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Abstract 

Lake trout (Salvelinus namaycush), like many other native fishes in North America are a popular 

species typically targeted for recreational angling. Catch-and-release angling (C&R) relies on the 

assumption of high fish survival following release and is considered an effective way to preserve 

wild stocks of fish. Salmonids and other related species are susceptible to recreational angling, 

which can induce stress during different parts of the process (e.g., line fighting and air exposure). 

Other factors can impact fish health (e.g., water temperature and hooking location) and 

potentially lead to delayed mortality. In this thesis, I present empirical research where I used 

reflex impairment, physiology, and overall activity to assess the robustness of lake trout to C&R 

across seasons and time scales. During ice angling, lake trout experienced signs of reflex and 

physiological impairment up to 6 h and a high mortality rate. A key finding was that lake trout 

may exhibit pressure-related injuries in cooler water temperatures despite being physostomous. 

During open water angling, lake trout experienced barotrauma, reflex impairment, and 

physiological impairment immediately upon capture and 0.5 h post-angling. The addition of 

post-release activity monitoring via tri-axial accelerometry showed that lake trout rapidly swim 

to depth and exhibit reduced activity for the first 14 min after release. Collectively, I demonstrate 

that using multiple metrics of assessing angling-related impairment (i.e., both external and 

internal metrics) is necessary and future studies should not rely on one or few indices. The work 

presented here provides new information regarding context-specific aspects of C&R and is useful 

for recreational fisheries management.  

 



 iii 

Dedication 

To Great-Grandma Irene, Grandma Brooks, and Grandma Howell. Each of you instilled in me a 

love for the natural world, one which I carry with me every day and share as often as I can.  

 

 

Adapted from Falk et al. (1974) 

  



 iv 

Acknowledgements 

I have had the privilege of working with a diverse team of scientists, government collaborators, 

and resource users through the entirety of this project. Each one of you has shaped my 

understanding of what it means to be kind, understanding, and above all, a team-player. It has 

been a gift to work under the supervision Dr. Caleb Hasler, whom I have come to call a friend. I 

am inspired by his commitment to supportive mentorship, involvement in the scientific 

community, and vigour as an individual researcher. Personal and professional growth were 

abundant under his guidance. My advisory committee (Drs. Steven Cooke, Kenneth Jeffries, and 

Craig Willis) instilled confidence from the very beginning of this work, and I am encouraged by 

their insights. Partnership with Manitoba Fisheries ensured that my experience was well-

rounded, and I was given opportunities outside of my research that greatly improved my success 

during remote field work. Derek Kroeker and Eric Mullen spent a substantial amount of time in 

the early stages of this project familiarizing me with Manitoba and the beauty of its fisheries. Ian 

Kitch, Cole Phillips, and Ethan Dobbs were incredibly generous with their time and resources 

during challenging field seasons. I was invited to participate in many notable initiatives led by 

Manitoba Fisheries, including stocking programs, lake sturgeon monitoring, and Clearwater 

Lake spawn camp. My two years in Manitoba were enriched by my research partner Giulio 

Navarroli, the other half of the lake trout team. The extent of his contributions to this work 

cannot be properly expressed here, so I will simply state that in no way would I have succeeded 

without him present through everything. Collectively, the team that surrounded me are what I 

would consider some of the greats.  

Many others graciously volunteered their time during the fieldwork of this project, 

despite the demanding Manitoba winters and difficulty of angling for trophy-sized lake trout. A 



 v 

huge thank you to: Devin Schepp, Ayden Mathesson, Kelby Wendling, Sarah Chartrand, Samuel 

Anderson, Walker Charlebois, Ayden Rickerheld, Darren Smith, Mike Parna, Lindsay Bylo, Ian 

Prise, and Joel Kayer (who caught the largest fish). Ken Kobelka (Evergreen Lodge & Resort) 

and Josh Kobelka (Clearwater Outfitters) offered wisdom and aid in our angling, their 

appreciation for science shines through.   

Friends and colleagues at the University of Winnipeg made my graduate experience 

exceptionally fulfilling. Those within the Fish Biology & Conservation Lab, including Emma 

Traynor, Simon DePasquale, Andrew Klein, Rosemary Minns, and Caleb Wong were 

responsible for most of the fun and countless adventures I had. My family is unmatched in their 

love and willingness to engage with my research. My parents, Mary-Lynne and Terry, along with 

my brother, Ben, have always been supportive and are my foundation. I am lucky to have been 

able to show them, as well as my aunt Sherry, cousin Jake, and uncle Bill the wonderful natural 

spaces where I conducted my research. Thank you to all my other friends and family that made 

the journey to Winnipeg to visit me.  

For the work presented here, I was awarded the Peter A. Larkin Award for Excellence at 

a Canadian Institution from the Canadian Aquatic Resources Section of the American Fisheries 

Society. I received funding from the Canadian Northern Scientific Training Program and the 

University of Winnipeg. Travel grants were provided by the Society of Canadian Aquatic 

Sciences (SCAS) Clemens-Rigler travel award and the University of Winnipeg. My project also 

received funding from the Manitoba Fish and Wildlife Enhancement Fund (#FES20-006) and 

Natural Sciences and Engineering Research Council (NSERC) Alliance Grant (awarded to Dr. 

Caleb Hasler, ALLRP 562034-21). My excitement for the research presented here has never 

waned, and I am pleased to share this work with all of those who have been involved throughout. 



 vi 

  



 vii 

Preface 

All research presented in this thesis was conducted in accordance with animal care protocols 

approved by the animal care committee of The University of Winnipeg (Animal Use Protocol 

#AE10491), following guidance set by the Canadian Council on Animal Care. All procedures 

outlined were also approved under a Provincial Scientific Collection (General) Permit 

(#22758865). We respectfully acknowledge that the work and learning were completed on the 

traditional territory of the Anishinaabe (Treaty 1), Muskegon Cree (Treaty 1), Ojibwa (Treaty 5), 

and Swampy Cree peoples (Treaty 5). We offer gratitude to the First Nations for their ongoing 

stewardship of this land.  

  



 viii 

Thesis format 

This thesis is written in a manuscript-based format. Acknowledgements from each manuscript 

are combined at the start of the thesis and references are compiled at the end of the thesis. While 

the methods I used are similar between the two data chapters (manuscripts), they were separated 

because the time course and environmental conditions were very different between seasons. It 

will become clear why this separation was necessary from the explanations in the first and last 

chapters of this thesis.  

  



 ix 

Co-authorship 

While this work is my own, I was fortunate to collaborate with a supportive team of co-authors. 

These individuals played a significant role in shaping the research and provided guidance during 

its production. I have listed below the manuscripts used as thesis chapters and the contributions 

of each co-author.  

 

Chapter 2: Lake trout reflex impairment and physiological status following ice-angling 

Howell, B.E., Navarroli, G., Mullen, E.J., Cooke, S.J., and Hasler, C.T. 

Canadian Journal of Fisheries and Aquatic Sciences. 80. doi:10.1139/cjfas-2023-0037. 

 

Bradley E. Howell: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, 

Methodology, Project Administration, Visualization, Writing – Original Draft, Writing – Review 

& Editing. Giulio Navarroli: Investigation, Writing – Review & Editing. Eric J. Mullen: 

Conceptualization, Investigation, Methodology, Project Administration, Writing – Review & 

Editing. Steven J. Cooke: Conceptualization, Funding Acquisition, Resources, Writing – Review 

& Editing. Caleb T. Hasler: Conceptualization, Funding Acquisition, Methodology, Resources, 

Supervision, Writing – Original Draft, Writing – Review & Editing.   

 

Chapter 3: Short-term impairment and post-release behaviour of angled lake trout 

Howell, B.E., Navarroli, G., DePasquale, S.W., Cooke, S.J., and Hasler, C.T. 

Prepared for Conservation Physiology. 

 



 x 

Bradley E. Howell: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, 

Methodology, Project Administration, Visualization, Writing – Original Draft, Writing – Review 

& Editing. Giulio Navarroli: Investigation, Writing – Review & Editing. Simon W. DePasquale: 

Investigation, Writing – Review & Editing. Steven J. Cooke: Conceptualization, Funding 

Acquisition, Resources, Writing – Review & Editing. Caleb T. Hasler: Conceptualization, 

Funding Acquisition, Methodology, Resources, Supervision, Writing – Original Draft, Writing – 

Review & Editing.   

  



 xi 

Table of Contents 

Abstract .......................................................................................................................................... ii 

Dedication ..................................................................................................................................... iii 
Acknowledgements ...................................................................................................................... iv 

Preface .......................................................................................................................................... vii 
Thesis format .............................................................................................................................. viii 

Co-authorship ............................................................................................................................... ix 
List of Tables ............................................................................................................................. xiiii 

List of Figures ........................................................................................................................... xivv 
List of Plates ................................................................................................................................ xv 

Chapter 1. General Introduction ................................................................................................. 1 
1.1 Freshwater recreational fisheries ................................................................................................. 2 
1.2 Catch-and-release angling ........................................................................................................... 3 
1.3 Innovations in catch-and-release ................................................................................................. 4 
1.4 Effects on Fish ............................................................................................................................. 5 
1.5 Human dimensions ...................................................................................................................... 8 
1.6 Fisheries Management ............................................................................................................... 10 
1.7 Hypothesis and objectives ......................................................................................................... 12 

Chapter 2. Lake trout reflex impairment and physiological status following ice-angling ... 16 
2.1 Abstract ...................................................................................................................................... 17 
2.2 Introduction ............................................................................................................................... 18 
2.3 Methods ..................................................................................................................................... 21 

2.3.1 Study location ....................................................................................................................................... 21 
2.3.2 Fish capture and holding ...................................................................................................................... 22 
2.3.3 Extended Recovery Sampling ............................................................................................................... 23 
2.3.4 Barotrauma and Immediate Recovery Sampling .................................................................................. 25 
2.3.5 Data analysis and statistics .................................................................................................................. 27 

2.4 Results ....................................................................................................................................... 32 
2.4.1 Extended Recovery ................................................................................................................................ 32 
2.4.2 Immediate Recovery .............................................................................................................................. 33 

2.5 Discussion .................................................................................................................................. 40 
2.5.1 Mortality ............................................................................................................................................... 40 
2.5.2 Behaviour .............................................................................................................................................. 41 
2.5.3 Blood Physiology .................................................................................................................................. 43 
2.5.4 Effect of size .......................................................................................................................................... 45 
2.5.5 Management ......................................................................................................................................... 46 

 
 



 xii 

Chapter 3. Short-term impacts of recreational angling on lake trout ................................... 48 
3.1 Abstract ...................................................................................................................................... 49 
3.2 Introduction ............................................................................................................................... 50 
3.3 Methods ..................................................................................................................................... 53 

3.3.1 Study location ....................................................................................................................................... 53 
3.3.2 Fish capture and holding ...................................................................................................................... 54 
3.3.3 Behavioural assessments ...................................................................................................................... 55 
3.3.4 Phlebotomy ........................................................................................................................................... 56 
3.3.5 Post-release behaviour ......................................................................................................................... 57 
3.3.6 Data processing .................................................................................................................................... 58 
3.3.7 Data analysis and statistics .................................................................................................................. 58 

3.4 Results ....................................................................................................................................... 63 
3.4.1 Summer Angling .................................................................................................................................... 63 
3.4.2 Fall Angling .......................................................................................................................................... 64 

3.5 Discussion .................................................................................................................................. 80 
3.5.1 Mortality ............................................................................................................................................... 80 
3.5.2 Behaviour .............................................................................................................................................. 81 
3.5.3 Physiology ............................................................................................................................................. 83 
3.5.4 Activity .................................................................................................................................................. 85 
3.5.5 Management ......................................................................................................................................... 86 

Chapter 4. General Discussion ................................................................................................... 88 
4.1 Synthesis .................................................................................................................................... 89 
4.2 Future Work ............................................................................................................................... 91 

References .................................................................................................................................... 93 
 
  



 xiii 

List of Tables 

Table 2.1 Summary of binary multiple logistic regression models assessing the effects of 
recovery time, fish length, fight time, and air exposure on lake trout reflex impairment ............. 34 
 
Table 2.2 Summary of binary logistic regression models assessing the effects of cortisol, lactate, 
glucose, extracellular pH, or intracellular pH of lake trout sampled at 0.5, 4, and 6 h post-angling 
on whether a fish survived the angling event. .............................................................................. 37 
 
Table 2.3 Summary of model selection results based on second-order Akaike information 
criterion (AICc) for linear models predicting the cortisol, lactate, glucose, extracellular pH, and 
intracellular pH concentrations of lake trout sampled at 0.5, 4, and 6 h post ice-angling ............ 38 
 
Table 2.4 Summary of binary multiple logistic regression models assessing the effects of air 
exposure time, fish length, and fight time on whether lake trout showed impairment for reflex or 
barotrauma metrics after ice-angling ............................................................................................ 39 
 
Table 3.1 Summary of binary multiple logistic regression models assessing the effects of 
recovery time, fish length, fight time, air exposure time, and water depth on whether lake trout 
showed impairment for reflex or barotrauma metrics after angling in the summer and fall ......... 66 
 
Table 3.2 Summary of binary logistic regression models assessing the effects of cortisol, lactate, 
glucose, extracellular pH, or intracellular pH of lake trout sampled at 0 or 0.5 h post-angling on 
whether a fish survived the angling event or not in the summer .................................................. 69 
 
Table 3.3 Summary of model selection results based on linear models predicting the cortisol, 
lactate, glucose, extracellular pH, and intracellular pH concentrations of lake trout sampled at 0.5 
h post-angling in the summer ....................................................................................................... 70 
 
Table 3.4 Summary of linear models assessing the effects of fight time and air exposure on the 
time it took lake trout to reach their maximum depth following angling. .................................... 71 
 
Table 3.5 Summary of generalized additive mixed models (GAMMs) showing an interaction 
between overall dynamic body acceleration (ODBA) and capture depth in the summer, and sex 
and capture depth in the fall for lake trout captured via angling. ................................................. 73 
 
Table 3.6 Summary of results from two-way ANOVAs on the effects of sex and recovery time 
(immediately after capture or 0.5 h) on cortisol, lactate, glucose, extracellular pH, and 
intracellular pH in lake trout following angling in the fall ........................................................... 75 
 
Table 3.7 Summary of model selection results based on linear models predicting the cortisol, 
lactate, glucose, extracellular pH, and intracellular pH concentrations of lake trout sampled 0.5 h 
post-angling in the fall .................................................................................................................. 77 
 



 xiv 

List of Figures 

Figure 1.1 Map of the study area where research occurred for this thesis. .................................. 15 
 
Figure 2.1 Barotrauma assessment metrics observed in lake trout following ice-angling ........... 31 
 
Figure 2.2 Totaled impairment scores for (A) extended recovery reflex impairment (n = 19), (B) 
immediate recovery reflex impairment (n = 29), and (C) immediate recovery barotrauma (n = 29) 
predictors in lake trout sampled following ice-angling. ............................................................... 35 
 
Figure 2.3 Concentrations of (A) plasma cortisol, (B) plasma lactate, (C) plasma glucose, and 
(D) extracellular pH in lake trout sampled at 0.5 (n = 13), 4 (n = 13), or 6 h (n = 11) following 
ice-angling .................................................................................................................................... 36 
 
Figure 3.1 Totalled impairment scores for (A) summer reflex, (B) summer barotrauma, and (C) 
fall barotrauma predictors in lake trout sampled following angling ............................................. 67 
 
Figure 3.2  Concentrations of (A) plasma cortisol, (B) plasma lactate, (C) plasma glucose, and 
(D) extracellular pH in lake trout sampled at 0 (n = 32) or 0.5 h (n = 26) following summer 
angling .......................................................................................................................................... 68 
 
Figure 3.3 Mean (A) ODBA, and (B) depth use over time post-capture by lake trout exhibiting 
normal (n = 9) and impaired behaviour (n = 42) due to barotrauma injuries following summer 
angling. Also, mean (C) ODBA, and (D) depth use over time post-capture by male (n = 15) and 
female (n = 15) lake trout following angling during the fall ........................................................ 72 
 
Figure 3.4 Predicted ODBA values based on generalized additive mixed models (GAMMs) for 
lake trout (n = 51) angled during the summer .............................................................................. 74 
 
Figure 3.5 Concentrations of (A) plasma cortisol, (B) plasma lactate, (C) plasma glucose, and 
(D) extracellular pH in lake trout sampled at 0 (n males = 5, n females = 5) or 0.5 h (n males = 5, 
n females = 5) following fall angling ........................................................................................... 76 
 
Figure 3.6 Predicted ODBA values based on generalized additive mixed models (GAMMs) for 
lake trout (n = 30) angled during the fall ...................................................................................... 78 
 
Figure 3.7 Predicted ODBA values based on generalized additive mixed models (GAMMs) for 
male and female lake trout (n = 30) angled during the fall ........................................................... 79 
 

  



 xv 

List of Plates 

Plate 2.1 Underwater footage of lake trout interacting with bait during winter angling. ............. 29 
 
Plate 2.2 Photo showing the sampling site organization during the immediate and extended 
recovery experiments on Clearwater Lake, Manitoba, Canada. ................................................... 30 
 
Plate 3.1 Photo showing the boats where reflex assessment, phlebotomy, and recovery occurred 
within water-filled tanks after angling on Clearwater Lake, Manitoba, Canada. .......................... 61 
 
Plate 3.2 Placement of a tri-axial accelerometer harness on a lake trout to quantify behaviour 
following angling. The accelerometer was bonded to a waterproof 3D-printed plate using marine 
epoxy and then threaded onto a section of Velcro tape that was fastened anterior to the dorsal fin 
with the accelerometer on the lateral side above the left pectoral fin. .......................................... 62 



 

 1 

Chapter 1. General Introduction 
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1.1 Freshwater recreational fisheries 

Recreational fishing is defined as the capture of fish which do not constitute the dominant source 

of protein for an individual and which are not sold, bartered, or traded (Food and Agriculture 

Organization 2012). This form of fishing can be both simple and complex, consisting of wild, 

supplemented, cultured, or combinations of these types in both fresh and saltwater (Cowx 2002). 

