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Abstract

The authors introduce the notion of crown-like orders and introduce powerful tools
for counting the endomorphisms of orders of this type.
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Figure 1: The fence and crown of order 4
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Figure 2: The infinite fence F

1 Introduction

Let n be a natural number. By the fence of order n we mean the order Fn on
{1, 2, . . . , 2n} where the odd elements are minimal, the even elements are maximal,
and elements i and j are comparable exactly when i and j differ by 1. The crown
of order n is the order Cn on {1, 2, . . . , 2n} where the odd elements are minimal,
the even elements are maximal, and elements i and j are comparable exactly when
i and j differ by 1 modulo 2n. (See Figure 1.)

Crowns and fences are two types of orders for which the number of endo-
morphisms is known exactly [1, 2]. Duffus et al. assert that the methods of [2]
should extend to give asymptotic estimates for the number of endomorphisms of
the orders depicted in Figure 3.

One sees that the orders in Figure 3 are ‘fence-like’ in their repetition of a
certain basic unit. In this paper we propose a definition for fence-like and crown-
like orders which will include the orders of Figure 3 as special cases. We also
introduce a powerful method of exactly counting the endomorphisms of crown-
like orders.
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2 Generalized Crowns

In [2] it turns out to be useful to consider the infinite fence. This is the order
F on Z where the odd elements are minimal, the even elements are maximal,
and elements i and j are comparable exactly when i and j differ by 1. (See
Figure 2.) This order has the shift map σ2 : Z → Z given by σ2(i) = i + 2 as an
automorphism. The restriction of F to {1, 2, . . . , 2n} is Fn, while Cn arises from
F by identifying elements which are congruent modulo 2n.

Say that order F on Z is a generalized infinite fence if

• the diagram of F is connected

• at most finitely many elements are comparable to any element of F

• for some natural number s, F has the shift map σs : Z → Z given by
σs(i) = i+ s as an automorphism.

Let F on Z be a generalized infinite fence with s0 a natural number such
that σs0 is an automorphism of F . Let k be a natural number such that no element
of F greater than ks0 is comparable to an element of {1, 2, . . . , s0}. We call the
order P induced on {1, 2, . . . , ks0} by F the base unit of F . Every comparability
of F is recoverable from its base unit. Suppose that i, j ∈ Z, with i < j. Then
i <F j if and only if i′ <P j

′, where 1 ≤ i′ ≤ s0, i
′ ≡ i mod s0 and j′ − i′ = j − i.

In the case where i′ and j′ are comparable, it will follow that j′ ≤ ks0, so that
i′, j′ ∈ P. One similarly determines whether i >F j. It therefore makes sense
to call F the infinite fence with base unit P and period s0. We write
F = F (P, s0).

Suppose that F = F (P, s0) is given, with |P | = ks0. There are infinitely many
other ways of choosing s0 and k for F . Suppose t is an integer. Let ŝ0 = s0 + ts0,
k̂ = k + t. Then σŝ0 is an automorphism of F and no element greater than
k̂0 is comparable to any element of {1, 2, . . . , k̂s0}. Choosing t = k − 2, we get
k̂s0 = (k + t)s0 = (2k − 2)s0 = 2(s0 + ts0) = 2ŝ0. Choosing s0 appropriately, we
can thus always pick k = 2. We shall do this in the remainder of this paper.

Given a generalized infinite fence F = F (P, s0) and a natural number n, the
generalized fence of order n with base unit P , period s0 is the order
Fn(P, s0) which is the restriction of F to {1, 2, . . . , ns0}. The generalized crown
of order n with base unit P , period s0 is the order Cn(P, s0) on {1, 2, . . . , ns0}
which is obtained from F by identifying elements which are equivalent modulo ns0.
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Example 2.1 Consider the ordinary infinite fence F depicted in Figure 2. Here
s0 = 2 and P is the order induced by F on {1, 2, 3, 4}. Then F = F (P, 2),Fn =
Fn(P, 2), Cn = Cn(P, 2). For the orders in Figure 3, we could choose s0 = 4, 2, 3
and 4 respectively.

3 Counting Endomorphisms

Let a generalized infinite fence F = F (P, s0), and a natural number n ≥ 2 be
given. We will abbreviate σs0 by σ, Cn(P, s0) by Cn and Fn(P, s0) by Fn.

