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Abstract In this article, we present an approach to Land use and Land cover
(LULC) mapping from multispectral satellite images using deep learning meth-
ods. The terms satellite image classification and map production, although used
interchangeably have specific meanings in the field of remote sensing. Satellite im-
age classification describes assignment of global labels to entire scenes, whereas
LULC map production involves producing maps by assigning a class to each pixel.
We show that by classifying each pixel in a satellite image into a number of LULC
categories we are able to successfully produce LULC maps. This process of LULC
mapping is achieved using deep neural networks pre-trained on the ImageNet
Large-Scale Visual Recognition Competition (ILSVRC) datasets and fine-tuned
on our target dataset, which consists of Landsat 5/7 multispectral satellite im-
ages taken of the Province of Manitoba in Canada. This approach resulted in
88% global accuracy. Performance was further improved by considering the state-
of-the-art generative adversarial architecture and context module integrated with
the original networks. The result is an automated deep learning framework that
can produce highly accurate LULC maps images significantly faster than current
semi-automated methods. The contribution of this article includes extensive ex-
perimentation of different FCN architectures with extensions on a unique dataset,
high classification accuracy of 90.46%, and a thorough analysis and accuracy as-
sessment of our results.

Keywords Deep Learning, Land Use, Land Cover, Maps, Classification, Deep
Neural Networks, Satellite Images.

1 Introduction
This paper presents an approach to classify pixels obtained from satellite images

using deep neural networks developed for semantic segmentation. This approach is
directly applicable to the creation of Land-Use and Land-Cover (LULC) maps. The
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presented solution is increasingly important since the abundance and affordabil-
ity of satellite imagery has led to many government and private industries using
LULC maps as a fundamental tool for large-scale monitoring of land resources
changes. For instance, these maps are vital in areas such as flood forecasting, ur-
ban and rural land-use planning, resource management, and disaster management
and planning [I]. In this regard, land-use classes are considered man-made areas
(e.g, roads, agriculture, cities) while land-cover classes are identified as natural
earth resources (e.g. water, forests, marshlands, bogs).

The problem of semantic segmentation of digital images translates directly to
the problem of LULC map production in which satellite image pixels are classified
into a number of LULC classes. Traditionally, machine learning algorithms such
as k-means clustering and maximum likelihood classifier [2, [3] have been used to
classify satellite images or produce meaningful maps from satellite data. How-
ever, the use of deep learning methods to solve domain specific problems has been
increasingly popular and successful in the last decade [4} [5]. Specifically, deep con-
volutional neural networks (DCNN) have excelled in computer vision tasks [6] [7].
The ability of DCNNs to learn low-level and high-level features in a hierarchi-
cal manner makes them suitable for computer vision problems such as semantic
segmentation of images considered by [g].

In [9, 10], the fully convolutional network (FCN) originally developed by []] for
semantic segmentation was modified and adapted for automating the production
of LULC maps. In this paper, DCNNs originally designed for image classification
and object detection tasks are adapted into FCNs that take arbitrary sized input
and produce image segmentations [g], i.e. each pixel is labeled with a LULC class
(see Fig[l)). Specifically, three pre-trained DCNNs (VGGNet [11], GoogLeNet [12],
ResNet [13]) — referred to as base networks — are used for LULC map production
and analysis. Moreover, this paper introduces two specific extensions to the base
networks: a context module and an adversarial extension with the intent to further
improve the quality of the produced LULC maps. The context-module developed
by [14] is a standalone plug-in configured with convolution layers. By adding this
module, features flowing from the base networks are processed to uncover more
context information while preserving resolution. The second extension involves po-
sitioning the base networks in an adversarial setting [15] by adding a discriminator
network. With this extension a new loss function is formulated and optimized to
impose higher-order consistency across labeled pixels. Each extension is added to
augment performance of the base networks. This ensemble of base networks and
their extensions form our proposed deep learning framework.

This paper presents a case study in exploring recent work on DCNNs for LULC
map production of Landsat 5/7 multi-spectral satellite images using LULC classes
defined by GeoManitobaﬂ The presented work is an extension of [I0], where FCN-
8 VGG-16, CRF-RNN, and Dilation 8 (both frontend and context) networks were
used on the Landsat 5/7 Manitoba satellite image data for LULC map produc-
tion. The best solution reported in [I0] produced an average accuracy of 88%. The
motivation of this work is to improve the results reported [10] by: i) investigating
other deep learning architectures to further improve the classification accuracy,
ii) propose a generalized deep learning framework to reduce the time spent pro-

1 A government agency mandated to create land-use/land-class maps of the province of
Manitoba
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Fig. 1 Overview of proposed deep learning framework for LULC mapping and analysis

ducing LULC maps, and iii) to provide more effective DCNN architectures for
LULC map production of 16-bit Landsat 8 GeoManitoba data. The contribution
of our work is as follows: i) an improvement in the classification of global accuracy
from 88% to 90.46%, ii) extensive experimentation of different FCN architectures
with extensions on a unique dataset, and iii) a dramatic reduction in the time it
takes to produce these LULC maps (from 4800 hours to 8 minutes and 42 sec-
onds). The main significance of these contributions is the increase in accuracy. As
is well known, improvements in accuracy become exceedingly difficult as a sys-
tem approaches 100% accuracy. For example, consider the ImageNet classification
challenge. From 2012 to 2015, the accuracy increased from 84.7% to 96.4% with
an average increase of 3.9% per year. In 2016 and 2017, the accuracy went from
97.0% to 97.5% with an average increase of 0.5% increase per year after 2015.

