Improving LULC Map Production via Semantic Segmentation and

Unsupervised Domain Adaptation

Rostyslav-Mykola Tsenov

A Thesis submitted to the Faculty of Graduate Studies of
The University of Winnipeg

in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Applied Computer Science
University of Winnipeg
Winnipeg, Manitoba, Canada

Copyright (© 2021 by Rostyslav-Mykola Tsenov

Improving LULC Map Production via Semantic Segmentation and Unsupervised Domain Adaptation
by

Rostyslav-Mykola Tsenov

Supervisory Committee

Dr. C. J. Henry, Surpervisor
(Department of Applied Computer Science)

Dr. S. Ramanna, Member

(Department of Applied Computer Science)

Dr. J. J. Li, External Member

(Department of Geography and Environmental Management, University of Waterloo)

Abstract

In recent years, a lot of remote sensing problems benefited from the improvements made in deep learning.
In particular, deep learning semantic segmentation algorithms have provided improved frameworks for
the automated production of land-use and land-cover (LULC) map generation. Automation of LULC
map production can significantly increase its production frequency, which provides a great benefit
to areas such as natural resource management, wildlife habitat protection, urban expansion, damage
delineation, etc. In this thesis, many different convolutional neural networks (CNN) were examined in
combination with various state-of-the-art semantic segmentation methods and extensions to improve
the accuracy of predicted LULC maps. Most of the experiments were carried out using Landsat 5/7
and Landsat 8 satellite images. Additionally, unsupervised domain adaption (UDA) architectures were
explored to transfer knowledge extracted from a labelled Landsat 8 dataset to unlabelled Sentinel-2
satellite images. The performance of various CNN and extension combinations were carefully assessed,
where VGGNet with an output stride of 4, and modified U-Net architecture provided the best results.
Additionally, an expanded analysis of the generated LULC maps for various sensors was provided. The
contributions of this thesis are accurate automated LULC maps predictions that achieved 92.4% of
accuracy using deep neural networks; production of the model trained on the larger area, which is six
times the size from the previous work, for both 8-bit Landsat 5/7, and 16-bit Landsat 8 sensors; and
generation of the network architecture to produce LULC maps for the unlabelled 12-bit Sentinel 2 data
with the knowledge extracted from the labelled Landsat 8 data.

Keywords: Land use and land cover (LULC), deep learning (DL), semantic segmentation, convolutional

neural network (CNN), remote sensing, satellite images.

Acknowledgment

I would like to extend my deepest gratitude to my supervisor Dr. Christopher Henry for the provided
encouragement, patience, and invaluable contribution throughout the duration of my Master’s program.
I also cannot begin to express my thanks to Drs. Christopher Storie and Joni Storie (University of
Winnipeg, Geography Dept.), whose help for my thesis cannot be overestimated, they were pivotal in
the remote sensing, data acquisition, preprocessing, and analysis. I am also grateful to Dr. Yangjun

Chen, my first supervisor, for allowing me to start the study at the University of Winnipeg.

I would like to express my deepest appreciation to my supervisory committee, Dr. Sheela Ramanna and
Dr. Jonathan Li for the constructive criticism and helpful advice. I wish to thank all the people whose
assistance was a milestone in the completion of this project, especially my former instructor Dr. Simon
Liao, and all the valued members of the Applied Computer Science Department and the Faculty of
Graduate Studies.

Thanks should also go to Manitoba Hydro and Mitacs for support and funding of this work, which
would not have been successful without it. I would like to acknowledge the assistance and help of every

person I met during my journey at the University of Winnipeg and in the Mitacs program.

Lastly, I would also like to extend my gratitude to my family and friends for the irreplaceable support

throughout the study.

Dedication

In dedication to my family.

i

Contents

Supervisory Committee

Contents
List of Tables

List of Figures

1 Introduction

1.1 Problem Definition
1.2 Proposed Approach L
1.3 Contribution of the Thesis
1.4 Organization of the Thesis

2 Methodology

2.1 Neural Network
2.1.1 Perceptron e e
2.1.2 Interpretation of Gradient
2.1.3 Loss function
2.1.4 Backpropagation L
2.1.5 Imitialization L
2.1.6 Input Normalization
2.1.7 Optimization e e e

i

iii

vii

ix

2.2

2.3

Convolutional Neural Network

2.2.1 Convolutional Layer
2.2.2 Pooling Layer
2.2.3 Upsampling Layer
2.2.4 Activation Layer oL
2.2.5 Batch Normalization Layer
2.2.6 Fully Connected Layer
Chapter Summary e

Literature Review

3.1

3.2

3.3

3.4

3.5

3.6

Deep Learning Lo
Deep Convolutional Neural Networks
Deep Convolutional Encoder-Decoders

3.3.1 Extensions

Unsupervised Domain Adaption.
DNNs in Remote Sensing L oL

Chapter Summary

Neural Network Models

4.1
4.2

4.3

Encoder-Decoder oo oo
Encoders
421 VGGNet.o
422 GoogleNet
4.2.3 Xception
424 ResNet
Decoders. o
4.3.1 FCN . . . e
4.3.2 U-Net

v

4.3.3 Modified U-Net oo 39

4.3.4 Feedbackward 40
4.4 Model Extensionso e e e 41
4.4.1 Layer-Level Modifications 41
4.4.2 Output Stride e 41
4.4.3 Atrous Spatial Pyramid Pooling 42
4.44 Context Module e 42
4.5 Architectures e e e 43
4.5.1 Deeplabv3+ Architecture 43
4.5.2 Generative Adversarial Network oL, 44
4.5.3 Progressive Architecture 45
4.5.4 Structured Domain Adaptation Network 46
4.6 Chapter Summary Lo 48
Implementation Details 49
5.1 Datasets e 49
5.1.1 Landsat 5/7 and Landsat 8 52
5.1.2 Sentinel-2 53
5.2 Data Preprocessing L e 54
5201 TIHNG . o o o oo e 54
5.2.2 Data Transformation 56
5.3 Experimental Setup e e 57
5.4 Chapter SUMMAry ot e e e e 57

6 Experiments, Results, and Analysis

6.1 Evaluation Metrics oL e
6.2 Comparison of Model Variations
6.3 Product Generation e
6.3.1 Landsat 5/7
6.3.2 Landsat 8 e e e
6.3.3 Sentinel-2 e
6.4 Chapter Summary L e e e e e e e

7 Conclusion

A Ground Truth and Generated LULC Maps

Bibliography

vi

59

99
62

65
65

69
72
77

79

81

89

List of Tables

5.1 Landsat 5/7, Landsat 8, and Sentinel-2 sensors comparison. 52
5.2 Characteristics of a Landsat 5/7 and Landsat 8 sensors. 53
5.3 Characteristics of a Sentinel-2 sensor. oo 53
5.4 Size of the generated datasets. L 55
5.5 Comparison of the training and prediction time for each dataset. 57
6.1 Results of the encoder-decoder model variations. 62
6.2 Pixel accuracy results from the trained networks with extensions. 63
6.3 Pixel accuracy results from the trained networks with different architectural designs. . . 63
6.4 Total number of labels per pixel of the Landsat 5/7 dataset. 67
6.5 Assessment of the predicted Landast 5/7 dataset. 67
6.6 Confusion matrix of the Landsat 5/7 dataset. 68
6.7 Total number of labels per pixel of the Landsat 8 dataset. 70
6.8 Assessment of the predicted Landast 8 dataset. 70
6.9 Confusion matrix of the Landsat 8 dataset. 71
6.10 Total number of labels per pixel of the upscaled Landsat 8 dataset. 73
6.11 Assessment of the predicted Sentinel-2 dataset using UDA architecture. 73
6.12 Assessment of the predicted Sentinel-2 dataset using best model. 75

vil

viii

List of Figures

2.1

2.2

2.3

2.4

2.5
2.6

2.7

3.1
3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Structure of a perceptron.o
Structure of a simple neural network.
Regular CNN structure. o e
Convolution with set filter size and zero-padding.

Atrous convolution.

Transposed convolution.

Depthwise separable convolution.

An illustration of the AlexNet architecture.

An illustration of inception block.
An illustration of improved inception blocks.

Overall structure of a regular encoder-decoder architecture.

Network architecture diagram for an implemented VGGNet.
Network architecture diagram for an implemented GoogleNet.
Network architecture diagram for an implemented Xception.
An illustration of regular and improved residual blocks designs.
Network architecture diagram for an implemented ResNet.
Network architecture diagram for an implemented FCN-8 type decoder for VGGNet. . .
Network architecture diagram for an implemented U-Net type decoder for VGGNet.

Comparison of encoders with regular OS and fixed OS at 16.

ix

9

17

4.9

4.10

4.11

4.12

4.13

4.14

5.1
5.2
5.3

5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Network architecture diagram for an implemented ASPP extension.. 42

Network architecture diagram for an implemented context module extension. 43
Implemented Deeplabv3+ architectural design. 44
Implemented GAN architectural design. L. 45
Network architecture diagram for an implemented progressive GAN. 46
Network architecture diagram for an implemented UDA architectural design. 47
NALCMS land-use classes. oo it 50
Province of Manitoba with the outlined southern extent. 50
NALCMS maps of the southern extent of Mantioba. 51
NALCMS maps of Lake Winnipeg watershed. 51
Mustration of the tilling. o 54
Mlustration of the blocking. 55
Transformation of the tiles. 56
Training flowchart. oL L e 60
Network architecture diagram for best model combination. 64

Examples of poor results generated on the Landsat 5/7 data from the southern extent of

Manitoba. e 64

Examples of good results generated on the Landsat 5/7 data from the southern extent of

Manitoba. e 65

Examples of poor results generated on the Landsat 5/7 data from the Lake Winnipeg
watershed. L L 68

Examples of good results generated on the Landsat 5/7 data from the Lake Winnipeg
watershed. Lo L 69

Examples of poor results generated on the Landsat 8 data from the Lake Winnipeg

watershed.o 71

Examples of good results generated on the Landsat 8 data from the Lake Winnipeg
watershed. L e 72

