Counting endomorphisms of crown-like orders

James D. Currie and Terry I. Visentin ¹ Department of Mathematics and Statistics University of Winnipeg Winnipeg, Manitoba Canada R3B 2E9

August 14, 2019

 $^1\mathrm{Each}$ author was supported in this research by an NSERC research grant.

Abstract

The authors introduce the notion of crown-like orders and introduce powerful tools for counting the endomorphisms of orders of this type.

Figure 1: The fence and crown of order 4

Figure 2: The infinite fence \mathcal{F}

1 Introduction

Let *n* be a natural number. By the **fence of order** *n* we mean the order \mathcal{F}_n on $\{1, 2, \ldots, 2n\}$ where the odd elements are minimal, the even elements are maximal, and elements *i* and *j* are comparable exactly when *i* and *j* differ by 1. The **crown of order** *n* is the order \mathcal{C}_n on $\{1, 2, \ldots, 2n\}$ where the odd elements are minimal, the even elements are maximal, and elements *i* and *j* are comparable exactly when *i* and *j* differ by 1. The **crown of order** *n* is the order \mathcal{C}_n on $\{1, 2, \ldots, 2n\}$ where the odd elements are minimal, the even elements are maximal, and elements *i* and *j* are comparable exactly when *i* and *j* differ by 1 modulo 2n. (See Figure 1.)

Crowns and fences are two types of orders for which the number of endomorphisms is known exactly [1, 2]. Duffus et al. assert that the methods of [2] should extend to give asymptotic estimates for the number of endomorphisms of the orders depicted in Figure 3.

One sees that the orders in Figure 3 are 'fence-like' in their repetition of a certain basic unit. In this paper we propose a definition for fence-like and crown-like orders which will include the orders of Figure 3 as special cases. We also introduce a powerful method of exactly counting the endomorphisms of crown-like orders.

2 Generalized Crowns

In [2] it turns out to be useful to consider the **infinite fence**. This is the order \mathcal{F} on \mathbb{Z} where the odd elements are minimal, the even elements are maximal, and elements *i* and *j* are comparable exactly when *i* and *j* differ by 1. (See Figure 2.) This order has the shift map $\sigma_2 : \mathbb{Z} \to \mathbb{Z}$ given by $\sigma_2(i) = i + 2$ as an automorphism. The restriction of \mathcal{F} to $\{1, 2, \ldots, 2n\}$ is \mathcal{F}_n , while \mathcal{C}_n arises from \mathcal{F} by identifying elements which are congruent modulo 2n.

Say that order F on \mathbb{Z} is a **generalized infinite fence** if

- the diagram of F is connected
- at most finitely many elements are comparable to any element of F
- for some natural number s, F has the shift map $\sigma_s : \mathbb{Z} \to \mathbb{Z}$ given by $\sigma_s(i) = i + s$ as an automorphism.

Let F on \mathbb{Z} be a generalized infinite fence with s_0 a natural number such that σ_{s_0} is an automorphism of F. Let k be a natural number such that no element of F greater than ks_0 is comparable to an element of $\{1, 2, \ldots, s_0\}$. We call the order P induced on $\{1, 2, \ldots, ks_0\}$ by F the base unit of F. Every comparability of F is recoverable from its base unit. Suppose that $i, j \in \mathbb{Z}$, with i < j. Then $i <_F j$ if and only if $i' <_P j'$, where $1 \le i' \le s_0$, $i' \equiv i \mod s_0$ and j' - i' = j - i. In the case where i' and j' are comparable, it will follow that $j' \le ks_0$, so that $i', j' \in P$. One similarly determines whether $i >_F j$. It therefore makes sense to call F the infinite fence with base unit P and period s_0 . We write $F = F(P, s_0)$.

