THE NUMBER OF ORDERPRESERVING MAPS OF FENCES AND CROWNS (PREPRINT)

JAMES D. CURRIE AND TERRY I. VISENTIN

ABSTRACT. We perform an exact enumeration of the order-preserving maps of fences (zig-zags) and crowns (cycles). From this we derive asymptotic results.

1. INTRODUCTION AND NOTATION

Let \mathcal{P} be a partially ordered set (poset). Then an **order-preserving** map of \mathcal{P} is a function $\Phi : \mathcal{P} \to \mathcal{P}$ such that $\Phi(x) \leq \Phi(y)$ whenever $x \leq y$. Suppose that a sequence $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \ldots$ is given, where \mathcal{P}_i is a poset on *i* elements. Let $\mathcal{A}(\mathcal{P})$ be the set of automorphisms of \mathcal{P} and $\mathcal{M}t(\mathcal{P})$ the set of order-preserving maps of \mathcal{P} into itself. In recent work on fixed points, Rival and Rutkowski [4] conjecture that

$$\lim_{i \to \infty} \frac{|\mathcal{A}(\mathcal{P}_i)|}{|\mathcal{M}(\mathcal{P}_i)|} = 0,$$

no matter how the \mathcal{P}_i are chosen.

Taking this conjecture as motivation, Duffus, Rödl, Sands and Woodrow [2] considered the following question:

For which poset \mathcal{P} on *n* elements is $|\mathcal{M}(\mathcal{P})|$ least?

They study two families of posets. Let n be an even number. The **crown** (cycle) C_n is the poset on $\{1, 2, 3, \ldots, n\}$ where the only comparabilities are $1 > 2 < 3 > 4 < \ldots < n - 1 > n < 1$. (See Figure 1(a).) The **fence** (zigzag) \mathcal{F}_n is the poset on $\{1, 2, 3, \ldots, n\}$ where the only comparabilities are $1 > 2 < 3 > 4 < \ldots < n - 1 > n$. (See Figure 1(a).) Their conjecture is that the fence \mathcal{F}_n has the fewest order-preserving maps. Using probabilistic arguments, they show that

$$\lim_{n \to \infty} \frac{|\mathcal{M}(\mathcal{F}_{n+1})|}{|\mathcal{M}(\mathcal{F}_n)|} = 1 + \sqrt{2} \text{ and } \lim_{n \to \infty} \frac{|\mathcal{M}(\mathcal{C}_{n+1})|}{|\mathcal{M}(\mathcal{C}_n)|} = 1 + \sqrt{2}.$$

In this note, we use lattice path methods to obtain exact enumerative results for $\mathcal{M}(\mathcal{F}_n)$ and $\mathcal{M}(\mathcal{C}_n)$, compare these asymptotically, and show that in fact

$$\lim_{n \to \infty} \frac{|\mathcal{M}(\mathcal{C}_n)|}{|\mathcal{M}(\mathcal{F}_n)|} = 0.$$

FIGURE 1. A crown and a fence of order n

We intend to enumerate order-preserving maps of crowns and fences by putting them into correspondence with lattice paths (sequences of points in $\mathbb{Z} \times \mathbb{Z}$). Let $u = (i, j) \in \mathbb{Z} \times \mathbb{Z}$. Then j is called the **altitude** of u. We define a particular class of lattice paths for our purposes:

Let $\mathbf{u} = u_1 u_2 \cdots u_n$ be a sequence of points in $\mathbb{Z} \times \mathbb{Z}$ such that (i) $u_1 = (1, j_1)$.

(ii) $u_{k+1} = u_k + (1, \sigma_k), \sigma_k \in \{-1, 0, 1\}$ for $0 \le k < n$.

Then **u** is called a **lattice path** with **origin** u_1 and **terminus** u_n . A **step** in **u** is the difference $u_{i-1} - u_i$. The steps $\mathcal{R} = (1, 1), \mathcal{L} = (1, 0)$ and $\mathcal{F} = (1, -1)$ are called **rises**, **levels** and **falls**, respectively.

2. **BIJECTIONS**

The following lemma gives the correspondence between order-preserving maps of fences and lattice paths.

Lemma 1. Let Φ be an order-preserving map of \mathcal{F}_n . Then the mapping $\Omega : \mathcal{M}(\mathcal{F}_n) \to L_n$, defined by $\Omega(\Phi) = (1, \Phi(1)), (2, \Phi(2)), \dots, (n, \Phi(n)),$ is bijective.