Internationally, these fisheries provide leisure, food, and employment opportunities, and are 

expected to expand (Bower et al. 2020). A global average of 6.7% of populations engage in this 

activity, which is > 174.5 million people between North & South America, China, Europe, 

Oceania, and the Russian Federation (Funge-Smith 2011). This amounts to > $56 billion CAD in 

direct costs and > $128 billion CAD in indirect costs annually (Funge-Smith 2011). In Canada, 

recreational angling generates $8.8 billion CAD annually (Brownscombe et al. 2014a), with 

Canadian resident anglers contributing $2.5 billion CAD on direct expenditures in 2015 

(Fisheries and Oceans Canada 2019). In 2010, the total number of licensed anglers in Canada 

was reported to be 3.6 million (Brownscombe et al. 2014). Recreational fishing may in fact 

overshadow inland capture production in multiple countries within North America, Europe, and 

Oceania (Arlinghaus et al. 2013). 

 In addition to economic growth, recreational angling offers both catch and noncatch 

related benefits. Of the noncatch benefits (e.g., social interaction or personal challenge) the most 

important benefit to anglers is relaxation and the nature experience (Freudenberg & Arlinghaus 

2009). In other words, the sense of escape and freedom associated with recreational fishing can 

be as much of a draw as catching the fish. Fishing for food is another motive (Cooke et al. 2018), 

along with the psychological, social, educational, and economic benefits to individuals and their 

communities (Arlinghaus et al. 2019). Despite benefits, recreational fishery practices including 
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over-harvest, habitat destruction, release mortality, and stocking and dispersal of non-native fish 

have been associated with negative effects on populations and ecosystems (Cooke et al. 2015).  

 

1.2 Catch-and-release angling 

When recreational angling is used as a pastime, fish are often released immediately without any 

apparent harm. This form of fishing termed catch-and-release angling (C&R) involves the 

capture of fish using rod and reels with subsequent release and assumed survival (Arlinghaus et 

al. 2007). While it remains a quintessential fishery management strategy, C&R science (i.e., the 

effective and accurate procedures for measuring and understanding the effects of C&R) is a 

growing field that must continue to develop and incorporate sublethal assessments (Cooke & 

Schramm 2007; Brownscombe et al. 2017; Sass and Shaw 2020). C&R literature documents the 

behavioural and physiological responses of fish to angling practices, offering insight to fishery 

managers and biologists on mortality measures or how to best protect and enhance their 

respective fisheries. C&R has been shown to be a valuable conservation tool if anglers practice 

behaviours which minimize impacts on fish (Danylchuk et al. 2018). 

Many families of freshwater fish have presently been studied in the context of C&R such 

as centrarchids (Elliott et al. 2021; LaRochelle et al. 2021), esocids (Flink et al. 2021; Somers et 

al. 2021), percids (Twardek et al. 2018b; Logan et al. 2019), and salmonids (Thorstad et al. 2019; 

Joubert et al. 2020; Chhor et al. 2021). More uncommon families such as acipenserids (Mullen et 

al. 2020) and sciaenids (Card and Hasler 2021) are also being studied, yet the volume of research 

is still emerging. Research that formed the basis of our current understanding (i.e., research 

conducted prior to 1975) focused almost exclusively on freshwater fish, with prominent interest 

in salmonids and centrarchids (Arlinghaus et al. 2007). In addition to varying families of fish, 



 

 4 

methods of C&R angling have also been examined. Gear such as hook type (Cooke and Suski 

2004; Trahan et al. 2021), nets (Barthel et al. 2003; Colotelo and Cooke 2011), and hook 

removal gear (Cooke et al. 2022) have been implicated with physical injury. Since the 

comprehensive review by Arlinghaus et al. (2007) there have been major innovations in the C&R 

research sector. 

 

1.3 Innovations in catch-and-release 

The growth of C&R science over the past half century has led to extensive literature, with 

management-focused reviews (Cooke & Schramm 2007; Cooke et al. 2012; Elmer et al. 2017), 

new technologies (Cooke et al. 2021), and social movements (Danylchuk et al. 2018) still 

emerging. Improvements to hook technology, lure and bait technology, and fishing rod, reel, and 

line technology have made anglers more effective. These innovations coincide with other 

advancements such as underwater cameras, remotely operated underwater vehicles, boat-based 

electronics, fish attractants, and social media and online forums (Cooke et al. 2021). All these 

innovations aim to provide anglers with more information about fish and their behaviour, 

increase capture rates, and disseminate regional information. While positively impacting angling 

experiences, these additions to the recreational angling repertoire also have the potential to 

amplify pre-existing challenges with fish welfare and management. Some of the major 

difficulties in fisheries management is the uncertainty of scientific, technical, economic, and 

political information upon which anglers and managers base decisions (Hewison 1996). A lack 

of research into new technologies leave fish populations exposed, as appropriate management 

has yet to be developed. For example, recent and potential changes to hook technology are 

skewed towards increasing capture rate and minimizing losses of hooked fish (Cooke et al. 
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2021). The capture of fish while using J-hooks has been associated with a post-release decrease 

in growth (Jenkins Jr 2003) and mortality (Weltersbatch et al. 2018). 

Movements such as #KeepEmWet (now a non-profit known as Keep Fish Wet) have 

greatly increased public outreach and promotion of fishing best practices (Keep Fish Wet 2022). 

While these practices can be derived from findings in scientific research, fisheries managers 

require mixed outreach approaches to communicate and engage all anglers in responsible fishing 

(Nguyen et al. 2012). The ability of social media to facilitate information sharing has greatly 

improved upon previous government and NGO programs, which may not always be accurate or 

up to date (Sims and Danylchuk 2017). Participation in sharing fish size, time of year, and 

location information has also impacted the way that fishers distribute their effort. Fishing 

locations that are perceived to produce a higher number of larger, more diverse species are likely 

to receive more shares on social media. In the case of bull trout, their popularity as a sportfish 

has greatly increased due to media outlets. Magazine and internet articles which focus attention 

on their species-at-risk status as well as their size and uniqueness, have resulted in more 

prospective fishers (Joubert et al. 2020). With anglers becoming more effective, the implications 

of fish recovery become clear. 

 

1.4 Effects on Fish 

While C&R is promoted as a tool to improve recreational fisheries through greater fish 

abundance, angler catch rates, and trophy growth potential, it may also induce stress and 

mortality (Sass and Shaw 2020). The process of angling involves many stressors which, when 

combined, induce a generalized stress response which can be measured through changes in 

behaviour, physiology, or activity (Arlinghaus et al. 2007). Fish may experience stress associated 
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with angling multiple times in their lifetime, for example, 29% of rainbow trout (Oncorhynchus 

mykiss) caught in Alaska display signs of previous capture (Meka 2003). Behavioural 

impairments are the most recognizable signs of stress associated with angling and normal 

swimming behaviors are critical to fish recovery (Davis et al. 2010). Impairments that inhibit fish 

from returning to depth can accelerate mortality (Gravel and Cooke 2008; Drumhiller et al. 

2014) and expose fish to predation (Jarvis and Lowe 2008; Raby et al. 2014; Ferter et al. 2015). 

Barotrauma occurs when fish are brought rapidly from depth to the surface of the water, which 

results in major changes in external pressure (Carlson 2012). When the swim bladder becomes 

hyperinflated due this pressure change, injuries such as displaced organs, internal bleeding, and 

tissue damage can occur (Rummer and Bennett 2005; Hannah et al. 2008; Pribyl et al. 2011). 

The use of behavioural assessments such as reflex action mortality predictors (RAMP) and 

barotrauma indicators are simple and inexpensive field-based assessment techniques (Davis 

2010; Althoff et al. 2021) that measure fish vitality by examining multiple behavioural reflexes 

that have been shown to effectively predict future survival of caught fish prior to their release 

(Raby et al. 2012; Schreer et al. 2009).  

Coupling physiological methods of measuring stress responses with reflex assessments 

provide additional information that allow robust estimates of recovery. Typically, researchers use 

non-lethal blood sampling to provide information on changes in hormones, metabolites, or acid-

base status (Wendelaar Bonga 1997; Lawrence et al. 2020). Collectively, these metrics shed light 

on internal coordination to increase the availability of oxygen and energy (Rodnick and Planas 

2016; Schreck and Tort 2016) and illustrate correlates of mortality after release (Skomal et al. 

2007). Plasma cortisol is of particular interest since it is the primary stress hormone and 

prolonged exposure to elevated levels may have impacts on fish growth, reproduction, and 
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immune function (Wendelaar-Bonga 1997). Lactate is predictive of mortality as a by-product of 

glucose metabolism (Wood 1991) and may play a role in mitigating pathological effects of 

exhaustion (Wang et al. 1994; Holder et al. 2022). 

Biotelemetry has become more prevalent in C&R research in recent years (Donaldson et 

al. 2008) and is a powerful tool for understanding post-release recovery. Tri-axial accelerometry 

can measure fish energy expenditure in three spatial dimensions and has been used to explore 

fine-scale movement, kinematics, and metabolism (Halsey et al. 2009; Gleiss et al. 2010; Brown 

et al. 2013; Brownscombe et al. 2014a; Metcalfe et al. 2015; Bouyoucos et al. 2017). Swimming 

behaviours are indicators of survival (Beitinger 1990) and can provide long-term information 

about recovery once a fish has been released. By incorporating information regarding behaviour 

(Brownscombe et al. 2022), physiology (Wedemeyer and Wydoski 2008; Donaldson et al. 2014), 

and measures of locomotor activity (Lennox et al. 2019), biologists and managers have become 

more effective in identifying cause-and-effect relationships (Cooke et al. 2013a). Studies that 

incorporate both external and internal cues for monitoring stress in fish are therefore useful, not 

only for fishery managers but also to individual resource users who wish to reduce their impact 

on the population. This holistic understanding fosters further advancements in the field of C&R, 

building upon previous knowledge from fundamental works (e.g., Muoneke and Childress 1994). 

In addition to stress, C&R events can inflict physical damage. DuBois and Dubielzig 

(2004) found that 10% of stream salmonids experienced eye damage associated with hooks. 

Other research has proposed varying explanations for observed mortality in angled lake trout 

(Salvelinus namaycush). Variables such as hook placement and bleeding (Falk et al. 1974; 

Persons and Hirsch 1994), fish size (Loftus et al. 1988), and hook type (Dextrase & Ball 1991) 

have been examined in different seasons. Comparing these studies, winter angling superficially 
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appears to be associated with higher mortalities, with total mortality rates of 10% (Dextrase and 

Ball 1991) and 24% (Persons and Hirsch 1994) opposed to 6.98% (Falk 1974) and 14.9% 

(Loftus 1988) in the summer. However, conclusions are based on observed mortality without 

taking into consideration the possibility for delayed mortality via behavioural impairment and 

physiological disturbances. Angling mortality in salmonids has been suggested to be a two-stage 

process in which injury location is affected by hook and barb type, and then mortality is affected 

by injury location and species (Gjernes et al. 1992). Angler-induced mortality is in direct conflict 

of recreational fisheries management aims.  

The effects of C&R are largely dependent on environmental factors. Recovery can vary 

with season (Weber and Weber 2021) since environmental factors can impact physiology and 

behaviour (McLean et al. 2020). In cases where fish are protected by voluntary or regulatory 

C&R, instant or delayed mortality can still occur. Behavioural and physiological disturbances 

(Twardek et al. 2018a; Pinder et al. 2019; McLean et al. 2020) can compound with 

environmental conditions such as water temperature and air exposure (Joubert et al. 2020; Van 

Leeuwen et al. 2020; Card and Hasler 2021; Larochelle et al. 2021) to induce mortality, resulting 

in sublethal effects on reproduction and growth (Watson et al. 2020; Papatheodoulou et al. 

2022). Thus, conclusions drawn from C&R research continues to be context-specific and further 

work needs to expand current knowledge regarding long-term post-release recovery over 

multiple temperature regimes (Somers et al. 2021; Keefe et al. 2022).  

 

1.5 Human dimensions 

Understanding the socioecological nature of C&R fisheries is vital when creating effective 

waterbody restrictions (Post et al. 2008; Hunt et al. 2011). For example, the way fishing effort is 
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distributed across space and time can influence fish population distribution, and vice versa 

(Pitman et al. 2019). The scale and intensity of recreational fishing effort can fluctuate due to 

changes in stock abundance (Hunt et al. 2011) and socioeconomic conditions (Arlinghaus et al. 

2015). Strategies employed to harvest trout populations should therefore consider whether 

exploitation influences the growth of trout and if it depends on how the biomass and production 

are distributed in that population (Healey 1978). There is potential instability with angler-fish 

interactions; resulting from angler and fish behaviour, management responses to depleted 

populations, and ecological responses to food web disruption (Post et al. 2002). Dynamics 

between different resource users can be an important factor when managing stock populations. 

Lake trout recreational catch in Lake Michigan declined by an estimated 50% between 1978–

1981 and was attributed to the commercial fishery of the same population (Clark Jr and Huang 

1985). Model testing suggested that egg production of the population would be unable to 

increase without imposing catch restrictions on both groups. This demonstrates that legislation 

must be dispersed among resource users, limitations put on only one group would prove to be 

ineffective. In addition to changes in population numbers, high and selective exploitation may 

lead to evolutionary changes if some phenotypes experience higher mortality (Arlinghaus and 

Cooke 2009). The notion of fishing-induced selective evolution is growing (Cooke et al. 2007; 

Jørgensen et al. 2007). 

Resource users may react to management decisions differently, on both a temporal and 

spatial scale. Despite social and economic importance, recreational fisheries are often managed 

locally or regionally and lack comprehensive policy and development frameworks (Arlinghaus et 

al. 2012). Initiatives such as the Global Code of Practice for Recreational Fisheries attempt to 

unite sustainable and ethically appropriate fishing regulations (Arlinghaus et al. 2010). However, 
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the integration of such a wide framework would require changes in popular practices to increase 

pro-environmental behaviours (Arlinghaus et al. 2012). Governance may influence the 

emergence and resolution of conflicts and thus, may be criticized for being political rather than 

based on the sustainability of the resource (Bower et al. 2014). Angler perspectives are important 

to consider in this regard. For example, certain anglers may perceive themselves as having no 

direct effect on ecosystems through their angling behaviour (Gray and Jordan 2010). Regulations 

limiting the use of certain bait would likely seem unnecessary to those groups, introducing the 

potential for conflict. Certain initiatives attempt to reduce this conflict by introducing 

opportunities for anglers to self-regulate. Catch and release may be both voluntary and obligatory 

depending on species, location, and time of year. The use of voluntary sanctuaries, informally 

enforced seasonal closures, personal daily bag limits, self-imposed constraints on gear, 

development of entirely live-release fisheries, and adoption of conservation-oriented gears and 

practices are alternatives to traditional regulatory options (Cooke et al. 2013b). Unfortunately, 

these actions also have the potential to generate conflict (Arlinghaus 2007), as both biophysical 

and social settings influence compliance to voluntary C&R (Stensland et al. 2013). Better 

communication and understanding of different perspectives among fisheries researchers, 

managers, and anglers are needed when addressing issues relating to the fishing sector (Hasler et 

al. 2011). 

1.6 Fisheries Management 

As mentioned previously, recreational angling can impact populations through selective pressure 

and mortality. In addition to exploitation-induced population bottlenecks, intensive stocking with 

foreign genotypes can contribute to irreversible loss of locally adapted populations (Arlinghaus 

et al. 2017). Physiological research is often disconnected from conservation practitioners and 
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managers (Cooke and O’Connor 2010), but positive examples of using physiological knowledge 

to improve fisheries management are beginning to emerge (Cooke et al. 2012). Understanding 

socio-ecological dynamics has been suggested as an important part of ensuring sustainable 

recreational fisheries management (Post et al. 2008; Hunt et al. 2011). Partnerships between 

scientists and government bodies have great potential for advancing fishery protection and angler 

satisfaction. By implementing science-based management practices, unintended immediate and 

delayed mortality can likely be reduced. This form of “mandated science (i.e., science that 

responds to political and legal questions) is a key to determining which questions are important 

and what answers are relevant to various stakeholders (Wilson 1999). The concept of co- 

management is also relevant here, in which participation in the management process by those 

who are to be regulated will improve compliance to those regulations (Kaplan and McKay). 

Improving recreational fisheries management globally could result in substantial social benefits, 

which would be as impactful as reforming commercial fisheries (Abbott et al. 2018). Therefore, 

studies that examine economically and socially important fish while being inclusive of resource 

users, managers, and addressing gaps in literature are strong in their application. 

While increased public interest in lake trout C&R necessitates management that 

effectively protects and enhances populations, the complexity of these fisheries make decision 

making difficult. Maximum size limits have been suggested to be the best management strategy 

for lakes when opting to preserve trout size over quantity (García-Asorey et al. 2011). Yet, 

management should be dynamic, with differences likely needing to occur on a population-by- 

population basis since there can be differences in behaviour, growth rate, recruitment, and sex 

and age class distribution (Marin et al. 2016; Pollack et al. 2021). Many lakes have the potential 

to produce large lake trout yet sustaining prey populations has historically been problematic due 
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to the voraciousness of lake trout and their competitive advantage over other salmonid species 

(Pate et al. 2014). Many anglers prefer to catch large fish over smaller individuals (Connelly and 

Brown 2000; Johnston et al. 2013; Beardmore et al. 2015). For recreational fisheries that are 

managed according to length-based creel limits, there can be size-selective removal of the largest 

individuals (Arlinghaus 2005). This can result in length- and age-frequencies being forced 

towards smaller and younger fishes (Almodóvar and Nicola 2004). While mortality, growth and 

maturity may be used as indicators of fishery potential and development, they are not certain 

indicators in trout populations (Healey 1978). 

