of j on P etc.)

Proof of Claim: The indegree of i is 1: Any forward edge ending at i satisfies (i) of the definition of useful edges, making ij useful. Any back edge ending at i satisfies (iii) of the definition, making ij useful.

Thus w ends in (i-1)i.
Now suppose that long enough w ending in i must end in

$$
(i-k)(i-k+1) \ldots(i-1) i, j<i-k
$$

We show that w ends in (i-k-1)(i-k)...(i-1)i.
Suppose not. Then some edge $e=1(i-k), 1 \neq i-k-1$ exists in G, and w ends in $l(i-k) \ldots i$. If $1<i-k$, then e is a forward edge satisfying (i) of the definition of useful edges, a contradiction.

Thus we must assume that e is a back edge. Because of (iii) of the definition of useful edges, we must have 1 〔i. Since e is not a useless edge, by
of id, there are two possibilities:
I) There is an M under e. Such an M is also under id, a contradiction, as per (ii) of the definition of * useful edges.
II) Some edge $f=r s$ forms an M with e where
$\mathbf{s}<\mathrm{i}-\mathrm{k} \leq \mathrm{r}<\mathrm{l}$
or $i-k<s \leq 1<r$.
Because of (ii), (iii) of the definition of useful edges, we insist that $j=s<i-k \leq r<l=i$
or $\quad j=i-k<s \leq l<゚ r=i$.
However by assumption, $j<i-k$, so we must have

$$
j=s<i-k \leq r<l=i
$$

Thus wends in $l(i-k) \ldots i=i(i-k) i$. But then, if w is long enough, our induction hypothesis (* says that w ends in (i-k)...i(i-k)...i, and v contains a repetition, which is a contradiction.

Thus wends in ($i-k-1$) ($i-k) \ldots i$. By induction, w
ends in $j(j+1) \ldots(i-1) i$. .
A second claim has a similar proof.
Claim: Any long enough subword z of v having j as a prefix must have prefix $j(j+1)(j+2) \ldots(i-1) i$.

However v contains id infinitely often, so that we can find a long subword wiz of v with $w=$ $w^{\prime} j(j+1)(j+2) \ldots(i-1) i, z=j(j+1)(j+2) \ldots(i-1) i z \prime$. But
then v contains the repetitive subword
$w^{\prime} j(j+1)(j+2) \ldots(i-1) i j(j+1)(j+2) \ldots(i-1) i z \prime$, a
contradiction. We conclude that v contains $i j$ only
finitely often, and thus G ij is versatile if and only if G is.a

Clearly the existence of a loop in a digraph does not help to make it versatile. We may therefore modify Lemma 3.4 slightly:

Lemma 3.6 (Compressible Paths Lemma): Let $a_{1} a_{2} \ldots a_{n}$ be a directed path in a digraph G wíth outdegree $\left(a_{1}\right)=1$,
degree $\left(a_{i}\right)=2$, $i=2$ to $n-1$,
indegree $\left(a_{n}\right)=1$.
Then G is versatile if and only if G ' is, where G ' is obtained from G by removing $a_{2}, a_{3}, \ldots, a_{n}$; and adding an edge in G, from a_{1} to every successor of a_{n} other than a_{1}.

We say that digraph G reduces to digraph H (H is a reduction of G) if H is obtained from G by repeated applications of the compressible paths lemma and removal of loops and useless edges. Thus if G reduces to H, G is versatile if and only if H is versatile.

The purpose of this thesis is to characterize versatile digraphs. We make this characterization by producing two sets of digraphs, MIN (shown in Appendix 1) and MAX (shown in Appendix 2,). In Chapters 7 and 8 we show that the digraphs of MIN are versatile. In"Chapter 9 , we show that the digraphs of MAX are not versatile. In Chapter 4, Chapter 5 and Chapter 6, the heart of the thesis, we give a case by case breakdown of a 1 digraphs to show that every digraph either can be reduced to some digraph "contained" in a digraph of MAX, and hence is non-versatile, or else "contains" some digraph of MIN, and hence is versatile: The intersection lemma, the classifićation lemma, the M lemma, and the definitions of useless edges, forward edges and back edges will be used to give this case breakdown of digraphs. The next section of this chapter introduces the concept of mimicking, by which we make precise what it means for a digraph G to ρ_{4} "contain" a digraph H.

Definition: Let H, G be digraphs so that there is an injection m : vert $H \rightarrow$ vert G, such that whenever ij is an edge of H, then there is a path in $G \backslash m(v e r t H)$ from $m(i)$ to $m(j)$. We say that G imitates H.

We can put this another way: We fix a labelling of G. Whenever v is a walk on H then v can be walked on G
modulo paths with respect to this labelling. It follows that if G imitates H, then if H is versatile, so is G.

Example: The graph of Figure 3.1 imitates the triangle with the given labelling.

Not every versatile digraph imitates P_{5} or the triangle. (Otherwise we would be finished, by Chapter 2.) The digraph G of Figure 3.2 is a counterexample. This graph is indeed versatile, because the following substitution is suitable.

$$
\begin{aligned}
g: & x_{1} \rightarrow 1232 \\
& x_{2} \rightarrow 123454 \\
& x_{3} \rightarrow 123456
\end{aligned}
$$

This is easy to check, or refer to the Different Endings Lemma of Chapter 7. However, an argument could be given/ to show that G can imitate neither the triangle nor the five element path.

If G is a digraph, then G, the reverse of G, is the digraph with the same vertex set as G, and a directed edge ij exactly when $j i$ is a directed edge of G. Clearly G^{R} is versatile if and only if G is. To reduce the size of MIN, we have sought to include at most one of G and G^{R} for any digraph G. Let us extend the idea of imitation to take advantage of this:

Definition: Let H, G be digraphs. Say that G mimics

Figure 3.1

Figure 3.2
H if G imitates at least one of H, H^{R}.

Now that we have introduced the concept of mimicking, we remark that the proofs of Lemmas 3.2 and 3.3 prove the following stronger results:

Lemmá 3.2'. (Intersection Lemma): Let X, Y be directed cycles in the digraph G so that vert(X) \cap vert(Y$) \neq \varnothing$. Then either

1) $X \cap Y$ is connected
or 2) $X \cup Y$ mimics one of MIN. 1 or MIN.2, and hence is versatile

Lemma 3.3' (Classification Lemma): Let G be a strongly connected digraph. Then G is of one of the following types:
(1) vert $(G)=\operatorname{vert}(X)$ for some directed cycle X of G. In this case, say G is a one hump digraph.
(2) G is not of type (1), but vert(G) = vert ($X \cup Y$) where X and Y are directed cycles, and $X \cap Y$ is connected and non-empty. In this case, say G is a two hump digraph.
(3) G is not of types (1) or (2), but vert($G)=\operatorname{vert}(X \cup Y \cup Z)$ where X, Y, Z are directed cycles, $X \cap Y$ and $Y \cap Z$ are connected and non-empty, and

(4) G mimics one of MIN.1, MIN. 2 or MIN. 3 , and therefore is versatile.

We now have the tools necessary to statp and prove our main result. The main theorem of this work is proved in three pieces, appearing, in Chapter 4 , Chapter 5 and Chapter 6, respectively.

Theorem 3.8: Let G be a three hump digraph. Either G mimics a graph H where H is in MIN, or a reduction of G is mimicked by some digraph K, where K is in MAX.

Theorem 3.9: Let G be a two hump digraph. Either G mimics a graph H where H is in MIN, or a reduction of G is mimicked by some digraph K, where K is in MAX.

Theorem 3.10: Let G be a one hump digraph. Either G mimics a graph H where H is in MIN, or a reduction of G is mimicked by some digraph K, where K is in MAX.

The Main Theorem (Theorem 3.11): Let G be a digraph. Either G mimics a graph H where H is in MIN, or a reduction of G is mimicked by some digraph K, where K

Corollary 3.12: Let G be any digraph. Either G is non-versatile, or else G mimics a graph H in MIN.

Chapter 4: Three Hump Digraphs

In this chapter we prove Theorem 3.8.
Theorem 3.8: Let G be a three hump digraph. Either G mimics a graph H where H is in MIN, or a reduction of G is mimicked by some digraph K, where K is in MAX.

We begin by proving a refinement of the classification lemma.

Lemma 4.1 (Refining the Classification Lemma): Let G be a three hump digraph . Then either
(1) vert($G)=\operatorname{vert}(X \cup Y \cup Z)$ where X, Y, Z are cycles of G,
$X \cap Y, Y \cap Z$ are connected and non-empty, $X \cap Z=\cdot \phi$, and
$\mathrm{Y} \backslash(\mathrm{X} \cup \mathrm{Z})$ is connected. or (2) G is versatile. In fact G mimics MIN. 4.

Proof: Suppose that $Y \backslash(X \cup Z)$ is not connected. Then choose vertices $1 \in X \backslash Y, 2 \in X \cap Y, 4 \in Y \cap Z$ and $5 \in Z \backslash Y$. Pick two vertices $3,3^{\prime}$ from different components of $\mathrm{Y} \backslash(\mathrm{X} \cup \mathrm{Z})$. Without loss of generality we may assume that vertices $2,3,3$, 4 appear in cyclical order 2, 3, 4, 3^{\prime} in Y. (Recall that $X \cap Y, Z \cap$ Y are connected.) With this labelling, G mimics MIN. 4.
(See Figure 4.1.) 0
This refinement of the classification lemma allows us to

Figure 4.1
introduce a certain structure to three hump digraphs.
Definition: Let G be a three hump digraph. We say
that G has a skeleton if
(1) We can write vert(G) $=$ vert(P) where P is a directed Hamiltonian path in G. Path P gives an order to the vertices of G.
(2) With respect to this order, G has at least three additional edges $a_{2} a_{1}, b_{2} b_{1}, c_{2} c_{1}$ where $a_{1}<b_{1} \leq a_{2}<c_{1}$ $\leq b_{2}<c_{2}, a_{1}$ is the initial vertiex of P, c_{2} the final vertex.

We call the digraph made up of P together with the edges $a_{2} a_{1}, b_{2} b_{1}, c_{2} c_{1}$ the skeleton of G. (See Fig. 4.2.) Other edges of G are called extra-skeletal edges.

Lemma 4.2 (The Skeleton): Let G be a three hump digraph which does not mimic MIN. 4. Then G has a skeleton.

Proof: We may assume by Lemma 4.1 that $Y \backslash(X \cup Z)$ is a directed path. Let m be the source of this directed path and M the sink. Let a_{2} be the predecessor of m in Y. Either $a_{2} \in X$ or $a_{2} \in Z$, but not'both. Suppose without loss of generality (up to renaming) that $a_{2} \in X_{s}$ Let a_{1} be the successor of a_{2} in X.

13

Let c_{1} be the successor of M in Y. Then $c_{1} \in Z$. Otherwise $c_{1} \in X$, and Y is the union of two directed paths: the segment of Y from m through M, and the segment of X from c_{1} through a_{2}. (Recall that $Y \cap X$ is connected.) But then $Y \cap Z=\oplus$, since $X \cap Z=\varnothing$ and $(\mathrm{Y} \backslash(\mathrm{X} \cup \mathrm{Z})) \cap \mathrm{Z}=\varnothing$. This is a contradiction. Thus indeed $c_{1} \in Z$. Let the predecessor of c_{1} in Z be c_{2}.

Now $X \cap Y$ is a directed path with a_{2} as sink. Let b_{1} be the source. Let b_{2} be the sink of the directed path $Y \cap Z$, which has c_{1} as source. (See Figure 4.3.')

Now X is the cycle $a_{1}-a_{2}, Y \backslash(X \cup Z)$ is the path $m \longrightarrow M$, and Z is the cycle $c_{1}-c_{2}$. We may therefore let $P=a_{1}-a_{2} m \longrightarrow \mathrm{Mc}_{1}-c_{2}$. Clearly we have vert $(G)=$ vert(P),
$a_{1} \leq b_{1} \leq a_{2} \leq c_{1} \leq b_{2} \leq c_{2}$,
a_{1} is the initial vertex of P, c_{2} the final vertex of P.

We show that $a_{1}<b_{1}, a_{2}<c_{1}, b_{2}<c_{2}$.
If $a_{1}=b_{1}$, then $X=a_{1}-a_{2}=b_{1}-a_{2} \subset X \cap Y$, so that $X \subset Y$. Then vert $(G)=\operatorname{vert}(Y \cup Z)$, a contradiction.

Similarly $b_{2} \neq c_{2}$.
Finally, $a_{2} \neq c_{1}$, as $X \cap Z=\varnothing$.
The edges $a_{2} a_{1}, c_{2} c_{1}$ exist by definition. The edge
$\int 1$

Figure 4.3
$\mathrm{b}_{2} \mathrm{~b}_{1}$ exists because Y is a cycleso
Proof of Theorem 3.8: We assume that G has a skeleton, since otherwise, by Lemma 4.2 above, G mimics MIN.4. Also, we may assume that G has no useless edges, as such edges may be removed without affecting whether G is versatile or not. The proof of the theorem involves a lengthy enumeration of cases. To make this case breakdown we refer to the skeleton of G (Figure 4.2). Let the extra-skeletal edges of G be $i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{m} j_{m}$. We make cases based on m.

To reduce work, we often invoke symmetry. Now G^{R}, the reverse of G is a three hump digraph. Again, vert $\left(G^{R}\right)=\operatorname{vert}\left(P^{R}\right)$ where P^{R} is the reverse of P. Renaming a_{1} as c_{2}^{\prime}, a_{2} as c_{1}^{\prime}, b_{1} as b_{2}^{\prime}, b_{2} as b_{1}^{\prime}, c_{1} as a_{2}^{\prime} and c_{2} as a_{1}^{\prime}, we see that G^{R} is a three hump digraph with skeleton $P^{R} \cup\left\{c_{2}^{\prime} c_{1}^{\prime}, b_{2}^{\prime} b_{1}^{\prime}, a_{2}^{\prime} a_{1}\right.$. This symmetry under reversal reduces the number of required cases. For example, suppose G has an edge $i_{1} j_{1}$ with $i_{1}>b_{2}$. Then, renaming i_{1} as j_{1} ' and j_{1} as i_{1} ', the reversal of G has $j_{1}^{\prime}<b_{1}^{\prime}$ and will later fall under our case A1. Keeping this use of symmetry in mind, we procede to our case division.
$m=0$: If G is its own skeleton then a reduction of G can be mimicked on MAX. 1 and we are done. (See Figure

- 4.2. \mathfrak{j} We apply the Compressible Paths Lemma, Lemma 3.6,
to the paths in G
from a_{1} to the predecessor in P of b_{1} '
from b_{1} to a_{2}
from the successor of a_{2} to the predecessor of c_{1}
from c_{1} to b_{2}
and from b_{2} to c_{2}.
The result is isomorphic to a graph in one of Figure 4.4 or Figure 4.5, depending on whether there is a vertex between a_{2} and c_{1} in G. These graphs are mimicked by MAX. 1 with the given labelling.
$m=1$: Depending on i_{1}, j_{1} we have several subcases.
Case, A: The edge $i_{1} j_{1}$ is a back edge; i.é. With respect to the order given to vert (G) by $P, i_{1}>j_{1}$.

Case B: The edge $i_{1} j_{1}$ is a forward edge; i.e. $i_{1}<j_{1}$.
Case A breaks down as follows:
Case A1 $\quad \vec{a}_{1} \leq j_{1}<b_{1}$ (or symmetrically,
$i_{1}>b_{2}$).
Case A2 $\quad b_{1} \leq j_{1} \leq a_{2}\left(\right.$ and $\left.i_{1} \leq b_{2}\right)$.
Case A3 $a_{2}<j_{1} \leqslant c_{1}\left(\right.$ and $\left.i_{1}<c_{1}\right)$.
In this third case, the edge $i_{1} j_{1}$ is useless, a contradiction. (See Figure 4.6)

Figure 4.4

Figure 4.5

Figure 4.6 Case Al (a) $\quad a_{1} \leq j_{1}<i_{1}$ Case Al (a) $\quad a_{1} \leq j_{1}<i_{1}$ Case A1 (a) $\quad a_{1} \leq j_{1}<i_{1}$
Cases A1 and A2 are further subdivided. Here the edge $i_{1} j_{1}$ is useless, a contradiction. (See Figure $\frac{4.7 .}{}$
case +1 (b) $a_{1} \leq j_{1}<b_{1} \leq i_{1}<a_{2}$,
Here G mimics MIN.5. (See Figure 4.8.) The labelling of vertices of G required by the definition of mimicking is shown explicitly in the figure.

Case A1 (c) $\quad a_{1} \leq j_{1}<b_{1} \leq a_{2} \leq i_{1}<c_{1}$ If $a_{2}=i_{1}$, then $a_{1}<j_{1}$ so that G mimics MIN.6. (See Figure 4.9.)

If $\mathrm{a}_{2}<\mathrm{i}_{1}$, then G mimics MIN. 5 . ("See Figure 4.10 .)

Case A1 (d) $\quad a_{1} \leq j_{1}<b_{1}<c_{1} \leq i_{1}$
Note that $i_{1}<c_{2}$ and $a_{1}<j_{1}$ or vert($\left.G\right)$ could be written as the union of two cycles. Hęre G mimics MIN.7. (See Figure 4.11.)

A2:
Case A2 (a) $\quad b_{1} \leq j_{1}<i_{1} \leq a_{2}$. Here the edge $i_{1} j_{1}$ is useless, a contradiction. (See Figure 4.12.)
$\$$

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Case A2 (b) $a_{2}<i_{1}<c_{1}$.
If $j_{1}=b_{1}$ then the reduction of G can be mimicked on MAX.1 (See Figure 4.13.) and we are done.

If $j_{1}>b_{1}$ then G mimics MIN.8. (See Figure 4.14.)

Case A2 (c) $\quad c_{1} \leq i_{1} \leq b_{2}$.
Either $j_{1} \not * b_{1}$ or $i_{1} \neq b_{2}$, since $i_{1} j_{1} \neq b_{2} b_{1}$. Since $b_{1} \leq j_{1} \leq a_{2}$ and $c_{1} \leq i_{1} \leq b_{2}$, the roles of i_{1} and j_{1} are reversed when G is reversed. (See Figure 4.15.) Therefore, without loss, of generality, suppose that $j_{1} \neq$ b_{1}. This takes us from Figure 4.15 to Figure 4.16.

But now $a_{1}<j_{1} \leq a_{2}<c_{1} \leq i_{1}<c_{2}$, and $a_{1}<b_{1} \leqslant$ j_{1}. Thus j_{s} and i_{1} can play the roles of b_{1} and b_{2} in the skeleton of G. Switching the roles of $i_{1} j_{1}$ and $b_{2} b_{1}$ gives case A1 (d) which has already been dealt with.

This concludes case A.
Case B is divided as follows:
Case B1: $\mathrm{i}_{1}<\mathrm{b}_{1}$.
Case B2: $\quad b_{1} \leq i_{1} \leq a_{2}\left(j_{1} \leq b_{2}\right)$.
Case B3: $\quad a_{2}<i_{1}<j_{1}<c_{1}$.
In Case B3, let x be a vertex between i_{1} and j_{1} on

Figure 4.13

Figure 4.14

\uparrow

Figure 4.15

Figure 4.16

P. Then G mimics MIN.2. (See Figure 4.17.)

Cases B1 and B2 are further subdivided.
B1: Case B1 (a): $\quad j_{1}<b_{1}$
Let x be a vertex between i_{1} and j_{1} on R. Here G mimics MIN.2. (See Figure 4.18.)

$$
\text { Case B1 (b): } j_{1}=b_{1} .
$$

Here G mimics MIN.9. (See Figure 4.19.)

Case B1(c): $\quad b_{1}<j_{1} \leq a_{2}$.
Here G mimics MIN. 10. (See Figure 4.20.)

$$
\text { Case B1 (d): } \quad a_{2}<j_{1} \leq b_{2}
$$

Consider the cycle C following P from a_{1} to i_{1}, edge $i_{1} j_{1}$, P from j_{1} to b_{2}, edge $b_{2} b_{1}$, P from b_{1} to a_{2}, then edge $a_{2} a_{1}$. Recall the cycle Z from the proof of Lemma 4.2: Z is the cycle consisting of the path in P from c_{1} to c_{2}, together with the edge $c_{2} c_{1}$. We see that $C \cap Z$ is connected. Therefore, vert(G) $\neq \operatorname{vert}(C \cup Z)$, as G is a three hump digraph. We have two possibilities:
(i) There is a vertex x between i_{1} and b_{1}

Here G mimics MIN.11. (See Figure 4.21.)

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

(ii) There wis a vertex x between a_{2} and the lesser of $j_{1}, \stackrel{\Sigma}{c}_{1}$.

Here G mimics MIN.12. (See Figure 4.22.)

Case B1 (e): $\quad b_{2}<j_{1}$
Consider the cycle C following P from a_{1} to i_{1}, then edge $i_{1} j_{1}$, then P from j_{1} to c_{2}, then edge $c_{2} c_{1}$, then P from c_{1} to b_{2}, then edge $b_{2} b_{1}$, then P from b_{1} to a_{2}, then edge $\mathbf{a}_{2} \mathbf{a}_{1}$. Now vert(G) cannot equal vert($\left.C \cup X\right)$, vert($C \cup Y$) or vert($C \cup Z$). This forces one of two cases ${ }^{\circ}$:
(i) There is a vertex x of P between a_{2} and c_{1}. Here G mimics MIN.1. (See Figure 4.23.)
(ii) There are vertices of P between i_{1} and b_{1} and between b_{2} and j_{1}. Here G mimics MIN.13. (See Figure 4.24.)

BR:
Case B2 (a) $j_{1}<c_{1}$.
Here G mimics MIN, 2. (See Figure 4.25. Let x be any vertex between i_{1} and $j_{1}{ }^{\prime \prime}$),

Case B2 ${ }^{*}(\mathrm{~b})^{c_{1}} \leq j_{1} \leq b_{2}$.
We make two cases:
(i) There is some vertex x of $G, a_{2}<x<c_{1}$. Here G

Figure 4.22

Figure 4.23

Figure 4.24

(\%)

Figure 4.25

Figure 4.26

mimics MIN.1. (See Figure 4.26.)
(ii) There is no vertex of G between a_{2} and c_{1} on P. Then we cannot have $i_{1}=a_{2}$ and $j_{1}=c_{1}$, as $i_{1} j_{1}$ was chosen to be an extra-skeletal edge. By the symmetry of this case under reversal, we may assume that $i_{1} \neq a_{2}$. Replace P by the hamiltonian path H. H starts with the successor of i_{1}, follows P to a_{2}, then follows edge $a_{2} a_{1}$ to get to a_{1}. Then H follows P from a_{1} to i_{1}, then $i_{1} j_{1}$ to j_{1}. Next, H follows P from j_{1} to c_{2}. If $c_{1}=j_{1}$, then H stops at c_{2}. Otherwise, H follows edge $c_{2} c_{1}$ to c_{1}, then P to the predecessor of j_{1}. (See Figure 4.27.) With respect to the new skeleton, G falls under case $B 1(e)$, *Which has already been dealt with.

This completes the case when $m=1$.
m > 1:
Without loss of generality we can assume that edge $i_{1} j_{1}$ falls (up to, reversal of G) under one of cases $A 1(a), A 2(a), A 2(b)$ or A3 of the classification for $m=$ 1. This is true because we have shown that if G contains an edge $i_{1} j_{1}$ falling under one of the other cases, G mimics a graph of MIN. Likewise assume that every other extra-skeletal edge of G falls under one of these cases.

Figure 4.27
4.
(Under the appropriate renaming, of course.) We thus use these cases for the breakdown of the present case.

Case A1 (a) $\quad a_{1} \leq j_{1}<i_{1}<b_{1}$. Suppose that edge $i_{1} j_{1}$ falls under case A1 (a). Since $i_{1} j_{1}$ is not a useless edge, and G has no forward edges, either there is an M under edge $i_{1} j_{1}$, or an edge forms an M with edge $i_{1} j_{1}$. However, any edge under $i_{1} j_{1}$ is an edge of case Al (a). Likewise, of the four types of edges remaining, only those falling under case Al (a) could form an M with $i_{1} j_{1}$. Thus without loss of generality (up to renaming , say that edges $i_{1} j_{1}$ and $i_{2} j_{2}$ form an M, with $a_{1} \leq j_{1}<j_{2} \leq i_{1}<i_{2}<b_{1}$. Here G mimics MIN. 14. (See Figure 4.28.)

$$
\text { Case A2 (a) } \quad b_{1} \leq j_{1}<i_{1}<a_{2}
$$

Without loss of generality (up to renaming), edges i ${ }_{1} j_{1}$ \because and $i_{2} j_{2}$ form an $M, b_{1} \leq j_{1}<j_{2} \leq i_{1} \leqslant i_{2} \leq a_{2}$. Here G mimics MÎN, 15 . (See Figure 4.29.)

