Counting endomorphisms of crown-like orders

James D. Currie and Terry I. Visentin ${ }^{1}$
Department of Mathematics and Statistics
University of Winnipeg
Winnipeg, Manitoba
Canada R3B 2E9

August 14, 2019

[^0]
Abstract

The authors introduce the notion of crown-like orders and introduce powerful tools for counting the endomorphisms of orders of this type.

Figure 1: The fence and crown of order 4

Figure 2: The infinite fence \mathcal{F}

1 Introduction

Let n be a natural number. By the fence of order n we mean the order \mathcal{F}_{n} on $\{1,2, \ldots, 2 n\}$ where the odd elements are minimal, the even elements are maximal, and elements i and j are comparable exactly when i and j differ by 1 . The crown of order n is the order \mathcal{C}_{n} on $\{1,2, \ldots, 2 n\}$ where the odd elements are minimal, the even elements are maximal, and elements i and j are comparable exactly when i and j differ by 1 modulo $2 n$. (See Figure 1.)

Crowns and fences are two types of orders for which the number of endomorphisms is known exactly [1, 2]. Duffus et al. assert that the methods of [2] should extend to give asymptotic estimates for the number of endomorphisms of the orders depicted in Figure 3.

One sees that the orders in Figure 3 are 'fence-like' in their repetition of a certain basic unit. In this paper we propose a definition for fence-like and crownlike orders which will include the orders of Figure 3 as special cases. We also introduce a powerful method of exactly counting the endomorphisms of crownlike orders.

2 Generalized Crowns

In [2] it turns out to be useful to consider the infinite fence. This is the order \mathcal{F} on \mathbb{Z} where the odd elements are minimal, the even elements are maximal, and elements i and j are comparable exactly when i and j differ by 1 . (See Figure 2.) This order has the shift map $\sigma_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\sigma_{2}(i)=i+2$ as an automorphism. The restriction of \mathcal{F} to $\{1,2, \ldots, 2 n\}$ is \mathcal{F}_{n}, while \mathcal{C}_{n} arises from \mathcal{F} by identifying elements which are congruent modulo $2 n$.

Say that order F on \mathbb{Z} is a generalized infinite fence if

- the diagram of F is connected
- at most finitely many elements are comparable to any element of F
- for some natural number s, F has the shift map $\sigma_{s}: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\sigma_{s}(i)=i+s$ as an automorphism.

Let F on \mathbb{Z} be a generalized infinite fence with s_{0} a natural number such that $\sigma_{s_{0}}$ is an automorphism of F. Let k be a natural number such that no element of F greater than $k s_{0}$ is comparable to an element of $\left\{1,2, \ldots, s_{0}\right\}$. We call the order P induced on $\left\{1,2, \ldots, k s_{0}\right\}$ by F the base unit of F. Every comparability of F is recoverable from its base unit. Suppose that $i, j \in \mathbb{Z}$, with $i<j$. Then $i<_{F} j$ if and only if $i^{\prime}<_{P} j^{\prime}$, where $1 \leq i^{\prime} \leq s_{0}, i^{\prime} \equiv i \bmod s_{0}$ and $j^{\prime}-i^{\prime}=j-i$. In the case where i^{\prime} and j^{\prime} are comparable, it will follow that $j^{\prime} \leq k s_{0}$, so that $i^{\prime}, j^{\prime} \in P$. One similarly determines whether $i>_{F} j$. It therefore makes sense to call F the infinite fence with base unit P and period s_{0}. We write $F=F\left(P, s_{0}\right)$.

Suppose that $F=F\left(P, s_{0}\right)$ is given, with $|P|=k s_{0}$. There are infinitely many other ways of choosing s_{0} and k for F. Suppose t is an integer. Let $\hat{s}_{0}=s_{0}+t s_{0}$, $\hat{k}=k+t$. Then $\sigma_{\hat{s}_{0}}$ is an automorphism of F and no element greater than \hat{k}_{0} is comparable to any element of $\left\{1,2, \ldots, \hat{k} s_{0}\right\}$. Choosing $t=k-2$, we get $\hat{k} s_{0}=(k+t) s_{0}=(2 k-2) s_{0}=2\left(s_{0}+t s_{0}\right)=2 \hat{s}_{0}$. Choosing s_{0} appropriately, we can thus always pick $k=2$. We shall do this in the remainder of this paper.