Remark 3.1 The crown Cn is obtained by identifying elements of F which are
equivalent modulo ns0. Let i, j ∈ {1, 2, . . . , ns0} be given, with i < j. Suppose
that i <Cn j. Then i′ <F j′ some i′, j′ ≡ i, j modulo ns0. Since the base unit
of F is P , of size 2s0, we can specify that the difference between i′ and j′ is less
than 2s0. Choosing the lesser of i′, j′ to lie in {1, 2, . . . , ns0}, we can pick i′, j′ to
lie in {1, 2, . . . , ns0 + ks0 = (n + 2)s0}. A similar result holds if i >Cn j. Thus
every comparison in Cn will be realized if we identify elements of Fn+2 which are
congruent modulo ns0, and Cn is obtained from identifying the first 2s0 and the
last 2s0 elements of Fn+2.

The following are immediate:

Lemma 3.2 Endomorphisms of Cn are in 1-1 correspondence with those homo-
morphisms g of Fn+2 into Cn for which

g(i) = g(i+ ns0), i = 1, 2, . . . , 2s0.

Lemma 3.3 Homomorphisms g of Fn+2 into Cn for which g(i) = g(i+ ns0), i =
1, 2, . . . , 2s0 are in 1-1 correspondence with those homomorphisms f of Fn+2 into
F for which

f(1) ∈ {1, 2, . . . , ns0} and

f(i) ≡ f(i+ ns0) mod ns0, i = 1, 2, . . . , 2s0.

Note that the homomorphisms of Fn+2 into F for which f(1) ∈ {1, 2, . . . , ns0}
are in n to 1 correspondence with homomorphisms f of Fn+2 into F for which
f(1) ∈ {1, 2, . . . , s0}. This gives the following:

6



Lemma 3.4 Endomorphisms of Cn are in n to 1 correspondence with those ho-
momorphisms of Fn+2 into F for which

f(1) ∈ {1, 2, . . . , s0} and (1)

f(i) ≡ f(i+ ns0) mod ns0, i = 1, 2, . . . , 2s0. (2)

Let us consider homomorphisms from Fn+2 into F . Note that Fn+2 = ∪ni=0σ
i(P ).

Let a homomorphism f from Fn+2 to F be given. Homomorphism f corresponds
to a sequence of homomorphisms

∏n
i=0{fi : P → F} where

fi(p) = f ◦ σi(p), p ∈ P. (3)

In fact, f = ∪ni=0fi ◦ σ−i.

Definition 3.5 Define operators head and tail from F P to F F1 by

head(g) = g|F1

tail(g) = g|σ(F1) ◦ σ

If fi are defined as in (3), then we must have

tail(fi) = head(fi+1) for i = 0, 1, . . . , n− 1. (4)

Conversely, if a sequence of homomorphisms
∏n

i=0{fi : P → F} is given satisfying
(4), then f = ∪ni=0fi ◦ σ−i is a well-defined homomorphism from Fn+2 to F .
It follows that homomorphisms from Fn+2 to F are in 1-1 correspondence with
sequences of homomorphisms

∏n
i=0{fi : P → F} satifying (4).

If f : Fn+2 → F also satisfies (1),(2) , then f corresponds to a sequence of
homomorphisms

∏n
i=0{fi : P → F} where f0 ≡ fn modulo ns0, and thus to a

sequence
∏n−1

i=0 {fi : P → F} where

tail(fi) = head(fi+1) for i = 0, 1, . . . , n− 2,

tail(fn−1) ≡ head(f0) modulo ns0.

Definition 3.6 Let ' be the equivalence relation on homomorphisms from F1 to
F given by

h ' g if and only if h = σk ◦ g, some k ∈ Z.

Given any homomorphism g from F1 to F , let ḡ be the unique homomorphism
such that g ' ḡ and ḡ(1) ∈ {1, 2, . . . , s0}.
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Remark 3.7 Suppose that h ' g. The k for which h = σk ◦ g is unique. Thus if
h(1) ≡ g(1) modulo ns0 then h ≡ g modulo ns0.

Definition 3.8 The type of a homomorphism f : P → F is the ordered pair

type f = 〈 head(f), tail(f)〉.

If f : Fn+2 → F satisfies (1),(2) , then f corresponds to a sequence of homo-
morphisms

∏n−1
i=0 {fi : P → F} where

π2( type fi) = π1( type fj), for j ≡ i+ 1 modulo n. (5)

Here π1, π2 are the projections.
This has a partial converse; suppose we are given a sequence of homomorphisms∏n−1

i=0 {fi : P → F} satisfying (5). Define fn = f0. Let f̂0 = f̄0. Suppose that

homomorphisms f̂i have been given for i < j ≤ n so that

type f̂i = typefi,

tail f̂i−1 = headf̂i for i > 1.