6.9

6.10

6.11

6.12

6.13

Al
A2
A3
A4
A5
A6
AT

A8

A9

Misclassified bright large water bodies by the UDA model. 74

Examples of poor results generated on the Sentinel-2 data by the UDA model from the

southern Manitoba extent. e 74

Examples of good results generated on the Sentinel-2 data by the UDA model from the

southern Manitoba extent. e 75

Examples of poor results generated on the Sentinel-2 data by the best model from the

southern Manitoba extent. 76

Examples of good results generated on the Sentinel-2 data by the best model from the

southern Manitoba extent. L L L 76
Ground truth map of the southern extent of Manitoba for Landsat 5/7 dataset. 81
Predicted map of the southern extent of Manitoba for Landsat 5/7 dataset. 82
Ground truth map of the Lake Winnipeg watershed for Landsat 5/7 dataset. 83
Predicted map of the Lake Winnipeg watershed for Landsat 5/7 dataset. 83
Ground truth map of the Lake Winnipeg watershed for Landsat 8 dataset. 84
Predicted map of the Lake Winnipeg watershed for Landsat 8 dataset. 84
Ground truth map of the southern extent of Manitoba for Sentinel-2 dataset. 85

Predicted map of the southern extent of Manitoba for Sentinel-2 dataset using UDA

architecture. L L e 86

Predicted map of the southern extent of Manitoba for Sentinel-2 dataset using best model. 87

xi

Chapter 1

Introduction

Land use and land cover maps (LULC) are products generated from raw satellite imagery where each
pixel of the image is assigned to some sort of class or label (e.g. water, forest, road, cropland, etc.).
Land use refers to the purpose the land serves, like agriculture, wildlife habitat or any other synthetic
area, and land cover refers to the surface cover on the ground, like water, forest, urban infrastructures,
vegetation. LULC maps are crucial in areas such as natural resource management, wildlife habitat
protection, urban expansion, damage delineation, etc. [1]. In the beginning, LULC maps were generated
manually using semi-automated techniques. In general LULC maps are produced by combining different
colour channels (also known as bands) of a given satellite image (called the composition). There are a
huge number of different sensors that exist and are used in remote sensing. Examples include Landsat,
Sentinel, RADAR, LiDAR, Quickbird, Worldview, and GeoEye. And each sensor’s data structure might
differ. For example, the number of bands, spatial resolution (square area on the ground in meters each
pixel represents), or spectral resolution (the magnitude of light energy emitted by an object on the
ground measured at a particular wavelength). Conventional methods of generating LULC maps take a
lot of time and effort to produce adequate results. Therefore, automation of LULC map production
can remarkably contribute to the mentioned areas by increasing the production frequency of LULC
maps. Currently, there are plenty of different automated ways to create LULC maps by using advanced
algorithms, machine learning tools [2], or deep learning (DL) [3], which started growing in popularity
in the last decade. DL found immense success in remote sensing by providing fast and consistent
human-like performance and solving numerous problems that had not been solved by conventional
methods [3]. Also, before the DL, LULC maps were developed using supervised, semi-supervised, and
unsupervised methods and algorithms (K-means Clustering, Decision Tree and Maximum Likelihood

Classier) [2]. However, these methods are error-prone, lack consistency, and require a substantial amount

1

2 CHAPTER 1. INTRODUCTION

of data and user input to provide satisfactory results.

DL has become a hot topic in recent years, and new groundbreaking papers are getting released every
few months, where examples include image processing [4], computer vision [5], and object detection [6].
Most problems in deep learning applications are solved using convolutional neural networks (CNN),
which is a kind of neural network (NN) that produces results equal to or better than humans for certain
applications. A CNN is currently considered as a state-of-the-art method for computer vision tasks,
such as image classification and object recognition [7]. Remote sensing related tasks have also benefited

from DL in the last couple of years [3] as their tasks are very similar to the ones solved by CNNs.

The main problem considered in this thesis is LULC map generation, which directly maps to the semantic
segmentation computer vision problem. To resolve this task, [8] [9] introduced an encoder-decoder
architecture, which extracts features from the images using CNN in the form of an encoder and then
decodes those features back to the original size using a reversed CNN. Also, encoder-decoder networks
were implemented in remote sensing [10] [11] [12] [13] [14], where they reached exceptional success by
providing accurate and consistent results. In this thesis, we aim to improve LULC map production.
This work takes two forms. First, we improve the results presented in [15] by incorporating new and
modified CNNs [16] [17] [18] [19] to the existing architecture, and adding more advanced model and
architectural extensions [20] [21]. For this problem, we used 8-bit data from Landsat 5/7, and 16-bit
data from Landsat 8 sensors, where both of them have a spatial and spatial resolution of 30m x 30m per
pixel. Data from these two sensors have a similar structure, and they all have red, green, blue (RGB)

and multiple infrared bands.

Next, we investigate the production of LULC maps for scenarios where a new sensor is considered,
but where there is no labelled data. For instance, the results presented in the first part of this thesis
are quite powerful, but they require a large amount of labelled data, which is not always possible or
practical to produce. One way to resolve this is to transfer knowledge from existing labelled datasets
to similar unlabelled ones, which was the main motivation for creating unsupervised domain adaption
(UDA) learning frameworks [22]. It is this approach that was used UDA to generate LULC maps on
sensors without corresponding labelled data. For this problem, we used 16-bit data from Landsat 8
sensor with a spatial resolution of 30m x 30m per pixel, and 12-bit data from Sentinel-2 sensors with a

spatial resolution of 10m x 10m per pixel for RGB bands and 20m x 20m for infrared bands.

1.1. PROBLEM DEFINITION 3

1.1 Problem Definition

The work in [12][13] modified the fully convolutional network (FCN) [8] and was introduced to generate
LULC maps based on Landsat 5/7 data. The work was then improved in [15] by introducing context
module extension [23] and adversarial training [24], which reached a global accuracy of 90.46%. In this
thesis, we aim to improve the performance of the model by introducing new state-of-the-art models,
extensions and architectural designs. Additionally, we consider training models on the North American
Land Change Monitoring System (NALCMS)! dataset that covers six times the area from the previous
experiments, and we consider both 8-bit Landsat 5/7 and 16-bit Landsat 8 data. Moreover, a UDA
architecture is introduced to transfer knowledge extracted from a labelled Landsat 8 dataset, and apply

it on an unlabeled Sentinel-2 dataset to generate LULC.

1.2 Proposed Approach

To create a LULC map using DL, an encoder-decoder based network should be used. Work in this thesis
is built upon [15], where we similarly used the same encoders (VGGNet [25], Googlenet [26], ResNet
[27]) with the FCN-8 based structure [8]. New Xception [17] CNN was introduced, and the ResNet
model was modified to use a full-preactivation design [16]. Additionally, U-Net [19] and Feedbackward
[18] decoders were implemented for the VGGNet encoder, and then a generic version of the models
that performed best was designed to fit all encoders. To improve the performance of predictions even

further, many model and architectural extensions were introduced.
e Context module - This extension is placed at the end of the network, and it aggregates multi-scale
contextual information of the prediction [23].

e Output stride (OS) - This extension represents the desirable size of the ratio the output feature

map of the encoder [28].

e Atrous spatial pyramid pooling (ASPP) - This extension is placed in between encoder and decoder

and aims to capture objects and context of the features at multiple scales [29].

e Deeplab - This is an architectural extension that focuses on using output stride and ASPP model

extensions with a custom decoder design [20].

"http://www.cec.org/north-american-land-change-monitoring-system /

4 CHAPTER 1. INTRODUCTION

e Generative adversarial network (GAN) - This is an architectural extension that introduces an
additional NN called discriminator, which tries to distinguish what images were generated by the

encoder-decoder network [24].
e Progressive GAN - This is an architectural design that is an advanced type of GAN, which

gradually increases the size of the output images, thus providing more stability to predictions [21].

Throughout an experiment, the best model variation of CNNs and extensions were observed, and then
the product for Landsat 5/7 and Landsat 8 was generated. The performance of the mentioned products
is assessed and compared. Lastly, the UDA learning framework [30] was used to generate a map product

from Sentinel-2 by transferring knowledge using a conditional generative adversarial network [31].

1.3 Contribution of the Thesis

The contribution of this thesis is described below.

e Achieving 92.4% on NALCMS on the southern extent of Manitoba dataset by modifying encoder-
decoder network structure, introducing new state-of-the-art model extensions, and architectural

designs.

e Generating and comparing the performance between networks trained on a small dataset (equivalent

to the size of datasets used in previous work) as well as a dataset six times the size.
e Analyzing networks trained on the 8-bit (Landsat 5/7) and 16-bit (Landsat 8) datasets.

e Generating an architectural design for a network that can produce LULC maps from unlabelled

Sentinel-2 data using only labelled Landsat 8 data.

1.4 Organization of the Thesis
The remainder of this thesis is organized as follows.

e Chapter 2 introduces the notion of a NN to the reader and the process of its training. Additionally,
the structure of the CNNs used in this work are defined.

e Chapter 3 reviews work from the DL, remote sensing, and other related fields.

1.4. ORGANIZATION OF THE THESIS 5

e Chapter 4 discusses the in-depth structure of CNNs, different model extensions, and architectural

designs used in this thesis.

e Chapter 5 introduces the datasets used to generate the presented results as well as their char-
acteristics. Dataset augmentation and transformation, experimental setup, and implementation

details are also discussed.

e Chapter 6 presents an analysis of the results of different network implementations. This chapter
also provides an analysis of the model performance trained on several larger datasets with different

characteristics.

e Chapter 7 sums up the work done in the thesis and discusses possible directions for future

experiments.

CHAPTER 1. INTRODUCTION

Chapter 2

Methodology

This section introduces basic and in-depth information about NNs. In the first place, the backbone
structure of a NN is explained, like the neurons and what they contain, and the way weights are
generated and optimized. Next, DL is discussed by starting with CNN and their uses and then it is
discussed in the context of different DL architectures that are commonly labelled deep neural networks

(DNN).

2.1 Neural Network

Artificial intelligence (AI) is a field of computer science that is involved in building tools and machines
that are capable of completing tasks typically resolved by humans. One of the most successful and
popular ways to generate Al tools is to utilize machine learning (ML) algorithms, where ML is a subfield
of AI. ML algorithms use statistics to find patterns present in provided data. There are three popular
ways to create an algorithm in the field of ML.

e Supervised learning — This is a process where the algorithms are developed using a priori data

provided by experts.

e Unsupervised learning — This is a process where the algorithms identify patterns of interest without

any input from experts.

e Semi-supervised learning — This learning method is a combination of both supervised and unsu-
pervised learning. The algorithm is developed with a combination of information provided by

experts, and data for which nothing is known.

7

8 CHAPTER 2. METHODOLOGY

For the rest of this chapter we focus on supervised learning techniques.