Given a generalized infinite fence $F=F\left(P, s_{0}\right)$ and a natural number n, the generalized fence of order n with base unit P, period s_{0} is the order $F_{n}\left(P, s_{0}\right)$ which is the restriction of F to $\left\{1,2, \ldots, n s_{0}\right\}$. The generalized crown of order n with base unit P, period s_{0} is the order $C_{n}\left(P, s_{0}\right)$ on $\left\{1,2, \ldots, n s_{0}\right\}$ which is obtained from F by identifying elements which are equivalent modulo $n s_{0}$.

Fence \mathcal{A}_{n}

Fence \mathcal{B}_{n}

Fence \mathcal{D}_{n}

Fence \mathcal{E}_{n}

Figure 3: Various generalized fences of order n

Example 2.1 Consider the ordinary infinite fence \mathcal{F} depicted in Figure 2. Here $s_{0}=2$ and P is the order induced by \mathcal{F} on $\{1,2,3,4\}$. Then $\mathcal{F}=F(P, 2), \mathcal{F}_{n}=$ $F_{n}(P, 2), \mathcal{C}_{n}=C_{n}(P, 2)$. For the orders in Figure 3, we could choose $s_{0}=4,2,3$ and 4 respectively.

3 Counting Endomorphisms

Let a generalized infinite fence $F=F\left(P, s_{0}\right)$, and a natural number $n \geq 2$ be given. We will abbreviate $\sigma_{s_{0}}$ by $\sigma, C_{n}\left(P, s_{0}\right)$ by C_{n} and $F_{n}\left(P, s_{0}\right)$ by F_{n}.

Remark 3.1 The crown C_{n} is obtained by identifying elements of F which are equivalent modulo $n s_{0}$. Let $i, j \in\left\{1,2, \ldots, n s_{0}\right\}$ be given, with $i<j$. Suppose that $i<_{C_{n}} j$. Then $i^{\prime}<_{F} j^{\prime}$ some $i^{\prime}, j^{\prime} \equiv i, j$ modulo $n s_{0}$. Since the base unit of F is P, of size $2 s_{0}$, we can specify that the difference between i^{\prime} and j^{\prime} is less than $2 s_{0}$. Choosing the lesser of i^{\prime}, j^{\prime} to lie in $\left\{1,2, \ldots, n s_{0}\right\}$, we can pick i^{\prime}, j^{\prime} to lie in $\left\{1,2, \ldots, n s_{0}+k s_{0}=(n+2) s_{0}\right\}$. A similar result holds if $i>_{C_{n}} j$. Thus every comparison in C_{n} will be realized if we identify elements of F_{n+2} which are congruent modulo $n s_{0}$, and C_{n} is obtained from identifying the first $2 s_{0}$ and the last $2 s_{0}$ elements of F_{n+2}.

The following are immediate:
Lemma 3.2 Endomorphisms of C_{n} are in 1-1 correspondence with those homomorphisms g of F_{n+2} into C_{n} for which

$$
g(i)=g\left(i+n s_{0}\right), i=1,2, \ldots, 2 s_{0} .
$$

Lemma 3.3 Homomorphisms g of F_{n+2} into C_{n} for which $g(i)=g\left(i+n s_{0}\right), i=$ $1,2, \ldots, 2 s_{0}$ are in $1-1$ correspondence with those homomorphisms f of F_{n+2} into F for which

$$
\begin{aligned}
f(1) & \in\left\{1,2, \ldots, n s_{0}\right\} \text { and } \\
f(i) & \equiv f\left(i+n s_{0}\right) \bmod n s_{0}, i=1,2, \ldots, 2 s_{0} .
\end{aligned}
$$

Note that the homomorphisms of F_{n+2} into F for which $f(1) \in\left\{1,2, \ldots, n s_{0}\right\}$ are in n to 1 correspondence with homomorphisms f of F_{n+2} into F for which $f(1) \in\left\{1,2, \ldots, s_{0}\right\}$. This gives the following:

Lemma 3.4 Endomorphisms of C_{n} are in n to 1 correspondence with those homomorphisms of F_{n+2} into F for which

$$
\begin{align*}
f(1) & \in\left\{1,2, \ldots, s_{0}\right\} \text { and } \tag{1}\\
f(i) & \equiv f\left(i+n s_{0}\right) \bmod n s_{0}, i=1,2, \ldots, 2 s_{0} . \tag{2}
\end{align*}
$$