Lake trout are widely distributed across Canada, as their natural Canadian range spans 

from Nova Scotia to British Columbia (Scott and Crossman 1973). Within Manitoba, lake trout 

are valued sportfish that provide food and economic benefits to isolated communities. Tourism 

associated with catch-and-release (C&R) angling opportunities and the pristine aquatic 

environments lake trout inhabit have brought more attention to Manitoba’s north, with places 

like The Pas (Figure 1.1) becoming famous due to the nearby trophy fishery at Clearwater Lake 

Provincial Park (Tuli 2018). The provincial Master Angler program (Travel Manitoba 2021) is 

one tool that is currently used to promote these fisheries, highlighting individual catches and 

their location. Through academic-governmental partnership, this thesis provides information 

which can be used to assess current management techniques aimed at protecting and enhancing 

lake trout populations.  

 

1.7 Hypothesis and objectives 

The objective of this thesis is to provide contemporary information regarding the susceptibility 

of lake trout populations to catch-and-release angling. To address the wide range of angling 
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conditions fish experience, I examined lake trout responses across multiple seasons and time 

courses. Specifically, I aimed to: (1) quantify reflex impairment and recovery post-capture; (2) 

explore how plasma stress metrics differ with time post-capture; (3) examine interactions of 

blood metrics and reflex impairment responses to angling to predict mortality; (4) characterize 

factors that influence reflex impairment and physiology; and (5) determine how fish recover 

post-release. I hypothesized that angling would induce stress and cause impairment that would be 

observable through behaviour, physiology, and activity.  

In Chapter 2, I angled lake trout during the winter and explore ice angling effects in 

extended and immediate recovery experiments. I use reflex, barotrauma, and blood metrics to 

assess stress and examine interactions that may lead to angling-induced mortality. My study is 

the first to report barotrauma during winter angling in a physostomous species and addresses 

multiple knowledge gaps that have been identified in ice fishing (Lawrence et al. 2022). In 

Chapter 3, I expand on the winter work, angling lake trout during both summer and fall and 

assessing short-term impacts of C&R. I use reflex, barotrauma, and blood metrics along with 

post-release activity to quantify how lake trout respond to capture. The addition of tri-axial 

accelerometry provides more insight into how fish behave once released as well as depth 

preferences, which may assist them in recovering from pressure-related impairment. My study 

builds on previous research assessing the effectiveness of quick-release external biologging 

(Chhor et al. 2022). Chapters 2 and 3 explore responses to C&R over varying time scales 

between seasons. Seasonality has major effects on physiology (Davis et al. 1984; Barton and 

Schreck 1987; Guderly 2004; Louison et al. 2017b), thus, experiments were broken into two 

separate manuscripts based on time of year rather than being combined. In Chapter 4, I 

synthesize the findings from the two data chapters and discuss future directions for C&R 
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research. This thesis in its entirety provides novel information regarding context-specific aspects 

of C&R fishing and will be useful for future management of recreational fisheries.  
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Figure 1.1 Map of Manitoba indicating Clearwater Lake, the study area where research occurred 

for this thesis (54.0570° N, 101.0564° W). 
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Chapter 2. Lake trout reflex impairment and physiological status following 

ice-angling 
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2.1 Abstract 

Catch-and-release is a common practice used to promote survival of angled fish but is 

understudied in the context of winter conditions. I examined extended impairment and 

physiological disturbance of lake trout (Salvelinus namaycush) following ice-angling. Fish were 

ice-angled and placed in a water-filled tub for 0.5, 4, and 6 h to recover (n = 19). Reflex 

impairment and physiological status (using blood-based indicators) were assessed repeatedly for 

every individual. Fight time was a predictor of physiological disturbance 0.5 h post-angling with 

longer fight times leading to higher lactate and glucose, and lower extracellular pH. Loss of 

orientation was the most common reflex impairment (84% of fish) 4h post-angling. Mortality 

(36.8%) was observed during the study; however, variation in handling, barotrauma, and issues 

with sampling may have confounded angling effects. To determine if barotrauma impacted 

impairment and mortality, lake trout at a later sampling date (n = 29) were exposed to air for 

either 60, 120, 180, 240, 300, or 420 s before assessment of reflex impairment (3.4% mortality). 

For fish air exposed for 300 s or more, 14% lost orientation during immediate assessment. 

Bloating occurred in 20% of fish air exposed for 60 s. An air exposure duration of 420 s 

significantly impaired reflexes. Recreationally caught lake trout show behavioural and 

physiological impairment with such impairments magnified by extended air exposure. My results 

support responsible catch-and-release practices with emphasis on reducing reflex impairment and 

mortality. 
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2.2 Introduction 

Catch-and-release angling (C&R) relies on the assumption that fish survive and exhibit 

negligible long-term impairment (Wydoski 1977). If those assumptions are satisfied, C&R can 

be a valuable conservation tool and enable use of various harvest management regulations 

(Arlinghaus et al. 2007; Danylchuk et al. 2018). However, negative consequences for fish are 

observed following angling (e.g., Muoneke and Childress 1994; Bartholomew and Bohnsack 

2005; Sass and Shaw 2020) and these consequences compound with water temperature and air 

exposure to induce mortality (Gingerich et al. 2007) or sublethal effects on reproduction and 

growth (Watson et al. 2020; Papatheodoulou et al. 2022). Additionally, fish released immediately 

upon capture may not necessarily exhibit external signs of harm and thus, cryptic impairment 

may lead to unobserved delayed mortality (Coggins Jr et al. 2007; Gilman et al. 2013). It is 

therefore imperative to incorporate behaviour, physiology, and mortality assessments into C&R 

science to fully assess angling impacts on fishes (e.g., Cooke and Schramm 2007; Brownscombe 

et al. 2022). 

For fish, the process of angling involves fighting the line, air exposure, and being 

handled. These individual stressors can combine to induce a generalized stress response (Cooke 

and Suski 2005), which allows fish to regain homeostasis through coordinated physiological 

changes (Schreck and Tort 2016). Responses to stress in fish are tiered. The immediate response 

includes endocrine changes such as higher levels of catecholamines and corticosteroids 

(Wendelaar Bonga 1997). Endocrine changes then induce effects on cardiac output, oxygen 

uptake, and the mobilization of energy substrates (Wendelaar Bonga 1997). Should homeostasis 

not be regained, reduction in growth, poor disease resistance, or altered behaviour may affect 

long-term reproduction and survival (Barton 2002). The generalized stress response varies with 
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environmental factors, for example, fish exhibit a more pronounced hormonal or metabolic 

response in warmer temperatures (Barton and Schreck 1987; Wilkie et al. 1996), compared to 

colder temperatures (Guderley 2004).  

An understudied fish in the context of C&R science is the lake trout (Salvelinus 

namaycush), despite many jurisdictions across North America promoting all season angling 

opportunities. These fish exhibit slow growth, longevity, late maturation, low reproductive 

potential, and slow replacement of adults, making them vulnerable to fishing pressure (Shuter et 

al. 1998). Other closely related salmonid species, like brook trout (Salvelinus fontinalis), 

experience blood chemistry disturbances such as elevated blood glucose (Wedemeyer et al. 

2008) and reflex impairment (Brownscombe et al. 2022) following angling. Lake trout are one of 

only a handful of species that have pre-existing research on the consequences of winter angling, 

leaving a gap in our understanding of related impairment or mortality (e.g., Dextrase and Ball 

1991; Persons and Hirsch 1994). The scarcity of information regarding physiology, behaviour, 

and survival inhibits our ability to assess effects of unique environmental conditions and 

specialized fishing techniques associated with ice-angling (Lawrence et al. 2022). Despite our 

understanding of seasonal differences in growth, movement, and habitat use (Binder et al. 2017; 

Gallagher et al. 2018; Hébert and Dunlop 2020), we have yet to fully describe how winter 

angling directly impacts post-release behaviours and physiology of lake trout.  

Lake trout share similar trophic ecologies and habitat use with other salmonids that 

inhabit deep and cold oligotrophic lakes (Ivanova et al. 2021; Nawrocki et al. 2022; Ridgway et 

al. 2022). These salmonids are adapted for rapid vertical movement, displaying diel vertical 

migration and air gulping from the surface to fill their swim bladders (Saunders 1953; Keyler et 

al. 2019; Macaulay et al. 2020; Pelster 2021; Larocque et al. 2022). Despite this, fish angled 
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from depths > 30 m are sensitive to pressure and temperature changes (McLennan et al. 2014; 

Sitar et al. 2017) and may experience barotrauma regardless of season. Barotrauma occurs in fish 

that are rapidly brought towards the surface from depth due to the decompression of gases in the 

blood and organs (Carlson 2012). The change in gas pressure can result in a range of injuries 

such as displaced organs, internal bleeding, and tissue damage (Rummer and Bennett 2005; 

Hannah et al. 2008; Pribyl et al. 2011). Physostomous species, like lake trout, are vulnerable to 

barotrauma despite the ability to belch excess gas from the swim bladder through the esophagus 

via a pneumatic duct (Saunders 1953; St John 2003). This is becoming widely recognized as a 

conservation concern by anglers (Schreer et al. 2009; Elliot et al. 2021). Barotrauma symptoms 

have been more heavily explored during open water angling, but recent research has shown high 

post-release mortality from barotrauma in cold lakes where fish are angled from deep depths 

(Althoff et al. 2021). 

Another important issue associated with lake trout and C&R science is that lake trout are 

often considered ‘trophy’ fish. Lake trout reach large sizes (> 1 m), and size is an important 

factor with regards to effects of angling on fish because larger fish often have longer fight times 

(Reeves and Staples 2011), experience higher levels of angling-induced stress (Wydoski et al. 

1976; Meka and McCormick 2005) and mortality (Loftus et al. 1988; Nuhfer et al. 1992; Lee and 

Bergersen 1996). Therefore, trophy-sized lake trout fisheries may be at risk from angler-induced 

effects. Beyond size, mortality in angled lake trout can also be explained by hook placement and 

bleeding (Falk et al. 1974; Persons and Hirsch 1994) and hook type (Dextrase and Ball 1991).  

 In my study, I examined the physiological and behavioural responses of lake trout to 

C&R ice-angling in Clearwater Lake, Manitoba. The objectives of my study were to: (1) quantify 

reflex impairment and recovery post-capture; (2) explore how plasma stress metrics (i.e., 
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cortisol, lactate, glucose, and pH) differ with time post-capture (samples taken at 0.5, 4, and 6 h); 

(3) examine interactions of blood metrics and reflex impairment responses to angling to predict 

mortality; (4) characterize factors that influence reflex impairment and physiology, including 

size, fight time, and length of air exposure; and, (5) determine if barotrauma might be occurring 

in lake trout angled during the winter. For the extended recovery sampling (objectives 1–4), I 

hypothesized that fish capture would induce stress and impair behaviour that would affect 

survivorship. Specifically, I expected that fish would have delayed recovery but low reflex 

impairment, stress metrics would increase with time, high behavioural and physiological 

responses would be predictive of mortality, and fish length would affect stress and impairment. 

For the immediate recovery sampling (objective 5), I hypothesized that fish capture would impair 

behaviour and lead to barotrauma. I expected that fish would display reflex impairment within 

the first several minutes following capture. 

 

2.3 Methods 

2.3.1 Study location  

I angled lake trout from Clearwater Lake, Manitoba, Canada (54.0570° N, 101.0564° W) 

between January 10–16, 2022 and March 28–April 8, 2022. The surface area of the lake is 593 

km2 and its average depth is 13.1 m. In January, air temperatures fluctuated between -30 and -1.3 

°C (mean = -16.50 °C) (Environment and Climate Change Canada 2022) and water temperatures 

10 m below the lake surface were between -0.2 and 0 °C (mean = -0.05 °C) (Pro20 model, YSI 

Inc., Yellow Springs, OH, USA; range = -5 – 55 ºC, accuracy = ± 0.3 ºC). I angled for fish 

between 16 and 18.6 m (mean = 16.40 m) where dissolved oxygen levels were between 122.43 

and 150.92% air saturation (mean = 126.09% air saturation) (17.36–21.4 mg/L, mean = 18.84 
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mg/L). In March, air temperatures were between -13 and 6.2 °C (mean = -1.60 °C) and water 

temperatures at 10 m below the lake surface were between 0.2 and 1 °C (mean = 0.53 °C). I 

angled for fish between 6.1 and 21.3 m (mean = 15.23 m) where dissolved oxygen levels were 

between 84.15 and 123.91% air saturation (mean = 100.28% air saturation) (11.73–17.42 mg/L, 

mean = 14.02 mg/L). 

 

2.3.2 Fish capture and holding 

I divided our study into two sampling periods. In January, after fish capture, I held fish in tubs 

for up to 6 h to monitor physiological recovery in blood parameters and reflex impairment 

(extended recovery). In March, after fish capture, I held fish for 420 s to quantify barotrauma and 

reflex impairment (immediate recovery).  

During both sampling periods, I captured fish using 1.17 m extra-heavy-action fiberglass 

ice fishing rods (46XH Slugger, Fish Frostbite, CA) that were spooled with 13.61 kg braided line 

and a 1.22 m 5.44 kg fluorocarbon leader on a size 35 reel (Pflueger President XT, Pure Fishing, 

Columbia, SC, USA). I either held the rods or fitted them to a tip-up (I Fish Pro 2.0, Tactical Ice 

Gear, CA). For rods I held, I rigged them with spoons, plastic swimbaits, jigging tubes, or quick-

strike rigs with size 1/0 treble hooks (Plate 2.1). For the tip-ups, I baited size 1/0 treble hooks 

with dead whole cisco (Coregonus artedi) (152–330 mm) and placed these within 50 m of 

anglers (12 experienced anglers). I angled fish from various locations on the lake and caught fish 

within and outside uninsulated heated ice fishing tents (Plate 2.2). Once an angler felt a strike or 

observed a tip-up flag, they quickly raised the rod to set the hook and lift the fish from the water. 

I recorded the time between hooking the fish and the fish clearing the ice hole (i.e., fight time). I 

then immediately unhooked the fish, noted the hooking location, and scored the level of bleeding 
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using a three-point scale (adapted from Falk et al. 1974): 0 score, none, no external bleeding near 

the hook entry point; 1 score, slight, a small amount of bleeding localized near the hook entry 

point; and 2 score, flowing, blood surrounding and obscuring the hook entry point. Because 

anglers were spread out in a general area around our sampling tent, I transported fish within a tub 

filled with fresh lake water on a sleigh. The maximum distance I transported a fish was 400 m. 

For each fish captured, I recorded the duration of air exposure time during handling.  

 

2.3.3 Extended Recovery Sampling 

During the first sampling period, in January, upon entry into the sampling tent, I measured each 

fish (n = 19) for length and weight, and then transferred it to a tub of fresh surface water for 

reflex assessment (see below). Once I completed the reflex assessment, I moved fish to a covered 

378 L stock tank filled with fresh surface water. I frequently changed the water in the tank and 

water temperature fluctuated between 0 and 0.1 °C (mean = 0.05 °C) with dissolved oxygen 

levels between 61.67 and 131.83 % air saturation (mean = 99.83% air saturation) (12.8–18.64 

mg/L, mean = 14.12 mg/L). I left fish to recover in the tank for 0.5, 4, and 6 h. I never held more 

than four fish at a time in the stock tank and was cognisant of total fish size in the tank. 

At each time point, I assessed fish for impairment using a reflex assessment and a blood 

sample (size dependent, see below). For the reflex assessment, I followed previously established 

methods (Davis 2007; Raby et al. 2012; McLean et al. 2016; Brownscombe et al. 2022) and 

conducted it in a tub (78.74 × 45.72 × 30.48 cm) that we filled with fresh lake water. The 

assessment included the following metrics: (1) tail grab, burst swimming response to caudal 

peduncle grab; (2) body flex, attempted escape when held out of the water by midsection; (3) 

head complex, opening of jaws in normal ventilation pattern when held out of water; (4) 
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vestibular-ocular response, tracking of eye to remain level when rotated horizontally and held out 

of water; (5) orientation, vertical alignment after being placed upside-down in holding bin. I 

scored failure to demonstrate a metric “1”, and I calculated totaled reflex impairment score as the 

sum of each of the five impairments that were not present for all individuals at each time point. I 

conducted all reflex assessments to limit variation between samplers. The assessment took less 

than 60 s. 

Following each of my reflex assessments, I sampled fish for blood using best practices 

described in Lawrence et al. (2020). Briefly, I held fish ventral-side up with their gills submerged 

in the water of the tub. I drew 1.5 mL of blood via caudle puncture with a 10 mL lithium heparin 

vacutainer and 21-G needle. I then immediately centrifuged the blood at 6000 g for 3 min to 

separate plasma from other blood components (red blood cells) and allocated the plasma into 

three 0.6 mL vials. I stored the plasma and other blood component samples in a vapour shipper 

that was charged with liquid nitrogen (Cryopro 3.6 L, VWR International, Radnor, PA, USA) 

until I could move them to a laboratory freezer (– 80 °C). Total blood sampling time varied 

between fish due to difficulties associated with outside temperatures, and I sampled fish > 1500g 

during each of the three time points. I could only sample fish < 1500g twice (i.e., a random two 

out of the three time points) to ensure less than 10% of total blood volume was removed 

(Lawrence et al. 2020). Following the end of sampling at the 6 h time point, I inserted a T-bar 

anchor tag on the left side of the dorsal fin of each released fish to ensure fish were not 

resampled. No fish were recaptured.  

