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Abstract
In this paper, we examine the possible orders of t-subset-regular self-

complementary k-uniform hypergraphs, which form examples of large sets
of two isomorphic t-designs. We reformulate Khosrovshahi and Tayfeh-
Rezaie's necessary conditions on the order of these structures in terms
of the binary representation of the rank k, and these conditions simplify
to a more transparent relation between the order n and rank k in the
case where k is a sum of consecutive powers of 2. Moreover, we present
new constructions for 1-subset-regular self-complementary uniform hyper-
graphs, and prove that these necessary conditions are su�cient for all k,
in the case where t = 1.

Key words: Self-complementary hypergraph, Regular hypergraph, Complementing
permutation, Large set of t-designs
AMS Subject Classi�cation Codes: 05C65, 05B05 05E20, 05C85.

1 Introduction
1.1 De�nitions
For a �nite set V and a positive integer k, let V(k) denote the set of all k-subsets
of V. A hypergraph with vertex set V and edge set E is a pair (V, E), in which V
is a �nite set and E is a collection of subsets of V. For a hypergraph X in which
every edge has cardinality in a given set of positive integers K, the complement
XC of X = (V, E) is the hypergraph (X, EC), where EC =

⋃
k∈K(V(k) \ E).

An isomorphism between two hypergraphs X = (V, E) and X ′ = (V ′, E ′) is
a bijection φ : V → V ′ which induces a bijection from E to E ′. If such an
isomorphism exists, the hypergraphs X and X ′ are said to be isomorphic. A
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hypergraph is self-complementary if it is isomorphic to its complement, and an
isomorphism between a self-complementary hypergraph and its complement is
called an antimorphism. The set of all antimorphisms of X will be denoted by
Ant(X). An automorphism of a hypergraph X is an isomorphism from X to
X, and the set of all automorphisms of a hypergraph X form a group, denoted
by Aut(X). The rank of an edge e in a hypergraph is its cardinality |e|, and the
order of a hypergraph (V, E) is |V|. A hypergraph (V, E) is called k-uniform (or
a k-hypergraph) if E is a subset of V(k), and the rank of a k-uniform hypergraph
is k. Note that a 2-hypergraph is a graph. We will often denote the vertex set
and edge set of a hypergraph X by V(X) and E(X), respectively.

Let X = (V, E) be a hypergraph with edge ranks in a set of positive integer
K, let t ∈ K, and let f ∈ V(t). We de�ne the t-valency valtX(f) of f in X
to be the number of edges e ∈ E containing f . A k-uniform hypergraph X is
called t-subset-regular if the t-valency of f in X is independent of the choice of
f ∈ V(t), and hence is called the t-valency of X without ambiguity.

1.2 History and layout of the paper
In this paper, we examine the possible orders of t-subset-regular self-complementary
uniform hypergraphs. The following result gives necessary conditions on the or-
der of these structures. This is actually a corollary to a more general result due
to Khosrovshahi and Tayfeh-Rezaie [9], which gave necessary conditions on the
order of large sets of t-designs. For positive integers m and n, let n[m] denote
the unique integer in {0, 1, . . . , m− 1} such that n ≡ n[m](mod m).

Theorem 1.1. [9] Let t, k and n be positive integers such that t < k ≤ n. If
there exists a t-subset-regular self-complementary k-hypergraph of order n, then
there exists an integer a such that max{i : 2i | k} < a ≤ min{i : 2i > k} and

n[2a] ∈ {t, t + 1, . . . , k[2a] − 1}. (1)

In Section 2, Theorem 2.1, we re�ne the result of Theorem 1.1 slightly to
show that, for the given integer a, a − 1 must lie in the support of the binary
representation of k. Poto£nik and �ajna �rst noted this re�nement in the case
where the rank k has the form k = 2` or k = 2` + 1 [12]. Theorem 2.1 yields
the more transparent necessary conditions in Corollary 2.2 on the order of a
t-subset-regular self-complementary k-hypergraph in the case where k is a sum
of consecutive powers of 2. In particular, we obtain Corollary 2.3, which shows
that when k = 2`+1 − 1 and there exists a t-subset-regular self-complementary
k-hypergraph, then t ≤ n[2`+1] < k.

The necessary conditions of Theorem 1.1 have been shown to be su�cient
in the cases where k ∈ {2, 3}. The case where k = 2 was handled constructively
by Rao [13], but there is also a proof due to Wilson [15]. Poto£nik and �ajna
handled the case where k = 3 and t = 1 [11], and Knor and Poto£nik handled
the case where k = 3 and t = 2 [10]. In Section 3, we show that the necessary
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conditions of Theorem 1.1 are su�cient for all k, in the case where t = 1. We
obtain the following main result.

Theorem 1.2. Let k and n be positive integers such that 1 < k ≤ n. There
exists a 1-subset-regular self-complementary k-hypergraph of order n if and only
if there exists an integer a such that max{i : 2i | k} < a ≤ min{i : 2i > k} and

n[2a] ∈ {1, 2, . . . , k[2a] − 1}. (2)

1.3 Connection to design theory
There is a connection between t-subset-regular hypergraphs and designs. Hence
results from design theory are applicable to these hypergraphs and vice versa.
A t-(n, k, λ) design is a pair (V,B) in which V is a set of cardinality n and B
is a collection of k-subsets of a point set V , such that every t-subset of V is
contained in exactly λ elements of B. Hence a t-subset-regular k-hypergraph X
of order n is a t-(n, k, λ) design in which λ is equal to the t-valency of X. A large
set of t-(n, k, λ) designs of size N , denoted by LS[N ](t, k, n), is a partition of the
complete design (V, V (k)) into N disjoint t-(n, k, λ) designs, where λ =

(
n−t
k−t

)
/N .

If a t-subset regular k-hypergraph X of order n is self-complementary, then X
and its complement XC are both t-(n, k, λ) designs with λ =

(
n−t
k−t

)
/2. Hence

the pair {X, XC} is an LS[2](t, k, n) in which the t-designs are isomorphic.
Hence results regarding su�cient conditions on the order a t-subset regular self-
complementary k-hypergraph imply the corresponding results for the order of a
LS[2](t, k, n).