Inspiration for the first artificial neural networks (ANN) [32] came from the neuronal structure of the
human brain, which consists of billions of connected neurons. A neuron is a specialized nerve cell that
receives many signals as input and processes them, and neurons also send signals between the body
and the brain. An artificial neuron is called a perceptron, as depicted in Fig. 2.1, and an ANN is a
large number of connected perceptrons (see e.g. Fig. 2.2). For the remainder of this thesis, an artificial

neuron is simply called a neuron and an ANN is simplified to a NN.

2.1.1 Perceptron

The structure of a perceptron is more simplified than a neuron in an actual human brain [33] (see e.g.
Fig. 2.1). The input to a perceptron is a vector X = (xo,x1,...,2n), and, for each input value z;, there
is a corresponding weight w; from the vector W = (wg, w1, ..., wy). A perceptron with input X and

weights W is modeled as

n
=0

Also, each perceptron has a bias b, which shifts the result from the origin, and therefore gives more
flexibility to the output. For example, if there is no bias in the perceptron and the input is X =
(0,0,...,0), the output will be 0 no matter the value of the weight. A perceptron with input X:, weights
W and bias b is modelled as

y=) wisx;+b. (2.2)
=0

Lastly, the output is passed through an activation function, which determines whether to activate the
neuron or not [34]. There are many different activation functions, but to keep the example simple, a
step activation function is shown (also known as a binary activation function). The step activation

function is defined as

fly) = {1’ iy >0, (2.3)

0, otherwise.

2.1. NEURAL NETWORK 9

Activation

<) @ Function
@—»@—» —» Output

Inputs <

Figure 2.1: Structure of a perceptron.

Hidden Layer 1 Hidden Layer 2

Inputs <

Figure 2.2: Structure of simple neural network with inputs X = (zo,21,...,2,) and 2 hidden layers.

2.1.2 Interpretation of Gradient

A gradient is the collection of partial derivatives of a function f(X) denoted as Af(X), where X is a
vector of inputs [35]. Gradients are highly used in NN algorithms, especially in backpropagation and
optimization algorithms, further described in Sections 2.1.4 and 2.1.7. Imagine that we have a simple

multiplication function of two inputs f(x,y) = xy, and partial derivatives for both inputs are formulated

10 CHAPTER 2. METHODOLOGY

as

of _
or

of _

9y x. (2.4)

flz,y) =2y — Y,

Partial derivatives represent the pace of change of a function concerning the variables surrounding an

immeasurably small region near a specific point [35], formulated as

o) _ . fl+h) — [()

ox h —0 h ’ (2.5)

where operator % is applied on the function f and returns the derivative, and h is a number close

0 to represent the function as a straight line. Also, the vector of partial derivatives (gradient) Af is

represented as Vf = [%, %} = [y, z].

As another example, considered the composed expression f(z,y,2) = (x + y)z. This function can be
differentiated by splitting it into two functions ¢ = x + y and f = ¢z. This composed function now
becomes an multiplication function f = ¢z and gradient of this function f is calculated with respect to

its inputs x,y, z, as %ch = %% [35]. Combining these gradient expressions through multiplication is

known as chain rule, which is highly used in backpropagation (see e.g. Section 2.1.4).

2.1.3 Loss function

Training a neuron is the process of adjusting the weights of a perceptron to produce specific outputs. In
this case, some sort of signal is used to incrementally adjust the weights until the desired output is
produced. Typically, this signal is in the form of a loss function that assesses the error produced by the
NN. Based on this value, weights are adjusted to minimize the error. This process is further described
in Sections 2.1.4 and 2.1.7. There are many different loss functions that can be used for this task. For

example, the most common are described as follows.

e Mean squared error (MSE) — This method is commonly used in regression tasks [36]. Calculated
for all inputs n, by the average of the squared difference between actual (ground truth) y; and
predicted values 1;, computed as

n .52
MSE: ZiZI(yl yZ) .

A (2.6)

2.1. NEURAL NETWORK 11

e Cross-Entropy Loss — This method is commonly used in a large number of classification problems
[37]. A separate loss is calculated for each class label, where m is the total number of classes.

Loss values increase as the prediction diverges from the actual label, computed as

m
CrossEntropyLoss = — Z yi In(7;). (2.7)
i=1

2.1.4 Backpropagation

NNs are a supervised learning algorithm, which means there is a correct answer for each input, and,
based on the loss value, we assess how close the output of the NN is to the corresponding label. For this
task, the gradient of the loss function is calculated with respect to all the weights in a NN, which is called

backward propagation of errors or backpropagation [38]. To describe how it works, imagine that we have

a NN consisting of a vector of layers L= (lo, 11, .. .,1lx) and for each corresponding layer [; there are

-

weights W = (wo, w1, ..., wy) and input X = (xo,x1,...,2x) with activation result A= (ap,ai,...,ag).

For each layer [;, the output is calculated as

a; = f(wl * T + bi), (2.8)
where f is activation function and b; is bias of the current layer I;. Also, if ¢ # 1, then z; = a;_1. After

reaching the last layer k, we compute the loss function C', which gives the output error for the last layer
as

oo
~ Oay,

Then, the error for each layer is calculated backwards as

Ok I(wk * T + bp). (2.9)

8 = ((wit1) 0i41) © f/(w; * 25 + by), (2.10)

where (w;y1)7 are the transposed weights from the layer ;41 and ® is a dot product. Having errors for
each weight in every layer, we can adjust them in the direction of the gradient to reduce the overall

error of the network.

2.1.5 Initialization

As discussed above, each perceptron has weights that can be adjusted to produce specific outputs. The
process of adjusting the weights of a perceptron is called training. These weights need to be initialized

prior to training. There are plenty of different initialization techniques, but the simplest ones are zero

12 CHAPTER 2. METHODOLOGY

initialization, which sets each weight value to zero, and random initialization, which generates a random
value for each weight. However, using these simple initialization techniques can lead to poor results. For
example, initializing a weight to a very high value will likely force the activation value to 1. Similarly,

an initial value of 0 will cause the activation function to output 0. [39].

To fix the issue described above, “normalized initialization” was introduced by Bengio and Glorot [40],
also known as Xawvier initialization. This method generates values just like random initialization, but

_ V6 V6
Vnitniy1? /nitnit

distributed in the following range [], where n; is the number of inputs to the

current layer, and n;41 is the number of outputs from the current layer.

2.1.6 Input Normalization

Input normalization is a well-known method used to bring every input value X = (xo,x1,...,2p) to a
similar range, to omit any significant differences in the input value range. For example, consider the
inputs =7 and x2 in the intervals [0,1] and [0, 0.01], respectively. In this case, the parameters correlated
with each input will also exist on different scales due to the NN combining these inputs through a series
of linear combinations and nonlinear activations. A lot of different input normalization methods exist,

but the following are used the most often.

e Zero to one normalization — This method casts the input value x; to the new value z; in range

[0, 1], and is computed as
x; — min(X)

max(X) — min(X)’

(2.11)

z; =

e Negative one to one normalization — This method is similar to the previous normalization, but
casts the input value z; to the new value z; in range [—1, 1] instead of [0, 1], and is computed as

x; —min(X)
maz(X) — min(X)

Zi = 2% —1. (2.12)

e Mean normalization — Instead of casting the input values to the specific range, this method tries
to center them around zero, and is computed as

z; = x; — mean(X). (2.13)

2.1.7 Optimization

Optimization is the process of adjusting NN weights to minimize the error value produced by the

loss function. There are a lot of different existing methods for this task, but gradient descent is the

2.1. NEURAL NETWORK 13

most popular optimization algorithm [41]. Gradient descent is an iterative algorithm that focuses on
finding a local minimum of a specific function by taking steps in the direction of the negative of the
gradient at the given step. Also, there are many gradient descent variants, like Batch Gradient Descent,
Stochastic Gradient Descent and Mini-Batch Gradient Descent [42] [43]. Each variation has a trade-off

by increasing the accuracy of weights or reducing the time it takes to train.

After the backpropagation step described in the subsection above, we receive derivatives for each
layer, and we need to optimize the weights and biases. The optimization of weights and biases can be

formulated as

Oj41=10; — % > dijlaicay)”, (2.14)
j=1

where 0; are the weights W at iteration step j, 041 is the adjusted weights at the next iteration step, n
is the learning rate of the optimization algorithm, and m is the number of the training examples in
the current iteration (also referenced as batch size). Also, an epoch is defined as a full pass of all the
training samples through the machine learning algorithm. To make this algorithm work iteratively,

repeat Eq. (2.14) n amount of times, where n is the number of iterations.

The optimization algorithm introduced in Eq. (2.14) is the simplest of all, known as stochastic gradient
descent (SGD) [42]. There are more advanced and complex optimization algorithms, for example,
momentum, root mean square propagation (RMSprop), adaptive gradient algorithm (AdaGrad) and
adaptive moment estimation (Adam) [44][45][46]. Currently, Adam is the most used optimization
algorithm, and the main difference from SGD is in the adaptive per-parameter learning rates and in
calculating the exponential average of the gradient and the squared gradient, which decreases the time

needed for training.

The Adam method stores an exponentially decaying average of past squared gradients v; and keeps an
exponentially decaying average of past gradients m;, where j is the current iteration step. v; and m;

are calculated as

m; = ﬂlm]’,1 + (1 — ,81)(5]', (215)
vj = Bgvj,l + (1 — 52)5]2, (2.16)
where 81 and (5 are values close to 1. Also, the bias-corrected moment estimates are calculated as

_ o my
1-p0"

A~

m;

(2.17)

14 CHAPTER 2. METHODOLOGY

v = . (2.18)

Then, the parameters are updated as

001 =0; — (2.19)

m;
(NGRS

The most used values for (1 is 0.9, B2 is 0.999 and for € is 1075.

2.2 Convolutional Neural Network

A CNN is very similar to the structure of a regular NN as it also has inputs, trainable weights, and
biases. CNNs are usually used to solve computer vision-related tasks, like image classification. The
difference is the presence of three-dimensional layers, which have width, height and depth, like in the
structure of the regular image, where depth refers to the third dimension of an activation volume and
not the depth of a full NN, which can refer the total number of layers in a network [35] (see e.g. Fig. 2.3).
Input images to the NN leads to some changes, like convolution and dot products used instead of weight
multiplication, pooling layers used for reducing the width and height of the layers the deeper they are

in the CNN, different activation functions, and much more.

24@48x48

24@16x16

3@128x128 ‘

=

Pooling Convolution Pooling Fully-Connected

Figure 2.3: Regular CNN structure for 128 x 128 image and 3 colour channels with convolutional layer, pooling
layers and fully connected layer.