For each fish and time point, I quantified concentrations of plasma cortisol, lactate, and 

glucose and measured intracellular and extracellular pH. For plasma cortisol, I used a 

commercially available enzyme-linked immunosorbent assay (ELISA) kit (#402710, Neogen, 
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Lexington, KY, USA) and a microplate spectrophotometer (SpectraMax i3, Molecular Devices, 

San Jose, CA, USA). The ELISA kit that I used was previously validated for analysis of 

salmonid plasma samples (Raby et al. 2015). I ran the assay in triplicate at a dilution factor of 

200 after having completed a dilution series of 25, 50, 100, 200, and 400 to choose the 

appropriate dilution factor based on a standard curve. The intra-assay variation (% CV) for my 

plates was 7.48% and the inter-assay variation was 12.2%, which are acceptable ranges for 

plasma cortisol in salmonids (Barry et al. 1993). I determined concentrations of plasma lactate 

and glucose following the enzymatic methods of Lowry and Passonneau (1972). I did each 

sample in triplicate and used a dilution factor of 3.75 for plasma lactate. The intra-assay variation 

for plasma lactate was 5.08% and inter-assay variation was 15%. The intra-assay variation for 

plasma glucose was 4.22% and inter-assay variation was 12.9%. I measured extracellular pH 

from thawed plasma and intracellular pH from lysed red blood cells that went through five 

freeze-thaw cycles (e.g., Mullen et al. 2020) (HI98165 pH Meter, HANNA Instruments, 

Woonsocket, RI, USA). 

 

2.3.4 Barotrauma and Immediate Recovery Sampling 

In April, I sampled a second group of lake trout (n = 29). I angled these fish using the same 

methods described above. I monitored angler interaction with fish according to four time 

intervals defined by times T0 to T4 (adapted from Lyon et al. 2022). The first time interval (T0–

T1) began when an angler set the hook (T0) and ended when fish were out of the ice hole and 

exposed to the air (T1). The second time interval (T1–T2) began when fish were exposed to the air 

(T1) and ended after fish had been placed onto the ice surface and exposed to air for a randomly 

specified amount of time (60s, 120s, 180s, 240s, 300s, 420s) before I placed it into a tub filled 
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with fresh water (T2). Between T1 and T2, I recorded hooking location, level of bleeding, length, 

and weight in the same fashion as described above. I also attached to each fish a coloured T-bar 

anchor tag on the left side of the dorsal fin to ensure fish were not resampled. The third time 

interval (T2–T3) began once fish were placed into water inside the assessment tub (T2) and ended 

once the reflex and barotrauma assessments (described below) had been completed and I 

returned the fish to the ice hole (T3). The fourth time interval (T3–T4) began once I placed the 

fish into the ice hole and ended when the fish kicked-off (T4). During this time, I retained a loose 

grip on the caudal peduncle in case I had to retrieve the fish due to it not having the ability to 

swim away. I scored the vigour of release using a three-point scale: 0 or poor, lethargic 

movement, and lack of consistent tail beats; 1 or good, regular movement and consistent tail 

beats; and 2 or excellent, energetic movement and fast-paced tail beats. 

During the T2 and T3 time period, after fish were air exposed for one of the randomly 

selected time intervals, I completed two assessments of the captured fish. First, I did a reflex 

assessment, which was done in the same manner as the first sampling period. The second 

assessment was a barotrauma assessment (adapted from Althoff et al. [2021]; indicators are 

noted in several studies, e.g., Morrissey et al. [2005]; Gravel and Cooke [2008]; Schreer et al. 

[2009]; Eberts et al. [2018]), which I did in the same tub as the reflex assessment (Figure 2.1). 

For the barotrauma assessment, I scored the presence of the following metrics (“1” present, “0” 

not present): (1) oral organ eversion, gastric herniation into the buccal cavity; (2) exophthalmia, 

bulging eyes; (3) bloating, overinflation of the midsection; (4) anal organ eversion, prolapsed 

anus; and (5) hemorrhaging, redness in the mouth/gills/fins/anus. Similar to the reflex 

assessment, I did all barotrauma assessments. I calculated totaled barotrauma score as the sum of 
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each of the five impairments that were not present for all individuals at each time point. It took 

less than 60 s to complete the assessment. 

 

2.3.5 Data analysis and statistics 

I used R version 4.1.2 (R Core Team 2021) and assessed significance at a £ 0.05, unless noted 

otherwise. For the first sampling period (i.e., extended recovery experiment), I tested whether 

blood plasma and pH parameters differed across recovery times using paired t-tests (“stats” 

package, R Core Team [2021]). I could not use repeated-measures ANOVA because not all fish 

were sampled at each time point. Prior to analysis, I tested for outliers using Grubbs’ tests for 

outliers (“outliers” package, Komsta [2022]) and removed them from the analysis. Then, to 

ensure model assumptions were met, I tested homogeneity of variance using a Levene’s test 

(“cars” package, Fox and Weisberg [2019]) and normality using a Shapiro-Wilk test (“stats” 

package, R Core Team [2021]). When the model assumption tests failed for the blood 

parameters, I used a square root transformation prior to the paired t-test. For significant 

comparisons, I calculated effect size using Cohen’s D test (“effsize” package, Torchiano [2020]). 

When individuals were missing a blood parameter value at a particular recovery time, I removed 

it from the dataset for comparisons using that recovery time and blood parameter. Because I did 

multiple statistical analyses using the blood, I used a Bonferroni correction to offset the 

likelihood of a type-I error, thus for the tests involving the blood metrics, I used a significance 

level of a = 0.01. To relate mortality with the blood parameters I used binary logistic regression 

models (“stats” package, R Core Team [2021]). I regressed mortality against each blood 

parameter at each recovery time (0.5 h, 4.0 h, 6.0 h) to address whether the blood parameters 

predicted death. Again, I used a Bonferroni correction to account for multiple statistical tests 
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being performed and thus, I used a = 0.01 to determine significance of the blood parameter 

versus mortality models. The next analysis I did was to determine at each recovery time point the 

effects of total length, fight time, air exposure, and reflex impairment on each of the blood 

parameters. To do this, I created 17 candidate linear models based on various combinations of 

the independent variables and used an information theoretic approach (second-order Akaike’s 

Information Criterion; “AICcmodavg” package , Mazerolle [2020]; and, “lme4” package, Bates 

et al. [2015]). Likewise to above, outliers were removed, model assumptions were validated, and 

data was transformed as needed. The last statistical analysis I did for the first sampling period 

was to analyze whether reflex impairment could be predicted by any of the independent 

variables, including recovery time, total length, fight time, and air exposure. To do this, I used 

binary multiple logistic regression mixed models (“lme4” package, Bates et al. [2015]). Note, I 

originally included interactions of the independent variables; however, they were not significant 

and were removed from the final analysis. There were no interactions between variables. 

Additionally, I included individual ID as a random effect because, unlike blood parameters, I had 

reflex scores for every individual.  

For the second sampling period (i.e., immediate recovery experiment), I used binary 

multiple logistic regression models (“stats” package, R Core Team [2021]) to determine the 

effects of total length, fight time, and air exposure on either reflex or barotrauma impairment. I 

originally included depth and interactions of the independent variables in the model but removed 

them due to insignificance. Lastly, I compared reflex and barotrauma scores using a Pearson 

correlation (“devtools” package, Wickham et al. [2022]) to determine if the two response 

variables were associated. 
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Plate 2.1 Underwater footage of lake trout (Salvelinus namaycush) interacting with different bait 

types during winter angling.  
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Plate 2.2 Photo showing the sampling site organization during the immediate and extended 

recovery experiments on Clearwater Lake, Manitoba, Canada. 
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Figure 2.1 Images showing barotrauma assessment metrics including: (A) oral organ eversion, 

(B) Exophthalmia, (C) bloating and anal organ eversion, (D) hemorrhaging in the eye, and (E) 

hemorrhaging in the fins observed in lake trout (Salvelinus namaycush) following angling. 
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2.4 Results  

2.4.1 Extended Recovery 

Overall, I caught nineteen lake trout during the first sampling period. These fish had a mean (± 

S.D.) total length of 633 ± 149 mm with a range of 450–952 mm. The mean weight of the lake 

trout caught during the first sampling period was 3130 ± 2484 g with a range of 454–9667 g. 

There was a 36.8% mortality rate. Of the seven mortalities observed, only one occurred prior to 

the 0.5 h sampling point, three occurred after the 4 h sampling point, and three occurred shortly 

after the 6 h sampling point. In all fish, bleeding and injury were minimal, hooks were not 

swallowed, and fish were active upon hook removal. 

Recovery time, total length, fight time, and air exposure did not have any effect on reflex 

scores (Table 2.1). Total reflex impairment immediately following capture was 4 and peaked at 

18 at 4 h. Reflex impairment then began to decline at 6 h. Loss of orientation was the most 

observed reflex impairment with 84% of fish displaying it 4 h post-angling (Figure 2.2). At 4 h 

post-capture, cortisol was 70% higher than it was at 0.5 h (Paired t-test: t12 = -5.7, P < 0.001) and 

it doubled at 6 h (Paired t-test: t8 = -4.4, P = < 0.01) with large effect sizes for both comparisons 

(Figure 2.3). At 4 h, lactate was 28% higher than it was at 0.5 h (Paired t-test: t12 = -5.3, P = < 

0.001) and at 6 h it was 31% higher (Paired t-test: t8 = -6.5, P = < 0.001) with large effect sizes 

for both comparisons. Glucose was not significantly higher at 4 h or 6 h post-capture when 

compared to the 0.5 h sample point. Extracellular pH decreased from 7.59 at 0.5 h to 7.43 (1%) 

at 4 h (Paired t-test: t11 = 5.9, P < 0.001) with a large effect size but not at 6 h post-capture. 

Intracellular pH did not significantly change at 4 h or 6 h post-capture when compared to the 0.5 

h sample point. I found no relationships between blood metrics at any recovery time and 

mortality (Table 2.2). The most parsimonious models to predict cortisol, lactate, glucose, 
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extracellular pH, and intracellular pH were found via AICc (Table 2.3). Thirty minutes after the 

angling event, fight time was a significant predictor of lactate (R2 = 0.42), the interaction of fight 

time + reflex score was a significant predictor of glucose (R2 = 0.51), and fight time was a 

significant predictor of plasma pH (R2 = 0.24) (Table 2.3). Four hours after the angling event the 

interaction of fight time + reflex score was a significant predictor of lactate (R2 = 0.81) and again 

at six hours (R2 = 0.80).  

 

2.4.2 Immediate Recovery 

During the second sampling period, twenty-nine lake trout were angled. These fish had a mean 

total length of 599 ± 184 mm with a range of 310–1040 mm. The mean weight of the lake trout 

caught during the second sampling period was 2619 ± 3113 g with a range of 190–11310 g. 

There was a 3.4% mortality rate (one fish was hooked in the gill arches and died). Air exposure, 

total length, and fight time did not influence barotrauma scores. Totaled barotrauma scores 

peaked at 60 s of air exposure and then fluctuated throughout the rest of the timepoints up to 420 

s. Bloating of the abdomen was the most observed barotrauma impairment with 20% of fish 

displaying it 60 s post-angling. Oral organ eversion was the only reflex indicator not observed in 

any fish captured. Only an air exposure time of 420 s influenced reflex score (Table 2.4). Total 

reflex scores continued to increase across the 420 s and loss of orientation was the most observed 

reflex impairment with 14% of fish displaying it 300 s post-angling (Figure 2.2). Reflex 

impairment and extent of barotrauma were not correlated (Pearson correlation: t27 = 0.23, r = 

0.05, P > 0.05). 
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Table 2.1 Summary of binary multiple logistic regression models assessing the effects of 

recovery time (h), fish total length (mm), fight time (s), and air exposure (s) on whether lake 

trout (Salvelinus namaycush) showed impairment for any of the five reflex impairment indicators 

assessed after ice-angling during an extended recovery experiment (L.L. = effect estimate lower 

limit, U.L. = effect estimate upper limit).  

Variable Estimate  L.L. U.L. 
(Intercept) -68.77 -158.66 21.11 
Recovery Time 0.5 7.07 -2.75 16.90 
Recovery Time 4 7.07 -2.75 16.90 
Recovery Time 6 8.06 -2.46 18.59 
Total Length 0.09 -0.03 0.22 
Fight -0.03 -0.07 0.02 
Air Exposure 0.05 -0.04 0.13 
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Figure 2.2 Totaled impairment scores for (A) extended recovery reflex impairment (n = 19), (B) 

immediate recovery reflex impairment (n = 29), and (C) immediate recovery barotrauma (n = 29) 

predictors in lake trout (Salvelinus namaycush) sampled following ice-angling. Reflex metrics 

include: (1) tail grab; (2) body flex; (3) head complex; (4) vestibular-ocular response; and (5) 

orientation. Barotrauma metrics include: (1) oral organ eversion; (2) exophthalmia; (3) bloating; 

(4) anal organ eversion; and (5) hemorrhaging.  
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Figure 2.3 Concentrations of (A) plasma cortisol, (B) plasma lactate, (C) plasma glucose, and 

(D) extracellular pH in lake trout (Salvelinus namaycush) sampled at 0.5 (n = 13), 4 (n = 13), or 

6 h (n = 11) following ice-angling. Thick black horizontal lines denote median values, boxes 

contain all data within the 25th and 75th quartiles, whiskers show the range of data, and outliers 

are depicted as black dots. Asterisks above horizontal brackets denote statistical significance at 

corrected a = 0.01. Cohen’s d values (i.e., standardised difference of the means) are within 

parenthesis. 
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Table 2.2 Summary of binary logistic regression models assessing the effects of cortisol 

(ng/mL), lactate (mmol/L), glucose (mmol/L), extracellular pH, or intracellular pH of lake trout 

(Salvelinus namaycush) sampled at 0.5, 4, and 6 h post-angling on whether a fish survived the 

angling event or not. Statistical significance was determined at a corrected a = 0.01. 

Time Blood Metric Estimate S.E. z value  df P 
0.5 Cortisol 0.28 0.22 1.30 12 0.19 
 Lactate 0.96 1.69 0.57 12 0.57 
 Glucose -2.10 1.70 -1.24 12 0.22 
 Extracellular pH 13.76 21.17 0.65 12 0.52 
 Intracellular pH 91.41 64.73 1.41 12 0.16 
4 Cortisol 0.14 0.15 0.92 14 0.36 
 Lactate 4.12 1.87 2.21 14 0.03 
 Glucose 1.04 1.21 0.86 14 0.39 
 Extracellular pH 10.23 24.52 0.42 14 0.68 
 Intracellular pH 24.69 44.15 0.56 12 0.58 
6 Cortisol 0.01 0.12 0.05 10 0.96 
 Lactate 3.33 1.85 1.80 10 0.07 
 Glucose -0.19 1.31 -0.14 10 0.89 
 Extracellular pH -4.75 25.30 -0.19 10 0.85 
 Intracellular pH 18.76 43.36 0.43 10 0.67 
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Table 2.3 Summary of model selection results based on second-order Akaike information 

criterion (AICc) for linear models predicting the cortisol (ng/mL), lactate (mmol/L), glucose 

(mmol/L), extracellular pH, and intracellular pH concentrations of lake trout (Salvelinus 

namaycush) sampled at 0.5, 4, and 6 h post-angling. The most parsimonious models are bolded.  

Time Metric Model Name K AICc DAICc AICcWt Cum.
Wt 

R2 

0.5 Cortisol Null 2 61.90 0.00 0.41 0.41 - 
 Lactate Fight 3 10.10 0.00 0.46 0.46 0.42 
  Length + Fight + Reflex 5 11.94 1.84 0.18 0.65 0.72 
 Glucose Fight + Reflex 4 19.83 0.00 0.32 0.32 0.51 
  Reflex 3 20.64 0.80 0.21 0.53 0.24 
  Null 2 20.92 1.09 0.19 0.72 - 
 Plasma pH Fight 3 -53.07 0.00 0.22 0.22 0.24 
  Null 2 -52.86 0.21 0.20 0.41 - 
  Air 3 -52.40 0.66 0.16 0.57 0.19 
  Length 3 -52.28 0.78 0.15 0.72 0.18 
  Fight + Air 4 -51.23 1.84 0.09 0.80 0.37 
 Blood pH Null 2 -65.80 0.00 0.56 0.56 - 
4 Cortisol Null 2 67.10 0.00 0.38 0.38 - 
  Reflex 3 68.50 1.40 0.19 0.57 0.09 
 Lactate Fight + Reflex 4 15.09 0.00 0.57 0.57 0.81 
  Length + Fight + Reflex 5 16.38 1.29 0.30 0.87 0.86 
 Glucose Null 2 19.61 0.00 0.23 0.23 - 
  Air 3 19.63 0.02 0.23 0.46 0.19 
  Reflex 3 20.14 0.53 0.18 0.63 0.15 
  Air + Reflex 4 20.74 1.13 0.13 0.76 0.33 
 Plasma pH Null 2 -51.16 0.00 0.46 0.46 - 
 Blood pH Null 2 -64.13 0.00 0.30 0.30 - 
  Fight 3 -63.81 0.32 0.26 0.55 0.10 
  Length 3 -63.04 1.09 0.17 0.73 0.11 
6 Cortisol Null 2 65.09 0.00 0.53 0.53 - 
 Lactate Fight + Reflex 4 13.75 0.00 0.85 0.85 0.80 
 Glucose Null 2 16.91 0.00 0.35 0.35 - 
  Fight 3 18.08 1.17 0.20 0.55 0.18 
  Reflex 3 18.43 1.52 0.16 0.71 0.15 
 Plasma pH Null 2 -39.06 0.00 0.48 0.48 - 
  Fight 3 -37.72 1.33 0.24 0.72 0.16 
 Blood pH Null 2 -49.86 0.00 0.48 0.48 - 
  Fight 3 -48.61 1.25 0.26 0.74 0.17 
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Table 2.4 Summary of binary multiple logistic regression models assessing the effects of air 

exposure time (s), fish total length (mm), and fight time (s) on whether lake trout (Salvelinus 

namaycush) showed impairment for any of the five reflex impairment indicators or barotrauma 

metrics assessed after ice-angling during an immediate recovery experiment. Statistical 

significance was determined at a = 0.05 and is bolded. 

