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Abstract 

A word w over alphabet Xis non-repetitive if we 

* ·cannot write w = abbc; a, b, c e I , b - ~- That is, ffo ' 

subword of w appears twice in a row in w. In 1906, . Axel . . , 

Thue, the Norwegian number. theorist, showed that 

arbitraril~ long non-repetitive words exist on a three 

letter alphabet. 

Call graph or dia~aph G versatile if arbitrarily 

long non-repetitive words can be walked on G. This work 

deals with two questions: 

(1) Which graphs are versatile? 

(2) Which digraphs are vers 

Our results concerning versatility o~ digraphs may be 

considered to giv~ information about . the structure of 

non-repetitive words -on finite alphabets. 

We attack these ques t ions as follows: 

(I) We introduce a partia orderina of diarapha called 

mimicking. We show 'that if d ~1raph G mi~ics digraph H, 

then if His versatile, so is G, 

(II) We then produce two sets of digraphs MIN and MAX, 

and show that every digraph of MIN is versatile ( These 

digraphs . are intended to be minimal in the mimiokina 
. 

partial ' order ~ith respect to beina versatile~ ) and no . 

digraph of MAX is versatile. The digraphs of MAX are 
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intended to be maximal with respect to not being 

versatile. ) 

(III) In a length.Y classification, we show that every 

digraph eit~er mimics a digraph of MIN, and hence is 

versatile, or ''reduces v t6 som~ digraph mimicked by a 
. 

digraph of MAX, and hence is not versatile. 

We conclude that a digraph is versatile exaqtly when 

it . mimics one of the ·digraphs in the fini~e set MIN. The 

set MIN contains eighty-nine ( 89 ) digraphs, and the set 

MAX contains twenty-five ( 25 ) individual digraphs, and 

one infinite family of digraphs. ·~ 

. . 
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Chapter 1: Introduction 

Definitions and Preliminaries: 

A !iQ!:S is a finite sequence of ~l~ments of some 

finite set z. We call the set z an alphabet, the eleme~ts 

of I letters. The set of all words over I is denoted by 

* - + I , the set of words of positive lenath over I by r . We 

take a naive view of words as strinas of letters; thus 

the concatenation of two words wand v, written wv, is 

simply the string consisting of?--t.he letters of w followed 

by the letters of v. Say that vis a subword of w if we 

can write w = uvz; 

( suffix) of w if 

The empty word, 

* u, v, Z e E • We say vis a ptefix 
* : VZ ( ZV) ; V, Z • Z • 

word with no letters in 

it. Denote by I w I the length of w, equal to the number 

of letters in w. 

Let I, r be alphabets. A substitution h: z* • r* is 

a function generated by its values on E. That is, if w ia 

' 
Define a word of type le!, to be a countable sequence . 

* * . of letters over so• e alphabet % • If h : .% • E ia ao• e 

substitution with a prefix of h(b) for ao• e b • z, and 

h(b) lonaer than b, then denote by hw(b) be the word of 

1 
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I 

-

type w havina in i tial segment hn(b) for every n. This 

limit makes sense, as hn(b) will be a pref i x of hn+l(b) 

for each n. 

A word w over alphabet Lis non-repet i tive i f we 

* ·- · cannot write w = abbc ; a, b, c e z , b ~ ~. Tha ~ is, no 

subword of w appears twice in a row i n w. The term 

square-free is also used for such words in the 

literature. 
.., 

' 
For the purposes of this thesis, a 1ranh di&ranh 

' 
0 = < v, B > consists a finite set V of vertices, 

toaeth~r with a set E of unordered ( ordered) pairs of 

2 

vertices. If G is a araph, denote by vert( G the set of 

vert i ces of G. If a 1 b • V, and a, b) • E, ·then we say 

the~ ab is in G. An edae of the form ar, a e V is 

called a .l.s2.2R.• Forte hnical reasons to become apparent 

later ( Se e Lemma 3.5 ), we allow digraphs to contain 

loops. However, we only consider araphs not containing . ' ~ . 
loops. 

. l 

If G is a •raph or di•raph we may consider 

= vert( G ) to be an alp,habet. We say that the word 

v* 
f 

w • is a !:!A.lk. on G if whenever ab is a two letter 

aubword of w, then ab is an ed•e of G. We say that w can 

be walked on G, OJ" Gallows walk w. A •raph or diaraph G 

is called Vl[ll!&ill if arbitrarily lona non-repetitive 
-



words can be walked on G. This work deals with two 

questions : 

--- ' - ~-
,. 

(1) Which graphs are versat i le ? 

(2) Which digra.{lths are versatile ? 

Background : In 1906, Axel Thue, t~e Norweaian number 

theorist, showed that arb i trar i ly l ong non-repetitive 
. 

words exist on a three letter alphabet. ( See (19]. 

This result has been rediscovered many times, by 

Arshon [1], Morse and Hedlund ~12] and Hawkins and 

Mientka (10), fot example. 

3 

' 

This result of Thue is counter-intuitive, and 

interesting for its own sake. It is also useful for the 

construction of pathological · objects and counterexamples. 

An important example of a use of Thue's result is in the 

solution of the Burnside problem by Novikov and Adjan 

" [ 1 3') • 

There is a large literat ure concerning ' 
I 

non-repetitive words ( See the bibliography of Bean, 

Ehrenfeucht and McNul ty ( 3.). ) By Kania's le-a, the· 

existence of arbitrari y long non-repet i tive worda on a 

finite alphabet is equivalent to ·tbe existence of a 

non-repetitive word of type won that alphabet, Shelton 

i 
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.. 
and Soni [16), [171, (18) investiga.te the structure of 

he set of non-repetitL e w words on a three letter 

alphabet, showing the set to be perfect with respect to a 

natural metric. 

Call a word~ over alpha~et z strongly cube-free if . 

* we cannot wri~e w = abbpc, where a, b, c EE , p El, and 

pis the f st letter of b. If z is, a two letter · alphabet 

and r a three letter alphabet, then a strongly cube- ee 

word of type w over E gives ~ise to a non-repetitive word 

of type w over r in a natural way, and vice versa. 

Braunholtz [5). ) Fife [9] shows that the strongly 

See 

cube-free words of type w over a two letter alphabet form 

a Cantor set under a natural metric. 

The study of words which are non-re etitive or 

. strongly cube-free is generalized in Bean, EhrenTeucht 

and McNulty [3]. Here the question of words avoiding an 

arbitrary pattern is considered . . A word w E x* avoids the 

word v = b 1b 2 ••• bm if we cannot write w = ah(b 1b 2 ••• bm)c .. 
* where a, c • l ! •nd hi a substitution not mapping any 

of the bi to tne empty word. An algorithm is ~iven to 

determine whether, given v, there exists a natural _number 

n, ao that there exist. arbitrarily long words avoidina v 

on an n letter aiphabet. If such an n exists, vis said 

to be avoidable. avoidable, it is natural to 

..... 
( 

l 

,.. 

"' . 

\ 
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5 

atte~pt to bound then mentioned above. This probl mis 
. 

attacked in the paper Baker: McNulty, Taylor [2]. From 

(2], the follwing question naturally arises: On which 

directed graphs can arbitrarily long non-repetitive words 

be walked? 

As mentioned, this question is the subject of the 

-pres~nt thesis. In a different light, one may consider 

this question to be in the spirit of the investigations 

of Shelton, Soni and Fife: What can we say about the 

structure of non-repetitive words? 

' Let w be a word of type w over aiphabet I. Baker, 

McNulty and Taylor de~ine the transition digraph of w to 

be hat digraph having vertex set d an edge a . a . , 
l J 

a . , a . EI, exactly when a.ar ia a subword of w. It is 
l J l J 

sh own in [2] that if w is a non-repetitive word of ty ~~ 

on the three letter alphabet { a, b, c }; then w must 

have a transition digraph with edges ab, ba, ac, ca, be, 
. 

cb. Equivalently, a digraph on vertices a, b, c is 

versatile only if it contains the six edges ab, ac, ba, 

' be, ca, cb. Our results concerning versat~lity of 

digraphs may thus be considered to give information about 

trre structure of non-repetitive words on finite 

alphabets. 

Choffrut and Culik (7) consider the follawinl 



) 

, 

-
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~ 

problem: Let z b a finite alphabet, w1 , w2 , ... , w~ words 

over z. Do there exist arb_itrarily long words over Z not 

including any of thew . as subwords? Thus while Bean, 
l 

Ehrenfeucht and McNulty consider the proble~ avoiding 

o·atterns, Choffrut and Culik wish to avoid specific 

words. The present work may be · considered a hybrid of 

these two approaches: If Dis a digraph with vertices v
1

, 

.. , v , we wish · 
n 

words on ( v 1 , 2 I • • • I V · 
n 

to find arbitrarily long 

avoiding the pattern xx, and 

simultaneo ly avoiding the specific words V . V . 1 
l J 

where 

v.v. is ny non-edge of D. 
l. J 

Outline: Having motivated our work in the previous 

section, we make some r.emarks concerning our attack: 

(I) We introduce a partial'ordering of digraphs 

--ee~ led.-mimicking, We show that if ~igraph G mimics · 

digraph H, then if His versatile, so is G. 

(II) We then produce two sets of digraphs MIN and 

MAX, and show that every digraph of MIN is versatile 

( These diaraphs are intended to be minimal in the 

mimicking partial order with respect to being 

versatile. ) and every digraph of MAX is not versatile. 

( The digraphs of MAX are intended to be maximal with 

respect to not being versa~ile. 

(II~) In a lengthy classification, we show that 



• 

every digraph either mimics a d'igraph .of MIN, and henc,e 

is \·ersatile, or "reduces" to some digraph mimicked by a 

digraph of MAX, and hence is not versatile~ 

-

7 

We conclude that a digraph is versatile exactly when 

it mimics one of trre digraphs in the finite set MIN. 

, step (II) naturally presupposes the construction of 

certain non-repetitive words. From Axel Thue on down, 

those wish~ng to c9nstruct squarefree words have used 

substitutions. A substitution h: .lt • r·* is called 

' sguare,free if whenever w • z* is non-repetitive, so is 

h(w). Axel Thue showed th t the substitution 

h : { a, b, c } t • { a, b, c } t given by 

h(a) = abcab 

h(b) = acabcb 

h(c) = acbcacb 

is squarefree. It follows . that hw(a) is a non-repetitive 

word of type won z. On the other hand, the substitution 

g: a, b, C 
} t 

• 

g(a) = C 

' . 
g(b) = bca 

g(c) = ba 

is not square-free. 

contains 

gw(b) is 

a, b, C } t given by 

ct g(bcb) = bcababca, which 

abab. Nonetheless, the fact that 

was proved by Arahon (1) in the 

.. 



1930's. Crochemore (8), defines a concept of weak 

square-freeness 

Then h«: x* ... x* 
+ w, where x • E, w • I , 

is non-repetitive. Altho 

weakly square-free. 

Let f : { 1 , 2 , 3 

body of this thesis 

under certain conditions o 

non-repetitive, with a aiv 

I be an alphabet. 

if there exist x, 

h(x) = xw, and hw(x) 

~ is not squ re-free, g is 

i tut ion. In the 

prove that 

is 

conditions 

8 

do not force f to be square-free, in fact f(bcb), f(aca) 

are explicitly allowed to contain repetitions . • This 

res~lt is used t o produce non-repetitive words of type w. 

Except in one case, all of the many non-repetitive walks 

used in this thesis are of the form f(aw(a)) for such an 

f, In the other case we aenerate a non-repetitive word 

usina weakly squarefree substitutions on a five el ment 
) 

alphabet. · 

Huch work has been done on square-free 

substitutions, and cube-free substitutions, which are 

defined analoaously, References may be found in the 

biblioaraphies of Berstel (4) and Crocheaore [8]. We aive 

an example of a particularly beautiful result of 

Karhu11ak i [ 11,]: 

.. 
• 

. . . 
""'\ , 
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Theorem: Leth: a, b 1* • ( a, b 1* be a 

substitution such that h(a) begins with an a. Then the 

· word hw(a) is cube-free if and only if the word h 10 (a) . is 

cube-free. 

One last remark is in or~er, of interest to those 

following the work of Ro~ertson~ Seymour (15): One miaht 

ask why we consider graphs separately from digraphs, 

since a graph G may be considered to be simply a 

symmetric digraph. It turns out that the solution , of the 

graph case of our problem allows us to find a nice 

classification scheme for digraphs. Moreover, it follows 

from the work of Robertson, Seymour on graph minors that 

the graph case will have a nice solution: From the 

weaving lemma ,of chapter. 2 one may deduce that if G does 

not allow arbitrarily long non-repetitive walks, then 

neither does any minor of G. Thus (15] implies that there 

is an excluded.minor characterization of those graphs not 

allowing arbit arily long non-repetiti~e walks. We know 

of no generalization of the work of[l5} to digraph~. 

Open Problems: (1) It was remarked above that of the 

digraphs on three vertices a, b, c~ only ad araph 

including ect.__es ab, ba, be, cb, ca, ac allows arbitrarily 

long non-repetitive walks. We can show that if w ia a 

- ·/ 

---
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non-repetitive word of typE: ~ vu three letters a, b, c, 

then w must , contain as subwords all of the words in one 

10 

of the followina sets up to a permutation of letters ): 

aba, abc, acb, bab, bac, bca, cab, cac, cba, cbc 

abc, aca, acb, bac, bca, bcb, cac, calf, cba, cbc 

A non-repetitive word of type wall of whose three 

letter subwords are in H
1 

is gw(b) where g is Arshon's 

substitution, given above, 

A non - repetitive word of type wall of whose three 

letter subwords are in H
2 

is g(fw(l)) where f,g are given 

by 

f(l) = 142 

f(2) = 1435 

f(3) = 143532 

f(4) = 1532 

f(5) = 1535 

a< 1 > = ac 

a(2) = acb 

&(3) = ache 

&(4) = abc 

g(5) = abcb 

,,. 

That a(fw(l)) is non-repetitive may be proved usina 
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the methods of Chapter 7 although this fact isj)ot used 

in this thesis. In general, if w is a non-repetitive word 

of type~ on n letters, what .k-letter subwords must w 

contain? ( This question could be phrased in the lan1ua1e 

of hypergraphs. 

(2) Call a word w strongly 

write w = abed, * a, b, c, d ~ x. , bat ~, 

of b. There exists a strongly non-repetiti 

~ on a five letter alpha-bet. Whether such 

on four letters is .an open problem. ( See 

if we cannot 

a permutation 

a wo d exists 
/ r1, ( 14] ) On 

which digraphs can arbitrarily long stron1 y 

non-repetttive wo ds be walked? 

( 

r 

1 
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Chapter 2; Graphs, 

We start this chapter with some definitions· 

concerning araphs and digraphs. 

Let G be a graph ( digraph ) with vertex set V, 

a, b • V. We say that the word p e ( V \ { a, b} )* is a 

(directed) path in G from a to b if the word apb is a 

walk in G,and no vertex of G appears in p twice. The 

araph P . wttose vertex set is 
l 

1 , 2 , ... , i } and whose 

edaes are 12, 23, .•• , (~i, is called the path on i 

vertices. 

A araph or digraph G is connected if for every 
· f 

a, b EV, a - b, there is either a path in G from a to b, 
I 

or a path in G from b to a. A digraph G is strongly 

connected if for every a, b EV, there is a path in G 

from a to band a path in G from b to a. 

Let G ·be a araph ( digraph ) ~ith vertex set V, 

a• V. Let p~ ( V \ {a} * ) be a p - ~. If no 

vertex of V appears twice in p, and both ap and pa are 

walks in G, then we say that the word ap is a cycle of G 

based at a, or simply, a cycle of o. ( Various terms 

exist in the literature. Others are circuit, and simple 

CYcle. A graph C wnose vertices are 

{ c 1 , c 2 , •.. , cm) and whp~e edges are c 1c 2 , c 2c 3 , ... , 

cm-lcm' cmcl is called a cycle. 

12 

I 
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If G is a graph ( digraph ), a, be V, then if ab is 

an edge of G, say that bis a neighbour of a ( bis a 

successor of a, a is a predecessor of b ). The de1ree 

indegree, outdegree ) of a is the number of nei1hbours 

p edecessors, successors of a in G. 

If G1 , G2 are graphs ( digraphs ) with vertex sets 

v 1 , v 2 and edge sets E1 , E2 then denote by a
1 

n a
2

· the 

graph with vertex set v
1 

n v
2 

and edge set E
1 

n E
2

• 

Analogously define ·G1 U G
2

. 

\ 

In this chapter, we answer the question: Which . 
graphs are versatile? We . restric t our attention to 

connected graphs, since a word v can be walked on a araph 

G if and only if v can be walked on a connected com~t 

of G. We prove the following theorem: 

Theorem 2.1: A connected graph _G is ' versatile unless 

G is a path on four or fewer vertices. 

The following observation proves useful, 

Lemma 2.1 <a> < Weaving Lemma >; Le v= a 1a 2 ... ar be 

a non-repetitive word, a 1 , a 2 , ... , ar • 5, some alphabet, 

Let b 1 ,b2 , ... ,br+l be non-repetitive words on alphabet T, 

' 
where Sand Tare disjoint. We permit some or all of the 

is a 

, 

• 
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non-repetitive word. 

Proof: Suppose w contains a repetition, say 

w = uyyz, y-4. Then yy contains some a., for otherwise 1~y J . 

is a subword of one of the b . , contra~icting the fact 
1 

that the b . are non-repetitive, 
l 

Now if pis a word on Su T, denote by plS the word 

formed by deleting from pall the lette~ of T. Thus the 

above paragraph remarks that ylS - 4; however, 

a 1a 2 . ,.ar = w IS= ulSYISYl~zlS and there~ore 

v = a 1a 2 ... ar contains a repetition, namely yfSYIS' which 

is a contradiction. • ( 

We thus conclude that w is a non-repetitive w~rd. • • 
Let v be a word of type won some alphabet S 

S = • { a 
1

, a
2

, 
I 

... , a . } . Let G be a graph · ( digraph 
n 

including S among its vertex set. Suppose that whenever 

a. a.• s*is a subword of v there is a path P(a . ,a . ) in G 
. l J 1 J 

from-a . to aJ. such that no vertex of P(a . ,a . ) is in S. We 
l l · 

say that V can be walked in G modulo paths. The weaving 

lemma will often be applied in the following wa~: 

Lemma 2.1 (b) < Second Weaving Lemma ): Let v be a 

non-repetitive word of type _w, Ga graph ( digraph ). If 

v can be walked on G modulo paths, then G is versatile. 

Proofi ~ick n > O. Let b 1b 2 .•. bn be the initial 

aeament of v of length~· The word w where -
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w = b 1P(b 1 ,b2 )b 2P(b 2 ,b 3 )b 3 ... bn-lP(bn-l'bn)bn 

will be a non-repetitiv word by the weaving lemma. By 

construction, w is a non-repetitive walk on G of length n 

or more. Thus Gallows arbitrarily long non-repetitive 

walks.a 

We now commence the proof of Theorem 2.1, proving a 

series of lemmas. 

Lemma 2.2: Let G be a graph with~ vertex v , with 

degree(v) ~ 3, Then G is versatile. 

Proof: Let three neighbours of v be a, b, c. Let w 

be any non-repetitive word of type~ on { a, b, c }. Then 

w can be walked ' on G modulo paths, with 

P(a,b) = P(b.,,e,) = P(b,c) = P(c,b) = P(c,a) = P(a,c ) = v 

( See Figure 2.1 Thus, by the second weaving lemma, 0 

is versatile. • 

Restating Lemma 2.2, any graph which is not 

versatile must have the degree of every· vertex being 2 or 

less. In the case of connected graphs, we are left with 
1 

paths and cycles. 

Lemma 2,3: Let C = c 1c 2 ... cm ( m ~ 3 ) be a cycl~ : 

Then C is versatile. 

' 

Proof: Alain we use the second weavin1 lemma.. Here 

let v be any non-repetitivi · word of type won 

{ c 1 , ,c
2

, c
3 

J; Tben v can be walked on C aodulo paths, ) 

, 



t, 

C 

Figure 2 .1 . ( 
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' . 

where 

P(c1c
2

) = P(c
2

c
1

) = P(c
2

c
3

) = ~P(c
3
c

2
) = ~ 

P(c
3

c
1

) = C4C5···cm 

P(c
1

c
3

) = C C m-1 • • • C 4 m 

See Figure 2.2 ) Thus G is versatile.a 

We have seen that every connected irraph which is not 

a path is versatile. To conclude our· examination of 

graphs we consider paths. Paths on four or fewer vertices 1;. 
do not allow arbitrarily lon1 non-repetitive walks. It 

suffices to show this for P 
4

, •since P 
4 

contains shorter 

paths as subgraphs . 

Suppose that P 4 allows arbitrarily lon1 

non-r~petitive walks. Then let v be a non-repetitive word 

of type~ •hich can be walked on P4 . We chop v up into 

blocks starting ~ith 1. That is, consider the possible · 

subwords of v commencinar with 1, endina with 2 ,and 

containing ·exactly one 1. See Fi&ure 2.3 ). Clearly 

these are a= 12, b · = 1232, c = 123432. However a 

moment's thought sho~ tpat block a cannot appear in v 

since the words aa, ab, ac all contain the repetition aa, 

and if v contains block a, then it must contain one of 

these longer words. 
. 

Thus v must be composed entirely of the two blocks b 

, ' 
and c. However any non-repetitive word two letters is 
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finite, hence v must be a finite word. This is a 

contradiction. Thus P4 does not allow arbitrarily long 

I' 
non-repetitive walks. 

Definition: L S = { x
1

, x
2

, x 3 }, T be alphabets 

and let h: s* • T* be a substitution. Say that his 

suitable if 

1) I h ( xi ) I 5 I h ( x j ) I + I h ( xk ) I for 

1 5 i, j, k 5 3, i, j, k distinct. 

2) Fo 1 5 i ~ 3 one cannot write h ( x . 
1 = uw = wz, 

u,w,z E T*, u,w,z - E. • 

~ )· If w s* is a non-repetitive word with I w I = 3 

is non-repetit i ve. 

' . 
To show th~t P

5 
allo~s arbitrarily. long 

, 
no·n-repeti ti've walks, we introduce another lemma for 

~ . ,. 

and 

. ' ' 
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producing new• rron-repetitive ·words from old. In fact this 
. 

lemma will be o e of the ' m ih tools f t his thesis. 

Lemma ?,4 ( Substitution Lemma): Let, S be the 

.: ·· .. 'alphabet ( 
·, ·. . * 

.x·1 1:.:~2 ~ x 3 )· L~t - ~ ~ S : be . a ·11on-repetitive 

.. 

word, such ~hat x 2x 3x 2 ; xJxjx 1 are no~ subwords of v. If 

h ~s · suitabl~en h( .v) is non-repetLtive. 

Proof: Suppose v fulfills the conditions of the lemma and 

h is ., suitabfe. Let V = ala2'''am. For each i , 1 5 'i 5 m, 

say h( 
~i 

) = e i ,- F"or the sake of a contradiction, J 
} 

... . . 
.... ' ' 

I 
r 

' ' ... 
• 

. ' 

• 



suppose h (v 

b - ~. ,/ 

e = abbc, 
m 

* some a,b,c 4 T , 

Without loss of generality, shortening v if 

necessary, write 

e" e' 1 e· ' - 4, 1 ' j ' m 

e = e'e'' m m m 

Since h (v is repetitive, m > 3. Otherwise, by 

condition 3) of the definition of suitability, e
1

e
2

e
3 

is 

x 1x 3x 1 or x 2 x 3x 2 , contrary \o our assumptions on v. Also .. 
j > 1, otherwise .. 

> I e 2 I + I e 3 I by line(*) and the fact 

that · m > 3. Similarly, j < m. 
I / , 

• I 

21 

Claim: The t . " ' d wo expressions e
1

e
2 
•.. e . an 

J . eje~+i·; .. ·e~ 

"match up " in tie nat'Ural waiY; · "i.,e . 

e' 
m 

e '. = e' J m' 

e 1 = 
tt I 

e.' 
J 

Di= 2j - 1 and 

• ,e 1 ·+ . = . e . + : for 
i . ' J . l. 

• 

.. 

= ~ to j-.2; 

Proof of Claim: If. e~ -
J ' 

e' suppose that 
m 

> 

. 
e,e~e,ek+lek+ 2 :,.eje; which contain~ the repetition e;e~. 
By condition 3} on h we must ak = am. However now 

• 

• 

. . 

"' .. 



/ 

( 

' ·. 

", .. 

. 
, ·• • " " ' " N t th t ekek = ek =em= emem = ekek+i·· .ejem. o e a 

e~ - ~ so that condition 2) is contradicted for h(ak)' 
J I ( 

which commences and ends with ek. 

We aet a similar contraqictioo if 

Thus e~ = ej and e 1 ... ej-l 

araument we show that 

= e . . for i = 1 
J+l 

= e'! .•. e 1 . 
J m-

t 

::,-

e' 
m I < I e'. I· 

J 

Repeating this 

ej = e1, and 2j 1 = m, as desired.a 

Note that el+i = ej+i implie~ that al+i = aj+i' 

since his suitable. From the -claim, 

:: e ' e " e '. e •: e ' e " 
llJJmm 

= e'e"e'.e"e'.e " 
llJlJm 

which repeats e~ej ~ Since ·I a 1ajain 

"· ·, 
followina cases aws~ a~ise: 

A: al = a . 
J 

8: a . = a 
J m I 

c: al = x 1
, a. : . X3, a = xl J m 

D: al° = X2 I •·· = x
3

,.,· a = .x2 • J . . m 

= 3, one of the 

In case A, .v contains the . subword 

a 1a 2 ... aj_ 1a 1a 2 ... aj-l' whlch is a contradiction , as v 

is non-repetitive. Similarly case B cannot occur, as v 

would contain a repetition. 

22 

) 

Suppose case C occurs. Case D is, similar. Since· 
•' 

,. 

.. ' 

I 



) 

m ~ 4, . and mis odd, m ~ 5. Therefore j ~ 3. 

Now a2 = a j+ 1. But since V is non-repetitive, 

a2 -al = xl and . a . 
1 

it a. = X3• Thus a2 = a . 1 = J+ J J+ 

Also a. 1 = a so that X3 = a . it a . 1 and 
J- m-1 J J-

a m-1 1" a =x1· We conclude that a . l = a = . 2. m - .) - m-1 

Therefore aj-lajaj+l = x 2x 3x 2 , c~nt radicting our 

assumptions ' on v, 

Th e assump ion t hat h( v r peats 1 ad o a 

Xz• 

contrad iction . Tnerefore h( v l contains no rep ti ion .a 

Remarks: Several variations ha,· b en pro,· d , f 

with stronger conditions than the above , and as ranger 

-

23 

onclusion. For example , in Bea n , Ehrenfeucht and McNulty 

[31, he folt ot.:i ng l mma is pro ed . 

.;. 

Lemma 2,5: Let L, r be alphabets. Suppose that _ 

* * h: L • r is a substitution such that 

1 , ) If x, y E I and h(y) is a subword of h ( X)' 
I 

tQer:i y = x -•. . .. . .. 

* 
. .. . 

3' ) If. w ·e I is a non-repetitive word \,,,"i th 

w I = 3 then h( w ) is non-repe titive. . . 
Then - if * is non-repetitive, is ll<v>. V e I 80 

The proof is essentially that of Lemma 2.4, ~with 

--
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condition l') sufficing to prove the claim. In fact our 

claim, with sliaht renaming, comes from (3). We have 

stated this result of [31 as a lemma, as we will refer to 

it later. 

Lemma 2.4, in compariso~ ·th Lemma 2.5, restricts h 

less, and v more. When X = S, L ndition 3') necessitates 

the checking of h(w) for twelve three letter words w, 

whereas condition (3 only requires good behaviour frO'm h 

on ten of these twelve triples ~ 

Next 

on S, S = 

we {:ow .how to produce arbitrarily long words v 

( x
1

, x
2

, x 3 } satisfying the conditions of the 

substitution lemma. Consider the substitution . 
h: s* .. s* where 

h( xl "3 _., 
h( x2 ·- x2x 3X·1 Sub 2. 1 

h( X3 = x2xl 

Clearly h meets conditions 1) and 2) of the definition of 

- s~itab:j.li~y .. 1 We point out that h does ~me_~t 
~ ' . .. .. . 

condition 1' above. ) That h . "also meets condition 3) of 

suitability is verified by checkin1 the action of hon 

triples of S .• 

h(x 1x 2x 1 ) =· x 3x 2x3x 1x 3 

h(x 1x 2x 3 ) = x 3x 2x 3x 1x 2x 1 

-~-• -----··---~-----

. ' 

- -1 

r 
' 



h(x
1

x
3

x
1

) = X3X2X1X3 

h(x
1

x
3

x
2

) = X3X2X1X2X3Xl 

h(x 2x
1

x 2 ) = x2x3xlx3x2x3xl 

h_(x 2x 1x 3 ) = x2x3xlx3x2xl 

h(x 2x 3x
1

) = x2x3xlx2xlx3 

h(x
2

x
3

x
2

) = x2x3xlx2xlx2x3xl 

h(x 3x 1x
2

) = x2xlx3x2x3xl 

h(x 3x
1

x
3

) = x2xlx3x2xl 

h(x
3

x
2

x
1

) = x2xlx2x3xlx3 

h{x
3

x
2

x 3 ) = x 2x
1

x 2x 4x
1

x 2x
1 

Only h{x
2

x
3

x
2

) contains a repetition: xlx2xlx2. 

' Let v be any non-repetitive word on s. Any x
3 

' appearing internally in h( v) either comes from h( x
2 

and appears in the context x2x3xl' or comes from h( xl 

and appears in the context xlx3x2. Thus the words xlx3xl 

and x2x3x2 are not subwords of h( V ) . 
Now suppose V " s* has no repetition and doesn't 

I • • 

lemma, h ( v) ·contai~s .no repe.ti ti;on. By our last 
.. • t • - • \ • 

T 

25 

observation, h(v) _ e~mtains · neither ··x~
1
·x 3x

1 
nor x2-x-Ox 2 .. Thua 

n by induction h ( x
2 

) has no repetitions, and · doea not 

contain x 1x 3x 1 o~ ~ 2x 3x 2 . We therefore see that the word 

hn( x 2 ) fulfills the substitution lemma's conditions on 

v, and can be m de arbitrarily lon1. 

.. , 



.. 