Theorem 1.1 was originally stated in the language of large sets of t-designs.
Moreover, for t ∈ {1, 2}, large sets LS[2](t, k, n) have been constructed for all
pairs of integer n and k satisfying condition (1) of Theorem 1.1 [1, 2, 3, 4, 5, 6,
7, 8, 14]. However, it is important to note that these existence results do not
imply that condition (1) of Theorem 1.1 is su�cient for t ∈ {1, 2}, since there is
no guarantee that two designs in the large sets constructed in these papers are
isomorphic. To date, the only existence results for regular and 2-subset-regular
self-complementary k-hypergraphs are those due to Rao, Poto£nik, �ajna, and
Knor [10, 11, 13] mentioned in the last section.

In this paper, we will use terminology from hypergraph theory, rather than
design theory.

2 Necessary conditions on order
Given the binary representation of a positive integer k, we can use Theorem 1.1
to obtain exact necessary conditions on the order of a t-subset-regular self-
complementary k-hypergraph. We will denote the binary representation of an
integer k by the vector b = (bm, bm−1, . . . , b1, b0)2. This is, b is the vector such
that k =

∑m
i=0 bi2i, bm = 1, and bi ∈ {0, 1} for 0 ≤ i ≤ m. The support of the

binary representation b is the set {i ∈ {0, 1, 2, . . . , m} : bi = 1}, and is denoted
by supp(b).
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Theorem 2.1. Let k be a positive integer and let b = (bm, bm−1, . . . , b2, b1, b0)2
be the binary representation of k. Let t be an integer such that 1 ≤ t < k. If
there exists a t-subset-regular self-complementary k-hypergraph, then

n[2`+1] ∈ {t, t + 1, . . . , k[2`+1] − 1} (3)

for some ` ∈ supp(b).

Proof: By Theorem 1.1, there exists a positive integer a such that

n[2a] ∈ {t, t + 1, . . . , k[2a] − 1}. (4)

If a − 1 ∈ supp(b), then set ` = a − 1 and we are done. Hence we may assume
that a− 1 6∈ supp(b).

If i 6∈ supp(b) for all i such that 0 ≤ i ≤ a − 1, then k[2a] =
∑a−1

i=0 bi2i = 0,
and so as t ≥ 1, (4) implies that n[2a] ∈ ∅, giving a contradiction. Hence we
must have supp(b) ∩ {1, 2, . . . , a− 1} 6= ∅. Set

` = max(supp(b) ∩ {1, 2, . . . , a− 1}).

Then k[2a] =
∑a−1

i=0 bi2i =
∑`

i=0 bi2i = k[2`+1], and so (4) implies that

n[2a] ∈ {t, t + 1, . . . , k[2`+1] − 1}. (5)

Now (5) implies that n[2a] < 2`+1. Since `+1 < a, it follows that n[2`+1] = n[2a],
and so (5) implies that

n[2`+1] ∈ {t, t + 1, . . . , k[2`+1] − 1}.

Since ` ∈ supp(b), this completes the proof.

In the case where k is a sum of consecutive powers of 2, condition (3) of The-
orem 2.1 holds for the largest integer in the support of the binary representation
of k, as the next corollary shows.

Corollary 2.2. Let r and ` be nonnegative integers, and suppose that k =∑r
i=0 2`+i. If there exists a t-subset-regular self-complementary k-hypergraph of

order n, then n[2`+r+1] ∈ {t, t + 1, . . . , k − 1}.
Proof: Let b denote the binary representation of k. Then

supp(b) = {`, ` + 1, . . . , ` + r},

and so Theorem 2.1 guarantees that

n[2`+j+1] ∈ {t, t + 1, . . . , k[2`+j+1] − 1} (6)

for some j ∈ {0, 1, . . . , r}. Suppose that j < r. Since

n[2`+(j+1)+1] ≤ 2`+j+1 + n[2`+j+1]
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and
n[2`+(j+1)+1] ≥ n[2`+j+1],

(6) implies that
t ≤ n[2`+(j+1)+1] < 2`+j+1 + k[2`+j+1]. (7)

Now since 2`+j+1 + k[2`+j+1] = 2`+j+1 +
∑j

i=0 2`+i = k[2`+(j+1)+1], inequalities
(7) imply that

t ≤ n[2`+(j+1)+1] < k[2`+(j+1)+1],

and hence n[2`+(j+1)+1] ∈ {t, t + 1, . . . , k[2`+(j+1)+1] − 1}. Thus for j < r, we have
that

n[2`+j+1] ∈ {t, t + 1, . . . , k[2`+j+1] − 1}
implies n[2`+(j+1)+1] ∈ {t, t + 1, . . . , k[2`+(j+1)+1] − 1}.

It follows that
n[2`+r+1] ∈ {t, t + 1, . . . , k[2`+r+1] − 1}.

Since k[2`+r+1] = k, this implies that

n[2`+r+1] ∈ {t, t + 1, . . . , k − 1}

as claimed.

Corollary 2.3. Let ` be a positive integer, let k = 2`− 1 and let t be a positive
integer such that t < k. If there exists a t-subset-regular self-complementary
k-hypergraph of order n, then n[2`] ∈ {t, t + 1, . . . , k − 1}.

Proof: Since k = 2` − 1 =
∑`−1

i=0 2i, this result follows directly from Corol-
lary 2.2.

3 Su�cient conditions on order
In this section, we prove that a 1-subset-regular self-complementary k-hypergraph
of order n exists for every integer n satisfying the necessary conditions of Theo-
rem 1.1. Consequently, we prove Theorem 1.2. First we will need some notation.

Let X = (V, E) be a k-hypergraph and let θ ∈ Sym(V). We will denote the
valency val1X({v}) de�ned in Section 1.1 by valX(v). The symbol Xθ denotes
the hypergraph (V, Eθ), where Eθ = {Eθ : E ∈ E} and Eθ = {vθ : v ∈ E}. For a
subset P of the orbits of θ on V(k), let U(P) =

⋃
O∈P O. For a subset S ⊆ V(k)

and a vertex v ∈ V, let setvalS(v) denote the number of edges of S containing
v.

We will often make use of the following lemma.

Lemma 3.1. Suppose that X = (V, E) is a self-complementary k-hypergraph.
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(1) X is 1-subset-regular if and only if valX(v) = valXC (v) for all v ∈ V.
(2) If V = {∞}∪Zn and θ = (∞)(0 1 . . . (n−1)) ∈ Ant(X) for an even positive

integer n, then X is 1-subset-regular if and only if valX(0) = valXC (0).

Proof:

(1) If valX(v) = valXC (v), then

valX(v) =
1
2

(valX(v) + valXC (v)) =
1
2

(setvalV(k)(v)) =
1
2

(|V| − 1
k − 1

)
,

which is independent of the choice of v ∈ V. Thus X is 1-subset-regular.
Conversely, if X is 1-subset-regular, then since X ∼= XC , the hypergraph XC

is also 1-subset-regular and has the same 1-valency as X. Thus valX(v) =
valXC (v) for all v ∈ V.