This paper is organized as follows: In Section [2] works related to deep learning
methods for semantic segmentation in general and for LULC mapping and analysis
in particular, are presented. In Section [3| a detailed description of base networks
used in the research is given. In Section [4 the proposed extensions to the base
networks are discussed, followed by implementation details in Section [5} Results
are discussed in Section [f] We conclude the paper in Section [7}

2 Related Works

The works related to this paper is presented in two separate sub sections. The
first section is devoted to deep learning-based works for semantic segmentation
since it forms the basis for LULC mapping and analysis in this paper. The second
section discusses deep learning techniques specifically for LULC classification and
analysis.
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2.1 Deep Learning for Semantic Segmentation

Pixel-wise classification tasks, such as semantic segmentation, aim to understand
images at a pixel level. Semantic segmentation of digital images involves assign-
ing classes (e.g. road, grass, cat, dog) to individual pixels in an image. The goal
is to cluster image pixels that belong to the same perceptual objects within the
image thereby giving contextual meaning to the pixels. Segmentation algorithms
that generally do not use DNNs are referred to as traditional approaches. Thoma
[16] gives an overview of traditional unsupervised methods for segmentation, in-
cluding k-means, decision forests and support vector machine algorithms. Modern
DCNN architectures such as AlexNet [6], VGGNet [11] and GoogLeNet [12] have
attained remarkable success in image classification tasks and based on this achieve-
ments Long et al [§] adapts modern DCNN architectures (AlexNet, VGGNet,
GoogLeNet) into fully convolutional networks (FCN) for use in semantic segmen-
tation. Typically, classifier networks (such as AlexNet, VGGNet, GoogLeNet) take
fixed-sized inputs and produce non-spatial outputs. This means the fully connected
layers present in these networks have fixed dimensions that do not relate to the
original spatial coordinates of the input image. For the purpose of semantic seg-
mentation, Long et al. cast the fully connected layers into fully convolutional
layers, i.e., the network can take input of any size and produce spatial output
maps. However, the output maps produced are coarse due to the sub-sampling
layers present in the network. In order to solve this problem, the authors define
skip connections that combines deep feature-rich coarse maps with appearance
information from shallow layers of the network. The result is a network able to
produce more accurate and detailed semantic samples. Three skip architectures
(FCN-32s, FCN-16s, FCN-8s) combine information from different shallow layers
of the network producing finer output maps that contain high-level information.
These output maps are then up-sampled by transpose convolutions to the original
resolution of the input image [17]. Long et al. [§] train the FCNs through the use
of transfer learning [18], which is the process of using a network trained on a larger
dataset (in this case on ImageNet), and then fine tuning it with a smaller dataset.
Next, [14] adapts the VGG-based network proposed in [8] by removing pooling and
striding layers and making heavy use of dilated convolutions in subsequent layers.
Furthermore, a context module that uses dilated convolutions to systematically
aggregate multiscale-contextual information while retaining resolution was intro-
duced. In addition results are reported in [I0] based on the architectures described
n [14]. Conditional Random Fields as Recurrent Neural Networks (CRFasRNN)
described in [19], tackles dense pixel prediction using Conditional Random Fields
(CRF's). When used in the context of pixel-wise label prediction, CRFs models
pixel labels as random variables that form a Markov Random Field (MRF) when
conditioned upon an image. More specifically, they formulate each step in an iter-
ation of the mean-field algorithm [20] as a stack of CNN layers in a dense CRF.
The result is that the iterative mean-field inference is considered as a Recurrent
Neural Networks (RNN). Furthermore, this formulation is combined with FCN-8s
of [8] and trained end-to-end. Results are also reported in [I0] based on CRFas-
RNN [19]. Next, DeepLab v2 [21] explores the use of convolution with up-sampled
filters called atrous convolution to enlarge the field of view without increasing the
number of parameters, which is the same behaviour as the dilated convolutions
n [I4]. Furthermore, atrous spatial pooling (ASPP) is introduced for multi-scale
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processing, and CRFs are used as a post-processing step to improve localization
performance. DeepLab v3 [22] further improves on the latter. Another popular
architecture for segmentation is Unet [23] which builds on FCNs [8] for biomedical
segmentation.

2.2 Deep Learning for LULC Mapping and Analysis

As in many domains, the success of DNNs has prompted researchers to use them for
problems in the field of remote sensing. A particular task of interest in the remote
sensing community is LULC mapping and analysis. The authors of [24] proposed
an approach of using FCNs for classification of high resolution remote sensing
imagery into a number land-use/cover classes. The FCN model proposed in this
approach uses dilated convolutions and is modified for multi-scale classification.
Furthermore, this approach incorporates CRF's in a post-processing step which
takes into account more spatial cues with the end goal of improving accuracy. The
work of [25] decouples the task of land-use and land-cover production individually
and tackles each task separately. For land cover classification of multi-spectral re-
mote sensing imagery, the author adopt SegNet model [26] and compares different
variants, in contrast LiteNet model [27] and other variants are used for land-use
classification. Remote sensing imagery can be categorized based on spatial and
spectral resolution, [28] classified hyperspectral remote sensing imagery to pro-
duce LULC maps. Typically, this type of satellite images contains 10s to 1000s of
bands, the authors, in this case, proposed a deep learning framework that includes
a Deep Belief Network(DBN) which learns deep representations and CRFs that
considers spatial information trained end-to-end similar to the approach of [19] for
LULC classification. Similarly, Alam et al [29] incorporate CRF with CNN into a
common framework for hyperspectral image segmentation.