Suppose that $F = F(P, s_0)$ is given, with $|P| = ks_0$. There are infinitely many other ways of choosing s_0 and k for F. Suppose t is an integer. Let $\hat{s}_0 = s_0 + ts_0$, $\hat{k} = k + t$. Then $\sigma_{\hat{s}_0}$ is an automorphism of F and no element greater than \hat{k}_0 is comparable to any element of $\{1, 2, \ldots, \hat{k}s_0\}$. Choosing t = k - 2, we get $\hat{k}s_0 = (k+t)s_0 = (2k-2)s_0 = 2(s_0 + ts_0) = 2\hat{s}_0$. Choosing s_0 appropriately, we can thus always pick k = 2. We shall do this in the remainder of this paper.

Given a generalized infinite fence $F = F(P, s_0)$ and a natural number n, the **generalized fence of order** n with base unit P, period s_0 is the order $F_n(P, s_0)$ which is the restriction of F to $\{1, 2, ..., ns_0\}$. The **generalized crown of order** n with base unit P, period s_0 is the order $C_n(P, s_0)$ on $\{1, 2, ..., ns_0\}$ which is obtained from F by identifying elements which are equivalent modulo ns_0 .

Fence \mathcal{D}_n

Fence \mathcal{E}_n

Figure 3: Various generalized fences of order \boldsymbol{n}

Example 2.1 Consider the ordinary infinite fence \mathcal{F} depicted in Figure 2. Here $s_0 = 2$ and P is the order induced by \mathcal{F} on $\{1, 2, 3, 4\}$. Then $\mathcal{F} = F(P, 2), \mathcal{F}_n = F_n(P, 2), \mathcal{C}_n = C_n(P, 2)$. For the orders in Figure 3, we could choose $s_0 = 4, 2, 3$ and 4 respectively.

3 Counting Endomorphisms

Let a generalized infinite fence $F = F(P, s_0)$, and a natural number $n \ge 2$ be given. We will abbreviate σ_{s_0} by σ , $C_n(P, s_0)$ by C_n and $F_n(P, s_0)$ by F_n .

Remark 3.1 The crown C_n is obtained by identifying elements of F which are equivalent modulo ns_0 . Let $i, j \in \{1, 2, ..., ns_0\}$ be given, with i < j. Suppose that $i <_{C_n} j$. Then $i' <_F j'$ some $i', j' \equiv i, j$ modulo ns_0 . Since the base unit of F is P, of size $2s_0$, we can specify that the difference between i' and j' is less than $2s_0$. Choosing the lesser of i', j' to lie in $\{1, 2, ..., ns_0\}$, we can pick i', j' to lie in $\{1, 2, ..., ns_0 + ks_0 = (n+2)s_0\}$. A similar result holds if $i >_{C_n} j$. Thus every comparison in C_n will be realized if we identify elements of F_{n+2} which are congruent modulo ns_0 , and C_n is obtained from identifying the first $2s_0$ and the last $2s_0$ elements of F_{n+2} .

The following are immediate:

Lemma 3.2 Endomorphisms of C_n are in 1-1 correspondence with those homomorphisms g of F_{n+2} into C_n for which

$$g(i) = g(i + ns_0), \ i = 1, 2, \dots, 2s_0.$$

Lemma 3.3 Homomorphisms g of F_{n+2} into C_n for which $g(i) = g(i+ns_0)$, $i = 1, 2, \ldots, 2s_0$ are in 1-1 correspondence with those homomorphisms f of F_{n+2} into F for which

$$f(1) \in \{1, 2, \dots, ns_0\} and f(i) \equiv f(i + ns_0) \mod ns_0, i = 1, 2, \dots, 2s_0.$$

Note that the homomorphisms of F_{n+2} into F for which $f(1) \in \{1, 2, ..., ns_0\}$ are in n to 1 correspondence with homomorphisms f of F_{n+2} into F for which $f(1) \in \{1, 2, ..., s_0\}$. This gives the following:

Lemma 3.4 Endomorphisms of C_n are in n to 1 correspondence with those homomorphisms of F_{n+2} into F for which

$$f(1) \in \{1, 2, \dots, s_0\}$$
 and (1)