I -

., 

We are now ready to show that P5 allows arbitrarily 

lona non-repetitive walks. Consider the following 

subs.,titution. 

a: s* • T* 

I( xl = 12345432 j 

•I ( x2 = -123 4 3 2 3 4 5 4 3 212 3 4 5 4 3 2 3 4 3 2 Sub 2.2 

g( X3 = 1234323454323432 

Clearly g( V ) is a walk on P5 whenever V ~ s*. ( See 

Fiaure 2.4 

26 

Further, g is suitable. The only _condition difficult 

to check is condition 3). One must check these words for 

non-repetitivene~s: 

a(x
1
x

2
x

1
) = 1234543212343234543212345432343212345432 

g(x 1x 2x 3 ) = 1234~432123432345432123454323432-

1234323454323432 

• ~ ' a(x 1x 3x
1

) = 12345432123432345432343212345432 

' \ 

-

a<x 1x 3 x 2 ) = 12\4543212343234543?3432123432345432.-

123454323432 J 

a(x2x 1x 2 ) ·= 12~4~234543212345432343212345432-

: . 12_34"32345.4 3212-34 54 323432 

t(x2x 1x
3

) - 12343234543212345432343212345432-

1234323454323432 

a(x2 x 3~
1

) = 123432345432123454323432-

123432345432343212345432 

, -

J 

• • 
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'Figure 2 . 4 

) ... .. ,: 

.· 

.. 

' I 
t 

27 

r 

-· 
/ 

5 

.• 



. / 

. 
g(x 2x 3x 2 ) = 1234323A5432123454323432-

12343234543234321Z34323454321234543234 

g(x
3

x
1

x
2

) = 123432345 

123454323432 

343212345432123432345432-

28 

g(x
3

x
1

x
3

) = 1234323454323432123454321234323454323432 

g(x
3

x
2

x
1

) = . 1 34323454323432123432345432-

~ 1 · 45432343212345432 

g(x
3

x
2

x
3

) = 1234323454323432123432345432-

1234543234321234 23454323432 

? ,As"' an example, we show that w = g(x 1x 2x 1 ) is 

non-repetitive. Suppose not. Then w must contain a 

repetition yv. Being a repetition, vv contains the symbol 

1 exactly fdur, two or no times. We can rule out vv 

containing no l's, since then vv would be entirely 

contained in one of g(x 1 ), g(x 2 ), g(x 3 ), which can each 

be checked to be non-repetitive. 

If v~ contains exac~l,_ four l's, then · the first and 

third 1 's of w are. " matched " by vv: ; 

. . . . 

· i2345432123432345~3!i,345\32i432123454a~ 
.tt .. . • " \ 4 ., ,. 

.. • • I 

However, aa indicated· iri' the . above scheme, tMs · cann ,, 
. . 

happen, as the subwords of w commencing at the first 

third l's don't agree for long enough. ( The 
,• 
extent of 

heir agreement is underlined. 

Suppose vv oontaiqs then exactly two t•s : •rf the 
, 

"' • ....__ 

.. 
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first 1 of w is contained r vv, it must be matched 

the second 1 of w: 

12345432ll1!3234543212345432343212345432 

We see that th~s -is impossible. 

with 

Suppose that vv matches the second and third l's of 

w. 

1234543212343234543212345432343212345432 

Again we see that this· is impossible; the underlined 
. 

"zones" of agreement or these two l's do not meet. 

The second 1 of w cannot be mate ·with the f 

1, since then vv would also contain the third 

then vv would ~contain all four l's, which is i • poaaible, 

as mentioned. 

The · final possibility is . that the third and fourth 

l' s of w should match. However, we note that wl is a 

palindrome. Since the ~econd and third l's could not 

match, neither can the third and fourth. 

. -~- .. ' 
, 

By ar~uments of this type, a11· the, llBted wordf · 
., ·' .. , .. .. \ , : ... -"' 

ex~ept, .for 1<x2X3X2) ·can be -a!M>~n to ' ~e noit-repetiti'Ce : .. 

Alternatively, I can be shown ,to be suitable by invokin1 

the Lona/Short Lemma of Chapter 7. 

" 11v~s an arbitrarily .. . . 

'• ' .. . , .. 



-
.. .. 

. i ~ -· • 

•. ~ 

•✓ 

I 
• 

lona non-repetitive walk on P5 by choosi.1-ig as 

desired. thus P
5 

is versatile. Since any path on more 

than f~ve vertices contains P5 as a subgraph, s~ch paths 

are also versati~e. We have thus proved Theorem 2.5 . 

• 

YeraatilitY of MIN.I - MIN,4: Since we have the 
\ 

substitutions hand g handy, this is a convenient point 

in the thesis at which to show that MIN,1 - MIN.4 are 

w w versatile diaraphs. Let v = h (x2 ), w = g(h (x 2 )). 

Recall from Chapter 1 the concept of a transition 

· dicraph: aiven . a word u of type w over a finite alphabet 

z, the transition diarapb of u has as vertices those 

letters of E appearina in u, and a directed edae from 

letter x to letter y exactly when xy is a subword of u . 

Thus . 1 ia isomorp~ic to the ~ransition
1

diaraph of v, 
\ 

and MIN. 3 is precisely the trandi tton 1diarap}) _ of •lt' • .'I.t 

f'..a.llowa that MIN _.1-· and_ MIN. 3_· ~r~. versati~tar~phs _. 

30 
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x2x 3x 2 or x 1x 3x 1 • Whenever x 3 occurs in v it is either in 

the con.text x2x 3x 1 or x 1 x x 2 . Let v' -be the word of type 

w ariaina •roa v by rep_lacina x 3 by x4 whenever x 3 occurs . . . 
in can:e~t - ~ _x 3x 2 • Olearly v' will b~- a non-repetiti've 

.... ' ~ ·-

.. 

. . 
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• 

. 
word of type w. 0 checks that HIN.2 is isomorphic to 

the tra~sition digraph of v', and thus is versatile. 

Simil~ly, one checks that w does not contain • 
subwords 232 or 434. Whenever 3 occur n wit is either 

in the co text 234 or 432. Let w' be the word of type w 

arising from w by replacing 3 by 3' whenever 3 occurs in 

context 432. Again w' will be a non-repetitive word o f 

type w. One checks that MIN.4 is the transition digraph 

of w', and thus is versatile. 

, . .. 

-. ' ,. .. • .. 

,I 

; 
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Chapter 3: Digraph Classification 

In thi chajtter we ask the following question: Which 

digraphs are yersatile? In analogy to chapter 2, we are 

only interested in strongly connecte~ digraphs. 

Lemma 3.1: Let G be a digraph. · Then G is versatile 

if and only if one of G's strongly connected components 

i-s versatile. 

Proof: Clearly if a component of G is versa ti le, so 

is G. Suppose that G is versatile. Let v be a 

' ' 
non-repetitive word of type w which can be walked on G. 

We show that whenever x and y are vertices in 

different componenta of G th~ n a final segment of v c an 

be walked in one of G \ x} or G \ y}. It will 

follow by induction on the size of G that a 

non-repetitive walk of type w exists in one of G's 

c9mponents. 

Suppose then that x anJ are verti.ces of G and 

there is no directed xy path in G. If _v_ contains no x, 

then v can be walked i n G \ ( x) and we are done. If v 

contains an x, then a final seament v' of v contains no 
;,,-

Y, and ~v' can be walked in G \ ( y }.c 

A str~naly connected - d!araph can be written ·.as a 

union of cycles. In the followina lemma we relate the 

interAotion of these cycle·s · to the existence of 

32 
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non-repetitive walks~ 

_L=e=m=m=a--~3~·~2 __ ,_=I.w..a;.;;..;-==---.._._,..__===_,J,,.~· Let X, Y be 
'i 

dir·ected cycles in 

yert(Yl ~•·Then either 

1) X n Y· is connected 

or 2) XU Y is versatile. 

that vert(X) n 

Proof: In fact if 1) does not . hold, then XU Y 

" contains" one of the versatile digraph1:1<iN 1 or MIN 2, 

in a sense to be made precise later. We show that ~1)' ... 

2). First note that X ( similarly Y ) gives a circular 

order to the vertices of vert(X) n vert(Y) . 
.../ 

Case A: The circular orders ~iven to vert(X) n 

vert Y} by X and Y are different. 

In this case there are vertices x
1

, x 2 , x 3 of X n Y 

occurring in the order x
1

, x
2

, x 3 in the cyc le X, and in 

the order x
1

, x
3

, x
2 

in the. cycle Y. Now we use the 

Second Weaving Lemma, Lemma 2.l(b). As in the last part 

c., 
of Chapter 2, let v be h (x

2
). The Second Weavina Lemma 

requires us to walk v on X n Y modulo peths. We let the 

paths P( ., , x
2 

), P( x
2

, x 3 ), P( x 3 , x 1 ) be arcs in 

cycle X. We require that none of these paths contain x 1 ,. 

x
2 

or , x
3

. However, this is fulfilled because of the 

assumed circular order of these vertices in X. For 

example, the vertex x 3 cannot be on the arc of X between 

... 

..... ' 

3 

,. 
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.. 

xl and x2. The required paths P( • X 1, X3 ) , P( X3, x2 ) , 

P( x2' xl ) are chosen in Y. Then V can be walked on X n 

y modulo these paths, and by the Second Weaving Lemma, X 

n y is versatile, 

Case B: The ci~cular orders on vert(X) n vert(Y) 

given by X and Y are the same. Suppose that X n Y is not 

connect@d, lnerr choose vertices x 1 , x 2 which are in 

different components of X n Y. Let PX( x 1 , x 2 ) be the 

x
1

x
2 

path in X, Py( x 1 , x 2 ) the x 1x 2 path in Y. Since 

these two paths are not equal, we have 

vert( PX( ) 
i 

Py( ) ) . xl, x2 at vert( xl' x2 

Let X4 4 vert( PX( xl, x2 ) • vert'( Py( X 1, x2 ) ) . 
/ 

Using similar definitions, let X3 "· vert ( PX( x2' xl 

We again wish to apply the Second Weaving Lemma, 

·Lemma 2,l(b), with S = { x 1 , x 2 , x 3 , x 4 }. Instead of v, 

we use v', the word arising from v by replacing x 3 by x 4 

w~erever x 3 occurs in context x 1x 3x 2 . 

As remarked at the end of Chapter 2 v' is 

non-repetitive. Also the only two letter subwords of v' 

are x 1x 2 , x 2x 1 , x 1x 4 , x 2x 3 , x 4x 2 ~ x 3x 1 . We must now show 

that we can walk v' in X. u Y modulo paths. There exists 

an x 1x 2 path in Xu Y not through x 4 , sine~ x 4 is not on 

• • 

34 
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. .. 
PX( x 1 , x 2 ) or Py( x 1 , x 2 ) , because ~ J is between x 2 

and x 1 on one of. X and Y. W-e may thu_s c'106se one of 

• 
. PX( x 1 , x 2 ) or Py( x 1 , x 2 ) to serve as a path 

P( x 1 , ~ 2 ) having no vert e x in S. 

Prepar · ng to use the second weaving lemma, with 

S = ( x 1 , x 2 , x 3 , x 4 l, we have shown that the required 

' path P( x 1 , x 2 ) exists. Further, since x
4 

is between x
1 

and x 2 ~none of X and Y, there is an x
1

x 4 path in Xu Y 

not through x 2 . Again x 3 is not on this path, for 

otherwise x 3 is between x 1 and x 4 , hence x 1 and x
2

. 

Arguing similarly, the existence of paths P( x
1

, x
2 

), 

P( xl, X4 ), P( X4, x2 ), P( x2' d ), P( x2' xl ), 

P( x 3 , x 1 ) may be shown. We may thus walk v' on Xu Y 

modulo paths and therefore Xu Y' is versatile. 

We have shown that certain digraphs are versatile. 

We use this intersection lemma to delineate the digraphs 

requiring further investigation. 

Lemma 3.3 < Classification Lemma): Let G be a 

strongl connected digraph . Then G is of one of the 

following types: 

(1) vert( G) = vert( X for some directed cycle X 

of G. In this case, say G is a one hump digraph . 

(2) G is not of t~pe ( l ), ut vert( G) = 
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-·- vert ( Xu Y) where X and Y are directed cycles, and 

X n Y is connected and non-empty. In this case, say G is 

a two hump digraph. 

(3) G is not of types ( 1 ) or ( 2 ), but 

vert( G = vert( Xu Yu 2 ) · where X, Y, Z are directed 

cycles, X n Y and Y n Z are connected and non-empty, and 

X n Z = •· In this case, say G is a three hump diaraph. 

(4) G is versatile. 
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Remark: In fact, unless G falls under one of cases 

(1), (2) or (3), G "contains", in a sense to be made 

precise later, one of the versatile digraphs MIN,l, MIN.2 

or MIN.3. 

Proof: If G. is versatile, then G falls under case 

(4) and we are finishe . Thus suppose that G is not 

versatile. Since G is stronaly connected, write 

m vert( G) = U. 
1 

vert( C . ) where the C . are directed 
1: l l 

cycles of G, and for each j, 2 ~ j ~ m, 

there exists i < j such that Cj n Ci~•· 

Do this so that mis as small as possible. 

If m = 1, then G is of type (1) and we are done. If 

m = 2 then G is of type (2), for by the intersection 

le~ma, since G is not versatile, c
1 

n c2 must be 

connected. 

If m = 3, c1 n c2 - •· Suppose without loss of 

-· 



generality that c2 n c 3 ~•·Otherwise c2 n c3 =•so 

that c3 n c 1 - •• and we interchange the roles of c1 and 

c2. 
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Because G. is not versatile, by the intersection 

lemma, c 1 n c 2 , c 2 n c 3 are connected. It remains to show 

that c 3 n c 1 = •· Suppose not. 

Let x 1 ~ vert( c 1 ) \ · vert( c
2 

u c3 ). · Such an x
1 

exists, for otherwise we could write vert( G) = vert( c
2 

u c3 ) where c2 n c3 is non-empty. This contradicts the 

minimality of m. 

Similarly we can choose x 2 ~ vert( c 2 ) \ 

v-ert( 

Now we use the second weaving lemma. Let s = ( 
X l' 

} , and v 
Co> 

before. The requil'ed path x2' X3 = h ( x
2

) as 

P( xl' x2 ) follows Cl from xl to c1 
n c2, then c2 tQ x2. 

We see that X3 is not on P( x, y ) because X3 • Cl u G2· 
Similarly we can find P( x 2 , x 1 ), P( x 2, x 3 ), P( x 3 , 

x
2 

), P( x
3

, x
1 

), P( x
1

, x 3 ). We can walk v on G modulo 

the P( x., · x. ), contradicting our assumption that G is 
1 J 

not versatile. Here G is cognate, in some sense, to the 

triangle, IN.1. 

We conclude that if m = 3, then c 1 n c3 =••and G 

is a three hump digraph 

If m ~ 4, we must get a contradiction. We will 
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consider the cycles cr, c2, C3, c4. As in the previous 

case, we may assume Cl n c2 
--
. ' c2 n c3 

--
., and C3 n Cl 

= •• 
Case A: c4 n c2 

--
•• 

Then pick xl • vert( C4 ) \ vert ( Cl u c2 u c 3 ) . We, can 

do this by minimality of m. Pick x 2 Evert \ 

vert( c 1 u c 2 u c 4 ). Such a x 2 exists, otherwise m could 

be reduced by discarding c 3 . Aga · n, pick x 3 Evert( c 1 ) 

. \ vert( c2 u c3 u c4 ) 

Again use the second weaving lemma with S = ( x 1 , 

w x 2 , x 3 I and v = h (x 2 ). We can let P( x 1 , x 2 ) be a path 

from x 1 through c 4 to c 4 n c 2 , through c 2 to c2 n c3 , 

through c3 to x 2 . Clearly x 3 is not on this path. 

Similarly we choose P( x 1 , x 3 ), P( x 2 , x 1 ), 

• P ( x 
2 

, x 
3 

) , P ( x 
3 

, x l ) , P ( x 
3 

, x 
2 

) • 

By the second weaving lemma, G is versatile, which 

- is a contradiction. ( This case is cognate to the 

undirected araph case where G has a vertex v of degree 3 

or areater, Here, c 2 plays the ~ole of vertex v. ) 
~ 

case a; c4 n c2 = •· 

Suppose without loss of generality that c 4 n c3 ._ •· 

Otherwise interchange the roles of c1 and c3 . Now pick a 

vertex 1, with 1 • vert( ~l ) \ vert( c 2 u c 3 u c 4 ), 

Such a vertex exists because mis minimal, Pick vertex 
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2 e vert( c1 n c2 ), vertex 3 e vert( c2 n c3 ), vertex 

4 Evert( _ c3 n c4 ), and vertex 5 • vert( c4 ) \ 
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vert( c 1 u c2 u c3 ). L~t S = 1, 2, 3, 4, 5 ) , and walk 

w = g( h~( x 2 on G modulo paths, where h, a are 

substitutions 2.1 and 2.2 from chapter 2. 

The two letter subwords of V are 12, 23, 34, 45, 54, 

43, 32, 21. Choose the paths P( l, 2 ) t P( 2, 1 in Cl. 

Since Cl n C3 = • t 3 and .4 are not on P( 1 , 2 or 

P( 2 , 1 ) . Also 5 -Cl so that 5 is not on P( 1 , 2 ) or 

P( 2, 1 ). Let· P( 2, 3 ) and P( 3, 2 ) be paths in c
2

. 

These paths avoid 1 and 2 wh i ch are not on c 2 , and 4 and 

5 which are on c4 , as c2 n c4 = •· ~ hoose P( 3, 4 ), 

PC 4, 3 in c3 and P( 4, 5 ), P( 5, 4 ) in c
4

. By 

arguments symmetrical to those used with the first four 

paths, these last four paths satisfy the conditions of 

the second weaving lemma. Thus G is versatile, which is a 

contradiction. The reader will perceive that we treat G 

as though i t wer'e a five element path. ( MIN,3 ) a 

The intersection and classif i cation lemmas can be 

invoked to show that certain classes of diaraphs are 

versat i le. To show that an individual diaraph is not 

versatile, it suffices to exhaust the non-repetitive 

walks on that particular diaraph. Next, we provide ways 

, 
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to show that classes ~f digraphs do not allow arbitrarily 

long non-repetitive walks. 

Lemma 3.4 ( Compressible Paths Lemma ): Let 

a 1a 2 ... an' n ~ 2, be a directed path in a digraph G with 

outdegree( a 1 ) = 1, 

degree( a . 
l 

= 2, i = 2 to n-1, 

indegree( a = l. 
n 

Then G is versatile if and only if G' is, where G' is 

obtained from G by removing a 2 , a 3 , ... , 

edge in G'from a 1 to every successor of 

a , and adding an 
n 

a . 
. n 

( i. e. We identify the vertices of the path. 
r 

Proof: The result will follow . by induction if we 

prove the lemma for n = 2. Suppose then, that n = 2. 

Clearly if G' is versatile then G is, by the weaving 

lemma . 

Suppose G is versatile. Let w be any non-repetitive 

walk in G with the sole restriction that w does not start 

with a 2 or end with a 1 . Consider w' - w )\{ - I vert ( G a 2 ) ' 

the word obtained from w by deleting all occurrences of 

a 2 . Clearly w' will be a walk on G'. If we can show that 

w' is non-repetitive, we shall be done, for 

I w' I ~ ·I w I / 2, which can be made arbitrarily large. 

If vis any word on vert( G) \ { a 2 }, then let 

p(v) be the word obtained from v by replacing each 

occurrence of a 1 in v by a
1

a
2

. ,Then ·clearly, p(w') = w. 

,. 
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I • 

Now suppose for the sake of contradiction that w' is 

repetitive, say that w' = abbc for some 

• a, b, c Evert( G ) \ ( _a 2 } , b ~ ~. But then 

p(w') = p(a)p(b)p(b)p(c), and w contains a repetition, 

which is a contradiction.a 

: Definition: Let G be a diaraph so that all the 

vertices of G lie on a directed path P of G. Let ij be a 

directed edge of . G not on P. If j precedes i in P, then 

the edge ij is a back edge ( with respect to P 

Otherwise, the edge ij is a forward edge ( with respect 

to P ). 
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Definition: Let G be a digraph with all 'its vertices 

. 
on a directed path P so that vert( G) is ordered. Let 

ij be a back edae of G. W say that edae ij is useful if 

.one of the following cases arises: 

(i) A forward edge kl of G has a vertex between j 

and i; j S 1 S i or ·j S k S i or both ) . 

( i U There are two back edges of G, i' j' and i "j", 

such that 

. < ., < . .. 
J - J J s i' < i" s i, but not both j = j' and i" = 

i. We say tha~ i, j' and i "j" form an M under i,L 

(iii) A bac edae kl of G intersects ij; that is, 

1 < j S k < i or j < 1 s i < k. We say that kl and ij 

form an M, 

,, 
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Otherwise say that ij is useless. 

Lemma 3,5 CM lemma >: Let G be ·a digraph with all 

its vertices on a directed path P. Let ij be a useless 

edge of G. Then G is versatile if and only if G \ ij is, 

where G \ ij is the graph ' obtained from G by removing the 

edge ij. 

Proof: First note }hat removing an edge frbm G never 

makes another edge useful. 

Next let Q be the set of back edges of G with 

partial order:::>: i"j" :::> i'j' if j" S j' < i' Si", viz. 

the ends . of the smaller edge are between tho se of the 

larger. 

It suffices to prove the lemma in the case that 'ij 
/ 

is minimal with respect to this order. Suppose that the 

lemma has been . proved in this case and kl is any useless 

edge of G. Let the set of useless edges of G less than o 

equal to kl be S ~-- ' i 1 j 1 , i 2 j 2 ,1 . ~., injn' kl } . Then 

G \Sis vers tile if and only if G is; we simply remove 

the edges of S fr m Gone at a time, at each step 

removing a minimal dge. To get G \ kl, we add the edges 

of S \ ( kl ) 

in the order 

G \ S, starting with maximals. 

is a useless edge of G, minimal 
\. 

Let vb a _on-repetitive word of type 

... 
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w walkable on G. tr ij appears only finitely often in v, 

then a final segment of v can be walked on •G \ ij, and we 
\ 

are done . Thus a~sume that ij appears infini ely often as 

a subword in v. We can then find arbitrarily long 

subwords w of v such that w has i as a suffix. 

Claim:· Any long enough subword w of v having i as a 

suffix must have suffix j(j+l)(j+2) ... ( -l)i. ( Here j+l 

is the successor of j on P etc. ) 

Proof of -Claim: Th~ indegree - f i is 1: Any forward 

edge ending at i satisfies (i) of the definition of 

useful e dges, making ij useful. Any back ed1e endinl at i 

satisfies (iii) of the definition, making ij useful. 

Thus wends in (i-l)i. 
. 

Now suppose· that long enough w endinl in i must end 

in 

(i-k)(i-k+l) ... (i-l)i, j < i-k ..... ( * 

We show that wends in (i-k-l)(i-k) ... (i-l)i. 

Suppose not. Then some edge e = l(i-k), 1 - i-k-1 

exists in G, and wends in l(i-k) ... i. If l < i-k, then e 

is a forward edge satisfying (i) of the definition of 

useful edges, a contradiction. 

Thus we must assume that e is a back edge. Because 

of (iii) of the definition of useful edaes, we • u-t hav~ 

l $ i. Since e is not a useless edge, by niaality 

• 
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.. 
of ij, there are two possibilities: 

I) There is an Munder e. Such an Mis also under 

ij, a contradiction, as per (ii) ·of the definition of 

useful edaes' . 

II) Some edae f 

s < i-k Sr< l 

or i-k < s 5 l < r. 

= rs forms an M withe where 
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... 

Because of (ii), (iii) of the definition of useful edges, 

we insist that j = s < i-k 5 r < 1 = i 

or j = i - k < s 5 l <. r = i . 

However by assumption, j < i-k, so we must have 

' 
j = s < i-k S r < 1 = i. 

Thus wends in l(i-k) ... i ·= qi-k)i. But then, if w ,i s 

lona enouah, our induction hy~othesis (* says that wends 

in _(i-k) ... i(i-k) ... i, and v conta-ins a repetition, which 

is a contradiction. 

Thus wends in (i-k-l)(i-k), .. i. By inddction, w 

ends in j(j+l) ... (i-l)i .. c 

Ase ond claim has a siplilar proof. 
t 

. claim: Any lona enouah subword of v having j as a 

prefix must have prefix j(j+l)(j+2) ... (i-1)i. 
' 

However v contains ij infinitely often, ·so that we 

can find a lona aubword wijz of v w· h w = 

w'J(j+l)(j+2), •. (i-l)i, z = j(j+l)(j+2) ... (i-l)iz', But 

,· 
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then v contains the repetitive subword 

w'j(j+l)(j+2) ... (i-l)ij(j+l)(j+2 ... ( i -l)iz', a 

contradiction. We conclude that v contains ij only 

f i nj tely often, and thus G \ ij is versatile if and only 

if G is.a 

Clearly the existence of a loop in a d iaraph does 

·- ~ not help to make it versatile. We may there fore modify 

Lemma 3.4 slightly: 

1 Lemma 3.6 ( Compressible Paths Lemma): Let 
/ ., 

a 1a 2 ... an be a directed path in a digraph G with 

outdegree( a
1 

) = 1, 

degree( a . 
l 

indegree( a 
n 

= 2, i = 2 to n-1 , 

= 1. 

' 

Then G is versatiie if and only if G' is , . where G' 

obtained from G by removing a 2 , a 3 , ... , an~ and adding an 

edge in G' from a 1 ' to every successor of· an other than 

w /" 
ay that digraph G reduces to diaraph-, H ( H i.s a 

reduction of G) if His obtained from G by repeated 

applications of the compressible paths lemma and removal 

of loops and useless edges. Thus if G reduces io H, G is 

versatile if and only if His versatile. 

.· 

-
-

• 
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The purpose of this thesis is to characterize 

versatile digraphs~ We make this characterization by 

producing two sets of digraphs, MIN ( shown in · 
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Appendix 1 ) and MAX ( shown in Appendi 2 . ) . In Ch~pters 

7 and 8 we show that the d_igr_aphs of MlN are versa.ti le. 

In Chapter 9, we show that the digraphs of MAX are not 

versatile. In Chapter 4, Chapter 5 and Chapter 6, the 
~ 

heart of the thesis, we give a case by case breakdown of 

to show that every digraph either can be 

digr ph "contained." in a digraph of MAX, · 
. ' 

d hence is non-versatile, or else "contains" some 

disraph of MIN, a~d hence is ver~atile. The intersection 
'-

lemma, the . classifi~ation lemma, the M lemma, and the 

' 
definitions of us~less edges, forward edges and back 

-edses wilI be used t~ give this case breakdown of 

diiraphs. The next section of this chapter introduces the 

concept of mimicking, by which we make precise .what it 

means for a digraph G tp111 "contain" a digraph H . 

Definition: Let H, G be digraphs so that there is an 

injection m: vert H -> vert n, such that whe ever ij is 

an edge of H, then there is a path in G \ m(vert H) from 

m(i) to m(j). We say that G ·imitates H. 'I, 

We can put this another way: We fi a labell'ng of 

. G. Whenever vis a walk on H) then walked G 

.-

.. 
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modulo paths with respect to this labelling. It follows 

that if G imitates H, then if His versatile, so is G. 

Example: The graph of Figure 3.1 imitates the 

triangle with the given labelling. 

Not every versatile digraph imitates P
5 

or the 

triangle. ( Otherwise we would be finished, by 

Chapter 2. ) The digraph G of Figure 3.2 is a 

counterexample. his graph is indeed versatile, because 

the following substitution is suitable. 
\ 

I_/ 

g: X l -) 1232 

x
2 

-> 123454 

X 
3 

-) 1234 56 

This is easy to check, or refer to the Different Endings 
l 

Lemma of Chapter 7. However, an argument could ~e given1 

to show that ·G can imitate neither the triangle nor the 

five element path. / 
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If G is a digraph, then GR, the reverse of G, is the 

digraph with the same vertex set as G, and a . directed ~ 

edge ij e:factly when j: is a dir,,ected edge of G. Clearly 

GR is ver~atile if and only if G is, To reduce the size 

of MIN, we have sought to include at most one of G and GR 

for any digraph G, Let us extend the idea of imitation to 

take advantage of this: 

Definition: Let H, G be digraphs. Say that G 

.. . 
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H if G imitates at least one of H, HR. 

Now that we have introduced the concept of 

mimicking, we remark that the proofs of Lemmas 3.2 and 

3.3 prove the following stronger results: 

Lemma 3. 2' · ( Intersection Lemma l: Let X, Y be ~ 

directed cycles in the digraph G so that vert(X) n 

vert(Y) ~ •· Then either 

1) X n Y is connected 

or 2) Xu Y mimics one of MIN.1 or MIN.2, and hence is 

versatile 

Lemma 3.3' ( Classification Lemma): Let G be a 

strongly oonnected digraph . Then G is of one of the 

following types: 

(1) vert( G ) = vert( X for ·some directed cycle X 

of G. In this case, say G is a one hump digraph. 

(2) G is not of type ( 1 }, but vert( G) = 

ve ~t (Xu Y ) where X and Y are directed cycles, and 

X n Y is connected and non-empty. In this case; say G is 

a two hump digraph. 

(~) G is not of types ( 1 ) or ( 2 ), but 

vert( G = vert( Xu Yu Z ) where X, Y, Z are directed 

cycles, X n Y and Y n Z are connected and non-empty, and 

.... 

y 

• 

J 
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• 
X ~ Z = •·~this case, s y G ·is a three·hump digraph. ,. . . . 

. (4) . G mimics one of MIN.l, HIN.2 or MIN.3, and 

therefore is versatile . 

We now have the tools necessary to stat~ and prove .. 
our main result. The main tfieorem of this work is proved 

in three pieces, ap earing in Chapter 4, Chapter 5 and 
j . 

Chapter 6, . respect · ely. 
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Theorem 3.8: Let G be a three hump digraph. Either G 

mimics a graph H where His in MIN, or a reauction of G 

is mimicked by some digraph K, where K is in MAX . 

... 
Theorem 3.9: Let G be a two hump digraph. Either G 

mimics a graph H where His in MIN, or a reduction of G 

is mimit ked by some digraph K, where K is in MAX. 

Theorem 3.10: Let G be a one hump digraph. Either G 

mimics a araph ~ where His in MIN, or a reduction of ·o 

is mimtcked by some digraph K, where K is in MAX. 

The Main Theorem< Theorem 3.11 >; Let G be a 

diaraph. Either G mimics a araph H where His in MIN, or 

a reduction of G is mimicked by some digraph K, where K 
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is in MAX. 

Corollary 3.12: Let G be any digraph. Either G is 

non-versatile, or else G graph Hin MI . 

J 
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Chapter 4: Three Hump Diaraphs 

In this chapter we prove Theorem 3.8. 

Theorem 3.8: Let G be a three hump di1raph. Either G 

mimics a graph H where H is .in MIN, or a reduction of G 

is mimicked by some digraph K, where K is in MAX. 

We begin by proving a refinement of the 

class1fication lemma. 