The terms satellite image classification and map production have specific mean-
ing in the field of remote sensing. Satellite image classification describes assignment
of global labels to entire scenes. In this process spatial information is discarded
from the output since only a single class label is associated with the scene. In
contrast, LULC map production involves producing maps by assigning a class to
each pixel. Thus, spatial information is maintained to provide contextual meaning.
The pixel-wise classification method of satellite imagery presented in this paper
differs from generic satellite image classification. In this light, it is worth men-
tioning such related works differ from the map production approach that also
uses deep learning. Castelluccio et al. [30] explored the use of DCNNs for classi-
fication of remote sensing scenes using two contemporary architectures CaffeNet
and GoogleNet. Here, two datasets, UC-Merced and Brazilian Coffee Scenes, were
considered since each dataset has unique features. UC-Merced spatial and spec-
tral characteristics (high resolution, low-level features, and RGB color space) were
closely matched to general optical images, while Brazilian Coffee Scenes include
the near-infrared (NIR) band typically found in remote-sensing data. CaffeNet
and GoogleNet were implemented to classify both datasets independent of each
other UC-Merced (21 classes), Brazilian Coffee Scenes (4 classes). Results from
both models outperformed other state-of-the-art classical techniques paired with
the same data and classification problem. Basu et al. [3T] proposed a novel classifi-
cation framework for classifying satellite images called DeepSat. Here, 150 features
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were extracted from two datasets (SAT-4 and SAT-6) containing four bands (red,
green, blue and NIR). Some of the features extracted included energy, entropy, ho-
mogeneity, contrast, maximum probability, saturation, intensity, and image chan-
nels. All features were normalized to lie in the range [0, 1] before being fed to
a Deep Belief Network (DBN) classifier trained using Contrastive Divergence al-
gorithm [32]. This network outperforms the classical DBN on the target dataset.
Marmanis et al. [33] explores a system of extracting representations from DCNNs
pretrained on ImageNet dataset for classification of remote sensing images. The
system follows a two stage classification scheme. In the first stage, original train-
ing data is fed into a pretrained DCNN model. Information obtained from a set
of deep activations in the last layers of the pretrained DCNN is then fused to a
single vector reshaped into a 2-D array. In the second stage, this information is
received by a CNN supervised classifier with labels to classify images. This system
has three positive implications; richer information obtained in the deeper layers
of pretrained networks contributes to higher classification accuracy, information
fusion from different layers influences accuracy since multiple scales of relevant
information exists at these layers, by reshaping the single vector into 2-D array
a reduction of parameters occurs and features are better processed by the CNN
classifier.

3 Base Networks for LULC mapping and analysis

This section introduces three popular DNN architectures which we refer to as
base networks. Specifically, VGGNet [11], GoogLeNet [I2] and ResNet [I3] are
popular networks that have been submitted to past ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [7]. Each architecture was originally designed
for the purpose of image classification and object detection. These networks play
an important role in the solution proposed here as they are used as the base
networks for the semantic segmentation approach defined in [8] (recall the base
network in [8] was a VGGNet). These base networks were originally designed as
classification networks that produce non-spatial outputs.

These classification networks can be re-purposed for semantic segmentation
tasks by re-interpreting fully connected layers as fully convolutional layers [§].
Here, these base networks are adapted into FCNs (labeled as FCN-[VGG, ResNet,
GoogLeNet]) that take arbitrary sized input and produce semantic segmenta-
tions [8]. This adaptation is rather trivial and the output segmentation images
produced are coarse with spatially reduced dimension size. To produce good rep-
resentative spatial output maps, the coarse output is passed through a stack of
transpose convolution layers which increases dimension size and connects coarse
output to dense pixels [8]. In this design, the first part of the network (i.e. the
base network) is referred to as an encoder that acts as a feature extractor encoding
input information into a compressed vector, and the second part is considered a
decoder that performs upsampling of the compressed vector to match input spa-
tial dimension. An example of this network structure is the FCN-VGG depicted
in Fig. 2|

The original base networks are structured to take arbitrary sized input (H X
W x 3) suited for general-purpose optical images that have three channels (depth)
red, green and blue (RGB). The Landsat 5/7 satellite images used in this work
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Fig. 2 FCN-VGG: Encoder-Decoder Architecture

are intrinsically different in that they contain six channels: red, green, blue, and
three infrared. Due to this fact, the input layer of the original base networks were
modified to take input as (H x W x 6). Originally, the base networks were trained
on the ImageNet dataset containing ~1.2 million RGB-based images. We take
weights of the base networks that were pre-trained on the ILSVRC and double the
number of parameters on the first layer and initialize these new weights randomly
from a uniform distribution. In other words, only weights for each depth slice in
this layer doubles. For instance, consider a network where the first convolution
layer has dimensions (3 x 3 x 3 x 64). By doubling weights of the depth slice, the
layer dimensions become (3 x 3 X 6 x 64). Note, only the depth slice weights were
modified to accommodate three additional channels. All other parameters remain
the same. In addition, all fully-connected layers were removed from the original
base networks, which follows the approach described in [§]. In other words, these
classifiers were adapted for dense prediction and up-sampling using transpose con-
volutions. The details of each network architecture and modifications are described
below.

3.1 FCN-VGG

The VGG network architecture VGG was named after the Visual Geometry Group
at the University of Oxford. It is a popular network that secured second position
in the ILSVRC14 classification task [II]. In this work, the VGG-16 layer net is
re-purposed for semantic segmentation (in the same manner as Long et al []]).
VGGnet consists of convolution layers, max pooling layers, and fully convolutional
layers. In regards to VGG-16, the encoder part of the network has 16 layers while
the decoder part has 3 layers. The convolution layers are stacked top to bottom
to receive corresponding input from each layer, and the convolution kernel size is
fixed with varying depth (3 x 3 x X'). Max pooling layers are positioned in between
convolution layers to down-sample input coming from the previous layer. The max
pooling kernel size is fixed at (2 x 2 x X), where the depth size is the same as the
previous layer. Fully convolutional layers appear at the end that produce feature
maps, called score maps, containing contextual meaning . Additionally, score maps
are passed through a stack of up-sampling layers which increase dimensionality of
the output to match original input. This final process is called transpose convo-
lution with strides [I7]. To summarize, the same architecture as described by [§]
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is used in this work with only a modification of the first layer as described above.
The network is fully illustrated in Table which shows operations across all layers
of the FCN-VGG-16 network.