Since type f̂j−1 = type fj−1 and π2( type fj−1) = π1( type fj), we have tail

f̂j−1 ' tail fj−1 ' head fj. Choose k so that tail f̂j−1 = σk◦ head fj. Define

f̂j = σk ◦ fj. Then type f̂j = type fj, while tail f̂j−1 = σk◦ head fj = head

σk ◦ fj = head f̂j.

This is the unique way to construct homomorphisms f̂i such that

f̂0(1) ∈ {1, 2, . . . , s0} and

type f̂i = type fi,

tail f̂i−1 = head f̂i for 1 ≤ i ≤ n.

There is no flexibility in this construction. Thus, while type f̂n = type f̂0,
so that tail f̂n−1 = head f̂n ' head f̂0, we cannot guarantee that f̂n ≡ f̂0
modulo ns0, which would imply that tail f̂n−1 ≡ head f̂0 modulo ns0.

The homomorphism f = ∪ni=0f̂i is a well-defined homomorphism from Fn+2 to
F , but may not satisfy (1),(2). If, however, f̂n(1) ≡ f̂0(1) modulo ns0, then we
have not just head f̂n ' head f̂0, but head f̂n ≡ head f̂0 modulo ns0, so that
(1),(2) are satisfied.

Suppose that r ∈ N and g : Fr → F is a homomorphism. Assign a weight to
g by

w(g) = g(s0(r − 1) + 1)− g(1)
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If we have homomorphisms fi : P = F2 → F, f : Fn+2 → F satisfying f̂i(p) =
f ◦ σi(p), p ∈ P , or equivalently, f = ∪ni=0f̂i ◦ σ−i, then

n∑
i=0

w(f̂i) =
n∑
i=0

f̂i(s0 + 1)− f̂i(1)

=
n∑
i=0

f((i+ 1)s0 + 1)− f(is0 + 1)

= f((n+ 1)s0 + 1)− f(is0 + 1)

= w(f).

In this language, our previous discussion noted that f : Fn+2 → F satisfies
(1),(2) if and only if

n−1∑
i=0

w(f̂i) = f̂n−1(s0 + 1)− f̂0(1)

= f̂n(1)− f̂0(1)

≡ 0 modulo ns0

Definition 3.9 There are finitely many homomorphisms h of P into F for which
h(1) ∈ {1, 2, . . . , s0}. This is because h(i) and h(i+1) can differ by at most m−1,
so that the range of h is restricted to [1− (m− 1)2, s0 + (m− 1)2]. Say that there
are r possible equivalence classes for head (h), tail (h), labelled 1, 2, . . . , r. This
gives us a natural labelling of homomorphism types:

type h ∈ (i, j) if and only if head(h) ∈ i, tail(h) ∈ j.

For i, j ∈ {1, 2, . . . , r}, let Gij be the set containing those homomorphisms h :
P → F for which h(1) ∈ {1, 2, . . . , s0} and type h = (i, j).

Let Gn be the set of homomorphisms f from Fn+2 to F for which (1),(2) hold.
Let Gn = ∪

∏n−1
k=0 Gikjk where the union is taken over sequences

∏n−1
k=0(ik, jk)

with ik = jr when r ≡ k + 1 modulo n. Assign a weight to elements of Gn by
w(
∏n−1

k=0 fi) =
∑n−1

i=0 w(fi). Let Sn = {x ∈ Gn : w(x) ≡ 0 modulo ns0}.
With this notation, our previous discussion is summarized by a theorem:
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Theorem 3.10 The map

f →
n−1∏
i=0

{fi} where the fi are given by (3)

is a bijection between Gn and Sn.

Definition 3.11 If S is a set of homomorphisms, denote by ΦS the generating
homomorphism of S with respect to w:

ΦS(x) =
∑
h∈S

xw(h)

If B = [bij]r×r, then the ijth entry of Bn is
∑∏n−1

k=0 bikjk where the sum is
taken over sequences

∏n−1
k=0(ik, jk) with

i0 = i, jn−1 = j and jk = ik+1 for 0 ≤ k ≤ r − 2.

If i = j, then we also have jn−1 = i0.
These are just the restrictions on the indices of Gn. Let A = [ΦGij ]r×r. The

notation [yn]h(y) refers to the coefficient of yn in a series expansion of h.
Then

φGn = φ∪
∏n−1

k=0 Gikjk

=
∑ n−1∏

k=0

φGikjk

= trace(An)

= trace([yn]
∑
k≥0

(yA)k)

= [yn]trace
(
(I − yA)−1

)
Thus

|Sn| =
∑

t≡0 modulo ns0

[xtyn] trace
(
(I − yA)−1

)
.