Let us consider homomorphisms from F_{n+2} into F. Note that $F_{n+2}=\cup_{i=0}^{n} \sigma^{i}(P)$. Let a homomorphism f from F_{n+2} to F be given. Homomorphism f corresponds to a sequence of homomorphisms $\prod_{i=0}^{n}\left\{f_{i}: P \rightarrow F\right\}$ where

$$
\begin{equation*}
f_{i}(p)=f \circ \sigma^{i}(p), p \in P . \tag{3}
\end{equation*}
$$

In fact, $f=\cup_{i=0}^{n} f_{i} \circ \sigma^{-i}$.
Definition 3.5 Define operators head and tail from F^{P} to $F^{F_{1}}$ by

$$
\begin{aligned}
\operatorname{head}(g) & =g_{\mid F_{1}} \\
\operatorname{tail}(g) & =g_{\mid \sigma\left(F_{1}\right)} \circ \sigma
\end{aligned}
$$

If f_{i} are defined as in (3), then we must have

$$
\begin{equation*}
\operatorname{tail}\left(f_{i}\right)=\operatorname{head}\left(f_{i+1}\right) \text { for } i=0,1, \ldots, n-1 \tag{4}
\end{equation*}
$$

Conversely, if a sequence of homomorphisms $\prod_{i=0}^{n}\left\{f_{i}: P \rightarrow F\right\}$ is given satisfying (4), then $f=\cup_{i=0}^{n} f_{i} \circ \sigma^{-i}$ is a well-defined homomorphism from F_{n+2} to F. It follows that homomorphisms from F_{n+2} to F are in 1-1 correspondence with sequences of homomorphisms $\prod_{i=0}^{n}\left\{f_{i}: P \rightarrow F\right\}$ satifying (4).

If $f: F_{n+2} \rightarrow F$ also satisfies (1),(2), then f corresponds to a sequence of homomorphisms $\prod_{i=0}^{n}\left\{f_{i}: P \rightarrow F\right\}$ where $f_{0} \equiv f_{n}$ modulo $n s_{0}$, and thus to a sequence $\prod_{i=0}^{n-1}\left\{f_{i}: P \rightarrow F\right\}$ where

$$
\begin{aligned}
\operatorname{tail}\left(f_{i}\right) & =\operatorname{head}\left(f_{i+1}\right) \text { for } i=0,1, \ldots, n-2, \\
\operatorname{tail}\left(f_{n-1}\right) & \equiv \operatorname{head}\left(f_{0}\right) \text { modulo } n s_{0} .
\end{aligned}
$$

Definition 3.6 Let \simeq be the equivalence relation on homomorphisms from F_{1} to F given by

$$
h \simeq g \text { if and only if } h=\sigma^{k} \circ g, \text { some } k \in \mathbb{Z} .
$$

Given any homomorphism g from F_{1} to F, let \bar{g} be the unique homomorphism such that $g \simeq \bar{g}$ and $\bar{g}(1) \in\left\{1,2, \ldots, s_{0}\right\}$.

Remark 3.7 Suppose that $h \simeq g$. The k for which $h=\sigma^{k} \circ g$ is unique. Thus if $h(1) \equiv g(1)$ modulo $n s_{0}$ then $h \equiv g$ modulo $n s_{0}$.

Definition 3.8 The type of a homomorphism $f: P \rightarrow F$ is the ordered pair

$$
\text { type } f=\langle\overline{\operatorname{head}(f)}, \overline{\operatorname{tail}(f)\rangle} .
$$

If $f: F_{n+2} \rightarrow F$ satisfies (1),(2), then f corresponds to a sequence of homomorphisms $\prod_{i=0}^{n-1}\left\{f_{i}: P \rightarrow F\right\}$ where

$$
\begin{equation*}
\pi_{2}\left(\text { type } f_{i}\right)=\pi_{1}\left(\text { type } f_{j}\right), \text { for } j \equiv i+1 \text { modulo } n \tag{5}
\end{equation*}
$$

Here π_{1}, π_{2} are the projections.
This has a partial converse; suppose we are given a sequence of homomorphisms $\prod_{i=0}^{n-1}\left\{f_{i}: P \rightarrow F\right\}$ satisfying (5). Define $f_{n}=f_{0}$. Let $\hat{f}_{0}=\bar{f}_{0}$. Suppose that homomorphisms \hat{f}_{i} have been given for $i<j \leq n$ so that

$$
\begin{aligned}
\text { type } \hat{f}_{i} & =\operatorname{type} f_{i} \\
\text { tail } \hat{f}_{i-1} & =\operatorname{head} \hat{f}_{i} \text { for } i>1
\end{aligned}
$$