Case A3 $\quad a_{2} \leq j_{1} \leqslant i_{1} \leqslant c_{1}$. Without loss of generality (up to rerfaming), edges $i_{1} j_{1}{ }^{*}$ and $i_{2} j_{2}$ form an M. However, we now have two possibilities:

Figure 4.28

Figure 4.29

(i) Edge ${ }_{2}{ }_{2} j_{2}$ falls under case A3 (after appropriate renaming.) Without loss of generality (up to renaming), \}

$$
a_{2}<j_{1}<j_{2} \leq i_{1}<i_{2}<c_{1} .
$$

Here G mimics MIN.15. (See Figure 4.30.)
(ii) Edge $i_{2} j_{2}$ falls under case A2 (b) (after appropriate renaming.) Without loss of generality (up to renaming),

$$
b_{1}=j_{2} \leq a_{2}<j_{1} \leq i_{2}<i_{1}<c_{1}
$$

Here G mimics MIN.16. (See Figure 4.31.)

$$
\text { Case A2 (b) } \quad b_{1}=j_{1} \leq a_{2}<i_{1}<c_{1} \text {. }
$$

Without loss of generality, we may now assume that every extra-skeletal edge of G falls under case $A 2(b)$. However with reversals, this allows three possibilities.:
(i) We have $b_{1}=j_{2}, i_{1}<i_{2}<c_{1}$. Here G mimics MIN. 5.
(See Figune 4.32:).
(ii) We have $b_{2}=i_{2}, j_{2} \leq i_{1}$. Here G mimics MIN. 3 . (See Figure 4.33.)
(iii) We have $b_{2}=i_{2}, j_{2}>i_{1}$. Here G mimics

Figure 4.31

Figure 4.32

Figure 4.33

Figure 4.34

MIN.17. (See Figure 4.34.)
,
We have now proved the theorem.

Chapter 5: Two Hump Digraphs

In this chapter we will consider two hump digraphs. We prove

Theorem 3.9: Let G be a two hump digraph. Then either G mimics a digraph H in $M I N$, or a reduction of G is mimicked by a digraph K in MAX.

In analogy to the previous chapter, we introduce skeletons.

Definition: Let G be a two hump digraph. Then*we say that G bas a skeleton if
(1) We can write vert(G) $=$ vert(P) where P is a directed Hamiltonian path in G.
(2) G has at least two additional edges $a_{2} a_{1}, b_{2} b_{1}$ where
$a_{1}<b_{1} \leq a_{2}<b_{2}$ with respect to the order P induces on vert(G), a_{1} is the initial vertex of P, b_{2} the terminal vertex of P.

We call the digraph made up of P together with the edges $a_{2} a_{1}, b_{2} b_{1}$ the skeleton of G. (See Figure 5.1) Other edges of G are called extra-skeletal edges.

Lemma 5.1 (The Skeleton): Let G be a two hump digraph. Then G has a skeleton.

Proof: We know that $Y \cap X$ is a directed path. Let b_{1} be the source of this directed path and a_{2} the sink. Let b_{2} be the predecessor of b_{1} in Y. Let a_{1} be the successor of a_{2} in X. (See Figure 5.2)

Then the vertices of G all lie on the directed path $a_{1} _b_{1} \& a_{2} b_{2}$. The edges $\left.a_{2} a_{1}\right\} b_{2} b_{1}$ exist by definition. Finally, in the case that $a_{1}=b_{1}$ or $a_{2}=b_{2}$, vert(G) lies on a cycle, X or Y respectively.

Remark: The roles of X and Y in the previous proof are interchangeable.

Proof of Theorem 3.9: This proof involves a very long enumeration of cases, classifying the two hump digraphs. Assume again that G has no useless edges. Again the case breakdown refers to the skeleton of G. Label the extra-skeletal edges of G by $i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{m} j_{m}$. We make cases based on m.
$\underline{m}=0$: If G is its own skeleton we are done. Here a reduction of G can be mimicked by MAX.1. (See Figure 5.1)
m = 1: We have two branches to our case division:
Case I: The edge $i_{1} j_{1}$ is a back edge; i.e. $i_{1}>j_{1}$ with respect to the order given by P.

Case II: The edge $i_{1} j_{1}$ is a forward edge; i.e.

$\mathrm{i}_{1}<\mathrm{j}_{1}$.

CASE I (ONE BACK EDGE).

Case I gives rise to several subcases. If
$a_{1} \leq j_{1}<b_{1}$, then we form cases based on i_{1}.
Case A $\quad a_{1} \leq j_{1}<b_{1}$ and $i_{1}<b_{1}$.
Here the edge $i_{1} j_{1}$ is useless, a contradiction. (See Figure 5.3)

Note: Later on in the proof, when we consider the possibility that $m>1$, it will be useful to have names for the various types of back edges occurring in G. When $m=1$, we have 5 subcases of case I, viz. cases A, B, C, D and E. We call an edge $i_{r} j_{r}$ of $G a$ type A (B, C, D, E) edge if the graph G', formed by removing from G all extra-skeletal edges other than $i_{r} j_{r}$, falls under case $A(B, C, D, E)$ of the present discussion.

Case B $\quad a_{1}=j_{1}$ and $b_{1} \leq i_{1} \leq a_{2}$.
(Therefore $i_{1} \neq a_{2}$.)
A reduction of G can be mimicked by MAX.12. (See Figure $5.4)$

Figure 5.4

Case $C \quad a_{1}<j_{1}<b_{1}$ and $b_{1} \leq i_{1} \leq a_{2}$. A reduction of G can be mimicked by MAX.2. (See Figure 5.5)

In the next case we will want to invoke symmetry. In preparation, we note that a digraph G is versatile if and only if G^{R}, the reverse bf G, is versatile. It is useful now to extend our concept of type A, B, C, D, E edges to reverse edges. An edge $i_{r} j_{r}$ is a reverse type A $\therefore B, C, D, E$) edge if G, R falls under case $A(B, C, D$, E) of the present discussion, where G ' is again the graph formed from G by removing all extra-skeletal edges other than $i_{r} j_{r}$.

Case $D \quad a_{1} \leq j_{1}<b_{1}$ and $a_{2}<i_{1}$. If $a_{1}=j_{1}$, then $i_{1}<b_{2}$, otherwise the edge $i_{1} j_{1}$ taken with the path P forms a cycle through all the vertices of G, a contradiction. However now $i_{1} j_{1}$ and $a_{2} a_{1}$ can interchange roles, and we are in case B. Thus in the present case, we assume without loss of generality that $a_{1}<j_{1}$. Symmetrically, we assume that $i_{1}<b_{2}$, or G is the reverse of a graph falling under case B. A reduction of G can be mimicked by MAX. 16 . (See Figure 5.6)

This concludes an enumeration of the subcases when $a_{1} \leq j_{1}<b_{1}$.

To reduce work, we again invoke symmetry. Let G have an edge $i_{1} j_{1}$ with $a_{2}<i_{1} \leq b_{2}$. Then G, the reverse of G, is clearly a two hump digraph. Again, vert $\left(G^{R}\right)=$ vert(P^{R}) where P^{R} is the reverse of P. Renaming a_{1} as b_{2}^{\prime}, a_{2} as b_{1}^{\prime}, b_{1} as a_{2}^{\prime}, b_{2} as a_{1}^{\prime}, i_{1} as j_{1}^{\prime} and j_{1} as i_{1}^{\prime}, we see that G^{R} is a two hump digraph with skeleton $P^{R} \cup\left\{b_{2}{ }^{\prime} b_{1}, a_{2}^{\prime} a_{1}^{\prime}\right\}$ and an additional edge $i_{1}^{\prime} j_{1}$ with $a_{1}^{\prime} \leq j_{1}<b_{1}{ }^{\prime}$. We see that the case when $a_{2}<i_{1} \leq b_{2}$ and the case when $a_{1} \leq j_{1}<b_{1}$ are symmetric and may be regarded as equivalent. For $m>1$, however, it will occasionally be necessary to distinguish between "normal" type B or C edges, and " reversed " type B or C edges.

Case $\mathrm{E} \quad \mathrm{b}_{1} \leq j_{1} \leq \mathrm{a}_{2}\left(\right.$ and $\left.\mathrm{i}_{1} \leq \mathrm{a}_{2}\right)$. Here the edge $\mathrm{i}_{1} \mathrm{j}_{1}$ is useless, a contradiction. (See Figure 5.7)

Thus when $m=1$, and $i_{1} j_{1}$ is a back edge, G is mimicked by one of the graphs of MAX. We also draw attention to the 5 basic types of back edge which G can have. These 5 types of edges figure in later case

Figure 5.7
divisions.

CASE II (ONE FORWARD EDGE)

Case II also gives rise to several subcases;
however, this case may be dealt with very simply once we have made the following observation: For most forward edges $i j$, a skeleton for G can be chosen/so that $i j$ becomes a back edge with respect to that skeleton.

As we remarked earlier, there is a skeleton for G in which the roles of X and Y are reversed. Now the vertices of G may be divided into three sets:

With respect to the skeleton we have given for G, these sets occur in this order. However, if the roles of X and Y are reversed, then the order of these sets reverses. Thus if i_{1} and j_{1} are not both in the same one of these sets, a forward edge $i_{1} j_{1}$ becomes a back edge when X and Y are interchanged. Therefore in the present case we assume without loss of generality that i_{1} and j_{1} are both in the same one of the listed sets.

Case, II. 1: We have $i_{1}, j_{1} \in X \backslash Y$, i.e.
$a_{1} \leq i_{1}<j_{1}<b_{1}$.
Some vertex x of P must lie between i_{1} and j_{1}. Here G
mimics MIN. 2 (See Figure 5.8)

Case II. 2: We have $\mathrm{i}_{1}, \mathrm{j}_{1} \in \mathrm{X} \cap \mathrm{Y}$, i.e., $b_{1} \leq i_{1}<j_{1} \leq a_{2}$.
Consider the cycle C differing from X in that the path from i_{1} to j_{1} in X is replaced in C by the edge $i_{1} j_{1}$. (See Figure 5.9.) Then cycles C and Y have an intersection which is not connected, and by the proof of the Intersection Lemma, Lemma 3.2, G mimics MIN. 1 or MIN. 2

Case II. 3: We have $\mathrm{i}_{1}, \mathrm{j}_{1} \in \mathrm{Y} \backslash \mathrm{X}$. Interchanging the roles of X and Y, this case is equivalent to case II.1.

This concludes CASE II, and hence the case when $m=$ 1.

m > 1:

In light of the foregoing, we may now assume that any individual forward edge of G may be turned into a back edge by interchanging cycles X and Y . We will now show that in fact all extra-skeletal edges of G may simultaneously be assumed to be back edges. Suppose that $\mathrm{i}_{1} \mathrm{j}_{1}$ is a back edge and $\mathrm{i}_{2} \mathrm{j}_{2}$ is a forward edge. By Case II, we may assume that reversing the roles of X and Y

Figure 5.8

Figure 5.9
would make $\mathrm{i}_{2} \mathrm{j}_{2}$ b back edge. We make cases as follows.

Case $I I+A: E d g e ~ i_{1} j_{1}$ falls under case A. By assumption, edge $\mathrm{i}_{2} \mathrm{j}_{2}$ becomes a back edge when the roles of X and Y are interchanged. However, in the present case, when X and Y are switched, $i_{1} j_{1}$ remains a back edge (since i_{1}, $\left.j_{1} \in X\right)$. We may thus assume that both $i_{1} j_{1}$ and $i_{2} j_{2}$ are back edges.

Case II +B: Edge $\mathrm{i}_{1} \mathrm{j}_{1}$ falls under case B.
Case $I I+Q_{\text {: }}$. Edge $i_{1} j_{1}$ falls under case C.
Case II + D: Edge $i_{1} j_{1}$ falls under case D.
Case II +E: Edge $\mathrm{i}_{1} \mathrm{j}_{1}$ falls under case E. In this case, if the roles of X and Y are interchanged, $i_{1} j_{1}$ and $i_{2} j_{2}$ are both back edges and we are finished. (Both 1_{1}, $\left.j_{1} \in X \cap Y.\right)$

In case $I I+B$ we make the following subcases based on $\mathrm{i}_{2} \mathrm{j}_{2}$:

Case II +B 1: $\quad a_{1} \leq i_{2}<b_{1}$.
Case II +B 1 (a) $b_{1} \leq j_{2} \leq i_{1}$. Consider the cycle C differing from X in that the path from i_{2} to j_{2} in X is replaced in C by the edge $i_{2} j_{2}$ and the path from i_{1} to a_{1} in X is replaced by the edge $i_{1} a_{1}$. (See Figure 5.10) Then cycles C and x have disconnected intersection, and by the proof of the intersection lemma,

G mimics MIN. 1 or MIN. 2.

Case II +B 1 (b): $i_{1}<j_{2}$. Consider the cycle C following P from a_{1} to i_{2}, then edge $i_{2} j_{2}$, then P to b_{2}, then $b_{2} b_{1}$, then P from b_{1} to i_{1}, finally $i_{1} a_{1}$. (See Figure 5.11, Then cycles C and X have disconnected intersection, and by the intersection lemma, G mimics MIN. 1 or MIN. 2 .

Case II +B 2: $\quad b_{1} \leq i_{2}<a_{2}$ Since $i_{2} \in X \cap Y$, assume that $j_{2} \in Y \backslash X$, viz. $a_{2}{ }^{\wedge}<j_{2}$. Then G mimics the triangle, MIN.1. (See Figure 5.12)

In cask II $+C$ we make the following subcases based on $\mathrm{i}_{2} \mathrm{j}_{2}$:

$$
\text { Case II +C 1: } \quad a_{1} \leq i_{2}<j_{1} .\left(\text { Thus } b_{1} \leq j_{2}\right. \text {.) }
$$

Again G mimics the triangle. (See Figure 5.13.)

> Case $I I+C 2: \quad j_{1} \leq i_{2}<b_{1}$. Again, $b_{1} \leq j_{2}$. Case II +C $2(a): \quad b_{1} \leq j_{2} \leq i_{1}$. Consider the cycle C following P from j_{1} to i_{2}, then edge $i_{2} j_{2}$, then P to i_{1}, finally $i_{1} j_{1}$. (See Figure 5.14). Then cycles C and X have disconnected intersection, and by the intersection lemma, G mimics MIN. 1 or MIN. 2.

Figure 5.12

Figure 5.13

-

Case IItC 2 (b) $\quad i_{1}<j_{2}$. Consider the cycle C following P from j_{1} to i_{2}, then edge $i_{2} j_{2}$, then P to b_{2}, then $b_{2} b_{1}$, then P from b_{1} to i_{1}, finally $i_{1} j_{1}$. (See Figure 5.15). Then cycles C and X have disconnected intersection, and by the intersection lemma, G mimics MIN. 1 or MIN. 2 .
\sim Case II+C 3: $\quad b_{1} \leq i_{2}<a_{2} .\left(\right.$ Thus $a_{2} \leqslant j_{2}$.).
We have two cases:
(i) $i_{1}<a_{2}$. Here G mimics the triangle. (See Figure 5.16)
(ii) $i_{1}=a_{2}$. Here G mimics MIN.22. (See Figure 5.17.)

Case II + C $4: \quad i_{2}=a_{2}$. Here G-mimics MIN. 2
(See Figure 5.18)

We can use case $I I+C$ to attack case II+D. Suppose that G has an edge $i j$ of type D. Then G can mimic a digraph H which falls under case C. (See Figure 5.19) One walks 32 modulo paths on G by following P from a_{2} to i, then edge ij. Similarly, one walks 43 by following edge $b_{2} b_{1}$, then P from b_{1} to a_{2}.

Figure 5.16

Figure 5.17

1

Figure 5.19

Suppose that G also has a forward edge kl. Then usually, G can mimic a digraph H ' derived from H by adding a forward edge. Digraph H^{\prime} will fall under case II $+C$, and hence be versatile. An example is shown in Figure 5.20. Difficulties only arise if $b_{1} \leq k, 1 \leq i$. In such a case, each of k and lifes on of the paths on which we would walk edges 32 and 43 of H.

Suppose then that $b_{1} \leq k, 1 \leq i$. By the symmetry of type D edges under reflection, we assume that $b_{1} \leq k$, $l^{-} \leq a_{2}$. However this means that both k and l lie in $X \cap$ Y, and this case was dealt with under II.1.

We have now shown that $i_{1} j_{1}$ and $i_{2} j_{2}$ may both be assumed to be back edges. A simple induction on the number of forward edges in G shows that we may assume that every extraskeletal edge of G is a back edge.

For economy of cases in the rest of this chapter, we will use the following çase divisions:
(1) Every extraskeletal edge of G is a back edge of case E.
(2) Graph G has a back edge of case A and (up to reversal) every back edge of G is a back edge of either case A or E.
(3) Graph G has a back edge of case B and (up to

reversal , every back edge of G is a back edge of either case B, A, or E.
(4) Graph G has a back edge of case C and (up to reversal , every back edge of G is a back edge of either case C, B, A or E.
(5) Graph G has a back edge of case D.

Case (1): Every extraskeletal edgefof G is a back edge of case E.

If every edge of G is of type E then without loss of generality $i_{1} j_{1}$ and $i_{2} j_{2}$ form an M where $a_{1}<b_{1} \leq j_{1}<j_{2} \leq i_{1}<i_{2} \leq a_{2}<b_{2}$, Here G mimics MIN. 15 . (See Figure 5.21)

Case (2): Graph G has a back edge of case A and (up to reversal, every back edge of G is a back edge of either case A or E.

Note that an edge of type A can never form an M with an edge of type E. Thus if G has an edge of type E, it will have two type E edges forming an M as in the previous case. Therefore we lay assume in this case that G has only type A back edges.

If $m=2$, then without loss of generality (invoking

Figure 5.21
the M lemma, and renaming if necessary $a_{1} \subseteq j_{1}<j_{2} \leq$ $\mathrm{i}_{1}<\mathrm{i}_{2}<\mathrm{b}_{1}$.

If $a_{1}=j_{1}$, then a reduction of G is mimicked by MAX. 7. (See Figure 5.22)

If b_{1} is the successor of i_{2} on P, then a reduction of G is mimicked by MAX.15. (See Figure 5.23 b

If $a_{1}<j_{1}$ and there is a vertex of G between i_{2} and b_{1}, then G mimics MIN. $\overline{8}$. (See Figure 5.24.)

For the remainder of Case (2), assume that $m>2$.
Suppose that G has edges $i_{1} j_{1}$, a type A edge, and $i_{2} j_{2}$, a type A edge after reversal, i.e. $a_{1} \leq j_{1}<i_{1}<$ b_{1} and $a_{2}<j_{2}<i_{2} \leq b_{2}$. Then without loss of generality, G also has edges $i_{3} j_{3}$ and $i_{4} j_{4}$ where $a_{1} \leq j_{3}<j_{1} \leq i_{3}<i_{1}<b_{1} \leq a_{2}<j_{4}<j_{2} \leq i_{4}<i_{2} \leq$ b_{2}. Here G mimics MIN. 19, (See Ffgure 5.25)

We may thus assume that every extra-skeletal edge $i_{s} j_{s}$ of G is a true type A edge, viz. $a_{1} \leq j_{s}<i_{s}<b_{1}$. We now introduce a "stripping" method of classification, that will serve us again in the next chapter. Since G has only type A edges, and these only in the first "half" of G, we strip away other edges of G, and use these type A edges for our classification:

Let G, be the graph obtained from G by removing the

Figure 5.22

Figure 5.23

Figure 5.25

edges $a_{2} a_{1}$ and $b_{2} b_{1}$. Consider the strongly connected components of G, consisting of more than one vertex. At least one such component exists, since G has back edges. If more than one such component exists, then without loss of generality G has edges $i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}, i_{4} j_{4}$ where $a_{1} \leq j_{1}<j_{2} \leq i_{1}<i_{2}<j_{3}<j_{4} \leq i_{3}<i_{4}<b_{1}$, since each of these components contāins an M. Here G mimics MIN.20. (See Figure 5.26)

Thus, without loss of generality, we may speak of the strongly connected component $G^{\prime \prime}$ of G ' containing more than one vertex. Since $G^{\prime \prime}$ is a strongly connected digraph, we may invoke our previous classification results to say things about the structure of $G^{\prime \prime}$. This is our "stripping" method.

Case- G" is a graph of type (3) of the

Classification Lemma (Lemma 3.3):

Without loss of generality G has three back edges $i_{1} j_{1}$, $i_{2} j_{2}, i_{3} j_{3}$, with $a_{1} \leq j_{1}<j_{2} \leq i_{1}<j_{3} \leq i_{2}<i_{3}<b_{1}$. Here G mimics MIN. 21.
(See Figure 5.27)

Case- $G^{\prime \prime}$ is a graph of type (2) of the

classification lemma:
Subcase- G" has edges of type E only: As we

Figure 5.26

Figure 5.27
have seen previously, $G^{\prime \prime}$, hence G, mimics MIN. 15 .
Subcase- G" has edges of type A only: Here
without loss of generality (up to reversing the roles of X and Y and reversal) G has edges $i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}, i_{4} j_{4}$ with
$a_{1} \leq j_{1} \leq j_{2}<j_{3} \leq i_{2}<i_{3}<j_{4} \leq i_{1}<i_{4}<b_{1}$. Here G mimics MIN.66.(See Figure 5.28)

Subcase- G" has an edge of type B: Here without loss of generality (up to reversing the roles of X and Y and reversal, G has edges $i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}$ with $a_{1} \leq j_{1}=j_{3}<j_{2} \leq i_{3}<i_{1}<i_{2}<b_{1}$. Here G mimics MIN.23. (See Figure 5.29)

Subcase- G" has an edge of type C: Here without loss of generality (up to reversing the roles of X and Y and reversal) G has edges $i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}$ with $a_{1} \leq j_{1}<j_{3}<j_{2} \leq i_{3} \leq i_{1} \leq i_{2}<b_{1}$. Here G mimics MIN.24.(See Figure 5.30)

Subcase- G" has an edge of type D: Here without Ioss of generality (up to reversing the roles of X and Y) G has edges $i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}$ with $a_{1} \leq j_{1}<j_{3}<j_{2} \leq i_{1}<i_{3}<i_{2}<b_{1}$. Here G mimics

Figure 5.28

Figure 5.29

MIN.24.(See Figure 5.31)

Thus if $G^{\prime \prime}$ falls under type (2) of the classification lemma, G mimics a digraph of MIN.

Case- G" is a graph of type (1) of the

classification lemma:

Here without loss of generality G has edges $i_{1} j_{1}, i_{2} j_{2}$, $i_{3} j_{3}$ with $a_{1} \leq j_{3} \leq j_{2}<j_{1} \leq i_{2}<i_{1}<i_{3}<b_{1}$. (The edge $i_{3} j_{3}$ is the back edge of the skeleton of G ". Since $i_{3} j_{3}$ can be assumed to be a useful edge, we pick $i_{1} j_{1}$, $i_{2} j_{2}$ to form an M under $i_{3} j_{3}$. Thus either $j_{3} \neq j_{2}$, or $i_{1} \neq i_{3}$. We may assume that $i_{1} \neq i_{3}$ without loss of generality, up to reversal of G, or the interchanging of cycles X and Y.$)$

We form subcases:
Subcase- $a_{1}<j_{2}$: Here G mimics MIN. 18.
(See Figure 5.32)
Subcase- $j_{2}=a_{1}=j_{3} m=3:$ In this case a reduction of G can be mimicked by MAX.14.(See Figure 5.33)

Subcase- $m>3$: Either repeating our stripping process on $G^{\prime \prime}$ will lead to a graph of type (3) of the

Figure 5.31

Figure 5.32

Figure 5.33
classification lemma, or a graph of type (2) of the classification lemma with a back edge, or a graph of type (1) of the classification lemma.

We may assume, without loss of generality that the first two cases do not occur. Assume without loss of generality that $a_{1}=j_{2}=j_{3}$. Otherwise G mimics a digraph of MIN as already shown above. Without loss of generality, up to reversal of G, or the interchanging of cycles X and Y, G contains an edge $i_{4} j_{4}$ with $j_{4}=a_{1}$ and $\mathrm{i}_{1}<\mathrm{i}_{4}<\mathrm{i}_{3}$. Thus G mimics MIN. 25. (See Figure 5.34) This completes our examination of Case (2).

Case (3): Graph G has a back edge of type B and (up to reversal) every back edge of G is a back edge of either type B, A, or E.

In analogy to the previous case, we first dismiss the cases where not every edge of G is a type B edge.