 $f(i) \equiv f(i+ns_0) \mod ns_0, \ i=1,2,\dots,2s_0.$ (2)

Let us consider homomorphisms from F_{n+2} into F. Note that $F_{n+2} = \bigcup_{i=0}^{n} \sigma^{i}(P)$. Let a homomorphism f from F_{n+2} to F be given. Homomorphism f corresponds to a sequence of homomorphisms $\prod_{i=0}^{n} \{f_i : P \to F\}$ where

$$f_i(p) = f \circ \sigma^i(p), p \in P.$$
(3)

In fact, $f = \bigcup_{i=0}^{n} f_i \circ \sigma^{-i}$.

Definition 3.5 Define operators head and tail from F^P to F^{F_1} by

$$\mathbf{head}(g) = g_{|F_1}$$

 $\mathbf{tail}(g) = g_{|\sigma(F_1)} \circ \sigma$

If f_i are defined as in (3), then we must have

$$\operatorname{tail}(f_i) = \operatorname{head}(f_{i+1}) \text{ for } i = 0, 1, \dots, n-1.$$
 (4)

Conversely, if a sequence of homomorphisms $\prod_{i=0}^{n} \{f_i : P \to F\}$ is given satisfying (4), then $f = \bigcup_{i=0}^{n} f_i \circ \sigma^{-i}$ is a well-defined homomorphism from F_{n+2} to F. It follows that homomorphisms from F_{n+2} to F are in 1-1 correspondence with sequences of homomorphisms $\prod_{i=0}^{n} \{f_i : P \to F\}$ satisfying (4).

If $f: F_{n+2} \to F$ also satisfies (1),(2), then f corresponds to a sequence of homomorphisms $\prod_{i=0}^{n} \{f_i : P \to F\}$ where $f_0 \equiv f_n$ modulo ns_0 , and thus to a sequence $\prod_{i=0}^{n-1} \{f_i : P \to F\}$ where

$$\begin{aligned} \mathbf{tail}(f_i) &= \mathbf{head}(f_{i+1}) \text{ for } i = 0, 1, \dots, n-2, \\ \mathbf{tail}(f_{n-1}) &\equiv \mathbf{head}(f_0) \text{ modulo } ns_0. \end{aligned}$$

Definition 3.6 Let \simeq be the equivalence relation on homomorphisms from F_1 to F given by

 $h \simeq g$ if and only if $h = \sigma^k \circ g$, some $k \in \mathbb{Z}$.

Given any homomorphism g from F_1 to F, let \overline{g} be the unique homomorphism such that $g \simeq \overline{g}$ and $\overline{g}(1) \in \{1, 2, \ldots, s_0\}$.

Remark 3.7 Suppose that $h \simeq g$. The k for which $h = \sigma^k \circ g$ is unique. Thus if $h(1) \equiv g(1)$ modulo ns_0 then $h \equiv g$ modulo ns_0 .

Definition 3.8 The type of a homomorphism $f: P \to F$ is the ordered pair

type $f = \langle \overline{\mathbf{head}(f)}, \overline{\mathbf{tail}(f)} \rangle$.

If $f: F_{n+2} \to F$ satisfies (1),(2), then f corresponds to a sequence of homomorphisms $\prod_{i=0}^{n-1} \{f_i : P \to F\}$ where

$$\pi_2(\text{ type } f_i) = \pi_1(\text{ type } f_j), \text{ for } j \equiv i+1 \text{ modulo } n.$$
(5)

Here π_1, π_2 are the projections.