(2) If X is 1-subset-regular, then as 0 ∈ V, valX(0) = valXC (0) by part (1).
Conversely, suppose that valX(0) = valXC (0). Observe that for any orbit
O of θ on V(k), an element x ∈ Zn lies in c edges of O ∩ E if and only if
(x − 1)[n] lies in c edges of O ∩ EC , which holds if and only if (x − 2)[n]

lies in c edges of O ∩ E . This implies that valX(x) = valXC (y) whenever
x 6≡ y (mod 2), and valX(x) = valX(y) whenever x ≡ y (mod 2). Now
since valX(0) = valXC (0), for x even and y odd, we have

valX(x) = valX(0) = valXC (0) = valX(y).

Hence valX(x) = valX(y) for all x, y ∈ Zn. Moreover, since θ ∈ Ant(X)
and θ �xes ∞, we must also have valX(∞) = valXC (∞). Hence valX(v) is
independent of the choice of v ∈ V, and so X is 1-subset-regular.

In Lemma 3.4 we will prove that the necessary condition (1) in Theorem 1.1
on the order n of a self-complementary k-hypergraph is su�cient by induction
on the congruence class of n modulo 2a. In Lemma 3.3 we will handle the base
case where n ≡ 1 (mod 2a), that is, n = m2a + 1 for some positive integer m.
We will need to make use of the following lemma, which handles the case where
m = 1.

For a positive integer n, a subset A of Zn, and an element b of Zn, let A + b
denote the set {(a + b)[n] : a ∈ A}.
Lemma 3.2. Let k and a be positive integers such that a ≥ 2 and 2 ≤ k < 2a.
Let V = {∞} ∪ Z2a , where ∞ 6∈ Z2a . There exists a 1-subset-regular self-com-
plementary k-hypergraph on V with antimorphism

θ = (∞)(0 1 2 · · · (2a − 1)).
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Proof: First we will �x an integer r such that 1 ≤ r < 2a and examine the
structure of the orbits of θ on Z(r)

2a . In particular, we will examine how the
number of even and odd elements of E ∈ Z(r)

2a a�ect the valency of 0 in the orbit
of θ on Z(r)

2a containing E.
We can write r = 2zM for some integer z such that 0 ≤ z ≤ a− 1 and some

odd positive integer M . Let O be an orbit of θ on Z(r)
2a . Then O has length

2a−x for some x such that 0 ≤ x ≤ z. For x ∈ {0, 1, . . . , z}, we will de�ne
a partition of the set {0, 1, 2, . . . , 2a − 1} into 2x subsets Sx

0 , Sx
1 , Sx

2 , . . . , Sx
2x−1

of consecutive integers, each of length 2a−x. For each w ∈ {0, 1, . . . , 2x − 1},
set Sx

w := {w2a−x + v : v ∈ {0, 1, . . . , 2a−x − 1}}. Then Sx
w = Sx

0 + w2a−x.
If O has length 2a−x, any edge E ∈ O contains exactly r/2x elements from
each subset Sx

w in the partition, and E ∩ Sx
w must be a translation of E ∩ Sx

0 ,
for all w = 0, 1, . . . , 2x − 1. In particular E ∩ Sx

w = E ∩ Sx
0 + w2a−x. Now if

E ∩ Sx
0 contains i even elements and j odd elements, then Eθ ∩ Sx

0 contains j

even elements and i odd elements. Hence, for any orbit O of θ on Z(r)
2a of length

2a−x, there exist nonnegative integers i and j such that i + j = r/2x, and every
edge of O contains exactly i even elements and j odd elements of Sx

0 , or vice
versa. Moreover, if E ∈ O and E contains i even and j odd elements of Sx

0 , then
0 lies in exactly i elements of the sequence E, Eθ2

, Eθ4
, . . . , Eθ2a−x−2 , and 0 lies

in exactly j = r/2x − i elements of the sequence Eθ1
, Eθ3

, Eθ5
, . . . , Eθ2a−x−1 .

For x ∈ {0, 1, . . . , z} and i ∈ {0, 1, . . . , r/2x+1}, and j = r/2x − i, let Ex
i,j

denote the set of orbits of θ on Z(r)
2a of length 2a−x whose edges contain i even

and j odd elements in the set Sx
0 , or which contain j even and i odd elements of

Sx
0 . For each O ∈ Ex

i,j , choose an edge E ∈ O. If the number of even elements
of E does not exceed the number of odd elements of E, colour the edges in
the sequence E, Eθ2

, Eθ4
, . . . , Eθ2a−x−2 red and colour the edges in the sequence

Eθ1
, Eθ3

, Eθ5
, . . . , Eθ2a−x−1 blue. If E has more even entries than odd entries,

colour the edges in the sequence E, Eθ2
, Eθ4

, . . . , Eθ2a−x−2 blue and colour the
edges in the sequence Eθ1

, Eθ3
, Eθ5

, . . . , Eθ2a−x−1 red. For any subset S of Z(r)
2a ,

let Sred and Sblue denote the set of red and blue edges in S, respectively.
Since i ≤ j, for each orbit O ∈ Ex

i,j we have

setvalOblue
(0)− setvalOred

(0) = j − i.

Let Êr be a subset of Z(r)
2a which contains the red edges from exactly

⌊∣∣Ex
i,j

∣∣ /2
⌋

orbits of Ex
i,j , and the blue edges from the remaining orbits of Ex

i,j , for all 0 ≤
x ≤ z, and for all i, j such that 0 ≤ i ≤ r/2x+1 and j = r/2x − i. If

∣∣Ex
i,j

∣∣ is
even, say

∣∣Ex
i,j

∣∣ = 2ν for a positive integer ν, then

setvalU(Ex
i,j)∩Êr

(0)− setvalU(Ex
i,j)∩ÊC

r
(0) = (νi + νj)− (νi + νj) = 0.
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If
∣∣Ex

i,j

∣∣ is odd, say
∣∣Ex

i,j

∣∣ = 2ν − 1 for a positive integer ν, then

setvalU(Ex
i,j)∩Êr

(0)− setvalU(Ex
i,j)∩ÊC

r
(0)

=((ν − 1)i + νj)− (νi + (ν − 1)j)
=j − i.