Suppose that G has an edge $i_{2} j_{2}$ of type E. If the edge of G intersecting $i_{2} j_{2}$ to form an M is a type E edge, then we are done, as in case (1). Thus without loss of generality we may assume that

$$
a_{1}=j_{1}<b_{1} \leq j_{2} \leq i_{1}<i_{2} \leq a_{2}<b_{2}
$$

Figure 5.34

If we now interchange the roles of edges $i_{1} j_{1}$ and $a_{2} a_{1}$, then with respect to the new skeleton for $G, i_{2} j_{2}$ is an edge of type C. (See Figure 5.35). We may thus delay discussion of this possibility until case (4).

From now on, let us assume that G has no edges of type E.

Suppose that G has a type A edge $i_{2} j_{2}$. Then without loss of generality, ${ }_{2} j_{2}$ forms an M with a type A edge ${ }^{i}{ }_{3} j_{3}$. We have two possibilities:
(i) $a_{1}=j_{1} \leq j_{2}<j_{3} \leq i_{2}<i_{3}<b_{1} \leq i_{1}<a_{2}$. Here G mimics MIN.26. (See Figure 5.36)
(ii) $a_{1} \leq j_{2}<j_{3} \leq i_{2}<i_{3}<b_{1}<j_{1} \leq a_{2}<i_{1}=$ b_{2}. Here $i_{1} j_{1}$ is a reversed type B edge. Here G mimics MIN.27. (See Figure 5.37)

For the remainder of this case we assume that G has (up to reversal) only type B edges. For convenience, we rename edges here:

Let $i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{r} j_{r}$ be the (normal) type B edges of G

$$
\begin{aligned}
j_{1}= & j_{2}=\ldots=j_{r}=a_{1}<b_{1} \leq i_{1}<i_{2}<\ldots<i_{r}<a_{2} . \\
& \text { Let } k_{1} l_{1}, k_{2} l_{2}, \ldots, k_{s} l_{s} \text { be the }(\text { reversed }) \text { type } B
\end{aligned}
$$

Figure 5:35

Figure 5.36

edges of G
$b_{1}<l_{1}<l_{2}<\ldots<l_{s} \leq a_{2}<k_{1}=k_{2}=\ldots=k_{s}=b_{2}$.
If $s=0$ then for large enough q, a reduction of G is mimicked by MAX.13. (See Figure 5.38)

If $s>0$ and for some t and $u, l_{t} \leq i_{u}$, then G mimics MIN.28. (See Figure 5.39)

We may thus assume from now on that $\mathbf{r} \geq \mathbf{s}>0$, and $l_{t}>i_{u}$ for all t, u where $1 \leq u \leq r, i \leq t \leq s$.

Our remaining subcases are based on the values of s and r.

Subcase $r<3, s=1$: Here a reduction of G is mimicked by MAX. 12. (See Figure 5.40)

Subcase $r=2, \mathrm{~s}>1:$ Here G mimics MIN. 29. See Figure 5.41.).

Subcase r 2: Here G mimics MIN. 30 .
(See Figure 5.42.)

This concludes our examination of case (3).

It will prove economical to deal with case (5) before

Figure 5.38

Figure 5.39

Figure 5.41

Figure 5.42

case (4).
Case (5): Graph G has a back edge of case D.

Note that case (5) shows mirror symmetry; If G is reversed, then switching the roles of $a_{1}, a_{2}, b_{1}, b_{2}, i_{1}$, j_{1} with $b_{2}, b_{1}, a_{2}, a_{1}, j_{1}, i_{1}$ respectively again gives us case (5). This symmetry allows us to reduce our number of cases.
$\mathrm{m}=2:$
We make the following case divisions based on j_{2} :
Case Da: $j_{2}<j_{1}$.
Case $\mathrm{D} \beta: \quad j_{1} \leq j_{2}<\mathrm{b}_{1}\left(\mathrm{i}_{2} \leq \mathrm{i}_{1}\right.$ by symmetry).
Case Dr: $b_{1} \leq j_{2} \leq a_{2}\left(i_{2} \leq a_{2}\right)$. In this case the edge $i_{2} j_{2}$ is useless, a contradiction.
(See Figure 5.43)

Case $D \alpha$ is subdivided as follows depending on i_{2} :
Case $D \alpha 1: i_{2}<j_{1}$. In this case the edge $i_{2} j_{2}$ is useless, a contradiction. (See Figure 5.44)

Case Dat: $j_{1} \leq i_{2}<i_{1}$. We have two possibilities:
(i) $i_{2} \neq \mathrm{a}_{2}$. Here G mimics MIN. 31 .
(See Figure 5.45. Here the greater of a_{2}, i_{2} is labelled
r

等

Figure 5.44
3.)
(ii) $i_{2}=a_{2}$. Here G mimics MIN. 32. (See

Figure 5.46)

Case Da 3:. $i_{1} \leq i_{2}$ (Thus either $i_{1}<i_{2}$, or $i_{2}<b_{2}$. Note that if $j_{2}=a_{1}$ and $i_{2}=b_{2}$, then G is a one hump digraph. By symmetry, assume that $i_{2}<b_{2}$,) Here G mimics MIN.33. (See Figure 5.47.)

In Case $D \beta$, we may assume that $i_{2}<i_{1}$, otherwise interchanging the roles of $i_{1} j_{1}, i_{2} j_{2}$ gives Case Da'. Case $D \beta$ is subdivided as follows depending on i_{2} :

Case $D \beta 1: \quad i_{2}<b_{1}$. In this case the edge $i_{2} j_{2}$. is useless, a contradiction. (See Figure 5.48)

Case D $\beta 2$: $\quad{ }^{b_{1}} \leq{ }^{1}{ }_{2}$. Here G mimics MIN. 32 ,
(-See Figure 5.49)

This concludes the subcase when $m=2 . *$
m $>$ 2:
By the foregoing analysis we may assume that any extra-skeletal edge of G falls (up to reversal) under eases $D \alpha 1, D \beta 1$ or $D r$.

Figure 5.45

Figure 5.46

Figure 5.47

Case- Edges of type Da: Without loss of generality, invoking the M lemma, G has edges $i_{2} j_{2}$, $i_{3} j_{3}$, with $a_{1} \leq$ $j_{2}<j_{3} \leq i_{2}<i_{3}<j_{1}$. In this case, G mimics MIN. 14 . (See Figure 5.50)

Case-Edges of type D $\beta 1$: Without loss of generality, G has edges $i_{2} j_{2}, i_{3} j_{3}$, with $j_{1} \leq j_{2}<j_{3} \leq i_{2}<i_{3}<b_{1}$. In this case, G mimics MIN.15. (See Figure 5.51)

Case-Edges of type Dr: Without loss of generality, e_{i}^{G}, has edges $i_{2} j_{2}, i_{3} j_{3}$, with $b_{1} \leq j_{2} \leq j_{3} \leq i_{2}<i_{3} \leq a_{2}$. In this pase, G mimics MIN. 15, as in case (1). (See Figure 5.52)

This concludes our examination of case (5).

Case (4): Graph G has a back edge of case C and (f up to reversal) every back edge of G is a back edge of either case C, B, A or E.
$m=2:$
We form eases based on j_{2}.
Case by: $\quad j_{2}<j_{1}\left(j_{2}=a_{1}\right.$, or not $\left.a_{2}<i_{2}<b_{2}\right)$
Case $C \beta$: $j_{1} \leq j_{2}<b_{1}$. (not $\left.a_{2}<i_{2}<b_{2}\right)$


```
Case \(\mathrm{Cr}: \quad \mathrm{b}_{1} \leq \mathrm{j}_{2} \leq \mathrm{i}_{1}\).
Case Co: \(\quad i_{1}<j_{2} \leq a_{2}\).
Case C \(6: \quad a_{2}<j_{2}\). In this case the edge \(i_{2} j_{2}\) is
```

useless, a contradiction. (See Figure 5.53)

We form subcases of case $C \alpha$ based on i_{2}.
Case Cal: $i_{2}<j_{1}$. In this case the edge $i_{2}{ }_{2}$ is useless, a contradiction. (See Figure 5.54)

Case Can: $j_{1} \leq i_{2}<b_{1}$. Here make three

 further divisions: 1(i) $j_{2}{ }^{\circ} a_{1}$. In this case, G mimics MIN. 16. (See Figure 5.55)
(ii) $j_{2}=a_{1}, i_{1}<a_{2}$. In this case, G mimics MIN. 34 . (See Figure 5.56)
(iii) $i_{1}=a_{2}, j_{2}=a_{1}$. In this case, a reduction of G is mimicked by MAX.11. (See Figure 5.57)

Case Ca: $\quad b_{1} \leq i_{2} \leq i_{1}$ Here make two further divisions:
(i) $i_{2}<i_{1}$. In this case, G mimics MIN. 33. (See Figure 5.58)

Figure 5.53

Figure-5.54

Figure 5.55

Figure 5.56

Figure 5.57

Figure 5.58

(ii) $i_{2}=i_{1}$. In this case, a reduction of G is mimicked by MAX.10. (See Figure 5.59)

Case Ca 4: $i_{1}<i_{2} \leq a_{2}$. Here make two further divisions:
(i) $a_{1}=j_{2}$. In this case, G mimics MIN. 36. (See Figure 5, 60)
(ii) $a_{1}<j_{2}$. In this case, G mimics MIN. 37. (See Figure 5.61)

Case C $\alpha 5$: $\quad a_{2}<i_{2}<b_{2}$. Here $a_{1}=j_{2}$, or else G has a type D edge. Interchanging the roles of $a_{2} a_{1}$ and $1_{2} j_{2}$ gives case $C \alpha 4$ or $C \alpha 3$ (ii) when $i_{1}=a_{2}$. (See, Figure 5.62)

Case Cab: $i_{2}=b_{2}$. In this case, a reduction of G is mimicked by MAX.9. (See Figure 5.63)

Case $\mathrm{C} \beta$ is subdivided as follows depending on i_{2} :
Case C 1 : $\quad i_{2}<b_{1}$. In this case the edge $i_{2} j_{2}$
is useless, a contradiction. (See Figure 5.64)

Figure 5.59

Figure 5.61

Figure 5.62

Figure 5.64

```
Case \(C \beta 2\) : \(\quad b_{1} \leq i_{2} \leq a_{2}\). Here we assume \(j_{1}=\) \(j_{2}\). otherwise, reversing the roles of \(i_{1} j_{1}\) and \(i_{2} j_{2}\) gives rise to case Ca or Cal. In this case, a reduction of \(G\) is mimicked by MAX.2. ( See Figure 5.65 )
```

Case $C \beta 3$: $\quad a_{2}<i_{2}$. (Thus assume $i_{2}=b_{2}$, since G has no edges of type D.). Here make two further divisions:
(i) $j_{1}=j_{2}$. In this case, a reduction of G is mimicked by MAX. 4.
(See Figure 5.66)
(ii) $j_{1}<-j_{2}$. In this case, G mimics MIN. 38. (See Figure 5.67)

Case $C r$ is subdivided as follows depending on i_{2} :
Case Cr 1: $\quad i_{2} \leq i_{1}$. In this case the edge $i_{2} j_{2}$
is useless, a contradiction. (See Figure 5.68)

$i_{1}<i_{2}<b_{2}$. In this case, if
$i_{1}<a_{2}$ then G mimics MIN.55. (See Figure 5.69. Here 4 labels the lesser of a_{2}, i_{2} w.r.t. P.) If $i_{1}=a_{2}$, then G mimics MIN.7.7. (See Figure 5.70.)

- Case Cr 3: $i_{2}=b_{2}$. Here interchanging names

Figure 5.65

Figure 5.66

Figure 5.67

Figure 5.68

of $i_{2} j_{2}$ and $b_{2} b_{1}$ put's us in case $C \beta 3$ (ii) (See Figure 5.71.)

Case Co is subdivided as follows depending on i_{2} :
Case Col: $i_{2} \leq a_{2}$. In this case the edge $i_{2} j_{2}$ is useless, a contradiction. (See Figure 5.72)

Case Co2: $a_{2}<i_{2}<b_{2}$. If G has no vertex between i_{1} and j_{2} on P, then a reduction of G is mimicked by MAX. 8.
(See Figure 5.73)
However, if there is a vertex x of G between i_{1} and j_{2}, then G mimics MIN. 40. (See Figure 5.74.)

Case Co3 $\mathrm{i}_{2}=\mathrm{b}_{2}$. In this case, a reduction of G is mimicked by MAX.5. (See Figure 5.75)

This concludes the subcase when $m=2$. In most cases we showed that G mimicked a graph of MIN. In cases Ca1, $C \beta 1, C r 1, C 81, C \in$ the edge $\mathrm{i}_{2} \mathrm{j}_{2}$ was useless. The other cases were:

C $\alpha 3$ (ii) with $a_{1}<j_{2}, C \beta 2$
Ca6, C $\rho 3$ (i)
C82, C83
Ca2 (iii)

Figure 5.71

Figure 5.72

Figure 5.73

Figure 5.74

Figure 5.75


```
- Ca3 (ii) with a }=\mp@subsup{|}{1}{}=\mp@subsup{j}{2}{
```

We have grouped these cases according to similarities which are evident in the figures given for these cases. To aid the memory (not wishing the reader to have to recall what case Ca3 (ii) edges look like and so forth), we reflect these similarities in a renaming of cases; refer to edges falling under cases

$$
\text { Ca3 (iii), C } \beta 2 \text { as type C1 (a), C1 (b) edges }
$$

respectively,

$$
\mathrm{C} \alpha 6, \mathrm{C} \beta 3 \text { (i), as type } \mathrm{C} 2 \text { (a), C2 (b) edges }
$$

respectively,
\therefore C82, C83 as type C3 (a), C3 (b) edges
respectively,

```
Ca2 (iii) as type C4 edges,
Ca3 (ii) as type C5 edges.
```

Since these terms will be used in further breakdowns, the reader is advised to review the named cases so as to have at his finger tips what the edges of these various types look like.

Useless Edges:

Next we consider the cases when $m \geq 3$, and $i_{2} j_{2}$ satisfies the conditions given in one of cases $C \alpha 1, C \beta 1, C y 1, C \delta 1$, Ce.

Edge $i_{2} i_{2}$ falls under Ca1: Without loss of generality, edge $i_{2} j_{2}$ forms an M with some edge $i_{3} j_{3}$ where $j_{3} \leqslant b_{1}$. This gives three subcases:

Subcase- $\mathrm{i}_{3} \mathrm{j}_{3}$ is an edge of type C1(a): Without loss of generality, $a_{1} \leq j_{2}<j_{3} \leq i_{2}<j_{1}<b_{1} \leq i_{3}=$ i_{1}. In this case, G mimics MIN. 39 . (See Figure 5.76)

Subcase- $i_{3} j_{3}$ is an edge of type $C 2(a)$: Without loss of generality, $a_{1} \leq j_{2}<j_{3} \leq i_{2}<j_{1}<i_{3}=b_{2}$. In this case, G mimics MIN.41. (See Figure 5.77)

Subcase- $\mathrm{i}_{3} \mathrm{j}_{3}$ is an edge of type Ca1: Without loss of generality, $a_{1} \leq j_{2}<j_{3} \leq i_{2}<i_{3}<j_{1}$. We make a further subdivision:
(i) $a_{1}<j_{2}$. In this case, G mimics MIN. 18. (See Figure 5.78)
(ii) $\quad a_{1}=j_{2}, i_{1}<a_{2}$. In this case, G mimics MIN.27. (See Figure 5.79)
(iii) $\quad a_{1}=j_{2}, i_{1}=a_{2}$ and $m=3$. In this case, a reduction of G is mimicked by MAX. 7. (See Figure 5.80)

Figure 5.76

Figure 5.77

Figure 5.78

Figure 5.79

Figure 5.80

What happens if $i_{2} j_{2}$ and $i_{3} j_{3}$ are $C a l$ edges forming an M, $a_{1}=j_{2}, i_{1}=a_{2}$ and $m>3$? We shall see in a moment that if $m \geq 3$ and G has an edge of type $C \beta 1, C \subset 1$, Cos , or C 6 , then G mimics a graph of MIN. We shall thus assume here that G has no such edges. We thus assume that edge $i_{4} j_{4}$ falls under one of cases $\mathrm{C} 11, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$.

Since, $i_{1}=a_{2}$, it follows that G has no edges of types C1(b), C3 or C5. It also follows from previous discussion concerning the edges of type Cal that we may assume that the only edges forming M 's with Cal edges are themselves Cal edges. Only a few cases are left: G has an edge of type C1(a): Here G mimics MIN.27. (See Figure 5.81.)

G has an edge of type C2: Here G mimics MIN. 27 . (See Figure 5.82.)

G has an edge of type C4: Here G mimics MIN. 14. (See Figure 5.83.)

Every extraskeletal edge of G other than $i_{1} j_{1}$
is a Cal edge: By our previous breakdown of the case when every extraskeletal edge of G is a type A edge, we may assume that G has an edge $i_{4} j_{4}$ where
$a_{1}=j_{4}=j_{2}<j_{3} \leq i_{2}<i_{3}<i_{4}<j_{1}<b_{1} \leq i_{1}=a_{2} \cdot$. In

this case, G mimics MIN. 42. (See Figure 5.84.)
This concludes the case where G has an edge of type $\mathrm{C} \boldsymbol{\alpha} 1$.

Edge $i_{2} \dot{i}_{2}$ falls under Col: Without loss of generality, edge $i_{2} j_{2}$ forms an M with some edge $i_{3} j_{3}$ where $j_{1}<j_{3}<b_{1}$ and/or $j_{1} \leq i_{3}<b_{1}$. The candidate subcases are:

Subcase- $\mathrm{i}_{3} \mathrm{j}_{3}$ is an edge of type $\mathrm{C} \beta 1$: Without loss of generality, $j_{1} \leq j_{2}<j_{3} \leq i_{2}<i_{3}<b_{1}$. In this case, G mimics MIN.15. (See Figure 5.85)

Subcase- $i_{3} j_{3}$ is an edge of type C1(a).
(Recall that in case $C a 3$ we assumed that $j_{2}<j_{1}$, and dismissed most of case $C \beta 2$ (where $j_{1}<j_{2}$) as being the same case under renaming. However, with the presence of an additional edge, we must allow the possibility of j_{1} < j_{2} as separate.): Without loss of generality, $j_{1} \leq j_{2}<j_{3} \leq i_{2}<i_{3}=i_{1}$. In this case, G mimics MIN. 16. (See Figure 5.86)

Subcase- $i_{3} j_{3}$ is an edge of type C4: Without loss of generality, $a_{1}=j_{3}<j_{1} \leq j_{2} \leq i_{3}<i_{2}$. In this case, G mimics MIN.43. (See Figure 5.87)

Figure 5.84

Figure 5.85

Figure 5.86

Edge $i_{2} \dot{j}_{2}$ falls under Cyl: Without loss of generality, edge $i_{2} j_{2}$ forms an M with some edge $i_{3} j_{3}$ where $b_{1}<j_{3} \leq i_{1}$ and/or $b_{1} \leq i_{3}<i_{1}$. The candidate subcases are:

Subcase- $\mathrm{i}_{3} \mathrm{j}_{3}$ is an edge of type Cr: In this case G has two type E edges forming an M, and we are done as in case (1).

Subcase- $\mathrm{i}_{3} \mathrm{j}_{3}$ is an edge of type $\mathrm{C} 1(\mathrm{~b})$. Without loss of generality, $j_{1}=j_{3} \leq b_{1} \leq j_{2} \leq i_{3} \leqslant i_{2} \leq i_{1}$. In this case, G mimics MIN.55. (See Figure 5.88)

Edge $i_{2} \dot{j}_{2}$ falls under C81: Without loss of generality, edge $i_{2}{ }^{j}{ }_{2}$ forms an M with some edge $i_{3} j_{3}$ where $i_{1}<j_{3} \leq a_{2}$ and/or $i_{1}<i_{3}<a_{2}$. The candidate subcases are:

Subcase- $\mathrm{i}_{3} \mathrm{j}_{3}$ is an edge of type Col: In this case G has two type E edges forming an M, and we are done as in case (1).

Subcase- $i_{3} j_{3}$ is an edge of type $\mathrm{C} 1(\mathrm{~b})$. Without loss of generality, $j_{1}=j_{3}<b_{1} \leq i_{1}<j_{2} \leq i_{3}<i_{2} \leq$ a_{2}. In this case, G mimics MIN.15. (See Figure 5.89),

Figure 5.87

Figure 5.89
in C3(a), there is no vertex between i_{1} and $j_{2}^{\prime} l=j_{3}$ here) so only C3(b) is possible. Without loss of generality, $b_{1} \leq i_{1}<j_{2}<j_{3} \leq i_{2} \leq a_{2}<i_{3}$. In this case, G mimics MIN.41. (See Figure 5.90)

Edge i $\dot{\underline{L}}_{2}$ falls under C_{ϵ} : Without loss of generality, edge $i_{2} j_{2}$ forms an M with some edge $i_{3} j_{3}$ where $a_{2}<j_{3}$ and/or $a_{2}<i_{3}$. The candidate subcases are:

Subcase- $i_{3} j_{3}$ is an edge of type C ϵ. Without loss of generality, $a_{2}<j_{3}<j_{2} \leq i_{3}<i_{2}$. In this case, G mimics MIN. 56 .
(See Figure 5.91)
Subbase- $i_{3} j_{3}$ is an edge of type C3(a). Without
loss of generality, $i_{1}<j_{3} \leq a_{2}<j_{2} \leq i_{3}<i_{2}$. In this
case, G mimics MIN.34. (See Figure 5.92)

This completes the cases where $m \geq 3$, and $i_{2} j_{2}$
satisfies the conditions given in one of cases $C \alpha 1, C \beta 1$, Cr 1, Cos 1, Ce.

No Useless Edges

From now on we assume that G does not have edges of types $C \alpha 1, C \beta 1, C \gamma 1, C \delta 1, C \epsilon$. Thus every extraskeletal edge of G is of one of types C1, C2, C3, C4, C5.

Figure 5.90

Figure 5.91

Figure 5.92
$m=3:$
Another level of cases, will prove useful. We create five new cases:
(5.1) G contains a C 5 edge $\mathrm{i}_{2} \mathrm{j}_{2}$.
(5.2) G contains a $C 4$ edge $i_{2} j_{2}$, but no C5 edge.
(5.3) G contains a C3 edge $i_{2} j_{2}$, but no C4 or C5 edges.
(5.4) G contains a C2 edge $\mathrm{i}_{2} \mathrm{j}_{2}$, but no $\mathrm{C} 3, \mathrm{C} 4$ or C 5 edges.
(5.5) G contains only C1 edges.

Case (5.1) is subdivided according $t \in i_{3} j_{3}$:
Note that $i_{3} j_{3}$ cannot be a C4 edge, since $i_{1} \neq a_{2}$. Also $i_{3} j_{3}$ cannot be a c5-edge, since then $i_{2} j_{2}$ and $i_{3} j_{3}$ would be equal.

Subcase C5 + C3(a): Edge $i_{3} j_{3}$ is a C3(a) edge. In this case, G mimics MIN.44. (See Figure 5.93)

Subcase C5 $+\mathrm{C} 3(\mathrm{~b}):$ Edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a C3(b) edge. We have two possibilities:
(i) There is a vertex x of P between i_{1}
and j_{3}. In this case, G mimics MIN. 45. (See Figure 5.94)
(ii) There is no vertex of P between i_{1} and j_{3}. In this case, a reduction of G is mimicked by MAX.6. (See Figure 5.95)
$?$

Subcase C5 + C2: Edge $\mathrm{i}_{3}{ }^{j}{ }_{3}$ is a C2 edge. In this case, G mimics MIN. 28. (See Figupe 5.96)

Subcase C5 + C1: Edge $i_{3} j_{3}$ is a C1 edge. Then $i_{3} j_{3}$ may be assumed to be a $C 1(a)$ edge, or else by considering edges $i_{3} j_{3}$ and $i_{2} j_{2}$, G falls under one of case Ca3(i), or case C $\alpha 4$.