 Variable Estimate S.E. z value  df P 
Reflex (Intercept) -11.74 6190 -1.90 28 0.06 
 Exposure Time 120 s -19.21 4265 -0.01 28 1.00 
 Exposure Time 180 s 1.68 3.12 0.54 28 0.59 
 Exposure Time 240 s 1.88 2.18 0.86 28 0.39 
 Exposure Time 300 s 2.97 2.13 1.39 28 0.16 
 Exposure Time 420 s 4.57 2.31 1.97 28 0.05 
 Total Length 0.02 1.10 1.48 28 0.14 
 Fight -0.00 0.02 -0.32 28 0.75 
Barotrauma (Intercept) 18.30 6389 0.00 28 1.00 
 Exposure Time 120 -19.02 6389 -0.00 28 1.00 
 Exposure Time 180 -22.70 6389 -0.00 28 1.00 
 Exposure Time 240 -0.75 9544 0.00 28 1.00 
 Exposure Time 300 -20.64 6389 -0.00 28 1.00 
 Exposure Time 420 0.59 9804 0.00 28 1.00 
 Total Length 0.00 0 0.02 28 0.98 
 Fight 0.05 0.07 0.67 28 0.50 

 



 

 40 

2.5 Discussion 

2.5.1 Mortality 

The 36.8% mortality rate observed in the extended recovery experiment was higher than I 

expected for a physostomous species, which are typically robust to stressors like barotrauma 

(Brown et al. 2014). However, these mortalities could not be confidently attributed to the 

hooking and retrieval, as immediately following capture, fish were responsive and had minimal 

injury or bleeding. Sampling and handling of fish, as well as holding the fish in tubs at surface 

rather than at capture depth, were additional stressors that could have contributed to the observed 

mortality (Ferter et al. 2015). Additionally, the low sample size during the extended sampling 

and the lack of variation in capture depth limit my interpretation of the mortality rate. 

Nonetheless, the mortality rate observed in this experiment is higher than what has been seen in 

other studies examining the effects of ice-angling on lake trout. For example, mortality rates in 

other studies were 10% (Dextrase and Ball 1991) and 24% (Persons and Hirsch 1994); however, 

fish in these studies were not held for extended periods of time like in my experiment and so 

delayed mortality was not assessed. Delayed mortality has been documented following 

exhaustive exercise or post-angling in other salmonids (Wood et al. 1983; Ferguson and Tufts 

1992), with most angling-induced mortality occurring within the first 48h (Mongillo 1984; 

Dedual 1996). In my experiment, lake trout died within 6 h following capture at ~16 m. Holding 

conditions and handling can potentially exacerbate stress responses and behaviour (Portz et al. 

2006; Mullen et al. 2020). Based on my higher-than-expected mortality rate, either angling 

caused a much more serious impact than found in other lake trout and ice-angling studies or 

some aspect of the fish holding induced unintended consequences. Due to fish capture depth, and 

my observation that lake trout were not releasing gas at the surface, I speculate that the fish may 
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have suffered from barotrauma. Anecdotally, I observed swim bladder inflation in certain fish 

dissected after mortality had occurred. The addition of a barotrauma assessment during the 

second sampling period allowed me to deduce that pressure-related impairment was occurring in 

the lake trout, though based on observations between the two sampling periods, I do not think 

barotrauma was as severe as it was in the first sampling event. Holding fish to obtain 

physiological and reflex endpoints are one of the main challenges with C&R studies in the winter 

and refinement of methodology is needed to remove sampling and handling stressors (Lawrence 

et al. 2022). 

 

2.5.2 Behaviour 

Coupling behaviour with physiological parameters can provide insight to a fish’s state following 

angling (Arlinghaus et al. 2009; Cooke et al. 2013a). Reflex indicator scores showed signs of 

behavioural recovery within 6 h. Loss of orientation was the most observed reflex impairment 

with 84% of fish displaying it 4 h post-angling during extended recovery and 14% of fish 

displaying it 300 s post-angling during immediate recovery. Impaired orientation has been shown 

to be a crucial predictor of mortality in other species (Gingerich et al. 2007; Raby et al. 2012) 

and is necessary for fish to return to desired depths upon release (Louison et al. 2023). Fish 

experiencing an orientation impairment are likely forced to float just under the ice surface after 

release and therefore experience low temperatures and potential tissue freezing (Card et al. 

2022). Behavioural impairments, such as floating, force fish to continue exhaustive activity 

through the act of trying to return to depth, further perpetuating changes in physiological 

variables and possibly accelerating mortality (Wood 1991; Ross and Hokenson 1997). 
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Oral organ eversion is one of the most recognizable and commonly observed injuries 

resulting from barotrauma (Schreer et al. 2009). This occurs when the stomach is inverted and 

expelled through the esophagus due to the overexpansion of the swim bladder (Figure 2.1A). 

Physoclistous fish are typically more susceptible to barotrauma then physostomous fish like lake 

trout because their swim bladder is not connected to the stomach via a pneumatic duct (Saunders 

1953; St. John 2003). These fish must instead diffuse gases through a capillary mesh that 

supplies blood to the swim bladder and is the interface for gas exchange (Ferguson 1989). 

Despite being physostomous, lake trout in my study exhibited barotrauma impairment which 

would not have been captured by using only the reflex assessment. I therefore recommend using 

both assessments in succession to provide a better estimate of the range of impairments. 

Barotrauma may be exacerbated by varying factors. Other studies have found effects of 

depth and duration that fish were held at the surface on barotrauma (Schreer et al. 2009; Wegner 

et al. 2021). In my study, air exposure, total length, and fight time did not affect barotrauma 

scores. Angling for lake trout often occurs at depths > 40 m with bait either resting-on or jigging 

just above the bottom of the lake (Lamont 2017). Water pressure increases with depth and thus, 

fish angled from the bottom experience the full gradient of pressure changes on the way to the 

surface. Lake trout typically display their belching mechanism to expel excess gas through their 

mouths during an angling event. However, the high barotrauma scores observed in my study 

suggest that this mechanism was not entirely reliable during rapid decompression. Lake trout 

have previously been documented to display signs of barotrauma but not in relation to ice-

angling (Ng et al. 2015; Sitar et al. 2017). Interestingly, reflex impairment and barotrauma were 

not meaningfully correlated despite similarities in certain impairment metrics such as orientation 

in the reflex assessment and abdominal bloating in the barotrauma assessment. 
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2.5.3 Blood Physiology 

Ice-angling induced changes to plasma cortisol, plasma lactate, plasma glucose, extracellular pH, 

and intracellular pH in lake trout. Cortisol, lactate, and glucose were highest at 6 h post-angling 

when sampling ended. Despite below-ice water temperatures and the expectation that 

physiological processes, such as metabolism and the stress response, should be slowed (Davis et 

al. 1984; Barton and Schreck 1987; Guderly 2004; Louison et al. 2017b), the observed values for 

each variable were higher than what has been found in previous lake trout studies during summer 

months (Wedemeyer and Wydoski 2008; Pottinger 2010). These values may have been 

influenced by holding conditions, as described earlier. Typically, cortisol and lactate values peak 

between 0.5 h and 2 h before recovery after exhaustive exercise or handling (Milligan and Wood 

1986; Barton and Iwama 1991). In female pink salmon, cortisol, lactate, and glucose peaked 

between 0.5 and 2 h after being exposed to 3 min of exhaustive exercise and 1 min of air 

exposure (Donaldson et al. 2014). Maximum intracellular and extracellular pH values were 

within similar ranges of other C&R studies (Brobbel et al. 1996; Mullen et al. 2020). The 

continued decrease in pH up to 6 h post-angling was expected because anerobic use of glycogen 

to meet energy demands leads to an excess of lactate and reduced pH (Milligan and Wood 1986). 

Quantifying maximum peak values for all other blood metrics was not possible since they 

increased continuously up to 6 h. The delayed onset of the stress response and heightened blood 

metrics after 4 h seen in my study has also been seen in other ice-angling research (Louison et al. 

2017a; Louison et al. 2017b). Recovery profiles differ by species and context (Barton 2000; 

Ruane et al. 1999; Logan et al. 2019; Lawrence et al. 2022), so generalized physiological 

responses of ice-angled lake trout remains poorly characterized. Understanding fish recovery is 

important for conservation so further research is needed to understand the full amount of time 
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required for fish to return to baseline physiological levels. Fish that continue to experience stress 

after being released can be more susceptible to other factors such as predation (Campbell et al. 

2010; Holder et al. 2020). Therefore, quantifying physiological recovery time can improve 

understanding of delayed mortality.  

 Plasma cortisol, lactate, glucose, and pH were not predictors of mortality. All metrics 

examined in my study are physiological variables that are well explored in other fishes as 

physiological disturbance markers (Wood 1991; Suski et al. 2003; Cooke et al. 2013a; Twardek 

et al. 2018a). Cortisol is a primary stress hormone, lactate and glucose are metabolites, and pH 

indicates acid-base status (Wendelaar Bonga 1997). Collectively, they are a result of internal 

coordination to increase the availability of oxygen and energy (Rodnick and Planas 2016; 

Schreck and Tort 2016). Lactate is valuable in predicting mortality because it is a by-product of 

exhaustive exercise (Wood 1991). Lactate anion is produced via glycolysis while metabolic 

protons are produced during adenosine triphosphate (ATP) breakdown (Robergs et al. 2004). It 

has been implicated with post-exercise mortality and may play a role in mitigating pathological 

effects of exhaustion (Wang et al. 1994; Holder et al. 2022). Minimizing factors that influence 

changes in metabolites during collection and handling in field settings is difficult since the 

process of collecting blood itself inherently changes blood metabolite profiles through the stress 

of confinement (Kiilerch et al. 2018), handling (Sopinka et al. 2016), and technical ability 

(Lawrence et al. 2020). In my study, holding time was limited to mitigate effects from fasting 

and altered environment (Morata et al. 1982; Scarabello et al. 1991; Brobbel et al. 1996) but fish 

may have experienced increased handling due to logistical challenges with winter sampling.  

Fight time and the interaction of fight time + reflex impairment were the only variables 

that predicted lactate at 0.5, 4, or 6 h post-angling. Longer fight times increase exhaustive 



 

 45 

activity and thus, lactate production (Holder et al. 2022). Exhaustion following line-fighting may 

also impair reflexes that require the depleted energy-stores such as body flex, orientation, and tail 

grab. In my study, only an air exposure of 420 s influenced reflex impairment score. A large 

body of research has previously demonstrated the effects of holding (Cooke et al. 2002b; 

Donaldson et al. 2013; Chhor et al. 2022b), fish size (Loftus et al. 1988; McLean et al. 2020), 

fight time (Cooke et al. 2016; Blyth and Bower 2022), and air exposure (Gingerich et al. 2007; 

Donaldson et al. 2014; Logan 2019; Chhor et al. 2022a) on reflex impairment. For example, 

brook trout > 328 mm with air exposure times > 10 s exhibit higher reflex impairment measures 

(Brownscombe et al. 2022). 

 

2.5.4 Effect of size 

While fish body length was not found to influence mortality or impairment in my study, larger 

rainbow trout (Oncorhynchus mykiss) have been shown to experience a higher degree of angling-

induced stress (Wydoski et al. 1976) and hooking mortality (Schisler and Bergersen and 1996). 

The lack of effect observed in my study may be attributed to a low number of large individuals 

(i.e., 5 fish > 890 mm) captured during sampling periods. Larger fish may be more likely to fight 

to exhaustion and thus often experience negative survival outcomes after angling due to 

increased length of time fighting the line (Reeves and Staples 2011; Twardek et al. 2018a). 

Angler-induced C&R mortality is in direct conflict with fishery conservation aims and thus, 

management decisions should focus on methods to improve survivorship in released fish. 
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2.5.5 Management 

The results of my study provide new information on the susceptibility of physostomes to 

angling-induced impairment during the winter. Specifically, lake trout exhibited delayed 

behavioural and physiological recovery in the extended recovery experiment and a high degree 

of impaired barotrauma metrics in the immediate recovery experiment. Understanding how to 

effectively manage this population during winter months is vital to prevent a decline in fish 

abundance. Generally, fisheries managers lack scientific information to inform decision making 

around winter C&R fisheries. Basic estimates of fish hooking mortality are necessary and can 

range from 1% to > 90% depending on species, angler skill, and environmental factors (Muoneke 

and Childress 1994; Arlinghaus et al. 2007). My study provides estimates of immediate and 

extended mortality following angling which may be used to inform strategies aimed at protecting 

and enhancing fishing opportunities. Additionally, I describe other factors such as physiological 

changes and reflex impairment that may predict mortality. Further research on ice-angling needs 

to explore extended impacts on spatial ecology (Lawrence et al. 2022). Monitoring after release 

is especially difficult due to a lack of pre-established telemetry infrastructure in many northern 

lakes in addition logistical difficulties associated with ice cover. General best practices must 

continue to be promoted for this fishery such as preventing air exposure, limiting fight times, and 

careful handling upon capture (Brownscombe et al. 2017; Danylchuk et al. 2018; Brownscombe 

et al. 2022; Chhor et al. 2022a). Wider implementation of commercially available descending 

devices may combat fish mortality by returning fish to a depth that allows them to relieve 

barotrauma pressure (Curtis et al. 2015; Bellquist et al. 2019; Davies et al. 2022; Louison et al. 

2023). These devices are an alternative to more invasive methods such as fizzing which has the 

potential to harm vital organs if done improperly (Kerr 2001; Nguyen et al. 2009; Drumhiller et 
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al. 2014). Further research should explore the efficacy of descending devices to relieve 

barotrauma in lake trout during winter months. 
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Chapter 3. Short-term impacts of recreational angling on lake trout 
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3.1 Abstract 

It is crucial to understand the impact recreational angling has on fish populations and how stress 

can be observed through changes in behaviour or physiology. The assumption of high survival 

following catch-and-release can be impacted by external factors such as season. We therefore 

examined short-term impairment in lake trout (Salvelinus namaycush) angled during the summer 

(n = 74) and fall spawning period (n = 33). Immediately following capture or after having 

recovered for 0.5 h, fish underwent reflex and barotrauma assessment and provided a non-lethal 

blood sample. Fish were then fitted with a tri-axial accelerometer on a quick-release velcro 

harness and permitted to swim unhindered for 14 min. In the summer (23.3% mortality), reflex 

impairment and barotrauma were significantly correlated. Fish length, fight time, and angling 

depth influenced barotrauma score with bloating of the abdomen being the most observed 

impairment. Loss of orientation was the most observed reflex impairment with only one fish 

displaying oral organ eversion immediately after capture. Plasma cortisol, lactate, and glucose 

increased, and extracellular and intracellular pH decreased 0.5 h post-capture. No relationships 

were found between blood metrics and mortality. The time required to reach maximum depth 

was not impacted by fight time or air exposure while overall dynamic body acceleration (ODBA) 

was influenced by depth. During the fall, fish displayed no mortality or reflex impairment. Anal 

prolapse was the most observed barotrauma impairment (all signs displayed by females except 

for one male displaying exophthalmia), however, impairments captured in the barotrauma 

assessment were all likely a result of spawning (i.e., egg production) rather than pressure 

changes. Sex and recovery time influenced blood metrics, with length and depth being 

significant predictors of cortisol. The time required to reach maximum depth was not impacted 

by fight time or air exposure, ODBA was impacted by depth and males exhibited higher activity.  
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3.2 Introduction 

In recreational fisheries, the use of catch-and-release (C&R) is widely implemented to promote 

practices that encourage high fish survivorship (Arlinghaus et al. 2007). The success of C&R 

relies on the assumption that angling does not induce major changes in behaviour, physiology, or 

long-term survivorship (Cooke and Schramm 2007). Stress is inherent for fish that are captured 

by angling, and sublethal effects may compound with abiotic conditions to affect recovery 

(Gingerich et al. 2007; McLean et al. 2020; Van Leeuwen et al. 2021). 

Reflex scoring is a simple and inexpensive field-based assessment technique that 

measures fish vitality by examining behavioural reflexes that are present in unimpaired 

individuals (Davis 2007; Davis 2010). Scoring reflexes as either present or absent, one can 

effectively predict future survival of fish prior to their release since the assessment is a whole-

animal indicator of compromised physiological state (Davis 2010; Raby et al. 2012). In addition 

to reflex impairment, fish can experience pressure-related injuries known as barotrauma (Carlson 

2012). Lake trout are physostomous and possess a pneumatic duct which allows expulsion of 

excess gas through the esophagus, unlike physoclistous species which make use of an oval 

chamber and diffuse excess gas through a capillary mesh that supplies blood to the swim bladder 

(Saunders 1953; Ferguson 1989; St John 2003). Physoclistous species are known to be more 

susceptible to rapid changes in external pressure. When angled from depth, fish experience a 

gradient of external pressure change which in some instances may be too severe to be effectively 

expelled (Eberts et al. 2018; Stallings et al. 2023).  

Coupling behavioural assessments with physiological markers of stress allows stronger 

conclusions to be drawn from C&R research (Arlinghaus et al. 2009; Twardek et al. 2018a). 

Stress from angling typically measured through changes in hormones, metabolites, or acid-base 
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status from non-lethal blood sampling (Lawrence et al. 2020), however there has been recent 

exploration into other methods such as mRNA abundance (DePasquale et al. 2023). 

Physiological samples taken from wild fish following angling provide insight into the general 

stress response and allow researchers to understand correlates of mortality after release (Skomal 

et al. 2007). The process of angling involves many different variables that may be hard to 

distinguish in their effects on survival. Studies that incorporate both external and internal cues 

for monitoring stress in fish are therefore useful, not only for fisheries managers but also to 

individual resource users who wish to reduce their impact on the population. 

Recently, coupling C&R studies and biotelemetry has become more prevalent 

(Donaldson et al. 2008). Understanding the energetic cost of angling on fishes is important in 

measuring their impairment and recovery. Accelerometery has been used to answer a wide 

breadth of questions relating to fine-scale movements, kinematics, and metabolic rate in both 

fresh and saltwater species (Gleiss et al. 2010; Brown et al. 2013; Brownscombe et al. 2014b; 

Metcalfe et al. 2015; Bouyoucos et al. 2017). Overall dynamic body acceleration (ODBA) is one 

method used as a proxy for energy expenditure, defined as a single integrated measure of body 

motion in three spatial dimensions (Halsey et al. 2009). ODBA relies on the link between 

acceleration produced by muscular contraction and energy consumption (Gleiss et al. 2011) 

because movement correlates with the energy expended to produce it (Wilson et al. 2006). 