Table 1 FCN-VGG-16 network architecture used in this work.

layer name kernel size / stride output size

input(224 x 224 x 6 satellite image)
convl.x | {3x3,64/2}x2 | (224x224x64)
pooll | {2x2/2} (112 x 112 x 64)

| |
| |
| | |
| conv2.x | {3x3,128 /1}x2 | (112x 112 x 128) |
| pool2 | {2x2/2} | (56 x 56 x 128) |
| conv3.x | {3x3,256/1}x3 | (56 x 56 x 256) |
| pool3 | {2x2/2} | (28 x 28 x 256) |
| convd.x | {3x3,512/1}x3 | (28x28x512) |
| poold | {2x2/2} | (14x14x512) |
| convb.x | {3x3,512/1}x3 | (14x14x512) |
| pools | {2x2/2} | (7x7x512) |
| conv_fe.x | {1x1,4096 / 1} x2 | (7 x 7 x 4096) |
| conv_final | {1x1,19 /1} | (7x7x19) |
‘ upsampling layers (transpose convolutions with stride) ‘
| tconv_fuse_poold | {4x 4,512/ 2} | (14x14x512) |
| tconv_fuse_poold | {4 x 4,256 / 2} | (28 x 28 x 256) |
tconv_final {16 x 16, 19 / 8} (224 x 224 x 19)

3.2 FCN-ResNet

The ResNet architecture introduced residual connections between layers of deep
convolutional networks allowing network depths to be increased. This network won
1st place in the ILSVRC14 classification task [13]. In this work, a 101-layer deep
network variant of ResNet (ResNet-101) is adapted for dense pixel classification.
The convolutional layers in this network are defined in a bottleneck architecture
that has a kernel size of (1 x 1 x X),(83 x 3 x X), (1 x 1 x X) stacked together.
For each residual connection a stack of convolutional layers is defined, where the
(1 x 1 x X) kernels are responsible for dimensionality reduction and restoration.
With this bottleneck design, max pooling layers are eliminated in between convo-
lutional layers. Furthermore, in this work, the last average pooling layer and fully
connected layer are removed. The output score maps are passed through a stack
of up-sampling layers with skip connections from previous layers (again following
the approach of [§]). Otherwise, the ResNet-101 base architecture (without fully
connected layer and softmax classifier) described in [13] is retained, and only the
first layer modified. The network architecture is fully defined in Table
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Table 2 FCN-ResNet-101 network architecture used in this work.

layer name kernel size / stride output size

input(224 x 224 x 6 satellite image)

upsampling layers (transpose convolutions with stride)

tconv_fuse_convd.x | {4 x 4, 1024 / 2} | (14 x 14 x 1024)
| tconv_fuse_convd.x | {4x 4,512 /2} | (28 x 28 x 512)
tconv_final {16 x 16, 19 / 8} (224 x 224 x 19)

| |
| convl | {7x7,64/2}x2 | (112 x 112 x 64) |
| maxpool | {3x3/2} | (56 x 56 x 64) |
| conv2.x | {1x1,64—3x3,64—1x1,256}x3 | (56 x 56 x 256) |
| conv3.x | {1x1,128—3x3,128 —1x1,512} x4 | (28x28x512) |
| convd.x | {1x1,256 —3x3,256 —1x1,1024} x 23 | (14 x 14 x 1024) |
| convb.x | {1x1,512—3x3,512— 1x1,2048} x3 | (7x7x2048) |
| conv_fc | {1x1,19} | (7x7x19) |
| |

|

|

3.3 FCN-GoogLeNet

GoogleNet, also called Inception, arranges the operational layers in a network
topology in which multiple convolution layers (with pooling) are structured into
modules. This novel network structure, proposed by [12], won 1st place in the
ILSVRC15 classification task. Although new improvements [34] [35] has been made
on the original Inception network [I2], the very first version with 22 layers was
used in this work for dense pixel classification in order to simplify implementation.
Each module contains multiple convolution layers with kernel sizes (1 x 1 x X),
(3x3xX), (5x5x X) and (3 x 3 x X) and max pooling layer connected in
parallel. This network is shown in Fig. [3l The (1 x 1 x X) convolution kernels
perform dimension reduction along the depth vector of the input, reducing the
number of parameters, to make the network computationally efficient.

concatenation

‘ 3x3 ‘ ‘ 5x5 ‘ 1x1

conv3 conv_pool

1x1
j i ]
1x1 3x3
max_pool

X
conv5_reduce

¥

1x1
conv3_reduce

previous layer

Fig. 3 Architecture Design of Inception Module

Multiple operational layers in the module learn discriminative patterns of the
feature maps, and, at the end, all resulting features maps from the parallel connec-
tions are concatenated. Just as with the previous networks, the original architec-
ture was used for this work. Again, the first layer of the network was modified for
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6-channel input, and the last layers of the network, including the average pooling
layer, linear layer and softmax classifier were removed before passing the out-
put from the last inception module into a stack of up-sampling layers with skip
connections following the approach of [§]. Table [3| shows details of the network
structure.
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Table 3 FCN-GoogLeNet network architecture used in this work.

layer name

kernel size / stride

output size

input(224 x 224 x 6 satellite image)

convl

{7x7,64/2}x2

(112 x 112 x 64)

{3x3/2}

(56 x 56 x 64)

conv2.x

{3x 3,192/ 1}

(56 x 56 x 192)

|
|
| maxpool
|
|

maxpool

{3x3/2}

(28 x 28 x 192)

inception(3a)

{convl, 64 / 1}
{conv3_reduce, 96 / 1}
{conv3, 128 / 1}
{conv5_reduce, 16 / 1}
{conv5, 32 / 1}
{conv_pool, 32 / 1}

( 28 x 28 x 256)

inception(3b)

{convl, 128 / 1}
{conv3_reduce, 128 / 1}
{conv3, 192 / 1}
{conv5_reduce, 32 / 1}
{conv5, 96 / 1}
{conv_pool, 64 / 1}

(28 x 28 x 480

maxpool

{3x3/2}

| (14x 14 x 480)

inception(4a)

{convl, 192 / 1}
{conv3_reduce, 96 / 1}
{conv3, 208 / 1}
{conv5_reduce, 16 / 1}
{conv5, 48 / 1}
{conv_pool, 64 / 1}

(14 x 14 x 512)

inception(4b)

{convl, 160 / 1}
{conv3_reduce, 112 / 1}
{conv3, 224 / 1}
{conv5_reduce, 24 / 1}
{conv5, 64 / 1}
{conv_pool, 64 / 1}

(14 x 14 x 512)

inception(4c)

{convl, 128 / 1}
{conv3_reduce, 128/ 1}
{conv3, 256 / 1}
{conv5_reduce, 24 / 1}
{conv5, 64 / 1}
{conv_pool, 64 / 1}

(14 x 14 x 512)

inception(4d)