Lemma 4,1 < Refinina the Classification Lemma >: Let 

G be a three hump digraph . Then either 

(1) vert( G) = vert 

cycles of G, 

XU Yu Z ) where X, Y, Z are 

X n Y, Y n Z are connected and non-empty, X n Z =·•, 

Y \ Xu Z ) is connected. 

or (2) G i~ versatile. In fact G mimics MIN,4. 

Proof; Suppose that Y \ ( Xu Z) is not connected. 

Then choose vertices 1 • X \ Y, 2 • X n Y, 4 • Y n Zand 
.: 

5 • Z \ Y, Pick two vertices 3, 3' from different 

components of Y \ (Xu Z ). Without loss of generality 

we may assume that vertices 2, 3, 3', 4 appear in 
' 

cyclical order 2, 3, 4, 3' in Y. ( Recall that X n Y, Zn 

Y are connected. ) With this labelling, G mimics MIN.4. 

See Figure 4.1. )0 
l, -

This refinement of the classification leauqa allows us to 

52 
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4 5 

• 
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introduce a certain structure to three hump digraphs. 

Definition; Let G be a three hump digraph. We say 

that G has a skeleton if 

( 1·) We can write vert ( G = vert( P) where Pis a 

directed Hamiltonian path in G. Path P gives an order to 

the vertices of G. 

' 
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(2) With respect to this order, G has at least three 

additional edges a
2

a
1

, b 2b 1 , c 2c 1 where a 1 < b 1 S a 2 < c 1 

S b 2 < c 2 , a 1 is -the initial vertex of P, c 2 the final 

vertex. 

We call the digraph made up of P together with the 

edges a
2

a
1

, b 2b 1 , c 2c 1 the skeleton of G. ( See Fig. 

4.2.) Other edges of Gare called extra-skeletal edges. 

Lemma 4.2 < The Skeleton): Let a be a three hump 

digraph which does not mimic MIN.4. Then G has a 

skeleton. 

Proof: We may assume by Lemma 4.1 that Y \ (Xu Z) 

is a directed path. Let m be the sourc~ of this directed 

path and M the sink. Let a 2 be the predecessor of min Y. 
·.• 

Either a 2 • X or a 2 • Z, but not'both. Suppose without 

loss of •~nerality ( up to renaming ) that a 2 ~ X Let a 1 

be the successor of a 2 in X. 
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c·n--K-~ 
Figure 4 
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, 
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• 
Let c 1 be the successor of Min Y. ' Then c 1 E z. 

Otherwise c
1 

Ex . and Y is the union . of · two directed 

paths: the segment of Y from m through M, and the segment 

of X from c
1 

through a
2

• Recall that Y n Xis 

connected.) But then Y n Z = :•, since X n Z = - and 
' 

( Y \ (Xu Z ) ) n Z = •· This is a contradicbion. Thus 

indeed c
1 

E z. Let the predecessoi of c
1 

in 2 be c
2

• 

Now X n y is a directed path with a2 as sink. Let bl 

be the source. Let b2 be the sink of the directed path 

' Y n z ' which has cl as source. ( See Figure 4 • 3 • ) 

Now Xis the cycle a 1--a2 , Y \ (Xu Z is the 

path m~, and Z is the cycle c
1
---c

2
• We may therefore 

let P = a 1--a2m--Mc 1-c2 . Clearly we have vert( G) = 

vert( P ), 

a 1 5 b 1 5 a 2 5 c 1 ·5 b 2 5 c 2 , 

a 1 is the initial vertex of P, c 2 the final vertex 

of P. 

We show that a 1 < b 1 , a 2 < c 1 , b 2 < c 2 . 

If a 1 : bl , then X = ~a 1--a2 = b 1--a2 c X n Y, so 

that X c Y. Then vert( G ) = vert ( Y u Z )· , a 

contradiction. 

Similarly b 2 - c 2 . 

Finaliy, a 2 - c 1 , as X n Z = •· 

The ed1es a,2a 1 , c 2c 1 exist by definition. The edge 
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X y z 

Figure 4.3 
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b 2b 1 exists because Y is a cycl 

Proof of Theorem 3.8: We ·assume that G has a 

skeleton, since otherwise, by Le'mma· 4. 2' a ove, G mimics 
. 

MIN.4. Also, we may assume that G has no useless edges, 
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as such edges may be removed without af ecting whether G 

is versatile or not. The proof of the theorem involves a 

lengthy enumeration of cases. To make this case breakdown 

we refer to the skeleton of G ·t Figure 4.2 ). Let the 

extra-skeletal edges of ·a be i 1j 1 , i 2 j 2 , ... , imjm. We 
I 

make cases based on m. •. 

To reduce work, we often ' invoke symmetry. Now GR, 

the rev·erse of G is a three titpp> digraph. Again, 

·vert( GR) = ve~t( PR) where PR is the reverse of P. 

Renaming a 1 a~ ci, a 2 as ci, b 1 as bi, b 2 as bi, ~l ai ai 

and c 2 as ai, we see that GR is a three ~uap' digraph~ with 
R ,~ 

skeleton P u { c
2

•c
1

•, b 2
1 b 1

1
, a

2
•a

1
. }. This symmetry 

under reversal reduces the number of re~uired cases. For 

example, suppose G has an edge iljl with i 1 > b2. Then, 

renaming il as jl ' and jl as il ' the reversal of G has , 

jl 
, < b' and will later fall under our case Al. Keeping 

r l 
this use of symmetry in mind, we proce.de to our case 

division. 

m = 0: If G is its own skeleton then a r~duction of 

G can be mimicked on MAX.I and we are done. See Figure 



, .. 

t 

• 4.2 .. ·1 We apply the Compressible Paths Lemma, Lemma 3.6, 

to .the paths in G I 

.. 
from al to the ~redecessor 

from bl to a2 

from the successor of · a 2 to 

from c 1 to ~ 

&nd from b 2 to cl. 

in p of bl I • 

the predecessor of cl 

The result is isomorphic to a graph ir one of Fiiure 4.4 
• 

or Figure 4.5 ; depending on whether there is a vertex 

between a 2 and c
1 

in G. These graphs are mimicked y 

I 
MAX.1 with the given labellings. 

.... 
m = 1: Depending on } l' jl we have several subca~es. 

Case , A: The -ed~e 1 j 1 is a back e e; l.~. With 

respect ·to the order giv~n to vert(G) ~ P, 1 1 > j
1

• 

Case 8: The edge i 
1

j 
1 

is a for~a'rd e.dge; i.e. 

il < jl. 

Case A br-eaks down as fol-lows: 
~ 

,,Ill ' Case Al a.J. ~ jl < bl ( or sy.mlbetrically, 

il > b2 ) . -
I Case A2 bl ~ jl ~ a2 and i 1 ~ bz ) . 

--
Case A3 a2 < j - < cl and i 1 < cl ) . . 

In this third case, the edge iljl is uselePa, a 
# 

c ontradiction. ( See Figure 4.6 ) 

.. 
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1 2 5 6 
I 

Figure' 4 . 4 

.. 
I . ' 

,. l 

1 2 . 3 5 6 

,. Figure 4.5 
.,. .. .,, 

... 
. .. ·- ,,, 

~ /, 

" ·re··_.~-~ 
• Figure 4.6 
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Cases A l a nd A2 are ( nrthe r s ubdi\· id d . 

.\ l : <'&.se A l ta) 

He r e th e dge i 1J 1 i s us 1 ~s , 

Figur -l. 7. 
~ 

co n r d i c t io n. e 

(u 

He re G m i mi cs ~11: . 5 . 

I I ~ JI 

See F i gure 4.8. 

i l .< a2 ., 

The l ab~ ll in.a of 

v r ice s o f G re qu ired b y t he def i n i t i on o{ mimi qking is 

s h o ~ n e xplici tl y in the fi gure. 

Case Al ( c ) a 1 $ j 1 < b 1 ~ a2 $ i i < . c l .· 
·' 

I f a 2 = i 1 , th e n a 1 < j l s o tha t 'a mimics MI .~. 

Fi gure 4.9 ; 

. If a 2 < i f• then G mimi c s Mr. · . 5 . ·see Figure 4 .10 . 

Cas e A l (d ) 

. e · 

. ote that i
1 

< c
2 

and a 1 < jl or vert( G ) could be 

wr it ten as th~ union of two eye es. 

H1re G mimics MI N. 7. ( See Figure 4.11. 

r 

A2: Case A2 (a) 

edge i 1 j
1 

is useless, a cont~~ d i ction. ( See Fiaure . 

4. 12. 
, 

ll 

... 
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C . 
!' 2 

... 

Figure 4. 7 

.·• 

Fi'gure 4 .8 

' 
' 

, 
, 

81 1~·f" b1 i1 c1 
. b 

2 c2 

1 2 3 4 5 

.,. 
Figure 4.9 
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Figure 4.10 

\ 

Figure 4,11 

Figure 4.12 

• 
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Case A2 (b) a 2 < i
1 

< c
1

• 

If jl = b
1 

then the reduction of G can be mimicked 

on MAX.l ( See Figure 4.13. and we are done. 

If jl > b
1 

then G mimics MIN.8. ( See Figure 4.14. ) 

/ 

Case A2 (c) 

Either jl ~ bl or i 1 - b 2 , since iljl - b 2b 1 . Since 

b 1 S j 1 5 a 2 and c 1 5 i 1 S b 2 ,· the roles of i 1 and j 1 are 

• 
reversed when G is reversed. (See Figure 4.~5. ) 

he~efore, without loss . of generality, _suppose that jl ~ ~ 

b 1 . This takes us from Figure 4.15 to Figur~ 4.16. 
,I 

But now ~l < jl 5 a 2 < c 1 S i 1 < ~2 , and ~l < b 1 ~ 

j 1 • Thus , j .l and i 1 cari play the roles of 1' 1 an~- 2 i the 

skeleton f ,G. Switching _ ime r·~1E:s of . i
1

j
1 

and ~ 2b
1 

gives 

v dealt with, • , case Al ( d) which .has already been 
• ·~ 

I• 

This concludes case A, .. 
Case B is divided ' follows:· as 

Case Bl: il < bl· 

Case B2: bl $ il s a2 ( jl s b2 ) . 
Case B3: a2 < il < jl < cl. 

In Case B3, let X be a vertex between i 1· and jl on 

,. 
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Figure 4.13 

Figure 4 . ~4 
--~ -

_ .. . : .._: 
~ . 

.. 

Figure 4.15 

.,,. ... 

, 

Figure 4.16 

. _ -~ Ccfi?:S. 
b j a c 11 b2 • ~ •1 . 1 1 2 1 I 

~ 

.17 
b, •2 1 • l, c, ~ ; 

1 2 3 



P. Then G mimics MIN.2. ( See Figure 4.17. ) 

· Cases Bl and B2 are further subdivided. 

B 1: Case B 1 (a): 

Let x be a vertex between i 1 and jl on R. Here G mimics 

MIN. 2. ( See Figure 4. 18. 

Case B 1 ( b) : j l = bl . 

Here G mimics MIN.9. ( See Figure ~.19. 

Case B 1 ( c) : 

Here G mimics MIN.10. See Figure 4. 20. ) 

\ 

Case 
1

Bl (d): 

. Consider the cycle C followin& ~ from a
1 

to i
1

, edge 

i 1J1 , P from J 1 to b 2 , edae b 2b 1 , P from b 1 to a 2 , then 

edae a 2a 1 . Recall the cycle Z from the proof
9

of Lemma -4.2: Z is the cycle cpnsistina of the path in P from c 1 \ . 
to c 2 , .toaether with the eda:_ o 2o 1 • We see that C n Z is 

connected. Therefore, · vert( G) - vert( Cu Z ), as G is 
.. • 4. ....-

a three hump diaraph. We have two possibilities: 

~ (i) There is a vertex x between i
1

_and b
1 

Here G mimics MIN.ti. ( See Fiaure 4,21. ) 

66 

.. . 

-

,. . 
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Figure 4.18 

2 3 2· 

' 

Figure 4.1 9 

'Figure 4.20 

' 't-· 

... -',( . 

•• ... . ... 

Figure 4 . . 21 

• 
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. 
(ii) Ther is a vertex x between a 2 and the lessen 

ofj 1,c 1 . 

Here G mimics MIN.12. ( See Figure 4.22. ) 

Case Bl ( e): 

Conaider the cycle C following p from al to i 1 ' then edge 

i 1 j 1' then P from jl to c 2 , then edge c2cl' then p from 

cl to b2' then edge b2bl' then P from bl to a2' then edge 

a2al. Now vert( G ) cannot equal vert( C U X ) ' 

vert( C u y ) or vert( C U z ) . This forces one of two 

• cases: 

(i) There is a vertex x of P between a 2 and c 1 . 
' ., 

Here G mimics MIN.I. ( See Figure 4.23 . 

' "' 

(ii) There are vertices of P between i
1 

and b 1 and 

between o2 : and J1 . 
' i , . . 

Here G mimics MIN.13. See Figure 4.24. 

,J 

00: Case B2 (a) J 1 < c 1 . 

Here G mimics MIN.2. ( See Fi1ure 4.25. Let X be any 

vertex between il and j 1., ) . . 

• 
Case B2 ( b )< cl s jl ~ b2 . . 

I 

We make two cases: 

( i ) There is some vertex X of G, 82 < X < cl. Here .. 
·, . 

G 

,,. 



Figure 4.22 

Figure 4.23 

Figure 4. 24. 

Figure 4.25 .. 

Figure 4.26 

~-~ 
I b •2 x 11 c., ~ ~-

•1 1 1 · 5 
t. 
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a, 
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11 bl •2 x ct b2 i 1 c2 
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1, 
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mimics MIN. 1. ( See Figure 4. 26. 

(ii) There is no vertex of G between a 2 and c 1 on P. 

Then we cannot have i
1 

= a
2 

and jl = c
1

, as i 1 j 1 was 

chosen to be an extra-skeletal edge. By the symmetry of 

this case under reversal, ~e may a ~ sume that i 1 ~ a 2 . 

Replace P by the hamiltonian path H. H st~rts with the 

suc~essor of i
1

, follows P to a 2 , then follo~s edge a 2 a 1 

to set to a
1

• Then H follows P from a
1 

to i
1

, then i
1

j
1 

to j
1

. Next, H follows P from jl to c
2

. If c 1 = j 1 , then 

H stops at c 2 • Otherwise, H follows edge c 2c 1 to c 1 , then 

P _to the predecessor of j
1

. ( See Figure 4.27. With 

reepec to the new skeleton, G falls under case Bl(e), 

.-.... w_hic)t ,has already been _ dealt .~i ~h. 
. ~ . . . ... 

. , ~ .' 

This completes the case when m = 1. 

m > · 1: 

Without lo~~ of jenerality we can assume that edge .. 
i 1J 1 falls ( up toJ reversal of G under one of cases 

Al(a), A2(a), A2(b) or A3 of the classification for~= 

1. This is true because we have shown that if G contains . 
' an edge 1·1 j 1 .falling under one of the other cases, G 

mimics a 11raph of MIN. Likewj,se assume that every oj:.her 

extra.;. keletal edge of G falls under one of these cases. 

/ 



71 

• 
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C 
2 .. . 

• 

Figure 4.27 

' . 

·• . 

• 
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l 

( Under the appropriate ·renamina, of course. We thus 

use these cases for the breakdown of the present case. 

Case Al (a) 

Suppose that edae i 1 j 1 falls under case Al (a). Since 

i 1j 1 is not a useless edae, and G has no forward edges, / 

either there is an Munder edae i 1 j 1 , or an edge forms an 

M with edae i 1J1 • However, any edae under i 1j 1 is an edge 

of case Al (a). Likewise, of the four types of edges 

remainina, only those falling under· case Al (a) could 

form an M with i
1
J

1
. Thus without loss of ~enerality ( up 

to renamina ), say that edges i
1

j
1 

and i
2

j 2 form an M, 

with a 1 5 J 1 < j 2 5 i 1 < i 2 < b 1 . Here G mimics MIN.14. 

( See . ~fgure 4. 28. ) 

.C e A2 (a) 

\ 

,,. 

Without loss ,of generality 

, .......... . ,#.~-,., 
.• bl 5 _jl < i~ <"!"2· 

up to renaming ) , e'dges . i 
1
) 

1 

• . .: nd 1 2 j 2 form a.~ .~, b 1 ~ ' ji < j 2 S i 1 < i 2 5 a 2 • Here G 

mi~ics. MI"N.,~15. ( See Figure 4. 29. 

Cas 
r,· 

Without l?•• . of generality (. up to re ming ) , edges i 1 J 1 

and i 2J 2 form an M. However, we now have two 
. . 

poaaibilitiea: 

• 

. . 

• 

..... 
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Figure 4.28 
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· 4~. 

• ,I. . .. ..,. ... • 

" . . . . 

a1 b1 i1 j2 j · 
1 - i2 a .. 2 c1 b -

~ 

1 2 3 4 5 . . .. :: 

Figure 4.29 

.. 
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. . . 
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7.4 

(i) Edge ~2 j 2 fall s under case A3 ( after 

appropriate renaming.) Without l ss of generality ( up to 

renamina, ), 

I 

Here G mimics MIN. 15. ( See Figure 4. 30. ) 

(ii) Edge i
2

j
2 

falls under case A2 (b) ( after 

appropriate re~aruing.) Without loss of generality ( up to 

renaming ), 

bl = j2 S a2 < jl S i2 < il <cl. 

Here G mimics MIN. 16. ( See Figure 4. 31. 

-
Case A2 (b) 

I 

Without . loss of generality, we may now assume that every 

extra-skeletal edge of G falls under case A2(b). However 

with reversals, this allows thee possibilities.: 

(i) We have b
1 

= j
2 

, i 1 < i 2 < c 1 . Here G mimics 

MIN.5. 

See Fiaune ~ . ) . 

(ii) We have b
2 

= i 2 , j 2 S i 1 . Here G mimics MIN.3. 

See Figure 4.33. 

(iii) We have b
2 

= i 2 , j 2 > i 1 . Here G ~imica 



Figure 4.31 

Figure 4.32 

Figure 4.33 

... 

Figure 4.34 

., 

~~ c_ . ~ ., 
I • 12 1, c, 2 • 

•1 , 2 3 4 5 
1 2 

2 3 4 5 6 

,, 
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MIN.17. ( See Fiaure 4.34. 

We have now proved the theorem. 

I 
I 

76 
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Chapter 5: Two Hu•p Digrapha 

In this chapter we will consider two hump digraphs. 
\ 

We prove 

Theorem 3,9: Let G be a two hump digraph. Then 

either G mimics a digraph H )in MIN, or a reduction of G 

is . mimicked by a digraph Kin MAX. 

In analogy to the previous chapter, we introduce 

skeletons. 

Definition: Let G be a two hump digraph. Then e say 
... 

that a baa a akeleton if 

(1) We can write vert( G) = vert( P 

directed Hamiltonian path in G. 

where Pis a 

(2) G has at least two additional edges a 2a 1 , b 2b 1 

where . 

a
1 

< b 1 $ a
2 

< b 2 with respect to the order P induces on 

vert(G), a 1 is the initial vertex of P, b 2 the terminal 

of P. 

We call the di1raph made up of P to1ether with the 

- ~dies a 2a 1 , b 2b 1 the skeleton of G . ( See Fi1ure 5.1 ) 

Other ed1es of Gare called extra-akeletal ed1es. 

Leya 5,1 C The Skeleton }i Let G be a two hump 

di1rapb. Then G has a skeleton. 

77 
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Proof: We know hat Y n Xis a directed path. Let b 1 . . 
be the source of this directed path and a

2 
the sink, Let 

b 2 be the predecessor of b 1 i n Y, Let a 1 be the successor 

of a 2 in X. ( See Figure 5.2 ) 

Then the vertices . of Gal l lie on the directed path 
·- -

a
1 
__ b

1 
__ a

2 
__ b

2
. The edges a

2
a

1 
b

2
b

1 
exist by 

de~init i on. Finally, iri the case that a 1 = b 1 or a 2 = b 2 , 

ve~t( G) lies on a cycle, X or _Y respectively.a 

Remark: The roles of X and Yin th~ previous proof 
I 

are interchang·eable-. -

Proof of Tbeorea 3.9: This proof in~olves a very 

long enumeration of cases, classifying the two hump 

dil(raphs. Assume again that G has no useless edges. Again 

the case breakdown refers to the skeleton of G. Label the 

extra-skeletal edares of G by i 1 j 1 , i-2j 2 ; 

make cases based on m. 

• . . , i j . m m We 

m = 0: If Gisi.ts own skeleton we are done. Here a 

reduction of G can be mimicked by MAX. 1. · ( See Figure 

5. 1 

• = 1; We have two branches to our case division: 

Case I; The edae i 1 j 1 is a back edae; i.e. i 1 > jl 

with respect to the order aiven by P. 

Case II: The edae i 1J 1 ia ~ forward edge; i.e. 

... . 



·, 

.. 

a1 

Figure 5.2 
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CASB I ONE BACK BDGB .> . 

Case I gives rise to several subcases. If 

al i jl < b 1, then we form cases baseci on i 1. 

Case A al 5 jl < bl and il < bl. 

Here the edge iljl is useless, a contradiction. See 

Figure 5.3 ) 

Note: Later. on in the proof, when we consider the 

possibility that m > 1, it will be useful to have names 

for the various types of back edges occurring in G. When 

m = 1, we have 5 subcases of case I, viz. cases A, B, C, 

D and E. \o{e call an edge i j of Ga 
r r 

81 

type A ( B, C, D, E) edge if the graph G', formed by 

removing from Gall extra-skeletal edges other than i J. r r' 

falls under cas- A 

dis_£Yssion. 

/ 

B, C, D, E ) of the present 

Case 8 

Therefore i 1 - ·a 2 . ) 

A reduction of G can be mimicked by MAX.12. ( See Figure 

5.4 

• 



·> 
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/ 

al h 'I bl a2 b2 

Figure 5.3 

I .. . . 

Figure 5.4 

• 
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Case C . . a 1 < j 1 < b 1 and b 1 S i 1 S a 2 . 

A reduction of G can be mimicked by MAX.2. ( See Figure 

5 . 5 ) 

In the next 

preparation, we 

only if GR,. the 

ewe will want to invoke symmetry. In 

e that a digraph G is versatile if and 

f G, is versatile. It is useful 
•'. 

now to extend our concept of type A, B, C, D, E edges to 

reverse edge•. An edge i j is a reverse type A r r 

~ B, C, D, E ) edge if G'R falls under case A B, C, D, 

E ) of the present discussion, where G' is again the 

graph formed from G by removing all extra-skeletal edges 

other than i rjr. . 

Case D 
.. 

jl < bl and < i 1 . al s a2 

If al = j 1 t then il < b2' otherwise the edae iljl taken 
. 

with the path p forms a cycle through all the vertices of 

G, a contradiction. However now i
1

j 1 and a
2

a
1 

can 

interchanae roles, and we are in case B. Thus in the 

present case, we assume without loss of generali y that 

a 1 < j 1 . S metrically, we assume that 1 1 < b 2 , or G is 

the reverse of a araph fallina under case B. A red tion 

of G can be mimicked by MAX.lb, ( See Fiaure 5.6 ) 



• 
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Figure 5.5 

Figure 5.6 

.. 
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This concludes an enumeration of the subcases when 

To reduce work, we again invoke symmetry. Let G have 

an edge i{J 1 with a 2 < i 1 s b 2 . Then GR, the reverse of 

G, is clearly a two hump digraph. 

vert( PR) where PR is the reverse 

bi, a 2 as ~i, b 1 as ai, b 2 as ai, 

Again, 

of P . 

il as 

vert( GR ) 

Renaming al 

ji and jl as 

~we see that GR is a two hump digraph with skeleton 

= 

as 

. , 
l. 1 , .. 

PR u { b 2
1 b 1

1
, a 2

1 a 1
1 

} and an additional edge iJi with 

-a1 ' S J 1 < b
1
'. We see that the case when 

a 2 < i 1 S b 2 and the case when · a 1 ~ J 1 < b 1 are symmetric 

and may be regarded as equivalent. Form> 1, however, i t 

will occasionally be necessary to distinguish between 

"normal" type B or C edges, and" reversed" type B or C 

edges. 

Case E b 1 ~ jl S a 2 ( and i 1 S a 2 ). 

Here the edge i 1J 1 is useless, a contradiction. ( See 

Figure 5.7 ) 

Thus when m = 1, and i 1J 1 is a back edge, G is 

mimicked by one of the graphs of MAX. We also draw 

attention to the 5 basic types of back edge which G can 

have. These 5 types of edges figure in later case-

.. 
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divisions. .. 

CASE II ONE FORWARD EDGE\ 

/ Case II also g.ives rise to several subcases; 

however, this case may be d e a . t with very simply once we 

have made the following observation: For most forward 

edges ij, a skeleton for G can be chosen so that ij 

becomes a back edge with respect to that skeleton. 

87 

As we remarked earl1 r, there is a skeleton for Gin 

which th-e roles of X and Y are r e versed. Now the vertices 

of G may be divided into three sets: 

vert( X \ ) , vert ~ X n Y ) , vert ( Y \ X ) • 

With respect to the skeleton we have given for G, these 

sets occur in this or er. However, if the r~les of X and 

~v are re rsed, then the order of these sets reverses. 
\. 

Thus if i 
1

_ and j 
1 

are not both· in the same one of these 

sets, a- forward dge i 1j 1 becomes a back edge when X and 

Y are interchanged. Therefore in the present case we 

assume without loss of generality that i 1 and jl are both 

in the same one of the listed sets 

Case ~II.1: We have i 1 , jl EX\ Y, i.e. 

al S il < jl < bl. 

Some vertex x of P must lj e between i 1 and j 1 . Here G 

J 

r r 



; 

-- , 

,/ 

,J 

mimics MIN.2 ( See Figure 5.8 ) 

Case II.2: We have i 1 , jl EX n , i.e., 

bl 5 i 1 < jl 5 a 2 . 

Consider the cycle C differing from X in that the .path 

from i 1 to jl 1n Xis replaced in C by t~e edge i
1

j
1

. 

( See Figure 5.9. ) Then cycles C and Y h~ve an 

intersection which is not connected, -and by the proof of 

the Intersection Lemma Lemma 3.2, . G mimics MIN.l or 

MIN.2 

Caie Ii.3: We have iJ ,j 1 c Y \ X. 

Interchanging the roles of X and Y, this case is 

. equivalent to case II.l. 

This concludes CASE II, and hence the cas~ when m = 

1. 

m > 1: 

In light of the foregoing, we may now assume that 

any individual forward edge of G may be turned into a 

back edge by interchanging cycles X and Y. We Hill now 

show that in fact all extra-sk'eletal edaes ff G may 

simultaneously be assumed to be back edges. Suppose that 

i
1

j
1 

is a back edge and i 2 j 2 is~ forward edae. By Case 

II, we may assume that reversing the roles of X and Y 

88 
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back edge. We make cas s as follows. 

Case II+~: Edge i 1 j 1 falls under case A. By assumption, 

edge i 2 j 2 becomes a back edge when the roles of X and Y 

are interchanged. However, in the present case, when X 

ad Y are switched, i
1

j
1 

remains a back edge ( since i
1

, 

j 1 E X ) . We may thus assume that both i l j 1 and i2j2 are 

back edges. 

Case II+B: Edge iljl falls under case JL 

Case II+ Edge iljl falls under case c . 

Case II+D: Edge iljl falls under case D. 

Case II+E: Edge iljl falls under case E. In this case, 

if the roles of X and y are interchanged, iljl an'd i2j2 

are both back edges and we are finished. ( Bo l l , 

jl EX n Y. --
In case II+B we make the following subcases based on 

Case II+B 1: 

Case II+B 1 (a) b 1 S j 2 S i 1 . Consider the 

cycle C dif ering from X in that the path from i2 to j2 

in X is replaced n C by the edge i2j2 and the .path from 

il to al in X is replaced by the edge ilal. ( See Figure ' 

5.10 ) Then cycles C and have disconnected 

intersection, and by the proof of the intersection lemma, 

, 

' 
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G mimics MIN.1 or MIN.2. 

Case II+ 1 ( b) : i 1 < j 2 . Consider he cycle 

C following p from al to i2, th n edge i2j2' then p to 
# 

b2, then b2bl, then p from bl to i 1 I finally i la l. ( See 

Figure 5.11 ) Then cycles C and X have disconnected 

intersection, and by the intersection lemma, G mimips ~ 

' MIN. 1 or MIN. 2. 

Case II+B 2: 

assume that j 2 e Y \ X, viz. a 2 ' < j 2 . Then G mimics the 

triangle, MIN.l. See Figure 5.12 ) 

In casl II+C we make the following subcases based on 

Case II+C 1: al ~ i 2 < j l . ( Th us b l ~ j 2 . ) 

Again G mimics the triangle. ( See Figure 5.13. ) 

Case II+C 2: jl S i 2 < b 1 . Again, bl S j 2 . 

Case II+C 2 (a): b
1 

S j 2 S i 1 . Consider 

the cycl ' C following P from jl to i 2 , then edge i 2 j 2 , 

then P to i
1

, finally i
1

j 1 . ( See Figure 5.14 ). Then 

cycles C and X have . disconnected intersection, and by - the 

intersection lemma, G mimics MIN.l or MIN.2. 

r 
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Case II+C 2 (b) i 1 < j 2 . Consider the 

cycle C following P from jl to i 2 , then edge i 2 j
2

, then P 

to b 2 , then b 2b 1 , the~ P from b 1 to i 1 , finall~ i 1j 1 . 

( See Figure 5 .15 ). Then cycles C and X have 

disconnected intersection and by the intersection lemma, 

G mimics MIN.l or MIN.2 . 

., Case II+C 3: 

We have two co-ses: 

( i) i 1 < a 2 . Here G mimics the tr,iangle. ( See 

Figure 5.16) 

(ii) i 1 = a 2 . Here G mimics MIN. 22. ( See Figure 

5.17. ) 

Case II+C 4: 

( See Figure 5.18 ) 

i 2 = a 2 . Here G-mimics MIN.2 

We can use case II+C to attack case II+D. Suppose 

that G has an edae ij of typ~- D. Then G can mimic a 

digraph. H wh.icn falls · under case C. ( See Figure 5. 19 

One walks 32 modulo paths on G by followina P from a 2 to 

i, then edge ij. Similarly, one walks 43 by followina 

edge b 2b 1 , then P from b 1 to a 2 . 



' 

Figure 5.15 

\ 

Figure 5.16 

'Figure 5 .17 

Figure 5.18 

Figure 5.19 
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Suppose that G also has a forward edge kl, Then 

usually, G can mimic a digraph H' derived from H by 

adding a forward edge. Digraph H' will fall under case 

II+ C, and hence be versatile. An example is shown in 

Figure 5.20. Difficulties only arise if b 1 s k, 1 $ i. In 

such a case, each of k and 1 lies on one of the paths on 

•which we would walk edges 32 and 43 of H. 

