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SQUARES AND OVERLAPS IN THE THUE-MORSE
SEQUENCE AND SOME VARIANTS

SHANDY BROWN!, NARAD RAMPERSAD?, JEFFREY SHALLIT?2
AND TROY VASIGAZ?

Abstract. We consider the position and number of occurrences of
squares in the Thue-Morse sequence, and show that the corresponding
sequences are 2-regular. We also prove that changing any finite but
nonzero number of bits in the Thue-Morse sequence creates an overlap,
and any linear subsequence of the Thue-Morse sequence (except those
corresponding to decimation by a power of 2) contains an overlap.
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1. INTRODUCTION

Let t = 01101001 -- = {ot1ts - - - be the Thue-Morse sequence defined by t; =
the sum of the bits, modulo 2, in the binary expansion of i. Alternately, t can be
described as the fixed point of the morphism p that sends 0 — 01, 1 — 10. Thue
proved [5,9] that t contains no overlaps, that is, no subwords of the form azaza
where a € {0,1} and x € {0,1}*.

Of course, t contains squares, that is, nonempty subwords of the form zz. In
this paper, we define sequences based on the size and number of squares beginning
at a given position of t, and show that these sequences are easy to compute; more
precisely, they are 2-regular in the sense of Allouche and Shallit [2, 3].

Next, we consider the overlap-freeness of some variants of t. We show that
changing any finite but positive number of bits of t yields a word with overlaps.
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We also show that any linear subsequence of t (other than those corresponding to
decimation by a power of 2) contains overlaps.

In this paper we use the concepts of k-automatic and k-regular sequences.
Roughly speaking, a sequence (a,)n>0 is k-automatic if there exists a determinis-
tic finite automaton that, on input n expressed in base k, reaches a state ¢ with
an associated output of a,, [4]. Alternatively, (a)n>0 is k-automatic if the set

{(arinse)n>o : i >0and 0 <c < k'}

is finite. A set of non-negative integers is k-automatic if its associated charac-
teristic sequence is k-automatic. We will use the following basic facts about k-
automatic sets [4, Th. 5.6.3]:

Lemma 1.1. The class of k-automatic sets is closed under intersection and set
addition (i.e., the operation R+ S ={r+s : r€ R,s € S}).

We also discuss a generalization of k-automatic sequences, called k-regular se-
quences. A sequence is k-regular if the set of sequences generated by subsequences
of the form

(Akinye)n>0
for i > 0, 0 < ¢ < ki, is finitely generated. For more details, see [4]. It follows
that every k-automatic sequence is also k-regular.

2. OCCURRENCES OF SUBWORDS IN AUTOMATIC SEQUENCES

Given any infinite word a = agajas--- we say that a subword w of length k
begins at position p if a = ag - - - Gp—1Wap1LApyi+1 - -+ Our first result shows that
the set of positions of occurrences of any subword in an automatic sequence is
automatic.

Theorem 2.1. Let a = agayas - -+ be a k-automatic sequence over the alphabet A,
and let w € A*. Then the set of positions p such that w occurs beginning at position
p is k-automatic.

Proof. Write w = bob; - - - b,,—1. Then each set S; = {i : a; = b;} is k-automatic.
By Lemma 1.1, the sets S;—j are k-automatic. Also by Lemma 1.1, the intersection
of all sets of the form S; —j is k-automatic. But this is precisely the set of positions
p such that w occurs beginning at p. O

Example 2.2. Let us find an automaton for the starting positions of occurrences
of 00 in t, the Thue-Morse word. We start with the well-known automaton for
the sequence t in Figure 1. This automaton implements the fact that ¢; is just the
sum of the bits (taken mod 2) of ¢ expressed in base 2.

The automaton for the shifted version of t, i.e., s = s9s152--- where s; = t;41,
is given in Figure 2. To see that this works, note that the automaton must, on
input n expressed in base 2, compute the parity of the sum of the bits of n + 1
expressed in base 2. It therefore suffices to keep track of both the sum of the bits
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FIGURE 1. The Thue-Morse automaton.

FIGURE 2. Automaton for the shifted version of Thue-Morse.

FIGURE 3. Automaton for occurrences of two-bit subwords of
Thue-Morse.

seen so far (mod 2), together with the parity of the number of trailing 1’s in the
string seen so far.