If x < z, then i + j = r/2x = 2z−xM is even, which implies that j − i is even.
On the other hand, if x = z, then i + j = r/2x = r/2z = M is odd, which
implies that j − i is odd.

• Claim I: For a �xed integer r = 2zM such that M is odd and 1 ≤ r < 2a,
the set Ez

i,j of orbits of θ on Z(r)
2a has odd cardinality for exactly one pair

i, j satisfying 0 ≤ i < j and i + j = M .

• Proof of Claim I: First, note that the set Sz
0 contains exactly 2a−z−1

odd elements and 2a−z−1 even elements. Thus for j > 2a−z−1, we have
Ez

i,j = ∅, which has even cardinality. Hence we need only consider the case
where 0 ≤ i < j ≤ 2a−z−1.
We will count the number of orbits in Ez

i,j where i and j are nonnegative
integers such that i < r/2z+1 and i + j = r/2z = M . The number of
ways to choose i even elements and j odd elements from the set Sz

0 is(
2a−z−1

i

)(
2a−z−1

j

)
, which is also equal to the number of ways to choose i

odd elements and j even elements from this set. Hence the number of
edges which lie in U(Ez

i,j) is 2
(
2a−z−1

i

)(
2a−z−1

j

)
. Since each orbit of Ez

i,j has
length 2a−z, the number of orbits in Ez

i,j is

∣∣Ez
i,j

∣∣ =
1

2a−z−1

(
2a−z−1

i

)(
2a−z−1

j

)
. (8)

Case 1: z = a−1. In this case we have r = 2a−1M < 2a for odd M , which
implies that M = 1 and r = 2a−1. Since i + j = r/2z = 2a−1/2a−1 = 1
and i < j, we must have i = 0 and j = 1, and so

∣∣Ez
i,j

∣∣ =
∣∣Ea−1

0,1

∣∣ =
1
20

(
20

0

)(
20

1

)
= 1,

which is odd.

Case 2: z < a − 1. In this case, since i + j = M is odd, and the
cardinality in (8) is an integer, Lemma A.1 (see Appendix) implies that∣∣Ez

i,j

∣∣ is odd if and only if i ∈ {0, 2a−z−1} or j ∈ {0, 2a−z−1}. We will show
that exactly one of these situations occurs for i < j.
Since 0 ≤ i < j ≤ 2a−z−1, it follows that j 6= 0 and i 6= 2a−z−1. Hence we
need only check that exactly one of the conditions i = 0 and j = 2a−z−1

hold. Since z < a− 1, we must have r 6= 2a−1. Suppose r < 2a−1. Then if
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j = 2a−z−1, we have i = r/2z−j = r/2z−2a−z−1 < 2a−z−1−2a−z−1 = 0,
contradicting the assumption that i ≥ 0. However, there are edges such
that i = 0 and j = r/2z < 2a−1/2z = 2a−z−1. On the other hand,
if r > 2a−1, then if i = 0, we have j = r/2z > 2a−1/2z = 2a−z−1,
and so j > 2a−z−1, giving a contradiction. However, there are edges
such that j = 2a−z−1, for in this case i = r/2z − j = r/2z − 2a−z−1 >
2a−1/2z − 2a−z−1 = 0, so 0 < i < 2a−z−1.
We have shown that j 6= 0, i 6= 2a−z−1, and that if r < 2a−1 then
j 6= 2a−z−1 but there exist orbits with i = 0 and j = r/2z < 2a−z−1, and
that if r > 2a−1 then i 6= 0 but there exist orbits with j = 2a−z−1 and
i = r/2z − j > 0.
Thus exactly one of the two situations i = 0 and j = 2a−z−1 occurs for
i < j, and neither of the two situations i = 2a−z−1 and j = 0 can occur.
Thus if z < a − 1, exactly one of

∣∣∣Ez
0,r/2z

∣∣∣ and
∣∣∣Ez

(r/2z−2a−z−1),2a−z−1

∣∣∣ is
odd, and

∣∣Ez
i,j

∣∣ is even for all other feasible pairs i, j. This completes the
proof of Claim I.

Claim I and the comments preceding it imply that

setvalÊr
(0)− setvalÊC

r
(0)

is odd for all integers r such that 1 ≤ r < 2a. Fix an integer k such that
2 ≤ k < 2a. Then 1 ≤ k − 1 < 2a, and so

setvalÊk∪Êk−1
(0)− setvalÊC

k ∪ÊC
k−1

(0) (9)

=
(
setvalÊk

(0)− setvalÊC
k

(0)
)

+
(
setvalÊk−1

(0)− setvalÊC
k−1

(0)
)

is even.
We will �nd subsets E ′k−1 ⊆ Z(k−1)

2a and E ′k ⊆ Z(k)
2a which are related to

Êk−1 and Êk, but for which the even quantity in (9) is bounded. For each
r ∈ {k − 1, k}, if r = 2zM , then for all integers x, i and j such that 0 ≤ x ≤ z,
0 ≤ i ≤ r/2x+1, and j = r/2x − i, we de�ne λr(i, j, x) as

λr(i, j, x) = setvalU(Ex
i,j∩Êr)(0)− setvalU(Ex

i,j∩ÊC
r )(0) = j − i.

Note that 0 ≤ j − i ≤ r. Thus setvalÊr
(0) − setvalÊC

r
(0) is equal to the sum of

a set Ar of nonnegative integers for

Ar = {λr(i, j, x) : 0 ≤ x ≤ z, 0 ≤ i ≤ r/2x+1, j = r/2x − i},

and each λ ∈ Ar satis�es 0 ≤ λ ≤ r. Hence Lemma A.2 (see Appendix) implies
that there is a function v : Ar → {−1, 1} such that 0 ≤ ∑

λ∈Ar
λv(λ) ≤ r.

Form a subset E ′r of Z(r)
2a from Êr by swapping red edges for blue edges,

and vice versa, in Ex
i,j ∩ Êr whenever v(λr(i, j, x)) = −1. Then setvalE′r (0) −

9



setval(E′r)C (0) has the same parity as setvalÊr
(0)− setvalÊC

r
(0). Moreover,

setvalE′r (0)− setval(E′r)C (0) =
∑

λ∈Ar

λv(λ)

and so
0 ≤ setvalE′r (0)− setval(E′r)C (0) ≤ r.

Thus

setvalE′k∪E′k−1
(0)− setval(E′k)C∪(E′k−1)

C (0) (10)

=
(
setvalE′k(0)− setval(E′k)C (0)

)
+

(
setvalE′k−1

(0)− setval(E′k−1)
C (0)

)

is equal to a nonnegative even number 2µ such that 2µ ≤ 2k−1. But 2µ is even
and 2k−1 is odd, so we must have 2µ ≤ 2k−2, which implies that 0 ≤ µ ≤ k−1.