Suppose then that b 1 ~ k, 1 ~ i. By the symmetry of 

type D edges under reflection, we assume that bl ~ k, 

r ~ a2. However this means that both k an l lie in X 
' 

Y, and this case was dealt with under I I . 1 . 

We have now ~hown that i 1 j 1 and i 2 j 2 may both be 

assumed ~o be back edges. A simple induction on the 

number of forward edges in G shows that we may assume 

that every extraskeletal edge of G is a back edge. 

n 

For economy of cases in the rest of this chapter, we 

will use the following_9ase divisions: 

(1) Every extraskeletal edge o[ G is a back edge of case 

E. 

(2) Graph G has a back edge of case A and ( up to 

reversal ) every back edge of G is a back edge of either 

case A or E, 

(3) Graph G has a back edge of c.ase Band ( up to 
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1 2 3 · 4 5 

.. 
Figure 5.20 



reversal every back edge of G is a back edae of either 

case , A, or E. 

(4) Graph G has• back edge of case C and ( up to 

reversal ) every back edge of G ls~ back edge of either 

case C, B, A or E. 

(5) Graph G has a back edge of case D. 

98 

Case (1): Every extraskeletal ed 

case E. 

back edge of 

If every edge of G is of type Ethen without loss of .. 
generality i

1
j

1 
and i

2
j

2 
form an M where 

a 1 < b 1 S jl <j 2 S i 1 < i 2 S a 2 < b 2 t Here G mimics 

IN. 15. See Figure 5.21 ) 

Case (2): Graph G has a back edge of case A and ( up to 

reversal ) every back edge of G is a back edg of either 

case A or E. 

Note that an edge of type A can never form an~\ ith 

an edge of type E. Thus if G has an ddge of type E, it 

will have two ty e E edges forming an Mas in the 

previous case. Therefore we ay assume in this cas hat 

G has only type A back edges. 

lf m = 2, then ~ithout loss o f generali y ( inv o kin~ 

\ 

' 

I 
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t h e ~ l e mm a , a nd r ena mi ng if n ~c essary l 

i
1 

<. i
2 

< b
1

• 

If a t= j 1 , h n r d.uctio n o f .G is mim icked b y 

~I.\X . i'. ( See Figu r e 5 .22 ) 

If b 1 is t h successor of i 2 on P, th e n a r e duc tion 

o f G i s mim i cked b y MAX. 15. ( See Figure 5 . 2 3 ) 

-I f a l < j 1 and th e r e is a ver t ex of G between i2 and 

bl' the n G mimics MIN.18. ( See Fi gure 5. 24. 

Fo r the remainder of Case ( 2 ) ' assume t ha t m > 2. 
. 

Supp9se that G'" has edges i 1 j 1 ' a type A edg e , and 

i2 j 2 ' a type A e dg e a f ter r eve rs a l, i.e. al 5 j 1 < i 1 < 
• 

b l a nd a 2 < j2 < i 2 5 b2. Then without loss of 

general i t y , G also has edges i 3j 3 and i4j4 where 

. 
b 2 . Here G mimics MIN.19 ( See Ffgure 5.25 

We may thus assume that every extra-skeletal edge 

i j of G i s a true type A edge, viz. a 1 < j < i < b
1

. 
S S ' · - S S 

We now introduce a " stripping'' method of class i fication, 

that will serve us again in the next chapter. Since G has 

ed,~s-; 
,,,..-: 

these only in the first "half" of only type A and 

G, we strip away other edges of G, and use these tYP!! A 

edges for our classification: 

Let G' be the graph ob t ~nJed from G by remo; in• the 

• 
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Figure 5.23 
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edges a 2a 1 and b 2b 1 . Consider ~he ~t~ongly connected 

components of G' consis~ing of more than one vertex. At 

!east . one such co~ponent e . ·~ts, sine G has back edges. 

If mor~ than one such componen~ e ists, then without loss 

of generality G has e dges i 1JJ, i 2 J 2 , i 3J 3 , · i 4 J 4 where 

al$ jl < j2 $ il < i2 < J3 < · J4 $ i3 < i4 < bl, 

since each of these components contains an H. Here G 

mimics MI .20. ( See Figure 5.26 ) 

Thus, without loss of generality, we may speak of 
. . 

the strongly connected component G" of G' containing more 
. 

than one vertex. Sfnce "G" is a strongly connected 

digraph, we may invoke our previous classification 
\ 

results to say things about the structure of G". This is 

our "stripping" method, 

case- G" is a graph of type <3> of the 

Classification Lemma ( Lem.ma 3.3 ): 

Without loss of generality G has three back edges i
1

J
1

, 

. 
i2j2' i3J3, with al$ jl < j2 5 il < J3 5 i2 < i3 < bl, 

Here G mimics MIN.21, 

See Figure 5.27 ) 

case- G' .. is a .craph of t;ype < 2 > of the 

classification lepa: 

Subcaae- G" has ed.ces of tne B onl,:: As we · 
0 
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Figure 5.26 

-
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Figure 5.27 
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have seen previously, G" , hence G, mimics MIN.15. 

Subcase- G" has edaes of type A only: Here 

without loss of generality ( up to reversini the roles of 

X and Y .and reversal) G has edges i 1j 1 , i 2 j 2, i 3 j
3

, i
4

j
4 

with 

al 5_ j l r j 2 < j 3 5 i 2 < . i 3 < j 4 5 ~ l < i 4 < bl . He re G 

mimi c s MIN . 66.( See Figure 5.28 ) 

Subcase- G" has an edae of tuw B: Here without 

loss of generality up to reversi hi the roles of X and Y 

and reversal G has edges i 1 j 1 , i 2 j 2 , i 3 j 3 with 

a 1 5 jl = j 3 < j 2 5 i 3 < i 1 < i 2 < b 1 . Here G mimics 

MIN.23. See Figure 5.29 ) 

Subcase- O" has an edae of type C: Here without 

loss of generality up to reversini the roles of X and Y 

-and reversal 

a 1 5 jl < j 3 < j 2 5 i 3 5 i 1 ~ 1 2· < b 1 . Here G mimics 

MIN.24.( See Fiaure 5.30 

Suboaae- G" baa an edce of type Pi Here without 

· ·toss of generality ( up to reversini the roles of X and 

Y) G has edaes i 1J 1 , i 2 j 2 , i 3 j 3 with 

a 1 5 jl < j 3 < j 2 5 i 1 < i 3 < i 2 < b 1 . Here G mi-mies 

../ 
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1 2 3 4 / 5 

Figure 5.28 

. 
13 
2 3 6 

Figure 5. 29 

Figure 5.30 



MIN.24.( See Figure 5.31 

Thus if G" falls under type (2) , of the 

classification lemma, G mimics a digraph of MIN. 

Case- G" ie a graph of type (1) of the 

classification lemma: 

Here without loss of generality G has edges i
1

j
1

, i
2

j
2

, 

i 3 j 3 with a 1 S j 3 S j 2 < jl S i 2 < il < i 3 <bl. ( The 

edge i
3

j
3 

is the back edge of the skeleton of G", Since 

i 3 j 3 can be assumed to be a useful edge'. we pick i
1

j
1

, 
. 

i 2 j 2 to form an Munder i 3 j 3 . , Thus either j 3 - j 2 , or 
' 

i 1 ~ i 3 . We may assume that i 1 - i 3 without loss of 

generality, up to reversal of G, or the interchanging of 

cycles X and Y. ) 

We form subcases: 

Subcase- a1_i_j_2~ Here G mimics MIN.18. 

See Figure 5.32) 

Subcaae- J2--=--.A.1-=--.J.3 , • = 3 : In this case a 

reduction of G can be mimicked by MAX.14.( See Figure 

5.33 ) 

106 

Subcase- • > 3: Either repeating our atrippin1 

process on G" will lead to a graph of type (3) of the 

} 
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classification lemma, or a graph of type (2) of the 

classification lemma with a back edge, or a graph of type 

(1) of the classification lemma. 

We may assume, without loss of generality that the 

first two cases do not occur . . Assume without loss of 

generality that a 1 = j 2 = j 3 . Otherwise G mim'cs a 

digraph of MIN as already shown above. Without loss of 

generality, up to reversal of G, or the interchanging of 

cycles X and Y, G contains an dge i 4 j 4 wrtn j 4 = a
1 

and 

· i 1 < i 4 < i 3 . Thus G mimics MIN.25. ( See Figure 5.34 ) 

This completes our examination of Case (2) . 

• 
Case (3): Graph G has a back edge of type 8 and 

I 

( up to reversal ) every back edge of G is a back edge of 

either type B, A, or E. 

In analogy to the previous case, we first dismiss the 

cases where not every edge of G is a type 8 edge. 

.. 

Suppose that G has an edge i
2

j
2 

of type E. If the 

edge of G intersecting i 2 j 2 to form an Mis a type E 

edge, then we are done, as in case (1). Thus without lose 

of generality we may assume that 

-



Figure 5.34 

\ 

~2 
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If we now interchange the roles of edges i
1

j 1 and a
2

a
1

, 

then with respect to the new skeleton for G, i 2j
2 

is an 

edge of type C. ( See Figure 5.35 ). We may thus delay 

discus~ion of this possibility until case (4). 

From now on, let us assume that G has no edges of 

type E. 

Suppose that G has a type A edge i 2 j 2 . Then without 

loss of generality, · i
2

j
2 

forms an M with a type A edge 

i 3 j
3

. We have two possibilities: 

110 

(i) al= jl ~ j2 < j3 ~ ~2 < 13 < bl ~ il < a2. Here 

G mimics MIN.26. See Figure 5.36 ) 

(ii) al~ j2 < j3 ~ i2 < i3 < bl < jl S a2 < il = 

b
2

. Here i 1j 1 is a reversed ype B edge. Here G mimics 

MIN.27. ( See Figure 5.37 ) 

For the remainder of this case we assume that G has 

( up to reversal ) only type B edges. For convenience·, we 

rename edges here: 

Let i
1

j 1 , i 2 j 2 , 

edges of G 

... ' i J. be the ( normal ) type B r r 

reversed) type B 

--1 
I 
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edges of G 

bl< 1 1 < 1 2 < ••• < ls S a 2 < k 1 = k 2 = ..• : k
9 

= b 2 • 

Ifs= 0 then for large enough q, a reduction of G 

is mimicked by MAX.13. (See Figure 5.38 ) 
\ 

Ifs> 0 and for some t and u, 

mimics MIN.28. ( See Figure 5.39 

i t u then G 

We may thus assume from now on that r ~ s > 0, and 

lt > iu for all t, u where 1 Su S r, 1- s t S s. 

Our remaining subcases are based on the values of s 

and r. 

Subcase r < 3 1 s = 1: Here a reduction of G is 

mimicked by MAX.12. See Figure 5.40 ) 

- subcase r = 2, 8 > li Her~ G mimics MIN.29. 

See Figure 5. 41. ) . 

Suboase r > 2: Here G mimics MIN.30. 

( See Figure 5.42. 

This concludes our examination of case (3) . . 

It will prove economical to deal with case (5) before 

' 
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case (4). 

Case (5): Graph G has a back edge of case D. 

Note that case (5) shows mirror symmetry~ If G is 

" , 
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reversed, then switching the roles of a
1

, a
2

, b
1

, b 2 , i
1

, 

jl with b
2

, b
1

, a
2

, a
1

, j
1

, i
1 

respectively again gives 

us case (5). This symmetry allows us to reduce our number 

of cases. 

m = 2: 

We make the following case divisions based on j 2 : 

Case Da: j2 < jl. ---
Case Op: 

Case 0'1: 

jl < j2 < bl 

bl S j 2 S a2 

i 2 S i 1 by symmetry). 

i 2 S a 2 ). In this case 

the edge i 2 j 2 is usel~ss, a contradi~ t~on. 

( See Figure 5.43 ) 

Case Dais subdivided as follows depending on i 2 : 

Case Dal: 1 2 < j 1 . - ~n this case the edge i 2 j 2 

is useless, a contradiction. ( See Fia_µ£e 5.44 ) 

Case Da2: jl s i2 < i 1 . We have two 

possibilities: ' 

( i ) i2 
,. a2. Here G mimics MIN.31. 

( See Figure 5.45. Here the g eater of 82, i2 is labelled 
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3. 

) (ii) i _2 = -a 2 . ' Here . .9 mimics MIN. 32. ( See 

Figure 5. 4'6 ) 
.. 

Case Da3: Thus eiLher i
1 

< i
2

, or 
~ 

i 2 < b 2 . Note that if j 2 = a 1 and 12 = b 2 , then G is a 

one hump di!raph. By symmetry, assume that _i 2 < b
2

. 

Here G mimics MIN.33. ( See Figure 5.47, 

• ,,.. 
I 

In Case Dp, we may assume that ~2 < i 1 , otherwise 

116 

in.te_rchl\Al1,ng ~he -r:-o.les of i 1 j 1 , , i 2 j 2 gives Case Der. Case 

Dp is sub~iv1ded as follows dependini on 1 2 : 

· Case Dpl: i
2 

< b
1

. r-/i. this case ' the ed1e r
2

j
2

_ 
. 

is useless, a contradic\ion. ... See Figure 5.48 
I 

. 
.. " . . .. : . . . .~ •. ; Case ·. Dp2: _ ~ -~l S _i 2 , ll,ere• ~• ~~~~~~~ ~~~~N ·.3_~ .. ,·, 

.. , .. 4 • ' ,. ' • " \ ' 
0 0

" "., f ~ •: • 1'. • 4' 

: · · ( "See Figure 5.49 ) ' .... .... 
.... .. -.... -~ 

. This cone! udes the sub6°ase · wh"en- .m · = 2. ' 

"> 2: . 
By· the foreaoina ma,J ,assume that any· 

. ' 
extra-ijkeletal edge o up to reversal 

.. " ., 
ease°' Da 1 , Dp l pr D-, • · 

.... 
' . 

\- . 

,.. 

.. " 

. " 
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Case- Edges ~ft~ Dal: Without loss of generality, 

invoking the M lemma, G{has edges 'i
2

j
2

, i
3

j
3

, with a
1 

S 

j 2 < j 3 S i 2 < i 3 < J 1 . In this case, G mimic_s MIN, 14. 

See Figure 5.50 

Case- Edges of type Dpl: Without loss uf generality, 

G has edges i 2 j 2 , i 3 j 3 , wi'th jl S jz < jJ $ i 2 < ,i 3 < b 1 . 

In this case, G mimics MIN.15. ( See Figur«; 5.51 
~ 

• 
Case- Edges of type o~~ Without loss of generality, 

<G .,has edges i2j2' i3j3, wi t,h b 1 s 
( 

j i? j3 .~ i2 < i3~ a2. 

In this /fase, G mimics MIN.15, as in case ( 1 ) . ( See 
! ... , 

Figure 5.52 ) ... -
• 

This concludes our examinatibn of case (5). 

~-• Case ( 4·): QP,aph G -h~s a ' back ed•ge of case 'C a~d · ( up- to 

~eversal ) every. back edge of G is a back edge of either 

case C, B, A or E . 
..,...-

m = 2; 

We form 

I 
( 

Case Cp: 

~ed on j 2 . 

j 2 < j 1 . . < j 2 = a 1 , _or not a _2 

• 

\· 
I 

" 
I 
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Case C-,: , b
1 

S j
2 

S i
1

, 

Case Co: i 1 < j 2 S a
2

. 

Ca~e C4: a 2 < J 2 . In this case th& edge i
2

J 2 is 

useless, a contradiction. See Figure 5.53 ) 

We form subcases of case Ca based on i
2

• 

Case Cal: 
. 

is useless, a contradiction. See Figure ~.54 ) 

Case Co.2: 

further divisions: 

J
1 

S i 2 < b 1 . Here make three 

l 

120 

, . . ( i) J
2 

1 a
1

• 11,1. his ce.se, G mimics ' MIN, 16. 

5.55 ) 

Bee Fi~ e 

( i i ) j2 = al, i 1 < a2. In this case, G mimics MIN.3 

( See Figure 5.56 ) 

... . 

·-
(ifi) i 1 = a2' j2 = al. In this case, a reductio n of G is , 
mimicked by MAX,11. ( See Figure 5.57 ) 

Case CCl3: b 1 S i 2 S i 1 Here make two further 

divisions: 

(i) i
2 

< i
1

. In this case, G mimics MIN.33. ( See Fiiure 
-. 

5. 58 ' ) 

-...... 

,, 
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(ii) i
2 

= i 1 . In this case, a reduction of G is mimicked 

by MAX.10. ( See Figure 5.59 ) 

' 

P3 

Case Ca4: i 1 < i 2 ~ a 2 • Here make two further 
! 

divisions: 

(i) a
1 

= j
2

. In this case, G mimics MIN.36. ( See Figure 

5 60 1 

(ii) a 1 < j 2 . In this case, G mimics MIN.37. ( See Figure 

5.61 

> 

Case Ca5: 

G has type D ~d\e. Interchanging the roles of a~a 1 and 

See Figure 5 : 62 >. 

Case Ca6: i 2 = b
2

• In this case, a reduction 

of G is mimicked by MAX.9. ( See Figure 5.63 

Case Cp •is subdivided as fol~ows depending on i 2 : 

Case cj,~. 

ia useless, a contradiction. ( See Figure 5.64 ) 

) . 



.I 

• 
Q1 

1 

a, 
1 

j I b1 
.. 2 . . 

Figure 5. 59 

i l '2 
3 · . . 4 

Figure 5.60 

Figure 5.61 
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Case Cp2: 

rise to case Ca3 or Ca4. In this case, a reduction of G 

is mimicked by MAX.2. ( See Figure 5.65 
' 

Case Cp3: · ~ 2 < i 2 , ( Thus assume 1 2 = b 2 , 

since G has no edges of type D. ). Here make two further 

divisions: 

(i) jl = j 2 • In this case, a reduction .of G is mimicked 

by MAX.4. 

( Se~ Figure 5.66 ) 

126 

J 

(ii) jl < -j 2. In this case, G mimics MIN.38. See Fi1ure 

5.-67 ) . . I 

' " - .. 
' -"~ I. . .. . . • ....' & ~ .. -·: ; , 

Case C, is subdivided as follows dependin1 on i 2 : 

Case c,1: 

is useless, a contradiction . See Fi1ure 5.68 ) 

• ' 
, 

c-, 2: i 1 • < i2 < b.2. In this case, if 

il < a2 then G mimics MIN.55. ( See Fi1ure 5.69. Here 4 

labels the lesser of a
2

, i 2 w.r.t. P. ) If i 1 ~ a 2 , then 

G mimics MIN.71 . ( See Fi1ure 5.70.) 

, Case ·C13: i 2 = b 2 . _Here interchan1in1 names 

• 

.,. 

, . 

.. 
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of i2j2 and b2bl puts us in case Cp3(ii) ( See Figure 

I 
5.71. ) 

.., 
l 

Case co is subdivided as follows depending on i2: 

Case Co 1: 

is useless, a contradiction. See Figure 5.72 

• 
Case CO2: a

2 
< i

2 
< b

2
. If G has no vertex 

between i 
1 

and j 
2 

on. P, then a reduction of G is mimicked 

y MAX.8. • 

S~e Fiaure 5.73 ) 

However, if there is a vertex x of G between i 1 and 

j
2

, then G mimics MIN.40. · ( See Figure 5 . 74. ) · 

Case C03 i
2 

= b
2

. In this case, a reduction 

of G is mimicked by 
0

MAX.5. See Figure 5.75 ) 

This concludes the subcase when m = 2. In most cases 

we showed that~ mimicked a graph of MIN. In cases Cal, 

Cpl, C~l, C61 1 c~ the edge i 2 j 2 was useless . The other 

cases were: 

Ca3 (ii) wit·h 
. 

< j2, Cp2 - ' 
al 

Ca6, CA4 ( i ) ,.,. 
C62 , Co3 .. 

~ 

Ca2 (iii) 

• 



Figure 5.71 

Figure 5.72 

•'l!. 

Figure 5.73 

. . 

Figure ~ • 74 
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Ca3 (ii) with a 1 = j 2 

We have grouped these cases according to 
. 

similarities which are evident in the ,figures given for 

these cases. To aid the memory ( not wishing the reader 

to have to recall what case Ca3 (ii) edges look like and 

so forth ), we reflect these similarities in a renaming 

of cases; refer to edges falling under cases 

Ca3 (iii), Cp2 

respectively, 

Ca6, C/J3 (i) 

respectively, 

·. CO2, C03 
I 

respectively, 

' Ca2 (iii) 

Ca3 (ii) 

/ 

as type Cl (a), Cl (b) edges 
I 

as type C2 (a), C2 (b) edges 

as type C3 (a), C3 (b) edges 

as type C4 edges, 

as type C5 edges. 

131 

Since these terms will be used in further breakdowns, the 

reader is advised to review the named cases so as to have 

at his finaer tips what the edges of these various types 

look like. 

Useless Bd.ces: 

) 

Next we consider the cases when m ~ 3, and i 2 j 2 satisfies 
• 

the conditions aiven in one f cases Cal, Cpl, C~l, Col, 

Ce.. 



.. 

. 
Edge i 2J 2 falls under Cal: Without loss of 

generality, edge i 2 j 2 forms an M with some edae i
3

j
3 

where j 3 < b 1 . This gives thee subcases: 

... 

'. 

).32 

Subcase- i 3 j 3 is an edge of type Cl(a): Without 
~ 

loss of generality, a 1 S j 2 < j 3 S i 2 < jl < b 1 S i
3 

= 

i 1 . In this case, · a mimics MIN.39. ( See Fiiure 5.76 

Subcase- i3j3 is an edge of type C2 (a) : Without 

loss of gener-ality, al ~ j2 < j3 5 i2 < j l < i3 = b2. In 

this case, G mimics MIN.41. See Figure 5.77 ) 

Suboase- i 3 j 3 is an edae of type Cal: Without 

loss of generality, a 1 5 j 2 < j 3 S i
2 

< i
3 

< j
1

• We make 

a further subdivision: 

0

MIN. 18. 

(i) a 1 < j 2 . In this case, G mimics 

See Figure 5.78 

(ii) a 1 = j , i 1 < a
2

. In this case, G 

mimics MIN.27. { See Figure 5.79 ) 

( i i i ) 

case, a reduction of G is mimicked by MAX.7. ( See igure 

5.80 

1 

•' 

J 



·Figure 5.76 

Figure 5.77 

• 

,. 

Figure 5. 78 

Figure 5. 79 

Fi~u-ce 5.80 
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What happens if i 2 j 2 and i 3 j 3 ar e Cal edges forming an M, 

-a 1 = j 2 , i 1 = a 2 and m > 3 ? We shall see in a moment that 

if m ~ 3 and G has an edge of type Cpl, c~1, Col, or C4, 
" 

then G mimics a graph of MIN. We shall thus assume here 

that G has no such edges. We thus assume that edge i 4 j 4 

falls under one of cases Cal, Cl, C2, C3, C4, C5. 

Since, i 
1 

= a 2 , it follows that G has no edges of 

types Cl(b), C3 or C5. It also follows from previous 

discussion concerning the edges of type Cal that we may 

assume that the only edges forming M's with Cal edges are 

themselves Cal edges. Only a few cases are left: 

G has an edge of type Cl(a) : Here G mimics 

MIN.27. See Figure 5.81. 

G has an edge of type C2: Here G mimics MIN.27. 

See Figure 5.82. -
G has an edge of type C4: Here G mimics MIN,14. 

( See Figure 5.83. 

Every extraskeletal edge of G other than \ 1J 1 

is a Cal edge: By our previous breakdown of the case when 
"', 

every extraskeletal ~dge of G is a type A edge, we may 

assume that G has an dge i 4J4 where 

al = J4 = j2 < J3 S i2 < i3 < i4 < jl < bl S il = a2' · In 
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this case, G mimics MIN.42. ( See Figure 5.84. ) 
. 

This concludes the case where G has an edae of type 

Cal. 

Ed&e i 2~ 2 falls under Cpl: Without loss of 

generality, edge i
2

j
2 

_forms an M with some edge i
3

j
3 

where jl < j 3 < b 1 and/or jl S 1 3 < b 1 • The candidate 

subcases are: 

Subcase- i 3j 3 is an edge of type Cpl: Witho'lft 

loss of generality, jl < j 2 < j 3 S i 2 < i 3 < b 1 . In this 

case, G mimics MIN.15. See Figure 5.85 

Subcase- i 3 j 3 is an edge of type Cl(a). 

( Recall tha·t in case Ca3 we assumed that j
2 

< j 
1

, and 

dismissed most of case Cp2 ( where jl < j
2 

) as being the 

same case under renaming. However, with the presence of 

an additional edae, we must allow the possibility of 

jl < j
2 

as separate. ): Without loss of aenerality, 

jl S j 2 < j 3 S i 2 < i 3 = i 1 . In this case, G mimics 

MIN.16. See Fiaure 5.86 
., 

Subcase- i
3

j
3 

is an edae of type C4: Without 

loss of aenerality, a 1 = j 3 < jl S j 2 S i 3 < i 2 • In this 

case, G mimics MIN.43. See Fiaure 5.87 ) 

,·•. 

\ 



a, 
1 

J2 

2 

2 

'2 
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Figure 5.84 

Figure 5.85 
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Edge i2i2 falls under c~1: Without loss of 

generality, edge i 2 j 2 forms an M with some edge i
3

j
3 

r. 
where b 1 < j 3 5 i 1 and/or b 1 5 i 3 < i

1
. The candidate 

subcases are: 

138 

Subcase- i 3 j 3 is an edge of type C~l: In this 

case G has two type E edges forming an M, and w~ are done 

as in case (1). 

Subcase- i 3 j 3 is an edge of ype Cl(b). Without 

i (_ . i l. In 

this case, G mimics MIN.55. ( See Figure 5.88 ) 

Edge i 2J 2 falls under Col: Without loss of 

generality, edge i
2

j 2 forms an M with some edge i 3 j
3 

where i 1 < j 3 5 a 2 and/or i 1 < i 3 < a 2 . The candidate 

subcases are: 

Subcase- i 3 j 3 is an edge of type Col: In . this 

case G has two type E edges formi 

as in case (1). 

an M, and we are done 

Subcase- i 3 j 3 is an edge of type Cl(b). Without 

loss of generality, jl = j 3 < b 1 i i 1 < j 2 i i 3 < i 2 i 

a 2 . In this case, G mimic~ MIN.15. ( See Figure 5~ 89 

Subcase- i
3

J 3 is an edge of type C3. Actually 

... 
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a, 
1 

.. 

'2 
3 

Figur.e 5. 8 7 

~2 

4 
Figure 5.88 

Figure 5.8~ 

r 

139 

. 
'2 
4 . 



-
140 

1 
in C3 (a), there is no verte~ petween i 

1 
and j

2
' ( = j

3 

here ) so only C3(b) is possible. Without loss of 

generality, b 1 S i 1 < j 2 < j 3 s i
2 

S a
2 

< i 3 . In this 

case, G mimics MIN.41. ( See Figu e 5.90 ) 

. .. 
Edge i 2J 2 falls under c,: Without loss of 

generality, edge i 2 j 2 forms an M with some edge i
3

j
3 

where a 2 < j 3 and/or a
2 

< i 3 . The candidate subcases 

are: .. 
j 

3 
is an e type C•. Without 

loss of generality, a 2 < j 3 < j 2 S i
3 

< i
2

• In this case, 4 

G mimics MIN.56 . 
. 

See Figure 5.91 

Subcase- i3j3 isJ an edge of type "C3(a). Without 

' I 
· loss of generality, il < · 1 s 82 < j2 s i3 < i2 In this J3 . 

I 

case, G mimics MIN.34. ( ,...see Figure 5.92 ) 
I 

This completes the cases where m ~ 3, and i 2 j 2 

satisfies the conditions g · ven in one of cases Cal, Cpl, 

c-, 1 , C6 l , Ct. . / 
No Useless Bdges 

From now on we assume that G does not have edaea of 

types Cal, Cpl, c-,1, C61, Ct.. Thus every extraakele al 

edge of G is of one of types Cl, C2, C3, C4, C5. 
t 

-~ 

' 

.; 
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m = 3: 
' 

Another level of cases, will prove useful. We create 

five new cases: . I 

( 5 . 1 ) G contains a cs edge i2j2. 
~ 

( 5 . 2 ) G contains a C4 edge i2j2, but no C5 edge. 

( 5 . 3) G contains a C3 edge i2j2' but no C -t or C5 edges. 

( 5 . 4 ) G contains a C2 edge i2j2' but no C3, C4 or C5 
.r, 

edges. ....-.... 

( 5. 5) b contains only Cl edges. 

Ca e ( 5 • 1 ) is subdivided according tG i3j3: 
• I 

Note t at i3j3 cannot be a C4 edge, since il .. a2. Also 

I 
i3j 3 ca.. not be a - ·e'i 

"-----
ge, since then i2j2 and i3j3 would 

be equal. .... 

Subcase CS+ C3(a}: Edge i 3 j 3 is a ~3(a) edge. 

In this case, G mimics M!N.44. ( See Figure 5.93 )- . 

Subcase C5 + C3(b): Edge i 3 j 3 is a C3(b) edge. 

We have two possibilities: 

(i) There is a vertex x of P between i 1 

and J
3

• In this case, G mi~ics MIN.~5. 

5.94 
'~ 

See Figure 

(ii) There is no vertex of P between 1 1 

and J3 . In this case, a reduction •of G is mimicked by 

MAX.6. ( See Figure 5.95 ) 

I 
• 

/ , . 

•. 

• 
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\ • • 
; 

• 

Subcase CS+ C2: Edg e i
3

j
3 

is a C2 edge. In 

this case, G mimics MIN. 28. ( See Figu e 5. 96 ). 

Subcase CS+ Cl: Edge i
3

j 3 is a Cl edge. Then 

i 3 j 3 may be assumed to be a Cl(a) edge, or else by 

considering edges i 3 j 3 and i
2

j
2

, G falls under one of 

case Ca3(i), or case Ca4. 

In this case, G mimics MIN.46. See -Figure 5. 97 ) 

Case (5.2) is subdivided according to i
3

j 3 : 

ote that i
3

j
3 

cannot be a C3 edge, since i
1 

= a
2 

. 

. Subcase C4 + C4: Edge i
3

j 3 is a C4 edge. In 

this case, G mimics MIN.5. See Figure 5.98 

Su 

this ' case, G mimics MIN.47. ( See Figure 5.99 

I 

Subcase C4 + Cl{a); Edge i 3 j 3 is a Cl(a) · edge . 
. 

In case Cl(a) ( nee Ca3 ) we assumed without loss of -
generality that j

2 
< j

1
. With an additional C4 edae ~ d 

relabelling this assumption gives way to two 

possib~lities: 

(i) jl 5 i
2 

< j
3

. In this case, G mimics 
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Figure 5.95 

Figure 5.96 

Figur e 5.97 
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Figure S.98 

Figure 5.99 
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MIN , 39. 