2.2.1 Convolutional Layer

The convolutional layer is a crucial part of the structure of CNNs and, based on its name, uses the

convolution operation [47]. The convolution operation is used a lot in image processing-related tasks

2.2. CONVOLUTIONAL NEURAL NETWORK 15

(see e.g. Fig. 2.4). CNNs also have weights, but, unlike simple NNs, it stores them in the form of small
matrices called filters. The size of each is KxK, and each convolution layer consists of D amount of
filters. The total amount of weights per convolutional layer can be calculated as K *x K * D with D
biases. The size of the input to the convolutional layer is WxH, where W is the width, and H is the
height. A 3x3 filter size is the most common, but sometimes different sizes are used. Note, that filter
dimensions should be smaller than the input. Also, D usually represents the number of activations
masks or the depth of the convolutional layer. The convolutional layer does not look at the whole

input at one step, it rather looks at input n amount of steps through a small window of the size KxK

called the receptive field. Define input to the convolutional layer as X = (Xo, X1, Xo, ..., Xp,), where
X; = (x0,x1,%2, ..., Tx«k) are values received from the input through receptive field at step ¢. The

convolution operation is formulated as

zi = X * f, (2.20)
where z; is the output feature map and f is the filter. As was mentioned above, multiplication in this

layer is replaced with the convolutional operation of filters on input.

Figure 2.4: Convolution with a filter size of 3x3 and zero-padding P = 1 [48], where the blue grid is input, and
the green one is the output of the convolutional layer.

Filters usually slide through each input value, but sometimes striding S is used to lower the size of
output by skipping pixels. When S = 1, the filter will slide through each value, and when S = 2 or
S = 4, the filter skips every next or every two values for each slide. Moreover, applying filters on the

images will give smaller output, even when S = 1, this happens when applying filters on the border of

16 CHAPTER 2. METHODOLOGY

the input [35]. To produce an output the same size as the input, zero-padding P is used, which fills the

input volume with zeros around the border. The actual output size is calculated as

(H|W)+2P - K)
S

where H, is the height and W, is the width of the output features.

(Ho|Wo) = +1, (2.21)

Atrous Convolution

There are more than one type of convolution used in CNNs. One example is atrous convolution, which is
also known as dilated convolution [49]. The idea behind dilated convolution is to increase the perimeter
of the filter without increasing the number of parameters. This convolution is the same as the regular
one but has a dilation rate [, shown in Fig. 2.5. The dilation rate corresponds to the number of spaces

inserted between kernel elements. The atrous convolution is calculated as

Zi = Xi *] f (2‘22)

Figure 2.5: Atrous convolution with a filter size of 3x3 and dilation rate [= 2 [48], where the blue grid is input,
and the green one is the output of the convolutional layer.

Transposed Convolution

Transposed convolution, also known as deconvolution, is a regular convolution operation, but instead of
lowering the output size of the features, it tries to recover the original size of the input [50], shown in
Fig. 2.6. This convolution is highly used in autoencoder and encoder-decoder structures [51][8]. The
result is achieved by increasing the size of the input by inserting zeros between feature elements, called

striding.

2.2. CONVOLUTIONAL NEURAL NETWORK 17

Figure 2.6: Transposed convolution with a filter size of 3x3 and striding rate is equal to 2 [48], where the blue
grid is input, and the green one is the output of the convolutional layer.

Depthwise Separable Convolution

Depthwise separable convolution is a recent and slightly different operation than original convolution
[17]. Regular convolution executes the channel and spatial-wise calculation in a single operation, while
depthwise separable convolution performs two different operations, shown in Fig. 2.7. In the beginning,
depthwise convolution is used on each input channel, then pointwise convolution is applied to generate
a combination of the results from the depthwise convolution. Where depthwise convolution uses a
single convolutional filter for each input channel and tries to keep each channel separate. And pointwise

convolution is regular 1x1 convolution, which iterates through every single point.

Depthwise Pointwise

Figure 2.7: Depthwise separable convolution with filter size of 3x3 followed by a pointwise convolution [17],
where input is depicted in blue on the left.

18 CHAPTER 2. METHODOLOGY

2.2.2 Pooling Layer

The pooling layer, also known as downsampling, is usually used in between convolutional layers or entire
blocks. The purpose of these layers is to lower the spatial size of the features to reduce the number of
parameters in the following layers. Downsampling is similar to the convolution operation, which uses
input with dimensions WxHxD, and a filter window of size K and striding S to generate new output.

There are many different pooling methods, some of which are the following.

e Max pooling — This method looks at the most active feature in a pooling region X; in X =
(X0, X1, X2, ..., Xp). The output size is determined by the striding value S, calculated as
z;i = max(X;). (2.23)

e Average pooling — This method takes all values in each region X; in X. The output size is
determined by the striding value S, calculated as

zi = avg(X;). (2.24)

e Global pooling — This method takes all values from the input X and performs max pooling or
average pooling. The output from the operation is a single value [52], calculated as

z = global_pool(X). (2.25)

2.2.3 Upsampling Layer

The upsampling layer does the opposite of the pooling layer. Instead of lowering the spatial size of the
features, it tries to recover the original size and its mostly used in autoencoder and encoder-decoder
type architectures [51][8], which mimics the job of transposed convolution. Upsampling is usually
in-between the blocks, which is followed by at least one convolutional layer. Most of the time, transposed
convolution performs better for the problem of upsampling where the spatial size of the features should
be increased. This is due to the presence of trainable parameters, but in other cases, upsampling is a
better option as it is not involved in the training and does not have trainable weights and biases, thus

decreasing computation time. There are several upsampling layers used in NNs.

e Nearest neighbour upsampling — This method is based on the nearest neighbour interpolation
[53], the simplest of the three, when increasing the size of features it recovers missing values by

replacing them with the nearest one.

2.2. CONVOLUTIONAL NEURAL NETWORK 19

e Bilinear upsampling — This method is based on the bilinear interpolation [54], it determines
missing values by replacing them with a weighted average of the four nearest values. The values

closer to the missing one has higher weights.

e Bicubic upsampling — This method is based on the bicubic interpolation [55], very similar to the
bilinear interpolation, but it determines missing values by replacing them with a weighted average
of the sixteen nearest values. As in the bilinear interpolation, the values closer to the missing one

have higher weights. This one is the most computationally expensive of the three.

2.2.4 Activation Layer

Activation functions are usually used after applying weights and biases on the input using simple
operations, as was described in Subsection 2.1.1 or using convolution. The purpose of the activation
function is to help NN learn the complex patterns present in the input by determining what data to
activate and pass to the next neuron using a non-linear transformation. If activation functions were not
present, the NN would be just a regular linear regression model. Many different activation functions
exist, for example, the step function was described in Subsection 2.1.1. However, the following functions

are used by the CNNs in this thesis.

e Linear function — The idea behind this method is to generate a signal proportional to the input,
by multiplying a constant value ¢ on each value of output y. Linear functions are a better choice
than a step function, but they are not usable with backpropagation since all layers of the NN end

up producing the same output [34]. The linear function computed as

fly) = cy. (2.26)

e Sigmoid function — This method is a non-linear function that focuses on smoothing the gradient
of output y and bounds the values between 0 and 1. However, this function is computationally
expensive, and gradients can vanish if the values are very high or low [34]. The sigmoid function

is computed as 1

14e vy’

fly) = sigmoid(y) = (2.27)

e Tanh function — This method is a non-linear function which is extremely similar to the sigmoid,
but it bounds values between —1 and 1 instead of 0 and 1 [34]. The tanh function computed as

2

f(y) = tanh(y) = Tre

(2.28)

20 CHAPTER 2. METHODOLOGY

e Rectified linear unit (ReLU) function — This method is one of the most used activation functions
because of its computation efficiency. However, the gradient sometimes becomes zero when y is
negative or close to zero, which causes problems with backpropagations. The values are bound

between 0 and oo [34]. The ReLU function computed as
f(y) = maz(0,y). (2.29)

e Leaky ReLU function — This function is a modified version of the ReLU that includes a hyper-
parameter A. Here, \ gives a little slope for negative values instead of bounding them to 0. Even
though this seems like a better version of ReLLU, leaky ReLLU does not provide consistent results

for negative input values [34]. The leaky ReLU function computed as
fy) = maz(Xy, y). (2.30)

2.2.5 Batch Normalization Layer

Sometimes after training a NN on a specific dataset, the model might overfit, which means that the
trained NN performs well on the dataset used for training but not well on the validation dataset. This
is called underfitting, where the model does not generalize to examples outside of the training set [56].
To prevent these problems, a dropout layer is used, which drops a unit with connection during training
with a specified probability p. However, recently more advanced methods were developed, like the
Batch Normalization (BN) layer [57], which negates the use of the dropout layer and accelerates the

training by fixing the means and variances of the layer input. Consider a mini-batch B which consists of

inputs X = (z1,x2, ..., Tm), normalized inputs X = (21,22, ..., Tm,), and Y = (Y1, Y2, -+, Ym) their linear

transformation. Then, mini-batch mean pg and variance a% are calculated as

1 m
up = E i:E 1 Ti, (231)
1 m
2 _ L 2
o = m ; (zi —pB)"- (2.32)

Following normalized inputs, &; is computed as

g, = BT BB (2.33)
A /0123 +e€
Then, the output scaled and shifted y;, before passing to the new layer, is calculated as

yi =i + B =BNy g (i), (2.34)

where v and (3 are learnable parameters.

2.3. CHAPTER SUMMARY 21

2.2.6 Fully Connected Layer

A fully connected layer is a layer in a neural network where each neuron in the layer is connected to
all outputs from the previous layer. These layers are most often placed at the end of a CNN, where
they flatten the output from the previous layer into a one-dimensional array, and typically apply more

weights and biases before providing a final classification decision.

2.3 Chapter Summary

This chapter introduced the notion of NNs and their structure. Algorithms and methods that are used
for their training are discussed, like loss function, backpropagation, and optimization. Additionally, the
structure of CNNs were presented with the methodology for the layers. Layers and their purpose were
explained, in particular, the convolutional, downsampling, upsampling, batch normalization, and fully

connected layers.

22

CHAPTER 2. METHODOLOGY

Chapter 3

Literature Review on the Use of Deep
Learning in Semantic Segmentation and
Remote Sensing

This chapter introduces DL with some highly used architectures designed for different tasks, like
successful CNN architectures, which are used for image classification. Then, more advanced DNN
architectures are discussed for use in remote sensing and LULC map production, examples include
encoder-decoder models. Finally, works of different NN extensions are introduced as well as the UDA

architecture.