To intersect positions we take the cross product, and after deleting states un-
reachable from the start state, we obtain the automaton in Figure 3. Note that
reaching state Ad corresponds to occurrences of 00 and reaching state Bb corre-
sponds to occurrences of 11.

We can see how this construction relates to the proof of Theorem 2.1 in the
following way. Write w = 00 and define sets S; with respect to w and t as in
the proof of Theorem 2.1. Then t is the characteristic sequence of Sy and s is
the characteristic sequence of S7 — 1. The intersection of Sy and S; — 1 gives the
starting positions of occurrences of 00.
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3. SQUARE-COUNTING SEQUENCES

Let a = agajas - - - be a sequence. Based on a we can define two sequences that
concern the squares in a, as follows:

A(i) := the number of squares beginning at a position < i of a
B(i) := the number of positions p < i that mark the beginning of

a square of a.

We can also consider a variant of the sequence A. If we use the subscript d, then
only distinct squares are counted (as opposed to all occurrences with multiplicity,
which is the default).

Another variant is to consider the corresponding first difference sequences. We
have

AA(G)

AB(i) := 1, if there is a square beginning at position ¢ in a and 0 otherwise.

the number of squares beginning at position i of a

Finally, we can also consider the sequence
C(i) := the length of z, where zz is the largest square beginning at

position i of a.

Of course, the domain of A, AA, and C is the natural numbers together with oo,
since, for example, there may be arbitrarily many or arbitrarily large squares be-
ginning at a given position; for example, consider the periodic sequence 000- - -.
It is perhaps surprising these sequences can be infinite everywhere even for non-
periodic sequences, as the next result shows. Recall that an infinite word x is said
to be ultimately periodic if it can be written in the form yz* = yzzz--- for some
words ¥, z with z nonempty.

Theorem 3.1. There exists a non-ultimately-periodic infinite word x over {0, 1}
such that for all integers m,n > 1 there exist finite words u,v and an infinite word
w such that x = wv*w and |u| =m, |v] > n.

Proof. The following procedure generates longer and longer prefixes z; of an infi-
nite word x = agajas - - - with the desired properties:

Tog < €
for i := 1 to oo do
x; «— x;—1 concatenated with 071
for j := i downto 1 do
x; < x; concatenated with the string formed by deleting the
first j — 1 characters of z;.
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For example, here are the first few values of z;:
g — €
r1 = 0101
r2 = 01010011010010101001101001

By construction, each z; is a prefix of z; for ¢ < j, so there is a unique infinite
word x of which all the x; are prefixes. Since each x; contains 10°1 as a substring,
X cannot be ultimately periodic. And the loop on j ensures that arbitrarily large
squares begin at each position. O

A simple modification of this construction generates a word with arbitrarily
large and arbitrarily long powers beginning at every position.

In the next section we show that if a = t, the Thue-Morse sequence, then each
of these sequences A and B (with or without subscripts), AA and AB, and C, is
2-automatic.

4. THE SQUARES IN THE THUE-MORSE WORD

Pansiot [7] and Brlek [6] described the squares in the Thue-Morse word:

Theorem 4.1. All squares in t are of the form p*(00), p*(11), p¥(010010), or
pF(101101) for some k > 0, and all these squares actually occur.

We now describe all the positions where these squares can occur. We use the
following notation: 0 = 1 and 1 = 0.

Lemma 4.2. Let a € {0,1}.

(a) The only occurrences of u*(aa) in t begin at positions of the form 2F - p,
where aa occurs at position p.

(b) The only occurrences of p*(a@aada) in t begin at positions of the form
2k . p, where agaada occurs at position p.

Proof. We prove the two claims by induction on k. The results are trivially true
for k£ = 0. For the induction step, assume the claims are true for k; we prove them
for k + 1.

For (a), we claim that ;**!(aa) must begin at an even position of t. For if
it appears at an odd position, and k£ > 1, then, since ;*!(a) begins with a@aa,
aa occurs at an even position and would thus be the image under u of a letter,
which is not the case. If k& = 0, then we would have alaa|a as a subword of t,
where the straight bars | separate pairs of letters that are images under p of a
single letter. It therefore follows that the letter following the last @ must be a, and
so t contains the overlap aaaaa, a contradiction. Now, since uk“(aa) appears at
an even position ¢, it is the image of p*(aa) at position ¢/2. But by induction
q/2=2%-p, so qg=2"".p as desired.