Case 1: 2 ≤ k ≤ 2a−1. Since k or k − 1 is even, it follows that r − µ is
even for some r ∈ {k, k − 1}. Fix this r. Then the system

−i + j = µ

i + j = r

has an integer solution i = (r − µ)/2, j = (r + µ)/2. Also, since 0 ≤ µ ≤ r,
we are guaranteed that 0 ≤ i, j ≤ r, and since r ≤ k ≤ 2a−1 we also have
0 ≤ i, j ≤ 2a−1. For this r there is an orbit O ∈ E0

i,j of θ on Z(r)
2a of full length

2a−0 such that E ′r contains the red edges of O, and

setvalOblue
(0)− setvalOred

(0) = j − i = µ.

Let Ek−1 ∪ Ek be the set of edges in Z(k−1)
2a ∪ Z(k)

2a obtained from E ′k−1 ∪ E ′k
by swapping red edges for blue edges in the orbit O. Then (10) implies that

setvalEk∪Ek−1(0)− setvalEC
k ∪EC

k−1
(0)

=
(
setvalE′k∪E′k−1

(0)− setval(E′k)C∪(E′k−1)
C (0)

)
− 2µ

= 2µ− 2µ = 0. (11)

Finally, de�ne Xk to be the hypergraph with vertex set V = Z2a ∪ {∞} and
edge set E = Ek ∪ {E ∪ {∞} : E ∈ Ek−1}. Since θ maps red edges onto blue
edges within each orbit, and vice versa, it follows that θ ∈ Ant(Xk), and so Xk

is self-complementary. Moreover, (11) implies that valXk
(0) = valXC

k
(0), and so

Lemma 3.1(2) guarantees that Xk is 1-subset-regular.

Case 2: 2a−1 < k < 2a. In this case 2 ≤ k̂ = 2a − (k − 1) ≤ 2a−1 and
so by Case 1 there exists a 1-subset-regular self-complementary k̂-hypergraph

10



Xk̂ on V with antimorphism θ. Let Fk̂ denote the set of edges of Xk̂ which do
not contain ∞, and let

Fk̂−1 =
{
E \ {∞} : E ∈ E (Xk̂

)
,∞ ∈ E

}
.

Since Xk̂ is 1-subset-regular and self-complementary, it follows that

setvalFk̂∪Fk̂−1
(0) = setvalFC

k̂
∪FC

k̂−1
(0). (12)

Let
Ek−1 = {Z2a \ E : E ∈ Fk̂}

and
Ek = {Z2a \ E : E ∈ Fk̂−1}.

Then Ek−1 ⊂ Z(k−1)
2a and Ek ⊂ Z(k)

2a . Moreover, (12) implies that

setvalEk∪Ek−1(0) = setvalEC
k ∪EC

k−1
(0). (13)

De�ne Xk to be the hypergraph with vertex set V = Z2a ∪ {∞} and edge set
E = Ek ∪ {E ∪ {∞} : E ∈ Ek−1}. Then Xk is a k-hypergraph on V, and since
θ ∈ Ant(Xk̂) it follows that θ ∈ Ant(Xk), and so Xk is self-complementary.
Moreover, (13) implies that valXk

(0) = valXC
k

(0), and so Lemma 3.1(2) guaran-
tees that Xk is 1-subset-regular, as required.

We are on our way to proving the su�ciency of condition (1) in the main
result of this section, Theorem 1.2. In the next lemma, we state and prove the
base case for the inductive proof of this su�ciency, which is given in Lemma 3.4.

Lemma 3.3. Let a, k, and m be positive integers such that a ≥ 2 and k[2a] ≥ 2.
Let R = Zm2a , and let V = {∞} ∪R. There exists a 1-subset-regular self-com-
plementary k-hypergraph on V with antimorphism

θ = (∞)
m−1∏

j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1).

Proof: We will construct a 1-subset-regular self-complementary k-hypergraph
Yk on V with antimorphism θ.

For each j ∈ Zm, let

Rj = {j2a, j2a + 1, . . . , (j + 1)2a − 1},

and let

θj = (∞)(j2a, j2a + 1, . . . , (j + 1)2a − 1) ∈ Sym(Rj ∪ {∞}).

By Lemma 3.2, there exists a 1-subset-regular self-complementary r-hypergraph
X j

r on {∞} ∪Rj , with antimorphism θj , for r ∈ {2, 3, . . . , 2a − 1}.

11



For each E ∈ V(k), let C1(E) = {j ∈ Zm : 2 ≤ |({∞} ∪ Rj) ∩ E| ≤ 2a − 1}.
If C1(E) 6= ∅, set j1(E) = min{j : j ∈ C1(E)}. If E ∈ V(k) and C1(E) = ∅,
then |({∞} ∪ Rj) ∩ E| ≤ 1 or |({∞} ∪ Rj) ∩ E| ≥ 2a for all j ∈ Zm. Since
2 ≤ k[2a] < 2a, this implies that one of the following conditions hold when
C1(E) = ∅:

• ∞ 6∈ E, all cycles of θ contain exactly 0,1, or 2a elements of E, and at
least two nontrivial cycles of θ contain exactly one element of E.

• ∞ ∈ E, all nontrivial cycles of θ contain at least 2a−1 elements of E, and
at least two nontrivial cycles of θ contain exactly 2a − 1 elements of E.

For each E ∈ V(k) with C1(E) = ∅, de�ne C2(E) = {j ∈ Zm : |(E ∩ Rj)| ∈
{1, 2a − 1}}. Then |C2(E)| ≥ 2. Let i1(E) and i2(E) be the two smallest
elements of C2(E).

De�ne Yk to be the k-hypergraph with vertex set V and edge set E such that
an element E ∈ V(k) is in E if and only if one of the following conditions hold
for j1 = j1(E), i1 = i1(E), and i2 = i2(E).

(i) C1(E) 6= ∅, |E ∩ ({∞} ∪Rj1)| = r, and E ∩ ({∞} ∪Rj1) ∈ E
(X j1

r

)
.

(ii) C1(E) = ∅, ∞ 6∈ E, E ∩Ri1 = {x}, E ∩Ri2 = {y}, and (x+ y)[4] ∈ {1, 2}.
(iii) C1(E) = ∅, ∞ ∈ E, Ri1 \E = {x}, Ri2 \E = {y}, and (x + y)[4] ∈ {1, 2}.
We will prove that Yk is 1-subset-regular and self-complementary with antimor-
phism θ.