Research exploring C&R with tri-axial accelerometers has validated ODBA as a useful tool in 

understanding how behaviour of certain fish can remain impaired even after a fish has been 

released as well as energy consumption (Lennox et al. 2018; Griffin et al. 2022). Swimming 

behaviours are good indicators of post-stressor survival (Beitinger 1990), and studies using 

ODBA to measure activity in both summer (Chhor et al. 2021) and winter (Larochelle et al. 
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2021; Bieber et al. 2022) illustrate how behaviour may be impacted not only by the angling event 

itself, but also by the environmental conditions that fish experience during recovery.  

Seasonality can have a major impact on the scale of fish stress responses. The majority of 

C&R occurs during the open-water season, which is characterized by high air and water 

temperatures and elevated activity of target species (Kobler et al. 2008). During this time, 

metabolic processes are faster (Johnston and Dunn 1987; Anderson et al. 1998) yet 

environmental conditions may amplify physiological disturbances from C&R and increase 

susceptibility to impairment (Wilkie et al. 1996; Cooke and Suski 2005). Salmonid behaviour 

changes substantially during spawning, as they move towards shallower waters and display 

behaviours such as digging redds (females) or showing aggression towards other reproductive 

competitors (males) (Crisp and Carling 1989; Esteve et al. 2008). Behavioural impairment 

following angling is a concern because impacts of angling might prevent fish from engaging in 

typical spawning behaviours and thus, decrease individual fecundity. Understanding the effects 

on physiology is also important because during spawning, elevated baseline levels may leave less 

flexibility for additional stressors. Using genetic analysis, Richard et al. (2013) found that large 

Atlantic salmon produced less offspring when angled. The reproductive strategy of lake trout 

varies, with evidence suggesting that they do not reproduce each year and that certain 

morphologically distinct populations display adaptive strategies such as skipped spawning (Sitar 

et al. 2014). The sex hormone 17β-estradiol is important for fish reproduction (Piferrer and 

Donaldson 1994; Jeffries et al. 2012; Sinchak and Wagner 2012) and may become reduced in 

response to angling stressors (Donaldson et al. 2014). 17β-estradiol reduction may in turn 

influence reproductive output through less energy allocated into egg production.  
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In my study, I aimed to determine whether C&R angling induced short-term changes in 

reflexes, physiology, and behaviour of lake trout (Salvelinus namaycush) angled during the 

summer and fall spawning period. I accomplished this by assessing reflexes, barotrauma, and 

blood parameters 0 or 0.5 h post-capture before attaching a tri-axial accelerometer harness and 

monitoring their activity for 14 min. In doing so, I also examined interactions of variables that 

lead to impairment and mortality. Evidence suggests that external factors such as air and water 

temperature compound recreational angling stressors to influence survival (Gingerich et al. 2007; 

Donaldson et al. 2014; Logan 2019), lake trout were expected to display a more pronounced 

response to angling during the summer. Lake trout are a major component of recreational 

fisheries and numerous historical studies have attempted to quantify angling-related mortality 

(Falk et al. 1974; Loftus et al. 1988; Dextrase and Ball 1991; Persons and Hirsch 1994; Lee and 

Bergersen 1996). Contemporary estimates suggest that management policies based on an 

assumed 15% post-release mortality are likely underestimating the long-term effects C&R can 

pose to populations (Sitar et al. 2017). My study will therefore contribute to refining current 

management policies and explore this assumption.  

 

3.3 Methods 

3.3.1 Study location 

I angled lake trout between June 23–July 20 and October 1–6, 2022, from Clearwater Lake, 

Manitoba, Canada (54.0570° N, 101.0564° W). The lake is 593 km2 with an average depth of 

13.1 m and clarity of 10 m. During the summer, air temperatures were between 13–30 °C (mean 

= 22.05 °C) (Environment and Climate Change Canada 2022) and surface water temperatures 

were between 15.9–21.3 °C (mean = 18.6 °C) (Pro20 model, YSI Inc., Yellow Springs, OH, 
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USA; range = -5–55 ºC, accuracy = ± 0.3 ºC). Surface dissolved oxygen levels were between 

4.20–8.01 mg/L (mean = 6.44 mg/L) and I angled fish between 10.05–42.4 m (mean = 26.02 m). 

During the fall, air temperatures were between 0–22 °C (mean = 12.90 °C) and surface water 

temperatures were between 10.8–14.4 °C (mean = 13.15 °C). Surface dissolved oxygen levels 

were between 11.2–13.4 mg/L (mean = 12.06 mg/L) and I angled fish between 1.5–13.7 m 

(mean = 3.37 m). A portion of the western half of Clearwater Lake is closed to all fishing from 

September 15 to October 15, to protect lake trout spawning (Province of Manitoba 2023a) since 

the natural population provides eggs and milt for the province’s stocking programs (Province of 

Manitoba 2023b). 

 

3.3.2 Fish capture and holding 

Angling gear consisted of spinning rods spooled with 13.61 kg braided line and a 1.22 m 5.44 kg 

fluorocarbon leader on a size 35 reel. I rigged rods with either spoons, tubes, vertical jigs, 

crankbaits, jerkbaits, or quick-strike rigs with size 1/0 barbless treble hooks depending on angler 

preference and water depth. The angling location on the lake varied and I recorded water depth, 

temperature, and dissolved oxygen at each sample site from the boat (Plate 3.1).  

 Once an angler felt a strike (6 experienced anglers), they quickly raised their fishing rod 

to set the hook and lift the fish from the water. I recorded the time between hooking the fish and 

the fish fully clearing the water as well as the amount of time the fish was exposed to the air. 

Upon capture, I immediately unhooked fish, hooking location was noted, and level of bleeding 

was scored on a three-point scale (adapted from Falk et al. 1974): 0 score, none, no external 

bleeding near the hook entry point; 1 score, slight, a small amount of bleeding localized near the 

hook entry point; and 2 score, flowing, blood surrounding and obscuring the hook entry point. I 
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also measured fish for total length and mass before placing them into a 378 L stock tank filled 

with fresh surface lake water to recover. Water temperature and dissolved oxygen within the tub 

fluctuated and was changed between fish. I placed fish into the tank to complete the reflex and 

barotrauma assessments, and phlebotomy (see below) immediately, or I left them to recover for 

0.5 h before sampling them. A subset of fish underwent behavioural assessment without holding 

or subsequent phlebotomy for both seasons to test if assessment techniques would override 

angling effects.  

 

3.3.3 Behavioural assessments 

I completed reflex assessments following previously established methods (see Chapter 2) within 

a stock tank filled with fresh lake water. My assessment included the following metrics: (1) tail 

grab, burst swimming response to caudal peduncle grab; (2) body flex, attempted escape when 

held out of the water by midsection; (3) head complex, opening of jaws in normal ventilation 

pattern when held out of water; (4) vestibular-ocular response, tracking of eye to remain level 

when rotated horizontally and held out of water; (5) orientation, vertical alignment after being 

placed upside-down in holding bin. I completed barotrauma assessments (see Chapter 2) in the 

same tank filled with fresh lake water. I checked for the presence of the following metrics: (1) 

oral organ eversion, gastric herniation into the buccal cavity; (2) exophthalmia, bulging eyes; (3) 

bloating, overinflation of the midsection; (4) anal organ eversion, prolapsed anus; and (5) 

hemorrhaging, redness in the mouth/gills/fins/anus. I completed both behavioural assessments 

for all fish to limit variation between samplers, with scores for each reflex recorded as either 0 

(unimpaired) or 1 (impaired). I calculated overall reflex or barotrauma score for each individual 
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as the proportion of the five reflexes that were impaired, with both assessments completed in 

under 120 s. 

 

3.3.4 Phlebotomy 

I held a subset fish for a period of 0.5 h within the stock tank. After this time had elapsed, 

following reflex and barotrauma assessments, I held fish ventral-side up with gills submerged in 

the water within the stock tank. A 1.5 mL of blood was drawn via caudle puncture with a 10 mL 

lithium heparin vacutainer and 21-G needle. Less than 10% of total blood volume was removed 

(Lawrence et al. 2020). I then immediately centrifuged blood at 6000 g for 3 min to separate 

plasma from other blood components. Plasma was then allocated into 3 separate 0.6 mL vials 

before being placed into a vapour shipper charged with liquid nitrogen along with the remaining 

red blood cells (Cryopro 3.6 L, VWR International, Radnor, PA, USA). Once transported back to 

the laboratory, I stored plasma and other blood component samples at – 80 °C. I released 

surviving fish with a coloured T-bar anchor tag inserted on the left side of the dorsal fin after 

they had been sampled to ensure each individual was only sampled once during the study. The 

vigour of release was scored on a three-point scale: 0 or poor, lethargic movement, and lack of 

consistent tail beats; 1 or good, regular movement and consistent tail beats; and 2 or excellent, 

energetic movement and fast-paced tail beats. No fish were recaptured. 

In the laboratory, I determined cortisol concentrations in blood plasma using 

commercially available enzyme-linked immunosorbent assay (ELISA) kits (#402710, Neogen, 

Lexington, KY, USA) and a microplate spectrophotometer (SpectraMax i3, Molecular Devices, 

San Jose, CA, USA). The ELISA kits have been previously used for analysis of salmonid plasma 

samples (Raby et al. 2015). I ran samples in triplicate at a dilution factor of 200 after having 
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completed a dilution series of 25, 50, 100, 200, and 400 to choose the appropriate factor based on 

a standard curve. Intra-assay variation (% CV) for summer and fall was 4.37% and 7.27% 

respectively, inter-assay variation was 9.92% and 23.23%. I determined plasma lactate and 

glucose concentrations following the enzymatic methods of Lowry and Passonneau (1972) with 

triplicates and a dilution factor of 3.75 for lactate. Intra-assay variation for lactate was 5.22% and 

5.48%, inter-assay variation was 6.02%. Intra-assay variation for glucose was 9.43% and 6.69%, 

inter-assay variation was 13.94%. I measured extracellular pH from thawed plasma and 

intracellular pH from lysed red blood cells that went through five freeze-thaw cycles (Mullen et 

al. 2020) (HI98165 pH Meter, HANNA Instruments, Woonsocket, RI, USA). 

 

3.3.5 Post-release behaviour 

To evaluate post-release behaviour, I attached tri-axial accelerometer tags (Axy 5 S Depth, 

TechnoSmArt, Rome, Italy; Sampling rate: acceleration = 10 Hz, temperature/depth = 1 Hz; 

Resolution: acceleration = 8-bit, temperature = 0.1 °C, depth = 5 cm, G scale = 8; 36 × 14 × 9 

mm, 6.03 g) around the midsection of the fish using a harness which I made by bonding the 

accelerometer to a waterproof 3D-printed plate (PET-G, Sakata 3D filaments, Granada, Spain; 

36 × 22 × 2 mm, 0.96 g) with marine epoxy and then threading this onto a section of Velcro tape 

(One-Wrap Roll, Velcro Brand, Manchester, NH, USA; length = 35–68 cm, width = 2 cm). I 

used varying lengths of velcro tape to accommodate differing fish girths. I attached harnesses 

while fish were held out of water with Velcro tape wrapped once around the fish anterior to the 

dorsal fin, positioning the accelerometer on the lateral side above the left pectoral fin (Plate 3.2). 

Harness attachment took no longer than 30s and Velcro straps were attached as to not inhibit the 

normal range of motion in order to reduce the impact of the harness on fish behaviour. The 
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accelerometer harness was connected to a rod and reel spooled with 13.61 kg braided line using a 

snap swivel clipped through a reinforced hole in the Velcro tape (see Chhor et al. 2022a; Chhor 

et al. 2022b). Fish were released by hand at the side of the boat and allowed to swim without 

resistance for 15 min on a “free-spool” before I retrieved the accelerometer harness by tugging 

the line, which released the Velcro. I checked for the presence of the fish on the end of the line 

before retrieving the accelerometer by feeling for motion and weight. Due to a lack of 

underwater structure, we observed no entanglement of the line. 

 

3.3.6 Data processing 

I trimmed raw acceleration data to include only the first 14 min to standardize the length 

recorded activity between all individuals. I calculated static acceleration by passing a 2 s 

smoother over each axis with the rollmean function in the “zoo” package (citation) and 

converted the values to degrees by multiplying values by 180 𝜋 -1 (Brownscombe et al. 2013). I 

then calculated dynamic acceleration (g) by subtracting static acceleration from raw acceleration 

values for each axis. Next, I calculated overall dynamic body acceleration (ODBA) by summing 

the absolute values of dynamic acceleration in each axis (Lennox et al. 2018).  

 

3.3.7 Data analysis and statistics 

I completed all statistical analyses in R version 4.1.2 (R Core Team 2021) with level of 

significance assessed at a £ 0.05, unless otherwise stated. I performed separate Wilcoxon tests to 

test whether plasma metrics differed across recovery times in the summer, for cortisol, lactate, 

glucose, extracellular pH, and intracellular pH using the “rstatix” package due to the data not 

meeting assumptions of homogeneity and normality (Kassambara 2021). Homogeneity of 
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variance was assessed using Levene’s test from the “cars” package (Fox and Weisberg 2019) and 

normality was assessed using the Shapiro-Wilk test from the “stats” package (R Core Team 

2021). Outliers were identified using Grubbs’ test from the “outliers” package (Komsta 2022) 

and effect size was calculated using Wilcoxon effect size from “rstatix” package (Kassambara 

2021). A Bonferroni correction was used to account for multiple statistical tests being performed 

and significance was determined at a = 0.01. To test whether plasma metrics differed across 

recovery times or sexes in the fall, separate two-way ANOVAs were performed using the “stats” 

package (R Core Team 2021). When the model assumption tests failed for cortisol and lactate, I 

used a log transformation prior to the two-way ANOVA. A Bonferroni correction was used to 

account for multiple statistical tests being performed and significance was determined at a = 

0.01.  

I used binary logistic regression models to determine the relationship between cortisol, 

lactate, glucose, extracellular pH, and intracellular pH at both recovery times and the occurrence 

of mortality in the summer with the “stats” package (R Core Team 2021). Mortality was 

regressed against each blood metric independently for both recovery times. A Bonferroni 

correction was used to account for multiple statistical tests and significance was determined at a 

= 0.01. Linear models were used to determine the effect of length, fight time, air exposure, depth, 

reflex score, and barotrauma score on cortisol, lactate, glucose, extracellular pH, and intracellular 

pH 0.5 h post-angling in the summer and fall using the “stats” package (R Core Team 2021). 

Blood metrics were used as the response variable in each model.  

I used binary multiple regression models to determine the effects of recovery time, 

length, fight time, air exposure, and depth on whether any reflex or barotrauma impairment was 

observed using the “stats” package (R Core Team 2021). Interaction between reflex and 
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barotrauma scores in the summer were tested with Kendall correlation using the “stats” package 

(R Core Team 2021). Generalized additive mixed models (GAMMs) were used to determine 

interactions between ODBA and capture depth in the summer, and capture depth and sex in the 

fall using the “gamm4” package (Wood and Scheipl 2020). Time post-capture, recovery time, 

fish length, fight time, and air exposure time were initially included in the model but removed 

due to correlation and sex was not included in the summer GAMM due to sexing not being 

possible during that time of year. Linear models were used to determine the effects of fight time 

and air exposure on the time it took lake trout to reach their maximum depth following angling 

using the “stats” package (R Core Team 2021).  
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Plate 3.1 Photo showing the boats where reflex assessment, phlebotomy, and recovery occurred 

within water-filled tanks on Clearwater Lake, Manitoba, Canada.  
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Plate 3.2 Placement of a tri-axial accelerometer harness on a lake trout (Salvelinus namaycush) 

to quantify behaviour following angling. The accelerometer was bonded to a waterproof 3D-

printed plate using marine epoxy and then threaded onto a section of Velcro tape that was 

fastened anterior to the dorsal fin with the accelerometer on the lateral side above the left 

pectoral fin. 
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3.4 Results 

3.4.1 Summer Angling 

I caught 74 lake trout during the summer period and these fish had a mean (± S.D.) total length 

of 610.51 ± 113.19 mm with a range of 513–1073 mm. The mean weight of these fish was 

2150.55 ± 1788.00 g with a range of 1090–10120 g. These fish had a 23.3% mortality rate. Of 

the 14 mortalities observed, 9 occurred immediately after capture and 5 occurred within 0.5 h of 

holding.  

 Lake trout displayed signs of reflex and barotrauma-related impairment. Recovery time, 

total length, fight time, air exposure, and depth did not influence reflex scores, but fish total 

length, fight time, and angling depth all influenced barotrauma scores (Table 3.1). Reflex 

impairment and extent of barotrauma were also significantly correlated (Kendall rank 

correlation: z = 3.77, r = 0.44, P < 0.05). Loss of orientation was the most observed reflex 

impairment with 31.9% of fish displaying it immediately after capture (Figure 3.1). Bloating of 

the abdomen was the most observed barotrauma impairment with 76.6% of fish displaying it 

immediately after capture. One fish displayed oral organ eversion immediately after capture.  

Angling induced changes in physiological stress metrics. At 0.5 h post-capture, cortisol 

increased by 89.8% (Wilcox: z = -6.08, P < 0.0001, Cohen’s d = 0.80), lactate increased by 

67.5% (Wilcox: z = -6.41, P < 0.0001, Cohen’s d = 0.84), glucose increased by 27.7% (Wilcox: z 

= -3.35, P < 0.001, Cohen’s d = 0.44), extracellular pH decreased by 2.6% (Wilcox: z = 4.76, P < 

0.0001, Cohen’s d = 0.62), and intracellular pH decreased by 1.1% (Wilcox: z = 4.23, P < 

0.0001, Cohen’s d = 0.56) (Figure 3.2). Large effect sizes were found for all comparisons. No 

relationships were found between blood metrics at any recovery time and mortality (Table 3.2). 