This has a partial converse; suppose we are given a sequence of homomorphisms $\prod_{i=0}^{n-1} \{f_i : P \to F\}$ satisfying (5). Define $f_n = f_0$. Let $\hat{f}_0 = \bar{f}_0$. Suppose that homomorphisms \hat{f}_i have been given for $i < j \leq n$ so that

type
$$\hat{f}_i$$
 = type f_i ,
tail \hat{f}_{i-1} = head \hat{f}_i for $i > 1$

Since type $\hat{f}_{j-1} =$ type f_{j-1} and $\pi_2($ type $f_{j-1}) = \pi_1($ type $f_j)$, we have tail $\hat{f}_{j-1} \simeq$ tail $f_{j-1} \simeq$ head f_j . Choose k so that tail $\hat{f}_{j-1} = \sigma^k \circ$ head f_j . Define $\hat{f}_j = \sigma^k \circ f_j$. Then type $\hat{f}_j =$ type f_j , while tail $\hat{f}_{j-1} = \sigma^k \circ$ head $f_j =$ head $\sigma^k \circ f_j =$ head \hat{f}_j .

This is the unique way to construct homomorphisms \hat{f}_i such that

$$f_0(1) \in \{1, 2, \dots, s_0\}$$
 and
 $\mathbf{type} \ \hat{f}_i = \mathbf{type} \ f_i,$
 $\mathbf{tail} \ \hat{f}_{i-1} = \mathbf{head} \ \hat{f}_i \text{ for } 1 \leq i \leq n.$

There is no flexibility in this construction. Thus, while **type** $\hat{f}_n =$ **type** \hat{f}_0 , so that **tail** $\hat{f}_{n-1} =$ **head** $\hat{f}_n \simeq$ **head** \hat{f}_0 , we cannot guarantee that $\hat{f}_n \equiv \hat{f}_0$ modulo ns_0 , which would imply that **tail** $\hat{f}_{n-1} \equiv$ **head** \hat{f}_0 modulo ns_0 .

The homomorphism $f = \bigcup_{i=0}^{n} \hat{f}_i$ is a well-defined homomorphism from F_{n+2} to F, but may not satisfy (1),(2). If, however, $\hat{f}_n(1) \equiv \hat{f}_0(1)$ modulo ns_0 , then we have not just **head** $\hat{f}_n \simeq$ **head** \hat{f}_0 , but **head** $\hat{f}_n \equiv$ **head** \hat{f}_0 modulo ns_0 , so that (1),(2) are satisfied.

Suppose that $r \in \mathbb{N}$ and $g: F_r \to F$ is a homomorphism. Assign a weight to g by

$$w(g) = g(s_0(r-1) + 1) - g(1)$$

If we have homomorphisms $f_i: P = F_2 \to F, f: F_{n+2} \to F$ satisfying $\hat{f}_i(p) = f \circ \sigma^i(p), p \in P$, or equivalently, $f = \bigcup_{i=0}^n \hat{f}_i \circ \sigma^{-i}$, then

$$\sum_{i=0}^{n} w(\hat{f}_{i}) = \sum_{i=0}^{n} \hat{f}_{i}(s_{0}+1) - \hat{f}_{i}(1)$$
$$= \sum_{i=0}^{n} f((i+1)s_{0}+1) - f(is_{0}+1)$$
$$= f((n+1)s_{0}+1) - f(is_{0}+1)$$
$$= w(f).$$

In this language, our previous discussion noted that $f: F_{n+2} \to F$ satisfies (1),(2) if and only if

$$\sum_{i=0}^{n-1} w(\hat{f}_i) = \hat{f}_{n-1}(s_0+1) - \hat{f}_0(1)$$
$$= \hat{f}_n(1) - \hat{f}_0(1)$$
$$\equiv 0 \text{ modulo } ns_0$$

Definition 3.9 There are finitely many homomorphisms h of P into F for which $h(1) \in \{1, 2, ..., s_0\}$. This is because h(i) and h(i+1) can differ by at most m-1, so that the range of h is restricted to $[1 - (m-1)^2, s_0 + (m-1)^2]$. Say that there are r possible equivalence classes for **head** (h), **tail** (h), labelled 1, 2, ..., r. This gives us a natural labelling of homomorphism types:

type $h \in (i, j)$ if and only if $head(h) \in i$, $tail(h) \in j$.