In this case, G mimics MIN.46. (See Figure 5.97)

Case (5.2) is subdivided according to $i_{3} j_{3}$:
Note that $i_{3} j_{3}$ cannot be a C3 edge, since $i_{1}=a_{2}$.
Subcase C4 + C4: Edge $i_{3} j_{3}$ is a C4 edge. In this case, G mimics MIN.5. (See Figure 5.98)

Subcase C4 + : Edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a C2 edge. In this case, G_{j} mimics MIN.47. (See Figure 5.99)

Subcase C4 + C1 (a): Edge $i_{3} j_{3}$ is a C1(a) edge. In case C1(a) (nee C $\alpha 3$) we assumed without loss of generality that $j_{2}<j_{1}$. With an additional $C 4$ edge and relabelling this assumption gives way to two possibilities:
(i) $j_{1} \leq i_{2}<j_{3}$. In this case, G mimics

Figure 5.95

Figure 5.96

Figure 5.97

Figure 5.98
.
Figure 5.99

MIN; 39.
(See Figure 5.100)
(ii) $j_{3} \leq i_{2}$. In this case, G mimics

MIN. 7.
(See Figure 5.101)

Subcase C4 $+\mathrm{C} 1(\mathrm{~b}):$ Edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a C1(b) edge. In this case, G mimics MIN.7. (See Figure 5.102)

Case (5.3) is subdivided according to $i_{3} j_{3}$:
Subcase C3 + C3: Edge $i_{3} j_{3}$ is a C3 edge. We have two possibilities:
(i) At least one of $i_{2} j_{2}, i_{3} j_{3}$ is a $C 3(a)$ edge. In this case, G mimics MIN.44. (See Figure 5.103.)
(ii) Both $i_{2} j_{2}, i_{3} j_{3}$ are C3(b) edges. In this case a reduction of G is mimicked by MAX.5. (See Figure 5.104)

Subcase C3 + C2: Edge $i_{3} j_{3}$ is a C2 edge. We have three possibilities:
(i) Edge $i_{3} j_{3}$ is a $C 2(a)$ edge. In this case G mimics MIN.48. (See Figure 5.105)

(i) Edge $i_{2} j_{2}$ is a C3(a) edge. In this case G mimics MIN.49. (See Figure 5.106)
(iii) Edge $i_{2} j_{2}$ is a $C 3(b)$ edge and edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a C2(b) edge. In this case a reduction of G is mimicked by MAX.4. (See Figure 5.107)

Subcase C3 + C1 (a): Edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a C1(a) edge. In this case, G mimics MIN.50. (See Figure 5.108)
$\underbrace{\text { C }}_{\text {Subcase }}+\mathrm{C} 1(\mathrm{~b}):$ Edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a C1(b) edge. In this case, G mimics MIN.51. (See Figure 5.109)

Case (5.4) is subdivided according to $i_{3} j_{3}$:
Subcase C2 + C2: Edge $i_{3} j_{3}$ is a C2 edge. In this case, G mimics MIN.52. (See Figure 5.110)

Subcase C2 + C1: Edge $i_{3} j_{3}$ is a C1 edge. We have three possibilities:
(i) Edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a $\mathrm{C} 1(\mathrm{a})$ edge. Without loss of generality, $j_{2} \leq j_{3}$, otherwise we get case C β 3(ii). In this case G mimics MIN. 53. (See Figure 5.111)

(i) Edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a C1(b) edge, but edge $\mathrm{i}_{2} \mathrm{j}_{2}$ is a C2(a) edge. In this case G mimics MIN. 81 . (See Figure 5.112)
(iii) Edge $i_{2} j_{2}$ is a $C 2(b)$ edge and edge $i_{3} j_{3}$ is a $C 1(b)$ edge. In this case a reduction of G is mimicked by MAX.3. (See Figure 5.113)

Case (5.5) is subdivided. Every edge here will be a type C1 edge. We may assume that these edges do not cross, for otherwise suppose that $j_{2}<j_{3}<i_{2}<i_{3}$. Then, G mimics MIN. 33 .
(See Figure 5.114)
(i) Edges $i_{2} j_{2}, i_{3} j_{3}$ are $C 1(a)$ edges. In this case G mimics MIN.54. (See Figure 5.115)
(ii) Edge $\mathrm{i}_{2} \mathrm{j}_{2}$ is a $\mathrm{C} 1(\mathrm{a})$ edge and edge $\mathrm{i}_{3} \mathrm{j}_{3}$ is a $\mathrm{C} 1(\mathrm{~b})$ edge. We make a distinction:

$$
j_{3}<j_{2}=j_{1}<i_{1}<i_{2}=i_{3} \text {. In this }
$$

case G mimics MIN. 37. (See Figure 5.116)

$$
j_{3}=j_{2}<j_{1}<i_{1}=i_{2}<i_{3} \text {. In this }
$$

Figure 5.112

Figure 5.113

Figure 5.114

Figure 5.115

case G mimics MIN. 37. (See Figure 5.117)
(iii) Edges $\mathrm{i}_{3} \mathrm{j}_{3}$ and $\mathrm{i}_{2} \mathrm{j}_{2}$ are $\mathrm{C} 1(\mathrm{~b})$ edges, viz $j_{1}=j_{2}=j_{3}$. In this ease a reduction of G is mimicked by MAX. 2.
(See Figure 5.118)

This completes the case where $m=3$. m>3:

In view of the previous section, we may assume that $G \backslash i_{4} j_{4}$ falls* under one of cases $C 5+C 3(b)$ (ii), $\mathrm{C} 3(\mathrm{~b})+\mathrm{C} 3(\mathrm{~b}), \mathrm{C} 3(\mathrm{~b})+\mathrm{C} 2(\mathrm{~b}), \mathrm{C} 2(\mathrm{~b})+\mathrm{C} 1(\mathrm{~b})$ or $\mathrm{C} 1(\mathrm{~b})+$ C1(b). We consider these cases one by one:
$\left.\mathrm{G}\right|_{4} \dot{j}_{4}$ falls under C5 $+\mathrm{C} 3(\mathrm{~b})$ (ii):
We may also assume that $G \backslash i_{3} j_{3}$ falls under case C5 $+C 3(b)$, so that $i_{4} j_{4}$ is also a C3(b) edge. Say without loss that $i_{1}<j_{3}<j_{4}<i_{3}=i_{4}$. However, now j_{3} is a vertex of P between i_{1} and j_{4}, and $G \backslash i_{3} j_{3}$ falls under case $\mathrm{C} 5+\mathrm{C} 3(\mathrm{~b})$ (i).

From now on assume that G has no edge of type $C 5$.
$\mathrm{G} \backslash \mathrm{i}_{4} \dot{i}_{4}$ falls under C3(b) $+\mathrm{C} 3(\mathrm{~b})$:
We may assume one of two alternatives:
a G $\quad \mathrm{i}_{3} \mathrm{j}_{3}$ falls under $\mathrm{C} 3(\mathrm{~b})+\mathrm{C} 3(\mathrm{~b})$. In this
case G mimics MIN.57. (See Figure 5.119)

Figure 5.117

Figure 5.118
$G \backslash i_{3} j_{3}$ falls under $\mathrm{C} 3(\mathrm{~b})+\mathrm{C} 2(\mathrm{~b})$. In this.
case G mimics MIN.58. (See Figure 5.120)

We assume from now on that G contains no type $C 3$ edges.
$\mathrm{G} \backslash \mathrm{i}_{4} \dot{\dot{I}}_{4}$ falls under C2(b) $+\mathrm{C} 1(\mathrm{~b}):$
Here, if $i_{4} j_{4}$ falls into types C2 or C1(a), then $G \backslash$ $i_{3} j_{3}$ falls under a case previously disposed of. We may therefore assume that $\mathrm{i}_{4} \mathrm{j}_{4}$ is an edge of type $\mathrm{C} 1(\mathrm{~b})$. Without loss of generality, say that
$j_{1}=j_{3}=j_{4}<i_{4}<i_{3}<i_{1}$. In this case G mimics MIN.59. (See Figure 5.121)
$\underline{G}^{\operatorname{l}} \mathrm{i}_{4} \dot{\mathrm{I}}_{4}$ falls under C1(b) $+\mathrm{C} 1(\mathrm{~b}):$
Assume without loss of generality that $i_{4} j_{4}$ is a C1(b) edge, and
$j_{4}=j_{3}=j_{2}=j_{1}<i_{1}<i_{2}<i_{3}<i_{4}$. In this case G mimics MIN.60. (See Figure 5.122)

This concludes our classification, and the proof of this chapter's theorem.

Figure 5.119

Figure 5.120

Chapter 6: One Hump Digraphs

Definition: Let G be a one hump digraph. Then by the definition of one hump digraphs, we can write vert(G) $=$ vert(P) where P.is a directed Hamiltonian path in G. Also G has at least, one additional edge $c_{1} d_{1}$ where c_{1} is the terminal vertex of P, d_{1} the initial vertex of P. Call $P \cup c_{1} d_{1}$ the skeleton of G. Any edge of G which is not in the skeleton is called an extra-skeletal edge of G.

Lemma 6.1: Let G be a one hump digraph with no useless edges, not mimicking a digraph in MIN. We may choose a skeleton $P U c_{1} d_{1}$ for G so that with respect to P, every extra-skeletal edge of G is a back edge.

Proof: Let Q be the subgraph of $G \backslash c_{1} d_{1}$ induced by P. Let J be the strongly connected component of Q containing c_{1}. Let us suppose that we have chosen P to make | J | as large as possible: We will show that in this case, every extra-skeletal edge of G is a back edge with respect to. P.

Suppose that G has an edge $k l$ which is a forward edge with respect to P.

Case 1: We have $k, 1 \in \operatorname{vert}(J)$.
Then there is a cycle C in J containing the edge $k l$. But the intersection of cycles $P \cup C_{1} d_{1}$ and C is not connected, so G mimics MIN. 1 or MIN. 2 by the Intersection

Lemma. (See Figure 6.1)

Case 2: We have $k \in \operatorname{vert}(Q) J$), $1 \in \operatorname{vert}(J)$. Then we find a new skeleton for Q replacing $c_{1} d_{1}$ by the - edge $k \prod_{a}$ where m is the successor of k in P, and replacing P by the path P in $P \cup c_{1} d_{1}$ from m to k. Then the strongly connected component of $G \backslash k m$ contains 1 , hence all of $J \cup(k)$, contradicting our choice of P. (See Figure 6.2

Case 3: We have $k, 1 \in \operatorname{vert}(Q \backslash J)$.
By the last two cases, we may suppose that every forward edge of G with respect to P has both ends in $Q \backslash J$. However, by the maximality of J, we may assume that J contains more than one vertex, for if we pick P to end at k, then J contains ($k, 1$). Thus J has a back edge, and contains some M, since G has no useless edges. Then G mimics MIN.18. (See Figure 6.3.)

We therefore conclude that every edge of G is a back edge with respect to P.ロ

Proof of Theorem 3.10: The proof of this theorem, which takes up the body of this chapter, procedes by classifying the one hump digraphs. As ustal, assume that

Figure 6.1

Figure 6.2

Figure 6.3
G is without useless edges. We can assume that every extra-skeletal edge ${ }^{2}$ of G is a back edge.

It is in this chapter that the "stripping" procedure introduced in the last chapter comes into its own. "Stripping" away edge $c_{1} d_{1}$ from G, we form cases based on the strongly connected components of $G \backslash c_{1} d_{1}$. A strongly connected component of $G \backslash c_{1} d_{1}$ which contains more than one vertex is called a bubble. We can assume that G has at least one bubble, since G contains an M. Our first level of subdivisions in the one hump case depends on the number of bubbles in G.

G has three or more bubbles
G has two bubbles
or G has only one bubble.
We look at these possibilities one by one:
Subcase: G contains three or more bûbbles:
Without loss of generality, we may assume that G has back edges $i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}, i_{4} j_{4}, i_{5} j_{5},{ }_{i}{ }_{6} j_{6}$ where
$j_{1}<j_{2} \leq i_{1}<i_{2}<j_{3}<j_{4} \leq i_{3}<i_{4}<j_{5}<j_{6} \leq i_{5} \leqslant i_{6}$. This is because each bubble of G must contain an M, as in

- Case 3 of Lemma 6.1. In this case G mimics MIN. 61 . (See Figure 6.4.)

Subcase: G contains two bubbles. Refer to the bubbles of G as C_{1} and C_{2} respectively. Without loss of

Figure 6.4
generality we may assume that each of C_{1}, C_{2} is a one hump, two hump or three hump digraph, by the classification lemma. For the sake of definiteness, say that the vertices of C_{1} precede those of C_{2} on P. However, note that if we so desire, we can reverse the order of C_{1} and C_{2} on P by putting G into normal form in a different way: Simply rotate the skeleton of G : (Siee Figure 6.5.) Thus C_{1} and C_{2} are interchangeable. We now form cases based on C_{1} and C_{2}.

Subcase α : One of C_{1}, C_{2} is a three hump digraph. Assume without loss of generality that C_{1} is a three hump digraph. In any case, C_{2} contains an M. Therefore G has back edges $i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}, i_{4} j_{4}, i_{5} j_{5}$ where $j_{1}<j_{2} \leq i_{1}<j_{3} \leq i_{2}<i_{3}<j_{4}<j_{5} \leq i_{4}<i_{5}$: In this case G mimics MIN.62. (See Figure 6.6.)

Subcase β : Both of C_{1}, C_{2} are two hump digraphs.

Subcase y: One of C_{1}, C_{2} is a two hump digraph, and the other is a one hump digraph.

Subcase 8: Both of C_{1}, C_{2} are one hump

digraphs.

The point of our "stripping" classification is to

Figure 6.5

Figure 6.6
make use here of work done in the previous chapters. Consider the situation in subcase β. Here G has at least four extra-skeletal edges $a_{2} a_{1}, b_{2} b_{1},-a_{2}^{\prime} a_{1}^{\prime}, b_{2}^{\prime} b_{1}^{\prime}$ where the skeleton of C_{1} consists of the edges $a_{2} a_{1}, b_{2} b_{1}$ and the path in P from a_{1} to b_{2}, and the skeleton of C_{2} consists of the edges $a_{2}^{\prime} a_{1}^{\prime}, b_{2}^{\prime} b_{1}^{\prime}$ and the path in P from a_{1}^{\prime} to b_{2}^{\prime}. Any further extra-skeletal edges of G appear as extra-skeletal edges in C_{1} or C_{2}, and this leads to the following subdivision of subçase β :

Subcase $\beta .1$: G has exactly four
extra-skeletal edges
Recall that the skeleton of G is a cycle. This cycle gives a circular order to the vertices of G. $\overrightarrow{W_{i}}$ have two possibilities:
(i) No vertex of ${ }^{5} C_{1}$ is a predecessor of a vertex of C_{2} in the circular order, and no vertex of C_{2} is a predecessor of a vertex of C_{1} in the circular order. In this case, without loss of generality up to rotation of the skeleton, we may assume that G has a vertex x where $b_{2}<x<a_{1}^{\prime}$, and that $d_{1}<a_{1}$. Then G mimics MIN. 63. (See Figure 6.7.)
(ii) Case (i) does not occur. Thus if G has a vertex x where $b_{2}<x<a_{1}^{\prime}$ then $d_{1}=a_{1}$ and $b_{2}^{\prime}=c_{1}$. In this case, a reduction of G is mimicked by MAX. 26. (See

Figure 6.7

Figure 6.8.)

Subcase $\beta .2$: G has a fifth

extra-skeletal edge.
Without loss of generality, (up to rotation and reversal), C_{1} has one or more extra-skeletal edges falling into the categories of the previous chapter. This gives five possibilities:
(i) C_{1} has an edge of type B of the previous chapter. In this, case G mimics MIN. 64. (See Figure . .* 6.9.)
(ii) C_{1} has an edge of type C of the previous chapter. In this case G mimics MIN. 65 . (See Figure 6.10.)
(iii) C_{1} has an edge, of type D of the previous chapter. In this case G mimics MIN. 65 . (See Figure 6.11.).'
(iv) C_{1} has no edges of types B, C, D, however, C_{1} does have an edge of type E of the previous chapter. We may thus assume that C_{1} has two type E edges forming an M, and, as in the previous chapter, C_{1} mimics MIN. 15. (See Figure 6.12)

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

(v) C_{1} has no edges of types B, C, D, however, C_{1} does have an edge of type A of the previous chapter. We may thus assume that C_{1} has two type A edges forming an M. In this case, G. mimics MIN.66. (Seenfigure 6.13.)

This concludes our consideration of subcase β. We next consider subcase γ. Without loss of generality, assume that C_{1} is a one hump digraph, and C_{2} is a two hump digraph. Repeatedly apply our stripping procedure to C_{1}. Eventually we arrive at a digraph C_{1}^{\prime} which is a two hump or three hump digraph. If C_{1}^{\prime} is a three hump digraph, then G mimics a digraph of MIN as in subcase a. Therefore assume without loss of generality that C_{1}^{\prime} is a two hump digraph.

By our examination of subcase β, we may assume that neither C_{1}^{\prime} nor C_{2} has extra-skeletal edges. Then without loss of generality, using rotations and reflections, the structure of G is as follows:

G has extra-skeletal edges

$$
a_{2} a_{1}, b_{2} b_{1}, a_{2}^{\prime} a_{1}^{\prime}, b_{2}^{\prime} b_{1}^{\prime}, i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{s} j_{s}
$$

with $a_{1}<b_{1} \leq a_{2}<b_{2}<a_{1}^{\prime}<b_{1}^{\prime} \leq a_{2}^{\prime}<b_{2}^{\prime}$

$$
j_{s} \leq j_{s} \leq \cdots \leq j_{1} \leq a_{1}<b_{2} \leq i_{1} \leq \cdots
$$

$$
\leq i_{s-1} \leq i_{s}<a_{1}^{\prime}
$$

and not both $j_{1}=\overline{a_{1}}$ and $i_{1}=b_{2}$ (since otherwise edge

$i_{1} j_{1}$ would be useless, not properly containing the M formed by $a_{2} a_{1}, b_{2} b_{1}$). Without loss of generality, (again up to reversal and rotation of G, say that $j_{1} \neq$ a_{1}.

We make the following subcases.

$$
\text { Subcase } r .1 \text { : We have } s=1 \text {. }
$$

There are two possibilities.

(i) $\mathrm{i}_{1} \neq \mathrm{b}_{2}$. In this case G mimics MIN. 18. (See Figure 6.14.)
(ii) $i_{1}=b_{2}$. If G has a vertex x between b_{2} and a_{1}^{\prime}, then G mimics MIN.63. (See Figure 6.15.)

If G has no vertex between b_{2} and a_{1}^{\prime}, then a reduction of
G is mimicked by MAX.26. (See Figure 6.16.)

Subcase \%.2: We have $s>1$.
By subbase r. 1 , we may assume that $i_{2}=i_{1}=b_{2}$, and thus that $j_{2}<j_{1}$. In this case G mimics MIN. 67. (See Figure 6.17.)

This concludes our examination of subcase \boldsymbol{r}. \%
We next consider subcase δ. We may assume without

Figure 6.14

Figure 6.15

Figure 6.16
loss of generality that after iterated stripping C_{1} and C_{2} are two hump digraphs. Using rotation and reflection and subcase γ, we may say without loss of generality that one of the following two cases occurs:

Subcase 0.1: G has extra-skeletal
edges $a_{2} a_{1}, b_{2} b_{1}, a_{2}^{\prime} a_{1}^{\prime}, b_{2}^{\prime} b_{1}^{\prime}, i_{1} j_{1}, i_{2} j_{2}$ where
$j_{1}<a_{1}<b_{1} \leq a_{2}<b_{2}=i_{1}<j_{2}<a_{1}^{\prime}<b_{1}^{\prime} \leq a_{2}^{\prime}<b_{2}^{\prime}=i_{2}$
In this case G mimics MIN.63. (See Figure 6.18.)

Subcase 8.2: G has extra-skeletal
edges $a_{2} a_{1}, b_{2} b_{1}, a_{2}^{\prime} a_{1}^{\prime}, b_{2}^{\prime} b_{1}^{\prime}, i_{1} j_{1}, i_{2} j_{2}$ where
$j_{1}=a_{1}<b_{1} \leq a_{2}<b_{2}<i_{1}<j_{2} \leqslant a_{1}^{\prime}<b_{1}^{\prime} \leq a_{2}^{\prime}<b_{2}^{\prime}=i_{2}$ In this case G mimics MIN.68. (See Figure 6.19.)

This concludes our examination of subcase δ, and hence our consideration of the case when G has exactly two bubbles.

Subcase: G has exactly one bubble:
Let the bubble be called C_{1}. If C_{1} is a one hump digraph, then suppose thāt under C_{1} we have two disjoint M's: viz. G has edges $a_{2} a_{1}, b_{2} b_{1}, a_{2}^{\prime} a_{1}^{\prime}, b_{2}^{\prime} b_{1}^{\prime}, i_{1} j_{1}, i_{2} j_{2}$ where $j_{2} \leq j_{1} \leq a_{1}<b_{1} \leq a_{2}<b_{2}<a_{1}^{\prime}<b_{1}^{\prime} \leq a_{2}^{\prime}<b_{2}^{\prime} \leq i_{1} \leq i_{2}$ and $d_{1}=j_{2}, c_{1}=i_{2}$. By rotation, assume that $d_{1}=j_{1}$.

Figure 6.18

Figure 6.19

In this case, G mimics MIN.69. (See Figure 6.20.)

We may thus suppose without loss of generality that whenever G is a digraph with only one bubble, by repeated iteration of the stripping procedure on C_{1} we will eventually arrive at a digraph C_{1} which is a two or three hump digraph. This justifies the following case breakdown:

Subcase a: C_{1}^{\prime} is a three hump digraph.
Subcase β : C_{1} ' is a two hump digraph.

In pursuing subcase a, by our classification of the three hump case, we may assume without loss of generality that either (i) C_{1}^{\prime} falls under case $A 2(b), j=b_{1}$ of the classification of the three hump digraphs or (ii) C_{1}^{\prime} is its own skeleton.

In subcase α (i), G mimics MIN.70. (See Figure 6.21.)

In subcase α (ii), we make a distinction, depending on whether $\operatorname{vert}(G)=\operatorname{vert}\left(C_{1}^{\prime}\right)$.

If vert(G) $=\operatorname{vert}\left(C_{1}^{\prime}\right)$ then a reduction of G is mimicked by MAX.25. (See Figure 6.22.)

Figure 6.21 --

Figure 6.23

Otherwise, G mimics MIN.71. (See Figure 6.23.)

We now turn to subcase β.
In this case, G has (at least) certain edges $a_{2} a_{1}$,
$b_{2} b_{1}, i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{s} j_{s}$ where
$d_{1}=j_{s} \leq j_{s-1} \leq \cdots \leq j_{1} \leq a_{1}<b_{1} \leq a_{2}<b_{2} \leq i_{1} \leq \cdots$
$\leq i_{s}=c_{1}$. Here $a_{2} a_{1}, b_{2} b_{1}$, along with the piece of P from a_{1} to b_{2} form the skeleton of C_{1}^{\prime}. The edges $i_{r} j_{r}$ are those that were stripped from G to arrive at C_{1}^{\prime}. We now make cases depending on the form of C_{1}^{\prime},

Subcase- C' is its own skeleton: In this case, since edge $i_{1} j_{1}$ is not useless, we cannot have both $j_{1}=$ a_{1} and $i_{1}=b_{2}$. Without loss of generality (up to reflection), say that $i_{1} \neq b_{2}$. We make further subdivisions based on the ij edges.

Subcase- $s=1$: In this case, a, reduction of G is mimicked by MAX.26. (See Figure 6.24.)

Subcase- $s=2$: We have two possibilities. (i) $j_{1} \neq a_{1}$. Without loss of generality, $i_{1} \neq i_{2}$. In this case G mimics MIN.18. (See Figure 6.25.)
(ii) $j_{1}=a_{1}$. In this case (without loss of generality
up to a rotation,$j_{2}=a_{1}$ also. Then a reduction of \dot{G} is mimicked by MAX.24. (See Figure 6.26.)

Subcase- $s=3$: Because of our observations in the $s=2$ case, we may now without loss of generality assume that $j_{3}=j_{2}=j_{1}=a_{1}$. Then a reduction of G is mimicked by MAX.24. (See Figure 6.27.)

Subcase-s $>$ 3: Here G mimics MIN. 72. (See Figure 6.28.)

This finishes the case where C_{1}^{\prime} is its own skeleton. Returning to the theme of our stripping procedure, we use the two hump classification of the previous chapter on C_{1}^{\prime}.

Subcase- C; has an edge of type D: Here G

 mimics MIN.35. (See Figure 6.29.)From now on assume that G has no edges of type D.
Subcase- C' has edges of type E only: Here C_{i}^{\prime} must have two type edges forming an M, and C_{1}^{\prime} mimics MIN. 15 as we have already seen.

Figure 6.24

Figure 6.25

Figure 6.26

Figure 6.27

Figure 6.28

Figure 6.29

Figure 6.30

Subcase- C' has edges of types A and E
only: We may assume by the foregoing subcase that C_{1}^{\prime} has no edge of type E. Thus C_{1}^{\prime} has two type A edges $k_{1} l_{1}$, $k_{2} 1_{2}$ forming an M. By the case where C_{1}^{\prime} is its own skeleton and $j_{1} \neq a_{1}$, assume that
$a_{1}=l_{1} \leqslant l_{2} \leq k_{1}<k_{2}<b_{1}$. (See Figure 5.22.) Wemake further subdivisions based on the ij edges.