A similar argument proves (b). O
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FIGURE 4. Automaton for occurrences of 010010 of Thue-Morse.

FIGURE 5. Automaton for occurrences of 101101 of Thue-Morse.

We note also that for any position ¢, there is at most one square in t beginning
at position i.

Previously we showed that the set of positions of 00 (resp., 11) in t is 2-automatic;
see Figure 3. A similar technique can be carried out for 010010 and 101101. After
minimization, we obtain the automata in Figures 4 and 5.

Theorem 4.3. The sequence AB is 2-automatic. The sequence B is 2-reqular.

Proof. As we have seen in Theorem 2.1, for each subword w of t, there is a
regular language L, consisting of the base-2 representations of those indices
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1

FIGURE 6. Automaton for starting positions of squares in t.

where w occurs. (The corresponding automata were given explicitly for w €
{00,11,010010,101101} in Figs. 3-5.) Theorem 4.1 shows that the set of base-2
representations of starting indices of all squares in t is given by

(Loo U L1y U Loiooto U Lio1101)07, (1)

which is evidently a regular language. Thus AB is 2-automatic.

To show that the sequence B is 2-regular, we first define the convolution of two
sequences. If a = (a;);>0 and b = (b;);>0 are two sequences of integers, then the
convolution ¢ = a b is defined as follows: if ¢ = (¢;);>0, then

C; = Z ajbk.

J+k=i

If a and b are k-regular sequences, then by [4], Theorem 16.4.1, ¢ = axb is
k-regular. To conclude that B is 2-regular, we note that

B(i) =Y AB(j) =axAB,

Jj<i
where a is the constant sequence 1,1,1,... O

Figure 6 gives the 2-automaton for the set of starting positions of squares in t,
that is, the 2-automaton generating the sequence AB for t. It can be obtained
through the usual construction combining the automata for Lo, L11, Lo1oo10, and
Lio1101, and equation (1), and then minimizing the result.

We now turn to the sequence C'. First, we prove a lemma.
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Lemma 4.4. Let a = agaias--- be a k-regular sequence of integers with ag = 0.
For each integer j > 1 define a new sequence a/j = bob1bs -+ as follows:

b anyjs  4f n=0mod j;
" 0, otherwise.

Let ¢ be an integer. Then the sequence
a(c,k):=a+c-(a/k)+c%- (a/k?) +

18 also k-regular.

Proof. Write a(c, k) = dodids - - - . It suffices to show that each subsequence dyiy, ¢,
0 < e < k%, is a linear combination of elements of the k-kernel of a. Let j =
v (ged(k, e)), where vgx(n) is the exponent of the highest power of k dividing n.
Then

9 .
dkinJre = Qkinte +c- aki*1n+e/k +c” - aki*2n+e/k2 +--- 4+ c - aki*jnJre/kj .

Theorem 4.5. The sequence C is 2-reqular.

Proof. For each subword w of t, let s,, be the characteristic sequence for the
occurrences of w in t. Then

C =500(2,2) +511(2,2) + 3 - 8010010(2,2) + 3 - s101101(2, 2).

By Lemma 4.4, C is 2-regular. (Here we have used the fact that the sum of
k-regular sequences is k-regular; see [4], Th. 16.2.1.) |

We can also obtain a defining set of relations for the sequence C. For n > 0,
they are as follows (we omit the proof):

C(2n) = 2C(n)
Cldn+1) = 1
CEn+7) = 1+§C(8n+3)
C16n+3) = 0
C(lén+11) = 3-C(8n+3).