Since type $\hat{f}_{j-1}=$ type f_{j-1} and π_{2} (type $\left.f_{j-1}\right)=\pi_{1}\left(\right.$ type $\left.f_{j}\right)$, we have tail $\hat{f}_{j-1} \simeq$ tail $f_{j-1} \simeq$ head f_{j}. Choose k so that tail $\hat{f}_{j-1}=\sigma^{k} \circ$ head f_{j}. Define $\hat{f}_{j}=\sigma^{k} \circ f_{j}$. Then type $\hat{f}_{j}=$ type f_{j}, while tail $\hat{f}_{j-1}=\sigma^{k} \circ$ head $f_{j}=$ head $\sigma^{k} \circ f_{j}=$ head \hat{f}_{j}.

This is the unique way to construct homomorphisms \hat{f}_{i} such that

$$
\begin{aligned}
\hat{f}_{0}(1) & \in\left\{1,2, \ldots, s_{0}\right\} \text { and } \\
\text { type } \hat{f}_{i} & =\text { type } f_{i}, \\
\text { tail } \hat{f}_{i-1} & =\text { head } \hat{f}_{i} \text { for } 1 \leq i \leq n .
\end{aligned}
$$

There is no flexibility in this construction. Thus, while type $\hat{f}_{n}=$ type \hat{f}_{0}, so that tail $\hat{f}_{n-1}=$ head $\hat{f}_{n} \simeq$ head \hat{f}_{0}, we cannot guarantee that $\hat{f}_{n} \equiv \hat{f}_{0}$ modulo $n s_{0}$, which would imply that tail $\hat{f}_{n-1} \equiv$ head \hat{f}_{0} modulo $n s_{0}$.

The homomorphism $f=\cup_{i=0}^{n} \hat{f}_{i}$ is a well-defined homomorphism from F_{n+2} to F, but may not satisfy $(1),(2)$. If, however, $\hat{f}_{n}(1) \equiv \hat{f}_{0}(1)$ modulo $n s_{0}$, then we have not just head $\hat{f}_{n} \simeq$ head \hat{f}_{0}, but head $\hat{f}_{n} \equiv$ head \hat{f}_{0} modulo $n s_{0}$, so that (1),(2) are satisfied.

Suppose that $r \in \mathbb{N}$ and $g: F_{r} \rightarrow F$ is a homomorphism. Assign a weight to g by

$$
w(g)=g\left(s_{0}(r-1)+1\right)-g(1)
$$

If we have homomorphisms $f_{i}: P=F_{2} \rightarrow F, f: F_{n+2} \rightarrow F$ satisfying $\hat{f}_{i}(p)=$ $f \circ \sigma^{i}(p), p \in P$, or equivalently, $f=\cup_{i=0}^{n} \hat{f}_{i} \circ \sigma^{-i}$, then

$$
\begin{aligned}
\sum_{i=0}^{n} w\left(\hat{f}_{i}\right) & =\sum_{i=0}^{n} \hat{f}_{i}\left(s_{0}+1\right)-\hat{f}_{i}(1) \\
& =\sum_{i=0}^{n} f\left((i+1) s_{0}+1\right)-f\left(i s_{0}+1\right) \\
& =f\left((n+1) s_{0}+1\right)-f\left(i s_{0}+1\right) \\
& =w(f) .
\end{aligned}
$$

In this language, our previous discussion noted that $f: F_{n+2} \rightarrow F$ satisfies (1), (2) if and only if

$$
\begin{aligned}
\sum_{i=0}^{n-1} w\left(\hat{f}_{i}\right) & =\hat{f}_{n-1}\left(s_{0}+1\right)-\hat{f}_{0}(1) \\
& =\hat{f}_{n}(1)-\hat{f}_{0}(1) \\
& \equiv 0 \text { modulo } n s_{0}
\end{aligned}
$$

Definition 3.9 There are finitely many homomorphisms h of P into F for which $h(1) \in\left\{1,2, \ldots, s_{0}\right\}$. This is because $h(i)$ and $h(i+1)$ can differ by at most $m-1$, so that the range of h is restricted to $\left[1-(m-1)^{2}, s_{0}+(m-1)^{2}\right]$. Say that there are r possible equivalence classes for head (h), tail (h), labelled $1,2, \ldots, r$. This gives us a natural labelling of homomorphism types:
type $h \in(i, j)$ if and only if $\boldsymbol{\operatorname { h e a d }}(h) \in i, \operatorname{tail}(h) \in j$.
For $i, j \in\{1,2, \ldots, r\}$, let $G_{i j}$ be the set containing those homomorphisms h : $P \rightarrow F$ for which $h(1) \in\left\{1,2, \ldots, s_{0}\right\}$ and type $h=(i, j)$.