Theorem 3.12 The number of endomorphisms of Cn is

n
∑

t≡0 modulo ns0

[xtyn] trace
(
(I − yA)−1

)
.
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4 Examples

4.1 Ordinary Crowns

Consider ordinary crowns Cn. Order F1 is the 2-element chain with 1 <F1 2. If
f : F1 → F is a homomorphism with f(1) ∈ {1, 2}, we have 4 possibilities:

(1) f(1) = 1, f(2) = 2;
(2) f(1) = 1, f(2) = 0;
(3) f(1) = 1, f(2) = 1;
(4) f(1) = 2, f(2) = 2.

If h is a homomorphism from Fm to F , there are thus 4 possible equivalence
classes for head (h), tail (h). To find the matrix A of Theorem 3.12 we need
to find the Gij. As an example, consider the set G12. This set consists of two
homomorphisms from F2 to F , namely g1 and g2 where

g1(1) = 1, g1(2) = 2, g1(3) = 1, g1(4) = 0;
g2(1) = 1, g2(2) = 2, g2(3) = 3, g2(4) = 2.

We see that

w(g1) = g1(3)− g1(1) = 1− 1 = 0
w(g2) = g2(3)− g2(1) = 3− 1 = 2.

Thus φG12 = 1 + x2. In this way we determine

A =


1 + x2 1 + x2 1 + x2 x
x−2 + 1 x−2 + 1 x−2 + 1 x−1

1 1 1 0
x−1 + x x−1 + x x−1 + x 1

 .
Suppose that h is a homomorphism from Fn+2 to F . It must be the case that

|h(i)−h(i+1)| ≤ 1 for each i. Thus w(h) ≡ 0 modulo 2n if and only if w(h) = 0 or
w(h) = ±2n. The latter two weights occur exactly in the case when h corresponds
to one of the 2n automorphisms of Cn.

For ease of computation, we replace A with M = x2A:

M =


x2 + x4 x2 + x4 x2 + x4 x3

x2 + 1 x2 + 1 x2 + 1 x
x2 x2 x2 0

x3 + x x3 + x x3 + x x2

 .
11



Let cn be the number of endomorphisms of a crown on 2n elements. Then

cn = 2n+ n[x2nyn]trace (I − yM)−1

and

trace (I − yM)−1 =
4− 12yx2 + 2y2x4 − 3y − 3x4y

1− 4yx2 + y2x4 − y − x4y
.

This expression is even in x, so we have

cn = 2n+ n[xnyn]
4− 12xy + 2x2y2 − 3y − 3x2y

1− 4xy + x2y2 − y − x2y

= 2n+ n[xnyn]
1− x2y2

1− 4xy + x2y2 − y − x2y
since the constant term in y is irrelevant. Letting z = xy, we now have

cn = 2n+ n[zn]
1− z2

(1− z)2 − y(1 + x)2

= 2n+ [zn]z
∂

∂z

1− z2

(1− z)2

(
1− y (1 + x)2

(1− z)2

)−1
= 2n+ [zn]z

∂

∂z

1 + z

1− z
∑
i≥0

yi(1 + x)2i

(1− z)2i

= 2n+ [zn]z
∂

∂z

1 + z

1− z
∑
i≥0

(
2i

i

)(
z

(1− z)2

)i
upon extracting [xi](1 + x)2i, and using the fact that

∑
i≥0
(
2i
i

)
ti = (1 − 4t)−1/2,

we obtain

cn = 2n+ [zn]z
∂

∂z

1 + z

1− z

(
1− 4z

(1− z)2

)−1/2
= 2n+ [zn]z

∂

∂z

1 + z√
(1− z)2 − 4z

= 2n+ [zn]z
∂

∂z
(1 + z)a−1/2

where a = 1− 6z + z2. Finally, we simplify to obtain

cn = [zn]

{
2z

(1− z)2
+ z(a−1/2 − 1

2
(1 + z)a−3/2(−6 + 2z))

}
= [zn]

{
2z

(1− z)2
+

4z(1− z)

a3/2

}
= [zn]

2z(a3/2 + 2(1− z)3)

a3/2(1− z)2
,

agreeing with [1, p. 141]

12



4.2 Zippers

Those not familiar with generating functions may prefer enumerations where the
result is expressed in terms of sums of products of choice functions. The results
of [6, 7, 3] are given in this form. Of course, such an expression is easily obtained
from a generating function. In the case of ordinary crowns, our previous example,
it was extra work to derive a generating function. In the present section we will
leave our result in terms of choice functions.