{convl, 112 / 1}
{conv3_reduce, 144/ 1}
{conv3, 288 / 1}
{conv5_reduce, 32 / 1}
{conv5, 64 / 1}
{conv_pool, 64 / 1}

(14 x 14 x 528)

inception(4e)

{convl, 256 / 1}
{conv3_reduce, 160 / 1}
{conv3, 320 / 1}
{conv5_reduce, 32 / 1}
{conv5, 128 / 1}
{conv_pool, 128 / 1}

(14 x 14 x 832)

maxpool

{3x3/2}

(7 x 7 x 832)

inception(5a)

{convl, 256 / 1}
{conv3_reduc, 160 / 1}
{conv3, 320 / 1}
{conv5_reduc, 32 / 1}
{convb, 128 / 1}
{conv_pool, 128 / 1}

(7 x 7 x 832)

inception(5b)

{convl, 384 / 1}
{conv3_reduc, 192 / 1}
{conv3, 384 / 1}
{conv5_reduc, 48 / 1}
{conv5, 128 / 1}
{conv_pool, 128 / 1}

(7 x 7 x 1024)

conv_final

{I1x1x19/1}

| (7x7x19)

upsampling layers (transpose convolutions with stride)

tconv_fuse_inception(4e) | {4 x 4, 832 / 2}

| (14 x 14 x 832)

tconv_fuse_inception(3b) | {4 x 4, 480 / 2}

| (28 x 28 x 480)

tconv_final

{16 x 16, 19 / 8}

(224 x 224 x 19)
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4 Proposed Extensions to Base Networks

A major contribution of this paper is the network extensions introduced to further
improve accuracy. Specifically, two methods are presented with the sole aim of
improving performance. Each method is tested individually for each base network.
Subsequently, an ensemble of both methods is tested on each of the base networks.
The results achieved from the extensions are a major improvement to our previous
results reported in [I0] and adds to the performance of base networks presented
(see, e.g., Section @) In this light, we present both extensions in the following
subsections.

4.1 Context Module Extension

The first extension was to add a vestige plug-in called a context module. This
module introduced in [I4] is explicitly designed as a plug-in system consisting of
dilated convolution layers stacked from top to bottom. By incorporating dilated
convolution layers, the convolution operation is modified to include a dilation
factor which expands the field of view exponentially while its parameters grows
linearly [17]. With little increase to the complexity of the base networks, we append
this module at the end to take up-sampled feature maps as input and pass them
through a series of these layers to expose more contextual information thereby
increasing accuracy. The architecture of this module is summarized in Table
Note that dilation factors and convolution filters size considered in designing this
module is the same as in [I4].

Table 4 Input/output characteristics of the context module used in this work

layer name | kernel size / dilation | output size

input(224 x 224 x 19 feature maps)

| |
| |
| ctx_1 | {3x3,38/1} | (224 x 224 x 38) |
| ctx_2 | {3x3,38/1} | (224 x 224 x 38) |
| ctx3 | {3x3,76/2} | (224 x 224 x 76) |
| ctx4 | {3x3,152/4} | (224 x 224 x 152) |
| ctx5 | {3x3,304/8} | (224 x 224 x 304) |
| ctx 6 | {33,608/ 16} | (224 x 224 x 608) |
| ctx_7 | {3x3,608/1} | (224 x 224 x 608) |
| ctx8 | {3x3,19/1} | (224 x 224 x19) |

4.2 Adversarial Extension

The semantic segmentation networks were further extended by adding an ad-
versarial network. Specifically, each of the FCN-[VGG, ResNet, GoogLeNet] net-
works were trained alongside a discriminator network that discriminates between



Title Suppressed Due to Excessive Length 13

ground-truth and predicted output (classes). This process mimics a GAN [15] ar-
chitecture. To state this another way, our FCN (i.e., either FCN-[VGG, ResNet,
GoogLeNet]) is redefined as a generator and is combined with a convolutional
neural network-based discriminator to form a GAN. The architecture of the dis-
criminator is adapted from [36], wherein configuration for the layers follows the
pattern: Convolution-Batch Normalization-Leaky Rectified Linear Unit (ReLU).
In addition, the discriminator uses receptive fields of size 256 x 256 pixels, which
proved effective on input with 224 x 224 pixels. The discriminator network func-
tion is to discriminate between the ground-truth maps as real and predicted maps
as fake while the generator network function is to the fool the discriminator by
producing maps as close to ground-truth as possible. Each network is trained inde-
pendently of each other with the main goal of propagating signals that encourages
the generator network to produce better and more accurate results. This process
is depicted in Fig. [

___Real

" LULC Map(Ground-truth)
@ (=
L Fake

Discriminator: DCNN

'_ LULC Map(Predicted)

Fig. 4 Adversarial Extension

As a result of the structural changes made to our networks, the loss functions
for the generator and discriminator are based on the approach by Luc et al. [37].
The generator loss function combines multi-class entropy loss, a standard loss
function used in our base networks, with a binary class entropy loss. Formally, the
loss function is based on the following: ground-truth (denoted by y), predicted
output (denoted by ), C' denotes the number of classes (see, e.g., Fig. ), yic is
the correct probability ¢ for class ¢, and ;. is the predicted probability 4 for class
c. Thus, the multi-class entropy loss (denoted by £mce) is defined as

C
émce(y,y) = _Z Yic ln(gzc) (1)
c=1

Next, z denotes the binary probability for predicted output (0) and ground-truth
(1), and Z represents predicted probability between (0 and 1). Then, the binary
class entropy loss (denoted by £pce) is defined as

oee(z,2) = —(2In(2) + (1 — ) In(1 — 2)). (2)

Given a dataset N containing x, number of training images and corresponding
ground-truth maps y» the generator model g(-) is a trainable function which can be
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interpreted as a conditional probability model g(xy) = P(yn | x»). The generator
g(-) is trained to produce target maps by minimizing multi-class entropy loss. In
contrast, the discriminator model assuming binary classification with a trainable
function d(-) can be interpreted as a joint probability model d(x,,y») = P(0,1).
The discriminator model predicts that y, is the ground-truth label map of z,
by assigning labels as (real = 1) to ground-truth and discriminates label maps
g(zr) produced by the generator by assigning labels as (fake = 0). Training the
discriminator translates to minimizing the loss function

N
D lhee(d(Xn,¥n), 1) + Loce (d(xn, 9(xn)), 0). (3)

n=1

The generator in an adversarial role not only minimizes the multi-class entropy
loss, but also aims to degrade performance of the discriminator by producing very
similar outputs to corresponding ground-truth. Training the generator translates
to minimizing the loss function

N
Z mce(g Xn Yn) +>\£bce(d(x”ﬂg(x’ﬂ)) ].), (4)

note, A is applied as a constant regularization function.