3.1 Deep Learning

In the last two decades, the popularity of NNs and DL has significantly increased due to a large
number of advances in many research areas [58]. Also, improvements in graphics processing unit (GPU)
technology were a big part of the success of DL. Models, which previously took months or weeks to
train, now took just a few hours or days. This acceleration in training made it possible to create
a DNN with large numbers of layers and, together with GPUs, made them accessible to the public.
DL surpassed many state-of-the-art methods in fields like speech recognition [59], natural language
processing (NLP) [60], image processing [4], computer vision [5], and object detection [6]. In recent
years, DL was highly successful in remote sensing [12][13] [15][3][14], especially in fields like image
preprocessing and classification. Work in this thesis focuses on LULC, which falls under the classification

branch of DL in remote sensing.

23

24 CHAPTER 3. LITERATURE REVIEW

3.2 Deep Convolutional Neural Networks

CNNs are a type of DNN designed to solve tasks based on structured arrays, like images or audio.
A deep convolutional neural network (DCNN) is a CNN with a large number of convolutional layers.
DCNNSs mimic the structure of the human visual cortex, where it sequentially uses convolutional layers
to recognize more sophisticated shapes and features of the objects [61]. CNNs have proven to be
extremely effective and are now a state-of-the-art method for computer vision tasks, such as image
classification and object recognition [7]. Also, CNNs has found success in text classification, which is

part of the NLP field.

The first CNN that beat other conventional methods in the performance of recognition of handwritten
digits was LeNet developed by LeCun in 1998 [62]. It was able to classify distorted and rotated images,
which were big issues for algorithms at the time. LeNet is a shallow CNN; it has five convolution and
pooling layers, two fully-connected layers at the end, and the input to the network is a 32x32 image.
However, the model considered each pixel as separate input and completely ignored neighbourhood
features. The bottleneck for the improvement of CNNs at that time was the absence of GPU for use
during training. Thus, training was restricted to CPUs making it nearly impossible to train deeper

models with a large number of parameters in a realistic amount of time.

In 2012, the AlexNet [63] model was presented and won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). It was considered a revolutionary model that first showed NNs could outperform
other algorithms in the ILSVRC image recognition and classification tasks. AlexNet was established
from the LeNet network by increasing the total amount of layers from five to eight and adding large
filters (11x11 and 5x5), depicted in Fig. 3.1. This new architecture was only able to be trained due
to the advent of general purpose computing using GPU and servers containing multiple GPU cards.
Moreover, AlexNet was one of the first models to fully implement dropout to bypass the overfitting
problem [56] and add ReLU activation functions to ease the vanishing gradient problem [34]. AlexNet
had a significant impact on the field and future of CNN models by introducing a new architecture

standard with an efficient training approach.

The success of AlexNet accelerated research in the architectural design of CNNs. In 2014, Simonyan
presented the VGGNet architecture [25], which consisted of 16 or 19 sequential layers making it a lot
deeper than AlexNet. To achieve the higher number of layers, the architecture decreased the size of
the filters from 11x11 and 5x5 to 3x3 to reduce the computational complexity. Layers are built using

stacked convolutions with zero-padding, with the output passing through a max-pool operation with

3.2. DEEP CONVOLUTIONAL NEURAL NETWORKS 25

27

13 13 13
ittt I & ~—1L hﬂ
-7 27 & =i 3 - 13 3 - % |3 dense dens
N T N -
384 384 256 5
Max
256 -
Max Max pooling 9090 4096
pooling pooling

Figure 3.1: An illustration of the AlexNet architecture [63].

stride (2x2). Despite decreasing the number of parameters via smaller filters, the architecture still
consists of around a hundred million parameters, which makes it difficult or impossible to train on
lower-end devices. However, VGGNet showed extremely positive results in ILSVRC 2014, by placing

second in the classification & localization challenge!.

The winner of the 2014 classification & localization challenge was GoogleNet, also known as the Inception
model [26]. The idea behind this architecture is to reduce computational complexity and still achieve
high accuracy. It accomplished that by replacing convolutional layers with the inception blocks, which
followed the split, transform and merge design, shown in Fig. 3.2. Each block consisted of 3 different
sizes of filters (5x5, 3x3, and 1x1) to capture a wider range of features, especially those that varied
in spatial sizes. Moreover, inception blocks have bottleneck layers (1x1 convolution), which regulate
computations before each convolution with a large filter. The architecture consists of 9 inception blocks
and infrequent max-pooling layers with a (2x2) stride, reaching about 4 million overall parameters.
Later, improved versions of this architecture were introduced [57][64], which focused on replacing the
(5x5) convolutions with two (3x3) (see e.g. Fig. 3.3a), the addition of asymmetric (1xn) and (nx1)
convolutions in the inception block (see e.g. Fig. 3.3b), the inclusion of batch normalization layers, and
the use of RMSProp optimizer. Recently, Francois Chollet introduced the extension of the Inception
architecture called Xception [17]. It replaces inception blocks with plain depthwise separable convolutions.
Inception architectures have performed extremely well in image classification tasks. However, due to a
large number of layers and a low number of parameters, this architecture tends to overfit or underfit in

some domains.

The ResNet architecture, proposed by He [27], is similar to the VGGNet, but it is around eight times

deeper. Also, this design utilizes residual blocks, which consist of a ReLU with batch normalization

"http:/ /www.image-net.org/challenges/L.SVRC/2014 /results

26 CHAPTER 3. LITERATURE REVIEW

Inception block

|/ Input features \l
|

Y Y L4
1x1 Conv 1x1 Conv 3x3 Max pool
1x1 Conv 3x3 Conv 5x5 Conv 1x1 Conv

! '
|K Concatenate /|

Figure 3.2: The first iteration of the inception block, where blue (1x1) convolutions are bottleneck layers, (3x3)
are regular convolutions, and red is a downsampling layer.

Inception block v2 Inception block v3
ﬁ Input features m ﬁ Input features m
| Y | Y
[1x1 Conv] [1x1 Conv] [3x3 Max pool] [1x1 Conv] [1x1 Conv] [3x3 Max pool]
\ 2
[1x1 Conv] [3x3 Conv] [3x3 Conv] [1x1 Conv] 1x1 Conv L €7 [3x3 Conv] [1x1 Conv]
1x3 Con
\ 2 \L 3x1 Conv
| Concatenate | J, v v
\ / & Concatenate y
(a) (b)

Figure 3.3: Improved versions of the inception blocks. (a) is an inception block that replaced (5x5) convolution
with two (3x3), and (b) is an inception block that takes advantage of asymmetric (1xn) and (nx1) convolutions.

in between convolution layers. This architecture also uses shortcuts, which are simple elementwise
addition of input z and output of the residual block H(z), which means that ResNet trains on residual
function F(z) = H(x) + x instead of the regular mapping H(x) = z. Naturally, one would think it
is effective due to the enormous amount of layers, but its success is mostly due to the shortcuts and
residual block design, which helps with the vanishing gradient problem exhibited by CNNs with a large
number of layers. Moreover, one study showed that it is possible to improve the performance of ResNet
by changing the order of convolution, batch normalization, and ReLU inside the residual blocks [16].
ResNet won the 2015-ILSVRC and currently is one of the best architectures used for image classification

tasks.

3.3. DEEP CONVOLUTIONAL ENCODER-DECODERS 27

3.3 Deep Convolutional Encoder-Decoders

There are many computer vision tasks that cannot be solved by CNNs in the original form in which
they were introduced (such as object detection or semantic segmentation); however, with architectural
structural changes, these networks can be used in these related domains. The goal of object detection is
to detect occurrences of objects of a certain class within the input image by drawing borders around
the identified objects. While semantic segmentation focuses on the pixel-level classification of the entire
scene, where perceptual objects (i.e. a specific class) within the image are all assigned the same label.
The deep convolutional encoder-decoder architecture was introduced to solve these tasks [8][9] (see e.g.
Fig. 3.4). The concept of the encoder-decoder is to extract features from the input using an encoder
and then decode those features back to the original size using a decoder before classification, where the
encoder is a CNN without fully connected and classification layers and the decoder is a mirror of the

encoder or a CNN with a different architecture.

Encoder Decoder

Figure 3.4: Overall structure of a regular encoder-decoder architecture.

One of the first works that used an encoder-decoder network was a FCN presented in 2014 [8]. It
uses VGGNet with fully convolutional layers instead of fully connected layers as an encoder, while the
decoder is a single interpolation layer that resizes prediction to the input size. Also, this architecture
takes advantage of skip connections to recover lost information in downsampling layers, where each
skip connection is a shortcut from the ResNet architecture [27]. Despite giving promising results, this
architecture has difficulties in accurately predicting edges of the objects. In 2016, [29] presented a
solution to overcome this issue by combining a conditional random field (CRF) with the final layer
of the DCNN. Later on, the CRF was replaced with a domain transform (DT) layer, due to high

computational complexity [65].

In 2015, the SegNet architecture was introduced [9] that improved the performance of the FCN by
modifying the decoder via mirroring the encoder. In this architecture, the decoder and encoder consist
of an equal number of convolutional layers, where the one difference between the encoder and decoder

is that the latter uses bilinear upsampling layers instead of downsampling ones. Then, Ronneberger

28 CHAPTER 3. LITERATURE REVIEW

presented the U-Net architecture [19] that is based on SegNet where the difference is due to the presence
of skip connections between encoder and decoder, which improved the accuracy of predictions and
helped with the vanishing gradient problem. In 2016, Milletari modified the U-Net model to process
volumetric inputs [66] by including residual blocks in between convolutional blocks and replaced 2D
convolutions with their 3D counterparts [67][68]. Despite groundbreaking results of the U-Net type
architecture, it has an immense number of parameters — more than twice of the regular DCNN designed
for simple classification — that slows down the training and makes models unusable on lower-end devices.
Some architectures lowered the number of convolutional layers in the decoder to one per upsampling
to decrease the number of parameters, which was also done in FCN [8]. Moreover, [18] presented a
feedbackward decoder for the U-Net model. This model used transposed encoder weights in the decoder
thereby lowering the number of parameters by a factor of 2, but this change came with a cost of lower

accuracy of predictions.