The zipper Zn on 2n elements is obtained by identifying elements of Bn+1

which are congruent modulo 2n (See Figure 3). Let zn be the number of endo-
morphisms of a zipper on 2n elements. We get

A =


x−2 + 1 + x2 x−2 + 1 1 + x2 1 x

1 + x2 1 1 + x2 + x4 1 x3

x−2 + 1 x−4 + x−2 + 1 1 1 x−1

1 1 1 1 0
x−1 x−3 x 0 1


and zn = n[(x−2n + x0 + x2n)yn]trace (I − yA)−1. If x is replaced by x−1 in A, we
obtain the transpose of A, so [x−2nyn]trace (I − yA)−1 = [x2nyn]trace (I − yA)−1.
Using this observation and multiplying the entries of A by x2 (in order to obtain
a formal power series), we have

zn = n{[x2n] + 2[x0]}[yn]trace (I − yx2A)−1.

We can obtain an expression for trace (I − yx2A)−1. It is an even expression in x
and if we perform a partial fraction expansion and ignore the constant term in y
we obtain

zn = n{[xn] + 2[x0]}[yn](A+ 2B)

where

A =
1 + 2x2y2

1 + y − xy + x2y − 2x2y2
,

B =
1− y − 2xy − x2y

1− 2y − 4xy − 2x2y + y2 + 2xy2 − x2y2 + 2x3y2 + x4y2
.

It is straightforward to check that [x0yn]A = (−1)n and [x0yn]B = 1. Letting
z = xy, we now have

[xnyn]A = [xnyn]
1 + 2z2

1 + z − 2z2 + y(1− x)2

13



= [zn]
1 + 2z2

1 + z − 2z2

(
1 +

y(1− x)2

1 + z − 2z2

)−1
= [zn](1 + 2z2)

∑
i≥0

(−1)i
yi(1− x)2i

(1 + z − 2z2)i+1

= [zn](1 + 2z2)
∑
i≥0

(
2i

i

)
zi(1− z)−(i+1)(1 + 2z)−(i+1)

upon extracting [xi](1 + x)2i. Using similar techniques and letting w = y(1 + x)2,
we can also show that

[xnyn]B = [zn]
1− w

1− 3z2 − 2w + w2 − 2zw

= [zn]
1

1− w

(
1− z(2w + 3z)

(1− w)2

)−1
= [zn]

∑
i≥0

zi(2w + 3z)i

(1− w)2i+1
.

Extracting the above coefficients and putting the terms together, we conclude
that

zn = n
{

4 + 2(−1)n +
∑
i,j

(
2i

i

)(
i+ j

j

){(
n− j
i

)
+ 2

(
n− j − 2

i

)}
(−2)j

+
∑
i,j

(
i

j

)(
n

2i

)(
2n− 4i+ 2j

n− 2i+ j

)
2j+13i−j

}
.

5 Concluding Remarks and Numerical Data

There is another way to exploit the equation φGn = trace(An) that deserves
mention. It may be that the matrix A is diagonalizable, so that we can write
A = SDS−1, D diagonal. This is the case, for example, with ordinary crowns. In
this case, we have

φGn = trace(SDnS−1).

SinceD is diagonal, we can get a closed form forDn, and hence φGn as a function of
n. In any case, the current formulation φGn = trace(An) allows easy computation
of the number of maps for specific n for the generalized crowns corresponding to
any of the examples in Figure 3. For n ≥ 2, let Dn be the generalized crown
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Table 1: Numbers of endomorphisms of Zn and Dn.

n zn dn
2 275 139
3 951 1,646
4 4,868 22,075
5 31,735 310,442
6 252,054 4,471,966
7 1,980,727 65,398,070
8 15,463,416 966,609,787
9 119,914,191 14,401,689,461

10 924,752,690 215,922,873,094
11 7,097,502,159 3,253,709,282,423
12 54,253,458,780 49,234,244,569,030
13 413,281,739,949 747,605,163,039,752
14 3,138,868,642,826 11,385,905,901,377,440

corresponding to Dn. Thus Dn has the six element base unit 1 < 2 < 3 > 4 < 5 <
6 as in Figure 3. Let dn be the number of endomorphisms of Dn. We give values
for zn and dn in Table 1 .
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