Furthermore, the parameters (84,04) of the generator and discriminator respec-
tively are adjusted by minimizing a hybrid loss function defined as

0(8g,8a) = Lmee(9(%n), ¥n) =A(loce (d(%n, ¥n), 1) +Loce (d(%n, g(xn)), 0)). (5)

n=1

Lastly, it is important to mention the convention followed for training the base
networks in this adversarial setting. The base networks are pre-trained. In the ad-
versarial setting the pre-trained weights are restored while the discriminator starts
training from scratch. This can be re-described as fine-tuning the base networks
with a discriminator. However, in this setting such fine-tuning is based on the
redefined loss functions. By restoring the previous state of the base network which
has reached a point of diminishing accuracy, any improvement in accuracy is easily
attributed to the addition of a discriminator network.

Burns Grass Cultural

Agriculture
Fens

Water Forage Crops Marsh Gravel Conifer Clouds

|

Fig. 5 GeoManitoba LULC Classes
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5 Implementation Details
5.1 Dataset Acquisition

The dataset used in this work was originally described in [I0] and is briefly de-
scribed here. Specifically, Landsat 5/7 satellite images of the southern agricultural
growing region of Manitoba (see the red outline in Fig. @ are used to evaluate
and compare the accuracy of the networks described here. This area is referred
to as southern extent of Manitoba, and the size of this region is approximately
148,800 km?. These images differ from typical RGB images since satellite data
contains three additional infrared channels, namely near infrared (NIR), short-
wave infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2). As was mentioned,
this difference necessitated the base network modifications described in Section [3
Each pixel in the satellite image represents a 30 m x 30 m square area of land.
The dataset contains raw Landsat 5/7 satellite images (i.e. unclassified data) and
LULC (i.e., labeled, ground-truth data). The labeled data was created using semi-
automated methods used in [38] and ground-truthed by GeoManitoba. A total of
eighteen Landsat 5/7 scenes (see the green outlines in Fig. @ were used to produce
the maps. Example labels include water, grassland, marsh, deciduous, coniferous,
road, and agriculture. The full list is given in Fig. [5] and an example of a Geo-
Manitoba LULC map created from Landsat 5/7 data from 2004 is given in Fig.
Additionally, the GeoManitoba dataset was augmented with satellite images con-
taining clouds and a new class was added to the list provided by GeoManitoba.
This was done to prevent the networks from misclassifying clouds into one of the
other classes.

Fig. 6 Province of Manitoba with the southern agricultural growing region (red) and the
associated Landsat 5/7 scenes that cover this area (green).

5.2 Data Preparation and Augmentation

A key component to successfully training deep neural networks is the availability of
sufficient training data. For example, all base networks presented in this work were
originally trained on the ImageNet dataset [7], consisting of ~1,2 million images
and 1000 categories. The LULC map provided by GeoManitoba had a resolution
of (13777 x 16004 x 6), which posed some problems. Firstly, the original base
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Fig. 7 Example LULC map. (a) RGB components of a Landsat 7 satellite image of Manitoba,
and (b) the GeoManitoba LULC map produced from (a).

Fig. 8 2004 LULC map provided by GeoManitoba.

networks were structured to take input of (224 x 224). Secondly, maintaining the
original resolution of our dataset meant only 3 training examples were available
to work with. Subsequently, these problems were solved by dividing both the raw
satellite image and corresponding LULC maps into tiles of size (224 x 224 x 6). This
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approach proved to be effective in solving both issues. The process used to produce
the individual tiles from the full southern extent is depicted in Fig.[0] The first set
of tiles were produced by the method shown in Fig. namely the tiles were
non-overlapping. To further increase the size of the dataset, the tiling process in
Fig. was used to produce more tiles. In this case, tiles were overlapped by half
the size of the network input resolution, i.e. 224/2 = 112. Moreover, by starting
this process in each of the four corners of the full map depicted in Fig. the
total number of tiles generated in Fig. was increased by more than 4x due
to the fact that the resolution of the map in Fig. is not a multiple of 224. For
example, the non-overlapping tiling produces ~4000 plus tiles while the 1/2 tile
overlap produces ~17000 tiles.

1T

(c)
Fig. 9 Illustration depicting the tiling process. (a) GeoManitoba’s LULC map of southern
Manitoba, (b) non-overlapping tiles, and (c) 1/2 tile overlap.

5.3 Experimental Setup

All networks were trained and evaluated using the TensorFlow deep learning frame-
work [39] on a NVIDIA Digits DevBoxElcontaining four Titan X GPUs with 12GB
of memory per GPU, 64 GB DDR4 RAM, and a Core i7-5930K 3.5 GHz processor.
Training time for each network took an average period of 6-10 days. A mini-batch
size of 2 was maintained across all networks due to GPU memory constraints.
Subsequently, learning rates of 107%,107%,107° were used for experimentation,

2 https://developer.nvidia.com/devbox
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and the best results were achieved by starting with a learning rate of 10~%, main-
taining it for 100 epochs, and then reducing the learning rate to 10> for another
100 epochs, thereby completing training after 200 epochs. The Adam optimization
algorithm [40] was used to update network weights since it allowed the networks
to converge quickly when compared to RMSprop and (SGD + Momentum) opti-
mizer [41].

6 Experimental Results and Analysis

The dataset consists of training and validation sets. A larger set created from
tiling is separated following an 80/20 split. Each set is pruned to remove empty
tiles i.e., tiles in which all pixel values equal zero. In total, 18054 images are used
for training and 958 images for validation. As discussed, the networks evaluated
as follows: Base networks (consisting of FCN-[VGG-16, ResNet-101, GoogLeNet]),
base networks + context module, base networks + adversarial network, and base
networks + context module + adversarial network. The following common seg-
mentation metrics were aggregated over validation images (predicted and corre-
sponding ground-truth).