For $i, j \in \{1, 2, ..., r\}$, let G_{ij} be the set containing those homomorphisms $h : P \to F$ for which $h(1) \in \{1, 2, ..., s_0\}$ and **type** h = (i, j).

Let \mathcal{G}_n be the set of homomorphisms f from F_{n+2} to F for which (1), (2) hold. Let $G_n = \bigcup \prod_{k=0}^{n-1} G_{i_k j_k}$ where the union is taken over sequences $\prod_{k=0}^{n-1} (i_k, j_k)$ with $i_k = j_r$ when $r \equiv k+1$ modulo n. Assign a weight to elements of G_n by $w(\prod_{k=0}^{n-1} f_i) = \sum_{i=0}^{n-1} w(f_i)$. Let $\mathcal{S}_n = \{x \in G_n : w(x) \equiv 0 \mod ns_0\}$.

With this notation, our previous discussion is summarized by a theorem:

Theorem 3.10 The map

$$f \to \prod_{i=0}^{n-1} \{f_i\}$$
 where the f_i are given by (3)

is a bijection between \mathcal{G}_n and \mathcal{S}_n .

Definition 3.11 If S is a set of homomorphisms, denote by Φ_S the generating homomorphism of S with respect to w:

$$\Phi_S(x) = \sum_{h \in S} x^{w(h)}$$

If $B = [b_{ij}]_{r \times r}$, then the ij^{th} entry of B^n is $\sum \prod_{k=0}^{n-1} b_{i_k j_k}$ where the sum is taken over sequences $\prod_{k=0}^{n-1} (i_k, j_k)$ with

$$i_0 = i$$
, $j_{n-1} = j$ and $j_k = i_{k+1}$ for $0 \le k \le r - 2$.

If i = j, then we also have $j_{n-1} = i_0$.

These are just the restrictions on the indices of G_n . Let $A = [\Phi_{\mathcal{G}_{ij}}]_{r \times r}$. The notation $[y^n]h(y)$ refers to the coefficient of y^n in a series expansion of h.

Then

$$\phi_{G_n} = \phi_{\bigcup \prod_{k=0}^{n-1} G_{i_k j_k}}$$

$$= \sum_{k=0}^{n-1} \phi_{G_{i_k j_k}}$$

$$= \operatorname{trace}(A^n)$$

$$= \operatorname{trace}([y^n] \sum_{k \ge 0} (yA)^k)$$

$$= [y^n] \operatorname{trace}\left((I - yA)^{-1}\right)$$

Thus

$$|\mathcal{S}_n| = \sum_{t \equiv 0 \text{ modulo } ns_0} [x^t y^n] \operatorname{trace} \left((I - yA)^{-1} \right).$$

Theorem 3.12 The number of endomorphisms of C_n is

$$n \sum_{t \equiv 0 \mod ulo \ ns_0} [x^t y^n] \ trace\left((I - yA)^{-1}\right).$$

4 Examples

4.1 Ordinary Crowns

Consider ordinary crowns C_n . Order \mathcal{F}_1 is the 2-element chain with $1 <_{\mathcal{F}_1} 2$. If $f : \mathcal{F}_1 \to \mathcal{F}$ is a homomorphism with $f(1) \in \{1, 2\}$, we have 4 possibilities:

(1)
$$f(1) = 1$$
, $f(2) = 2$;

- (2) f(1) = 1, f(2) = 0;
- (3) $f(1) = 1, \quad f(2) = 1;$
- (4) f(1) = 2, f(2) = 2.