Let \mathcal{G}_{n} be the set of homomorphisms f from F_{n+2} to F for which (1),(2) hold. Let $G_{n}=\cup \prod_{k=0}^{n-1} G_{i_{k} j_{k}}$ where the union is taken over sequences $\prod_{k=0}^{n-1}\left(i_{k}, j_{k}\right)$ with $i_{k}=j_{r}$ when $r \equiv k+1$ modulo n. Assign a weight to elements of G_{n} by $w\left(\prod_{k=0}^{n-1} f_{i}\right)=\sum_{i=0}^{n-1} w\left(f_{i}\right)$. Let $\mathcal{S}_{n}=\left\{x \in G_{n}: w(x) \equiv 0\right.$ modulo $\left.n s_{0}\right\}$.

With this notation, our previous discussion is summarized by a theorem:

Theorem 3.10 The map

$$
f \rightarrow \prod_{i=0}^{n-1}\left\{f_{i}\right\} \text { where the } f_{i} \text { are given by (3) }
$$

is a bijection between \mathcal{G}_{n} and \mathcal{S}_{n}.
Definition 3.11 If S is a set of homomorphisms, denote by Φ_{S} the generating homomorphism of S with respect to w :

$$
\Phi_{S}(x)=\sum_{h \in S} x^{w(h)}
$$

If $B=\left[b_{i j}\right]_{r \times r}$, then the $i j^{\text {th }}$ entry of B^{n} is $\sum \prod_{k=0}^{n-1} b_{i_{k} j_{k}}$ where the sum is taken over sequences $\prod_{k=0}^{n-1}\left(i_{k}, j_{k}\right)$ with

$$
i_{0}=i, j_{n-1}=j \text { and } j_{k}=i_{k+1} \text { for } 0 \leq k \leq r-2 .
$$

If $i=j$, then we also have $j_{n-1}=i_{0}$.
These are just the restrictions on the indices of G_{n}. Let $A=\left[\Phi_{\mathcal{G}_{i j}}\right]_{r \times r}$. The notation $\left[y^{n}\right] h(y)$ refers to the coefficient of y^{n} in a series expansion of h.

Then

$$
\begin{aligned}
\phi_{G_{n}} & =\phi_{\cup \prod_{k=0}^{n-1} G_{i_{k} j_{k}}} \\
& =\sum \prod_{k=0}^{n-1} \phi_{G_{i_{k} j_{k}}} \\
& =\operatorname{trace}\left(A^{n}\right) \\
& =\operatorname{trace}\left(\left[y^{n}\right] \sum_{k \geq 0}(y A)^{k}\right) \\
& =\left[y^{n}\right] \operatorname{trace}\left((I-y A)^{-1}\right)
\end{aligned}
$$

Thus

$$
\left|\mathcal{S}_{n}\right|=\sum_{t \equiv 0 \text { modulo } n s_{0}}\left[x^{t} y^{n}\right] \operatorname{trace}\left((I-y A)^{-1}\right) .
$$

Theorem 3.12 The number of endomorphisms of C_{n} is

$$
n \sum_{t \equiv 0}\left[x^{t} y^{n}\right] \operatorname{tracec}\left((I-y A)^{-1}\right) .
$$

4 Examples

4.1 Ordinary Crowns

Consider ordinary crowns \mathcal{C}_{n}. Order \mathcal{F}_{1} is the 2 -element chain with $1<_{\mathcal{F}_{1}} 2$. If $f: \mathcal{F}_{1} \rightarrow \mathcal{F}$ is a homomorphism with $f(1) \in\{1,2\}$, we have 4 possibilities:
(1) $f(1)=1, f(2)=2$;
(2) $f(1)=1, \quad f(2)=0$;
(3) $f(1)=1, \quad f(2)=1$;
(4) $f(1)=2, \quad f(2)=2$.