Let n;; be the number of pixels with ground-truth label ¢ whose prediction is
label j. Also, t; = ch:1 n;; denotes the total number of pixels labeled with label
i, where C' is the number of classes, n;; is the number of pixels labeled correctly,
and nj; is the number of pixels wrongly labeled. Firstly, global pixel accuracy is
the ratio of correctly classified pixels to total pixels summed over all classes and
it is defined as o

Zi:l Uz

ol .
Zi:l ti

Secondly, the per-class accuracy metric is computed as

¢ Z i (™)

which measures the ratio of correctly classified pixels in each class to total pixels,
averaged over all classes. Lastly, the Mean IOU defined as

(6)

szz : (8)

i=1 —1 Tji — Mg

which measures the average intersection over union (IOU) over all classes. Here,
IOU is the ratio of correctly classified pixels to the total number of pixels that are
assigned that class by the ground-truth and predicted.

Beginning with the base networks, Table [5| shows the results based on the
validation set. FCN-ResNet-101 performed the best with a global accuracy of
88.25%, which slightly outperformed FCN-VGG16, while FCN-GoogLeNet per-
formed worst with a global accuracy of 62.13%. Prior to experimentation, we
hypothesized the consecutive classifiers networks VGG — GooglLenet — ResNet
(that incorporated new architectures and improved on the weakness of their pre-
decessors) to perform consecutively better, similarly to the ILSVRC challenge
(92.7% — 93.3% — 96.4%, respectively). However, this was not the case with our
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results, specifically with the dense pixel classification tasks defined in this work.
Here, we observe max pooling operations as a drawback affecting performance,
which is also identified in [I4]. Although max pooling achieves translational in-
variance and yields computational savings, it is responsible for the loss of a lot of
valuable information. More precisely, max pooling disregards relationship between
pixels which is paramount for dense pixel classification. From the architectural
definitions in Tables [T} [2] [3] each base network uses max pooling operations in
varying degrees. Moreover, FCN-GoogLeNet liberally employs max pooling oper-
ations within its inception modules and across its structure. While this gives a
computational advantage, it negatively impacts classification performance in the
case of semantic segmentation of images. The speed in training FCN-GoogLenet
is very noticeable compared to the other base networks, but performance gains
quickly plateaus after a number of epochs. Initially, this problem was attributed
to the network overfitting, and dropout [42] and batch normalization [43] were em-
ployed to combat overfitting and help with training. However, neither approach
was able to improve the results. Next, the base networks were extended to include
an adversarial component (as described in Section . These results are reported
in Table[f] Observe that the improvement due to the adversarial network was min-
imal, but that all networks did improve. In this category FCN-VGG16 performed
best with a 0.93% increase over just the base network. Continuing on, Table
presents the results on extending the base networks with a context module. In
this case the improvements were more significant, and, again, were all better than
the previous two results. FCN-ResNet-101 performed best on the global accuracy
metric while FCN-VGG16 performed best on both mean accuracy and mean IOU
metrics. Finally, Table [8] gives the results from extending the base network with
both the context module and adversarial network. The results obtained in this cat-
egory provided the best overall result, with only VGG-16 performing worse than
just using the context module. More specifically, FCN-ResNet-101 performed best
among networks from all the categories. Examples of the LULC maps produced
by the best network FCIN-ResNet-101 4+ Context 4+ Adversarial Network
is given in Figs. & Each extension achieves performance gains in varying
degrees with the context module serving to aggregate contextual information and
adversarial extension providing a means of learning the structure for high-order
potentials to enforce label consistency. Consequently, we establish that combining
the strength of both extensions leads to significant performance gains.

Table 5 Results from the base networks

Global Accuracy  Per-Class Accuracy(Mean) Mean IOU

VGG-16 87.99% 81.50% 72.19%
ResNet-101 88.25% 81.92% 73.53%
GoogLeNet 62.13% 37.13% 29.06%

The results generated from the best network in form of an error matriz or
confusion matriz presented in Table 0] provides a base for LULC map analysis. The
error matrix shows the percent accuracy for each LULC class. The No Data class
is easily classified by the network since its label is very distinguishable from other
labels, i.e., this class is characterized by a vector of all zeros. Some other classes
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Table 6 Results from the base networks + adversarial network

Global Accuracy  Per-Class Accuracy(Mean) Mean IOU

VGG-16 88.92% 83.26% 74.17%
ResNet-101 88.40% 82.56% 74.10%
GoogLeNet 62.19% 37.15% 29.08%

Table 7 Results from the base networks + context

Global Accuracy  Per-Class Accuracy(Mean) Mean IOU

VGG-16 90.32% 83.93% 75.77%
ResNet-101 90.38% 83.81% 75.37%
GoogLeNet 77.64% 59.64% 49.04%

Table 8 Results of comparison between base networks 4+ context 4+ adversarial network

Global Accuracy  Per-Class Accuracy(Mean) Mean IOU

VGG-16 90.34% 83.63% 75.36%
ResNet-101 90.46% 84.14% 75.66%
GoogLeNet 77.71% 59.81% 49.20%

Fig. 10 Sample validation set results. (Top row) ground-truth labellings, and (bottom row)
result from FCN-ResNet-101 + Context + Adversarial

easily classified by the network are Agriculture, Water, Treed Bog, Forage and
Fens. In our previous work [10] Roads and Burns were identified as two classes with
lowest accuracies, and, similarly, both classes achieve the lowest accuracies in this
work. The class Road exists at a single pixel level while Burns is underrepresented
in terms of the total number of pixels presented to the networks; we hypothesize
these as the probable cause of low accuracies for each class. However, in comparison
with the best network from our previous work, this new proposed network ensemble
reliably detects features like roads that exist at a single pixel level and is able to
consolidate underrepresented classes. The accuracy of Burns is improved from
44.34% to 51.89% and more noticeably the accuracy of Roads is increased from