Proof. The sequence $(1, \Phi(1)), (2, \Phi(2)), \ldots, (n, \Phi(n))$ is a lattice path. If r is a maximal element of \mathcal{F}_n , then r + 1 < r. Thus we must have $\Phi(r) \ge \Phi(r+1)$. If $\Phi(r)$ is minimal, this means that $\Phi(r) = \Phi(r+1)$. The rth step of our path is a level. Similarly, $\Phi(r-1)\mathcal{L}\Phi(r)$, so the previous step of our path was a level. We see that levels come in pairs, except possibly at the beginning of the path. Also, since 1 is a maximal element of \mathcal{F}_n , if $\Phi(1)$ is minimal, our lattice path begins with a level. \Box

By a similar analysis, we can obtain a correspondence between orderpreserving maps of crowns and lattice paths.

Lemma 2. Let Φ be an order-preserving map of C_n .

Proof. First of all, if Φ is an automorphism of \mathcal{C}_n , then it is determined by $\Phi(1)$ and $\Phi(2)$. ($\Phi(1)$ must be one of the n/2 maximal elements $1, 3, 5, \ldots, n-1$ and $\Phi(2)$ must be one of the 2 elements covered by $\Phi(1)$.) That is, there are n automorphisms of \mathcal{C}_n . If Φ is not an automorphism, then suppose $\Phi(1) = r$. Consider the map $\Psi : \mathcal{C}_n \to \mathcal{C}_n$ given by

This will be an order-preserving map of C_n such that $\Psi(1) = 1$ and $n \notin \operatorname{im}\Phi$, or $\Psi(1) = 2$ and $1 \notin \operatorname{im}\Phi$, depending on whether $\Phi(1)$ is maximal or minimal.

We see that $(1, \Psi(1)), (2, \Psi(2)), \ldots, (n, \Psi(n)), (n+1, \Psi(1))$ is a lattice path, and that the numbers of rises and falls in this lattice path are equal. If $\Phi(1)$ is minimal, the path begins with a level; subsequent levels will occur in pairs. The map Ψ determines a 1 to *m* correspondence between such lattice paths and order-preserving maps of C_n which are not automorphisms. \Box

3. Generating Functions

Let $C(x) = \sum_{m \ge 1} c_m x^m$. Let $C_1(x)$ be the generating function for those order-preserving maps for which 1 maps to 1 and let $C_2(x)$ be the generating function for those order-preserving maps for which 1 maps to 2. Then

$$C(x) = x \frac{\partial}{\partial x} (C_1(x) + C_2(x)).$$

Order-preserving maps are in 1-1 correspondence with walks on the crown. Sits are allowed as steps in the walk, but must occur in pairs inside a walk. If 1 maps to 2, the walk must begin and end with a sit.

Let P(x) be the generating function for lattice paths on 2m steps beginning and ending on the x-axis, but staying completely above the x-axis elsewhere.

If 1 maps to 1, the walk might go completely "around" the crown in one of two directions. Otherwise, we can describe the walk in terms of lattice paths.

$$C_1(x) = 2(1-x)^{-1} + (\mathcal{LL} \cup 2P)^* = 2(1-x)^{-1} + (1-x-2P)^{-1}.$$

$$C_2(x) = \mathcal{L}(\mathcal{LL} \cup 2P)^*\mathcal{L} = x(1-x-2P)^{-1}.$$

$$P(x) = \mathcal{R}(\mathcal{LL} \cup P)^*\mathcal{F} = x(1-x-P)^{-1}.$$

Upon rearranging this last equation, we obtain

$$P^2 + (x - 1)P + x = 0$$

and hence

$$P(x) = \frac{1 - x - \sqrt{1 - 6x + x^2}}{2}.$$

Substituting this into our expressions for C, C_1 and C_2 , gives

$$C(x) = \frac{2x(t^3 + 2(1-x)^3)}{t^3(1-x)^2}, \text{ where } t = \sqrt{1 - 6x + x^2}.$$

Fence generating functions No barriers:

$$m[x^{n-1}](1 - 2x - x^2)^{-1} + m[x^{n-2}](1 - 2x - x^2)^{-1}(1 + x)$$

= $1/2n[x^{n-1}]\frac{1 + x + x^2}{1 - 2x - x^2} = 1/2[x^n]x\frac{\partial}{\partial x}\left(\frac{x(1 + x + x^2)}{1 - 2x - x^2}\right)$
= $1/2[x^n]\frac{x(1 - x)(1 + 3x + 5x^2 + x^3)}{(1 - 2xx^2)^2}$

which after bisection of the series gives

$$[x^m]\frac{4x(1-x^2)}{(1-6x+x^2)^2}.$$

Hit zero:

 $\Phi(1) = k$, odd: $(Qx)^k (1 - 2x - x^2)^{-1} (1 + x)$ where Q is the generating function for the number of lattice paths in the upper half-plane with origin and terminus on the x-axis, and with levels occurring in pairs.

