Truce-Smiles rearrangement of substituted phenyl ethers

Joel R. Kosowan, Zemane W'Giorgis, Ravneet Grewal, Tabitha E. Wood*

Department of Chemistry, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada, R3B 2E9

Supporting Information

Item	Page
¹ H NMR spectra of 1a	S5
$^{13}C{^{1}H}$ NMR spectra of 1a	S 7
¹ H NMR spectrum of 1b	S 9
¹³ C{ ¹ H} NMR spectrum of 1b	S10
¹ H NMR spectrum of 1c	S 11
¹³ C{ ¹ H} NMR spectrum of 1c	S12
¹ H NMR spectrum of 1d	S13
$^{13}C{^{1}H}$ NMR spectrum of 1d	S14
¹ H NMR spectrum of 1e	S15
¹³ C{ ¹ H} NMR spectrum of 1e	S16
¹ H NMR spectrum of 1f	S17
$^{13}C{^{1}H}$ NMR spectrum of 1f	S18
¹ H NMR spectrum of 1g	. S19
¹³ C{ ¹ H} NMR spectrum of $1g$	S20
¹ H NMR spectrum of 1h	.S21
$^{13}C{^{1}H}$ NMR spectrum of 1h	S22
¹ H NMR spectrum of 1i	S23
¹³ C{ ¹ H} NMR spectrum of 1i	S24

¹ H NMR spectrum of 1 j S	\$25
¹³ C{ ¹ H} NMR spectrum of $1j$	\$26
¹ H NMR spectrum of 1k	\$27
$^{13}C{^{1}H}$ NMR spectrum of 1k	\$28
¹ H NMR spectrum of 11 S	\$29
$^{13}C{^{1}H}$ NMR spectrum of 11	\$30
¹ H NMR spectrum of 1m	\$31
$^{13}C{^{1}H}$ NMR spectrum of 1m	\$32
¹ H NMR spectrum of 1n	\$33
$^{13}C{^{1}H}$ NMR spectrum of 1n	\$34
¹ H NMR spectrum of 10	\$35
$^{13}C{^{1}H}$ NMR spectrum of 10	\$36
¹ H NMR spectrum of 1p S	\$37
$^{13}C{^{1}H}$ and $^{13}C{^{19}F}$ NMR spectra of 1p	\$38
¹ H NMR spectrum of 1q S	\$39
$^{13}C{^{1}H}$ NMR spectrum of 1q	\$40
¹ H NMR spectrum of 1r	\$41
$^{13}C{^{1}H}$ NMR spectrum of 1r	\$42
¹ H NMR spectrum of 1s	\$43
$^{13}C{^{1}H}$ NMR spectrum of 1s	344
¹ H NMR spectrum of 1t	\$45
$^{13}C{^{1}H}$ NMR spectrum of 1t	346
¹ H NMR spectrum of 1u	547
$^{13}C{^{1}H}$ NMR spectrum of 1u	548
¹ H NMR spectrum of 1v	549

$^{13}C{^{1}H}$ NMR spectrum of $1v$	S50
¹ H NMR spectrum of 1w	S 51
¹³ C{ ¹ H} NMR spectrum of $\mathbf{1w}$	S52
¹ H NMR spectrum of 1x	S53
$^{13}C{^{1}H}$ NMR spectrum of $1x$	S54
¹ H NMR spectrum of 1y	S55
¹³ C{ ¹ H} NMR spectrum of 1y	S56
¹ H NMR spectrum of 1z	S57
$^{13}C{^{1}H}$ NMR spectrum of $1z$	S58
¹ H NMR spectra of 2a	S59
¹³ C{ ¹ H} NMR spectra of $2a$	S61
¹ H NMR spectrum of 2c	S63
¹³ C{ ¹ H} NMR spectrum of $2c$	S64
¹ H NMR spectrum of 2d	S65
$^{13}C{^{1}H}$ NMR spectrum of 2d	S66
¹ H NMR spectrum of 2e	S67
$^{13}C{^{1}H}$ NMR spectrum of 2e	S68
¹ H NMR spectrum of 2f	S69
$^{13}C{^{1}H}$ NMR spectrum of 2f	S 70
¹ H NMR spectrum of 2g	S 71
$^{13}C{^{1}H}$ NMR spectrum of 2g	S72
¹ H NMR spectrum of 2j	S73
$^{13}C{^{1}H}$ NMR spectrum of 2j	S74
¹ H NMR spectrum of 2r	S75
$^{13}C{^{1}H}$ NMR spectrum of $2r$	S76