If h is a homomorphism from \mathcal{F}_{m} to \mathcal{F}, there are thus 4 possible equivalence classes for head (h), tail (h). To find the matrix A of Theorem 3.12 we need to find the $G_{i j}$. As an example, consider the set G_{12}. This set consists of two homomorphisms from \mathcal{F}_{2} to \mathcal{F}, namely g_{1} and g_{2} where

$$
\begin{array}{lll}
g_{1}(1)=1, & g_{1}(2)=2, & g_{1}(3)=1, \\
g_{2}(1)=1, & g_{1}(4)=0 \\
g_{2}(2)=2, & g_{2}(3)=3, & g_{2}(4)=2
\end{array}
$$

We see that

$$
\begin{gathered}
w\left(g_{1}\right)=g_{1}(3)-g_{1}(1)=1-1=0 \\
w\left(g_{2}\right)=g_{2}(3)-g_{2}(1)=3-1=2 .
\end{gathered}
$$

Thus $\phi_{G_{12}}=1+x^{2}$. In this way we determine

$$
A=\left[\begin{array}{cccc}
1+x^{2} & 1+x^{2} & 1+x^{2} & x \\
x^{-2}+1 & x^{-2}+1 & x^{-2}+1 & x^{-1} \\
1 & 1 & 1 & 0 \\
x^{-1}+x & x^{-1}+x & x^{-1}+x & 1
\end{array}\right] .
$$

Suppose that h is a homomorphism from \mathcal{F}_{n+2} to \mathcal{F}. It must be the case that $|h(i)-h(i+1)| \leq 1$ for each i. Thus $w(h) \equiv 0$ modulo $2 n$ if and only if $w(h)=0$ or $w(h)= \pm 2 n$. The latter two weights occur exactly in the case when h corresponds to one of the $2 n$ automorphisms of C_{n}.

For ease of computation, we replace A with $M=x^{2} A$:

$$
M=\left[\begin{array}{cccc}
x^{2}+x^{4} & x^{2}+x^{4} & x^{2}+x^{4} & x^{3} \\
x^{2}+1 & x^{2}+1 & x^{2}+1 & x \\
x^{2} & x^{2} & x^{2} & 0 \\
x^{3}+x & x^{3}+x & x^{3}+x & x^{2}
\end{array}\right] .
$$

Let c_{n} be the number of endomorphisms of a crown on $2 n$ elements. Then

$$
c_{n}=2 n+n\left[x^{2 n} y^{n}\right] \operatorname{trace}(I-y M)^{-1}
$$

and

$$
\operatorname{trace}(I-y M)^{-1}=\frac{4-12 y x^{2}+2 y^{2} x^{4}-3 y-3 x^{4} y}{1-4 y x^{2}+y^{2} x^{4}-y-x^{4} y}
$$

This expression is even in x, so we have

$$
\begin{aligned}
c_{n} & =2 n+n\left[x^{n} y^{n}\right] \frac{4-12 x y+2 x^{2} y^{2}-3 y-3 x^{2} y}{1-4 x y+x^{2} y^{2}-y-x^{2} y} \\
& =2 n+n\left[x^{n} y^{n}\right] \frac{1-x^{2} y^{2}}{1-4 x y+x^{2} y^{2}-y-x^{2} y}
\end{aligned}
$$

since the constant term in y is irrelevant. Letting $z=x y$, we now have

$$
\begin{aligned}
c_{n} & =2 n+n\left[z^{n}\right] \frac{1-z^{2}}{(1-z)^{2}-y(1+x)^{2}} \\
& =2 n+\left[z^{n}\right] z \frac{\partial}{\partial z} \frac{1-z^{2}}{(1-z)^{2}}\left(1-y \frac{(1+x)^{2}}{(1-z)^{2}}\right)^{-1} \\
& =2 n+\left[z^{n}\right] z \frac{\partial}{\partial z} \frac{1+z}{1-z} \sum_{i \geq 0} \frac{y^{i}(1+x)^{2 i}}{(1-z)^{2 i}} \\
& =2 n+\left[z^{n}\right] z \frac{\partial}{\partial z} \frac{1+z}{1-z} \sum_{i \geq 0}\binom{2 i}{i}\left(\frac{z}{(1-z)^{2}}\right)^{i}
\end{aligned}
$$

upon extracting $\left[x^{i}\right](1+x)^{2 i}$, and using the fact that $\sum_{i \geq 0}\binom{2 i}{i} t^{i}=(1-4 t)^{-1 / 2}$, we obtain

$$
\begin{aligned}
c_{n} & =2 n+\left[z^{n}\right] z \frac{\partial}{\partial z} \frac{1+z}{1-z}\left(1-\frac{4 z}{(1-z)^{2}}\right)^{-1 / 2} \\
& =2 n+\left[z^{n}\right] z \frac{\partial}{\partial z} \frac{1+z}{\sqrt{(1-z)^{2}-4 z}}=2 n+\left[z^{n}\right] z \frac{\partial}{\partial z}(1+z) a^{-1 / 2}
\end{aligned}
$$