( See Figure 5,100 ) 

In this case, G mimics 

MIN.7. 

( See Figure 5.101 ) 

Subcase C4 + Cl(b): Edge i 3 j 3 is a Cl(b) edse. 

In this case, 'G mimics MIN.7. ( See Figure 5.102 ) 

Case (5,3) is subdivided according to i 3 j 3 : 

Subcaae C3 + C3: Edge i 3 j 3 is a C3 edge. We 

have two possibilities: 

(i) At least one of i 2 j 2 , i 3 j 3 is a C3(a) 

edge. In this case, G ·mimi·cs MIN.44··. ( See Figure 5.103 

(ii) Both i
2

j
2

, i
3

j
3 

are C3(b) edges. In 

this case a reduction of G is mimicked by MAX.5 . ( See 

Figure 5.104 
. ) 

Subcase C3 + C2: Edge i 3 j 3 is a C2 edge. We 

have three possibilities: 

(i) Edge i
3

j
3 

is a C2(a) edge. In this 

case G mimics MiN.48. ( See Fisure 5.105 

146 
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(i) ~dge i 2 j 2 is a C3(a) edge. In this 

case G mimics MIN.49. (' See Figure 5.106 ) 

(iii) Edge i 2 j 2 is a C3(b) edge and e?ge 

i
3

j 3 is a C2(b) edge. In this case a reduction of G is 

mimicked by MAX.4. ( See Figure 5.107 ) 

Subcase C3 + C~(a): Edge i 3J 3 is a Cl(a) edge. 

In this case, 0 mimics MIN.SO. ( See - Figure 5.108 ) 

... 

Subcase C3 + Cl(b): Edge i 3J 3 is a Cl(b) edge. 
't 

In this case, G mimics MIN.51. ( See Figure 5.109 ) 

Case (5.4) is subdivided according to i 3 J 3 : 

Subcase C2 + C2: Edge i3J3 is a C2 edge. In 

this case, G mimics MIN.52. ( See Figure 5.110 ) 

Suboaee C2 + Cl: Edge i3J3 is a Cl edge. We 

have three possibiliti es: 

(i) Edge i 3J 3 is a Cl(a) edge. Without 

loss of generality, J 2 . ~ J 3 , otherwise we get case 

Cp3(ii). In this case G mimics MIN.53. ( See Figure 
•. 

5.111 ) 
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(i) Edge i 3 j 3 is a Cl(b) edge, but edae 

i 2 j 2 is a C2(a) edge. In this case G mimics MIN.81. ( See 

Figure 5.112 ) 

(iii) Edge i 2 j 2 is a C2(b) edge and edae 

i 3 j 3 is a Cl(b) edge. In this case a reduction of G is 

mimicked by MAX.3. ( See Figure 5.113 ) 

Case ( 5 . 5 ). is subdivided. Every edge here will be a 

type Cl edge. We may assume that these edges do not 

cross, for otherwise suppose that j 2 < j 3 < i 2 < i 3 _ Then 

G mimics MIN.33. 

See Figure 5.114 

.. 
(i) Edges i 2 j 2 , i

3
j 3 are Cl(a) edges. In 

this case G mimics MIN.54. ( See Figure 5.115 

---~ (ii) Edge i2j2 is a Cl(a) edae and edae 

i3j3 is a Cl(b) edge. We make a distinction: 

j3 < j2 = j 1 < i 1 < i2 = i3• In this 

case G mimics MIN.37. ( See Fiaure 5.116 ) 

ii 
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case G mimics MIN.37. ( See Figure 5.117 ) 

(iii) Edges i 3 j 3 and i 2 j
2 

are Cl(b) edges, 

viz jl = j 2 =j 3 . In this ase a reduction of G is 

mimicked by MAX.2. 

See Figure 5.118 

This completes the case here m = 3. 

m > 3: 

In view o~ the p ~vious section, we may assume that 

( ii >' I 

C3(b) + C3(b), C3(b) + C2(b), C2(b) + Cl(b) or Cl(b)+ 

Cl(b). We consider these cases one by one: 
' 

G \ i ~ 4 falls under C5 + C3(b) (ii): 

We may also assume that G \ i 3 j 3 falls under case CS 

+ C3(b), so that i
4

j 4 is also a C3(b) edge. Say without 

loss that il < j3 < j4 < i3 = i 4 . However, now j3 is a 
• 

vertex of p between i 1 and j 4, and G \ i3 ~ 3 falls under 

case 
I 

cs + C3(b) ( i ) . 

From now on assume that G has no edge of typ CS. 

G \ i 4l 4 falls under C3<bl + C3Cb>; 

We may assume one of two alternatives: 

G \ i
3

j
3 

falls under C3(b) + C3(b). In this 

case G mimics MIN.57. ( See Figure 5.119 ) 

• 
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" 
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I 

G \ " i 3J3 falls under C3(b) + C2(b). In this 

case G mimics MIN.58. ( See Figure 5.120 ) . 

We assume from now on that G contains no type C3 

edges. 

G \ i 4l 4 falls under C2(b) + Cl(b): 
. 

Here, if i 4 j 4 falls into type s C2 or Cl(a) 1 then G 
. 

i 3 j 3 fall~ under a pase previously disposed of. We may 

therefore assume t~at i 4 j 4 is an edge o~ ty e Cl ( ). 

Without loss of generality, say that 

jl = j 3 = J4 < i 4 < ~ 3 < i 1 . In this case G mimics 

. ' 
MI .59. See Figure 5.121 ) 

/ 
G \ i 4l 4 falls under Cl (b)/ + Cl (bl: 

Assume without loss of generalit that i 4 J 4 is a Cl(b) 

edge, and 

J 4 = j 3 = j 2 = J 1 < i 1 < i 2 < i 3 < i 4 . In this cae~ G 

mimics MIN.60. ( See Figure 5.122 ) 

' 
This concludes our classification, 

this chapter's theorem. 

I 

the proof of 
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Chapter 6: One Hump Digraphs 

Definition: Let G be a one hump digraph. Then by the 

definition of one hump digraphs, we can write vert(G) : 
~ 

vert(P) where P . ~s a directed Hamiltonian path in G. &lso 

G has at least.one additional edge c 1d 1 where c
1 

is h 

terminal vertex of P, d 1 the initial ertex of P. Call 

Pu c 1d 1 the skeleton of G. Any dge of G whi c h is not in 

the skeleton is called an . ex ra-skeletal edge o f G. 

Lemma 6.1: Let G b~ a one hump digraph with no 

useless edges, not _mimicking a digr5:ph .in ~11. · . \ ma , 

choose a skel e on PU c 1d 1 for G so _that with r sp c t o 

P, e ve r y x tr - s k le tal edg e o f G is a back dge. 

Pr- o of: Let· Q be · he subgraph of G \ cldl indu ed by 

P. L J b the strongly connected component of Q 

c o n aining C 1 • Let us suppose that we have chosen p to 

_make I J I as large as possible; We will show that in 
• 

, his case, every extra-skeletal edge of G is a back edge 

with respect to . P. 

Suppose that G has an edge kl which is a forward 

edge with respect to P. 

Case 1: We have k, l ~ vert(J). 

Then there is a cycle' c in J containina the edae kl. But . 

the intersection of cycles Pu c 1d 1 and C is not 

connected, so G mimics MIN. 1 or MIN. 2 by ,the Intersection 

.,, 
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L~mma. ( See Figure 6.1 ) 

Case 2: We have k e yerti Q \ J ), 1 e vert(J). 

Th~n we find a new skel~~on for Q replacing c 1d 1 by the 

• edg~ k,-~ ';'here· m is. ' the successor .of k in P, !ind 
\.. 

replacing P by the. path P' in PU c 1d 1 from m to k. Then 

the strongly connected component of G \ m contains 1, 

hence all of Ju { k I, contradi c ting our choice of P. 

_( See Figure 6.2 

Case 3~ We have k, l Evert( Q \ J ) . 
.... 

py the last two cases, 
"> 

-we may suppose that every forward 

159 

~dge of G with respect to P has both ends in Q \ J. 

However, by the maximality of J, we may assume that J 

contains more than one v rtex, for if we pick P to end at 

k, then J contains ( k, l } . Thus~ has a back edge, and 

contains some M, since G has no ·useless edges. ~hen G 

mimics MIN.18. See Figure 6.3. 

We therefore conclude hlat every edge of G is a back 

edae with res~ect to P.a 
. 

· froof of Theorem 3.10: btte probf of this theorem, 

which takes up the body of this chapter, precedes by 

classifyina the one hump digraphs. As us~, assume that 
, ' 

-
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G is without useless edg' 

extra-skeletal edge of G .l 

• 

W~ can assume that every 

a back edge. 

161 

It is in this chapter that the "stripping" proce~ure 

introduced in the last ' chapter comes ii1to its own. 

"Stripping " away edge c 1d
1 

from G, we form cases based on 

the strongly connected components of G \ c 1d . A strongly 
. ( 

\ 
connected component of G: \ ci~l whfch conta i s more than 

one vertex is called a bubble. We can assume that G has 

at least one bubble, since G contains an H. Our first 

level of ~ubdivisions in the one hump case depends on the .. 
number of .bubbles in G. 

or 

G has three or more bubbles 

G has two bubbles 

G has only one bubble. f • 

We look ~t these possibilities one by one: 

Subcase ., G contains three or more bubbles : 

, ·.~ Wit~ou; loss of generality, we may assume that ~ has back 

edge~ i 1 J 1 , i 2 J 2 , i 3 J 3 , · i 4 J 4 , i •5 J 5 ,"" i 6 J 6 where 

jl< j2 S il < i2 < J3 < j4 S i3 < i4 < J5 < j6 ~ is< i6. 
f 

This is because each bubble of G must contain an H, as in 

.. Case 3 of Lemma 6. 1. In this case G mimics. HIN. 61. ( See 

figure 6.4. 

Subcase: ~ contains two bubbles. Refer to· the 

bubbles of Gas c 1 and c
2 

respectively. Wtthout loss of 
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generality we may assume that each of c 1 , c2 is a one 

hump, two hump or three homp digraph, by the 

classification lemma. For the sake of definiteness, say 

that the vertices of c 1 precede those of c2 on P. 

However, •note that if we so desire, we can reverse the 

order of c 1 and c 2 on P by putting G into normal form in 

a different way: Simply rotate the skeleton of a: ( See 

Figure 6.5. ) Thus c 1 and c2 are interchangeable. We now 

form cases based on c1 and c2 . 

Subcase a: One of c
1

, c2 is , a three hump 
I 

digrapW. Assume without loss of generality that c 1 is~ 

three hump digraph. In any case, c 2 contains an M. 

Therefore G has back edges i 1j
1

, i 2 j 2 , i
3

j
3

, i 4 j 4 , i
5

j
5 
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where jl < j 2 ~ i 1 < j 3 ~ i 2 < i 3 < j 4 < j 5 ~ i 4 < i 5 : In \ 

·this case G mimics MIN.62. ( See Figure 6.6. 

digraphs. 

~ase p: Both of c
1

, c2 are two hump 

Subcase ., : One of Cl' c2 is a two hump 

digraph, and the other is a one hump digraph. 

subcase o: Both of Cl' c2 are one hump 

di1rapbs. 

The point of our "stripping" classification is to 
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make use here of work done in the previous chapters. 

/ Consider the situation in subcase p. Here G has at least 

four extra-ske+etal edges a 2 a 1 , b 2b 1 , - a 2ai, b2bi where 

the skeleton of ' c
1 

consists of the edges a
2

a
1

, b 2 b 1 and 

the path in P from a 1 to b 2 , and the skeleton of c 2 

consists of the edges a 2ai, b 2hi and the path in P from 

ai to b2. Any further extra-skeletal edges of G appear as 

extra-skelet·a1 edges in c 1 or c
2

, and this leads to the 

· following sLibdivis1on of s'ubc ·ase p: 

extra-skeletal edges 

Subcia~e p;l: G has e i actly four 
' "' 

Recall that the skele-t-Gn of G is a cycle. This cycle 

gives a circular order ta the vertices of G. i/e tave two 

p'o s s i bi l it i es : 

·( i) No v~tex of" c 1 ist· a predecessor of a vertex of c2 in 

the circular orqer, and no vertex of c2 is a predecessor 

of a vertex of c1 in the circ~lar order. In this case, 
., . 

without loss of aenerality up to rotation of the 

skeleton, ~e may assume that G ~as a ve:tex « ~her~ 

b 2 < x < ai, and that d 1 < a 1 . Then G mimics MIN,63. 
> 

( See Fiaure 6.7. 

(ii) Case (i) does not occur. Thus if G has a vertex x 

where b 2 .< x < ai then d 1 = a 1 and b 2• = c 1 ·• In this cas.e, 

a reduction of G ts mimicked . by MAX.26i ( See 

,.. 

.. 

,. . 

J 
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Subcase p.2: G has a fifth 

extra-skel etal edge. 

167 

With6~ E loss of generality, ( up to rotation and 

reversal ), c1 has one o r more extra-skeletal edges 

falling into the categories of the preyious chapter. This 

gives five possibilities: 

(i) c
1 

has an edge of typ~ B of the previoµs 
-"·,; ,., . . ~ 

cha.pter. In th.is, .. ca.ft .G ra,illlics MIN. 64• • ( See F1gu;-~ • ,··• 
6.9. 

,_ .. _,,,, 
~ ,' 

,. ..... • 

(ii) c
1 

has an edge of type C of the previous 

chapter. In this case G mimics M~N.66. (• See Figure 

6. 10. ) 

(iii) c1 has an edae , of type D of the previous 

chapter. In this ~ ase G mimics MIN.65. ( See Figure 

6.11 ;. ) 

(iv) Cl has ~o edaes of types B, C, D, h~wever, .. 
d es have an edae of type E of the previous chapter. . 

\ 

Cl 

We 

may thus_ assume that c1 has two type E edaes formina an 

M, and, as in the previous chapter, c 1 mimics MIN.15. 

( See Fiaure 6.12 
/ 

... 

.r 

,. 

, 
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Figure 6.8 
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(v) c
1 

has no edges of types B, C, D, however, c 1 

does have an edge of type A of the previous chapter. We 

may thus assume that c 1 has two type A edges forming an 

H, In this case, G. mimics MIN.66. ( Se igure 6. 13. 

This c oncludes our consideration of subcase p. We 

next consider subc ase ~. Without loss of generality, 

assume tha't C 
1 

is a one nump digraph, an~ c2 i s ' a · two 

169 

hump digraph. Repeatedly apply our stripping procedur~ to , 

c1 . Eventua_ll_y we arr i ve at a digr~ ph i which is ~ _two 

hump or three hump digraph. If Ci is a three h4mp 
✓ . 

digraph, then G mimics a- digraph of MIN as in -s'4bcase a.. 
,. ,-.,,. . ~ . 

Therefore assume without· loss "of~ genel"'al ~ty that Ci is a 

two hump digraph. , 

By our examination of subcase p, we may assume that 

neither Ci ·nor c2 has extra-skeletal edges. Then without • • 

loss of generality, using rotations and reflections, the r--, , 
structure of G is as follows: 

O has extra-skeletal edges •. 

a2al, b2bl, a2ai, b2bit iljl, i2j2, ..• , isjs 

with a 1 < bl S ~2 < ~ 2 < ~ai . <, bi S a 2 <_b 2 . . 
J 8 S J 

8 
S • • • S j 1 S a 1 < o2 - . i 1 S 

S i 8 _ 1 S i 8 < ai· 
and not both J 1 : a1 and 1

1 
= b

2 
( since otherwise edge 

, 



• i:.. .... 

C •; 

• 

,, 
.. 

,• 

-., 
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~. 

Figure· 6.12 . 
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,. Figure 6.13 
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i 1j 1 woul~ be ~seless, no properly 

formed by a 2a 1 , b 2b 1 ) . Without loss of generality, 

( again up to reversal and rotation of G r, say that jl -

We make the following subcases, 

Subcase ~.l: We haves ' = l. 

There are two possibilities. 
I 

( i) i 1 ~ b 2 . In this case G mimica MIN. 18. ( See ~gure 

6. 14. 

(ii) i 1 = b 2 . If G has a vertex x between b 2 and ai, then 

G mimics MIN.63. See Figure 6.15. 

If G has no vertex between b 2 and ai, then a reduction o f 

G is mimicked by MAX.26. See Figure 6.16 . 

Subcase 7.2: We haves> 1. 

By subcase 7,1, we may assume that i 2 = i 1 = b 2 , and 

thus that j 2 < j 1 . In this case G mimics MIN. 67. ( See 
~ 

Figure 6.17. 

This concludes our examination of subcase 7. 

~ 

We next consider subcase ~. We may assume without 

• 
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loss of generality that a ter iterated stripping c
1 

and 
, 

c 2 ire two hump digraphs. Using rotation and reflection 

and without loss of generality that 

one of the following two ca~es occurs: . 
S~bcase 0,1: G has extra-skeletal 

edges a 2a 1 , b 2b 1 ,_ a 2ai, b 2bi, i 1j i ' • i 2 j 2 where 

jl < al < bl S a2 < b2 = il < j2 < ai < bi S a2 < b2: i2 

In this case G mimics MIN.63. ( See Figure 6.18. 

Subcase o.2: G has extra-skeletal 

edges a
2

a
1

, b
2

b
1

, a
2

a 1, b
2

b 1, i 1j 1 , i 2 j 2 where 

j 1 = a 1 < b 1 S a 2 < b 2 < i 1 < j 2 , -a i < b i S a 2 < b 2 = i 2 

In this case G mimics MIN.68. ( See Figure 6.19. 

This concludes our amination of subcase o, and 

hence our consideration of the case when G has exactly 

two bubbles. 

Subcase: G has exactly one bubble: 
~ 

Let the bubble be called Cl. If Cl is a one hump digraph, 

then suppose that under Cl we have two disjoint M's: viz. 

G has edges a 2a 1 , b2bl' 
I I 

8281' bibi I iljl' i2j2 where 

j2 ~ jl s al < bl s a2 < b2 < a' 1 < b' 
1 s a' 2 < b' 2 5 i 1 5 i2 

and dl = j2' cl i2. By rotation, assume that dl = j 1 . 

# 

.. 
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Figure 6.17 

Figure 6.18 
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In this case, G mimics MIN. 69 . · ( See Figure 6, 20, ) 

We may thus suppose without loss of generility that 

whenever G is a digraph with only one bubble, by repeated 

iteration of the stripping probedure on c 1 we will 

eventually arrive at a digraph C' which is a two or three 

hump digraph. This justifies the following case 

breakdown: 

Subca§e a: Ci is a three hump digraph. 

Subcase p: c
1

• is a two hump digraph. 

In pursuing subcase a, by our classification of the three 

hump case, we may assume without l oa --- nerality that 

ei the-F (i) Ci f alls under case A2(b), j = b
1 

of 

the classification of the three hump digraphs 

or (ii) c1 ' is i ts own skeleton. 

In subcase a (i), G m' mics MIN.70, ( See Figure 

6 . 21. 

In subcase a (ii), we make a distinction, de ending 

on whether vert(G) = vert(Cil• 

If vert(G) = vert(Ci) then a reduction of G is 

mimicked by MAX.25, ( See Figure 6.22. ) 
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Otherwise, G mimics MIN.71. ( See Figure 6.23. 

We now1 turn to subcase p. 

In this case, G has { at least ) certain edges a 2a 1 , 

b 2b 1 ; i 1 j 1 , i 2 j 2 , ••• , isj.s where 

dl = js 5 je-1 5 ••• 5 jl 5 al < bl S a2 < ~2 S il S •.• 

S is= c 1 . Here a 2aa, b 2b 1 , along with the piece of P 

~rom a 1 to b 2 form the skeleton of Ci• The edges irjr are 

those that were stripped from G to arrive at Ci· We now 

make cases depending on the form of Ci , 
Subcase- Cl is its own skeleton: In this case, 

since edge i 1 j 1 is not useless, we cannot have both jl = 

a
1 

and i
1 

= b
2

• Without loss of generality ( up to 

reflection ), say that i 1 ~ b 2 • We ~ake further 

subdivision baaed on the ij edges. 

Subcase- s = 1: In this case, a
1 

reduction 

of G is mimicked by MAX,26, See Figure 6.24. ) 

Subcase- s = 2: We have two possibilities. 

(i) jl - a 1 • Without loss of generality, i 1 - i 2 . In this 

case G mimics MIN 18. ( See Figure 6.25, ) 

(ii) J 1 = a 1 . In this case ( without loss of generality 

• 



up to a rotation ) , j 2 = a 1 also. Then a reduction of G 

is mimicked by MAX.24. See Figure 6.26. ) 

179 

Subcase- s = 3: Because of our 

observations in the s = 2 case, we may now without loss 

of generality assume that j
3 

= j
2 

= jl = a
1

. Then a " 

tion of G is mimicked by MAX.24. ( See Figure 

6.27. 

Subcase- s > 3: Here G mimics MIN.72. 

( See Figure 6.28. 

This finishes the case where Ci is its own skeleton. 

Returning to the theme of our stripping procedure, we use 

the two hump classification of the previou~ chapter on 

Subcaae- Ci has an edge of type D: Here G 
mimics MIN.35. ( gee Figure 6.29. 

From now on assume that G has no edges of type D. 

Subcase- Gi has edges of type E onlx: Here 

Ci must have two type E edges forming an M, and Ci mim cs 

MIN,15 as we have already seen, 
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Subcase- Ci has edges of types A and E 

21l.lx,: We may assu~e by the foregoing su~case that Ci has ' 

no edae of type E. Thus Ci has two type A edges k 11 1 , 

k 212 formina an M~ By the case where Ci is its own 

skeleton ~nd jl ~ a 1 , assume that 

a
1 

= 1
1 

< 1 2 < 
1 

< k 2 < b 1 . ( See Figure 5.22. ) We 

make further subdivisions based on the ij edges. 

Subcase- s > 1 : · In this case, G mimics 

Mr . 66. ( See Figure 6. 30. ) 

Subcase- s = 1: If i 1 - b 2 , then G mimics 

MIN. 66. ( See Fiaure 6.31. ) 

We assume from here on that i 1 ~ b 2 . I Ci has only two 

extra-skeletal edaes, then a reductio of G is mimicked 

by MAX,23. ( See Figure 6.32. ) 

If Ci has a third extra-skeletal edae k 313 , we may 
. 

assume without loss of aenerality, by the classification 

done in the previous chapter, that 13 = a 1 , k 3 > k 2 • 

( See Fiaure 5.33. In this cas~, - G mimics MIN.73. ( See 

Fi1ure 6.33. 
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This completes those case where all edges of Ci are of 

· types A, E or D of the previous chapter . 
. 

Subcase- Ci has gn edge of t~e B, but no 

type c edies: Fr our experience in the previous 
. 

chapter, we may assume that every extra-skeletal edge of 

Ci is ~it&er a normal type B edge, or a reversed type B 

edge wh e re the normal aRd reversed edges never cross to 

form any .M. Let 

,k 1 a 1, k2al, 

bl ~ kl < k2 ( ... 

he extra-skeletal edges of C' be 
1 

... ' k pal• b21 l • b2l2' ••• t b2¾. 

k < 1 < l q-1 < ••• < 11 5 a2' p q 
p 

We base our case division here on p, q and s: 

I 
g = O: 

s = 1: 
... 

Assume by rotation ) that a
1 

= j
1

. 

If 1 1 = b 2 , then the edie i
1

j
1 

is useless, a 

contradiction. See Figure 6.34. 

where 

> q. 

In fact, for the case where every edge of Ci is a 

type B edie, we may assume that a 1 ,= j 1 , i 1 - b 2 • 

If i 1 - b 2 , then if_ p ~ 3, G mimics MIN.74. 

6.35. 

See Figure 

• 

If i 1 - b 2 and if p < 3, then a reduction of G ~ 

mimicked by MAX,22. See Fii e 6.36. 
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s > 1 :, 

Again assume that jl = j 2 = a 1 . 

As i 1 - b2' G mimics MI . 7 5 . ( Se e Figure 6.37. 

g > 0: 

Assume that j 1 ' = al. 

As il - b2' G mimics MIN.76. ( See Figure 6.38. 

This finishes the case when Ci has no type C edges. 

Subcase- Ci has an edge of type C: Call 

the type C edge kl. ( Recall Figure 5.5. 
- ·.i;, 

Subcase- Ci has only one 

extra-skeletal edge: 

s > 2: Here G mimics one of MIN.18 or MIN.78, d pending 

on whether kl is a normal or reversed type C edge in c1. 
( See Figures 6.39 and 6.40. Note that even if jl = a 1 

and i 1 = b 2 , iljl co~tains the M formed by kl and b 2b 1 , 

and is not u~eless. 

s = 2: With only two ij edges, we may use reversal and 

rotation to assume that kl is a normal type C edge, and 

jl = j2 =al. 

If k < a 2 , then G mimics MIN.79. ( See Figure 

.. 6.41. 

186 
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Figure 6.39 

Fieure 6.40 

... 



If i 1 > b 2 ~ then G mimics MIN.18 ( See Figure 

6.42. 

If k = a 2 and i 1 = b 2 then a reduction of G is 

mimicked by MAX. 21. ( See Figure 6. 43. ) 

188 

s = 1: Here a reduction of G is J imicked by MAX.20. ( ee 

Fiaure 6.41, 

\ 
Thjs concludes the case when Ci has only one 

extra-skeletal edge. 

Subcase- Ci has two ex~ra-skeletal edges : 

Let the extra-skeletal edaes of Ci be k 11 1 , k 21 2 . By _the 

analysis of the previous chaptert we make the following 

case division. 

Ci falls under Cl(a): ( Thus Ci is as depicted in 

Fiaure 5,59, ) Here G mim cs MIN.SO. ( See Figure 6.45. 

Ci falls under Cl(b): ( Thus Ci is as d picted in 

Fi1ure 5.65. ) Here G mimic~ MIN.St. ( See Fiaure 6.46 . 
• 

Ci falls under C2(a): ( Thus Ci is as depicted in 

Fi1ure 5.63. ) Here G mimics MIN.82. -·( See Fiaure 6.47. 

,, 
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Figure _6.45 

Figure 6.46 

Figure 6.47 
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Ci falls under C2(b): ( Thus Ci is as depicted in 

Figure 5.66. ) We have two possibilities. ... 
( i) is - b 2 . Here G mimics MI. . . 83. ( See Figure 6. 48. 

(ii) is= b 2 . By rotation we ma y assume that this means 

191 

s = 1. Here a reduction of G is , mimi c ked by 1AX.19. ( See 

Figure 6. 49. ) 

Ci falls under C3(a): ( Thus Ci is as depicted in 

Figure 5.73. ) Here G mimics MIN.84. ( See Fiaur 6.50. 

Ci falls unde1 C3(b): ( Thus c1 is as depicted in 

Figure 5. 7 5. ) We have two possib i lities. 

(i) is= b 2 . By rotation we ~ay assume that this means 

s = 1. Here a reduction of G is mimicked by MAX.18. ( See 

Figu re 6.51. ) 

(ii) is - b 2 . Here G mimics MI .85. ( See Fiaure 6.52. ) 

~__,---~.,.___._..-=-.__"""""'~: ( Thus Ci is as depicted in 

Figure 5.57. G mimics MIN.86. ( See Fiaure 6.53. 

Ci falls under C5: ( Thus c1 is as depicted in 

Figure 5.60. ) We have two possibilities. 

• 
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Figure 6.49 
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Figure 6.50 

\ 
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(i) , is ~ b 2 . Here G mimics MIN.87. ( See Figure 6.54. ) 

(ii) is= b 2 . By rotation we 

s = 1. Here a reduction of G is mimi 

Figure 6.55. ) 

( See 

Subcas e- Ci has three extra-skeletal 

edges: 

We may again -fall back on the classification of the 

previous chapter . Also, by the foregoing section, a~ume 

that i 1 = b 2 and thats= 1. 

Subcase- Ci falls nder case C3(b) + C3(b}: ( Thus 

Ci is as depicted in Figure 5.104. ) Here G mimics 

MIN.88. ( See Figure 6.56. ) 

Subcase- Ci falls under case C3(b> + C2<b>: < Thus 

Ci is as depicted in Figure 5.107. ) Here G mimics 

MIN.89. ( See Figure 6.57. ) 

Subcase- Gi falls under case cs+ C3(b>: Thus ci 

is as depicted in Figure 5.95. ) Here G mimics MIN.49. 

( See Figure 6. 58. ) 

This concludes our proof. 
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Chagier 7; Le~mas On Substitutions 

Let S = xl, Xz, X3 } , T be alphabets. Let 

* * g: S • T be a substitution. we produce certain 

conditions on g which are sufficient to show that 

lo,) 
g(h (x

2
)) is non-repetitive where his substitution 2.1. 

That is, 

h(x 1 ) = X3 

h(x 2 ) = x2x3xl ( ·Sub 2. 1 ) 

h(x 3 ) = x2xl. 

First we note that if the g(x.) each start in a 
l 

distinctive way, but have sufficiently different endings, 

then g works. 

Different Endings Lemma: Let A, B be alphabets, T = 

AU B, An B = •· Suppose that for each i, we an write 

* g(xi) = mbi, m • A, bi• B so that the following 

conditions hold: 

(1) If for 1 ~ i, j, k ~ 3 we can write bk= bibj 

where bi = bi'b'.', b. = b'.b':, then either b~ = '-, j = k, 
l J J J l 

orb" - & j - , i = k •• Thus we cannot glue together b. from a 
l 

prefix of b. an~ a suffix of bk. 
. . J 

(2) The word b. is non-repetitive for each i. 
l 

Then l(hn(x
2

)) is non-repetitive for all n. 

Proof; By Lem.ma 2.5, i't suffices to show that the 
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following conditiQns hold: 

l') If g( x ) 1s a subwora of g(y), where x, y • S, then 

X: y, 

3') If w Es* is a non -: repetitive word, I w · I = 3 , then 

g(w) is non-repet i t i ve. 

Clearly c ondition l ') h o lds: If mb . ' is a subword of 
l 

mb . we must have b . a prefix of b .~ whence i = j, by 
J l J -

c ondition 1). 

• 
It remains to show that condition 3') is fulfilled. 
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Suppose g(x . x .xk) contains a repetition for some i, j, k, 
l J 

i - j, j - k. Thus mb . mb.mbk contains a repetition vv, 
1 J 

v - ~. The word vv m~st contain exactly zero or two m's. 