First we will show that Yk is self-complementary. Note that EC = V(k) \ E
is the set of elements E of V(k) for which one of the following conditions hold.
(Again, j1 = j1(E), i1 = i1(E), and i2 = i2(E).)

(i)′ C1(E) 6= ∅, |E ∩ ({∞} ∪Rj1)| = r, and E ∩ ({∞} ∪Rj1) 6∈ E
(X j1

r

)
.

(ii)′ C1(E) = ∅, ∞ 6∈ E, E ∩Ri1 = {x}, E ∩Ri2 = {y}, (x + y)[4] ∈ {0, 3}.
(iii)′ C1(E) = ∅, ∞ ∈ E, Ri1 \E = {x}, Ri2 \E = {y}, and (x + y)[4] ∈ {0, 3}.

Observe that θ |{∞}∪Rj1
= θj1 ∈ Ant(X j1

r ). Hence an element E ∈ V(k) satis�es
condition (i) if and only if Eθ satis�es condition (i)′. Also, for x ∈ Ri1 , y ∈ Ri2 ,
and a ≥ 2, we have (xθ + yθ)[4] = ((x + 1)[2a] + (y + 1)[2a])[4] = (x + y + 2)[4],
so θ maps elements x and y with (x, y) ∈ Ri1 × Ri2 and (x + y)[4] ∈ {1, 2} to
elements xθ and yθ with (xθ, yθ) ∈ Ri1 ×Ri2 and (xθ + yθ)[4] ∈ {0, 3}, and vice
versa. It follows that an element E ∈ V(k) satis�es condition (ii) if and only
if Eθ satis�es condition (ii)′, and E satis�es condition (iii) if and only if Eθ

satis�es condition (iii)′. Hence E ∈ E if and only if Eθ ∈ EC . Thus θ ∈ Ant(Yk)
and Yk is self-complementary.

Next we show that Yk is 1-subset-regular, which by Lemma 3.1(1) is true
if and only if valYk

(v) = valYC
k

(v) for all v ∈ V. Since θ ∈ Ant(Yk) and θ

12



�xes ∞, we certainly have valYk
(∞) = valYC

k
(∞). It remains to show that

valYk
(v) = valYC

k
(v) for all v ∈ R.

Let j′ ∈ Zm and suppose that v ∈ Rj′ . Let O be an orbit of θ on V(k)

which contains edges containing v. Let E ∈ O, and set C1(O) = C1(E), and if
C1(E) 6= ∅, set j1(O) = j1(E). Note that C1(E) is constant over all E ∈ O, and
so C1(O) is independent of our choice of E ∈ O, and so is j1(O), if it exists. If
C1(O) = ∅, set C2(O) = C2(E), and set i1(O) = i1(E) and i2(O) = i2(E). If
C1(O) = ∅, then C2(O) is constant over all E ∈ O, and so C2(O), i1(O), and
i2(O) are also independent of our choice of E. Now O is one of four types:

• TYPE 1: C1(O) 6= ∅ and j′ 6= j1(O).

• TYPE 2: C1(O) 6= ∅ and j′ = j1(O).

• TYPE 3: C1(O) = ∅ and j′ 6∈ {i1(O), i2(O)}.
• TYPE 4: C1(O) = ∅ and j′ ∈ {i1(O), i2(O)}.

For each i ∈ {1, 2, 3, 4}, let Pi be the set of orbits of θ on V(k) of TYPE i which
contain edges containing v. We will show that

setvalU(Pi)∩E(v) = setvalU(Pi)∩EC (v)

for all i ∈ {1, 2, 3, 4}. For each i, let (U(Pi) ∩ E)v = {E ∈ U(Pi) ∩ E : v ∈ E},
and let (U(Pi) ∩ EC)v = {E ∈ U(Pi) ∩ EC : v ∈ E}.

First consider the orbits of P1. De�ne the mapping β1 : (U(P1) ∩ E)v →
(U(P1) ∩ EC)v by

Eβ1 = (Rj1 ∩ Eθ) ∪ (E \ Rj1),

for all E ∈ (U(P1)∩E)v, where j1 = j1(O) for the orbit O of θ on V(k) containing
E.

Since j′ 6= j1 for all orbits O ∈ P1, and since v ∈ Rj′ , it follows that for all
E ∈ (U(P1) ∩ E)v we have v ∈ E \ Rj1 . Hence β1 maps edges of (U(P1) ∩ E)v

to edges of (U(P1) ∩ EC)v. Moreover, one can verify that β1 is invertible, with
inverse β−1

1 de�ned by

Eβ−1
1 =

(
Rj1 ∩ Eθ−1

)
∪ (E \ Rj1),

for all E ∈ (U(P1) ∩ EC)v, where j1 = j1(O) for the orbit O of θ on V(k)

containing E. We conclude that |(U(P1) ∩ E)v| = |(U(P1) ∩ EC)v|, and hence

setvalU(P1)∩E(v) = setvalU(P1)∩EC (v).

Next consider the orbits of P2. Every orbit O of P2 satis�es j1(O) = j′, and
so E ∩ ({∞} ∪Rj1) ∈ E

(X j1
r

)
, where r = |E ∩ ({∞} ∪Rj1)|, for all E ∈ O ∩ E .

Observe that since X j1
r is 1-subset-regular and self-complementary for all r, by

Lemma 3.1(1) we have

valX j1
r

(v) = val
(X j1

r )C (v).
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This implies that there is a bijection δ between the set of edges of X j1
r containing

v and the set of edges of (X j1
r )C containing v. Now de�ne the mapping β2 :

(U(P2) ∩ E)v → (U(P2) ∩ EC)v by

Eβ2 = (E ∩ ({∞} ∪Rj1))
δ ∪ (E \ ({∞} ∪Rj1)),

for all E ∈ (U(P2)∩E)v, where j1 = j1(O) for the orbit O of θ on V(k) containing
E.