where $a=1-6 z+z^{2}$. Finally, we simplify to obtain

$$
\begin{aligned}
c_{n} & =\left[z^{n}\right]\left\{\frac{2 z}{(1-z)^{2}}+z\left(a^{-1 / 2}-\frac{1}{2}(1+z) a^{-3 / 2}(-6+2 z)\right)\right\} \\
& =\left[z^{n}\right]\left\{\frac{2 z}{(1-z)^{2}}+\frac{4 z(1-z)}{a^{3 / 2}}\right\}=\left[z^{n}\right] \frac{2 z\left(a^{3 / 2}+2(1-z)^{3}\right)}{a^{3 / 2}(1-z)^{2}},
\end{aligned}
$$

agreeing with [1, p. 141]

4.2 Zippers

Those not familiar with generating functions may prefer enumerations where the result is expressed in terms of sums of products of choice functions. The results of $[6,7,3]$ are given in this form. Of course, such an expression is easily obtained from a generating function. In the case of ordinary crowns, our previous example, it was extra work to derive a generating function. In the present section we will leave our result in terms of choice functions.

The zipper Z_{n} on $2 n$ elements is obtained by identifying elements of \mathcal{B}_{n+1} which are congruent modulo $2 n$ (See Figure 3). Let z_{n} be the number of endomorphisms of a zipper on $2 n$ elements. We get

$$
A=\left[\begin{array}{ccccc}
x^{-2}+1+x^{2} & x^{-2}+1 & 1+x^{2} & 1 & x \\
1+x^{2} & 1 & 1+x^{2}+x^{4} & 1 & x^{3} \\
x^{-2}+1 & x^{-4}+x^{-2}+1 & 1 & 1 & x^{-1} \\
1 & 1 & 1 & 1 & 0 \\
x^{-1} & x^{-3} & x & 0 & 1
\end{array}\right]
$$

and $z_{n}=n\left[\left(x^{-2 n}+x^{0}+x^{2 n}\right) y^{n}\right] \operatorname{trace}(I-y A)^{-1}$. If x is replaced by x^{-1} in A, we obtain the transpose of A, so $\left[x^{-2 n} y^{n}\right] \operatorname{trace}(I-y A)^{-1}=\left[x^{2 n} y^{n}\right] \operatorname{trace}(I-y A)^{-1}$. Using this observation and multiplying the entries of A by x^{2} (in order to obtain a formal power series), we have

$$
z_{n}=n\left\{\left[x^{2 n}\right]+2\left[x^{0}\right]\right\}\left[y^{n}\right] \operatorname{trace}\left(I-y x^{2} A\right)^{-1} .
$$

We can obtain an expression for trace $\left(I-y x^{2} A\right)^{-1}$. It is an even expression in x and if we perform a partial fraction expansion and ignore the constant term in y we obtain

$$
z_{n}=n\left\{\left[x^{n}\right]+2\left[x^{0}\right]\right\}\left[y^{n}\right](A+2 B)
$$

where

$$
\begin{aligned}
A & =\frac{1+2 x^{2} y^{2}}{1+y-x y+x^{2} y-2 x^{2} y^{2}} \\
B & =\frac{1-y-2 x y-x^{2} y}{1-2 y-4 x y-2 x^{2} y+y^{2}+2 x y^{2}-x^{2} y^{2}+2 x^{3} y^{2}+x^{4} y^{2}}
\end{aligned}
$$

It is straightforward to check that $\left[x^{0} y^{n}\right] A=(-1)^{n}$ and $\left[x^{0} y^{n}\right] B=1$. Letting $z=x y$, we now have

$$
\left[x^{n} y^{n}\right] A=\left[x^{n} y^{n}\right] \frac{1+2 z^{2}}{1+z-2 z^{2}+y(1-x)^{2}}
$$

$$
\begin{aligned}
& =\left[z^{n}\right] \frac{1+2 z^{2}}{1+z-2 z^{2}}\left(1+\frac{y(1-x)^{2}}{1+z-2 z^{2}}\right)^{-1} \\
& =\left[z^{n}\right]\left(1+2 z^{2}\right) \sum_{i \geq 0}(-1)^{i} \frac{y^{i}(1-x)^{2 i}}{\left(1+z-2 z^{2}\right)^{i+1}} \\
& =\left[z^{n}\right]\left(1+2 z^{2}\right) \sum_{i \geq 0}\binom{2 i}{i} z^{i}(1-z)^{-(i+1)}(1+2 z)^{-(i+1)}
\end{aligned}
$$