The most parsimonious models to predict cortisol, lactate, glucose, extracellular pH, and 
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intracellular pH 0.5 h post-angling were found by running linear regression models (Table 3.3). 

No variables were significant predictors of any blood metrics.  

Upon release, fish were observed to descend quickly to depth with high ODBA scores 

before reaching a desired depth and remaining there with a low ODBA score all the way up to 14 

min. The time it took to reach maximum depth was impacted by fight time and air exposure 

(Table 3.4). While statistical comparisons could not be made due to low sample size, fish that 

remained on the surface due to barotrauma impairment (n = 9) exhibited superficially higher 

ODBA scores (Mean score of 0.202 opposed to 0.131) than those that were able to return to 

depth (n = 42) (Figure 3.3). Swimming activity (ODBA) was significantly influenced by depth 

(Table 3.5, Figure 3.4). 

 

3.4.2 Fall Angling 

I caught 33 lake trout during the fall period and these fish had a mean (± S.D.) total length of 

557.36 ± 57.14 mm with a range of 462–683 mm. The mean weight of these fish was 1471.52 ± 

445.66 g with a range of 830–2480 g. These fish had no mortality or reflex impairment. 

Recovery time, total length, fight time, air exposure, depth, and sex did not influence barotrauma 

scores (Table 3.1). Prolapse of the anus was the most observed barotrauma impairment in the fall 

with 45% of fish displaying it immediately after capture. The entirety of fall barotrauma signs 

were exhibited by females except for one male in the 0 h recovery timepoint which displayed 

exophthalmia. Bloating of the abdomen, anal prolapse, and hemorrhaging are all likely a result of 

spawning (i.e., egg production) rather than pressure-related impairment. 

Sex and recovery time influenced blood metrics (Table 3.6). Cortisol was 65.5% higher 

in females than males between recovery times (two-way ANOVA: F1,17 = 9.99, P = < 0.01) and 
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72.9% higher in the 0.5 h recovery time compared to the 0 h recovery time (two-way ANOVA: 

F1,17 = 20.55, P = < 0.001) (Figure 3.5). Lactate was 63.12% higher (two-way ANOVA: F1,17 = 

30.01, P = < 0.0001), glucose was 19.22% higher (two-way ANOVA: F1,17 = 11.36, P = < 0.01), 

and extracellular pH was 2.39% lower (two-way ANOVA: F1,17 = 17.48, P = < 0.001) in the 0.5 

h recovery time compared to the 0 h recovery time. Intracellular pH did not differ between sexes 

or recovery times. The most parsimonious models to predict cortisol, lactate, glucose, 

extracellular pH, and intracellular pH 0.5 h post-angling were found by running linear regression 

models. Length and angling depth were significant predictors of cortisol values (Table 3.7).  

Again, fish were observed to descend quickly to depth upon release with high ODBA 

scores before reaching a desired depth and remaining there with a low ODBA score all the way 

up to 14 min. The time it took to reach maximum depth was not impacted by fight time or air 

exposure (Table 3.4). Swimming activity (ODBA) was significantly influenced by sex as well as 

depth (Table 3.5, Figure 3.6), with males exhibiting higher activity (Figure 3.7). 
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Table 3.1 Summary of binary multiple logistic regression models assessing the effects of 

recovery time, fish total length, fight time, air exposure time, and water depth on whether lake 

trout (Salvelinus namaycush) showed impairment for any of five reflex or barotrauma metrics 

assessed after angling in the summer and fall. Statistical significance was determined at 

Bonferroni corrected a = 0.008 for summer and a = 0.007 for fall. Significance is bolded with P-

values rounded to the nearest hundredth. 

Season Assessment Variable Estimate S.E. z value df P 
Summer Reflex Recovery Time 0 h -0.23 0.83 -0.28 71 0.78 
  Recovery Time 0.5 h 0.09 0.86 0.10 71 0.92 
  Fish Total Length 0.01 0.01 1.55 71 0.12 
  Fight Time 0.01 0.01 0.74 71 0.46 
  Air Exposure 0.00 0.01 0.72 71 0.47 
  Angling Depth -0.00 0.05 -0.04 71 0.97 
Summer Barotrauma Recovery Time 0 h 2.85 1.21 2.35 71 0.02 
  Recovery Time 0.5 h 0.50 1.04 0.48 71 0.63 
  Fish Total Length 0.04 0.01 3.04 71 0.00 
  Fight Time -0.06 0.02 -3.05 71 0.00 
  Air Exposure 0.01 0.01 0.71 71 0.48 
  Angling Depth 0.12 0.07 2.66 71 0.01 
Fall Barotrauma  Recovery Time 0 h 0.13 1.51 0.08 29 0.93 
  Recovery Time 0.5 h -0.82 1.72 -0.48 29 0.63 
  Fish Total Length -0.00 0.02 -0.04 29 0.97 
  Fight Time -0.05 0.08 -0.70 29 0.49 
  Air Exposure -0.04 0.04 -1.23 29 0.22 
  Angling Depth 0.28 0.32 0.87 29 0.39 
  Sex 2.11 1.84 1.15 29 0.25 
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Figure 3.1 Totalled impairment scores for (A) summer reflex, (B) summer barotrauma, and (C) 

fall barotrauma predictors in lake trout (Salvelinus namaycush) sampled following angling. 

Reflex metrics include: (1) tail grab; (2) body flex; (3) head complex; (4) vestibular-ocular 

response; and (5) orientation. Barotrauma metrics include: (1) oral organ eversion; (2) 

exophthalmia; (3) bloating; (4) anal organ eversion; and (5) hemorrhaging. 
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Figure 3.2  Concentrations of (A) plasma cortisol, (B) plasma lactate, (C) plasma glucose, and 

(D) extracellular pH in lake trout (Salvelinus namaycush) sampled at 0 (n = 32) or 0.5 h (n = 26) 

following summer angling. Thick black horizontal lines denote median values, boxes contain all 

data within the 25th and 75th quartiles, whiskers show the range of data, and outliers are 

depicted as black dots. Asterisks above horizontal brackets denote statistical significance at 

corrected a  = 0.01 (P < 0.0001 = ****, P < 0.001 = ***, P < 0.01 = **, P < 0.05 = *).  
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Table 3.2 Summary of binary logistic regression models assessing the effects of cortisol 

(ng/mL), lactate (mmol/L), glucose (mmol/L), extracellular pH, or intracellular pH of lake trout 

(Salvelinus namaycush) sampled at 0 or 0.5 h post-angling on whether a fish survived the angling 

event or not in the summer. Statistical significance was determined at a Bonferroni corrected a = 

0.01 and is bolded with P-values rounded to the nearest hundredth. 

Time Blood Metric Estimate S.E. z value  Df P 
0 Cortisol 0.05 0.03 1.46 31 0.14 
 Lactate -3.31 1.70 -1.95 31 0.05 
 Glucose -0.95 0.51 -1.87 31 0.06 
 Extracellular pH -13.97 8.30 -1.68 31 0.09 
 Intracellular pH -30.98 21.62 -1.43 31 0.15 
0.5 Cortisol -0.00 0.00 -1.14 25 0.26 
 Lactate -0.13 0.26 -0.49 25 0.62 
 Glucose 0.09 0.40 0.23 25 0.82 
 Extracellular pH -19.80 12.21 -1.62 25 0.11 
 Intracellular pH 23.03 16.96 1.36 25 0.17 
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Table 3.3 Summary of model selection results based on linear models predicting the cortisol, 

lactate, glucose, extracellular pH, and intracellular pH concentrations of lake trout (Salvelinus 

namaycush) sampled at 0.5 h post-angling in the summer. Statistical significance was determined 

at Bonferroni corrected a = 0.008 and is bolded with P-values rounded to the nearest hundredth. 

Metric Factor Estimate SE df t-value P-value 
Cortisol (Intercept) -610.32 771.67 19 -0.79 0.44 
 Length 1.08 1.31 19 0.82 0.42 
 Fight Time -4.08 3.48 19 -1..17 0.26 
 Air Exposure -0.80 0.94 19 -0.85 0.41 
 Angling Depth 22.80 8.91 19 2.56 0.02 
 Reflex -131.95 74.57 19 -1.77 0.09 
 Barotrauma 10.78 55.78 19 0.19 0.85 
Lactate (Intercept) 22.95 11.46 19 2.00 0.06 
 Length -0.03 0.02 19 -1.75 0.10 
 Fight Time 0.03 0.05 19 0.67 0.51 
 Air Exposure 0.00 0.01 19 0.33 0.74 
 Angling Depth 0.15 0.13 19 1.12 0.28 
 Reflex 0.92 1.11 19 0.83 0.42 
 Barotrauma 0.84 0.83 19 1.01 0.33 
Glucose (Intercept) 21.19 7.10 19 2.99 0.01 
 Length -0.03 0.01 19 -2.15 0.05 
 Fight Time 0.07 0.03 19 2.11 0.05 
 Air Exposure -0.01 0.01 19 -1.02 0.32 
 Angling Depth -0.09 0.08 19 -1.09 0.29 
 Reflex -0.02 0.69 19 -0.03 0.98 
 Barotrauma 0.23 0.51 19 0.44 0.66 
Extracellular pH (Intercept) 6.78 0.49 19 13.89 0.00 
 Length 0.00 0.00 19 1.36 0.19 
 Fight Time -0.00 0.00 19 -0.81 0.43 
 Air Exposure 0.00 0.00 19 0.66 0.52 
 Angling Depth 0.00 0.01 19 0.76 0.46 
 Reflex -0.08 0.05 19 -1.74 0.10 
 Barotrauma -0.04 0.04 19 -1.24 0.23 
Intracellular pH (Intercept) 6.86 0.20 19 34.35  0.00 
 Length 0.00 0.00 19 1.18 0.25 
 Fight Time -0.00 0.00 19 -0.20 0.84 
 Air Exposure -0.00 0.00 19 -0.30 0.77 
 Angling Depth -0.00 0.00 19 -0.03 0.98 
 Reflex -0.02 0.02 19 -0.81 0.43 
 Barotrauma -0.03 0.01 19 -2.22 0.04 
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Table 3.4 Summary of linear models assessing the effects of fight time and air exposure on the 

time it took lake trout (Salvelinus namaycush) to reach their maximum depth following angling. 

Statistical significance was determined at a = 0.05 and is bolded. 

Season Variable Variable Estimate S.E. t value df P 
Summer Time to reach max depth (Intercept) 10.47 206.3 5.08 37 <0.001 
  Fight -10.13 4.67 -2.17 37 0.04 
  Air 2.55 1.24 -2.05 37 0.05 
  Fight:Air 0.05 0.02 2.33 37 0.03 
Fall Time to reach max depth (Intercept) 581.22 591.36 0.98 23 0.34 
  Fight -9.38 20.36 -0.46 23 0.65 
  Air -2.25 6.40 -0.35 23 0.73 
  Fight:Air 0.14 0.23 0.62 23 0.54 
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Figure 3.3 Mean (A) overall dynamic body acceleration (ODBA), and (B) depth use over time 

post-capture by lake trout (Salvelinus namaycush) exhibiting normal (n = 9) and impaired 

behaviour (n = 42) due to barotrauma injuries following summer angling. Also, mean (C) 

ODBA, and (D) depth use over time post-capture by male (n = 15) and female (n = 15) lake trout 

following angling during the spawning period.  

  



 

 73 

Table 3.5 Summary of generalized additive mixed models (GAMMs) showing an interaction 

between overall dynamic body acceleration (ODBA) and capture depth in the summer, and sex 

and capture depth in the fall for lake trout (Salvelinus namaycush) captured via angling.  

Season Variable Component Term Est S.E. t P 
Summer ODBA Param. Coefficients (Int.) 0.90 0.00 186.3 <0.001 
  Component Term edf Ref. df F P 
  Smooth Terms s(Depth) 7.83 7.83 2051 <0.001 
  Component Term Est S.E. t P 
Fall ODBA Param. Coefficients (Int.) 0.89 0.00 179 <0.001 
   SexMale -0.02 0.01 -2.97 0.003 
  Component Term edf Ref. df F P 
  Smooth Terms s(Depth) 8.43 8.43 1438 <0.001 
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Figure 3.4 Predicted overall dynamic body acceleration (ODBA) values based on generalized 

additive mixed models (GAMMs) for lake trout (Salvelinus namaycush) (n = 51) angled during 

the summer.  
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Table 3.6 Summary of results from two-way ANOVAs on the effects of sex and recovery time 

(immediately after capture or 0.5 h) on cortisol, lactate, glucose, extracellular pH, and 

intracellular pH in lake trout (Salvelinus namaycush) following angling in the fall. Statistical 

significance was determined at a = 0.05 and is bolded with all values rounded to the nearest 

hundredth. If an interaction was not significant it was removed, and the ANOVA was re-run.   

Blood Metric Variable d.f. SS MS F value P value 
Cortisol Sex 1,17 6.86 6.86 9.99 <0.01 
 Recovery Time 1,17 14.12 14.12 20.55 <0.001 
Lactate Sex 1,17 0.35 0.35 2.43 0.14 
 Recovery Time 1,17 4.36 4.36 30.01 <0.01 
Glucose Sex 1,17 0.14 0.14 0.20 0.66 
 Recovery Time 1,17 7.64 7.64 11.36 <0.01 
Extracellular pH Sex 1,17 0.00 0.00 0.09 0.77 
 Recovery Time 1,17 0.17 0.17 21.22 <0.001 
 Sex x Recovery Time 1,17 0.04 0.04 4.64 <0.05 
Intracellular pH Sex 1,17 0.00 0.00 1.93 0.18 
 Recovery Time 1,17 0.00 0.00 1.14 0.30 
 Sex x Recovery Time 1,17 0.02 0.02 13.98 <0.01 

 

  



 

 76 

 

Figure 3.5 Concentrations of (A) plasma cortisol, (B) plasma lactate, (C) plasma glucose, and 

(D) extracellular pH in lake trout (Salvelinus namaycush) sampled at 0 (n males = 5, n females = 

5) or 0.5 h (n males = 5, n females = 5) following fall angling. Thick black horizontal lines 

denote median values, boxes contain all data within the 25th and 75th quartiles, whiskers show 

the range of data, and outliers are depicted as black dots. Asterisks above horizontal brackets 

denote statistical significance at corrected a  = 0.01 (P < 0.0001 = ****, P < 0.001 = ***, P < 

0.01 = **, P < 0.05 = *).  
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Table 3.7 Summary of model selection results based on linear models predicting the cortisol, 

lactate, glucose, extracellular pH, and intracellular pH concentrations of lake trout (Salvelinus 

namaycush) sampled at 0.5 h post-angling in the fall. Statistical significance was determined at 

Bonferroni corrected a = 0.01 and is bolded with P-values rounded to the nearest hundredth. 

Metric Factor Estimate SE df t-value P-value 
Cortisol (Intercept) -6763.64 962.80 4 -7.03 0.00 
 Length 15.48 1.75 4 8.84 0.00 
 Fight Time 10.27 8.68 4 1.18 0.30 
 Air Exposure -9.81 2.71 4 -3.62 0.02 
 Angling Depth 199.22 39.51 4 5.04 0.01 
 Barotrauma -224.54 295.07 4 -0.76 0.49 
Lactate (Intercept) 34.69 12.85 4 2.7 0.05 
 Length -0.07 0.02 4 -2.95 0.04 
 Fight Time 0.27 0.12 4 2.30 0.08 
 Air Exposure 0.06 0.04 4 1.56 0.20 
 Angling Depth -0.85 0.53 4 -1.62 0.18 
 Barotrauma 0.22 3.94 4 0.06 0.96 
Glucose (Intercept) 10.02 3.29 4 3.05 0.04 
 Length -0.01 0.01 4 -0.84 0.45 
 Fight Time 0.03 0.03 4 0.93 0.41 
 Air Exposure -0.02 0.01 4 -2.33 0.08 
 Angling Depth 0.27 0.13 4 2.02 0.11 
 Barotrauma -1.34 1.01 4 -1.33 0.25 
Extracellular pH (Intercept) 7.22 0.36 4 20.28 0.00 
 Length 0.00 0.00 4 1.60 0.19 
 Fight Time -0.01 0.00 4 -1.58 0.19 
 Air Exposure -0.00 0.00 4 -1.23 0.29 
 Angling Depth 0.01 0.00 4 0.76 0.49 
 Barotrauma 0.04 0.11 4 0.32 0.76 
Intracellular pH (Intercept) 6.88 0.12 4 58.47 0.00 
 Length 0.00 0.00 4 2.35 0.08 
 Fight Time 0.00 0.00 4 2.07 0.11 
 Air Exposure -0.00 0.00 4 -3.97 0.02 
 Angling Depth 0.00 0.00 4 0.32 0.77 
 Barotrauma -0.04 0.04 4 -1.08 0.34 
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Figure 3.6 Predicted overall dynamic body acceleration (ODBA) values based on generalized 

additive mixed models (GAMMs) for lake trout (Salvelinus namaycush) (n = 30) angled during 

the fall. 
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Figure 3.7 Predicted overall dynamic body acceleration (ODBA) values based on generalized 

additive mixed models (GAMMs) for male and female lake trout (Salvelinus namaycush) (n = 

30) angled during the fall. 
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3.5 Discussion 

3.5.1 Mortality 

In the summer, nine mortalities occurred immediately after capture and five occurred within 0.5 

h of holding (23.3% mortality). No relationships were found between blood metrics and 

mortality (Table 3), but high surface water temperatures may have been a contributing factor 

(mean = 18.6 °C). Water temperature is well understood to affect fish recovery (Cooke and Suski 

2005; Arlinghaus et al 2007; Twardek et al. 2018a; Norin and Metcalfe 2019; Van Leeuwen et 

al. 2020) through pronounced effects on metabolism and growth (Clarke and Johnson 1999; 

Little et al. 2020). Atlantic salmon (Salmo salar) show increases in mortality following angling 

when water temperatures exceed 18 °C (Havn et al. 2015), and other studies provide evidence of 

the negative impact of temperature on post-release survival of salmonids (Meka and McCormick 

2005; Gale et al. 2013; Sitar et al. 2017). Mortality rates in my study were higher than those 

previously reported for lake trout involved in C&R (6.98% in Falk et al. 1974; 14.9% in Loftus 

et al. 1988); however, these previous studies do not monitor fish for extended durations or 

account for delayed mortality. Regardless, mortality rates for salmonids are typically < 10% 

(Wydoski 1977; Muoneke and Childress 1994; Schisler and Bergersen 1996) and occur within 

the first 48 h post-release (Boyd et al. 2010). In the present study, fish were held at low densities 

in a large, covered stock tank and water was frequently exchanged. Thus, holding conditions 

were not expected to greatly influence stress responses or behaviour (Portz et al. 2006; Chhor et 

al. 2022b). Therefore, either surface water temperature inhibited sufficient metabolic recovery or 

the angling itself induced a larger effect than what has been seen in other studies. In the fall, no 

mortality was observed, and mean water temperature was 12.9 °C. Despite these findings, sub-

lethal effects on reproductive success may still have occurred. In some cases, post-release 
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mortality is higher for females (Crossin et al. 2008); however, research into the mechanisms that 

increase female sensitivity during reproduction should continue. Reflex impairment and 

barotrauma are likely not factors that would contribute to female mortality in the fall, due to the 

shallowness of spawning reefs, accelerated metabolic processes, and water temperatures during 

this time of year. In my thesis, the highest mortality was observed in lake trout that were ice-

angled from depth (mean = 16.40 m) when air temperatures were well below 0 °C (see Chapter 

2)  

 

3.5.2 Behaviour 

During the summer, lake trout experienced impairment of both reflexes and barotrauma. Reflex 

scoring has been used effectively to characterize impairment in closely related species such as 

brook trout (Salvelinus fontinalis) following angling (Kerr et al. 2017; Brownscombe et al. 