Since j′ = j1 for all orbitsO ∈ P2, and v ∈ Rj1 , the de�nition of δ guarantees
that v ∈ E ∩ ({∞}∪Rj1) if and only if v ∈ (E ∩ ({∞}∪Rj1))

δ. Also, condition
(i) guarantees that E ∈ U(P2) ∩ E if and only if Eβ2 ∈ U(P2) ∩ EC . Hence β2

maps edges of (U(P2)∩E)v to edges of (U(P2)∩EC)v. Moreover, one can verify
that β2 is invertible, with inverse β−1

2 de�ned by

Eβ−1
2 = (E ∩ ({∞} ∪Rj1))

δ−1 ∪ (E \ ({∞} ∪Rj1)),

for all E ∈ (U(P2) ∩ EC)v, where j1 = j1(O) for the orbit O of θ on V(k)

containing E. We conclude that |(U(P2) ∩ E)v| = |(U(P2) ∩ EC)v|, and hence

setvalU(P2)∩E(v) = setvalU(P2)∩EC (v).

Now consider the orbits of P3. De�ne the mapping β3 : (U(P3) ∩ E)v →
(U(P3) ∩ EC)v by

Eβ3 = ((Ri1 ∪Ri2) ∩ Eθ) ∪ (E \ (Ri1 ∪Ri2)),

for all E ∈ (U(P3) ∩ E)v, where i1 = i1(O) and i2 = i2(O) for the orbit O of θ
on V(k) containing E.

Since j′ 6∈ {i1, i2} for all orbits O ∈ P3, and v ∈ Rj′ , for all E ∈ (U(P3)∩E)v

we have v ∈ E \ (Ri1 ∪Ri2). Hence β3 maps edges of (U(P3) ∩ E)v to edges of
(U(P3) ∩ EC)v. Moreover, one can verify that β3 is invertible, with inverse β−1

3

de�ned by

Eβ−1
3 =

(
(Ri1 ∪Ri2) ∩ Eθ−1

)
∪ (E \ (Ri1 ∪Ri2)),

for all E ∈ (U(P3)∩EC)v, where i1 = i1(O) and i2 = i2(O) for the orbit O of θ
on V(k) containing E. We conclude that |(U(P3) ∩ E)v| = |(U(P3) ∩ EC)v|, and
hence

setvalU(P3)∩E(v) = setvalU(P3)∩EC (v).

Finally, consider the orbits of P4. Every orbit O of P4 satis�es j′ ∈ {i1, i2}.
Since v ∈ Rj′ , we must have v ∈ Ri1 ∪Ri2 . Assume, without loss of generality,
that v ∈ Ri1 . De�ne the mapping β4 : (U(P4) ∩ E)v → (U(P4) ∩ EC)v by

Eβ4 =
(
Ri2 ∩ Eθ2

)
∪ (E \ Ri2),

for all E ∈ (U(P4) ∩ E)v, where in each case i1 = i1(O) and i2 = i2(O) for the
orbit O of θ on V(k) containing E. Now since v ∈ Ri1 , it follows that v ∈ E\Ri2

14



for all E in (U(P4) ∩ E)v. Now observe that if E ∈ (U(P4) ∩ E)v, then either
|E ∩ Ri1 | = |E ∩ Ri2 | = 1 or |Ri1 \ E| = |Ri2 \ E| = 1. In the former case,
we must have E ∩ Ri1 = {v} and E ∩ Ri2 = {w}, for some w ∈ Ri2 such that
(v+w)[4] ∈ {1, 2}, which implies that Eβ4∩Ri1 = {v}, Eβ4∩Ri2 = {(w+2)[2a]},
and (v + (w + 2)[2a])[4] = (v + w + 2)[4] ∈ {0, 3}, since a ≥ 2. In the latter case,
we must have Ri1 \E = {x} and Ri2 \E = {y}, for some x ∈ Ri1 and y ∈ Ri2

such that x 6= v and (x + y)[4] ∈ {1, 2}, which implies that Ri1 \ Eβ4 = {x},
Ri2 \ Eβ4 = {(y + 2)[2a]}, and (x + (y + 2)[2a])[4] = (x + y + 2)[4] ∈ {0, 3},
since a ≥ 2. Hence conditions (ii) and (iii) guarantee that β4 maps edges
of (U(P4) ∩ E)v to edges of (U(P4) ∩ EC)v. Moreover, the permutation β4 is
invertible, with inverse β−1

4 de�ned by

Eβ−1
4 =

(
Ri2 ∩ Eθ−2

)
∪ (E \ Ri2),

for all E ∈ (U(P4)∩EC)v, where i1 = i1(O) and i2 = i2(O) for the orbit O of θ
on V(k) containing E. We conclude that |(U(P4) ∩ E)v| = |(U(P4) ∩ EC)v|, and
hence

setvalU(P4)∩E(v) = setvalU(P4)∩EC (v).

Observe that

valYk
(v) =

4∑

i=1

setvalU(Pi)∩E(v) =
4∑

i=1

setvalU(Pi)∩EC (v) = valYC
k

(v).

Since j′ was an arbitrary element of Zm, we conclude that valYk
(v) = valYC

k
(v)

for all v ∈ R = ∪j∈ZmRj , and hence for all v ∈ V = R ∪ {∞}. Thus
Lemma 3.1(1) implies that Yk is 1-subset-regular.

It should be noted that Lemma 3.3 was proved previously for the case where
a = 2. Rao handled the case where a = 2 and k = 2 in [13], and Poto£nik and
�ajna handled the case where a = 2 and k = 3 in [11].

We are ready to prove the su�ciency of condition (4) in Theorem 1.1.
Lemma 3.4 demonstrates the existence of a 1-subset-regular self-complemen-
tary uniform hypergraph of rank k and order n for every pair (n, k) satisfying
condition (1).

Lemma 3.4. Let a, k, m, and s be positive integers such that a ≥ 2 and
s < k[2a]. Let R = Zm2a , let S = {∞1,∞2, . . . ,∞s} such that S ∩ R = ∅, and
let V = S ∪R. There exists a 1-subset-regular self-complementary k-hypergraph
on V with antimorphism

θ = (∞1)(∞2) · · · (∞s)
m−1∏

j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1).

Proof: Fix positive integers a and m such that a ≥ 2. We prove that there
exists a 1-subset-regular self-complementary k-hypergraph on V with antimor-
phism θ for all positive integers k and s such that 1 ≤ s < k[2a]. The proof is
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by induction on s.

Base Step: s = 1. In this case, since s < k[2a], we have k[2a] ≥ 2, and so
the existence of a 1-subset-regular self-complementary k-hypergraph on V =
{∞1} ∪ Zm2a with antimorphism

θ = (∞1)
m−1∏

j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1)

follows from Lemma 3.3. Hence the result holds for s = 1.