Title Suppressed Due to Excessive Length 21

(8)
Fig. 11 Sample validation set results. (Top row) ground-truth labellings, and (bottom row)
result from FCN-ResNet-101 + Context + Adversarial

Table 9 Percent accuracy for each class from FCN-ResNet-101 + Context + Adversarial
Network
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z < a] 2 0 3 3 3 & 0 i 0 7 0 ¢ 0 z £ 0
No Data 99.94 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Agriculture| 0.00 96.72 0.49 0.02 1.62 0.01 0.47 0.00 0.00 0.00 0.00 0.02 0.12 0.01 0.00 0.00 0.50 0.00 0.00
Deciduous 0.00 1.30 87.41 0.33 5.76 2.07 1.30 0.06 0.01 0.13 0.00 0.95 0.23 0.02 0.10 0.02 0.30 0.00 0.00
Water 0.00 0.11 0.52 97.06 0.50 0.17 1.36 0.03 0.05 0.07 0.00 0.07 0.01 0.01 0.00 0.01 0.02 0.00 0.00
Grass 0.00 3.96 5.10 0.26 86.72 0.33 1.43 0.01 0.00 0.06 0.00 0.47 0.58 0.08 0.01 0.02 0.95 0.00 0.01
Mixedwood| 0.00 0.03 4.93 0.28 0.83 84.33 1.60 0.99 0.93 4.22 0.00 1.11 0.02 0.02 0.38 0.01 0.31 0.00 0.00
Marsh 0.00 3.78 3.27 2.05 4.30 1.88 81.65 1.01 0.09 0.44 0.00 1.13 0.19 0.00 0.03 0.00 0.17 0.01 0.01
Thbog 0.00 0.00 0.44 0.09 0.04 2.30 1.53 90.37 0.81 3.50 0.00 0.78 0.00 0.00 0.09 0.00 0.05 0.00 0.00
Trock 0.00 0.00 0.28 0.61 0.04 8.97 0.62 3.37 74.36 11.17 0.00 0.08 0.00 0.01 0.35 0.00 0.14 0.00 0.00
Conifer 0.00 0.01 0.57 0.23 0.27 9.10 0.70 2.95 2.59 82.13 0.00 0.78 0.00 0.01 0.48 0.01 0.17 0.00 0.00
Burns 0.00 7.55 1.89 0.00 14.15 1.89 4.72 1.89 0.00 0.00 51.89 0.00 0.94 0.00 0.94 0.00 14.15 0.00 0.00
Open Deci. | 0.00 0.49 6.94 0.23 3.67 3.13 2.06 0.83 0.03 1.12 0.00 80.96 0.11 0.00 0.14 0.03 0.24 0.00 0.01
Foreage 0.00 2.28 1.20 0.03 4.00 0.03 0.34 0.00 0.00 0.00 0.00 0.09 91.46 0.01 0.01 0.00 0.53 0.00 0.01
Cultural 0.03 2.02 1.39 0.36 3.89 0.38 0.13 0.08 0.01 0.04 0.00 0.04 0.14 88.26 0.02 0.04 3.12 0.00 0.05
Cutovers 0.00 0.01 2.77 0.05 0.40 5.52 0.50 0.73 0.74 2.81 0.00 0.98 0.03 0.00 85.14 0.02 0.29 0.00 0.00
Gravel 0.00 3.54 5.63 3.56 8.80 1.35 0.48 0.18 0.03 0.63 0.00 1.70 0.09 0.52 0.43 71.91 1.11 0.00 0.03
Road 0.01 10.54 3.14 0.11 10.35 1.40 0.65 0.11 0.07 0.36 0.00 0.40 0.98 0.86 0.11 0.03 70.88 0.00 0.01
Fens 0.07 0.00 0.03 0.01 0.04 0.17 3.54 0.79 0.09 0.01 0.00 0.00 0.00 0.00 0.07 0.00 0.09 95.08 0.00
Cloud 0.00 1.87 3.64 0.12 8.00 0.13 1.84 0.02 0.00 0.03 0.00 0.57 0.51 0.13 0.01 0.23 0.58 0.00 82.30

57.20% to 70.88%. This is shown visually in Fig[I2] Such gains can be attributed
to the ensemble of extensions that were added to the base networks. The network
employed in our previous work [I0] losses fine details at the single pixel level,
which is the same for the base networks examined without any extensions; this
is due to a series of downsampling and upsampling operations causing fine detail
loss. In the final analysis, we observe that by combining the extensions (Context +
Adversarial), we are able to solve this problem. Overall, our proposed deep learning
framework successfully discriminates and classifies very similar classes based on
spectral cues and produces highly accurate maps. In addition, as a post-processing
last step in our deep learning framework the produced individual maps are stitched
back in place to recreate a larger LULC map same as in Fig.
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Fig. 12 Comparison of LULC maps. (a) LULC map output from previous work [10] and (b)
LULC map produced from FCN-ResNet-101 + Context + Adversarial

7 Conclusion

We have introduced a deep learning framework for LULC mapping and analysis.
Three modern networks denoted as base networks in this paper were adapted into
FCNs and modified to take input Landsat 5/7 satellite images with six bands. Fur-
thermore, the networks were extended to improve accuracy by the extensions: 1)
a context module was added to the base networks, and 2) an adversarial network
was added to the base networks. Both extensions served to further improve accu-
racy and a combination of both extensions added to the base networks provided
us with the best result reported.

The results reported in this paper show that deep convolutional neural net-
works perform well in the production of LULC maps. In addition, it takes only
8 minutes and 42 seconds to produce a map of the southern extent of Manitoba
with a trained model, effectively automating production. This is a phenomenal re-
duction considering that the current semi-automated approach takes 4,800 hours.
Furthermore, by extending the networks, there was a marked improvement in the
results compared to the networks without extensions. The best network with no
extensions produced a global accuracy of 88.25% while the overall best network
with a combination of the two extensions produced a global accuracy of 90.46%.

Future works will include adapting, modifying and extending other modern

network architectures [44, [45] to further improve results. Additionally, training on
16-bit Landsat 8 dataset will be a part of future research.
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