Subcase- s > 1: In this case, G mimics MIN.66. (See Figure 6.30.)

Subcase- $s=1$: If $i_{1} \neq b_{2}$, then G mimics MIN. 66. (See Figure 6.31.)

We assume from here on that $i_{1}=b_{2}$. "If C_{1} has only two extra-skeletal edges, then a reduction of G is mimicked by MAX.23. (See Figure 6.32.)

If C_{1}^{\prime} has a third extra-skeletal edge $k_{3} l_{3}$, we may assume without loss of generality, by the classification done in the previous chapter, that $l_{3}=a_{1}, k_{3}>k_{2}$. (See Figure 5.33.) In this case, G mimics MIN. 73. (See Figure 6.33.)

Figure 6.31

Figure 6.32

This completes those cases where all edges of C_{1}^{\prime} are of types A, E or D of the previous chapter.

Subcase- C' has an edge of type B, but no type C edges: From our experience in the previous chapter, we may assume that every extra-skeletal edge of C_{1}^{\prime} is either a normal type B edge, or a reversed type B edge where the normal and reversed edges never cross to form any M. Let the extra-skeletal edges of C_{1}^{\prime} be
$k_{1} a_{1}, k_{2} a_{1}, \ldots, k_{p} a_{1}, b_{2} l_{1}, b_{2} l_{2}, \ldots, b_{2} l_{-q}$ where $\mathrm{b}_{1} \leq \mathrm{k}_{1}<\mathrm{k}_{2}<\ldots \mathrm{k}_{\mathrm{p}}<\mathrm{l}_{\mathrm{q}}<\mathrm{l}_{\mathrm{q}-1}<\ldots<\mathrm{l}_{1} \leq \mathrm{a}_{2}, \mathrm{p} \geq \mathrm{q}$. We base our case division here on p, q and s :
$q=0:$
$\underline{s}=1:$
Assume (by rotation) that $a_{1}=j_{1}$. If $i_{1}=b_{2}$, then the edge $i_{1} j_{1}$ is useless, a contradiction. (See Figure 6.34.)

In fact, for the case where every edge of C_{1} is a type B edge, we may assume that $a_{1}=j_{1}, i_{1} \neq b_{2}$. If $i_{1} \neq b_{2}$, then if $p \geq 3$, G mimics MIN. 74. (See Figure 6.35 .

If $i_{1} \neq b_{2}$ and if $p<3$, then a reduction of G is mimicked by MAX.22. (See Figưre 6.36.)

Figure 6.34

Figure 6.35

Figure 6.36

Figure 6.37

Figure 6.38

g >1 :
Again assume that $j_{1}=j_{2}=a_{1}$.

As $\mathrm{i}_{1} \neq \mathrm{b}_{2}$, G mimics MIN.75. (See Figure 6.37.)
q >0 :
Assume that $j_{1}=a_{1}$.
As $i_{1} \neq b_{2}$, G mimics MIN. 76. (See Figure 6.38.)
This finishes the case when C_{1}^{\prime} has no type C edges. Subcase- C, has an edge of type C: Call
the type C edge kl . (Recall Figure 5.5.)
Subcase- C' has only one

extra-skeletal edge:

s > 2: Here G mimics one of MIN. 18 or MIN. 78 , depending on whether kl is a normal or reversed type C edge in C_{1}. (See Figures 6.39 and 6.40.) Note that even if $j_{1}=a_{1}$ and $i_{1}=b_{2}, i_{1} j_{1}$ contains the M formed by $k l$ and $b_{2} b_{1}$, and is not useless.
s = 2: With only two ij edges, we may use reversal and rotation to assume that $k l$ is a normal type C edge, and $j_{1}=j_{2}=a_{1}$.

If $k<a_{2}$, then G mimics MIN. 79. (See Figure 6.41.)

Figure 6.39

If $\mathrm{i}_{1}>\mathrm{b}_{2}$; then G mimics MIN. 18 (See Figure 6.42.)

If $k=a_{2}$ and $i_{1}=b_{2}$ then a reduction of G is mimicked by MAX.21. (See Figure 6.43.)
$\mathbf{s}=1$: Here a reduction of G is mimicked by MAX. 20. (See Figure 6.44.)

This concludes the case when C_{1} has only one extra-skeletal edge.

Subcase- C_{1}^{\prime} has two extra-skeletal edges: Let the extra-skeletal edges of C_{1}^{\prime} be $k_{1} l_{1}, k_{2} l_{2}$. By the analysis of the previous chapter, we make the following case division.
C_{1}^{\prime} falls under $C 1(a):$ (Thus C_{1}^{\prime} is as depicted in Figure 5.59.) Here G mimícs MIN.80. (See Figure 6.45.)
C_{1}^{\prime} falls under $C 1(b): ~\left(T h u s C_{1}^{\prime}\right.$ is as depicted in Figure 5.65.) Here G mimics MIN.81. (See Figure 6.46.)

C' falls under C2(a): (Thus C_{1}^{\prime} is as depicted in Figure 5.63.) Here G mimics MIN.82. ${ }^{-}$(See Figure 6.47.)

Figure 6.41

Figure 6.42

I
(' Figure 6.43

Figure 6.44

Figure_6.45

Figure 6.46

Figure 6.47

Figure 6.48

C_{1}^{\prime} falls under $C 2(b):\left(T h u s C_{1}^{\prime}\right.$ is as depicted in Figure 5.66.) We have two possibilities.
(i) $\mathrm{i}_{\mathrm{s}} \neq \mathrm{b}_{2}$. Here Gmimics MIN. 83. (See Figure 6.48.)
(ii) $i_{s}=b_{2}$. By rotation we may assume that this means $s=1$. Here a reduction of G is mimicked by MAX.19. (See Figure 6.49.)
C_{1}^{\prime} falls under $C 3(a):$ (Thus C_{1}^{\prime} is as depicted in Figure 5.73.) Here G mimics MIN.84. (See Figure 6.50.)
C_{1} falls under $C 3(b): ~\left(T h u s C_{1}^{\prime}\right.$ is as depicted in Figure 5.75.) We have two possibilities.
(i) $i_{s}=b_{2}$. By rotation we may assume that this means $s=1$. Here a reduction of G is mimicked by MAX. 18. (See Figure 6.51.)
(ii) $i_{s} \neq b_{2}$. Here G mimics MIN. 85. (See Figure 6.52.)

C' falls under C4: (Thus C_{1}^{\prime} is as depicted in Figure 5.57. Here G mimics MIN. 86. (See Figure 6.53.)
C_{1}^{\prime} falls under C5: (Thus C_{1}^{\prime} is as depicted in Figure 5.60.) We have two possibilities.

Figure 6.49
,

192

Figure 6.50

Figure 6.51

(i), $\mathrm{i}_{\mathrm{s}} \neq \mathrm{b}_{2}$. Here G mimics MIN. 87 . (See Figure 6.54.)
(ii) $i_{s}=b_{2}$. By rotation we may assume that this means $s=1$. Here a reduction of G is mimicked by MAX. 17. (See Figure 6.55.)

Subcase- C' has three extra-skeletal

edges:
We may again fall back on the classification of the previous chapter. Also, by the foregoing section, assume that $\mathrm{i}_{1}=\mathrm{b}_{2}$ and that $\mathrm{s}=1$.

Subcase- C' falls under case C3(b) $+\mathrm{C} 3(\mathrm{~b})$: (Thus C_{1}^{\prime} is as depicted in Figure 5.104.) Here G mimics MIN.88. (See Figure 6.56.)

Subcase- C' falls under case $\mathrm{C} 3(\mathrm{~b})+\mathrm{C} 2(\mathrm{~b}):$ (Thus C_{1}^{\prime} is as depicted in Figure 5.107.) Here G mimics MIN.89. (See Figure 6.57.)

Subcase- C' falls under case C5 + C3(b): (Thus C' ${ }_{1}^{\prime}$
is as depicted in Figure 5.95.) Here G mimics MIN. 49.
(See Figure 6.58.)

This concludes our proof.

Figure 6.53

Figure 6.54

Figure 6.56

Figure 6.57

Figure 6.58

Chapter 7: Lemmas On Substitutions

Let $S=\left\{x_{1}, x_{2}, x_{3}\right\}, T$ be alphabets. Let $g: S^{*} \rightarrow T^{*}$ be a substitution. We produce certain conditions on g which are sufficient to show that $g\left(h^{\omega}\left(x_{2}\right)\right)$ is non-repetitive where h is substitution 2.1 . That is,

$$
\begin{aligned}
& h\left(x_{1}\right)=x_{3} \\
& h\left(x_{2}\right)=x_{2} x_{3} x_{1} \\
& h\left(x_{3}\right)=x_{2} x_{1} .
\end{aligned}
$$

First we note that if the $g\left(x_{i}\right)$ each start in a distinctive way, but have sufficiently different endings, then g works.

Different Endings Lemma: Let A, B be alphabets, $T=$ $A \cup B, A \cap B=$. Suppose that for each i, we can write $g\left(x_{i}\right)=m b_{i}, m \in A, b_{i} \in B^{*}$ so that the following conditions hold:
(1) If for $1 \leq i, j, k \leq 3$ we can write $b_{k}=b_{i}^{\prime} b_{. j}^{\prime \prime}$ where $b_{i}=b_{i}^{\prime} b_{i}^{\prime \prime}, b_{j}=b_{j}^{\prime} b_{j}^{\prime \prime}$, then either $b_{i}^{\prime}=\epsilon, j=k$, or $b_{j}^{\prime \prime}=\epsilon, i=k$.. Thus we cannot glue together b_{i} from a prefix of b_{j} and a suffix of b_{k}. .
(2) The word b_{i} is non-repetitive for each i. Then $g\left(h^{n}\left(x_{2}\right)\right)$ is non-repetitive for all n. Proof: By Lemma 2.5, it suffices to show that the
following conditions hold:
1') If $g(x)$ is a subword of $g(y)$, where $x, y \in S$, then $x=y$.

3') If $w \in S^{*}$ is a non-repetitive word, $\left|W^{\prime}\right|=3$, then $g(w)$ is non-repetitive.

Clearly condition 1 ') holds: If mb ${ }_{i}$ is a subword of mb_{j} we must have b_{i} a prefix of b_{j}, whence $i=j$, by condition 1).

It remains to show that condition 3^{\prime}) is fulfilled. Suppose $g\left(x_{i} x_{j} x_{k}\right)$ contains a repetition for some i, j, k, $i \neq j, j \neq k$. Thus $m b_{i} m b_{j} \mathrm{mb}_{k}$ contains a repetition $v v$, $v \neq \epsilon$. The word $v v$ míst contain exactly zero or two m 's. If $v v$ contains no m, then $v v$ is a subword of b_{j} for some j, contradicting 2). On the other hand, if vv contains the first two m's of $m b_{i} m b_{j} m b_{k}$, then b_{i} is a prefix of b_{j}, impossible since $i \neq j$.

Finally, if vv contains the last two m's of $\mathrm{mb}_{i} m b_{j} \mathrm{mb}_{k}$, then we can write $v=b_{i}^{\prime \prime m b}{ }_{j}^{\prime}=b_{j}^{\prime \prime} m b_{k}^{\prime}$, where $b_{i}=b_{i}^{\prime} b_{i}^{\prime \prime}, b_{j}=b_{j}^{\prime} b_{j}^{\prime \prime}, b_{k}=b_{k}^{\prime} b_{k}^{\prime \prime}$. But then lining up the $m^{\prime} s$, we get $b_{i}^{\prime \prime}=b_{j}^{\prime \prime}, b_{j}^{\prime}=b_{k}^{\prime}$, so that $b_{j}=b_{k}^{\prime} b_{i}^{\prime \prime}$, contradicting 1). We conclude that $g\left(x_{i} x_{j} x_{k}\right)$ is non-repetitive whenever $i \neq j, j \neq k$, so that g fulfills condition $3^{-2} \square$ 1:

Block/Separator Lemma: Suppose that we can write

$$
g\left(x_{i}\right)=n b_{0} n b_{i+1} n b_{i}, i=1,2,3
$$

where $b_{i} \in B^{*}$, each i, some alphabet $B, n_{-} \in A$, some alphabet A, such that $\AA \cap B=\varnothing$. Suppose further that the following conditions are fulfilled:
(1) If for $\mathcal{Q} \leq i, j, k \leq 4$ we can write $b_{k}=b_{i}^{\prime} b_{j}^{\prime}$ where $b_{i}=b_{i}^{\prime} b_{i}^{\prime \prime}, b_{j}=b_{j}^{\prime} b_{j}^{\prime \prime}$, then either $b_{i}^{\prime}=\epsilon, j=k$, or $b_{j}^{\prime \prime}=\epsilon, i=k$.
(2) If $1 \leq i<j \leq 4$, then $\left|b_{i}\right|<\left|b_{j}\right|$.
(3) The word b_{i} is non-repetitive, $0 \leq i \leq 4$. Then $g\left(h^{n}\left(x_{2}\right)\right)$ is non-repetitive for all n. Proof: Our proof is analogous to the previous proof, but "somewhat more involved. Again condition 1') of Lemma 2.5 will hold. It remains to show that condition 3^{\prime}) holds.

Suppose $g\left(x_{i} x_{j} x_{k}\right)$ contains a repetition for some $i, j, k, i \neq j, j \neq k$. Then we get
 $\mathbf{y} \neq \epsilon$.

Case A: The word v contains $n b_{0} n$ as a subword. Examining g, we see that vv must contain this subword exactly twice. If vi contains the first two occurrences of this subword in $g\left(x_{i} x_{j} x_{k}\right)$ then b_{p} is a preffix of b_{r}. By condition (1), $p=r$, so that $i=j$, a contradiction.

Thus it must be the second two occurrences of $\mathrm{nb}_{0} n$
which are in $v v$, and lining things up using these matching subwords in $v v$, we write

$$
\left(b_{p} n b_{q}\right)^{\prime \prime}=\left(b_{r} n b_{s}\right)^{\prime \prime},\left(b_{r} n b_{s}\right)^{\prime}=\left(b_{t} n b_{u}\right)^{\prime},
$$

where as usual $x^{\prime}\left(x^{\prime \prime}\right)$ stands for a prefix (suffix) of x, and $b_{r} n b_{s}=\left(b_{r} n b_{s}\right)^{\prime}\left(b_{r} n b_{s}\right) "$. But if n is in $\left(b_{r} n b_{s}\right)^{\prime \prime}$, then $b_{s}=b_{q}$, so that $s=q$, and $i=j, a$ contradiction. However, then n must be in $\left(b_{r} n b\right)^{\prime}$, whence $b_{r}=b_{t}$, again giving a contradiction. We conclude that $n b_{0} n$ is not a subword of v.

Case B: The word vv contains a subword $n b{ }_{0} n$, but v does not.
Thus $n b_{0} n$ "straddles the border" between the two v 's of vv , and we write $\mathrm{v}=2 n \mathrm{~b}_{0}{ }^{\prime}=\mathrm{b}_{0}{ }^{\prime n Y}$, where $\mathrm{b}_{0}{ }^{\prime} \mathrm{b}_{0} "=\mathrm{b}_{0}$, $Z, Y \in(A \cup B)^{*}$. Thus $W=g\left(x_{i} x_{j} x_{k}\right)$ contains a subword of the form $b_{0} n{ }^{n X n b} b_{0} n X b_{0}, X \in(A \cup B)^{*}$. However, now by condition (1), we may assume that w contains either $\mathrm{nb}_{0} \mathrm{nXnb}_{0} \mathrm{nX}$ or $\mathrm{Xnb}_{0} \mathrm{nXnb}_{0} \mathrm{n}$ as a subword, and we are back in Case A, which has already been dealt with.

Case C: The repetition $v v$ does not contain $n_{0} n$. Thus without loss of generality, up to reindexing, assume that $v v$ is a subword of $b_{0} n b_{r} n b_{s} n b_{0}$.

By condition (3), vv contains at, least one n. Thus vv contains exactly two n 's. If the first two n 's here are in $v v$, then b_{r} is a prefix of b_{s}, contradicting (1).

If the second two n 's are in $v v$, then we write $b_{s}=b_{0}^{\prime} b_{r}^{\prime \prime}$ and get the usual contradiction.

We conclude that $g\left(x_{i} x_{j} x_{k}\right)$ is non-repetitive.
Long/Short Lemma: Suppose that we can write

$$
\begin{aligned}
& g\left(x_{1}\right)=m b_{1} e_{1} \\
& g\left(x_{2}\right)=m b_{2} e_{1} b_{1} e_{2} \\
& g\left(x_{3}\right)=m b_{2} e_{2}
\end{aligned}
$$

where for each $i, b_{i}, e_{i} \in A^{*}$, some alphabet $A, m \in B$, some alphabet B, such that $A \cap B=\varnothing$. Then if
(1) Each of $g\left(x_{1}\right), g\left(x_{2}\right), g\left(x_{3}\right)$ is non-repetitive
(2) $\left|\mathrm{b}_{1}\right|<\left|\mathrm{b}_{2}\right|,\left|\mathrm{e}_{1}\right|<\mid \mathrm{e}_{2}$
(3) If w is a common prefix of b_{2}, b_{1}, y a common suffix of e_{1}, e_{2}, then $|w v|<\nmid b_{1} e_{1} \mid$
(4) Any common prefix of $b_{1} e_{i}, b_{2} e_{j}$ is of length $\leq\left|b_{1}\right|$
(5) Any common suffix of $b_{i} e_{1}, b_{j} e_{2}$ is of length $\leq\left|e_{1}\right|$ then g is suitable.

Proof: We show that g is suitable, ie.

1) $\left|g\left(x_{i}\right)\right| \leq\left|g\left(x_{j}\right)\right|+\left|g\left(x_{k}\right)\right|$ for $1 \leq i, j$, $k \leq 3, i, j, k$ distinct
2) For $1 \leq i \leq 3$, one cannot write $g\left(x_{i}\right)=u w=w z$, u, w, z non-empty words over T.
(3) If $w \in S^{*}$ is a non-repetitive word with $|W|$ ≤ 3, and $w \neq x_{1} x_{3} x_{1}, x_{2} x_{3} x_{2}$, then $g(w)$ is non-repetitive.

Conditions 1) and 2) are easily checked. It remains to show that condition 3) holds. It will be useful to first consider the case when $|w|=2$.
$\underline{w}=x_{1} x_{2}$ - Here $g(w)=m b_{1} e_{1} \mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2}$. Suppose that vv is a subword of $g(w)$ for some $v \neq \epsilon$. By condition (1), repetition v must include the second m of $g(w)$; any other repetition would be entirely inside $g\left(x_{1}\right)$ or $g\left(x_{2}\right)$. There are two possibilities:

Case 1: The first two m's are in vv. In this case we must have m for a prefix of v, so that $v=m b e_{1}$.

Therefore, $m b_{1} e_{1}=v$ is a prefix of $\mathrm{mb}_{2} \mathrm{e}_{1}$. Thus $\mathrm{b}_{1} \mathrm{e}_{1}$ is a prefix of $b_{2} e_{1}$. This is a contradiction of condition (4), as $\left|b_{1} e_{1}\right|>\left|b_{1}\right|$. Thus $g(w)$ is non-repetitive in this case.

Case 2: The second two m's are in vv. Thus vv is contained in the word $b_{1} e_{1} \mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2}$. Using the m 's to line up the pieces v, we have $\left(b_{1} e_{1}\right)^{\prime \prime}=\left(b_{2} e_{1}\right)^{\prime \prime},\left(b_{2} e_{1}\right)$, $=\left(b_{1} e_{2}\right)$, where $\left(b_{i} e_{j}\right)$, stands for a non-empty prefix of $b_{i} e_{j},\left(b_{i} e_{j}\right) "$ stands for a non-empty suffix of $b_{i} e_{j}$, and $\left(b_{2} e_{1}\right)^{\prime}\left(b_{2} e_{1}\right)^{\prime \prime}=b_{2} e_{1}$. However, by condition (4), $\left|\left(b_{2} e_{1}\right) \prime\right| \leq\left|b_{1}\right|$. Lining up the $e_{1}{ }^{\prime} s$, we can therefore write $b_{2}=b_{1}{ }^{\prime} b_{1}{ }^{\prime \prime}$, where $b_{1}=x b_{1}{ }^{\prime \prime}=b_{1}$ 'y for some x, y. Since $\left|b_{2}\right|>\left|b_{1}\right|$, we can write $b_{1}{ }^{\prime \prime}=z y, b_{1}$ '
$=x z$ for some $z \neq \epsilon$. But then b_{2} contains the repetition $z z, a$ contradiction. (We call this an overlap argument.). Thus $g(w)$ can have no repetition.
$\underline{\hat{w}}=x_{1} \underline{x}_{3}$: In this case $g(w)=m b_{1} e_{1} \mathrm{mb}_{2} e_{2}$. Any repetition vv involves both m 's, and lining things up using the m's, we find that $b_{1} e_{1}$ is a prefix of $b_{2} e_{2}$, contradicting condition (4).
$\underline{w}=x_{2} \underline{x}_{1}$ - Here $g(w)=m b{ }_{2} e_{1} \mathrm{mb}_{1} e_{2} \mathrm{mb}_{1} e_{1}$. Any repetition $v v$ must involve the second two m 's, as the first two are contained in $g\left(x_{2}\right)$. Then we get $\left(b_{2} e_{1}\right) "^{\prime \prime}=\left(b_{1} e_{2}\right)$ ", $\left(b_{1} e_{2}\right)^{\prime}=\left(b_{1} e_{1}\right)^{\prime}$, and $b_{1} e_{2}=\left(b_{1} e_{2}\right)^{\prime}\left(b_{1} e_{2}\right)^{\prime \prime}$. Now by condition (5), ($\left.b_{1} e_{2}\right)$ " must actually be a suffix of e_{1} alone. Lining up $b_{1}{ }^{\prime} s_{8}$, we get $e_{2} \cong e_{1}^{\prime} e_{1}^{\prime \prime}$ and we use an overlap argument as in a previous case.
$\underline{w}=x_{2} x_{3}$: We get $g(w)=\mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2} \mathrm{mb}_{2} \mathrm{e}_{2}$. Any repetition involves the last two m's. We argue similarly to the previous case, except now we get $\left|\left(b_{1} e_{2}\right),\left|\leq\left|b_{1}\right|\right.\right.$, $\left|\left(b_{1} e_{2}\right) "-\left|\leqslant\left|e_{1}\right|\right.\right.$. This forces $\left.| b_{1} e_{2}\right| \leq\left|b_{1} e_{1}\right|, a$ contradiction.
$\underline{w}=x_{3} x_{1}$; Here $g(w)=m b_{2} e_{2} m b_{1} e_{1}$. If there were a
repetition, we would have $\mathrm{mb}_{2} \mathrm{e}_{2}$ a preffix of $\mathrm{mb}_{1} \mathrm{e}_{1}$, which is absurd because of the respective lengths.
$\underline{w}=x_{3} \underline{x}_{2}$: We have $g(w)=\mathrm{mb}_{2} \mathrm{e}_{2} \mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2}$. Any repetition must match the first two m's, forcing $b_{2} e_{2}$ to be a prefix of $\mathrm{mb}_{2} \mathrm{e}_{1}$, which is absurd:

We have thus established that g behaves well on the two letter words. It remains to consider the cases when $|w|=3:$
$\underline{w}=x_{1} \underline{x}_{2} \underline{x}_{1}$: Here $g(w)=\mathrm{mb}_{1} \mathrm{e}_{1} \mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2} \mathrm{mb}_{1} \mathrm{e}_{1}$. Since the g behaves well on two letter words, any repetition $v v$ in $g(w)$ must straddle the images of all three letters here, thus containing at least the last three m 's. We conclude that (since repetitions contain an even number of m ' s) all four m 's are in $v v$. This implies that
$\mathrm{mb}_{1} \mathrm{e}_{1}=\mathrm{mb}_{1} \mathrm{e}_{2}$, which is absurd, as the lengths differ. $\underline{\mathrm{w}}=\mathrm{x}_{1} \underline{\mathrm{x}}_{2} \mathrm{x}_{3}$: Here $\mathrm{g}(\mathrm{w})=\mathrm{mb}_{1} \mathrm{e}_{1} \mathrm{mb} \mathrm{b}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2} \mathrm{mb}_{2} \mathrm{e}_{2}$, and we get the same contradiction as in the previous case. This contradiction will similarly occur for each w of form $x_{i} x_{2} x_{j}$.
$\underline{w}=x_{1} \underline{x}_{3} \underline{x}_{2}$:
Here $g(w)=m b{ }_{1} e_{1} m b_{2} e_{2} \mathrm{mb}_{2} e_{1} m b_{1} e_{2}$. Here either all four
m's get matched up', or only the central two. If all four* m's get matched, we get an absurdity involving lengths. We therefore assume that the second two m's are matched, and write $\left(b_{1} e_{1}\right)^{\prime \prime}=\left(b_{2} e_{2}\right)^{\prime \prime},\left(b_{2} e_{2}\right)^{\prime}=\left(b_{2} e_{1}\right)^{\prime}$ where $\left(b_{i}{ }^{\prime}{ }_{j}\right.$)' stands for a non-empty prefix of $b_{i} e_{j},\left(b_{i} e_{j}\right)$ " stands for a non-empty suffix of $b_{i} e_{j}$, and $\left(b_{2} e_{2}\right)$ ' $\left(b_{2} e_{2}\right)$ " $=\mathrm{b}_{2} \mathrm{e}_{2}$. However, by condition (5), $\left|\left(\mathrm{b}_{2} \mathrm{e}_{2}\right) "\right| \leq\left|\mathrm{e}_{1}\right|$. Lining up the b_{2} 's wet a contradiction by an overlap argument.

$$
\underline{\mathrm{w}}=\mathrm{x}_{2} \underline{x}_{1} \underline{x}_{2} \dot{\text { Here } g(\mathrm{w})}=\mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2} \mathrm{mb}_{1} \mathrm{e}_{1} \mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb}_{1} \mathrm{e}_{2} \text { We }
$$ match either the third and fourth m's, the first four m's, or the last four m's.