If h is a homomorphism from \mathcal{F}_m to \mathcal{F} , there are thus 4 possible equivalence classes for head (h), tail (h). To find the matrix A of Theorem 3.12 we need to find the G_{ij} . As an example, consider the set G_{12} . This set consists of two homomorphisms from \mathcal{F}_2 to \mathcal{F} , namely g_1 and g_2 where

$$g_1(1) = 1, \quad g_1(2) = 2, \quad g_1(3) = 1, \quad g_1(4) = 0;$$

 $g_2(1) = 1, \quad g_2(2) = 2, \quad g_2(3) = 3, \quad g_2(4) = 2.$

We see that

$$w(g_1) = g_1(3) - g_1(1) = 1 - 1 = 0$$

$$w(g_2) = g_2(3) - g_2(1) = 3 - 1 = 2.$$

Thus $\phi_{G_{12}} = 1 + x^2$. In this way we determine

$$A = \begin{bmatrix} 1+x^2 & 1+x^2 & 1+x^2 & x\\ x^{-2}+1 & x^{-2}+1 & x^{-2}+1 & x^{-1}\\ 1 & 1 & 1 & 0\\ x^{-1}+x & x^{-1}+x & x^{-1}+x & 1 \end{bmatrix}$$

Suppose that h is a homomorphism from \mathcal{F}_{n+2} to \mathcal{F} . It must be the case that $|h(i)-h(i+1)| \leq 1$ for each i. Thus $w(h) \equiv 0$ modulo 2n if and only if w(h) = 0 or $w(h) = \pm 2n$. The latter two weights occur exactly in the case when h corresponds to one of the 2n automorphisms of C_n .

For ease of computation, we replace A with $M = x^2 A$:

$$M = \begin{bmatrix} x^2 + x^4 & x^2 + x^4 & x^2 + x^4 & x^3 \\ x^2 + 1 & x^2 + 1 & x^2 + 1 & x \\ x^2 & x^2 & x^2 & 0 \\ x^3 + x & x^3 + x & x^3 + x & x^2 \end{bmatrix}$$

Let c_n be the number of endomorphisms of a crown on 2n elements. Then

$$c_n = 2n + n[x^{2n}y^n] \operatorname{trace} (I - yM)^{-1}$$

and

trace
$$(I - yM)^{-1} = \frac{4 - 12yx^2 + 2y^2x^4 - 3y - 3x^4y}{1 - 4yx^2 + y^2x^4 - y - x^4y}.$$

This expression is even in x, so we have

$$c_n = 2n + n[x^n y^n] \frac{4 - 12xy + 2x^2 y^2 - 3y - 3x^2 y}{1 - 4xy + x^2 y^2 - y - x^2 y}$$

= $2n + n[x^n y^n] \frac{1 - x^2 y^2}{1 - 4xy + x^2 y^2 - y - x^2 y}$

since the constant term in y is irrelevant. Letting z = xy, we now have

$$c_n = 2n + n[z^n] \frac{1 - z^2}{(1 - z)^2 - y(1 + x)^2}$$

= $2n + [z^n] z \frac{\partial}{\partial z} \frac{1 - z^2}{(1 - z)^2} \left(1 - y \frac{(1 + x)^2}{(1 - z)^2} \right)^{-1}$
= $2n + [z^n] z \frac{\partial}{\partial z} \frac{1 + z}{1 - z} \sum_{i \ge 0} \frac{y^i (1 + x)^{2i}}{(1 - z)^{2i}}$
= $2n + [z^n] z \frac{\partial}{\partial z} \frac{1 + z}{1 - z} \sum_{i \ge 0} {2i \choose i} \left(\frac{z}{(1 - z)^2} \right)^i$

upon extracting $[x^i](1+x)^{2i}$, and using the fact that $\sum_{i\geq 0} {2i \choose i} t^i = (1-4t)^{-1/2}$, we obtain

$$c_n = 2n + [z^n] z \frac{\partial}{\partial z} \frac{1+z}{1-z} \left(1 - \frac{4z}{(1-z)^2} \right)^{-1/2}$$