While most of the papers focused on improving the decoder, Deeplab, introduced in 2014 [69], focused
more on modifying the encoder. Deeplab is mainly an FCN architecture with dilated convolutional
layers and fully connected CRF placed at the last layers of the network. In 2016 DeeplabV2, was
presented [29] that drastically improved the performance of the model by including the first generation
of ASPP. ASPP is a collection of four parallel dilated convolutions with different strides (6x6, 12x12,
18x18 and 24x24), and it was designed to try and capture objects and context of the features at multiple
scales. DeeplabV3 [28] completely rethought the architecture by replacing the VGGNet-based encoder
with ResNet at a fixed OS of 4 and removing the fully connected CRF layer. The OS is also a ratio of
the input image size to the output feature map of the encoder. For an OS of 4 and an input image size
of 224 x 224 x 3, the output feature size of the encoder is (56x56). Also, the new architecture uses the
second generation of ASPP, which places a new layer in between the encoder and decoder consisting of
one (1x1) and three (3x3) dilated convolutions with rates (6x6, 12x12, 18x18). DeeplabV3+, presented
by Chen [20], extends DeeplabV3 by replacing the ResNet encoder with an Xception CNN. This change
drastically reduced the number of parameters in the model and increased the performance. Additionally,
DeeplabV3+ has a simple yet effective decoder, which improved the sharpness of predictions on the
boundaries. DeeplabV3 lost a lot of information because feature maps were upsampled to the original

size using bilinear interpolation. Currently, DeeplabV3+ is a state-of-the-art segmentation network.

3.4. UNSUPERVISED DOMAIN ADAPTION 29
3.3.1 Extensions

Throughout the years a lot of different encoder-decoder architectures were developed on the pair with
network extensions. Network extensions are plug-in modules, which aim to improve the performance of
the deep convolutional encoder-decoders without significant changes to the already existing architecture.
ASPP and fized OS from DeeplabV3 [28] are considered as network extensions because they can be

easily applied to any encoder-decoder based architecture.

In 2015, the context aggregation module [23] was presented to increase the sharpness of predictions
by aggregating multi-scale contextual information. This module is plugged into the last layer of the
decoder and consists of 8 sequential dilation convolution layers with rates ranging from (1x1) to (16x16),
where the size of the feature maps are not changed throughout all layers. The context aggregation
module has proven to improve the performance of already existing semantic segmentation networks like

FCN [8] with the cost of high computational complexity and a larger number of parameters.

Goodfellow [24] introduced a GAN, which consists of a generator and a discriminator, where the goal
of the generator is to produce an image as close to the real one as possible, and the discriminator
attempts to distinguish between original and generated images. The work presented in [70] used GAN
to boost the performance of NNs, where the encoder-decoder is a generator, and custom binary CNN is
a discriminator. GAN have shown great results in semantic segmentation tasks but comes with the
cost of training and prediction stability. Progressive GAN, introduced in 2017 [21], resolved issues with
training stability. The idea behind progressive architecture is to gradually add layers to both generator
and discriminator throughout the training. This extension was also used in the paper [71], where the

gradual increase of the network layers started in the decoder.

3.4 Unsupervised Domain Adaption

In recent years demand for DNNs in a wide range of fields has increased drastically. However, in some
areas, there is either low or no presence of labelled datasets, which restrains the successful use of NNs
there. UDA [22] is a semi-supervised learning framework that focuses on resolving this problem by
transferring knowledge from existing labelled datasets (source domain) to similar unlabelled ones (target

domain).

UDA type architectures started gaining popularity in the last couple of years, and found success in

image classification tasks by implementing architectures that consisted of 3 networks [30]: a generator

30 CHAPTER 3. LITERATURE REVIEW

network, which tries to mimic features from the source domain and apply them on to images from the
target domain; a discriminator that is used alongside generator by giving feedback on how well new
data mimics features of the target domain; and a regular CNN which trains on enhanced source domain
images and their corresponding labels. This architecture provided acceptable results but has difficulties
with the training due to the presence of 3 neural networks. One paper showed that it is possible to reach
the equivalent accuracy with only one network by modifying the architecture to have two outputs [72].
Both source and target domains are passed through the same CNN, where the only difference is in their
prediction. The first output is the categorical prediction of the source domain, and the second output is
the prediction of how the target domain images were distorted (flipped, rotated, zoomed in, etc.). This

architecture proved to be very effective, sometimes outperforming state-of-the-art GAN-based networks.

Currently, the use of UDA on semantic segmentation is a hot topic, due to the absence and difficulties
with the generation of labelled datasets. However, there are not a lot of papers published in this sphere
yet. Architecture that was introduced in a [73] gained success by following the approach mentioned in
[30], but replacing CNN with an encoder-decoder. Later [31] proposed to modify the architecture by
embedding a generator with the encoder (conditional generator). At this point, the generator enhances
only encoded features instead of the entire image. This approach improved performance and reduced
the computational complexity of the architecture. Some work tried to ignore adversarial training [72] by
producing semantic masks on the source domain images and introducing reconstruction on the target
domain images [74]. This model significantly reduced the computational complexity of the UDA type

architectures with no loss in the accuracy of predictions.

3.5 DNNs in Remote Sensing

The success of DL in image processing encouraged researchers to use it in remote sensing. The
development of DCNNs was mainly focused on scene classification and LULC map production. One
of the first studies for classifying used high-resolution satellite images (UC Merced dataset) [10][11]
due to good structural information. At that time, conventional DL algorithms performed poorly on
medium-resolution satellite images (10m-30m per pixel) because of a deficiency of such structural
information. In 2017, Sharma presented a patch-based CNN [75], which performed effectively on

medium-resolution satellite images.

A lot of researchers applied different semantic segmentation methods and techniques for LULC map

production that were successful since these problems are very similar to each other. Most of the

3.5. DNNS IN REMOTE SENSING 31

modern architectures follow the encoder-decoder structure with some minor changes. One of the first to
successfully use semantic segmentation architectures for remote sensing applications were [12][13] [14]
[15]. Their solution is based on an FCN structure with different encoders (i.e. VGGNet, GoogleNet,
ResNet) used on Landsat 5/7 satellite images. Also, they implemented GAN and context module
extensions to boost the performance of predictions. Additionally, work presented in 2018 [76] showed
that architectures that were successful in semantic segmentation on the real-world images need to be
modified to get their full potential in remote sensing. A number of different modifications were made
to improve the performance of the architectures on satellite imagery. For example, to keep most of
the structural information, a no-downsampling encoder network was developed [77] that used atrous
convolution. Some works centred on modifying the decoder by adding symmetric unconvoluted layers

[78][79]. These architectures significantly improved the accuracy of generated LULC maps.

Satellite data consists of a large number of colour channels (bands) based on each sensor type. Some
sensors can have more than ten bands with different spatial resolutions ranging from 2m to 30m. Using
conventional encoder-decoder architecture would be impossible in this case, that’s why most of the
designed architecture takes advantage of the RGB and infrared bands, which most of the time, share
the same spatial resolution. However, one work presented an architecture that used both RGB and
near-infrared (NIR) bands with different spectral resolutions by modifying the U-Net model to have
two encoders, one for RGB data and another one for corresponding NIR data [80]. Also, some works
included reconstruction of the input to boost the performance of prediction. This architecture has a
decoder with two parts, the first part creates segmented images and the second one recreates encoded

images [81]. These modified networks slightly increased the accuracy and sharpness of predictions.

Work in this thesis is a continuation of V. Alhassan’s work [15]. This thesis discusses the usage of CNNs
for creating LULC maps using encoder-decoder architectures, where ResNet, VGG-16 and GoogleNet
were used as encoders with a combination of FCN based decoder including transposed convolution and
skip connections. Also, [15] used two network extensions for improving accuracy: the first one is GAN,
which increased overall accuracy by a slight margin; and the second one is the context module which
was discussed earlier. The results show that NN can produce good results for the problem of automatic

LULC map production.

32 CHAPTER 3. LITERATURE REVIEW

3.6 Chapter Summary

This chapter discussed related works in the DL field, especially ones that are computer vision-related.
The concept of encoder-decoder was introduced with examples of some successful architectures, like FCN
[8], and U-Net [19]. Additionally, this chapter addresses some state-of-the-art model and architectural
extensions for encoder-decoder networks, like GAN [24], context module [23], and Deeplabv3+ [20].
Then, the UDA learning framework was presented and explained with some prosperous works [31].
Lastly, DL in remote sensing was discussed with some successful examples in the image classification

and LULC map generation tasks.

Chapter 4

Neural Network Models

This chapter discusses encoder-decoder architectures, and extensions that were implemented in this
thesis. Additionally, CNN models are addressed in-depth, for instance, VGGNet[25], GoogleNet[26],
ResNet[27][16], Xception[17] with a combination of different decoders. Moreover, more detailed infor-
mation is provided regarding model extensions and model modifications that boost the performance of
these models. Finally, the UDA architecture with the use of conditional generative adversarial network

[31] is explained.

4.1 Encoder-Decoder

This thesis is focused on training NNs on satellite imagery, which, by its structure, differs from regular
real-world images of objects. Most CNNs and encoder-decoder networks were trained on images with
three colour channels: red, green and blue (RGB), while the results in this thesis were produced by
models trained with satellite images (Landsat 5/7, Landsat 8, Sentinel-2) consisting of a combination of
six colour channels: RGB, one near-infrared (NIR) and two shortwave-infrared (SWIR). Therefore, the
input size of all the model input layers H x W x 3 was changed to H x W x 6, which slightly increases
the number of parameters in the first convolutional layer, but not in the following layers. In this thesis,

H and W are equal to 224 making the input size 224 x 224 x 6 and output of the network 224 x 224 x 1.

4.2 Encoders

In our experiments, the size of the input to the encoder is always 224 x 224 x 6, while the size of the

extracted features is H x W x D, where H is the height, W is the width and D is the depth of the last

33

34 CHAPTER 4. NEURAL NETWORK MODELS

convolutional layer in the encoder. A number of different CNNs were used in the role of the encoder in

this research: VGGNet[25], GoogleNet[26], ResNet[27][16], Xception[17].

4.2.1 VGGNet

VGGNet, presented in [25], is one of the most successful and highly used models, which took second
place in the ILSVRC 2014 classification & localization challenge. It gained its popularity mostly not by
its performance, but due to its simple and easy to implement structure. VGGNet consists of 16 or 19
sequential layers, where each convolutional layer uses a (3x3) filter size, followed by a dropout or batch
normalization layer, ReLU activation function, and periodic max pooling or convolutional layer with a

stride of (2x2). Implemented VGGNet architecture is depicted in Fig. 4.1.