If the third and fourth m 's are matched, after our usual argument we end up with b_{1} a prefix of $b_{2}, e_{1} a$ surfix of e_{2}. This is forbidden by condition (3).

Matching the first four m's gives our standard absurdity involving length. Thus suppose the last four m's are matched. This forces $\mathrm{b}_{1} \mathrm{e}_{2}=\mathrm{b}_{2} \mathrm{e}_{1}$, contradicting the non-repetitiveness of $g\left(x_{2}\right)=m b_{2} e_{1} m b_{1} e_{2}$.
$\underline{w}=x_{2} x_{1} x_{3}$: Here $g(w)=\mathrm{mb}_{2} e_{1} m b_{1} e_{2} m b_{1} e_{1} m b_{2} e_{2}$. We cannot have all four m's in a repetition, as this gives the usual contradiction concerning lengths. The alternative is that the last two m's are matched by a repetition and here we get the same contradiction as in the previous
case.
$\underline{w}=x_{2} \underline{x}_{3} \underline{x}_{1}$: Here $g(w)=\mathrm{mb}_{2} e_{1} \mathrm{mb}_{1} e_{2} \mathrm{mb}_{2} \mathrm{e}_{2} \mathrm{mb}_{1} \mathrm{e}_{1}$. Involving all four m's in a repetition is impossible, as usual? However, matching the last two m's gives a contradiction by the overlap argument.
$\underline{w}=x_{3} \underline{x}_{1} \underline{x}_{2}$: Here $g(w)=\mathrm{mb}_{2} e_{2} \mathrm{mb}_{1} \mathrm{e}_{1} \mathrm{mb}_{2} \mathrm{e}_{1} \mathrm{mb} \mathrm{e}_{1} \mathrm{e}_{2}$. Here either all four m's get matched up, or only the middle two. If all four m's get matched, we get an absurdity involving lengths. If the center two m's are matched, then after our usual argument we end up with b_{1} a prefix of $b_{2}, e_{1} a$ suffix of e_{2}. This is forbidden by condition (3). $\underline{w}=x_{3} \underline{x}_{1} \underline{x}_{3}$: Here $g(w)=\mathrm{mb}_{2} \mathrm{e}_{2} \mathrm{mb}_{1} \mathrm{e}_{1} \mathrm{mb}_{2} \mathrm{e}_{2}$. The first two m's cannot be paired. However matching the last two we end up with b_{1} a prefix of b_{2}, e_{1} a suffix of e_{2}. This is forbidden by condition (3).
$\mathrm{mb}_{1} \mathrm{e}_{1}=\mathrm{mb} \mathrm{e}_{2}$, which is absurd, as the lengths differ. $\underline{w}=x_{3} x_{2} \underline{x}_{1}$: As we remarked earlier the contradiction of the cases $w=x_{1} x_{2} x_{1}, x_{1} x_{2} x_{3}$ carries over to this case. and the next. $\underline{w}=x_{3} \underline{x}_{2} \underline{x}_{3}$: See above.
9. Having looked at all the short words and finding g to be well-behaved, we are finished our proof.

MIN. 71: To deal with MIN. 71 , we use some substitutions on a five letter alphabet. Let $1:\{1,2,3,4,5\} \rightarrow\{1,2$, 3, 4) be given by
$1(1)=43$
$1(2)=4321$
$l(3)=432153$
$1(4)=41521$
$1(5)=4153$
Let $\mathrm{k}:(1,2,3,4 ; 5) \rightarrow\{1,2,3,4,5\}$ be given by
$k(1)=512343212345123212343234$
$k(2)=512343212345123212343234512321234$
$k(3)=512343212345123212343234-$ 5123212345123432345123212343234
$k(4)=51234321234512343234512321234$
$k(5)=512343212345123432345123212343234$
We wish to show that $k\left(l^{\omega}(4)\right)$ is non-repetitive. Consider the following simplified substitution lemma.

Lemma: Let $g: A^{*} \rightarrow B^{*}$ be a substitution so that (1) If $g\left(a_{1} \ldots a_{n}\right)=X g(e) Y$, then for some $j, X=$ $g\left(a_{1} \ldots a_{j}\right), a_{j+1}=e$.
(2) If we can write $g\left(x_{i}\right)^{\prime \prime}=g\left(x_{j}\right)^{\prime \prime}, g\left(x_{j}\right)^{\prime}=g\left(x_{k}\right)^{\prime}$, \qquad $g\left(x_{j}\right)=g\left(x_{j}\right) \quad g\left(x_{j}\right) "$ with $x^{\prime}\left(x^{\prime \prime}\right)$ a prefix (suffix) of x, then $w=x_{i} x_{j} x_{k}$ is among $w_{1}, w_{2}, \ldots, w_{n}$.

Then if v is a non-repetitive word never containing $x_{i} X x_{j} X x_{k}$ where $x_{i} x_{j} x_{k}=w_{r}$, some $r, 1 \leq r \leq n$, any word X, then $g(v)$ is non-repetitive. $W_{3}, g\left(x_{i} x_{j} x_{k}\right)=|w|=-3$, then $g(w)$ is non-repetitive unless $w=w_{1}, w_{2}, \ldots, w_{m}$.

This result follows from the proof of the substitution lemma. The " line-up " condition (1), will clearly be true of k and l. The following fist may be checked to suffice for condition $(2+$ for sybstitutions k and $1: 123,145,154,212,213,241,242,243,245,312$, $313,314,315,323,345,351,352,353,354,412,413$, $421,423,512,513,514,515,523,532,545$

Suppose that $x_{i} X x_{j} X x_{k}$ never appears in $1^{m}(4)$ for any m. Then $l^{\text {in }}(4)$ is non-repetitive for each m, by the simplified substitution lemma, and so is $k\left(1^{\omega}(4)\right)$. Thus to show that $k\left(1^{\bar{\omega}}(4)\right)$ is non-repetitive it suffices to show that none of the listed triples occurs in this way in $1^{n}(4)$. We now do this:

Suppose that for some m, one of the listed triples occurs in the above manner in $1^{m}(4)$. Choose m as small as
possible. In particular, $1^{m-1}(4)$ contains none of the above listed triples, so that $l^{m}(4)$ is non-repetitive. Triple 123: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ so that $1 \times 2 \times 3$ appears in $1^{m}(4)$. Then a_{1} follows 2 in $1^{m}(4)$, so by examining 1 , we conclude that. a_{1} is 1 . However, then $1^{m}(4)$ contains 11 , which, again examining l, we see is impossible.

Triple 254: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ and a letter y, so that $y \times 5 \times 4$ appears in $l^{m}(4)$. Then a_{1} follows 2 , and must be a 1 . Then $1^{m}(4)$ contains 51 , which is impossible.

Triples 212, 312, 412, 512: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ and a letter y, so that $y X 1 X 2$ appears in $1^{m}(4)$. Then a_{r} precedes 1 , and must be a 2 or a 4 . However a_{r} precedes 2, and so must be a 3 or a 5 . This is a contradiction.

Triples $213,313,413,513$: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ and a letter $y, y=2,3,4$, or 5 , so that yX 1 X 3 appears in $\mathrm{l}^{\mathrm{m}}(4)$. Then a_{r} is a 4 , because it precedes both 3 and 1 in pieces from 1 . Then a_{1} follows 41 , and must be a 5 . However, y precedes a_{1} and thus must be a 1 , contradicting our choice of y .

Triple 314; Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ so that $3 \times 1 \times 4$ appears in $1^{m}(4)$. Then a_{r} precedes 4 , and
is a 1 or 3. However neither 31 nor 11 can appear, so we have a contradiction.

Triple 315: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ so that $3 \times 1 \times 5$ appears in $1^{m}(4)$. Then a_{r} precedes 5 , and must be a 1 . Then $1^{m}(4)$ contains 11 , which is impossible. Triples 323: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ so that $3 \times 2 \times 3$ appears in $1^{m}(4)$. Then a_{1} follows 2 and must be a 1 . But then $\mathrm{i}^{\mathrm{m}}(4)$ contains 31 , which is impossible.

Triples $351,352,353$: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ and a letter $y, y=1,2$ or 3 , so that $3 X 5 y$ appears in $1^{m}(4)$. Then ar precedes 5 , and must be a 1 . This forces y to be a 4 or a 5 , contradicting our choice of y .

Triple 421: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ so that $4 \times 2 \times 1$ appears in $1^{m}(4)$. Then a_{r} precedes 2 , and is a 3 or a 5 . However, as a_{r} precedes 1 , it must be a 4 or a 2. This is a contradiction.

Triple 423: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ so that $4 \times 2 \times 3$ appears in $1^{m}(4)$. Then a_{1} precedes 2 , and must be a 1 . Now a_{2} is preceded by 41 , and must be a 5 . Thus a_{r} is followed by 215 , and is a 3 . But then $1^{m}(4)$ contains 33 , which is a contradiction.

Triples $513,514,515$: Suppose that there exists a word
$X=a_{1} a_{2}, a_{r}$ and a letter y, so that $5 X 1 X y$ appears in $1^{m}(4)$. Then a_{1} follows 1 and must be 5 or 4 . However, a_{1} follows 5 , and must be 3 or 2 . This is a contradiction.

Triples 523: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ so that $5 \times 2 \times 3$ appears in $1^{m}(4)$. Then a_{1} follows 2 and must be 1 , leaving $1^{m}(4)$ to contain 51 , which is impossible.

Triple 532: Suppose that there exists a-word $X=a_{1} a_{2} \ldots a_{r}$ so that $5 \times 3 \times 2$ appears in $1^{m}(4)$. Then a_{1} follows 5 and 3 , and is forced to be a 2 . Thus a_{r} must be a 4 , as it is followed by 32. But then $1^{m}(4)$ contains 42 , which is impossible.

Triples $145,245,345,545$: Suppose that there exists a word $X=a_{1} a_{2} \cdots a_{r}$ and a letter y, so that $y X 4 X 5$ appears in $1^{m}(4)$. Then a_{r} precedes 5 , and must be a 1 . If $r=1$, then $1^{m}(4)$ contains 141 , so that $1^{m-1}(4)$ contains one of 24, $25,44,45$, which is impossible, since 1 never produces these words. Thus $r>1$. Since a_{1} follows 4 , a_{1} is 3 or 1 . However a_{1} cannot be 1 or $1^{m}(4)$ contains 141 . Now y precedes 3 , and must be 4 or 5 . However, if y $=4$, then $1^{m}(4)$ contains the repetiton 4 X 4 X , contradicting the minimality of m. Thus $y=5$. Since a_{2} follows $53, a_{2}=4$.

Continuing these kinds of arguments, it may be shown
that in fact $1^{m}(4)$ contains a block of the form $5341521 \mathrm{Z}^{2}(4) 41521 \mathrm{Z} \mathrm{I}^{2}(5)$.
However the block 41521 Z is of the form $\mathrm{l}^{2}(Q)$. We thus deduce that $1^{m-2}(4)$ contains $Q 4 Q$ This contradicts the minimality of m.

Triples $241,242,2+3$: Suppose that there exists a word $X=a_{1} a_{2} \ldots a_{r}$ and a letter $y, y \neq 4,5$, so that $2 X 4 X y$ appears in $1^{m}(4)$. Then a_{1} múst be a 1 as it follows 2 and 4. Then a_{2} follows 41 , and is a $5, a_{3}$ follows 215 , and is a 3. Thus a_{3} follows 2153 , and is a 4 .

As a_{r} is followed by a $4, a_{r}$ is 3 or 1 . But a_{r} is not 1 , otherwise $1^{m-1}(4)$ would contain one of $24,25,44$, 45 , which is impossible. Thus a_{r} is a 3 . Then y is a 4 or 2. However, y cannot be a 4 , or $1^{m}(4)$ contains the repetition X 4 X 4 , which contradicts the minimality of m. Continuing these kinds of arguments, it may be shown that in fact $l^{m}(4)$ contains a block of the form $\mathrm{I}^{2}(2) 41521 \mathrm{Z} \mathrm{l}^{2}(4) 41521 \mathrm{Z} 41521432$.
However the block 41521 Z is of the form $\mathrm{l}^{2}(Q)$. We thus deduce that $1^{m-2}(4)$ contains $2 Q 4 Q$. This contradicts the minimality of m .

Since none of the bad triples occur, $k\left(l^{m}(4)\right)$ is non-repetitive for every m. \square

Chapter 8: Substitutions

We wish to show that each of the graphs of MIN is versatile. We saw at the end of Chapter 2 that MIN. 1 MIN. 4 are versatile. MIN. 71 is treated separately in Chapter 7. For each other digraph G of MIN, we give a substitution f meeting "the demands of the Substitution Lemma (Lemma 2.4), such that $f\left(g^{\omega}(2)\right.$) is a non-repetitive walk of type ω on G, where g.is substitution 2.1 .

The conditions of the Substitution Lemma are such that they are easily verified for each of these substitutions by computer. However, to aid the understanding of the reader, we label substitutions with the labels 'D/E'd, 'B/S', 'L/S' standing for 'Different/Endings', 'Block/Separator' and 'Long/Short' respectively. A substitution with such a label falls into the corresponding category of substitutions as discussed at the end of Chapter 3, and can usually be shown to be suitable using the corresponding theorem of Chapter 7.

$$
x_{2}: 1234542123423 \quad \therefore \quad \mathrm{~L} / \mathrm{S}
$$

$$
x_{3}: 12345423
$$

MIN. 6 : $x_{1}: 1234543$
$x_{2}: 1234323454312345432343 \quad \mathrm{~L} / \mathrm{S}$

- x_{3} : 123432345432343

MIN. $7: \quad x_{1}: 12345423$
$\mathrm{x}_{2}: 12345434234334542343$
L/S
$x_{3}: 123454342343$
MIN. 8: $\quad x_{1}: 1234523$
$\mathrm{x}_{2}: 123456523123452343 \mathrm{~L} / \mathrm{S}$
$x_{3}: 12345652343$
MIN.9: $x_{1}: 1343$
, $\mathrm{x}_{2}: 12343134543 \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234543$
MIN. 10 : x_{1} : 13423
$x_{2}: 1234231345423$
$\mathrm{x}_{3}: 12345423$
MIN.11: x_{1} : 1434543
$A_{*} x_{2} 1234314543$
$x_{3}: 1231431234543$
MIN. 12: x_{1} : 14542
${ }^{\prime} x_{2}: 1234542142342$
$x_{3}: 1234542342$
MIN $13: x_{1}: 12343$
$x_{2}: 164345643$
$x_{3}: 1645643$

MIN. 14: x_{1} : 123454
$\mathrm{x}_{2}: 123212345412345654$. L / S
$x_{3}: 123212345654$
MIN. 15 . x_{1} : 12345234
x_{2} : $123432345234123452343234 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234323452343234$
MIN. 16: x_{1} : 123454
$x_{2}: 12343234541234543234 \quad$ L/S
$x_{3}: 12343234543234$
MIN.17: x_{1} : 1234565452
$\mathrm{x}_{2}: 123456523452123456545232 \mathrm{~L} / \mathrm{S}$
$\mathrm{x}_{3}: 12345652345232$

MIN. 18: x_{1} : 12345
$\mathrm{x}_{2}: 123432345123456$
L/S

MIN. $19: x_{1}: 12345674$
$x_{2}: 123212345674123456765674 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 1232123456765674$
MIN. 20: x_{1} : 12321234567
$x_{2}: 123456545671232123456787 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234565456787$
MIN. 21 : $x_{1}: 123212345$
$x_{2}: 12343234512321234565$
L/S

MIN. 22: x_{1} : 123534
$x_{2}: 1234534123534234$ L/S
$x_{3}: 1234534234$
MIN. 23: x_{1} : 1234212345
$x_{2}: 12342312345123421234565$
L/S
$x_{3}: 1234231234565$
MIN.24: x_{1} : 123432345
$\mathrm{x}_{2}: 123431234512343234565 \mathrm{~L} / \mathrm{S}$
$x_{3}: 123431234565$
MIN.25: x_{1} : 123212345676123456
$x_{2}: 123212345612345 \quad B / S$
$x_{3}: 1232123451234$
MIN. 26 : x_{1} : 1232123451234
x_{2} : 1232123456412345
$x_{3}: 123212345645$
MIN. 27 : x_{1} : 1234565 ,
A. $\quad x_{2}: 1232123456512345645 \quad \mathrm{~L} / \mathrm{S}$
$\mathrm{x}_{3}: 123212345645$.
MIN. 28 : $x_{1}: 123453$
$x_{2}: 12345231234534 \mathrm{~L} / \mathrm{S}$
x_{3}; 12345234
MIN. $29: x_{1}: 12345621234565$
L/S
$x_{2}: 123456231234565123456212345645$
$x_{3}: 1234562312345645$

MIN. 30 ; x_{1} : adacb
x_{2} : adc
x_{3} : aeb
where $a=1234565$
where $b=1234562$
where $c=12345623$

- where $d=123456234$
where $e=1234562345$

MIN.31: $x_{1}: 12342$
$x_{2}: 12345342123423 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 123453423$

MIN. 32 : x_{1} : 12342312345342345323123453423123453
x_{2} : 12342312345342345312345323423123453423453

- $x_{3}: 12342312345342345323423123453$

MIN. 33: x_{1} : $12342312345342341234534 \quad B / S$
$x_{2}: 1234231234534234531234534234$

$$
x_{3}: 1234231234534123453
$$

MIN. 34 : x_{1} : 1234534

$$
x_{2}: 12321234534123453234 \quad \mathrm{~L} / \mathrm{S}
$$

$x_{3}: 1232123453234$
MIN. 35: $x_{1}: 123423123453423453 \mathrm{~L} / \mathrm{S}$
x_{2} : $12342312345342345123453123423-$
12345342345312345
$\mathrm{x}_{3}: 1234231234534234512345312345$
MIN. 36 : x_{1} : 12345634
$x_{2}: 1234563234123456345 \quad$ L/S
$x_{3}: 12345632345$
MIN. $37: x_{1}: 12345643452345645 \mathrm{~L} / \mathrm{S}$
$x_{2}: 123456452345643452345645123456434523456452345$
$x_{3}: 1234564523456434523456452345$
MIN. 38: x_{1} : 123454234
$x_{2}: 1234534234123454234534$
x_{3} : 123453423454
MIN. 39: $x_{1}: 12345434$
$x_{2}: 123454234123454342 \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234542342$
MIN. 40 : x_{1} : 1234567345
$x_{2}: 123456732345123456734565$ L/S
$x_{3}: 12345673234565$
MIN.41: x_{1} : 2123454345
$x_{2}: 234123454345212345412345$
$x_{3}: 2341234543412345$
MIN. 42 : x_{1} : 1232123456765612345676
$x_{2}: 123212345676123456 \quad B / S$
$x_{3}: 12321234561234$
MIN. 43 : $\mathrm{x}_{1}: 1232123454$
$x_{2}: 123421234541232123454234$
$x_{3}: 12342123454234$
MIN. 44 :
x_{1} : 1234564541234563234
L/S
x_{2} : 123456345412345632341234564541234563234564
$x_{3}: 12345634541234563234564$
MIN. 45 : x_{1} : 12345631234565
$\mathrm{x}_{2}: 123456323123456345$
$x_{3}: 12345632345$
MIN. 46 : x_{1} : 123456434
x_{2} : $12345642341234564345 \mathrm{~L} / \mathrm{S}$
$x_{3}: 12345642345$
MIN. 47 : $x_{1}: 12342$
$x_{2}: 123432123423 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234323$
MIN. 48 : x_{1} : $123456234512345643456234564345-$ 12345643456234565 B/S
x_{2} : 123456234512345643456234565123456434565
x_{3} : 12345623451234564345651234564345
MIN $49: x_{1}: 12345634$
x_{2} :-1234562341234563454 L/S
$x_{3}: 12345623454$
MIN.50: x_{1} : 1234564345
$\mathrm{x}_{2}: 12345642345123456434565 \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234564234565$
MIN. 51 : $x_{1}: 12345632345$
$x_{2}: 1234563423451234563234565 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 12345634234565$

MIN.52: x_{1} : 12345234123454345234543412345434534
$x_{2}: 12345234123454345234541234534$
x_{3} : 1234523412345434523453412345434
MIN.53: x_{1} : 1234543423454
$x_{2}: 123454345234541234543423454234$
$x_{3}: 1234543452345434$
MIN. 54 : x_{1} : 123456534523456545
$\mathrm{x}_{2}: 123456545345652345 \quad \mathrm{D} / \mathrm{E}$
$x_{3}: 12345654523456534,5$
MIN. 55 : x_{1} : 1234534
$\mathrm{x}_{2}: 12343234534123453234 \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234323453234$
MIN. $56: x_{1}: 123454$
$\mathrm{x}_{2}: 12321234541234564 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 12321234564$
MIN.57: x_{1} : 1234567323456761234567456
x_{2} : 12345673234567561234567456-
12345673234567612345673456
L/S
$x_{3}: 123456732345675612345673456$
MIN. 58 : x_{1} : 1234564512345632345623451234563234565
$x_{2}: 12345634512345632345623451234563234565-$ 12345645123456323456234512345632345645 -

12345623451234563234565
 L/S

$x_{3}: 123456345123456323456234512345632345645-$
12345623451234563234565
MIN.59: x_{1} : 123456342345632345
x_{2} : $1234563452345634234562345 \quad \mathrm{D} / \mathrm{E}$
$x_{3}: 123456345234563234562345$
MIN. 60 : X_{1} : 2345612345673456234567345
x_{2} : $23456123456734523456734 \quad B / S$
$x_{3}: 234561234567342345673$
MIN. $61: x_{1}: 1232123456789$
$x_{2}: 123456545678912321234567898789 \mathrm{~L} / \mathrm{S}$
$x_{3}: 12345654567898789$
MIN. 62 : x_{1} : 12321234567
$\mathrm{x}_{2}: 1234321234567123212345676567 \mathrm{~L} / \mathrm{S}$
$\mathrm{x}_{3}: 12343212345676567$
MIN. 63 : x_{1} : 23456781
$x_{2}: 234323456781234567876781 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 2343234567876781$
MIN.64: x_{1} : 123421234567
L/S
$x_{2}: 12342312345671234212345676567$
$x_{3}: 12342312345676567$
MIN. 65 : x_{1} : 123431234567
L/S
$x_{2}: 123432312345671234312345676567$
$x_{3}: 123432312345676567$

MIN. 66 : x_{1} : 1232
$\mathrm{x}_{2}: \underset{\neq}{123454} \mathrm{D} / \mathrm{E}$
$x_{3}: 123456$
MIN.67: $x_{1}: 1234567876785678 \quad \mathrm{~L} / \mathrm{S}$
$x_{2}: 1232123456787678567812345678767845678$
$x_{3}: 123212345678767845678$
MIN.68: x_{1} : 12345678
$x_{2}: 1232123456787678$
$\mathrm{x}_{3}: 123412321234567876785678$
MIN. $69: x_{1}$: 123456
$x_{2}: 123212345654561234567$
$x_{3}: 123212345654567$
MIN. 70 : x_{1} : 123212345
$x_{2}: 123421234512321234542345 \quad$ L/S.
$x_{3}: 123421234542345$
MIN. 72: x_{1} : 1232123451234
$\mathrm{x}_{2}: 123212345612345 \quad \mathrm{~B} / \mathrm{S}$
, x_{3} : $12321 / 234567123456$
MIN. 73 : x_{1} : 12321234565123456
$x_{2}: 123212345612345$
$x_{3}: 1232123451234$
MIN. 74: x_{1} : 12345671234562345123456234

$$
\begin{aligned}
& x_{2}: 123456712345623412345623 \quad \mathrm{~B} / \mathrm{S} \\
& x_{3}: 1234567123456231234562
\end{aligned}
$$

MIN. 75 : x_{1} : 1234212345

$$
\begin{aligned}
& \mathrm{x}_{2}: 1234231234512342123456 \quad \mathrm{~L} / \mathrm{S} \\
& \mathrm{x}_{3}: 123423123456
\end{aligned}
$$

MIN. 76 : $x_{1}: 12342$
$\mathrm{x}_{2}: 12343 \mathrm{D} / \mathrm{E}$.
$x_{3}: 12345$
MIN. 77: x_{1} : 123453
$x_{2}: 12343234531234532343 \mathrm{~L} / \mathrm{S}$
$x_{3}: 12343234532343$
MIN. 78: x_{1} : 1234212345
x_{2} : $12342321234512342123456 \quad \mathrm{~L} / \mathrm{S}$
$x_{3}: 1234232123456$
MIN. 79 : x_{1} : 1234534
$x_{2}: 123456$ D/E
$x_{3}: 1234532345$
MIN. $80: x_{1}: 12345434$
$x_{2}: 123454234123454345$
L/S
x_{3} : 1234542345
MIN. 81 : $x_{1}: 123453234$

$$
x_{2}: 123453423412345323.45 \quad \mathrm{~L} / \mathrm{S}
$$

$x_{3}: 12345342345^{\circ}$
MIN. 82 : " x_{1} : aec

$$
\begin{aligned}
& x_{2}: \text { afcaecb } \\
& x_{3}: \text { afcb }
\end{aligned}
$$

where $a=12345234$
$b=12345434$
$c=123454345$
$e=12345434523454$
$f=1234543452345434$
MIN. 83: x_{1} : 12345
x_{2} : 123432345123423 L/S
$\mathrm{x}_{3}: 1234323423$
MIN.84: x_{1} : 123456123454
$x_{2}: 1234563234123456345.4$
$x_{3}: 123456323456123456323454$
MIN. 85 : x_{1} : 123454
$x_{2}: 12345323454123456$ L/S
$x_{3}: 12345323456$
MIN. 86 : x_{1} : 1232123432341234323
$x_{2}: 1232123432312343$
B/S
$x_{3}: 1232123431234$
MIN. 87 : $x_{1}: 123456$
$x_{2}: 1234534$ D/E
$x_{3}: 12345323$
MIN. 88: $x_{1}: 12345632345612345645$. . . L/S
$x_{2}: 123456323456512345645123456323456123456345$
$x_{3}: 1234563234565123456345$

```
MIN.89: }\mp@subsup{\textrm{x}}{1}{}\mathrm{ : afd
    x}2\mathrm{ : bfdafecd L/S
    x : bfecd
where a = 123454
    b}=123453
    c=12345234
    d = 1234532345
    e = 12345323454
    f = 1234532345234
```


Chapter 9: Non-versatility of MAX

It is the purpose of the present chapter to show that none of the digraphs of MAX are versatile. We commence by proving a useful theorem. First we make a definition:

Definition: Suppose that v is a non-repetitive word of type ω, on alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. An \underline{a}_{1}-block is a subword w of v so that a_{1} is a prefix of w, w contains exactly one a_{1}, and wapears in the context wa_{1} in v .