= $2n + [z^n] z \frac{\partial}{\partial z} \frac{1+z}{\sqrt{(1-z)^2 - 4z}} = 2n + [z^n] z \frac{\partial}{\partial z} (1+z) a^{-1/2}$

where $a = 1 - 6z + z^2$. Finally, we simplify to obtain

$$c_n = [z^n] \left\{ \frac{2z}{(1-z)^2} + z(a^{-1/2} - \frac{1}{2}(1+z)a^{-3/2}(-6+2z)) \right\}$$
$$= [z^n] \left\{ \frac{2z}{(1-z)^2} + \frac{4z(1-z)}{a^{3/2}} \right\} = [z^n] \frac{2z(a^{3/2} + 2(1-z)^3)}{a^{3/2}(1-z)^2},$$

agreeing with [1, p. 141]

4.2 Zippers

Those not familiar with generating functions may prefer enumerations where the result is expressed in terms of sums of products of choice functions. The results of [6, 7, 3] are given in this form. Of course, such an expression is easily obtained from a generating function. In the case of ordinary crowns, our previous example, it was extra work to derive a generating function. In the present section we will leave our result in terms of choice functions.

The **zipper** Z_n on 2n elements is obtained by identifying elements of \mathcal{B}_{n+1} which are congruent modulo 2n (See Figure 3). Let z_n be the number of endomorphisms of a zipper on 2n elements. We get

$$A = \begin{bmatrix} x^{-2} + 1 + x^2 & x^{-2} + 1 & 1 + x^2 & 1 & x \\ 1 + x^2 & 1 & 1 + x^2 + x^4 & 1 & x^3 \\ x^{-2} + 1 & x^{-4} + x^{-2} + 1 & 1 & 1 & x^{-1} \\ 1 & 1 & 1 & 1 & 0 \\ x^{-1} & x^{-3} & x & 0 & 1 \end{bmatrix}$$

and $z_n = n[(x^{-2n} + x^0 + x^{2n})y^n]$ trace $(I - yA)^{-1}$. If x is replaced by x^{-1} in A, we obtain the transpose of A, so $[x^{-2n}y^n]$ trace $(I - yA)^{-1} = [x^{2n}y^n]$ trace $(I - yA)^{-1}$. Using this observation and multiplying the entries of A by x^2 (in order to obtain a formal power series), we have

$$z_n = n\{[x^{2n}] + 2[x^0]\}[y^n]$$
trace $(I - yx^2A)^{-1}$.

We can obtain an expression for trace $(I - yx^2A)^{-1}$. It is an even expression in x and if we perform a partial fraction expansion and ignore the constant term in y we obtain

$$z_n = n\{[x^n] + 2[x^0]\}[y^n](A + 2B)$$

where

$$A = \frac{1 + 2x^2y^2}{1 + y - xy + x^2y - 2x^2y^2},$$

$$B = \frac{1 - y - 2xy - x^2y}{1 - 2y - 4xy - 2x^2y + y^2 + 2xy^2 - x^2y^2 + 2x^3y^2 + x^4y^2}$$

It is straightforward to check that $[x^0y^n]A = (-1)^n$ and $[x^0y^n]B = 1$. Letting z = xy, we now have

$$[x^n y^n]A = [x^n y^n] \frac{1+2z^2}{1+z-2z^2+y(1-x)^2}$$

$$= [z^{n}] \frac{1+2z^{2}}{1+z-2z^{2}} \left(1 + \frac{y(1-x)^{2}}{1+z-2z^{2}}\right)^{-1}$$

$$= [z^{n}](1+2z^{2}) \sum_{i\geq 0} (-1)^{i} \frac{y^{i}(1-x)^{2i}}{(1+z-2z^{2})^{i+1}}$$

$$= [z^{n}](1+2z^{2}) \sum_{i\geq 0} {2i \choose i} z^{i}(1-z)^{-(i+1)}(1+2z)^{-(i+1)}$$

upon extracting $[x^i](1+x)^{2i}$. Using similar techniques and letting $w = y(1+x)^2$, we can also show that

$$\begin{aligned} [x^n y^n] B &= [z^n] \frac{1 - w}{1 - 3z^2 - 2w + w^2 - 2zw} \\ &= [z^n] \frac{1}{1 - w} \left(1 - \frac{z(2w + 3z)}{(1 - w)^2} \right)^{-1} \\ &= [z^n] \sum_{i \ge 0} \frac{z^i (2w + 3z)^i}{(1 - w)^{2i+1}}. \end{aligned}$$