If vv contains no m, then vv is a subword of b . for some 
J 

j, contradicting 2).- On the other hand, if vv contains 

the first wo m's of mb . mb .mbk' tben b . is a prefix of 
l. J l 

b., impossible s i nce i • j. 
J 

f 

Finally, if vv contains the last two m's of 
• 

mb. mb .mbk, then we can write v = b'.'mb ~ = b''.mbk' , · where 
l. J 1 J J 

bi= b1b1, bj = bjbj, bk - bkbk. But then lininl up the 
. 

m's, we get b~' = b' '. , b'. = bk', so that b . = b~b'.' , 
l. J J - J ...-n l 

contradicting 1). ~e conclude that a(xixjxk~ is 

non-Fepetitive whenever i ~ j, j • k, so that, fulfills 

condi t j ,P,ll..._3.--L°' 

J . 
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Block/Separator Lemma: Suppose that we can write 

g(xi) = nb0nbi ; lnbi, i = 1, 2, 3 

where b. Es*, each i, some alphabet B, n _e A, 
l 

some 
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alphabet A, such that An B = •· Suppose further that the 

following · conditions are fulfilled: 

(1) If for j ~ i, j, k $ 4 we can write bk= bibj 

where b. = b!b'.', b. = b'.b''., then either b! = ~ , j = k, 
l l l J J J l 

or b •: = " , i = k . . 
J 

I 

( 2) • If 1 S i < j S 4, then I bi I < I b j I . 
(3) The word b . is non - repetitive,~ S i 5 4. 

l 

Then g(hn(x 2 )) is non-repetitive for all 

proof: Our proof is analogous to the previous proof, but 
... 

somewhat more involved. Aaain cond{tion 1') of Lemma 2.5 

will hold, It remains to show that condition 3') holds. 

Suppose g(x.x .xk) contains a repetition for some 
l J 

i,J,k, i ,t j, j ,t k. Then we get 

nb 0nbpnbq nb0nbrnbs n~0nbt~bu containing A repetition v , 

y ,. 6.. 

Cas~ A: The word v contains nb0n as a subword. 

Examinina i, we see that vv must contain this subword 
. 
exactly twice. If vv contains the first 

. 
of this subword in a(x.x.xk) tben b is a 

~ J p 

By condition (1), p = r, so that i = j, a contradiction. 

Thus it must be the second two occurrences of nb
0

n 

/ 

-· .. '\_, 
J 



which are in vv, and lining thinga up using these 

matching subwords in vv, we write 

(bpnbq)" = (brnb
9
)", (b . nb )' .. =· ·(btnb )', 

r s . • : u 
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where as usual x' (x") stands for a .p·refix (suffix) of x, 

and brnb
8 

= (brnbs)' (brnb
5

) ·• • . But if n i's in ( brnbs) '', 

then b = b , so that s = q; -and i '··= j, a c ontradiction. s q 

However, then n must be in ' (•b nb ) ' . r s ' 

again giving a contradicti ~. We conclude that nb
0

n is 

not a subword of v. 

Case B: The word vv 6ont~~ns a subword nb
0

n, but v 
... 

does not. 

Thus nb
0

n "straddles the border" between the two v's of 

vv, and we write V = Zn\:>o, = bo "nY, where ~o, bo ,, = bo, 

* .. 
Z, YE ( Au B ) . Thus w = g(x . x.xk) contains a subword 

l J 
* of the form b

0
"nXnb

0
nxb

0
', X ~ (Au B) . However, now 

by condition (1), we may assume that w contains either 

I 

nb
0

nXnb
0

nx or Xnb
0

nXnb
0

n as a subword, and we are back tn 

Case A, which has already been dealt with. 
' 

Case C: The repetition vv does not contain nb 0n. 

Thus without loss of generality, up to rein~exina, assume 

that vv is a subword of b 0 nbrnbsnb0 . 

By condition (3), vv contains at . least one n. Thus 

vv contains exactly two n's. If the first two n's here 

are in V";, •then b is a pref ix of b , contradictina ( 1) . 
.."1( r s 



) 

• 

) 

If the second two n's are in vv, 

and get the usual contradiction. 

then we write b = b'b" s O r 

where 

We conclude that g(x.x.xk) is non-repetitive.a 
l J 

Long/Short Lemma: Suppose that we can write 

g(xl) = mb 1e 1 

g(x2) = mb 2e 1b
1

e 2 

g(x3) = mb 2e 2 

for each i, b. , e . E A*, some alphabet A, m E 
l l 

some alphabet B, such that An B =•·Then if 

B, 

(3) If w is a common b
1

, ya common suffix 

of e 1 , e2' then I WV 

( 4 ) Any common b 2ej is of length < bl 

( 5 ) Any common suffi of bi el, bje 2 is of length s el 

then g is suitable. 

Proof: We show that g is suitable, i.e. 

k S 3, i, j, k distinct 

2) For 1 Si S 3, one cannot write g(x . ) = uw = wz, 
l 

u, w, z non-empty words over T. 

(3) If w • s* is a non-repetitive word with I w I 
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S 3, and~~ x 1x 3x 1 , x
2

x 3x
2

, then g(w is non-repetitive. 
,, 



,, 

Conditions 1) and 2) are easily checked. It remains 

to show that condition 3) holds. It ill be useful to 

first consider the case when lwl = 2. 
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w = x 1x.21.. Here g(w) = mb 1e 1mb 2e 1mb 1e 2 . Supp·o·se that vv is 

a subword of g(w) for some v ~ i. By condition (1), 

repetition v must include the sec ond m of g(w); any other 

repetition would be entirely inside g(x
1

) or g(x
2
). There 

are two possibilities: 

Case 1: The first two m's are in vv. In this case we 

must have m f 0 r a prefix of v, so that v = mb
1
e

1
. 

Therefore, mb 1e 1 =vis a p~efix of b 2e 1 . Thus b 1e 1 is a 

prefix of b 2e 1 . This is a contradiction of condition (4), 

b 1 I· Thus g(w) is non-repetitive in this 

case. 

Case 2: The second two m's are in vv. Thus vv is 

contained in the word b
1

e 1mb2e 1mb 1e 2 . Using the m's- to 

line up the pieces v, we have (b 1e 1 )" = (b2e 1 )", (b2e 1 )' 

= (b
1

e
2
)' where (b . e.)' stands for a non-empty prefix of 

l J • 

bie., (b.e.)" stands for a non-empty suffix of b.e., and 
J l J l J 

(b 2e
1
)'(b

2
e

1
)" = b

2
e

1
. However, by condition (4 , 

I (b 2e 1 )' I i I b 1 I· Lining up the e 1 's, we can 

therefore write b 2 = b
1

1 b 1", where b 1· = xb 1" =1)1 'y for 

·• some x,y. Since I b 2 j > lb 1 j, we can write b 1 " = zy, b 1 ' 

I 
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= xz for some z - ~. But then b2 contains the repetition 

zz, a contradiction. We call this an overlap 

araument. ), Thus g(w) can have no repetition. 

w = x1K3~ I~ this case g(w) =- mb 1e 1mb2e 2 . Any repetition 

vv involves both m's, and lining things up using the m's, 

we find that b 1e
1

" is a prefix of b 2e 2 , contradicting 

condition (4). 

w = x2~ 1~ Here g(w) = mb 2e
1

mb
1

e 2mb
1

e
1

. Any repetition vv 

must involve the second two m's, ·as the first two are 
/ 

contained in g(x
2

). Then we get (b
2

e
1

)" = (b
1

e
2

)", 

-(b
1

e 2 ) 1 = (~
1

e
1
)', and b

1
e 2 = (b

1
e 2 ) 1 (b

1
e 2 )", Now by 

condition (5), (b
1

e 2 )" must actually be a suffix of e
1 

· alone. Lining up b
1

1 s, we get e
2 

·= e
1

1 e
1

" and we use an 

overlap araument as in a previous case. 

!:!.:....,K.2~3~ We Jet a(w) = mb 2e 1mb 1e 2mb 2e 2 . Any repetition 

involves the last two m's. We ar1ue similarly to the 

previous case, except now we get I (b 1e 2 ) 1 

contradiction. 

) 

• 
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repetition, we would have mb 2e 2 a pre ~ix of mb
1

e
1

, which 

is absurd because of the respective lengths. 

w = x3~ 2~ We have g(w) = mb 2e 2mb 2e 1mb 1e 2 . Any r~petition 

must match the first two m's, forcing b 2e 2 to be a prefix 

of mb2 e 1 , which is absurd ; 

• We have thus established that g behaves well on the 

two -letter words. It remains to consider the cases when 

lwl = 3: 

w = x 1~ 2~ 1~ Here g(w) = mb 1e 1mb 2e 1mb 1e 2mb 1e 1 . Since the g 

behaves well on two letter words, any repetition vv in 

g(w) must straddle the images of all three letters here, 

thus containing at least the last three m's. We conclude 

that ( sinrie repetitions contain an even number of m's ) 

all four m's are in vv. This implies that 

mb
1

e
1 

~ mb
1

e 2 , which is absurd, as the lengths differ. 

w = x1~ 2K3~ Here g(w) = mb 1e 1mb 2e 1mb 1e 2mb 2e 2 , and w~ get 

the same contradiction as in the previous case. This 

contradiction will similarly occur for each w of form 

x . x
2

x . . 
l J 

w: XlK3~2: 

Here g(w) = mb 1e 1mb
2

e 2mb2e 1mb
1

e
2

. Here either all four 

\ 
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m's ' . get matched up, or only the central two. If all four 

m's get matched, we get an absurdity involving lengths. 

We therefore assume that the second two m's are matched, 

and write Cb 1e 1 )" ':: Cb2e 2 )", (b2e 2 )' = Cb 2e 1 ) 1 where 

(b .. )' stands for a non-empty . prefix of b . e . , (b . e . )" 
l J l J l J 

stands for a non-empty suffix of biej, and (b 2e 2 )'(b2e 2 )" 

= b 2e 2 • However, by condition (5), I (b2e 2 )" I ~ I e 1 I· 

Lining up the b 2 's we get a contradiction by an o ve rlap 

argument. 

w = x2K 1K2~ Here g(w) = mb 2e 1mb 1e 2mb 1e 1mb 2e 1mb 1e 2 We 

match either the third and fourth m's, the fir s t f o ur 

m's, or the last four m's. 

If the third and fourth m's are matched, af te r our 

usual argument He end up with b 1 a prefix of. b 2 , e
1 

a 

suffix of e 2 . This is forbidd e n b y c onditi o n (3 ) . 

fatching the first four m's gi es our standard 

abs _urdi ty involv i ng length. Thus suppos e the la-st four 

m's 

th e 

are matched. This forces b
1

e
2 

= b
2

e
1

, contradicting 

non-repetitiveness of g (
1
x

2
) = mb

2
e 

1 
mb 

1 
e 

2
. 

x2~ 1~ 3~ Here g(w) = mb 2e 1mb 1e 2mb 1e 1mb 2e 2 . We cannot 

have all four m's in a repetition, as this gives the 
A 

usual contradiction concerning lengths. The alternative 

is that the last two m's are mat·che<f by a repetition and 
. 

here we get the same contradicti~ as in the previous 



, 

case. 

w = x 2K3~ 1 : Here g(w) = mb 2e 1mb 1e 2mb 2e 2mb 1e 1 . Involvin 

7> 
all four m's i n a repe ition is impossible, as usual. 

Howeve r, matching the last two m's gives a contradiction 

b. the overlap argument. 
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w = x 3~ 1~ 2 : He re g(~) = mb 2e 2mb 1e 1mb 2e
1

mb
1

e 2 . Here either 

all four m's get matched up, or only the middle two. If 

all four m's get matched, we get an absurdity involving 

lengths. If the center two m's are matched, then after 
I 

our usual argument we end u~_with b 1 a prefix of b 2 , e 1 a 

suffix of e 2 . Th ~s is forbidden by condition (3). 

w = x 3K1K3~ Here g(w) = mb 2e 2mb 1e 1mb 2e 2 . The first two 

m's cannot be paired. However matching the last two we 

end up with b 1 a prefix of b 2 , e 1 a suffix of e 2 . Tpis is 

forbidden by condition (3). 

mb 1e
1 

= mb 1e 2 , which is absurd, as the lengths differ. 

w = x 3~ 2K
1

~ As we remarked earlier the contradiction of 

the cases w = x 1x 2x 1 , x 1x 2x 3 carries over to this cas~ 

• and the next. 

w = x3K2K3 : See above. 

Having looked at all the short words and finding g 

to be ·well-behaved, we are finished our proof.a 
~ 
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MI. 1 71: To deal with MIN.il, we use some substitutions on 

a five letter alphabet. Let 1: { 1, 2, 3, 4, 5 } • I 1, 2, 

3, 4 be given by 

1(1) = 43 

1(2) = 4321 

1(3) = 432153 

1(4) = 41521 

l ( 5) = 4 1"5 3 

Let k: ( 1, 2, 3, 4; 5 } • ( 1, 2, 3, 4, 5 } be given by 

k(l) = 5123432123451232.J.2343234 

k(2) = 512343212345123212343234512321234 

k(3) = 512343212345123212343234-

5123212345123432345123212343234 

" k(4) = 51234321234512343234512321234 

k(5) = 512343212345123432 45123212343234 

We wish to s -0w that k(lw(4)) is non-repetitive. Consider 

the followina simplified substitution lemma. 

* * Lemma; Let a:A • B be a substitution so that 

(1) If a(a 1 ... an) = X a(e) Y, then for some j, X = 

a(a 1 •. • aj), aj+l = e. 
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( 2) If we can write g ( x . ) " = g ( x . ) ", g ( x . ) ' = g ( xk) ' ,_ 
l J J 

g(xJ. ) = g(x . )'g(x . )" with x' 
J J 

x" ) a prefix ( suffix ) 

••• 'w . n 

Then if vis a non-repetitive word never containing 

x.Xx .Xxk where x . x . xk = w , some r, 1 < r _< n, any word 
l J lJ r . -

X, then g(v) is non-repetitive.w3 ,g(xixjxk) = I w I = ~, 

then g(w) is non-repetitive unless w = w
1

, w
2

, ... , w . 
m 

This result follows from the proo 

clear l y be true of k and 1. The following ist may be 

checked to suffice f or condition (2+ bstituti~ns k · 

and 1: 12 3, 14 5, 15 4 , 2 12, 213 1 2 4 1 , 2 43, 245, 312, 

3 1 3 , 3 1 4 , 3 l 5 , 3 2 3 , 3 4 .5 , 3 5 1~ 3 5 2 , 3 5 3 , 3 5 4 , 4 1 2 , 4 1 3 , 

.421, 423, 512, 513, 514, 515, 523, 532, 545 

Suppose that x . Xx .Xxk never appears 
l J 

m in 1 (4) for any 

m. Then lm(4) is non-repetitive for each m, by the 

simplified substitution lemma, and so is k(l~(~)). Thus 

w to show that k(l (4)) is non-repetitive it suffices to 

show that none of the listed triples occurs in this way 

in ln(4). We now do this: 

Suppose that for some m, one of the listed triples 

occurs in the above manner in lm(4), Choose mas small as 



' 
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m-1 possible. In particular, 1 (4) contains none of the 

' above listed triples, so that lm(4) is non-repetitive. 

Triple 123: Suppose that there exists a word X = a 1a 2 .. ar 

m so t~at 1X2X3 appears in 1 (4). Then a 1 follows 2 in 

--

lm(4), so by examining 1, we conclude tha~ a 1 is 1. 

However, then lm(4) contains 11, which, again examining 

1, we see is impossible. 

Triple 254: Suppose that there exists a word X = a 1a 2 . . ar 

) and a letter y, so that yX5X4 appe~rs in lm(4). Then a 1 

follows 2, and must be a 1. Then lm(4) contains 51, which 

is impossible. 

Triples 212, 312, 412, 512: Suppose that there exists a 

wo~d X = a
1

a
2 

. . ar and a letter y, so that yX1X2 appears 

in lm(4). Then a pre~edes 1, and must be a 2 or a 4. 
r 

However a precedes 2, and so must be . ~ 3 or a~- This is r 

a contradiction. 

Triples 213, 313, 413, 513: Suppose that there exists a 

word X = a 1a 2 .. ar and a letter y, y = 2, 3, 4, or 5, so 

that yXlX3 appears. in 1 m( 4). Then a is a 4, because it 
r 

precedes both 3 and 1 in pieces from 1. Then a 1 follows 

41, and must be a 5. However, y precedes a 1 and thus must 

be a 1, contradictina our choice of y. 

Triple 314: Suppose that there exists a word X = a1~ 2 .• ar 
m . , 

so that 3X1X4 appears in 1 (4). Then ar precedes 4, and 



\ 

is a 1 or 3. However neither 31 nor 11 can appear, so we 

have a contradiction. 
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Triple 315 : Suppose that there exists a word X = a
1

a
2 
.. ar 

m so that 3X1X5 appe-ars in 1 (4). Then a precedes 5, and r 
must be a 1. Then lm(4) contains 11, which is impossible. 

Triples 323: Suppose that there exists a word 

X = a 1a 2 .. ar so that 3X2X3 appears in lm(4). Then a 1 
· m follows 2 and must be a 1. But then 1 (4) contains 31, 

~h i ch is imposs i ble. 

Triples 351,· 352, 353 : Suppose that there exists a word 

X = a 1a 2 .. ar and a letter y, y = 1, 2 or 3, so that 3X5Xy 

appears in lm(4). Then a precedes 5, and must be a 1, r 
This forces y to be a 4 or a 5, contradicting our choice 

0£ y. 

Triple 421: Suppose tfiat there exists a word X = a 1a 2 . •~r 

so that · 4X2Xl appears in lm(4). Then a precedes 2, and r 

is a 3 or a 5. However, as~- precedes 1, it must be a 4 r 

pr a 2. This is a contradiction. 

Triple 423: Suppose that there exists a word X = a 1a 2 .. ar 

so that 4X2X3 appears ·n lm(4). Then a 1 precedes 2, ~nd 

mus be a 1, Now a 2 is preceded by 41, and must be a 5. 

Thus a r is followed by 215, and 
m is a 3. But then 1 (4) 

contains 33, which i~s a contradiction. 

Triples 513, 514, 515: Suppose that there exis~a a word 



X = a 1a 2 .. ar and a lette y, so that 5X1Xy appears in 

lm(4). Th~n a 1 follows 1 and must be 5 or 4, However, a 1 

follows 5, and must be 3 or 2. This is a contradiction. 

Triples 523: Suppose that there exists a word 

X = a
1

a
2 

. . ar so that 5X2X3 appears in lm(4). Then a 1 

follows 2 and must be 1, . leaving 1 m(_4) to contain 51, 

which is impossible. 
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Triple 532: Suppose that there exists a.--word X = a 1a 2 .. ar 

m so that 5X3X2 appears in l (4). Then a 1 follows 5 and 3, 

and is forced to be a 2. Thus a must be a 4, as it is 
r 

followed by 32. But then lm(4) contains 42, which is 

impossible. 
., 

Triples 145, 245, 345, 545: _.Suppose that there exists a 

word X ~ a
1

a
2 
.. ar and a letter y, so that yX4X5 appears 

in lm(4). Then a precedes 5, and must be a 1. If r = 1, r 
m m- 1 then 1 (4) contains 141, so that 1 (4) contains one of 

24, 25, 44, 45, which is impossible, since l never 

produces these words. Thus r > 1. Since a 1 follows 4, a 1 

is 3 or 1. However a 1 cannot be 1, or lm(~ ~ontains 141. 

Now y prece~es 3, and must be 4 or 5. However, if · y 

= 4, -then ·1•(4) contains the repetiton 4X4X, 

contradictina the ~inimality of m. Thus y = 5. Since a 2 

follows 53, a 2 = 4. 

Continu na these kinds of araumerits, it may be shown 

• 
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that in fact lm(4) contains a block of the form 

53 41521 Z 1 2 (4) 41521 Z 1 2 (5), 

However the block 41521 Z is of the form 12 (Q). · we thus 

deduce that lm- 2 (4) contains Q4 Q- This contradicts the 

minimality of m. 

Triples 241, 242, 243: Suppose tha there xists a word 

X = a 1a 2 .. ar and a letter y, y ~ 4, 5, so that 2X4Xy 

m appears in l (4), Then a 1 must be a 1 as it follows 2 and 

4. Then a 2 follows 41, :an~ is a 5, a
3 

follow, 215, and is 

a 3. Thus a 3 follows 2153, and is a ,4. 

As a is followed by a 4, a is 3 or 1. But a is 
r · r r 

m-1 not 1, otherwise 1 (4) would contain one of 24, 25, 44, 

45, which is impossible. Thus a is a 3. Then y is a 4 or r 

2. However, y cannot be a 4, or lm(4)coritains the 

~epetition X4X4, which contradic~ the minimality of m. 

ontinui~g these kinds of arguments, it may be shown 

. m 
that in fact 1 (4) coQtains a block of the form 

1 2 ( 2 ) 4 1 5 2 1 Z 1 2 ( 4 ) 4 1 5 2 1 Z 4 1 5 2 14 3 2 .. 

However the block 41521 Z is of the form 1
2 (Q). We thus 

·',) 

deduce that 1•-2 (4) contains 2Q 4Q. This contradicts the 

min.imal i ty of m. 

' Since none of the bad triples occur, k(lm(4)) is 

non-repetitive for every m.o 

. . 

' J 
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Chapter 8: Substitutions 
I 

We wish to show that each of the graphs of MIN is 

versatile. We saw at the . end of Chapter 2 that MIN.l -

MIN:4 are versatile. MIN.71 ls treated s parately in 

Chapter 7. For each other .digraph G of MIN, we give a 

" substitution f meet i ng the demands of the Substitution 

. ~ 

Lemma ( Lemma 2.4 ), such that f(g (2)) is a 
I 

non-repetitive walk of type~ on G, where g . is 

suietitution 2.1. ,, ' 
. I 

The conditions of the ·Substitution Lemma are such 

that they are easily- verified for each of t'hese 

substituiions by co~puter. H6wever; to aid the 

understanding of the reader, we J.ab,el substitutions with 

the labels ~D/E~ ',BIS' , 'L/S' s tan ing for 

'Di fferen·t/End.j,_ngs', ,'Block/Separator' and 'Long/Short' 
.,, - ·, .. 

·res pee ti vely. A sube·ti tuticfr: with such a label falls into 

the _ correspondina category 01' subs ti tut ions as discus·sed 
•. 

at the . end · of Chapter), and can usually be snown to be . . .. 
sui tabie u ina 'the corresponftin~ theorem of · Chapter 7. 

,, 

... C, 
~ MIN·~· 5: 

- 't • • ••• 

x 1 : 12342 , . 

. . x 2 : 123454212~\23 

x 3 : 12345423 

212 

• , 

' / . 

L/S 

• 

-· 

______ ... f 

t • • 

. 
---::. . · ... 

• . , 
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• 
... .... . , 
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. 
HN. 6: X 1: 1234'54 3 

x2: 12 3 4 3 2 3 4 5 4 3 l '2·3 4 5 4 3·2 3 4 3. L/S 
/' 

X3: 123432345432343 • 
•' 

MI . 7: xl: 12345423 

• X2: 123454342 34542343 L/S ,. . 

x3: 123454342343 

) MIN.8: xl: 123 4 5-2 3 

X2: 123456523123452343 L/S 

X3; 12345652343 

'MI N.9: X 1: 1343 
~ 

# x2: 12343134543 L/S 

X3: 1234543 

MIN.10: , x
1

: 13423 

x2: 1234231345423 . ---
x3: 12345423 

MIN_. ·11: xl: 1434543 
1 • • - .. ~ .. . . 

123·4314543 
.. 

x2: 

x3: 1231.431234543 
I 

Mibl.12: XI: 14542 

·~--x 2 : 1234542142342 I 

-~:3 '. 
1234542342 ,.. .. •· . . .. 

•·· ' • •· .. .) ! •· 
,: 

• . .. II[ ,4 ,. . . . '. ~ ;,r· . Mr·~ . 1 3 : · x l ;, 12"3~·3 · . . . . . .. .. . . . .. : .. . . . .. . . ; . . .- 1""' -,. :... t I ,. • 
. .. . ' . . ' .. . . .. . . . \ : . . 

.! . ,#" ... ... ... . . .. . 
" . 

x2 =. 1643,4'.5643 .. .. 
. 

1645643 
. 

;- x3: 
~ 

.. . . 
. . __. 

:, 
: 

" 
·\ 
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MIN,14: X l: 12345l 

x2: 123212345412345654 L/S 

x3: 123212345654 

MI . 15 · X 1: 12345234 

x2: 123432345234123452343234 L/S 

x3: 1234323452343234 

MI . 16: X 1: 123454 

X2: 12343234541234543234 L/S 

x3: 12343234543234 

MIN. 17 · X 1: 1234565452 

x2: 123456523452123456545232 L/S 

X3: 12345652345232 

MIN.18: xl: 12345 

2. 1:a>343i345123456 L/S 

1234323456 
..... -- -

MIN. 19: X 1; 12345674 ... ..... . 

- ,., 
x2: 123212345674123456765S74 L/S 

~ 

X3: 12 3-2 1-2-9 .f5 6 7 6 5.6 7 4 
4 

MIN.20: xl: 12321234567 

J 
• 

x?: 123456545671232123456787 L/S , 

X3: 1234565456787 · 
.. 

M'l . 2·1 : .. x 1 : 123"212345 ·: ·. a· . . • • ' . . . ' 

x
2

:123432!451232123456~ - L/S , 

x 3 :t23432345~ 

.. 

) ' . , 
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MIN.22: xl: 123534 .. . 
x2: 1234534123534234 L/S 

X3: 1234534234 

MIN.23: X l: 1234212345 

x2: 12342312345123421234565 ' L/S 

x3: 1234-J31234565 

MIN.24: X 1: 123412345 • -x2: 123431234512343234565 L/S 

X3: 123431234565 

MIN.25: X 1: 123212345676123456 

x2: 123212345612345 8/S 
, 

X3: 1232123451234 

MIN.26 : X 1: 1232123451234 • 
·x2: 1232123456412345 

,, 
x3: 1 2 3 2 12 3 4 5 6 4 5 ,,,I. 

~ ., . MIN.27: X 1: 1234565 , / t " 
I ,, 

,x2 :_ 1Z32123456512345645 L/S 
·, # . 

12 3 2 1 2 3 4 5 6 4· 5 ' ... 
x3: • 

MIN • 2 8 : . x l : . 1 2 3 ~ 5 3 .. . . 
x2: 12345231234534 L/S . 
X3; • 12345234 

~ . J • ., . I . -- . 
IIN:, 29: X l': 12 3 4 5 6 2 12 3 4 5"6 5 'L'1s !.. 

f ' ,, 

I 

x2: 123456231234565123(5621~345645 . 
X3: 1234562312345645 

~ ( 

- l. . 
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... .... 
..• . 

-------

MIN.JO; xl: adacb 

x2: adc 

x3: aeb 

where a = 1234565 

where b =1234562 ; ' 
~ 

where C =12345623 

where d =123456234 

where e =1234562345 

MtN.31: x 1 :12342 

x 2:12345342123423 

x 3 :12345 423 

L/S 

MI .32: , x 1 : 12342312345342345323123453423123453 

x 2 : 12342312345342345312345323423123453~23453 

~- x 3 : 12342312345342345323423123453 

MI .33: x 1 : 12342312345342341234534 BIS 

x 2 : 12342312345342°3453123.4534234 . 

~ ' 
~3: 1234231234534123453 

I 

MIN.34: x 1 : 1234534 

x 2 : 12321234534123453234 · L/S 

x 3 : 1232123453234 . 
MIN. 35: x l: 123.423 i234~3.4 2345; ·· L/S 

x
2

: 12342912345342345123453123423-

12345342345312345 

• 

/ 

216 

j 

,. 



x 3 : 1234231234534234512345312345 

MI . 36: x 1 : 12345634 
• 

x 2 : 1234563234123456345 

x 3 : 1234'5632345 

MI .37: x 1 : 12345643452345645 . 

217 

L/8 

L/S 

x 2 : 123456452345643452345645123456434523456452345 

x 3 : 1234564523456434523456452345 

MIN. 38: x l: 123454234 · 

x 2 : 1234534234123454234534 

x 3 : 123453423454 

MIN. 39: x l: 12345434 

x 2 : 123454234123454342 

x 3 : 1234542342 

MIN. 40: x 1 : 1234567345 

L/S 

x 2 : 123456732345123456734565 L/S 

x 3 : 12345673234565 

flf IN.41: 1 . 2123454345 

x 2 : 234123454345212345412345 

x3 : 2341234~43412345 

MIN.42: x 1 : 1232123456765612345676 

~J: 123~12~4~676123456 

·, . X 3 : 12 3 2 12 3 4 5 612 3 4·. · . 

MIN.43: x·1 : 1232123454 

x 2 : 1234il234541232123454234 

8/S 
I ' -: • • 

. . 
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x3: 12342123454234 

MIN.44: xl; 1234564541234563234 L/S 

x2: 123456345412345632341234564541234563234564 

x3: 12~45634541234563234564 

MIN.45: xl: 123.45631234565 

x2: 123456323123456345 

x3: 12345632345 

MIN.46: xl: 123456434 

x2: 12345642341234564345 L/S 

x3: 1234~642345 

, MIN.47: xl: 12342 

x2: 123432123423 L/S 

x3: 1234323 li . 
MIN.48: xl; 12345623 512345643456234564345-

12345643456234565 BIS 
• ' x2: 123456234512345643456234565123456434565 

x3: 123456234512345643456s12345J4345 

t ,. MINr. 4·9. xl; 12~45634 . ,. 
t . 

x
2

: - 1234562341234563454 L/S 

X3: 12345623454 .., 

MIN.:so; xl; 1234564345 
I • 

.. ·•· 
l

0

23456~23i 512 34564?4 565 ·. · 
~ 4 •. ., • . , 

. . • .. x2: · L/S ' 
. .... 

, 
X3; 1234564234565 

MIN.51: x
1

:12345632345 

·• . . 



. ' 

x 2 :1234563423451234563234565 L/S 

x 3 :12345634234565 

MIN.52: x 1 : 12345234123454345234543412345434534 

x 2 : 12345234123454345234541234534 

X3: 1234523412345434523453412345434 

MI ,53: x 1: 1234543423454 

x 2 : 123454345234541234543423454234 

x 3 : 1234543452345434 

MI . 54: x
1

: 123456534523456545 

x 2 : 12345654534565234.5 

X 3 ,: 1 2 3 4 5 6 5 4 5 2 3 4 5 6 5 3 5 

MI. . . 55: x 1 : 1234534 

D/E 

x 2 : ) 2343234534123453234 L/S 

x 3 : 1234323453234 

MIN.56: x 1 : 123454 

x 2 : 12321234541234~64 

x•
3 

; 1 2 3 2 12 3 4 5 6 4' 

MIN.57: x 1 : 1234567323456761234567456 

x 2 : 12345673234567561234567456~ 
' / 

L/S 

12345673234567612345673456 , L/S . 
. ".' 3 : l 2 3 4 5 6 7 ~-2 3 4 5 6 7 5 6 1 2 ~ 4 5 6. 7 3 4 5 6 . . .. :, : · . 