2022). Most studies exploring angling-induced barotrauma focus assessments on freshwater 

physoclists or deep-dwelling marine species (Morrissey et al. 2005; McLennan et al. 2014; 

Eberts et al. 2018; Wegner et al. 2021). Evidently, only recent findings suggest that lake trout 

can experience pressure-related impairment following capture (Ng et al. 2015; Howell et al. 

2023). In the present study, loss of orientation was the most observed RAMP impairment with 

31.9% of fish displaying it immediately after capture. Similarly, bloating of the abdomen was the 

most observed barotrauma impairment with 76.6% of fish displaying it immediately after capture 

(Figure 3.2). One fish displayed oral organ eversion immediately after capture, which has been 

shown to be the most observed barotrauma-related injury in other fish (Schreer et al. 2009). 

Reflex impairment and extent of barotrauma were significantly correlated. Loss of orientation 

and bloating of the abdomen are similar in that they may impede fish from returning to depth and 
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may prolong exposure to air and surface water temperatures as well as increase the likelihood of 

avian predation (Jarvis and Lowe 2008; Raby et al. 2014; Ferter et al. 2015).  

Fish total length, fight time, and angling depth all influenced barotrauma scores (Table 

1). Angling depth is well understood to impact barotrauma expression as water pressure is 

greater in deeper areas of a waterbody, resulting in more severe changes in external pressure 

upon capture (Butcher et al. 2012; Hannah et al. 2012; Kerwath et al. 2013). Fish were angled 

from a maximum depth of 42.4 m and lake trout are known to exhibit phenotypic diversity with 

depth preferences (Zimmerman et al. 2006; Stafford et al. 2013). Larger fish may inhabit deeper 

sections of lakes and thus, when angled, are more susceptible to changes in pressure (Sitar et al. 

2008). In addition, characteristics of large fish responses to capture such as increased fight times 

may combine with pressure changes and influence impairment (Thorstad et al. 2003; Reeves and 

Staples 2011; Twardek et al. 2018a). Conversely, research on fishes in the St. Lawrence River 

found no effect of fish length or fight time on barotrauma impairment (Schreer et al. 2009). 

However, these species inhabit shallower waters and are physoclistous, suggesting that their 

angling conditions and response to barotrauma may be different from that of physostomous 

species like lake trout.  

Fish angled during the fall displayed no reflex impairment. There is limited knowledge 

on how angling impacts fish that have completed or are actively spawning. Sea-run brown trout 

(Salmo trutta) angled after a recent spawn displayed no reflex impairment immediately after 

capture in 48% of fish (Blyth and Bower 2022). In another study, reflex impairment increased 

predictably with air exposure during angling treatments on Pacific salmon caught after their 

arrival to spawning locations (Raby et al. 2013). In the present study, prolapse of the anus was 

the most observed barotrauma impairment with 45% of fish displaying it immediately after 
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capture. However, due to (1) the comparatively shallow capture depths (mean = 3.37), (2) the 

observation that impairment was almost entirely displayed by females, and (3) the observation 

that most barotrauma impairment observed was anal prolapse, I have interpreted the metrics 

captured in the barotrauma assessment as spawning-related symptoms rather than pressure-

related impairment. Physiological adaptations during spawning is commonly observed in 

salmonids (Flemming 1996; Bombardier et al. 2010). While angling was not observed to directly 

impact reflexes, other research suggests that the effects of angling can play a role in the 

reproductive process. Angling pre-spawn for Atlantic salmon showed an increase in sperm 

motility while females produced fewer eggs (Papatheodoulou et al. 2022). Egg viability in lake 

trout is determined by both maternal and environmental components (Johnston 2018). While 

parental exposure to C&R does not inhibit the growth of offspring (Duncan et al. 2023), the 

results of handling and air exposure continue to be a primary concern for adult survival (Smukall 

et al. 2019). 

 

3.5.3 Physiology 

Lake trout in my study displayed angling-associated impairment regardless of season, with 

changes observed in plasma cortisol, lactate, glucose, extracellular pH, and intracellular pH. In 

the summer, cortisol, lactate, and glucose remained elevated 0.5 h post-angling. Plasma cortisol 

values in my study are similar to those of Arctic charr (Salvelinus alpinus) which peaked at 2 h 

following a confinement stressor (Pottinger 2010). Lactate values were higher and glucose 

values were similar to those of the same arctic charr 0.5 post-stressor. Ultimately, the time scale 

of my study prevents quantification of the entire breadth of time required for physiological 

recovery. Thus, we do not report our blood metrics as peak values for lake trout. Fish must clear 
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metabolites from the blood prior to regaining normal swimming performance (Milligan 1996). 

The recovery of plasma and metabolites is largely context-specific, with some studies showing 

return to baseline values ~ 6 h (Arlinghaus et al. 2009) or 9 h (Rapp et al. 2012) post-capture. 

Recovery may differ based on life history (Pankhurst and Dedualj 1994; Arkert et al. 2020; 

McLean et al. 2020; Pringle et al. 2020) and scale proportionately with the magnitude of the 

stressor (Schreer et al. 2001). The process of angling may result in metabolic and osmoregulatory 

disturbance that impair health and lead to mortality (Wedemeyer and Wydoski 2008). In the 

present study, blood metrics were not predictors of mortality. No variables were significant 

predictors of any blood metrics.  

In the fall, plasma cortisol, lactate, and glucose remained elevated 0.5 h post-angling. 

Cortisol was 65.5% higher in females, suggesting that their baseline levels differ from males. In 

Pacific salmon, females are distinct from males in that they are less capable of responding to 

environmental stressors (Sandblom et al. 2009; Clark et al. 2011) and generally display higher 

levels of cortisol (Pottinger et al. 1996; Donaldson et al. 2010). Due to high maternal investment 

into gonadal development (Jastrebski and Morbey 2009; Johnston 2018), lake trout females are 

likely more susceptible to angling-related stressors than males. Female fish also display elevated 

levels of lactate and glucose (Jeffries et al. 2012). Increased lactate levels are generally 

associated with fight time (Meka and McCormick 2005; Twardek et al. 2018a; Blyth and Bower 

2022), which is to be expected due to lactate being a by-product anaerobic exercise (Milligan and 

Wood 1986). Surprisingly lactate was not significantly higher in females in the present study. 

Females are particularly important to reproduction because they govern spawning success 

(Esteve et al. 2008). Previous research has found that C&R does not inherently prevent fish from 

surviving to spawn, specifically in Atlantic salmon (Keefe et al. 2022). However, Peregrin et al. 
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(2015) describe how angling fish during spawning can negatively affect subsequent gonadal 

development. Fish length and angling depth were significant predictors of cortisol values (Table 

3.7). As mentioned previously, larger fish inhabit deeper waters and thus, when angled, tend to 

display longer fight times (Reeves and Staples 2011). Extended physical activity as a result of 

line fighting therefore increase the general stress response which includes the primary stress 

hormone cortisol. 

 

3.5.4 Activity 

In both seasons, fish descended quickly upon release and maintain similar depth once a desired 

depth was reached. This activity has been seen in other species such as Pacific cod (Nichol and 

Chilton 2006). While my study used accelerometers to observe fish behaviour for the first 14 

minutes following release, other studies have used telemetry to monitor barotrauma relief over 

longer periods of time (Nguyen et al. 2009; Butcher et al. 2013; Curtis et al. 2015; Wegner et al. 

2021). During spawning, C&R has a negligible effect on the movement of Atlantic salmon 

(Thorstad et al. 2007; Lennox et al. 2015) and rainbow trout (Oncorhynchus mykiss) (Nelson et 

al. 2005). The use of non-invasive tagging methods continues to be of interest to fisheries 

research (Chapple et al. 2015; Fontes et al. 2018; Chhor et al. 2022) but comes with caveats 

when drawing conclusions regarding activity and behaviour. External attachment can increase 

hydrodynamic drag and influence fish behaviour (reviewed by Donaldson et al. 2008), thus its 

implementation into management has been slow (Nguyen et al. 2021). In the present study, the 

time to reach maximum depth was impacted by fight time and air exposure in the summer but 

not in the fall. Extended activity during the beginning of an angling event may leave little energy 

reserved for post-release escape. While not statistically significant, fish with barotrauma 
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appeared to exhibit higher ODBA scores on the surface of the water, likely indicating their 

continued activity as a result of attempting to return to depth. Maintaining normal swimming 

behaviors is critical to fish recovery and impairments that inhibit the return to depth or force fish 

to float at the surface can accelerate mortality (Gravel and Cooke 2008; Drumhiller et al. 2014). 

Swimming activity was influenced by angling depth in the summer and angling depth and sex in 

the fall (also seen by Hanson et al. 2008). Higher ODBA was likely associated with shallow 

depths due to fish displaying a burst of energy to escape once returned to the water. In addition, 

male fish have higher ODBA post-release likely due to having different spawning behaviours 

than females.  

 

3.5.5 Management 

My study builds upon knowledge surrounding the susceptibility of freshwater fish to recreational 

angling. Lake trout exhibited impaired reflexes, signs of barotrauma, physiological disturbance, 

and mortality in the summer. In the fall, reflex impairment and physiological disturbance 

occurred with sex playing a role in response. Fish movement was effectively measured in both 

seasons with depth influencing levels of activity. Water temperature is still a concern when 

angling during the summer and thus, best practices such as limited air exposure times should be 

promoted.  

Spawning protection is mandated across Canada for multiple freshwater fishes but varies 

between provinces. The sensitivity of adult fish during spawning and the effects of broodstock 

collection methods on embryo viability continue to be of interest for fisheries management 

(Smukall et al. 2019; Howell et al. 2022; Duncan et al. 2023). Angling may coincide with the 

spawning period of multiple species and thus, understanding the impacts of such stressors are 
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critical to protecting populations (Bade et al. 2019; Tufts et al. 2019). The Clearwater Lake 

population of lake trout provides eggs and milt for stocking lakes across Manitoba and other 

parts of Canada (K. Dyck, personal communication, April 19,2023). Ensuring the population 

remains healthy and does not experience negative effects associated with the recreational fishery 

is a current management aim. The results presented here represent population impacts of angling 

and while no major impacts were seen on fish during the reproductive stage, other factors 

associated with angling during the spawn such as angler wading could still have negative 

consequences (Roberts and White 1992). Thus, further research should explore prolonged effects 

of angling on reproductive success.  

  



 

 88 

Chapter 4. General Discussion 
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4.1 Synthesis 

My overarching hypothesis for this thesis was that responses to C&R would change according to 

season and be observable through behaviour, physiology, and activity. Chapters 2 and 3 explore 

responses to C&R during various seasons and time scales. I decided to group the experiments 

into two chapters according to time of year due to the expectation that physiological processes 

(i.e., metabolism) would be slowed during the winter (Davis et al. 1984; Barton and Schreck 

1987; Guderly 2004; Louison et al. 2017b). In my extended recovery experiment in Chapter 2 I 

monitored fish up to 6 h, as delayed onset of stress has been seen in other ice-angling studies 

(Louison et al. 2017a; Louison et al. 2017b). The immediate recovery impairment only occurred 

up to 420 s since my aim was to measure the amount of barotrauma immediately experienced by 

fish which may in part, explain the high levels of mortality observed during the extended 

recovery experiment (36.8%). In Chapter 3, I only monitored fish up to 0.5 h since metabolism is 

faster during the open-water season, thus recovery was expected to occur. In all experiments, I 

was unable to quantify the maximum values for blood metrics as they continued to increase 

throughout all time scales examined. This means that values may continue to increase past the 

amounts of time examined and the timing of recovery remains unknown.  

C&R is understudied in the context of winter conditions. In Chapter 2, I examined 

mortality as well as behavioural and physiological impairment across immediate and extended 

recovery experiments following ice-angling. Previous research has explored impairment 

following ice angling in other species (Louison et al. 2017b; Logan et al. 2019); however, my 

research addresses some of the key components missing in many winter studies to date 

(Lawrence et al. 2023 reference). Prolonged monitoring of recovery is one research gap that has 

yet to be solved, and in my extended recovery experiment I monitored fish for up to 6 h. 
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Barotrauma is also relatively understudied (Lawrence et al. 2022; Louison et al. 2023), especially 

for physostomous species in winter conditions. In my immediate recovery experiment, I 

quantified the first barotrauma signs to be reported in lake trout during the winter. Lake trout 

displayed reflex impairment in both experiments. During extended recovery, fight time was a 

predictor of physiological disturbance 0.5 h post-angling with longer fight times leading to 

higher lactate and glucose, and lower extracellular pH. Longer fight times typically increase the 

duration of activity and thus, increase lactate production (Holder et al. 2022). Blood metric 

values were superficially higher than what has been observed in other studies (Wedemeyer and 

Wydoski 2008; Pottinger 2010). In summary, recreationally caught lake trout showed 

behavioural and physiological impairment with such impairments magnified by extended air 

exposure.  

In Chapter 3, I examined mortality, reflexes, behaviour, blood metrics, and activity 

following angling in both summer and fall. Open-water angling has been well-studied, however 

contextual gaps still exist for certain species. Lake trout displayed lower mortality in the summer 

(23.3%) and no mortality during the fall. In the summer, fish length, fight time, and angling 

depth all influenced barotrauma score. The characteristics of large fish make them more 

susceptible to pressure-related injury such as inhabiting deep sections of lakes (Sitar et al. 2008) 

and the tendency to fight for extended periods (Thorstad et al. 2003; Reeves and Staples 2011; 

Twardek et al. 2018). Plasma cortisol, lactate, and glucose increased, and extracellular and 

intracellular pH decreased 0.5 h post-capture. Typically, blood metric values peak between 0.5 h 

and 2 h before recovery after exhaustive exercise or handling (Milligan and Wood 1986; Barton 

and Iwama 1991). The time to reach maximum depth was not impacted by fight time or air 

exposure while overall dynamic body acceleration (ODBA) was influenced by depth. In the fall, 
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fish displayed no mortality or reflex impairment. Sex and recovery time influenced blood 

metrics, with length and depth being significant predictors of cortisol. Female salmonids are 

typically less robust to environmental stressors (Sandblom et al. 2009; Clark et al. 2011) and 

may display higher levels of cortisol (Pottinger et al. 1996; Donaldson et al. 2010). Large fish 

inhabit deep waters and thus, when angled, display longer fight times (Reeves and Staples 2011). 

The time required to reach maximum depth was not impacted by fight time or air exposure, 

ODBA was impacted by depth and males exhibited higher activity. The use of non-invasive 

biologgers was shown to characterise post-release activity of angled fish as seen in other studies 

(Lennox et al. 2018; Chhor et al. 2022). 

 

4.2 Future Work 

Universal knowledge gaps pertaining to recreational fisheries have been recently highlighted, 

with (1) the current state of recreational fisheries, (2) the impact of recreational fishing, and (3) 

the life history attributes of recreational fish species being selected as the highest priorities 

(Bower et al. 2020). Knowledge in the field of C&R is largely contextual, with ample research 

available for many popular sportfish species (Arlinghaus et al. 2007). Less information is 

available for species that are targeted by more specialized anglers and for fish that are especially 

old and large in their populations (Card and Hasler 2021). Contrasting behavioural and 

physiological responses between different sized individuals is valuable and can be used to 

evaluate challenges faced by different age classes. Environmental context is also important when 

assessing responses to C&R (Gingerich et al. 2007; Van Leeuwen et al. 2021), therefore 

understanding processes in multiple seasons is necessary. Ice fishing is one area that lacks a 
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volume of information, with research needs in physiological responses to air exposure, the 

effects of barotrauma, post-release behaviour, and spatial ecology (Lawrence et al. 2022).  

The research presented here addresses multiple pitfalls stated above which limit our 

understanding, however further C&R research should continue to bolster our understanding of 

these sections. Within the context of the present study, further exploration into winter angling, 

the effect of angling on offspring survivorship, and long-term monitoring of post-release activity 

would be useful. Incorporating multiple metrics of assessing impairment and examining context-

specific aspects of recreational angling will continue to improve fisheries management and 

resource protection. 
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