Block Theorem: Let a, b, c, d be words over some alphabet Σ such that b is a prefix of c, which is a prefix of d. Then a, b, c, d cannot be concatenated to form a non-repetitive wopl of type ω.

Proof: Suppose that/a, b, c, d could be cbncatenated to form a non-repetitive' word v of type ω. Suppose that the word a^{*} does not appear in v infinitely often; then word b never eccurs, as bc and cd contain repetitions. But then c. never occurs, for cannot' be followed by d in a non-repetitive word. This leaves the single word d, which of course cannot be concatenated With itself to form any non-repetitive words.

Thus we may assume that v contains the word a. Since v is an w word, assume without loss of generality that v
commences with the word a. In fact assume without loss of generality that every one of the words a, b, c, d appearing in v occurs infinitely of ten in v. We may think of v as a "meta-word", whose letters are a, b, c, d. If we parse v, chopping it into pieces at each occurrence of a, the possible a-blocks are:
ab
ac
B: ad
A: acb
D: adc
C: adb
E: adcb
We never, of course, find subwords bc, bd, cd in v, as these contain repetitions. Moreover, of these a-blocks, only A, B, C, D and E can appear infinitely often in v; the piece ab is a prefix of the other pieces, and thus never appears in v. (What would follow it in v?) Again, once we have disposed of piece $a b$, piece ac is a prefix of all the other pieces and cannot be used either. Thus v is concatenated from pieces A, B, C, D, E. We assume without loss generality that each of these pieces appearing in v does so infinitely often.

The eccentric lettering of these pieces (B, A, D,

C, E simply makes note of the fact that B is a prefix of C, which is a prefix of D, a prefix of E We now take our argument one level deeper; as B is a prefix of C, which is a prefix of D, a prefix of E, V must contain block A. Parse v by chopping it up wherever the piece A appears followed by an a. Offhand, we get several pieces. However some of these A-blocks can only appear finitely often in v, and can hence without loss of generality, be assumed not to occur in v.
$\underline{A B}$ (1), $A C$ (1), $\underline{A D}$ (4), $A E$

AED (2), $\underline{A E C}$ (2), $\underline{A E B}$ (2), ADC, ADB, $\underline{A C B}$ (3)

AEDC (2), AEDB (2), AECB (2), ADCB

AEDCB (2)

Notes: (1) As the block $A B$ is a prefix of all the other blocks, it cannot appear in v. However, the block AC is a prefix of every block but $A B$, and hence $A C$ cannot appear in v either.
(2) Here AEX (where X is B, C or D) will contain cb adcb ad, a repetition. Thus no block containing such a
word can appear in v.
(3) Here ACB contains/the repetition badbad.
(4) After the eliminations of (1) and (3), AD is a prefix of the remaining blocks, and must be discarded. - -

We are left with four A-blocks to concatenate to form v :
$\alpha: \quad \mathrm{AE}$
β : ADA
\boldsymbol{r} : ADC
8: ADCB
We have almost come full circle; here β is a prefix of γ, a prefix of δ. Again α must appear in v. However, we now have quite a lot of conditions on $\alpha, \beta, \gamma, \delta$. By our examination of a-blocks, we know that the blocks resulting when v is chopped into pieces at a are:

```
\alpha\sigma
\alpha+\rho
\alpha0%
\alpha8\beta
\alpha%%\beta
```

However here $\alpha \gamma \beta>E \mathrm{ADC} A D B \geqslant$ bADadbADad, a repetition, so that the block $\alpha \boldsymbol{\beta} \beta$ can never appear in v. However,
once $\alpha \beta \beta$ has been discarded, $\alpha \delta$ is a prefix of the four remaining blocks and must also be discarded. This leaves three blocks, $\alpha \delta \beta, \alpha \delta \gamma, \alpha \delta \gamma \beta$, with the first a prefix of the other two. One checks that there are no non-repetitive words of length greater than three on two letters. Since v therefore could not be formed from two blocks, we have a contradiction. Thus words a, b, c, d cannot be concatenated to form a non-repetitive word of type w.

Using this Block Theorem, and similar arguments, we show that none of the digraphs of MAX is versatile.

MAX. 1

Suppose that we could walk some non-repetitive word v of type ω on MAX. 1. If v contains no 2 , then v can be walked on one of the strongly connected components of MAX. 1 \ \{ 2 \}. However none of these components has more than two vertices, so that this is impossible.

Parse v by chopping it into pieces commencing with 2. The possible 2-blocks on MAX. 1 are:
a: 21
b: 23
c: 2345
d: 234565
By the Block Theorem, these words cannot be concatenated to form v. This is a contradiction and we conclude that MAX. 1 is not versatile.

MAX. 2

The proof that MAX. 2 is not versatile is more involved. Suppose that MAX. 2 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 2 . If v contains no 3 , then v is walked on one of the strongly connected components of MAX. 2 \ 3), which is impossible, as each of these components consists of a single vertex. By analyzing the 3 -blocks of v which could be walked on MAX. 2 , we can conclude that MAX. 2 is not versatile.

Level 1: 3-blocks:
a: $\mathbf{3 4 5 6 7}$
b: 345612
c: 3452
d: 342
e: 32

One checks that these are all the 3 -blocks on MAX. 2 .

Next, looking at v as composed of letters a, b, c, d, e, we look at b-blocks. (Note that v must contain $a \quad b ;$ otherwise v is composed of blocks a, c, d, e. This possibility is not excluded by the Block Theorem above, however the proof that it cannot occur follows almost exactly the proof of the Block Theorem, and is therefore here omitted.) Here are the b-blocks of which v could be composed:

Level 2: b-blocks:
ba, bc (1), bd (1), be (1)

The underlined two-letter words never appear in v, as will be shown in note (1) of the comments below. We therefore omit looking at any blocks on three or more letters that contain these words. Call a word which cannot appear in v more than finitely often illegal. Clearly no block containing an illegal word can appear in v more than finitely often, so that such blocks may be discarded without loss.
bac, bad, bae
baca, bacd (1), bace (1), bada, badc (1),
bade (1), baea (2), baec (1), baed (1)

Again, the underlined blocks are illegal, and this decreases the number of blocks on five or more letters we need to examine.
bacac (3), bacad, bacae, badac (4), badad (5), badae
bacada, bacadc (1), bacade (1), bacaea (2), bacaec (1), bacaed (1), badaea (2), badaec (1), badaed (1)
bacadac (4), bacadad (5), bacadae
bacadaea (2), bacadaec (1), bacadaed (1) Notes on the b-blocks
(1) The words $2 e 3,2 d 34,2 c 345$ are repetitions, hence illegal. Since each b-block starts with 3 , we therefore see that b-blocks containing the piece 2 e may be discarded. Thus the words de, ce, be are iflegal. This means in particular that d, whenever it appears in v, is
always followed by a b-block commencing 34 .
It follows that ed, cd, bd are illegal.
As cd and ce are illegal, c is always followed by
345 in any b-block. Thus ec, dc, bc are illegal.
(2) The particle aea is always preceded by a 2 and followed by a three, and thus contains 2 a 3 2a3. Thus aea is illegal.
(3) Here acac is a repetition. We thus discard any block containing acac.
(4) The block contains 2a34 2a34.
(5) Here adad is a repetition.

Summary of usable b-blocks

Let us here list the b-blocks which we have not yet eliminated:
ba (1), bac, bad (6), bae (5), baca (3), bada
(2): bacad, bacae, badae, bacada (4), bacadae

Again, many of these blocks must be discarded.
(1) The block ba is a prefix of all the other useful b-blocks, and thus can't be followed by any of them in a
non-repetitive word.
(2) Leads to bada $34 \geq 2$ 酸4 2a34.
(3) Gives baca $345 \subset 2 a 345$ 2a345
(4) Here this block appears only in the context bacada 34 which contains 2ada34 $=2 a 342 a 34$.
(5) After the elimination of ba, baca, bada, bacada, the only context in which this block could appear is 2 bae ba3 $=2 \mathrm{ba} 3$ 2ba3.
(6) Now this block appears only in context 2 badba34 $=$ 2ba34 2ba34.

We are left with five b-blocks:

A: bac
B: badae
C: bacad
D: bacae
+: bacadae

After one more level of blocks, we are done. Note that $A<C<D<E$ in the sense that the words $A C, A D, A E, C D$, $C E$, $D E$ are illegal, so that v must contain a B. Level 3: B-blocks:
$B A, B C, B D, B E$,
BAC (1), $\operatorname{BAD}(1), \operatorname{BAE}(1), \mathrm{BCA}, \mathrm{BCD}, \operatorname{BCE}(2), \mathrm{BDA}(3)$,
BDC (3),
BDE (3), BEA (4), BEC (4), BED (4)
$\operatorname{BCAC}(1), \operatorname{BCAD}(1), \operatorname{BCAE}(1), \operatorname{BCDA}, \operatorname{BCDC}(5), \operatorname{BCDE}$ (5)
BCDAC (1), BCDAD (1), BCDAE (1)

Notes on the B-blocks
(1) A is a prefix of C, D, E.
(2) C is a prefix of E.
(3) Here BDbac \supset adaebac adaebac, so that BDX is illegal, where X is A, C or E.
(4) BEbac \supset adaebac adaebac.
(5) Block contains CDbacad ? 2baca3 2baca3.

Summary of useful B-blocks

BA (1)
BC (4)
BD (2)
BE (3)
α : BCA
" β : \quad BCD
$\boldsymbol{\gamma}$: BCDA

Notes: (1) Must be discarded, since it is a prefix of the others.
(2) Once (1) is gone, this block always appears in the context 2BDBbaca $>$ 2Bbaca3 2Bbaca3.
(3) This word EBb is illegal, as it contains adaeb adaeb.
(4) After (1), (2), (3) are gone, this block is a prefix of the remaining blocks.

We are thus left with blocks α, β, γ with which to form a non-repetitive word of type ω. However, as β is a prefix of $r, \beta r$ contains a repetition. Recall from our remarks in Chapter 1 that if α, β, γ can be concatenated to form a non-repetitive ω word, then $\alpha \beta, \alpha \gamma, \beta \alpha,{ }_{\gamma} \beta \gamma, \gamma \alpha$, ip must each be non-repetitive, We thus conclude that MAX. 2 is not versatile.

Having given some details for MAX.1, MAX.2, we give less detail for the other cases, as there are, after all, 26 digraphs in MAX.

MAX. 3
Suppose that v is a non-repetitive ω word on MAX. 3 Then v must contain a 3 , since MAX. $3 \backslash\{3\}$ has only. trivial strongly connected components.

Level 1: 3-blocks:

1
a: 32
b: 342
c: 34512
d: 3456
e: 34562

Suppose that v contains no d. Then a occurs only as 2a3, a repetition. Thus v contains no a. With a, d excluded, b must occur as 2 b 34 , a repetition, so that v contains no d, b or a. This is impossible.

Level 2: d-blocks:
$\mathrm{da}_{3} \mathrm{db}, \mathrm{dc}, \mathrm{de}(2)$
dab (1), dac, dae, dba (1). dbc, dbe, dca (1), dcb (1), dce
daca (1), dacb (1), dace, daea (1), daeb (1), daec, dbca (1), dbcb (1), dbce, dbea (1), dbeb (1), dbec,
dcea (1), dceb (1), dcec
dacea (1), daceb (1), dacec, daeca (1), daecb
(1), daece, dbcea (1), dbceb (1), dbcec, dbeca (1), dbecb (1), dbece, dceca (1), dcecb (1), dcece (3)
daceca (1), dacecb (1), dacece (3), daecea (1), daeceb (1), daecec (4), dbceca (1), dbcecb (1), dbcece (3), dbecea (1), dbeceb (1), dbecec (4)

Notes on the d-blocks

(1) The word $2 a 3$ is a repetition. Since each d-block starts with 3 , we therefore see that the combinations ba, ca, da cannot appear. This means that b, whenever it appears in a non-repetitive of type ω, is always followed by a block commencing 34 . However, 2 b 34 is a repetition. Thus blocks $a b, c b, e b$ must not be used.
(2) The block d is a prefix of e.
(3) Here ce repeats.
(4) The block contains ec ec.

Summary of useful d-blocks

da (1), db, dc (4),
dac, dae (2), dbc, dbe (2), dce (2)
dace (2), daec, dbce (2), dbec, dcec (5)
dacec (3), daece (2), dbcec (3), dbece (2),

Notes

(1) Leads to 2 da d3 $=2 d 32 d 3$, a repetition.
(2) As the word $2 \mathrm{e} d$ is a repetition.
(3) Since 2cec d 2 2cd 2cd, a repeat.
(4) After eliminations (1) - (3), all remaining blocks except for $d b$ end in c. Thus $d c$ occurs in context 2 db dc $=2 d 342 \mathrm{~d} 34$, or in context $c \mathrm{dc} \mathrm{d}$, both repetitions.
(5) As in elimination (4), this -block is preceded either by db or c , giving rise to word 2 db dc , which contains a repetition, or c dce $د$ cded.

We are left with five d-blocks:

A: db
B: dbc
C: dbec
D: dac

After one more level of blocks, we are done. If D does not occur in v, then v is concatenated from A, B, C, E, and $A \leqslant B<C$ in the sense that $A B, A C, B C$ are illegal. Here BC is illegal because it must occur in the context $c B C \supset c d b c d b$. Arguing analogously to the proof of the Block Theorem, we get a contradiction.

Level 3: D-blocks:

DA, DB, DC, DE

DAB (1), DAC (1), DAE, DBA (1), DBC (1), DBE, DCA, DCB, DCE (1), DEA, DEB, DEC (1)

DAEA, DAEB, DAEC (1), DBEA, DBEB, DBEC (1), DCAB (1), DĆAC (1), DCAE, DCBA (1), DCBC (1), DCBE, DEAB (1), DEAC (1), DEAE, DEBA (1), DEBC (1), DEBE

DAEAB (1), DAEAC (1), DAEAE (2), DAEBA (1), DAEBC (1), DAEBE, DBEAB (1), DBEAC (1), DBEAB, DBEBA (1), DBEBC (1), DBEBE (3), DCAEA, DCAEB, DCAEC (1), DCBEA, DCBEB, DCBEC (1), DEABA (4), DEAEB (4), DEAEC (1), DEBEA (5), DEBEB (6), DEBEC (1)

DAEBEA, DAEBEB (6), DAEBEC (1), DBEAEA (4), DBEAEB (4), DBEAEC (1), DCAEAB (1), DCAEAC (1), DCAEAE (2), DCAEBA (1), DCAEBC (1), DCAEBE, DCBEAB (1), DCBEAC (1), DCBEAE, DCBEBA (1), DCBEBC (1), DCBEBE (3)

DAEBEAB (1), DAEBEAC (1), DAEBEAE, DCAEBEA, DCAEBEB (6), DCAEBEC (1), DCBEAEA (4), DCBEAEB (4), DCBEAEC (1)

DAEBEAEA (4), DAEBEAEB (4), DAEBEAEC (1), DCAEBEAB (1), DCAEBEAC (1), DCAEBEAE

DCAEBEAEA (4), DCAEBEAEB (4), DCAEBEAEC (1)

Notes on the D-blocks

(1) A is a prefix of B, C. B is a prefix of C. The word $c B A$ is a repetition, and also appears in $c B C$. The word CE is illegal as it appears in the context CEd3 5 2ecd32ecd3. Also $C D$ is illegal, leading to CDd3 $>$ 2cd32cd3. Thlis CE is always followed by A or B, and hence db . The word EC therefore appears in context ECdb \supset ecdbecdb.
(2) Contains AEAE.
(3) Contains BEBE.
(4) Contains EAEA.
(5) Contains cEBEA $=c E d b c E d b$.
(6) Contains EBEB.

Summary of useful D-blocks

DA, DB (1), DC (1), DE (1)

DAE (1), DBE (1), DCA, DCB (1), DEA, DEB (1)

DAEA, DAEB (1), DBEA, DBEB (1), DCAE (1), DCBE (1), DEAE (1), DEBE (1)

DAEBE (1), DBEAE (1), DCAEA, DCAEB (1), DCBEA, DCBEB (1)

DAEBEA, DCAEBE (1), DCBEAE (1),

DAEBEAE (1), DCAEBEA,

DCAEBEAE (1)

Notes: (1) A combination (d-block other than A) D d3 will contain $2 c$ d32c d3, a repetition.

Summary of remaining blocks

DA (1)
DCA (3)
DEA (2)
DAEA (4)
DBEA (6)
DCAEA (5)
$\alpha:$ DCBEA
β : DAEBEA
$\boldsymbol{\gamma}$: DCAEBEA

Notes
(1) Appears as A DA D.
(2) After (1) is gone, appears as 2ecA DEA Dd3, a repetition.
(3) After (2) is gone, this block always appears in the context

EA DCA Ddb $>$ ec A D dbec A D db.
(4) After eliminations (1) - (3), this block appears only as EA DAEA Ddb, a repetition.
(5) Here DCAEA D3 $>2 e c A \operatorname{d32ec} A$ d3, a repeat.
(6) After (1) - (5) are eliminated, this block appears
only as
BEA DBEA D.

We are thus left withyblocks α, β, γ with which , to form a non-repetitive word of type w. However, it follows from our remarks in Chapter 1, in the first open problem, that if v is a non-repetitive word concatenated from α, β, γ, then v must contain all of the three letter subwords $\alpha \beta \gamma, \alpha \gamma \beta, \beta \alpha y, \beta \gamma \alpha, \gamma \beta \alpha, \geqslant \alpha \beta$. We conclude that MAX. 3 is not versatile.

MAX. 4
Suppose that MAX. 4 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 4 . One checks that MAX. 4 \ \{1\} may be reduced to the three element path, and is not versatile. Therefore v must contain a 4. By analyzing the 1 -blocks of MAX.4, we can conclude that MAX. 4 is not versatile.

Level 1: 1-blocks:
4

12345 (1)
1234565 (2)
a: 1234562345
b: 123456345
c: 1234563234565
d: 1234563234562345

* Notes on the 1 -blocks
(1) This block is a prefix of the others, and hence must be discarded.
(2) After (1) is gone, this block always o appears in the context 51234565123456 , which is a 'repetition.
(3) This block is a prefix of c and d, and hence cannot be followed by them in a nop-repetitive word. However, 2345 a 123456 is a repetition, as is 345 b 123456 , so that the block must be discarded once (1) and (2) are gone.

We must include block c in v; otherwise block b can only occur in the context 345 b 123456 , which is impossible. We are then left with only the two blocks a and d.

Level 2: c-blocks:

$\mathrm{ca}, \mathrm{cb}, \mathrm{cd}$ (1)
cab (2), cad (3), cha, cbd
cab (2), chad (3), coda (3), cbdb (4)

Notes on the c-blocks

(1) The word 5 cd is a repetition.
(2) Since ab123456 contains a repetition.
(3) The word da is illegal. Thus ad is illegal as ada is illegal and adm, adc contain repetitions.
(4) The word $d b$ is illegal as it appears in the context db123456 $~ 345 b 123456$, which is a repetition.

Summary of useful c-blocks
$\alpha: \quad \mathrm{ca}$
cb (1)
β : aba
r: abd
(1) 345 cb c123456 = 345 c 123456345 c 123456

The three blocks α, β, γ cannot be concatenated to form a non-repetitive word of type ω, since $\alpha \beta \gamma$ contains a repetition. Thus MAX. 4 is not versatile.

MAX. 5
Suppose that MAX. 5 is versatile, and let v be a
non-repetitive word of type ω walkable on MAX. 5 . One checks as in the previous case that 1 occurs in v. Level 1: 1-blocks:

$$
123456 \quad(1)
$$

$$
12345676 \text { (2) }
$$

a: $\quad 123456756$
b: 12345673456

$$
1234567323456 \quad \text { (} 3)
$$

$c: \quad 123456732345676$
$\mathrm{d}: \quad 1234567323456756$

Notes on the 1-blocks
(1) This block is a prefix of the others, and is discarded.
(2) After (1) is gone this block always appears in context 6123456761234567 , a repetition.
(3) This block is a prefix of c and d, and hence cannot be followed by them in a non-repetitive word. However, 56 a 1234567 is a repetition, as is 3456 b 1234567 , so that the block is discarded.

The word bac contains a repetition, so that we cannot concatenate v from a, b, c alone.

Leve1 2: d-blocks:

da (1), db, dc (2)
dba (1), dbc
s
dbca, dbcb
dbcab, dbcac (4), dbcba (1), dbcbc (3)
dbcaba (1), dbcabc (5)
Notes on the d-blocks
(1) The word 56 a 1234567 is a repetition so that ba and da are illegal..
(2) Since 56 dc is a repetition.
(3) Here bcbc is a repetition.
(4) Since dbcac 1234567 つ 56 c 1234567 56c1234567, a repetition.
(5) Hexe dbcabc 1234567 will contain the repetition 56bc1234567 56bc1234567.
db. (1)
db (2)
$\alpha:$ dbca
β : dbcb
r: dbcab
(1) A prefix of the remaining blocks.
(2) A prefix to the blocks remaining after the elimination of (1).

The three blocks α, β, γ cannot be concatenated to form a non-repetitive word of type ω, since ar contains a repetition. Thus MAX. 5 is not versatile.

MAX. 6

Suppose that MAX. 6 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 6 . As in the previous two cases, v must contain a 1 .