224x224x6 Input image

v
3x3 Conv, 64 X2

112x112x64 3x3 Max pool / 2

v
3x3 Conv, 128 X2

56x56x128 3x3 Max pool / 2

3x3 Conv, 256 x3
28x28x256 3x3 Max pool / 2

v
3x3 Conv, 512 x3

14x14x512 3x3 Max pool / 2

3x3 Cony, 512 x3
7X7x512 3x3 Max pool / 2

\ 4
Extracted features

Figure 4.1: Network architecture diagram for an implemented VGGNet type encoder, where each convolutional
layer is followed with batch normalization and ReLLU activation function.

4.2. ENCODERS 35
4.2.2 GoogleNet

GoogleNet was the winner of the 2014-ILSVRC classification & localization challenge. The presented
architecture uses a novel structure that tries to improve accuracy and reduce the computational
complexity of the model by introducing an inception block design [26]. Shortly after that, improved
versions of this architecture were introduced [57] [64], which focused on modification the inception
block (see e.g. Fig. 3.3). In this thesis, the first iteration of the inception model was used to simplify
implementation. Inception block usually consists of 3 parallel convolutions with different filter sizes
(5x5, 3x3, 1x1) and a max-pooling layer with striding (2x2). Also, layer inputs are passed through
the bottleneck layer, with (1x1) convolutions, to reduce the depth of the input vector to make it more
computationally efficient (as shown in Fig. 3.2). A more detailed architecture diagram is depicted in

Fig. 4.2.

224x224x6 [Input image]
7x7 Conv, 64 /2
56x56x64 3x3 Max pool / 2

v

3x3 Conv, 192

28x28x192| 3x3 Max pool / 2
v Inception block

Inception block, 256 |/ Input features |

Inception block, 480 |

14x14x480| 3x3 Max pool / 2

v

Inception block, 512 | x 3

[1x1 Conv] [1x1 Conv] [3x3 Max pooI]

Inception block, 528 [(¢ Gy] [3x3 Conv] [5x5 Conv] [1x1 Conv]

Inception block, 832

C tenat
7x7x832 | 3x3 Max pool / 2 |K oncatena® /'
v

Inception block, 832

7x7x1024| Inception block, 1024

v

[Extracted features]

Figure 4.2: Network architecture diagram for an implemented GoogleNet type encoder, where each convolutional
layer and inception block is followed with batch normalization and ReLU activation function.

36 CHAPTER 4. NEURAL NETWORK MODELS
4.2.3 Xception

This work also uses the Xception model [17], which is a modified version of GoogleNet. Currently,
this model is one of the best for image classification tasks, and showed excellent results for semantic
segmentation when used in the Deeplabv3+ architecture [20]. The Xception model followed the same
design goals of GoogleNet, i.e. reaching high accuracy with low computational complexity with simple
implementation. The Xception structure is similar to GoogleNet but replaces inception blocks with
(3x3) depthwise separable convolutions with shortcuts [17]. A more detailed architecture diagram is

shown in Fig. 4.3.

224x224x6 [Input image]

v

3x3 Conv, 32 /2

112x112x64 3x3 Conv, 64 . .
e 7 Xception block (D) Middle block (D)
56x56x128 [Xception block (128) | ﬁ Input] \ /[Input | I
v
28x28x256 | Xception block (256) | 3x3 DS Conv, D 3x3 DS Conv, D

3x3 DS Cony, D
3x3 Max pool / 2

3x3 DS Conv, D
3x3 DS Cony, D

14x14x728 | Xception block (728) |

1x1 Conv, D /2

| Middle block (728) | x8

v

7x7x1024 [Xception block (1024))

7 \[Output] / \[Output])

3x3 DS Conv, 1536
7x7x2048 3x3 DS Conv, 2048

v

[Extracted features]

Figure 4.3: Network architecture diagram for an implemented Xception type encoder, where each depthwise
separable (DS) convolution is followed with batch normalization and ReLU activation function.

4.2.4 ResNet

ResNet was the winner of 2015-ILSVRC and currently is one of the best architectures used for image
classification tasks, due to its residual block design, which allows generating very deep models [27].
ResNet consists of a number of sequential residual blocks, where each block has one (3x3) convolutional
layer in between two (1x1) convolutional layers, which are responsible for depth reduction and restoration.

Moreover, there is a shortcut before each residual block, which is a simple elementwise addition of

4.2. ENCODERS 37

input and output of the residual block, which helps with the vanishing gradient problem [34] and
enables deeper models. Also, we used an additional version of this model, which changes the order of
convolution, batch normalization and ReLU inside the residual blocks called fully pre-activation ResNet
introduced in [16]. The difference between regular and pre-activation residual blocks is depicted in

Fig. 4.4. Also, a more detailed architecture diagram of the ResNet model can be seen in Fig. 4.5.

X/ ¢ XI |

Batch normalization

Convolution | |
v
Batch normalization ‘ Rei-U
¢ .
RelLU] Conviluhon
v

I Batch normalization

Convolution ¢
Batch normalization [e]

Y
v
Addition . |

Convolution

Y

Addition <

Xi+1 Xi+1

(a) Regular residual block design. (b) Pre-activation residual block design.

Figure 4.4: Regular and improved residual blocks designs: (a) applies convolution first and then batch
normalization with ReLU, and (b) applies batch normalization with ReLU first and then convolution.

38 CHAPTER 4. NEURAL NETWORK MODELS

224x224x6 Input image
L ont oelie Residual block (D1, D2)
56x56x64 3x3 Max pool / 2
Input
56x56x256 | Residual block (64, 256) | x 3 1x1 Conv, D1
3x3 Cony, D1
28x28x512 | Residual block (128, 512) | x 4 1x1 Cony, D2

14x14x1024|Residual block (256, 1024)| x 23

\ Output /
7x7x2048 |Residual block (512, 2048)| x 3

Extracted features

Figure 4.5: Network architecture diagram for an implemented ResNet type encoder.

4.3 Decoders

The decoders are networks that try to produce output with the same dimensions as the original image.
A new labelled mask is produced from the low-level features retrieved by the encoder network or some
other algorithm. In our experiments, we used the following decoders: FCN-type [8], U-Net [9][19],
Feedbackward [18]. Input to the decoders are feature maps generated by an encoder of the size H x W
x D, where H is the height, W is the width, and D is the depth of the last convolutional layer in the
encoder. The output from the decoder is a generated labelled mask of size 224 x 224 x 1, which has the

same height and width as input to the encoder.

4.3.1 FCN

The FCN architecture described in [8] is one of the first successful decoders used for semantic segmentation
models. In this work, we implemented an FCN-8 decoder variant, which gradually upsamples extracted

features using transposed convolution and merges them with features of the same size from the encoder

4.3. DECODERS 39

layers using shortcuts from ResNet [27], also referred to as skip connections. See Fig. 4.6 to get a better

understanding of the structure of the FCN decoder.

7x7x512 [Extracted features] Skip connections

from encoder

14x14x512 [4x4 Trans Conv 512/ 2]

28x28x256 [4x4 Trans Conv 256 / 2]

224x224x21 16x16 Trans Conv 21/8 |

224x224x1 | ArgMax]

v

[Predicted |

Figure 4.6: Network architecture diagram for an implemented FCN-8 type decoder for VGGNet, which uses
transposed convolution on the pair with skip connections from the encoder.

4.3.2 U-Net

The SegNet model introduced in [9] presented a new decoder design, which fully mimics the structure of
the encoder, but replaces downsampling layers with upsampling one. Despite great results, it suffered
from a vanishing gradient problem due to the depth of the model. Shortly after, an improved version of
the same decoder was introduced [19], called U-Net, which implements skip connections to improve the
quality of predictions and help with the vanishing gradient problem. In this thesis, we implemented the
U-Net decoder only for the VGGNet encoder due to difficulties with implementation. This structure is
shown in Fig. 4.7.

4.3.3 Modified U-Net

To make the U-Net type decoder compatible with every encoder it was slightly modified. The overall
structure of the model follows the same concept that is presented in Fig. 4.7. However, the number of
convolutions was reduced to one per upsampling layer, and complicated block structures (e.g. ResNet
residual block, GoogleNet inception block) were disregarded, which also significantly decreases the

computational complexity of the model.

40 CHAPTER 4. NEURAL NETWORK MODELS

7x7x512 [Extracted features] Skip connections
¢ from encoder

Bilinear upsampling /2

14x14x512 3x3 Cony, 512

Bilinear upsampling /2

28x28x256 3x3 Cony, 512

Bilinear upsampling /2
56x56x128 [343 Conv, 256
Bilinear upsampling /2
T2x112x64 [353 Conv, 128
Bilinear upsampling /2
224x224x21 3x3 Conv, 64 X 2
224x224x1 | ArgMax]

v

| Predicted |

Figure 4.7: Network architecture diagram for an implemented U-Net type decoder for VGGNet, which uses
reversed CNN structure on the pair with skip connections from the encoder.

4.3.4 Feedbackward

U-Net type decoders [9][19] have double the amount of parameters of the encoder, making them
computationally expensive for training. Recently one work presented a way to resolve this issue by
introducing the feedbackward decoder [18], which uses the weights W from the encoder in the decoder
by transposing them (i.e. using W7). This approach decreases the time needed for training and the
overall size of the model because the same weights are used for encoding and decoding. We implemented
this model only for VGGNet due to the complexity of implementation. The feedbackward decoder has

an identical structure to the U-Net decoder shown in Fig. 4.7.

4.4. MODEL EXTENSIONS 41

4.4 Model Extensions

Some model extensions were implemented to improve the accuracy of prediction, where model extensions
are plug-in modules that aim to improve the performance of the encoder-decoder networks without
significant changes to their architectures. Model extensions usually are layer modifications or blocks

that are inserted in between, before or after encoder-decoder architecture.

4.4.1 Layer-Level Modifications

To improve the performance and stability of training, several modifications were made to the model
on the layer level. For instance, [57][18] recommends replacing dropout layers and biases with batch
normalization to stabilize training and omit overfitting and underfitting. Additionally, [20] showed that
it is possible to get a slight boost in performance by using convolutional layers with striding instead of

pooling layers and replacing upsampling layers (e.g. bilinear upsampling) with transposed convolution.

4.4.2 OQOutput Stride

[28] introduced the OS model extension, which freezes the width and height of features at a certain step
in a NN. Also, the OS is usually referred to as a ratio of the input size to the output feature map of the
encoder. For example, if the OS is set to 8 or 16 and an input image size is 224 x 224 x 6, the output
feature size of the encoder is 28 x 28 x D or 14 x 14 x D respectively, where D is the depth of the last
layer of the encoder (see, e.g., Fig. 4.8). In this work, we tested OS of 32, 16, 8, 4 and 2.