Letting $y = x^2$, we have

$$Q = (1-y)^{-1} \frac{1}{1 - P(1-y)^{-1}} = \frac{2}{1 - y + t}$$

where $t = \sqrt{1 - 6y + y^2}$. $\Phi(1) = k$, even: $x(Qx)^k(1 - 2x - x^2)^{-1}(1 + x)$ Summing over all k gives

$$F_0 = \frac{x^2(1+x)Q(1+x^2Q)}{(1-2x-x^2)(1-x^2Q^2)}$$

Using similar arguments,

$$F_{n+1} = \frac{x^3(1+x)Q(1+Q)}{(1-2x-x^2)(1-x^2Q^2)}.$$

Thus,

$$F_0 + F_{n+1} = \frac{x^2(1+x)^2Q}{(1-2x-x^2)(1-xQ)}.$$

Finally, after bisection of the above series, we obtain

$$F = \frac{y(4 - 4y^2 - 4t + 4yt + 2t^2 + t^3)}{t^4}.$$

 $F = F_{\text{all}} - F_0 - F_{n+1}$. Here we note that $F_0 \cap F_{n+1} = \emptyset$, so we don't need inclusion-exclusion.

 $F_0 = (Q\mathcal{F})^k (\mathcal{R} \sqcup \mathcal{F} \sqcup \mathcal{LL})^*$, where $Q = ((\mathcal{LL})^* P)^* (\mathcal{LL})^*$. A similar expression arises for F_{n+1} .

4. Asymptotics

Let $\alpha_1 = 3 - 2\sqrt{2}$, $Alpha_2 = 3 + 2\sqrt{2}$. These are the roots of the polynomial $1 - 6y + y^2$. The generating function F can be written as A(y)B(y), where

$$A(y) = \frac{y(4 - 4y - 4t + 4yt + 2t^2 + t^3)}{(1 - \alpha_1 y)^2} \text{ and } B(y) = \frac{1}{(1 - \alpha_2 y)^2}$$

The radii of convergence for A and B are α_2 and α_1 , respectively. To apply [1, Thm. 2], we note that $b_n = [y^n]B(y) = (n+1)\alpha_2^n$, and $\lim_{n\to\infty} b_{n-1}/b_n = 1/\alpha_2 \neq 0$. It follows that $f_n \sim A(1/\alpha_2)b_n \sim \frac{\sqrt{2}}{2}n\alpha_2^n$.

The generating function C can be written as A(y)B(y), where

$$A(y) = \frac{4y(1-y)}{(1-\alpha_1 y)^{3/2}}$$
 and $B(y) = \frac{1}{(1-\alpha_2 y)^{3/2}}$.

The radii of convergence for A and B are α_2 and α_1 , respectively. In this case, we have $b_n = [y^n]B(y) = 2^{-3/4} {\binom{-3/2}{n}} \alpha_2^n$. This leads to $c_n \sim \frac{2^{1/4}}{\sqrt{\mathcal{P}i}} n^{1/2} \alpha_2^n$.

Acknowledgements: This work was supported by the authors' NSERC Research Grants.

References

- E. A. Bender, Asymptotic methods in enumeration, SIAM Rev. 16 (1974), 485– 515.
- [2] Duffus, Rödl, Sands and Woodrow, (unpublished work).
- [3] I. P. Goulden and D. M. Jackson, "Combinatorial Enumeration", Wiley, New York, 1983.
- [4] I. Rival and Rutkowski, Does almost every isotone self-map have a fixed point? (preprint).

Appendix

5. Numbers of order-preserving maps of \mathcal{F}_{2m} and C_{2m}

m	Fences	Crowns
1	3	
2	31	36
3	275	234
4	2,199	1,544
5	16,459	10,030
6	$117,\!831$	64,044
7	817,323	403,410
8	5,537,839	2,514,960
9	$36,\!851,\!091$	$15,\!554,\!646$
10	241,745,391	95,600,180
11	$1,\!567,\!625,\!795$	584, 585, 914
12	10,068,827,463	$3,\!559,\!712,\!280$
13	$64,\!155,\!742,\!299$	21,599,884,670
14	406,006,112,919	130,672,946,236
15	$2,\!554,\!364,\!527,\!963$	788,493,451,170
16	$15,\!988,\!928,\!166,\!495$	4,747,161,894,944
17	$99,\!635,\!526,\!556,\!963$	$28,\!524,\!129,\!337,\!510$
18	$618,\!433,\!239,\!157,\!695$	171,092,732,081,220
19	$3,\!825,\!108,\!375,\!774,\!579$	1,024,646,192,483,466
20	$23,\!584,\!482,\!142,\!733,\!815$	6,127,864,874,247,720