Moreover, the sequence C(8n + 3) is the fixed point of the map 0 — 03, 3 — 00,
which is just a recoding of the period-doubling sequence [4], Example 6.3.4.
Now we turn to counting the distinct squares.
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Theorem 4.6. For j > 0 we have

45 +5, if 293 <i<10-27;
4546, if10-27 <i<11-27;
45 4+7, if11-2 <i<15-27;
45 +8, if15-20 <i < 27H4,

Aa(i) =

Proof. Tt is easy to check that 00 occurs for the first time in t at position 5, 11
occurs for the first time at position 1, 010010 occurs for the first time at position
15, and 101101 occurs for the first time at position 11. From Lemma 4.2, it follows
that the square

1 (00) occurs for the first time at position 5 - 2%

©*F(11) occurs for the first time at position 2%

©*(010010) occurs for the first time at position 15 - 2%

©*(101101) occurs for the first time at position 11 - 2k, O

Corollary 4.7. For t, the sequence Agq is 2-reqular. The sequence AAg is
2-automatic.

We note that the same sorts of results hold for the paperfolding sequence p [4],
p. 155. It is known [8] that any square zz in the paperfolding sequence satisfies
|z| < 5. It follows that there are only finitely many distinct squares in p, and the
desired results then follow by Theorem 2.1.

5. OVERLAP-FREENESS OF SOME VARIANTS OF THE THUE-MORSE
SEQUENCE

As is well-known, the Thue-Morse sequence is overlap-free, that is, it contains
no subwords of the form azaza where a € {0,1} and = € {0, 1}*. In this section we
change focus somewhat and consider some variants of the Thue-Morse sequence,
showing that these variants do not preserve overlapfreeness.

In our first theorem we consider taking the Thue-Morse sequence and changing
some finite, but nonzero, number of bits.

Theorem 5.1. Let t' be an infinite word obtained from t by changing k bits,
0 <k <oo. Then t’ contains an overlap.

First, we state a very useful lemma [1]:

Lemma 5.2. If u is an infinite overlap-free word, then there exist a finite word
x € {€,0,1,00,11} and an infinite overlap-free word z such that u = xu(z).

Now we can prove Theorem 5.1.

Proof. The proof is by contradiction. Let k be minimal such that t’ is overlap-
free. Suppose k = 1. Changing the bits with index 0, 1, or 2 in t creates the
overlaps 111, 01010, and 1001001 respectively. For each of the remaining bits,
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TABLE 1. Changing a bit in the Thue-Morse word.

Original subword | Modified subword || Original subword | Modified subword
00101100 00111100 10010110 10000110
00101101 00111101 10011001 10001001
00110010 00100010 10011010 10001010
00110100 00100100 10100101 10110101
01001011 01011011 10100110 10110110
01001100 01011100 10110011 10100011
01011001 01001001 10110100 10100100
01011010 01001010 11001011 11011011
01100101 01110101 11001101 11011101
01100110 01110110 11010010 11000010
01101001 01111001 11010011 11000011

having index > 3, consider the subword b1bs - - - bg of length 8 in t, where b4 is the
bit to be changed. There are 22 such subwords of length 8 and changing b4 in any
of these words creates an overlap, as shown in Table 1.

We assume then that & > 1. By Lemma 5.2 we can write t' = zu(y), where
x € {¢6,0,1,00,11} and y is overlap-free. We have three cases, x € {¢,0,00}. (The
cases where x € {1,11} are similar to those where z € {0,00}.)

Case 1. z = ¢, t' = p(y). We write y = uv, where u(u) is the minimal
word containing the k changed bits of t. Note that the factorization t' = p(y)
implies that if the bit in position 2i (2i 4+ 1 resp.), i < |ul, of p(u) differs from its
corresponding bit in t, then so does the bit in position 2i+ 1 (2i resp.). Since each
two bit subword of v beginning at position 2i, ¢ > |u/, in t’ is the image under p of
the ¢-th bit of t, we see that the only bits of uv that differ from t occur in u, where
|u] = |p(uw)|/2. Thus y differs from t in k/2 bits and is overlap-free, contradicting
the minimality of k.

Case 2. z =0, t' = 0u(y). Inspection of Figure 3 shows that all occurrences
of 00 in t begin at an odd position. Thus, somewhere after the last bit changed
in t’, there must be an occurrence of 00 that begins in an odd position. But then
00 must be the image under u of either 0 or 1, which is impossible.