Induction Step: Suppose s > 1, and assume that there exists a 1-subset-regular
self-complementary k̂-hypergraph Zk̂ on

V̂ = {∞1, . . . ,∞s−1} ∪ Zm2a

with antimorphism

θ̂ = (∞1) · · · (∞s−1)
m−1∏

j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1),

for all k̂ such that 1 ≤ s− 1 < k̂[2a].
Let k be a positive integer such that s < k[2a]. We will construct a 1-subset-

regular self-complementary k-hypergraph on V with antimorphism θ. Now 1 ≤
s− 1 < k[2a] and so by the induction hypothesis, there exists a 1-subset-regular
self-complementary k-hypergraph Zk on V̂ with antimorphism θ̂. Moreover,
since s ≥ 2, we have k[2a] ≥ 3, and so (k − 1)[2a] = k[2a] − 1. This implies
that 1 ≤ s − 1 < (k − 1)[2a], and so by the induction hypothesis, there also
exists a 1-subset-regular self-complementary (k−1)-hypergraph Zk−1 on V̂ with
antimorphism θ̂.

Let Zk be the k-hypergraph with vertex set V = V̂ ∪ {∞s} and edge set

E = E(Zk)
⋃
{{∞s} ∪ E : E ∈ E(Zk−1)}.

Since θ |V̂= θ̂ ∈ Ant(Zk) ∩ Ant(Zk−1), and θ �xes ∞s, it follows that E ∈ E
if and only if Eθ ∈ EC . Hence θ ∈ Ant(Zk) and Zk is self-complementary.
Moreover, for all v ∈ V̂, we have

valZk
(v) = valZk

(v) + valZk−1(v)
= valZC

k
(v) + valZC

k−1
(v)

= valZC
k

(v).

Since the antimorphism θ �xes ∞s, we also have valZk
(∞s) = valZC

k
(∞s), and

so valZk
(v) = valZC

k
(v) for all v ∈ V̂ ∪ {∞} = V. Thus Lemma 3.1(1) implies

that Zk is 1-subset-regular.
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Hence by induction on s, there exists a 1-subset-regular self-complementary
k-hypergraph on V with antimorphism θ for every positive integer s < k[2a].

Proof of Theorem 1.2: The necessity of condition (1) follows from Theo-
rem 1.1. Suppose that n satis�es condition (1). Then n = m2a + s for some
positive integers a, m, and s such that max{i : 2i | k} < a ≤ min{i : 2i > k} and
1 ≤ s < k[2a]. If a = 1, then 1 ≤ s < k[2a] cannot hold, and so in this case the
su�ciency of condition (1) holds vacuously. On the other hand, if a ≥ 2, then
the existence of a 1-subset-regular self-complementary k-hypergraph of order n
follows from Lemma 3.4, and so condition (1) is su�cient in this case also.

Theorem 2.1 shows that condition (1) is equivalent to condition (3), and so
condition (3) is an alternative statement of the necessary and su�cient condi-
tions of Theorem 1.2 on the order n of a 1-subset-regular self-complementary
k-uniform hypergraph, in terms of the binary representation of k.

A Appendix
The next two technical lemmas are used in the proof of Lemma 3.2 in Section 3.

Lemma A.1. Let α, i, and j be integers such that 0 ≤ i, j ≤ 2α, i + j is odd,
and 1

2α

(
2α

i

)(
2α

j

)
is an integer. Then 1

2α

(
2α

i

)(
2α

j

)
is odd if and only if i ∈ {0, 2α}

or j ∈ {0, 2α}.
Proof: Since i + j is odd, either i or j must be odd. First suppose that i is
odd. Now

1
2α

(
2α

i

)(
2α

j

)
=

1
2α − i

(
2α − 1

i

)(
2α

j

)
.

Since i ≤ 2α and i is odd, any integer r in the support of the binary repre-
sentation of i satis�es r ≤ α − 1. Since (2α − 1)[2r+1] ≥ i[2r+1] for all such r,
it follows that

(
2α−1

i

)
is odd. Now if j 6∈ {0, 2α}, then (2α)[2r+1] = 0 < j[2r+1]

for some r in the support of the binary representation of j, which implies that(
2α

j

)
is even. Since 2α − i is odd, this implies that the integer 1

2α

(
2α

i

)(
2α

j

)
=

1
2α−i

(
2α−1

i

)(
2α

j

)
is even. On the other hand, if j ∈ {0, 2α}, then (

2α

j

)
= 1, and

so 1
2α

(
2α

i

)(
2α

j

)
= 1

2α−i

(
2α−1

i

)(
2α

j

)
= 1

2α−i

(
2α−1

i

)
is an odd integer. Thus if i is

odd, then 1
2α

(
2α

i

)(
2α

j

)
is odd if and only if j ∈ {0, 2α}.

By a symmetric argument, if j is odd, then 1
2α

(
2α

i

)(
2α

j

)
is odd if and only if

i ∈ {0, 2α}.

Lemma A.2. Let r be a nonnegative integer. Suppose that λ1, λ2, . . . , λn is a
sequence of integers such that 0 ≤ λi ≤ r for all i ∈ {1, 2, . . . , n}. Then there is
a function v : {λ1, λ2, . . . , λn} → {−1, 1} such that 0 ≤ ∑n

i=1 λiv(λi) ≤ r.

17



Proof: The proof is by induction on n. If n = 1, then take v(λ1) = 1. If
n = 2, then if λ1 ≤ λ2, take v(λ1) = −1 and v(λ2) = 1, and if λ1 ≥ λ2, take
v(λ1) = 1 and v(λ2) = −1. Hence the result holds when n ∈ {1, 2}.

Let n > 2 and suppose the result holds for all such sequences of length
n − 1. Let λ1, λ2, . . . , λn be a sequence of integers such that 0 ≤ λi ≤ r
for all i ∈ {1, 2, . . . , n}. By the induction hypothesis, there is a function v′ :
{λ1, . . . , λn−1} → {−1, 1} such that

∑n−1
i=1 λiv

′(λi) = λ for some λ such that
0 ≤ λ ≤ r. By the base case n = 2, there is a function v̂ : {λ, λn} → {−1, 1} such
that 0 ≤ λv̂(λ)+λnv̂(λn) ≤ r. Let v be the function v : {λ1, . . . , λn} → {−1, 1}
such that v(λi) = v̂(λ)v′(λi) for i ∈ {1, 2, . . . , n− 1}, and v(λn) = v̂(λn). Then∑n

i=1 λiv(λi) = λv̂(λ) + λnv̂(λn) and so 0 ≤ ∑n
i=1 λiv(λi) ≤ r as required. The

result follows by induction.
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