MIN. 58: x l: 123 4564512 345'63234562 3451234 56323.4565 

_x 2 : 12345634512345632345623451234563234565-

12345645123456323456234512345632345645-

. . 
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12345623451234563234565 L/S 

X 3 : 12 34 56 34512 34 56 3 234 56 2 34 512 3 4 56 3 2 34 56'4 5-

12345623451234663234565 

HIN.~9: x 1 : 123456342345632345 

x 2 : 1234563452345634234562345 D/E 

x 3 : 123456345234563234562345 

HIN.60: x 1 : 345673456234567345 

x2 : 23456123456734523456734 8/S 

x 3 : 234561234567342345673 

MIN.61: x 1 :1232123456789 

x 2 :12345654~678912321234567898789 L/S 

x 3 :12345654567898789 

MIN.62: x 1 : 12321234567 

· x 2 : 1234321234567123212345676567 L/S 

x 3 : 12343212345676567 

MIN.63: x
1

: 23456781 

~ x?: 23\323456781234567876781 L/S 

x 3 : 2343234567876781 

MIN.64: x 1 : 123421234567 L/S .., 
' 

-

x 2 : 1234231234,5671234"212345676567 

~ 3 : · 1 2 3 4 2 312 3 4 5 6. 7 6 .5 6 7 

MIN.65: x·1 : 12~431234567 ~ L/S 

x 2 : 12343231234'5671234312345676567 

x 3 : 123432~12345676567 

... 
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MI . . 66: x
1

: 1232 

x 2 : 1 2 3: 5 4 D / E 

x 3 : 123456 

MIN.67: x 1 : 1234567876785678 L/S 

x 2 : 1232123456787678567812345678767845678 

x 3 : 123212345678767845678 

MIN.68: x 1 : 12345678 

x 2 : 1232123456787678 

x 3 : 123412321234567876785678 

MIN.69: x 1 : 123456 

x 2 : 123212345654561234567 

x3 : 123212345654567 

MI. .70: x 1 : 123212345 

x 2 : 12342123451232123454234.5 L/S . 

x 3 : 123421234542345 

MIN.72: x 1 : 1232123451234 

x 2 : 123212345612345 

. x 3 : 1232JJ;45671.~456 

MIN. 73: x 1 : 12321234565123456 

x 2 : 123212345612345 
) · .. . 

x
3

·: 1232(234~1234 
:. - .. 

MIN.74: x 1 : 12345671234562345123456234 

B/S 

x 2 : 123456712345623~12345623 B/S 
. 

x 3 : 1234567123456231234562 

• 

.. 
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MIN.75: X 1: 1234212345 

x2: 1234231234512~42123456 . L/S 

x3: 123423123456 
' 

MIN,76: X 1 : 12342 

x2: 12343 0/E 

x3: 12345 

MIN.77: xl: 123453 

x2: 12343234531234532343 L/S 

X3: 12343234532343 

MIN.78: xl: 1234212345 

~2= 12342321234512342123456 L/S 

x3: 1234232123456 

MIN.79: X 1: 1234534 

x2: 123456 · 0/E 

x3: 1234532345 
.... . 

MIN.80: 1234543~ xl: 

x2: 1234542341Z3454345 L/S 

X3: 1234542345 
. 

MIN.81: x 1 :123453234 .. 
"' 

' . ' 
x 2 :12~45342341234532l45 L/S 

- . . 
~ ·" 4 . -· •~'I-

- X 3 : , 12"3 4 5 3 ~ 2 3 4 5-. . - , -, 

' 
, -,. .... 

MIN.82: 
,, 
xl: aec • 
x2: afcaecb L/S 

X3: afc 

; . .. 
• 



; . ·. I 
~ .. .. •:' .. - " .. .. ~ : 

~ .. 

where a = 12345234 

b = 12345434 

C = 123454345 

e = 12345434523454 

f = 1234543452145434 

MI . 83: X 1: 12345 

x2 12343234512342~ L/S 

XJ: 1234323423 

MIN.84: X 1: 123456123454 

x2: 123456323412345634i4 . 

X3: 12345632345612345632345~ 

MIN.85: xl: 123454 

x2: 12345323454123456 L/S 

XJ: 12345323456 

MI . 86: xl: 1232123432341234323 

x2: 1232123432312343 8/S 

x3: 1232123431234 

MtN.87: X 1: 123456 

x2: 1234534 0/E 
I - X3: 12345323 ... .,, 

I• . . 
• ... . 

MIN. 88': . :x; 1 :· 12345632345612345645 . ~ . L/S . 

• 

x 2 : 1234563234565123456451234663234561~3456345 

x 3 : 1234563234565123456345 

t 
. ., 
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MIN.89: X 1: afd 

x2: bfdafecd 

x3: bfecd 

where a = 123454 

b = 1234534 

C = 12345234 

d = 1234532345 

e = 1234532345-1 

f = 1234532345234 

.. 
•. 

.. .. . . . - ~. 

.. .. ... 

• • ·1.. 

L/S 

\ 

' . .. 
• " , ,._ ,,..... : ;~ .: .· ; ' t - • > -

-. \. •? '!. , /.._ ~.. . ... . . 
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Chapter y: Non-versatil i ty of MAX 

It is the purpose of the present chapter to show 
j ' 

that o~ of the ditraphs of MAX are versatile. We --------commence by proving a useful theorem. First we make a 

defin i t i on: 

Definition: Suppose that v i s a non-repetitive word 

of type w, on alphabet I= ... , a } . An 
n 

~
1
-block i s a subword w of v so that a

1 
is a prefix of w, 

w contains exactly one a 1 , and w appears in the context 

wa 1 i v. 

Block Theorem: Let a, b, c, d be words over some 

alphabet I such · that b is 'a prefix of c, which is a 

prefix of~- Then a, b, c; d cannot b~ concatenated to 

form a non - repetitive w? of type w. 
\. 

Proof: Suppose that a ~ b, c, d could be c~ncaten'lr'ted to 

form a non-repetitive · word v of type w. Suppose that the 

~ord a•do~s not appear in v infinitely often; then w~rd b 
, . 

never cur~, as be -aad cd cont ain repetitions. But then 
.. 

~ never ·occurs, for c cannot' be . fol·lowe.d· by d in a .. . 

non-,:-!;!peti tiv.e · word;.-.This: ·lea; e.s the ) d.nal~ . word d, which 
.,. ,. : • • _..,: • • • ,_. • ._• .,..;._,, ,~ ., '-,,~L.:.: f t .,.., ' .:, • ' • ,. •• • .\ • W: • , . .. •- · · • • • ••·• • .., _. , 

,, of Q~r~e· 9-~.nn_o°'·!~'e :·cf.'on~-~i~~na _"ed· 4.i ~~ ~i tee. =-r,-~o- f 9 rm a~y ... 

non-repetitive words. 

Thus we may assume that v contai~• the w~rd a.Snee 

Vis an w word, assume without loss of a e nerality that V 

225 

.. 

• 
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commences with the word a. In~ fact assume without l oss of 

aenerality that every one of the words a, b, c, d 

appearina in v occurs infinitely often in v. We may think 

of v as a "meta-word'', · whose letters are a, b, c, d. If 

we parse v, choppina it into pieces at each occurrence of 

a, the possible a-blocks are: 

ab 

ac 

B: ad 

A: acb 

D: adc 

C: adb 

E: adcb 

I ... 

· • We never, of course, find subwords be, bd, cd in v, as 

these contain repetitions. Moreover, of these a-blocks, 

only A, B, C, D, and E, can appear infinitely often in v; 

the piece ab is a pref ix o.f :,he other pieces•, and thus 

never appears in~. ( What would follow it in v? ) Again, 

once we have disposed of piece ab, piece ac is a prefix 

of all the other pieces and cannot be used either. Thus v 

is concatenated from pieces A, B, C, D, E. We assume 

without loss f 1enerality that each of these pieces 
. 

appearini in v does so infinitely often. 

The eccentric letterini of these pieces . ' B, A, D, 

- . 

0 

.. 

" 

,. 
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C, E ) simply makes note of the fact that Bis a prf fix 

• 
of C, which is a prefix of D, a prefix of E We now take 

our a~gument one level deeper; as Bis a prefix of C, 

which is a prefix of D, a prefix of E, v must contain 

block· A. Parse v by chopping it up wherever the piece A 

ap ears followed by an a. Offhand, we get severa~ pieces. . . 
However some of these A-blocks can only appear finitely 

often in v, and can hence without loss of generali wy 1 be 

assumed not to occur in v. 

AB (1), AC (1), AQ (4), AE 

AED (2), AEC (2), AEB (2), ADC, ADB, ~ (3) 

AEDC (2), AEDJ; (Z), AECB (2), ADCB 

AEDCB (2) 

Notes:(1) As the block AB is a prefix of all the ot her 

blocks, it cannot appea~ in v. Howe; er, the block AC is a 

prefix of every block but AB, and hence AC cannot appear 

in v either. 

(2) Here AEX ( where Xis B, C or D) will contain 

cb adcb ad, a repetition. Thus no clock containinl such a 

• 



.. 

-

' 

. 
; 

.. 

wor~ can appear in v. 

(3) Here ACB contains the repetitipn badbad. 

(4) Aftl! t1fe elimina ions of (1) and (3), AD is a 

prefix of the remaining blo s, and must be discarded. 

We are left with four A-blocks to concatenate to form v: 

a: 

p: 

'1 : 

c5 : 

AE 

ADB 

ADC 

ADCB 

We have almost come full circle; here pis a prefix 

of '1 1 a prefix of c5, Again a must appear in v. However, 

we now have quite a lot of conditions on a, p, '1, o. By 

our ·examination of a-blocks, we know that the blocks 

resulting when vis chopped into pieces at a are: 

/ 

ac5 

acp 

However here a-,p ::> B ADC ADB ::> bADadbAD~d, a repetition, 

• o that the block a-Yp can never appear in v. However, 

• 

228 
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once a~p has been discarded, ao is a prefix of the four 

remaining blocks and must also be discarded. This leaves 
. 

three blocks, aop, ao~, ao~p, with the first . a prefix of 

the other two. One checks that there ar~ no 

non-repetitive words of lensth sre~ter than three. on two 

letters. Since v therefore could not be formed from two 

blocks, we have a contradiction. Thus words a, b, c, d 

cannot be con~atenated to form a ~oh-repetitive word of 

type w.a 

Usini this Blbck Theo~em, and similar arsuments, we 

show that none of the di~raphs of ~AX is versatile. 

MAX. 1 

Suppose that we could walk some non-repetitive word 

v of type won MAX.1. If v contains no 2, then v can be 

walked on one of the s~ronsly connected components of 

MAX. 1 \ { 2 } , Howev_er none of these components has more 

than two vertices, so that this is impossible. 

Parse v by chopping it . into pieces commencini with 

-. 2. The possible 2-blocks on MAX. 1 are: 

a: 21 

b: 23 

C: 2345 



' 
d: 234565 I 

By the Block Theorem, these words cannot be concatenated , 
to form. v. This is a contradicti~n and we conclude that 

MAX,1 is not versatile. 

MAX.2 

230 

The proof that MAX.2 is not versatile is more 

involved. Suppose)48' t MAX.2 is versatile, and let v be a 

non-repetitive word of type~ walkable on MAX,2. If v 

contains no 3, then vis walked on one of the strongly 

connected components of MAX.2 \ { 3 }, which is 

impossible, as each of these components consists of a 

einale vertex. By analyzina the 3-blocks of v which could 

be walked on HAX,2, we can conclude that MAX,2 is not 

versatile. 

Level 1: 3-blocksi 

a: 34567 

b: 345612 

c: 3452 

d: 342 

e: 32 

One checks that these are all the 3-blocks on MAX.2 . 

• 
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Next, lookina at v as composed of letters a, b, c, d, e, 

we look at b-blocks. ( Note that v must contain a bi 

otherwise vis composed of blocks a, c, d, e. Thia 

possibility is not excluded by the Block Theorem above, 

however the proof that it cannot occur follows almost 

exactly the proof of the Block Theorem, and is therefore 

here omitted. ) Here are the b-blocks of which v could be 

composed: 

Level 2: b-blocka: 

ba, b~ (1), ID!, (1), be (1) 

The underlined two-letter words never appear in v, 

as will be shown in note (1) of the comments below. We 

therefore omit lookina at any blocks on three or more 

letters that contain these words. Call a word which 

cannot appear in v more than finitely often illegal. , . 

Clearly no block containina an illeaal word can appear in 

v more than finitely often, so that such blocks ma~ be 

- discarded without loss. 

bac , bad, ba·e 

baca, ~ (1), ~ (1), bada, ~ (1), 



~ (1), lulll (2), ~ (1), ~ (1) 

AJain, the underlined blocks are illetal, and this 

decreases the number of blocks on five or more letters we 

need to examine. 
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bacac (3), bacad, bacae, badac (4), badad (5), · -

badae 

bacada, bacadc (1), bacade (1), bacaea (2), 

bacaec (1Y, bacaed (1), badaea (2), badaec (1), 

badaed (1) 

bacadac (4), bacadad (5), bacadae 

bacadaea (2), bacadaec (1), bacadaed (1) 

-
Notes on the b-blooks 

(1) The words 2e3, 2d34, 2c345 are repetitions, hence 

illeaal. Since each Q-block s~arts with 3, we therefore 

see that b-blooka ~ontaininC the piece 2e may be 

diacarded. Thus the words de, ce , be are i letal. This 

• eana in particular that d, whenever it appears in v, is 



' 

• 

always followed by ab-block commencing 34. 

It follows that ed, cd, bd are illeaal. 

As cd and ce are illegal, c is always followed by 

345 in any b-block. Thus ec, de, bear~ illegal. 

(2) The particle aea is always preceded by a 2 and 

followed by a three, and thus contains 2a3 2a3. Thus aea 

is illegal. 
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(3) Here acac is a repetition. We thus discard any block 

containing acac. 

(4) The block contains 2a34 2a34. 

(5) Here adad is a repetition. 

Summary of usab1e b-blocks 

Let us here list the b-blocks which we have not yet 

eliminated: 

ll.A ( 1_ ) ,. bac , wui ( 6 ) , WUt ( 5 ) , ~ ( 3 ) , WlS1A, 

(2), bacad, bacae, badae, bacada (4), bacadae 

Again, many of these blocks .must be discarded. 

(1) Tbe block ba is a prefix of all the other uaeful 

b-blocks, and thus can't be followed by any of the• in a 



. 

non-repetitive word. 

(2) Leads to bada 3 ~ 2'84 2a34. 

(3) Gives baca 345 c 2a345 2a345 

(4) Here this block appears only in the context bacada 

34 which contains 2ada34 = 2a3~ 2a34. 

234 

(5) After the elimination of ba, baca, bada, bacada, the 

only context in which this block could appear is 2 bae 

ba3 = 2ba3 2ba3. 

(6) Now this block appears only in context 2badba34 = 

2ba34 2ba34. 

We are left with five b-blocks: 

A: bac 

B: badae 

C: bacad 

D: bacae 

+ : bacadae 

After one more level of blocks, we are done. Note that 

A< C < D < E in the sense that the words AC, AD, AB, CD, 

CE, ~Bare illeaal, so that v aust contain a B. 

Level 3; B-blocks; 

--
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BA, BC, BD, BE, 

BAC (1), BAD (1), BAE (1), BCA, BCD, BCE (2), BOA (3), 

BOC (3), 

BOE (3), BEA (4), BEC (4), BED (4) 

BCAC (1), BCAD (1), BCAE (1), BCDA, BCDC (5), BCDE (5) 

BCDAC (1), BCDAD (1), BCDAE (1) 

Notes on the B-blocks 

(1) A is a prefix of C, D, E. 

(2) C is a prefix of E. 

(3) Here BDbac ~ adaebac adaebac, so that BDX is illeaal, 

where Xis A, C or E. 
I 

(4) BEbac ~ adaebac adaebac. 

(5) Block contains CDbacad ~ 2baca3 2baca3. 

Summary of useful B-blocka 

BA (1) 

BC (4) 

BD (2) 

BE (3) 

• 



I~ 

J 

a: BCA 

'fJ: BCD 

., : BCDA 

236 

Notes: (1) Must be discarded, since it is a prefix of the 

others. 

(2) Once (1) is aone, this block always appears in 

the context 2BDBbaca ~ 2Bbaoa3 2Bbaca3. 

(3) This word EBb is illeaal, as it contains adaeb 
.. 
adaeb. 

( 4) After ( 1), ( 2), ( 3) are aone, this block is a 

prefix of the remainina blocks. 

We are thus left with blocks a, p, ., with which to 

form a . non-repetitive word .of t~pe w. However, asp is a 

prefix of.,, p-, contains a repeti · n. ~~_all from our 

remarks in Chapter 1 that if a p, ., can be concatenat~d 

to fora a non-repet ve w word, then ap, a-,, pa, p-,, -,a, 
f . 

-,p must each be non-repeti ve, We thus conclude that 

MAX.2 ia not versatile. 

Havina aiven some etails for MAX.l, MAX.2, we aive 

le• a detail for the other cases, as there are, after all, 

26 diarapha in MAX. 
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MAX.3 

Suppose that vis a non-repetitive w word on MAX.3 l 

Then v must contain a 3, since MAX.3 \ { 3 } has only · 

trivial stronaly connected components. 

Level 1: 3-bYocks: 

a: 32 

b: 342 

c: 34512 

d: 3456 

34562 . l 
Suppose that v containg nod. Then a occurs only as 

2a3, a repetition. Thus v contains no a. With a, d 

excluded, b must occur as 2h34 , a repetition, so that v 

contains nod, b or a. Thie is impossible, 

Le~el 2: d-blocks: 

da db, de, de (2) 

dab (1), dac, dae, dba (1), dbc, dbe, dca (1), 

deb (1), dee 

' 
daca (1), dacb (1), dace, daea (1), daeb (1), 

daec, dbca (1 , dbcb (1), dbce, dbea (1), dbeb (1), dbec, 

I 
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dcea (1), dceb (1), dcec 

dacea (1), daceb (1), dacec, daeca (1), daecb 

(1), daece, dbcea {1), dbceb (1), dbcec, dbeca 1), dbecb , 

(1), dbece, dceca (1), dcecb (1), dcece (3) 

daceca (1), dacecb (1), dacece (3), daecea (1), 

daeceb (1), daecec (4), dbceca (i), dbcecb (1), dbcece 

(3), dbecea (1), dbeceb (1), dbecec (4) 

Notes on the d-blocke 

• 
(1) The word 2a3 ie a rep~tition. Since each d-block 

atarts with 3, we therefore see that the combinations ba, 

ca, da cannot appear. This means that b, whenever it 

appears in a non-repetitive of type w, is always followed 

by a block com encina 34. However, 2 b 34 is a 

repetition. Th~a blocks ab, cb, eb must not be used. 

~2) The bloc dis a prefix of e. 

(3) Here oe repeats. 

(4) The block contains ec ec. 

· sumaar1 or useful d-blocks 

. .. -
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da (1), db, de (4), 

dac, dae . (2), dbc, dbe (2), dee (2) 

dace (2 , daec, dbce (2), dbec, dcec (5) 

dacec (3), daece (2), dbcec (3), dbe e (2), 

Notes 

(1) Leads to 2 da d3 = 2d32d3, a repetition. , 
. 

(2) As the word 2e dis a .repetition. 

(3) S i nce 2cec d j 2cd 2cd, a . repeat. " t 

. 
(4) After eliminations (1) - (3), all ning blocks 

except for db end inc. Thus de occurs in context 2 db de 

~ 2d342d34~ or in context c de d, both repet i tions. 
• 

(5) As in el i mination (4), this-block is preceded either 

by db or c, giving rise } o word 2 db de, which contains a 

repetition, or c dee~ cdcd. 

We are left with five d-blocks: 

A: db 

B: dbc 

C: dbec 

D: dac 

L . . 

' 



• 

- ~ 

) -

.,.. -
t 

--

E: daec 

. ' 
After one more level ~f blocks, we are done, If D does 

. 
not occur in v, then vis concatenated from A, B, · c, E, 

' 

an~A ,< B < 9 in t~h .~~rise that AB, ~C, BC are illegal. 

Here BC is illeaal because it must occur in the context 

cBC ~ cdbcdb. Arauina analo~ously to the proof the 

Block Theorem, we ae~ a contradiction. 

Level 3; D-blocke: , 
, 

DA, DB, DC, DE 

DA (1), DAC (1), DAE, DBA (1), DBC (1), DBE, DCA, DCB, 

-OCE (1), DEA, DEB, DEC (1) 

. 
DABA, DAEB, DA (1), DBEA, DBEB, DBBC (1), DCAB (1), 

. DCAC ( 1 ) , DCAB, DCBA ( 1 ) , DCBC . 1 ) , • 
'-

CBE, DEAB (1), DEAC 

, ✓(1 ) , . DEAB, DEBA ( 1 ) , DEBC < 1 ) , DEBB 
-· 

DABAB (-1 ) -, IM-BAC ( 1), DABAE ( 2), DAEBA ( 1), DAEBC ( 1), 
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~ 

DAEBB, DBBAB (1), DBBAC (1), · DBEAB, DBEBA (Y), DBEBC (1), ~ 
I 

DCABA, DCAEB, DCAEC (1), DCBEA, DCBBB, DCBEC 
' 

( 1) , DEABA ( 4 ) , DEABB ( 4) , DBAEC ( 1 ) , DEBBA ·( 5 ) , DEBEB 

· ( 6 ) , DEBEC ( 1 ) 
I'" 

" 

• 
_,/ -



• 

-

DAEBEA, DAEBEB (6), DAEBEC (1), DBEAEA (4), DBEAEB (4), 

DBEAEC (1), DCAEAB (1 , DCAEAC (1), DCABAE (2), DCAEBA 

(1), DCAEBC (1), DCAEBE, DCBBAB (1), DCBEAC (1), DCBEAE, 

DCBEBA (1), DCBEBC (1), DCBEBE (3) 

DAEBEAB (1), DAEBEAC (1), DAEBEAE, DCAEBEA, DCAEBBB (6), 

DCAEBEC (1), DCBEAEA (4), DCBEAEB (4), DCBEAEC (1) 

DAEBEAEA (4), DAEBEAEB (4), DAEBEAEC (1), DCAEBEAB (1), 

DCAEBEAC (1), DCAEBEAE 

DCAEBEAEA (4), DCAEBEAEB (4), DCAEBEAEC (1) 

Notes on the D-blocks 
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(1) A is a prefix of B, C. Bis a prefix of C. The word 

cBA is a r e petition, and also appears in cBC. The word CE 

is illeaal as it appears in the context CEd3 ~ 

2ecd32ecd3. Also CD is illeaal, leadina to CDd3 ~ 

2cd32cd3. T CE is always followed by A or B, and hence 

db. The word EC therefore appears in context ECdb ~ 

ecdbecdb. I 

(2) Contains AEAE. 



(3) Contains BEBE. 

/ ( ) Contains EAEA. 

(5) Contains cEBEA = c E db c E db. 

(6) Contairis EBEB . 

. . . 
Summarx of useful D-blocks 

DA, DB ( 1 ) , DC . ( 1 ) , DE ( 1 ) 

DAE (1), DBE (1), DCA, DCB (1), DEA, DEB (1) 

·'• 

DAEA, DAEB (1), DBEA, DBEB (1), DCAB (1), DCBE (1), DEAE 

( 1 ) , DEBE ( 1 ) 

DAEBB (1), DBEAE (1), DCAEA, DCAEB (1), DCBEA, DCBEB (1) 

DAEBEA, DCAEBE (1), DCBEAE (1), .. 

DABBBAE (1), DCAEBEA, 

DCABBBAB (1) 

liotes: ( 1) A combination ( ·d-block other than A ) D d3 

will contain 2c d32c d3, a rep~tition . 

·. ... 
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Summary of remaining blocks 

DA (1) 

DCA ( 3 ) 

DEA ( 2 ) 

DAEA ( 4 ) 

DBEA ( 6 ) 

DCAEA ( 5 ) 

a: DCBEA 

p: DAEBEA 

., : DCAEBEA 

Notes 

(1) Appears as A DAD, 

(2) After (1) is gone, appears as 2ecA DEA Dd3, a 

repetition . 

(3) After (2) is gone, this block always appears in the 

context 

BA DCA Ddb ~ ec AD dbec AD db . 

(4) After eliminations (1) - (3), this block appears 

only as EA DABA Ddb, a repetition. 

( 5 )· Here DCABA D3 ::> 2ec A d32ec A d3, a repeat. 

(6) After (1) - (5) are eliminated, this block appears 

243 
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J 

I 

only as 

BEA DBEA D. 

• 
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We are thus left wit~ blocks a, -~ , , ~ith wh i ch _to 

. ,. 
form a non-repet i,t1 ve word of type w. However, •it follows 

from our remarks in Chapter 1, in the first open problem, 

that if ,,i' is a non- ~eI?e t. itive word concatenated from a, 

p, ,, then v must contain all of the three letter 
~ 

eubwords ap,, a,p, pa,, p,a, ,pa, , ap. We conclude that 

MAX.3 ie not versatile. 
__;. . 

MAX,4 

Suppose ' that MAX.4 is versatile, and let v be a 

non-repetitive word of type w walkable on MAX.4. One 

checks that MAX.4 \ {1} may be reduced to the three 

element path, and is not versatile. Therefore v must· 

contain a 4. By analyzi a the 1-blocks of MA.X.4, we can 

conclude that MAX,4 is not versatile. 

a: 

b: 

.. 

Level li 1-blocks: ., 
2345 ( 1 ) 

1234565 ( 2 ) 

1234562345" 

123456345 

12345632345 ( 3) 
... -- - -

\ 
________ , 

( 
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c: 1234563234565 

' d: 1234563234562345 

Notes on the 1-blocks 

(1) This block is a prefix of the others, and hence - must 

be discarded. 

(2) Afte (1) is gone, this block ~!ways.appears in the 

context 5 1234565 1234?6, a 'repetition. 

(3) This block is a prefix of c . and d, and hence cannot 

be followed by them in a 009-~epetitive word. However, 

2345 a 123456 is a repetition, ae is 345 b 123456, so 

that the block must be discarded once (1) and (2) are 

gone. 

We must include bloc~ c in v; otherwise block b can 

only occur in the context 345 b 123456, which ie 

impossible. We are then left with ~~ly the two blocks a 
__,,,-

nd d. 

Level 2: c-blocks: 

ca, cb, cd ( 1) 

cab (2), cad (3), cba, cbd 

cbab (2), cbad (3), cbda (3), cbdb (4) 
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Notes on the c-blocks 

; . 
(1) The word 5cd is a repetition. 

(2) Since ab123456 contains a repetition, 

(3) The word dais illegal, Thus ad is illegal as ada is 

illegal and adb, adc contain repetitions. 

(4) The word db is illegal as it appears in the context 

dblg3456 ~ 345b123456, which is a repetition, 

Summary of useful c-blocks 

a: ca 

cb (1) 

p: cba 

~: cbd 

(1) 345 cb c123456: 345 c 123456 345 c 123456 

The three blocks a, p, ~ cannot be concatenated to form a 

non-repetitive word of type w, since ap~ contains a 

repetition. Thus MAX,4 is not versatile. 

MAX,5 

Suppose that MAX.5 is versatile, and let v be a 



...,__,.. 

--

--· 

non-repetitive word of type w walkable on MAX.5. One 

checks as in the previous case that 1 occurs in v. 

Level 1: 1-blocks: 

123456 (1) 

12345676 (2) 

a: 123456756 

b: 12345673456 · 

1234567323456 (3) 

c: 123456732345676 

d: 1234567323456756 

... . 
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. • . ,v., 
Notes on the 1-blocks ~ 

'. 

(1) This block is a prefix of the others, and is 

discarded. 

(2) - After (1) is aone this block always appears in 
,. 

context 6 12345676 1234567, a repetition. 

(3) This block is a prefix of c and d, and hence cannot . 

be .followed by them in a no~-repetitive word. However, 56 

a 1234567 is a repetition, as is 3456 b 1234567, so that 

the block is discarded . 

The word bac contains a repeti~ion, so that we 

c~not concatenate v f:rom a, b, c alone. 



t 

Level 2: d-blocka: 

da (1), db, de (2) 

dba (1), dbc 

dbca, dbcb 

dbcab, dbcac (4), dbcba (1), dbcbc (3) 

dbcaba (1), dbcabc (5) 

Notes on the d-blocks ,.. . 

(1) The word 56 a 1234567is a repetition so that ba and 

da are illeaal •. 

(2) Since 56dc is a repetition. 

(3) Here bcbc is a repetition. 

(4) Since dbcac 1234567 ~ 56c1234567 56c1234567, a 

repetition. 

(5) Here dbcabc 1234567 will contain the repetition 

56bc1234667 66bc1234567. 

--•. 

., 



.. 

Summary of useful d-blocks 

( 1 ) 

dbc ( 2 ) 

a: dbca 

p; dbcb 

., : dbcab 

•• 
(1) A prefix of the remaining blocks. 

(2) A prefix to the blocks remainina after the 

elimination of (1). 

• 
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The three blocks a, p, ., cannot be concatenated to form a 

non-repetitive word of type w, since a-, contains a 

repetition. Thus MAX,5 is not versatile. 

MAX,6 

Suppose that MAX.6 is versati.1.e, and let v be a 

non-repetitive word of type w walkable on MAX.6. As in 

the previous two cases, v must contain a 1, · 

Level 1: 1-blocks; 

123 (1) 

' 
-

-~ 
I 



·• 

1234 (2) 

a: 123454 

b: 123453 

c : 1234534 

d: 12345323 

e : 123453234 

f: 12345323454 (3) 

Notes on the 1-blocka 

(1) This block is a prefix of the others. 

(2) After (1) is aone, this block is a prefix of the 

others. 
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(3) The words bf, cf, df, ef, af are illeaal. This last, 

af, is illeaal since fa is illeaal and af123453 ~ 

23454123453123454123453. 

Suppose that c does not occur in v. Then vie formed 

from a, b, d, e, and bis a prefix of d, a prefix of e, a 

prefix off. This is impossible by the Block Theorem. 

To show that MAX.6 is not versatile, we consider 

blocks ending _~n_c. Note that since ~ contains a 

repetition 

Level 2; reverse c-blocksi 

ac (2), be (1), de, ec (2), 



. , 
adc, bdc (1), edc (3), 

bade, · dadc (4), eadc (5), 

abadc (6), dbadc (7), ebadc, 

aebadc, bebadc (1), debadc (1) 

baebadc (8), daebadc, eaebadc (5) 

• 

adaebadc (9), bdaebadc (1), edaebadc (3) 

Notes on the reverse c-blocke 

(1) Toe words be, bd, be, bf, de, df, ef contain 

repetitions . . ,, · 

, . 

(2) ~ere...,..4c .aives either 4 c 1 repetition, or 

4 ca 12345 ~ 4 a 12345, a repetition. 