upon extracting $\left[x^{i}\right](1+x)^{2 i}$. Using similar techniques and letting $w=y(1+x)^{2}$, we can also show that

$$
\begin{aligned}
{\left[x^{n} y^{n}\right] B } & =\left[z^{n}\right] \frac{1-w}{1-3 z^{2}-2 w+w^{2}-2 z w} \\
& =\left[z^{n}\right] \frac{1}{1-w}\left(1-\frac{z(2 w+3 z)}{(1-w)^{2}}\right)^{-1} \\
& =\left[z^{n}\right] \sum_{i \geq 0} \frac{z^{i}(2 w+3 z)^{i}}{(1-w)^{2 i+1}}
\end{aligned}
$$

Extracting the above coefficients and putting the terms together, we conclude that

$$
\begin{aligned}
z_{n}=n\left\{4+2(-1)^{n}\right. & +\sum_{i, j}\binom{2 i}{i}\binom{i+j}{j}\left\{\binom{n-j}{i}+2\binom{n-j-2}{i}\right\}(-2)^{j} \\
& \left.+\sum_{i, j}\binom{i}{j}\binom{n}{2 i}\binom{2 n-4 i+2 j}{n-2 i+j} 2^{j+1} 3^{i-j}\right\}
\end{aligned}
$$

5 Concluding Remarks and Numerical Data

There is another way to exploit the equation $\phi_{G_{n}}=\operatorname{trace}\left(A^{n}\right)$ that deserves mention. It may be that the matrix A is diagonalizable, so that we can write $A=S D S^{-1}, D$ diagonal. This is the case, for example, with ordinary crowns. In this case, we have

$$
\phi_{G_{n}}=\operatorname{trace}\left(S D^{n} S^{-1}\right) .
$$

Since D is diagonal, we can get a closed form for D^{n}, and hence $\phi_{G_{n}}$ as a function of n. In any case, the current formulation $\phi_{G_{n}}=\operatorname{trace}\left(A^{n}\right)$ allows easy computation of the number of maps for specific n for the generalized crowns corresponding to any of the examples in Figure 3. For $n \geq 2$, let D_{n} be the generalized crown

Table 1: Numbers of endomorphisms of Z_{n} and D_{n}.

n	z_{n}		d_{n}
2	275	139	
3	951	1,646	
4	4,868	22,075	
5	31,735	310,442	
6	252,054	$4,471,966$	
7	$1,980,727$	$65,398,070$	
8	$15,463,416$	$966,609,787$	
9	$119,914,191$	$14,401,689,461$	
10	$924,752,690$	$215,922,873,094$	
11	$7,097,502,159$	$3,253,709,282,423$	
12	$54,253,458,780$	$49,234,244,569,030$	
13	$413,281,739,949$	$747,605,163,039,752$	
14	$3,138,868,642,826$	$11,385,905,901,377,440$	

corresponding to \mathcal{D}_{n}. Thus D_{n} has the six element base unit $1<2<3>4<5<$ 6 as in Figure 3. Let d_{n} be the number of endomorphisms of D_{n}. We give values for z_{n} and d_{n} in Table 1 .

References

[1] J.D. Currie and T.I. Visentin (1991) The number of order-preserving maps of fences and crowns, Order 8, 133-142.
[2] D. Duffus, V. Rodl, B. Sands and R. E. Woodrow (1992) Enumeration of order preserving maps Order 9, 15-29.
[3] J. D. Farley (1995) The number of order-preserving maps between fences and crowns, Order 12, 5-44.
[4] K. Parol and A. Rutkowski (1993) Counting the number of isotone selfmappings of crowns (1993) Order 10, 221-226.
[5] I. Rival and A. Rutkowski (1991) Does almost every isotone self-map have a fixed point? In Extremal Problems for Finite Sets, Bolyai Soc. Math. Studies, 3, Visegrád, Hungary, 413-422.
[6] A. Rutkowski (1992) The number of strictly increasing mappings of fences. Order 9, 31-42.
[7] A. Rutkowski (1992) The formula for the number of order preserving selfmappings of a fence, Order 9, 127-137.
[8] N. Zaguia (1993) Isotone maps: enumeration and structure, In Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer, R. E. Woodrow and B. Sands (eds), Kluwer Academic Publishers, Dordrecht, 421-430.

[^0]: ${ }^{1}$ Each author was supported in this research by an NSERC research grant.