¹ H NMR spectrum of 2s	S77
$^{13}C{^{1}H}$ NMR spectrum of 2s	S 78
¹ H NMR spectrum of 2t	S79
¹³ C{ ¹ H} NMR spectrum of $2t$	S 80
¹ H NMR spectrum of 2w	S 81
$^{13}C{^{1}H}$ NMR spectrum of $2w$	S82
¹ H NMR spectrum of 3	S83
¹ H NMR spectrum of 4	S 84
¹³ C{ ¹ H} NMR spectrum of 4	S85
¹ H NMR spectrum of 5	S86
¹³ C{ ¹ H} NMR spectrum of 5	S 87
¹ H NMR spectrum of Meisenheimer intermediate	S88
¹³ C{ ¹ H} NMR spectrum of Meisenheimer intermediate	S 89

¹H NMR spectrum of **1a** in CDCl₃ with 0.05% v/v TMS (400 MHz)

¹H NMR spectrum of **1a** in $(CD_3)_2$ SO with 0.05% v/v TMS (400 MHz)

 $\frac{1^{3}C{}^{1}H}{NMR}$ spectrum of **1a** in CDCl₃ with 0.05% v/v TMS (100 MHz)

$\frac{^{13}C{^{1}H}}{^{13}C{^{1}H}}$ NMR spectrum of **1a** in (CD₃)₂SO with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1b** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1b** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **1c** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1c** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1d** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1d** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **1e** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$^{13}C{^{1}H}$ NMR spectrum of **1e** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1f** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1f** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1g** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1g** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **1h** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{}^{1}H}{MR}$ spectrum of **1h** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **1i** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1i** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1j** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1j** in CDCl₃ with 0.05% v/v TMS (100 MHz)

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

¹H NMR spectrum of **1k** in CDCl₃ with 0.05% v/v TMS (400 MHz)

 $\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1k** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1l** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1l** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of 1m in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{^{1}M}$ NMR spectrum of **1m** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **1n** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1n** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **10** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$^{13}C{^{1}H}$ NMR spectrum of **1o** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1p** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1p** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1q** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{}^{1}H}{NMR}$ spectrum of **1q** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1r** in CDCl₃ with 0.05% v/v TMS (400 MHz)

¹H NMR spectrum of **1s** in CDCl₃ with 0.05% v/v TMS (400 MHz)

¹³C{¹H} NMR spectrum of **1s** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1t** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1t** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1u** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1u** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1v** in CDCl₃ with 0.05% v/v TMS (400 MHz)

¹H NMR spectrum of **1w** in CDCl₃ with 0.05% v/v TMS (400 MHz)

1 H NMR spectrum of **1x** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **1x** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **1y** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{}^{1}H}{NMR}$ spectrum of **1y** in CDCl₃ with 0.05% v/v TMS (100 MHz)

^{1}H NMR spectrum of 1z in CDCl_{3} with 0.05% v/v TMS (400 MHz)

$^{13}C{^{1}H}$ NMR spectrum of **1z** in CDCl₃ with 0.05% v/v TMS (100 MHz)

 1 H NMR spectrum of **2a** in CDCl₃ with 0.05% v/v TMS (400 MHz)

¹H NMR spectrum of **2a** in $(CD_3)_2$ SO with 0.05% v/v TMS (400 MHz)

¹³C{¹H} NMR spectrum of **2a** in CDCl₃ with 0.05% v/v TMS (100 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2a** in (CD₃)₂SO with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **2c** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2c** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **2d** in CDCl₃ with 0.05% v/v TMS (400 MHz)

1 H NMR spectrum of **2e** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2e** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **2f** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2f** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **2g** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2g** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **2j** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2j** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **2r** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2r** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **2s** in CDCl₃ with 0.05% v/v TMS (400 MHz)

S77

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2s** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **2t** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2t** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **2w** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **2w** in CDCl₃ with 0.05% v/v TMS (100 MHz)

1 H NMR spectrum of **3** in CDCl₃ with 0.05% v/v TMS (400 MHz)

S83

1 H NMR spectrum of 4 in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **4** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum of **5** in CDCl₃ with 0.05% v/v TMS (400 MHz)

$\frac{1^{3}C{^{1}H}}{NMR}$ spectrum of **5** in CDCl₃ with 0.05% v/v TMS (100 MHz)

¹H NMR spectrum in (CD₃)₂SO with 0.05% v/v TMS (400 MHz)

In situ observation of Meisenheimer intermediate (NOTE: 1a annotated with *)

$^{13}C{^1H}$ NMR spectrum in (CD₃)₂SO with 0.05% v/v TMS (100 MHz)

In situ observation of Meisenheimer intermediate (NOTE: 1a annotated with *)