Extracting the above coefficients and putting the terms together, we conclude that

$$z_{n} = n \Big\{ 4 + 2(-1)^{n} + \sum_{i,j} {\binom{2i}{i}} {\binom{i+j}{j}} \Big\{ {\binom{n-j}{i}} + 2 {\binom{n-j-2}{i}} \Big\} (-2)^{j} \\ + \sum_{i,j} {\binom{i}{j}} {\binom{n}{2i}} {\binom{2n-4i+2j}{n-2i+j}} 2^{j+1} 3^{i-j} \Big\}.$$

5 Concluding Remarks and Numerical Data

There is another way to exploit the equation $\phi_{G_n} = \operatorname{trace}(A^n)$ that deserves mention. It may be that the matrix A is diagonalizable, so that we can write $A = SDS^{-1}$, D diagonal. This is the case, for example, with ordinary crowns. In this case, we have

$$\phi_{G_n} = \operatorname{trace}(SD^n S^{-1}).$$

Since D is diagonal, we can get a closed form for D^n , and hence ϕ_{G_n} as a function of n. In any case, the current formulation $\phi_{G_n} = \text{trace}(A^n)$ allows easy computation of the number of maps for specific n for the generalized crowns corresponding to any of the examples in Figure 3. For $n \geq 2$, let D_n be the generalized crown

n	z_n	d_n
$\overline{2}$	275	139
3	951	1,646
4	4,868	22,075
5	31,735	$310,\!442$
6	$252,\!054$	$4,\!471,\!966$
7	$1,\!980,\!727$	$65,\!398,\!070$
8	$15,\!463,\!416$	$966,\!609,\!787$
9	$119,\!914,\!191$	$14,\!401,\!689,\!461$
10	$924,\!752,\!690$	$215,\!922,\!873,\!094$
11	7,097,502,159	$3,\!253,\!709,\!282,\!423$
12	$54,\!253,\!458,\!780$	$49,\!234,\!244,\!569,\!030$
13	$413,\!281,\!739,\!949$	$747,\!605,\!163,\!039,\!752$
14	3,138,868,642,826	11,385,905,901,377,440

Table 1: Numbers of endomorphisms of Z_n and D_n .

corresponding to \mathcal{D}_n . Thus D_n has the six element base unit 1 < 2 < 3 > 4 < 5 < 6 as in Figure 3. Let d_n be the number of endomorphisms of D_n . We give values for z_n and d_n in Table 1.

References

- [1] J.D. Currie and T.I. Visentin (1991) The number of order-preserving maps of fences and crowns, *Order* 8, 133–142.
- [2] D. Duffus, V. Rodl, B. Sands and R. E. Woodrow (1992) Enumeration of order preserving maps Order 9, 15–29.
- [3] J. D. Farley (1995) The number of order-preserving maps between fences and crowns, Order 12, 5–44.
- [4] K. Parol and A. Rutkowski (1993) Counting the number of isotone selfmappings of crowns (1993) Order 10, 221–226.

- [5] I. Rival and A. Rutkowski (1991) Does almost every isotone self-map have a fixed point? In *Extremal Problems for Finite Sets, Bolyai Soc. Math. Studies*, 3, Visegrád, Hungary, 413–422.
- [6] A. Rutkowski (1992) The number of strictly increasing mappings of fences. Order 9, 31–42.
- [7] A. Rutkowski (1992) The formula for the number of order preserving selfmappings of a fence, Order 9, 127–137.
- [8] N. Zaguia (1993) Isotone maps: enumeration and structure, In *Finite and Infinite Combinatorics in Sets and Logic*, N. W. Sauer, R. E. Woodrow and B. Sands (eds), Kluwer Academic Publishers, Dordrecht, 421–430.