Level 1: 1-blocks:

1234 (2)
a: 123454
b: 123453
c: 1234534
d: 12345323
e: 123453234
f: '12345323454 (3)

Notes on the 1-blocks

(1) This block is a prefix of the others.
(2) After (1) is gone, this block is a prefix of the others.
(3) The words bf, cf, df, ef, af are illegal. This last, af, is illegal since fa is illegal and af123453 23454123453123454123453 .

Suppose that c does not occur in v. Then v is formed from a, b, d, e, and b is a prefix of d, a prefix of e, a prefix of f. This is impossible by the Block Theorem.

To show that MAX. 6 is not versatile, we consider blocks ending in c. Note that since cf contains a repetition

Level 2: reverse c-blocks:
adc, bdc (1), edc (3),
badc, dadc (4), eadc (5),
abadc (6), dbadc (7), ebadc,
aebadc, bebadc (1), debadc (1)
baebadc (8), daebadc, eaebadc (5)
adaebadc (9), bdaebadc (1), edaebadc (3)

Notes on the reverse c-blocks

(1) The words bc, bd, be, bf, de, df, ef contain repetitions.,
(2) Here" 4 c gives either 4 c 123453, a repetition, or 4 c a 12345 ว 4 a 12345 , a repetition.
(3) Here ed leads to one of be, de, or* 4 ed, each repetitions.
(4) Leads to bd or 4dad 12345 .
(5) As 4 a 12345 is a repetition.
(6) Since $a b$ is repeated.
(7) Contains 312345312345 .
(8) We get 3 b12345 or 4 bae 4 bad.
(9) Since ad is repeated.

Summary of useful reverse c-blocks
dc (1)
adc (2)
bade (3)
ebadc (4)
aebadc (2)
daebadc
(1) A suffix of the remaining blocks.
(2) As ca leads to 412345412345 .
(3) After (1) - (2) are gone, this block is a suffix of the remaining blocks.
(4) Appears in the context 4 badc ebadc d, a repetition.

MAX. 6 is not versatile.

MAX. 7.

Suppose that MAX. 7 is versatile, and let v be a non-repetitive word of type ω walkable on MAX.7. Again, MAX. 7 \ 1$\}$ reduces to a three element path. The 1 -blooks
of MAX. 7 are
a: 1232
b: 123456
c: 12345676
d: 1234567656
Thus by the Block Theorem, MAX. 7 is not versatile.

MAX. 8

Suppose that MAX. 8 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 8 . We check that MAX. $8 \backslash\{4\}$ reduces to a three element path. The 4-blocks of MAX. 8 are
a: 4123
b: . 45
c: 4563
d: 456323

Thus by the Block Theorem, MAX. 8 is not, versatile.

MAX. 9
Suppose that MAX. 9 is versatile, and let v be a non-repetitive word of type ω walkable on MAX.9. We check that MAX. 9 \} \{ 1 \} is mimicked by MAX. 7 , which has been shown not to be versatile. One may therefore assume that
v contains a 1 .
Level 1: 1-blocks:
$12345(1)$
a: $\quad 1234562345$
12345645 (2)
b: 1234564345
c: 123456434562345 (3)
d: 123456434562345645
e: . 12345643456234564345

Notes on the 1-blocks

(1) This block is a preff of the others.
(2) After (1) is gone, this block always appears in the context 45 1'2 345645123456 , which is a repetition.

Leve1 2: a-blocks:

一ab; ac, ad, ae
3
abc (1), abd (1), abe (1), acb (2), acd (1), ace (1), adb, add, ade (1); aeb (3), aec, aed (4)
adbe (1), adbd (1), adbe (1), adcb, adcd (1), adce (1), aecb, aecd (1), aece (1)
adcber (1), adcbd (1), adcbe (1), aecbc (1), aecbd (1)
aecbe (1)

Notes on the a-blocks

(1) The words $b c$, $b d, b e, c d, c e, ~ d e ~ a r e ~ i l l e g a l . ~$
(2) Since acb $\supset 62345662345 \mathrm{~b}$.
(3) The word aeb1 contains $23456,434512345643451$.
(4) The word aed contains a repetition of 34512345643456234564 .

Summary of useful a-blocks

ab (2)
ac (1)
ad (3)
ae (4)
adc (1)
$a: \quad$ adb
*
aec (1)
β : adcb
, 4 aecb
(1) ca 123456 ว 23451234562345123456.
(2) Prefix of other blocks.
(3) After elimination (2), the a-block ad must occur in the context 5adae, which contains a repetition..
(4) Among the remaining blocks, ae appears either in the context aeae, or as b ae ad $\supset(345 \text { a } 12345643456234564)^{2}$. The three blocks α, β, γ cannot be concatenated to form a non-repetitive word of type ω, since $\alpha \beta$ contains a repetition. Thus MAX. 9 is not versatile

Suppose that MAX. 10 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 10. One checks that vertex 4 must occur in v. However, MAX. 10 is versatile if and ony if its reverse is. The 4-blocks of the reverse of MAX. 10 are
a: 43
b: 432
c: 43215
d: 465
Invoking the Block Théorem, MAX. 10 is not versatile.

MAX. 11
t

One checks that 4 cannot be discarded from MAX. 11 . The 4-blockis of the reverse of MAX. 11 are
a: 432
b: 4321
c: 43212
d: 45
This is impossible by the Block Theorem. Thus MAX. 11 is not versatile.

MAX. 12

Suppose that MAX. 12 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 12. One checks that 1 must appear in v. The 1-blocks of MAX. 12 are

12
123
12345
a: $\quad 1234565$
b: 1234562
c: 12345623
d: 1234562345

The block 12 is not useful, as it is a prefix of the other blocks. Similarly, the blocks 123, 12345 are eliminated from consideration. However, by the Block Theorem, the remaining blocks cannot be concatenated to form a non-repetitive word of type ω. Thus MAX. 12 is not versatile.

MAX. 13

Suppose MAX. 13 is versatile for some q. Let v be a non-repetitive word of type ω walkable on MAX.13. One checks that we may assume that v contains a 1 . The 1-blocks of MAX. 13 are:

12
123
1234

$$
1234 \ldots(q-1)
$$

123...q2
123...q23
123...q234

$$
123 \ldots q 234 \ldots(q-1)
$$

We see that the block 12 is a prefix of all the other blocks, and hence cannot appear in v. Again, the blook 123 is a prefix of all the other blocks excluding 12 , and hence can never be used in v. Continuing in this way, we can eliminate all the blocks in order, showing that none of them can be used in v, which is a contradiction. Thus MAX. 13 is not versatile for any q.

MAX. 14

Suppose that MAX. 14 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 14. One checks that v may be assumed to commence with 1 . The 1-blocks of MAX. 14 are

12, which is discarded
a: 1232
b: 1234
c: 123456
d: 12345676

By the Block Theorem, these blocks cannot be concatenated to form a non-repetitive word of type w. Thus MAX. 14 is
not versatile.

MAX. 15

```
Suppose that`MAX.15 is versatile, and let v be a
non-repetitive word of type w walkable on MAX.15. One
checks that v may be assumed to contain a 5. The 5-blócks
of MAX.15 are
a: 56
b: 51234
c: 512343234
```

Since bc contains a repetition, these blocks cannot be concatenated to form a non-repetitive word of type ω. Thus MAX. 15 is not versatile.

MAX. 16

Suppose that MAX. 16 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 16 . One checks that v may be assumed to contain a 3 . The 3 -blocks of MAX. 16 are
a: $\quad 312$
b: 342
c: 345

Since abc contains a repetition, these blocks cannot be concatenated to form a non-repetitive word of type ω. Thus MAX. 16 is not versatile.

MAX. 17
Suppose that MAX. 17 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 17. One checks that v may be assumed to contain ais.

- Level 1: 3-blocks:
a: 32
b: $\quad 312$
c: $\quad 3412$
d: $\quad 345$
e: $\quad 34512$

One checks that v may be assumed to contain a d.
Level 2: d-blocks:
$\mathrm{da}, \mathrm{db} \mathrm{b}_{\mathrm{f}} \mathrm{dc}, \mathrm{de}$ (1)
dab, dace, dae. dba (2), db (3), die (5), dea*
(2), dcb (4), dce (5)
daba (2), dabc (3), dabe (5), daca (2), dacb (4),
dace (5), daea (2), daeb (4), daec (3) Notes on the d-blocks
(1) The wiord de contains a repetition.
(2) Since $2 a 3$ is a repetition.
(3) Here 12 c will either appear in context

12c34, a repetition,
$12 \mathrm{cb} 3>12 \mathrm{~b} 3$, a repetition,
or 12ca3 2 2a3, a repetition.
(4) As noted above, 12 b 3 is a repetition.
(5) Here 12e will appear in one of the following
contexts:
12 e 345 , a repetition,

- 12 e c $>12 \mathrm{c}$, leading to a repetition as in (3)

above,

12 e a 22 a, leading to repetition as in (2)
or $12 \mathrm{e} \mathrm{b}^{\circ} \mathrm{s} 12 \mathrm{~b}$, leading to the repetition of (4).
Summary of useful d-blocks
da (1)
db (2)
A: de
B: dab
C: dac
D: dae $>$
(1) 2 dad3 is a repetition.
(2) After the elimination (1), this block appears in context

12 db d 3 , a repetition

Thus if MAX. 17 is versatile, a non-repetitive word can be composed of blocks A, B, C, D. However this would imply that the following blocks could be concatenated to form a non-repetitive word of type ω :
$A^{\prime}: \quad 12 \mathrm{~d} 34$
$B^{\prime}: 12 \mathrm{da} 3$
$C^{\prime}: 12 d a 34$
D': 12da345
As this is impossible by the Block Theorem, MAX. 17
is not versatile.

MAX. 18

Suppose that MAX. 18 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 18. One checks that v may be assumed to contain a 1 .

Level 1: 1-blocks:

12345 (1)
123456 (2)
a: 1234565
b: 123456345
12345632345 (3)
c: 123456323456
d: 1234563234565

Notes on the 1 -biocks

(1) This block is a prefix of the others.
(2) After (1) is gone, this block is a prefix of the remaining blocks.
(3) This block is a prefix of c and d, and hence cannot be followed by them in a non-repetitive word. However, 5
a 123456 is a répetition, as is 345 b 123456 , so that this block is also is discarded. -

One checks that v may be assumed to contain a c.

Level 2: c-blocks:

ca, cb, cd (1)
cab, cad (2 ${ }_{\text {c }}$, aba (1), abd
cabal (1), cabd, coda (1), cbdb
cabda (1), cabdb, cbdba (1), cbdbd (3)
cabdba (1), cabdbd (3)
Notes on the c-blocks
(1) The word 5 a leads to a repetition 51234565123456 , so that words ba, da are not useful. The word cod contains a repetition.
(2) Since da is illegal, so is ad, which must occur in the context $\mathrm{adx}, \mathrm{x}=\mathrm{b}$ or c , hence $\operatorname{ad1234563} \mathrm{\rho}$ 23456512345632345651234563 .
(3) Repeats bd.

Summary of useful c-blocks
cb (3)
cab (4)
cbd (1)
cabd (1)
cbdb
cabdb
(1) As 5dc $\sim 51234563234565123456323456$.
(2) For, 5 cac 123456 5c1234565c123456.
(3) After (1), (2) are gone, cb always appears in context b cb c.
(4) Here db cab c $1>234565$ b c 1234565 b c 1 .

We are left with only two blocks. Thus MAX. 18 is not versatile.

MAX. 19

Suppose that MAX. 19 is versatile, and let v be a: non-repetitive word of type ω walkable on MAX.19. One checks that v may be assumed to contain a 1 .

Level 1: 1-blocks:

1234 (1)
12345 (2)
a: 12345234
b: 1234534
123453234 (3)
c: 1234532345
d: 1234532345234

Notes on the 1-blocks
(1) This block is a prefix of the others.
(2) After (1) is gone, this block is a prefix of the remainder.
"
(3) This block is a prefix of c and d, and hence cannot be followed by them in a non-repetitive word. However, 234 a 12345 is a repetition, as is 34 b 12345 , so that the block is discarded.

One checks that v may be assumed to contain a c. Level 2: c-blocks:
$\mathrm{ca}, \mathrm{cb}, \mathrm{cd}$ (1)
cab (2), cad (3), aba (1), cbd
cbab (2), cbad (3), cbda (4), cbdb (2)
Notes on the c-blocks
(1) The word cd contains a repetition.
(2) Since 34 b 12345 is a repetition.
(3) Here ad leads to ad123453, a repetition, or adb 12345 , a repetition. (See (2).)
(4) Since 234 a 12345 is a repetition.

Summary of useful c-blocks
cb (1)
$\alpha: \quad \mathrm{ca}$
β : cba
r : cbd
(1) As 34 cb c 12345 is a repetition.

The three blocks α, β, γ cannot be concatenated to form a non-repetitive word of type ω, since $\beta a r$ contains a repetition. Thus MAX. 19 is not versatile.

MAX. 20

7
Suppose that MAX. 20 is versatile, and let v be a non-repetitive word of type ω walkable on MAX.20. One checks that v may be assumed to contain a 6 , since MAX. 20
{6\} is mimicked by MAX. } 1 9 .

Level 1: 6-blocks
612345 (1)
61234532345 (2)
a: 612345323412345
b: $\quad 6123453412345$
c: 612345341234532345
$\mathrm{d}: \quad .6123453412345323412345$
e: 61234534123453234123453412345

Notes on 6-blocks

(1) This block is a prefix of the others.
(2) After elimination (1), this block always occurs in the context 2345612345323456 1234563, which is a
repetition.
One checks that v may be assumed to contain an a. Level 2: a-blocks:
acb, acd (2), ace (2), aed (2), aec, aeb (2)
aecb, aecd (2), aece (2), aebc (2), aebd (2), aebe (2)
aecbc (2), aecbd (2), aecbe (2)

Notes on the a-blocks
(1) The word ab always occurs in the context
ab 612345 ว 34123456123453412345612345 , a repetition.
(2) The following words contain repetitions:
da6, ada6, ad61234534
(Thus ad is *illegal.)
bc, bd, be, cd, ce, de eb6, aed.

Summary of useful a-blocks

ac (1)
B: ae
A: acb
C: aec
D: aecb

(1) As 5acae is illegal.

By the Block Theorem, MAX. 20 is not versatile.

MAX. 21

```
Suppose that MAX.21 is versatile, and let v be a
non-repetitive word of type w walkable on MAX.21. One
checks that v may be assumed to contain a 1. The 1-blocks
of MAX.21 are
```

 123 (1)
 1234 (2)
 a: 12345
b: 12343
c: 1234323
d: 12343234
123432345 (3)

Notes; Blocks (1) and (2) are eliminated as prefixes. Block (3) cannot be preceded by any block but a, and thus must appear in one of two contexts:
a 12343234512343 つ 234512343234512343
a 12343234512345 1 2345123451 .

By the Block Theorem, the remaining blocks cannot be
concatenated to form a non-repetitive word of type ω. Thus MAX. 21 is not versatile.

MAX. 22

Suppose that MAX. 22 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 22 . One checks that v may be assumed to contain a 1 . The 1 -blocks of MAX. 22 are

12
$12 \overline{3}$
1234
a: 123456
b: 123452
c: 1234523
d. 12345234

The first three blocks are eliminated in turn, as prefixes. By the Block Theorem, the remaining blocks cannot be concatenated to form a non-repetitive word of type w. Thus MAX. 22 is not versatile.

MAX. 23

Suppose that MAX. 23 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 23. One checks that v may be assumed to contain a 1 . The 1-blocks of MAX. 23 are

12, which it discarded ${ }^{\circ}$
a: 1232
b: 12345
c: 123456
$\mathrm{d}: 1234565$

By the Block Theorem, these blocks cannot be concatenated to form a non-repetitive word of type ω. Thus MAX. 23 is not versatile.

MAX. 24

Suppose that MAX. 24 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 24 . One checks that v may be assumed to contain a 1 . The 1 -blocks - of MAX. 24 are

12, which is discarded
a: 1232
b: 1234
c: 12345
d: 123456

By the Block Theorem, these blocks cannot be concatenated to form a non-repetitive word of type ω. Thus MAX. 24 is not versatile.

MAX. 25
Suppose that MAX. 25 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 25 . One checks that v may be assumed to contain a 2. By analyzing the 2 -blocks of MAX. 25 , we can conclude that MAX. 25 is not versatile.

Level 1: 2-blocks:
a: 21
b: 234
c: 23454
d: 23451

One checks that v may be assumed to contain an a.

Level 2: a-blocks:

$a b$, ac, ad
abc (1), abd (1), acb, acd, adb, adc (2)
acbc (1), acbd (2), acdb, acdc, adbc (1), adbd (2)
acdbc (1), acdbd (1), acdcb, acdcd (3)
acdcbc (1), acdcbd (1)

Notes on the a-blocks

(1) The word b is a prefix of c and d.(2) This block followed by 3 contains 2a3 2a3.
(2) Here adc >1234512345.
(3) The word cd repeats.

Summary of useful a-blocks

ab (2)
F: ac
ad (1)

A: adb
acd (1)
B: acb
C: acdb
D: acdc
E: acdcb

Notes

(1) The block da2 >1212.
(2) A prefix of the other blocks.

We are left with five a-blocks:

After one more level of blocks, we are done. Level 3: A-blocks:
$A B, A C, A D, A E, A F(1)$

ABC (2), ABD (2), ABE (2), $\mathrm{ACB}, \mathrm{ACD}$ (3), ACE (3), ADB , ADC (6),
ADE (4), AEB (5), AEC, AED (7)
ACBC (2), ACBD (2), ACBE (2), ADBC (2), ADBD (2), ADBE
(2), AECB,

AECD (3), AECE (3),
AECBC (2), AECBD (2), AECBE (2).
Notes on the A-blocks
(1) A prefix of the other blocks.
(2) B is a prefix of C, D, E.
(3) C is a prefix of D, E.
(4) D prefix of E.
(5) Here AEBa $>$ cb acb a.
(6) As DC contains dcac2 $\supset 1 \mathrm{c} 21 \mathrm{c} 2$.
(7) As AED $>$ b acdcb acdc.*

Summary of useful A-blocks

AB (1)
AC (2)
AD (6)
AB
ACB (5)
ADB (4)
AEC (3)
ABCB
Notes: (1) Prefix.
(2) Once (1) is gone, this block is a prefix.
(3) Leads to CA a $\supset \mathrm{db}$ adb a
(4) $\mathrm{DB}, \mathrm{dcac} 2 \supset 1 \mathrm{c} 21 \mathrm{c} 2$.
(5) $A C B \geqslant d b$ acdb ac.
(6) After (1) - (5) are gone, this block is prefix of the remainder.

We are thus left with only two blocks. These blocks cannot be concatenated to form a non-repetitive word of type w.

MAX. 26

Suppose that MAX. 26 is versatile, and let v be a non-repetitive word of type ω walkable on MAX. 26 . One checks that v may be assumed to contain a 6 . The 6 -blocks of MAX. 26 are

67, which is discarded
a: 6787
b: 67812345
c: 678123454345
d: 6781234543452345

By the Block Theorem, these blocks cannot be concatenated to form a non-repetitive word of type w. Thus MAX. 26 is
not versatile.
\qquad

We have now established that none of the digraphs of MAX are versatile.

Bibliography

[1] S. Arshon, " Demonstration de l'existence des suites asymetriques infinies ", Mat. Sb., 2 (44) (1937), 769-779.
[2] K. Baker, G. McNulty, W. Taylor, " Growth problems for avoidable words ", Preprint.
[3] D. Bean, A.'Ehrenfeucht , G. McNulty, " Avoidable Patterns in Strings of Symbols", Pacific J. Math. 85 (1979), 261-294.
[4] J. Berstel, " Some Recent Results on Squarefree Words ", in; Symposium for theoretical aspects of Computer Science (STACS '84).--
[5] C. H. Braunholtz, Solution to Problem 5030, Amer. Math. Monthly 70 (1963), 675-676.
[6] T. C. Brown, " Is there a sequence on four symbols in which no two adlacent segments are permutations of one another? ", Amer. Math. Monthly, 78 (1971), 886-888.
[7] C. Choffrut and K. Culik II, " On Extendibility of Unavoidable Sets ", in; Symposium for theoretical aspects of Computer Science (STACS '84).
[8] M. Crochemore, "- Tests sur Morphismes Faiblement Sans Carre ", in; Combinatorics on Words, L. Cummings, ed. (Academic Press, New York, 1983) 63-89.
[9] E. Fife " Irreducible Binary Sequences ",
Combinatorics on Words L. Cummings, ed. (Academic Press, New York, 1983) 91-100.
[10] D. Hawkins and W. Mienth " On sequences which contain no repetitions " Math. Student 24 (1956), 185-187.
[11] J. Karhumaki " On cube-free w words generated by binary morphisms ", Disc. Appl. Math. 5 (1983), 279-297 [12] M. Morse, G. Hedlund " Unending chess, symbolic dynamics and a problem in semigroups ", Duke Math. J. 11 (1944), 1-7.
[13] P. S. Novikov and S. I. Adjan "Infinite periodic groups I, II, III, Math. U.S.S.R. Izv. 2 (1968) I: 209-236, II:241-479, III:665-685.
[14] P. Pleasants, " Nonrepetitive sequences ", Proc. Cambridge Phil. Soc. 68 (1970), 267-274.
[15] N. Robertson, P. Seymour, " Graph Minors IV. Tree-width and well-quasiordering, submitted.
[16] R. Shelton, " On the structure and, extendibility of square-free words " , in; Combinatorics on Words
L. Cummings, ed. (Academic Press, New York, 1983)
[17] R. Shelton, R. Soni " Aperiodic words on three symbols II, J. reine angew. Math. 327 (1981) 1-11. [18] R. Shelton, R. Soni " Aperiodic words on three symbols III, J. reine angew. Math. 330 (1982) 44-52. [19] A. Thue, " Uber unendliche zeichenreihen ", Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana (1912), 1-67.

Appendix I: Digraphs of MIN

MIN. 1

MIN. 2

MIN. 5

MIN. 8

MIN. 9

$s i$

MIN. 13

MIN. 14

MIN. 16

MIN. 17

MIN. 18

MIN. 20

MIN. 21

MIN. 22

MIN. 25
a

MIN. 26

MIN. 27

MIN. 28

MIN. 29

MIN. 30

MIN. 31

MIN. 32 .

MIN. 34

MIN. 35

MIN. 37

MIN. 38

MIN. 39

MIN. 42

MIN. 43

MIN. 44

MIN. 45

MIN. 46

MIN. 47
,

MIN. 48

MIN. 50

MIN. 51

MIN. 52

MIN. 53

MIN. 54

MN. 55

MIN. 56

MIN. 57

MIN. 58

MIN. 59

MIN. 61

MIN. 62

MIN. 63

MIN. 64

MIN. 65

MIN. 66

MIN. 67

MIN. 68

MIN. 69

MIN. 70

MIN. 71

MIN. 72

MIN. 73

MIN. 74

MIN. 75

MIN. 77

MIN. 80
8

MIN. 81
$*$

MIN. 83

MIN. 84

-1)

MIN. 87

MIN. 89
\downarrow

Appendix II: Digraphs of MAX

MAX. 3

MAX. 6

-

$\because \quad-\quad$
$\operatorname{MAX}, 14$

MAX. 15

MAX. 23

$\Rightarrow \operatorname{MAX} .26$

Library and Archives
Canada
395 Wellington Street
Ottawa, ON K1A 0N4

Bibliothèque et Archives Canada

395, rue Wellington
Ottawa, ON K1A ON4

For material still subject to legislative, contractual or institutional obligations, users warrant that they will respect those obligations and not use LAC collections in a manner that would infringe the rights of others. Liability that may arise in the use of a copy is assumed in full by the user. LAC accepts no responsibility for unauthorized use of collection material by users.

To ensure proper citation and to facilitate relocation of an item, the source of the material and its reference number should always accompany the copy.

Pour les documents faisant encore l'objet d'obligations législatives, contractuelles ou institutionnelles, les usagers s'engagent à respecter ces obligations et à ne pas utiliser les documents des collections de BAC de façon à nuire aux droits d'autrui. Ils doivent assumer entièrement toute responsabilité qui pourrait découler de l'utilisation d'une reproduction de document. BAC décline toute responsabilité quant à l'utilisation non autorisée de documents provenant de ses collections.

Afin de citer un document avec exactitude et d'en faciliter le repérage, sa source et son numéro de référence doivent toujours accompagner la reproduction.

TITLE/TITRE :
Non repetitive walks in graphs and digraphs

FILE/DOSSIER :

REFERENCE NUMBER / NUMÉRO DE RÉFÉRENCE:
Canadiana: 89020831X; ISBN: 0315379715; CONSER: 18990814
PAGE(S) : 346
DATE : 05/04/2019