Case 3. x =00, t' = 00u(y). By [1], Lemma 2d, if 00u(y) is overlap-free, then
1y is overlap-free. But by an argument similar to that of case 1, 1y differs from t
in fewer than k bits, contradicting the minimality of k. O

We remark that a similar result holds for S(t) = t1tats - -, the Thue-Morse
sequence shifted by one symbol. However, the same result does not hold for
S2(t) = tatz - - -, as the string fatsty - - - is easily seen to be overlap-free.

Pansiot [7], Corollary 2, showed that any word formed by making a finite but
positive number of insertions and deletions to t cannot be generated by an iterated
morphism. Our results can be viewed as a complement to this result.

Now we consider linear subsequences of the Thue-Morse sequence, for example

(t2an+7)n>0-
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Theorem 5.3. Let i,a be integers with i > 1, a > 0. Then (tinta)n>0 s overlap-
free if and only if © is a power of 2.

Proof. Suppose i is a power of 2. Then, repeatedly using the identities tor, = tp,
tor+1 = to we find that there exists a’ such that either ;44 = tnia OF tinia =
tnta for all m > 0. Thus (tinte)n>0 equals a shift of either t or t, and hence is
overlap-free.

Now suppose i is not a power of 2. Write ¢ = 2% - i’ where i’ is odd. Again,
repeatedly using the identities top = ty, togs1 = tor we find that there exists o’
such that either t;, 14 = tirnta’ O tinta = tirntq for all n > 0. Thus, without loss
of generality, we may assume ¢ is odd.

We will now show that the subsequence (tin+q)n>0 contains either the overlap
000 or 111. We introduce some notation: by [z]2 we mean the integer that x repre-
sents in base 2. By sa(x) we mean the sum of the bits of the base-2 representation
of x.

There are several cases to consider.

Case 1. The base-2 expansion of ¢ ends in at least two 1’s. Let z € {0,1}*
be a string such that [acOlj]g = ¢ for some j > 2. Choose n such that in +a =
mod 24! + 12¥F2 for some u chosen much larger than log,i. Now the base-2
expansion of in + a looks like y10“1. On the other hand, the base-2 expansion
of i(n — 1) + a is y01“~1*1=971077210, and the base-2 expansion of i(n — 2) + a
is y01%~l#l=3—-1%10/-111. By choosing the parity of u appropriately, we can force
the parity of the sum of the bits of all three strings to be the same. Since t; =
s2(7) mod 2, the subsequence contains either the overlap 000 or 111.

Case 2. The base-2 expansion of ¢ ends in 01. Let € {0,1}* be a string such
that [x01]2 = 1.

Case 2a. sz(x) is odd.

Choose n such that in+a = 2* mod 2**! for some u chosen much larger than
logy i. Now the base-2 expansion of in + a looks like y10*. On the other hand,
the base-2 expansion of i(n + 1) + a is y10%~1#1-2201, and the base-2 expansion
of i(n 4 2) 4+ a is y10*~1#1=32010. Since so(x) is odd, the parity of the sum of
the bits of all three strings is the same. Thus the subsequence contains either the
overlap 000 or 111.

Case 2b. s2(x) is even.

Choose n such that in+a = 2%+ +1 mod 2%*? for some u chosen much larger
than log, i. Then the base-2 expansion of in + a is y10“1. There are two subcases
to consider.

Case 2bi. z = 210, [ > 1. Then the base-2 expansion of i(n — 1) + a is
y014~1#1=1%10!*2 while the base-2 expansion of i(n+1)+ais y10v~1#1=1z10'10.

Case 2bii. = = 201!, I > 1. Then the base-2 expansion of iln—1)+ais
y01*~1#1=1%10!=1100, while the base-2 expansion of i(n+1)a is y10"~1*I=1201!*10.

Since sa(x) is even, in both case 2bi and 2bii we can choose u to force the parity
of the sum of the bits of all three strings to be the same.

Thus the subsequence contains either the overlap 000 or 111. O
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Noted added in proof. Gwénaél Richomme points out (2nd Sep. 2005) that
any Sturmian word is an example of an non-ultimately-periodic word containing
arbitrarily large squares beginning at every position. For instance, the Fibonacci
word is an example of a 4 power-free word with this property. Richemomme also
notes that one can construct a cube free binary word with this property.

Acknowledgements. We thank the referees for their helpful suggestions.
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