(3) Here ed leads to one of be, de, or"4 ed, each 
i::----

repetitions. 

(4) Leads to bd or-·4dad.12345. 

(5) As 4 a 12345 is a repetition. 

(6) Since ab is repeated. 

(7) Contains 312345312345, 
I 

f 
{ 
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(8) We aet 3bl2345 or 4 bae 4 bad. 

(9) Since ad is repeate~. 

Summary of useful reverse c-blocke 

de ( 1) 

ado (2) 

bade (3) 

ebadc (4) 

aebadc (2) 

daebadc 

(1) A suffix of the remaining blocks. 

(2) As ca leads to 4 123454 12345. 

• 

. _/ 

• 

(3) Afte~ (1) - (2) are aone, thie block .is a suffix of 

the remainina blocks. 

(4) Appears in the context 4badc ebadc d, a repetition. 

MAX.6 is not versatile. 

MAX,7, 
.I .. 

Suppose that MAX.7 is versatile, and let v be a . 
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non-repetitive word of type w walkable on MAX.7. Asain, 

MAX.7 \ (1} reduces to a three element path. The 1-blo~ks 

, . 

- . 



,. 

of MAX. 7 are . .... 
a: 1232 

b: 123456 ..,. 

c: 12345676 
I 

d: 1234567656 

Thus !JY the Block Theorem, .MA~. 7 is not versat.1le. 

J 

MAX.8 

.. 
Suppose that MAX,8 is versatile, and let v be a 

non-repetitive word of type~ walkable on MAX.8. We check 

that MAX.8 \ (4) reduces to a three element path. The 
. 

4~ blocks of MAX.8 are 

a: 4123 

b: .45 

C :~ ~563 -
d: 456323 

J 

Thus by the Block Theorem, MAX.8 ),II not, versatile. 
• 

.. . 

/ 
I 

. ' 
MAX.9 
Suppose that MAX.9 is ver-satile, and let v be a 

non-repetitive word of type w walkable on MAX.9. We check 

that MAX.9 \ (1) ts mimicke by MAX.7, which has been 4 

shown not to be versatile. One ma herefore aaauae that 
...J"" 

... . 

,· 



.. 

• .. 
-· 

• 

v contains a 1 • 

a: 

b: 

Level 1: 1-blocks: 

, . 
1234'5 (1) 

12 4562345 

12345645 (2) 

1234564345 

c: 123456434562345 (3) 

d. 34562345645 

e: , 

Notes on the 1-blocke 

(1) . This block is a pref'x of the others. 

(2) After {1) is gone, this block always appears in the 

context 45 lliz345645 123456,· wbi'a h is a repetitioi;i, 
', 

Level 2; a-blocks: 

ac·,. . ad, ae 

~ 
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'!}>c ' 1 ) '· ahd ( 1 ) ' abe ( 1 ) , acb ( 2) , acd ( 1 ) , ace 

·I 
(· 1 ) , 

. 
adb, 

• 

adce ( 1 ) ' 

,. 

ad ade ( ~ ) ·, aeb ( 3) , .. ·~-. 
aec, 

.. 
ad ( 1 ) ' adbd ( 1 ) ' adbe ( 1 ) ' 

"' 
aeob, aecd ( 1 ) , aece ( 1') 

. , 
' 

.aed ( 4 } 

adcb, adcd ( 1 ) ' 

/ 

' I 



/ 
/ 

( 1 ) , adc be ( 1 ) 1 aec be ( 1 ) , 

aecbd 

aecbe (1) 

Notes on the a-blocks 

( 1 ) The words be, bd, be, cd, ce, de are illegal. 

( 2 ) Since acb ::> 62345"6 62345b. . 
( 3 ) The word aebl contains 2345.6.43451 2345643451. 

. 
( 4 ) The word aed co tains a repetition of 

/ 

34512345643456234564. 

. 
Summary of useful a-blocks 

, 
·' 

ab (2) 

ac ( 1 ) 

ad ( 3) 

ae ( 4 ) 

adc ( 1 ) 

a: adb 
.. 
aec ( 1 ) 

p: adcb 

., 

.. 
• . ' 

.. 
·, 

255 
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., 
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(1) ca 123456 ~ 2345 1234562345 123456. 

(2) ~ Prefix of other blocks. 

(3) After elimination (2), the a-block ad must occur in 

the context 5adae, which contains a repetition .. 

(4) Among the remaining blocks, ae appears either in the 

context aeae, or as b ae ad~ (345 a 12345643456234564) 2 . 

The three blocs a, p, r cannot be concatenated to form a 

non-repetitive ~ord of type w, since ap contains a 

repetition. Thus MAX.9 is not versatile 

\. 

Suppose that MAX,10 is versatile, and let v be a 

non-repetitive word of type w walkable on MAX.10. One 
• I 

checks that vertex 4 must occur in v. However, MAX.10 is 

versatile if and ony if its reverse is. The 4-blocks of 
, 

the reverse of MAX.10 are 

a: 43 

. b: 432 

c: 43215 

d: 465 

Invokina the Block T orem, MAX.10 is not versatile ·. 

1' 

• , 
.. , _: .. 

.. 

.~ . . 

, 
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.. 

MAX.11 
. 
• 

One checks that 4 cannot be discarded from MAX.11. The 

4-block~ of the reverse of MAX.11 are 

a: 432 

b: 4321 

C: 43212 

d: 45 

This is by the Block Theorem. Thus MAX,11 is 

not versatile. 

MAX.12 
" 

that MAX.12 is versatile, and let v be a 

on-repetitive word of type w walkable on MAX,12. One 

that 1 must appear in v. The 1-blocks of MAX,12 

12 / 

- a: 

b: 

c: 

d: 
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The block 12 'is not useful, as it is a prefix of the 

other blocks. Similarly, the blocks 123, 12345 are 

eliminated from consideration. However, by the Block 

Theorem, the remainina blocks cannot be concatenated to 

form a non-repetitive word of type w. Thus MA.X,12 is not 

versatile. 

' MAX. 13 

Suppose MAX.13 is versatile for some q. Let v be a 

non-repetitive word of type w walkable on MAX.13. One 

checks that we may assume that v contains a 1. The 

1-blocks of MAX.13 are: 

12 ; 

123 

1234 

1234 ••. (q-1) 

123 •.• q2 

123 ••. q23 

123 .•• q234 

• 
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123 ... q234 .. · ' q-1) 

We see that the block 12 is a prefix of all the other 

blocks, and hence c a nnot .appear in v. Alain, the block 
• 
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123 is a pre f i x fall the other blocks excludina 12, and 

hence can never be used in v. Continuinl in this way, we 

can eliminate all the blocks in order, showinl that none 

6f them can be used in v, which is a contradiction. Thus 

MAX.13 is not versatile for any q. 

MAX. 14 

Suppos~ that MAX.14 is versatile, and let v be a 

non-repetitive word of type w walkable on MAX,14. One 

checks that v may be assumed ~o commence with 1. The 

1-blocks of MAX,14 are 

12, which is discarded 

a: 1232 

b: 1234 

c: 123456 

d: 12345676 

By the Block Theorem, these blocks cannot be concatenated 

to form a non-reprtitive word of type w. Thus MAX.14 . i • 

• 
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not versatile, 

I • 

MAX, 15 

Suppose tha C MAX.15 is versatile, and let v be a 

non-repetitive word of type w walkable on MAX.15. One 

checks that v may be assumed to contain a 5. The 5-bl6cks 

of MAX,15 are 

a: 56 

b: 51234 

' c: 512343234 

Since be contains a repetition, these blocks c annot be 

concatenated to form a non-repetitive word of type w. 

Thus MAX.15 is not versatile • . 

MAX· 16 

Suppose that MAX,16 is versatile, and let v be a 

-
non-repetitive word of type w walkable on MAX.16. One 

chec;ka that v may be assumed to contain a 3 .The 3-blocke 

of MAX. 16 are 

a: 312 

b: 342 



.. 

c: 345 

Since abc contains a repetition, these blocks cannot be 

co~atenated to form a non-repetitive word of type~. 

Thus MAX.16 is not versatile, 

MAX. 17 

Suppose that MAX.17 is versatile, and let v be a 

non-repetitive word of type~ walkable on MAX,17. One 

checks that v ma~ be assumed to con~ain a 3. 

Level 1: 3-blocks: 

a: 32 

b: 312 

c: 3412 

a: 345 

34512 
:, .. • 

e: 

... 

One checks .that V may be assumed to contain a d, 

. Level 2 : g-bl2c1s: 
,, 

~ 

da, db.f de, de ( 1 ) . -, 
• r 

dab, dac, dae. dba (2), dbc (3), dbe (5), dca 
,. 
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(2), deb (4), dee (5) 

daba (2), dabc ( 3 , dabe (5), daca (2), dacb 

( 4 ) ' 

dace (5), daea (2), daeb (4), daec (3) 

Notes on the ct -blocks 

(1) The word de contains a repetition. 

(2) Since 2a3 is a repetition. 

(3) Here 12c will either appear in context 

12c34, a repetition, 

12cb3 j 12b3, a repetition, 

or 12ca3 j 2a3, a repetition. 

( 4 ) As noted abov~, 12b3 is a repetition. 
.. -P 

• ( 5) . Here 12.e . w.ill '!-ppear in one of the following 

contexts: .:..· 

12 e 345 , a repetition, 

12 e c j 12 c, - liadina to a repet f tion as in (3) • 

above, 

12 ea j 2 a, leadi~I to repetition as in (2) . - ... , . 

or 12 e b ~ 12 b, leadina to the repetition of (4). 

summarx of useful d-blooka . " 

da (1) 

262. 
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A: 

B: 

db ( 2) 

de 

ab 

C: dac 

0: dae? 

(1) 2dad3 is a repetition. 

-.. 

, 

(2) After the eliminatio~ (1), this block app ars in 

context 

12 db d3, a repetition 
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Thus if MAX.17 is versatile, a non-repetitive word ca~ 

be composed of blocks A,B,C,O. However this would imply 

that the following blocks could be concatenated to form a 

non-repetitive word of type~= 

A_': 12d;34 

' . 
CI: 

DI : 

12da3 

12da34 

12da345 

As his is impossible by the Block Theorem, MAX.17 

is not versatile. 



MAX, 18 

Suppose that MAX,18 is versatile, and let v be a 

non-repetitive word of type w walkable on MAX.18. One 

checks that v · may be assumed to contain a 1, 

Level 1: 1-blocka: 

12345 (1) 

123456 (2) 

a: 1234565 

b: 123456345 

12345632345 (3) 

c: 123456323456 
,, 

d: 1234563234565 

... 

..... ~ . • .,. • • .. ) " 

Note; \on the 1-blocki~ · r"':l!. f;,, . ~ ~ ' 

'(_1 -)' Thia block is a prefix of the others. 

.... 

(2) After (1) is ~one, this block is a ·prefix of the 

re• ainina blocka. 
. ' 

( 3) 
. . ' ~ f,, 

This block is a prefix of c ~nd d, and hence cannot 
., 

be followed by them in a non-repetitive word. However, 5 

a 123456 is a repetltion, as is 345 b 123456, so that 

this block is also is disca~ded. 

One checks that v may be ·assumed to contain a c. 

Cl 
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Level 2: c-blocks: 

ca, cb, cd (1) 

cab, cad ( 2 , 'cba ( 1) , cbd 

caba (1), cabd, cbda (1), cbdb 

cabda (1), cabdb, cbdba (1), cbdbd (3) 

cabdba (1), cabdbd (3) 

Notes on the ·c-blocks 

• 

( 1) • The wor~ 5a leads to a· repetition 5 1234565 123456, 
- ·"-. . . 
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· so ~hat ~6rd~ ' ba, d~ are ,not useful: The word c~contains 
) \ 

a repetition. 

· (2) Since dais ille~a~, so is ad, which must occur in 

the contex\ adx, x · c b or c , hence adl234563 ~ 

23456512345632345651234563. . . .. 
(3) R eata bd. • 

summary of useful c-blocks ,. 

ca ( 2) • 

· . 

.. 

. ' .. -



., 

t • •t 

... 

cb ( 3) 

cab (4) 

cbd (1) 

cabd (1) 

cbdb 

oabdb 

. , 

(1) ~s 5dc ~ 5 1234563234565 123456323456. 

(2) For, 5 cac 123456 ~ 5cl234565cl23456. 

. ' 

,· 

) 

( 3) After ( 1 ) , { 2) are 

b cb c. , 

lways appears in context 

(4) Here db cab c 1 ~ 234565 b c 1234565 b c 1. 
. r 

We are. left with ·only two blocks. Thus MAX.18 is not 
, ' ..... ·<, 

versatile. 
,,. _ 

. MAX, 19 · . ' 

,. -
\ 

Suppose that MAX.19 is versatile, and let v be a 

non-r.epeti trve word of type ~ walka>ble on MAX. 19. O_ne 

checks that v may be assum~d ~o contain a 1. 

;, . 

. ' 
•· . 

" 

/i ,. 
I 

( 



'\ 

-• I t 

Level 1: 1-blocks: 

a: 

b: 

c: 

1234 (1) 

123'45 (2) 

· 12345234 

·1234534 

123453234 (3) 

1234532345 

d: 1234532345234 

Notes on the 1-blockw 

f' .. ' . ~-=-~.• . .J f: ... ··.~ 
• ., # " • ... .. . .. ~ - . ., .., . 

.. __ .:, :. . ' : .. ,. 

( 1) This ~lock is· a\ pref ix e,..f the others. 

(2) After (1) is aon~, this_ block is a 

remainde.r. 
. ~ . . 

267 

' .. . . . .. 
'• ... ... 

• .. .. . 1 ... ... • • • • .. 

. ' . . .... ' .- ~ :. 
. ·.. .. . -· :~ . : .. 

of the 

<i> This block is a prefi~ of c .~nd d, and hence cannot 

be followed by them in~ ~on-~epetitive word > H'owever, 
:~ '(- . . .-
234 a 12345 is a re~etition, as is 34 b 12345, so that 

the block is discAJRdeq. 

One checks at v may be assumed ,6 . conta~n a c . 
. 

Level 2: c-blocks: 

ca, cb, cd ( 1 ). 

cab (2), cad (3), cb~ (1), cbd 

' , .. 

• 

... 



.. j " ,., J 

/ 

/ 

,,,.,,/ 

_.., 

cbab ( 2) ' cbad ( 3) , . cbda ( 4 ) ' 

otes on the c-blocks 

(1) The word c d contains a repetition. 

(2) Since 34 b 12345 is a repetition. 

cbdb ( 2 ) 

(3) Here ad leads to ad123453, a repetition, or 

adb12345, a repetition. ( See (2), 

(4) Since 234 a 12345 is a repetition. 

Summary of useful c-blocks 
.) 

cb ( 1) 

a: ca 

p: cba 

-,: cbd 

, 

(1) As 34 cb c 12345 is a repetition. 

_.... 

J 

268 

The thr~e blocks a, p, -, cannot be concatenated to form a 

non-repetitive word of type w, since pa-, contains a 

repetition. Thus MAX.19 is n0t versatile . 

., 



MAX, 20 

Suppose that MAX.20 is versatile, nd let v be a 

non-repetitive word of type w walkable on MAX.20. One 

checks that v may be assumed to contain a 6, since 

MAX.20 \ {6} is mimicked by MAX.19. 

Level 1: 6-blocks 

612345 (1) 

61234532345 (2) 
. 

a: 612345323412345 , 

b: 6123453412345 

c: 612345341234532345 

d: 6 123453412345323412345 ·-
e: 61234534123453234123453412345 

Notes on 6-blocks 

( 1 ) This block is a prefix of the others. ' 
~ 

,· 

(2) After elimination (1), this block always occurs in 

the context 23456 12345323456 1234563, which .. 
1s a 

repetition. (. 
One checks that v maY. be assumed to contain an a. 

Level 2: a-blocks: 

ab (1), ac, ad (2), ae 

I 
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.. 



I 

acb, acd (2), ace (2), aed (2), aec, aeb (2) 

aecb, aecd (2), aece (2), aebc (2), aebd (2), 

aebe (2) 

aec bc (2), aecbd (2), aecbe (2) 

Notes on the tr-blocks 
0 

(1) The word ab always occurs in the context 

ab 612345 ~ 3 4 12345 612345 3412345 612345, a repetition. 
~ 

(2) The followina words contain repetitions: 

aa6, ada6, ad61234534 

Thus ad is illeaal. ) 

be, bd, be, cd, . ce, de 

eb6, a e d 

Sum 9 ry of useful a-blocks 

ac ( 1 ) 

B: ae 

A: acb 

C: aec 

D: . aecb 

270 



• 

) 
271 . 

(1) As 5acae is illeaal. 

By the Block Theorem, MAX.20 is not versatile. -
MAX.21 .. 

Suppose that MAX.21 is versatile, and let v be a 

non-repetitive word of type · ~ walkable on MAX,21. One 

checks that v may be assumed to contain a 1. The 1-blocks 

of MAX.21 a e 

123 ( 1 ) 

1234 ( 2 ) 

a: 1 2345 

b: 2343 

c: 1234323 

d: 1~343234 

12.3432345 ( 3 ) 

Notes; Blocks (1) and (2) are eliminated as prefixes. 

Block (3) cannot be preceded by any block but a, and thus 

must appear 'in one of two contexts: 

a 123432345 12343 ~ 234512343 234512343 

a 123432345 12345 1 ~ 23451 23451. 
\. 

By t Block Theorem, the remainina blocks cannot be 

( 



l 

I 

... 

concatenated to form a non-repetitive word of type w • . 

Thus MAX.21 is not versatile. 

MAX.22 
\, 

. 
Suppose that MAX.22 is versatile, a nd let v be a 

non-repetitive word of type w walkable on MAX.~2. One 
. 

272 

checks that v may be assumed to contai1 

of MAX.22 are 

a 1. The I-blocks 

12 

123 

1234 

a : 123456 

b: 123452 

.c: 123 23 

EH- 12345234 

The first three blocks are eliminated in turn, as 

prefixes. By the Block Theorem, the remain isli blocks 

cannot be concatenated tp form a non-repetitive word of 

type w. Thus MAX.22 is not versatile. 

\ 



• .-! ·~ \ .... 

•• 
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. MAX· 23 

Suppose that MAX.23 is versatile, and let v be a 

non-repetitive word of type w walkable on MAX.23. One 

checks that v may be assumed to contain a 1. The 1-blocks 

of MAX.23 are 

12, which i• discarded ~ 

a: 1232 

b: 12345 

c: · 123456 

d: 12 4565 

By the BLock Theorem, these blocks cannot be concatenated 
'' ' 

to form a ran-repetitive word of type w. Thus MAX.23 is 

' not versati:le, 
\ . 

MAX.24 

, -
Suppoae that MAX.24 "is versatile, and let v be a 

non-repetitive word 9f type w walkable on MAX.24. One 

check• that v • ay be assumed to contain a 1. The 1-blocks 

--of MAX.24 are 

12~ which is discarded 

a: 1232 

--
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b: 1234 

c: 12345 ... 
d: 123456 

By the Block Theorem, these .blocks cannot be concatenated 

to form a non-repetitive word of typ~ w. Thus MAX.24 is 

not versatile. 

MAX.25 

Suppose that MAX ', 25 is versatile, and let v be a 

non-repetitive word of type w walkable on MAX.25. One 

checks that v may be assumed to contain a 2. By analyzini 

the 2-blocks of MAX.25, ~ can conclude that MAX...25 is 

not versatt'le. 

Level 1: 2-blocks: 

a: 21 

b: 234 

C: 23454 

d: 23451 

One checks that v may be assumed to contain an a . 

• 

' 



. Level 2: a-blocks; ~ 

ab, ac, ad 

abc (1), abd (1), acb, acd, adb, adc (2) 

acbc (1) , acbd (2), acdb, acdc, adbc (1), 

adbd (2) 

acdbc (1), acdbd (1), acdob, acdcd (3) 

acdobc ( 1) , acd_cbd ( 1) 

Notes on the a-blocks 

r-
' 

(1) The word bis a prefix of c and d.(2) This block 

followed by 3 contains 2a3 2a3. 

(2) Here adc ~ 1234512345. 

(3) The word cd repeats. 

suuar7 _of useful a-blocks 

ab (2) 

F: ac 

ad (1) 

.. 
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A: adb 

~d (1) 

B: acb 

C: acdb 

D: 

E: 

Notes 

acdc 

acdcb 

,,. 

(1) The block da2 ~ 1212. 

( 

(2) A prefix of the other blocks. 

We are left with five a-blocks: 

After one more level of blocks, we are done. 

Level 3: A-blocks: 

AB, AC, AD, AE, AF (1) 

( 

ABC (2), ABD (2), ABE (2), ACB, ACD (3), ACE (3), ADB, 

ADC ( 6), 

AD ( 4 ) , AEB ( 5 ) , ABC , AED ( 7 ) 

0 

ACBC (2), ACBD (2), ACBE (2), ADBC (2), ADBD (2), AD 

(2), AECB, 
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AECD (3), AECE (3), 

AECBC (2), AECBD (t), ABCBE (2). 

Notes on the A-blocks 

( 1 ) A prefix of the other blocks. 

( 2) B is a prefix of c, D, lL 

( 3 ) C is a prefix of D, ·g. 

( 4 ) D prefix of B. 

( 5 ) Here AEBa => cb acb a. 

( 6 ) As DC contains dcac2 => lc21o2. 

7) As ABO=> b acdcb acdo. 

suuar1 of useful A-blocks 

AB ( 1 ) 

AC ( 2) 

AD ( 6) 

AB 

ACB ( 5 ) 

ADB (4) 

ABC ( 3) 

ABCB 

tigS.lli ( 1 ) Prefix. 

\ 
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) 

( 

(2) Once (1) is aone, this block is a prefix. 

(3) Leads to CA a~ db adb a 

(4) DB~ dcac2 ~ lc2 lc2. 

(5) ACB ~ db acdb ac. 

278 

(6) After (1) - (5) are aone, this block is prefix 

of the remainder. 

We are thus left with only two blocks, These blocks 

cannot be concatenated to for·m a non-repetitive word of 

type~. 

MAX.26 

Suppose that MAX.26 is versatile, and le v be a 

non-repetitive word of type~ walkable on MAX..26. One 

checks that v may be assumed to contain a 6. The 6-bl oka 

of MAX.26 are 

67, which is discarded 

a: 6787 

b: 678123• 5 

c: 678123454345 

d: 6781234543452345 

By the Block Theorem, these blocks cannot be concatenated 

to form a non-repetitive word of type w. Thus HAX.26 i • 



not versatile. 

We have now established that none of the d i graphs of MAX 

are versatile. 

f. 
/ 

I 

-

r 
/ 

I 

.. 
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Appendix I: DiMraphs of MIN 

'. 



✓-

2 284 

1 3 

MI .1 

1 

2 2' 

3 , 

MIN.2 

1 2 3 4 5 

!-'I~.3 



285 

1 2 3 4 5 

MI .4 

1 2 3 4 5 

MIN.5 

1 2 3 4 5 

MIN.6 



r 

286 
. ' ~ 

~ 

L~~~~:~ 
1 2 3 4 5 

MIN . 7 

1 2 3 4 5 6 

MIN.8 

. ( 

= 1 . 2 3 5 

l 
MIN.9 



1 2 

1 2 3 

1 2 3 

-

3 

MIN.10 

4 

MIN .11 

4 

MIN .12 

4 

287 

5 

5 

5 

. -



288 _ 

• 

1 2 3 4 5 6 

MI .13 

1 2 3 4 5 6 

MIN .14 

' 

1 2 3 4 5 

MIN.15 

\. r l 



289 

1 2 3 4 5 

r-rrN .16 

1 2 3 4 5 6 

MI.N.17 

1 2 3 4 5 6 

MIN.18 .,, 



1 

I 

I 

--
1 2 

1 

/ 
/ 

2 

2 
, 

; 

3 

3 4 

3 

4 

MIN.19 

5 

~ M.20 

4 

MIN.21 

5 

6 7 

290 

6 7 

\ 

8 

'1 

5 6 



1 2 3 

1 2 3 

1 2 3 

MIN.22 

4 

MIN.23 

MIN .24 

4 

4 

5 

5 

291 

.... 

6 

6 



292 

1 2 3 4 5 6 7 

MIN . 25 

1 2 3 4 5 6 

\ MIN . 26 

1 2 3 4 5 

MIN. 27 

• 



293 

1 2 3 4 5 

MIN .28 

1 2 3 4 5 6 

MIN. 29 

1 2 3 4 5 . . 6 

MIN .30 



• 
• .J 

1 2 3 

MIN .31 

i 

1 2 

MIN.32 

1 2 

MIN.33 

• 

II 

4 

3 4 

. 

• 

3 4 

. '294 
A 

. 

5 

5 

/ 
I 

_) 

5 

...; 



1 

t • 

•• 

1 2 

I 

2 

.. 
; 

3 

295 

3 

MIN.34 

3 4 ,5 

MTN.35 

4 5 6 

MIN. 36 

. ,. 



296 

. 1 2 3 4 

MI .37 

1 ·2 3 4 5 

MIN. 38 

MI. .39 

,. 



' 

1 2 3 

1 2 3 

' 

1 2 3 

4 

MIN . 40 

MI ' . 41 

4 
,/ 

MIN . 42 

5 

4 

5 

6 7 

.. ,, 

5 

6 7 
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J 

1 2 3 4 5 

MI .43 

1 2 3 4 5 6 

MIN .44 

... 

1 2 3 4 5 6 

MI. . 45 



,. 299 
/ 

1 2 3 4 5 6 

MIN.46 

1 2 3 4 

MIN .47 

) 

1 2 3 4 ·5 6 

MIN.48 



I 

300 

1 2 3 4 5 

MI . 49 

1 2 ' 3 4 5 6 

MIN. SO 

1 2 3 4 5 6 

MI .51 

,._ 



301 

1 2 3 . 4 5 

MI .52 

,. 

1 2 3 , 4 5 

MIN.53 

, 

' 

1 2 3 4 5 6 
• 

MIN.54 



302 

I 

1 2 3 4 5 

fL ' . 55 

1 2 3 4 5 6 

MIN.56 

1 2 3 4 5 6 

MIN.57 



303 

1 2 3 4 5 6 

MIN. 58 

2 3 4 5 6 

MIN.59 

2 3 4 5 6 ' 7 

MIN.60 



304 

4 5 6 7 8 9 

MI .61 

1 2 3 4 5 6 7 

MlN . 62 

" 

1 2 3 4 5 7 8 

MIN . 63 

I 



• 

305 

... 

1 2 3 4 5 6 7 

MIN .64 

\ 

1 2 3 4 5 6 7 

MIN. 65 

1 2 3 4 5 6 

D 

MIN.66 



, 

1 2 3 4 5 6 7 8 

MI • 67 

( 

1 2 3 4 5 6 7 8 

MIN . 68 

1 2 3 4 5 6 7 

\ 

MIN. 69 



1 2 3 4 5 • 
,.--

MIN . 70 

1 2 3 4 5 
..._ / 

MIN . 71 

1 2 3 4 5 6 7 

MIN . 72 

, 



308 

1 2 3 4 5 6 

MIN. 73 

1 2 3 4 5 6 7 

MIN;74 

4 5 6 

MIN.75 



309 

--

1 ; . -2 3 4 .. 5 
MI N. 7 6 

, -

I . ' 
C • 

.. 
-y 

.J 

1 2 3 4 5 

MIN. 77 • 

-

r 
1 r . 2 3 4 5 6 

MIN . 78 



) 

,-

1 2 3 4 5 0 
~ I . . - . ... - _,..,.-.. -- ........... 

MIN. 79 

I 

___ . .,) 
..,• .... -.-.' 

.. 

1 2 3 4 5 

MIN.SO \ 

( 
• 

., 

1 2 3 4 5 

• MIN.Bl 
., . .. 

n 



.. .' 
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' • I ' 

1 2 3 4 5 

- .. 
MI .32 

4 5 

J MIN.83 

' ' 

1 2 3 4 5 6 ' 

!-f!P.. 84 

\ 



( ' 

312 

, 

-/ " 4 5 6 ,., 
~. 

MI 1 .85 ~ 
.. 

1 2 . 3 

' 4 ..r 
... 

MI .86 · 

1 2 3 4 5 6 

MI .87 



\ 

313 

1 2 3 4 5 6 
.... . ,. 

MIN . 88 

' ~· 

O ,• 

1 2 3 4 5 

~IN .89 

.... 

' 



. , . 
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Appendix II: Di1raphs of MAX . . 
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1 
ti" 

.... , ... 

1 2 

1 2 

2 

I 3 

3 

3 

MAX.I 

4 

MAX.2 

315 

t 

4 5 6 

.,, 

- .. 
I 

5 6 7 

4 6 



1 

1 2 3 

_, 

1 2 3 

MAX.4 

4 

MAX.5 

MAX.6 

5 

4 

316 

6 7 

/ 
\ 



. . 

1 

, 1 

1 

2 

2 3 

2 

4 

MAX.7 

· MAX.8 

3 

MAX.9 

317 

5 6 7 

4 5 6 

4 5 6 -



318 

1 2 3 4 5 6 

MAX .10 I ... 
• 

. .. 
.. 

\ 

1 2 3 4 5 

MA."-:,11 

,, 

2 3 .. 4 5 6 

. , 
MAX.12 



• 

319 

1 2 3 4 -- .. .. .. . - q-1 q 

MAX.13 
, 

..: . 
• < • 'I. 

,,. 

' .-.. 

--J 

1 2 3 4 5 6 7 

MAX,14 

.... 

1 2 3 4 5 6 

MAX.15 



1 
r 

\ 

1 2 

/ 

2 3 

MAX.16 

3 

MAX.17 

MAX.18 

4 5 

, 

4 

320 

-.• . 

5 

6 



1 2 

.. 

1 2 3 

1 2 

,, 

4 

MAX.19 

.,. 
~ -"',• 

MAX.20 

3 

t"AX. 21 

I 3 

I 
II • t • -- '' \ 

5 

• 

4 

. ~-- .. _. . .... . ~ .. 
•• ✓-

4 

' 

, - .) 

' , 

, 5 

.- ' . . ,., 
• • LI • 

6 

5 



., 

' 
1 .... 2 3 4 ·s 

... < -

t,JAX.22 
)" J 

:,_;'" 
. ,. _,. . .: - ;: ...... ...,".- . --

:- r" 
~ 

·, ' 
,, 

! 

I ,, 
., . 

6 

. 
I / . . - . 

\ ., .,, ... -: . 
. •. 

_, • 

1 2 6 
I •• I 

MAX.23 

' 

1 2 3 4 5 6 

MAX.24 



1 2 3 . 4 5 

MAX.25 

• 

1 2 3 4 5 6 7 8 

.. 
MAX.26 

• 

~ . 
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