Convl

+
Pooll Blockl Block2 Block3 Block4 Blocks Block6 Block7
0 o 2
tput
Image nge 4 8 16 32 64 128 256 256
(a) Encoder architecture with regular OS.
Convl
+
Pooll Blockl Block2 Block3 Block4 Blocks Blocké Block7
output
|mage Stri?le 4 8 16 16 16 16 16 16

(b) Encoder architecture with fixed OS at 16.

Figure 4.8: Comparison of encoders with regular OS and fixed OS at 16 [28] .

42 CHAPTER 4. NEURAL NETWORK MODELS
4.4.3 Atrous Spatial Pyramid Pooling

ASPP is a model extension that was introduced in [29] and then improved in the [28][20]. This extension
is inserted in between encoder and decoder and is only usable with the combination of the OS model
extension, mentioned in the subsection above, or with a model with a large amount of extracted features.
ASPP is a block that captures objects and context of the features at multiple scales, and consists of
four parallel dilated convolutions with different strides (6x6, 12x12, 18x18 and 24x24). The structure of
ASPP is depicted in Fig. 4.9.

1x1 ’
Conv

3x3
Conv "~

rate 6

3x3
Conv "

rate 12

1x1

> Conv >

Input 3x3 > Concat

layer Conv
rate 18

Image <
pooling

Figure 4.9: Network architecture diagram for an implemented ASPP extension [82].

4.4.4 Context Module

The context module, introduced in [23], aggregates multi-scale contextual information of the prediction
to improve its sharpness and accuracy by inserting itself after the decoder and before the argmax
operation. This extension consists of stacked dilated convolution at a rate ranging from (1x1) to (16x16).
In previous work [15], the use of the context module proven to be extremely effective by increasing the
accuracy of predictions by a slight margin in the cost of extremely large computational complexity due

to the size of convolutional layers. The structure of this extension is summarised in Fig. 4.10.

4.5. ARCHITECTURES 43

224x224x21 Predicted images

v

224x224x42 3x3 Dilated Conv, 42 / 1
224x224x42 3x3 Dilated Conv, 42 / 1
224x224x84 3x3 Dilated Conv, 84 / 2

224x224x168 3x3 Dilated Conv, 168 / 4
224x224x336 3x3 Dilated Conv, 336/ 8
224x224x672 3x3 Dilated Conv, 672/ 16
224x224x672 3x3 Dilated Conv, 672 /1

224x224x21 3x3 Dilated Conv, 21/ 1
224x224x1 ArgMax
Predicted

Figure 4.10: Network architecture diagram for an implemented context module extension using dilation
convolutions at different rates, which plugs-in after decoder and before argmax/softmax operation.

4.5 Architectures

Over and above to model extensions, different architectural designs were explored and implemented.
For example, Deeplab architectures presented in [29][28] are based on encoder-decoder architectures
and designed to solve semantic segmentation tasks, but they do not have a decoder in their structure.
Also, adding GAN to an encoder-decoder extension to boost the accuracy of prediction was investigated.
Moreover, a UDA architecture was implemented that is designed to transfer knowledge from the source

domain to the target domain.

4.5.1 Deeplabv3+ Architecture

The state-of-the-art Deeplabv3+ architecture [20] for semantic segmentation of real-world images was
implemented in combination with Xception and Resnet models. This architecture uses OS and ASPP
model extensions to boost the accuracy of predictions. While older versions of Deeplab [29][28] have

just a single bilinear upsampling layer in the place of the decoder, the implemented version uses two

44 CHAPTER 4. NEURAL NETWORK MODELS

steps. The implemented decoder retains the FCN-8 structure, but transposed convolution is replaced
with bilinear upsampling and elementwise addition shortcut is replaced with concatenation (see e.g.

Fig. 4.11).

KU '
o

" Encoder

(—
3acony| |
rate 6 | >
3acConv] 4 e
rate 12 | —™ > —
4{ |
Image ﬁ
_ |_Pooling] ™ J

Upsample |
Low-Level «

Feat by 4
eatures l Prediction

Atrous Conv

0 o [mign]

:
ORI

A

"Decoder

\J

cony — || concar —>- || |—+{ax comy| o/ VEITFE |

Figure 4.11: Implemented Deeplabv3+ architectural design [20].

4.5.2 Generative Adversarial Network

To further improve the accuracy of predictions, GAN architectures were considered and implemented,
as they proved to slightly improve the performance of the models [24][15]. GAN architecture consists of
2 parts: a generator, GG, and a discriminator, D, where the generator is an encoder-decoder architecture
mentioned before, and the discriminator is a simple CNN, which uses stacked convolutional, batch
normalization and leaky ReLU layers [70]. While the generator creates a labelled mask § = G(z) from
the input x, the discriminator tries to identify between two inputs which one is a ground truth map
(real) y and which one is generated map (fake) y. In this architecture generator and discriminator are

trained independently process is depicted in Fig. 4.12.

Due to changes made to the architecture and the presence of two trainable NNs, the calculation of the
loss function must be modified. Firstly, the loss between predicted maps § and ground truth maps y

for the generator G is calculated using a multi-class cross-entropy (mce) loss function L,,.. defined by

4.5. ARCHITECTURES 45

_ - __Real

; e va A= LULC Map(Ground-truth)

e > iﬂ =
—

) Cankdls { Discriminator: DCNN

£ “ |LULC Map(Predicted)
Generator: Base Networks — '

__Fake

Figure 4.12: Implemented GAN architectural design [15].

Eq. 2.7. Correspondingly, the loss can be calculated for the discriminator D using binary cross-entropy

(bce) loss, defined as

Lpee(2,2) = —(zIn(2) + (1 — 2)In1 — 2, (4.1)
LN

Lp(y:9) = 5 D Lbce(t: 1) + Luce(3,0), (4.2)
=0

where z is a binary probability for prediction and ground truth, Z is predicted probability in range (0,
1), and N are several labelled masks that are processed in the single step (batch size). Also, we can
modify the generator loss by including the discriminator calculation, so the network not only tries to
predict maps as close to ground truth as possible but also tries to make them not look like fake images.
Thus, the new generator loss is defined as

N

La(y,9) = 35 D Limee(t,9) + ALbee (9, 1), (43)
1=0

where) is a regularization hyper-parameter.

4.5.3 Progressive Architecture

In this thesis, a progressive growing GAN architecture is considered [71], which works with an encoder-
decoder type network. The overall training process is identical to regular GAN, but the decoder and
discriminator are gradually increased in depth and size of features as training passes. For example, the

generator produces predicted maps of size 7 x 7 x 21 at the beginning of the training, and convolutional

46 CHAPTER 4. NEURAL NETWORK MODELS

blocks are added to the decoder after a certain amount of training steps, which increases the size of the
prediction to 14 x 14 x 21. This process repeats until the decoder reaches an original input size of 224 x
224 x 21. Depth of the discriminator increases similarly to the decoder, but convolutional blocks are
added at the beginning of the CNN. Ground truth images for loss calculation are downsampled to the
size of predictions using the nearest neighbour method [53]. A progressive growing GAN architecture is

shown in Fig. 4.13.

Ground Truth | Discriminator J

Figure 4.13: Network architecture diagram for an implemented progressive GAN [71].

4.5.4 Structured Domain Adaptation Network

In this thesis, we had to transfer knowledge from the Landsat 8 (30m x 30m) dataset to the Sentinel-2
(20m x 20m) dataset, which is the formulation of the UDA task. To resolve this problem, a structured
domain adaptation network was implemented [31], which consists of a regular encoder-decoder network,
conditional generator and discriminator. The regular encoder-decoder is based on a VGGNet feature
extractor I with U-Net decoder and classifier T" and designed to produce a labelled mask from the input
images. The conditional generator, G, is formed from B stacked residual blocks, in our implementation
B = 8, which focus on extracting features from the target domain and applying them to the source
domain features with the help of a discriminator. The discriminator, D, follows the same idea that was

described in Subsection 4.5.2, but, in this case, the real data are features extracted from the target

4.5. ARCHITECTURES 47

domain, and the fake data are features extracted from the source domain and enhanced by a conditional
generator G. The general idea behind the UDA structure is to make features extracted from the source
domain look like features extracted from the target domain and train an encoder-decoder network on

the enhanced source domain data. The structured domain adaptation network is illustrated in Fig. 4.14.

Conditional Generator

|

1 Channel
Concat.

Conv2 Conv3d Conv4 Convs

Text
FC]
FC Sigmoid Real !
(S
{ Transformed |
|

Discriminator

Figure 4.14: Network architecture diagram for an implemented UDA architectural design, where Conv1-Convb
is an encoder F, DeConv T is a U-Net type decoder, the conditional generator G is the target domain feature
extractor, and the discriminator D trains the conditional generator [31].

The loss function was updated for correct UDA training. Define x4 as raw data from the source domain,
x; as raw data from the target domain, and y, as the corresponding ground truth labels for the raw
input zs. Binary cross-entropy loss L. was used for calculating the discriminator loss introduced in
Eq. 4.1, but ground truth y and predicted masks g are replaced with extracted target domain features
E(x;) and enhanced source domain features E(G(xs)), respectively. Additionally, to make the training
more stable, the generator loss was updated, which was calculated using predictions of enhanced source
domain features T'(E(G(xs))) through the use of predictions based on non-enhanced source domain

features T'(E(xs)). The new loss function is defined as

N
% Z At Limce(Ys, T(E(G(25)))) + A2 Limce (Ys, T(E(25)) + A3 Lice (E(G(25)), 1), (4.4)
=0

where A\1_3 is a regularization hyper-parameters.

48 CHAPTER 4. NEURAL NETWORK MODELS

4.6 Chapter Summary

This chapter discussed the in-depth structure of implemented encoder-decoder architectures, where
encoders (VGGNet [25], ResNet [16], etc.) and decoders (FCN [8], U-Net [19], etc.) were presented
separately. Then, a complete structure for each model and architectural extension was presented, like
OS, ASPP, GAN, etc. Lastly, the considered UDA learning framework that relies on a conditional

generative adversarial network [31] was introduced and explained.

Chapter 5

Implementation Details

In this chapter, we introduce our remote sensing datasets (Landsat 5/7, Landsat 8, Sentinel-2), their
type, and characteristics. Moreover, we discuss augmentation and transformation preprocessing methods
that were used on the datasets before and during the training. Also, a brief introduction to the hardware

and software used to generate the results is given.

5.1 Datasets

As was discussed, the overall goal of this work was to develop models to automatically generate LULC
maps corresponding to the NALCMS labels, the legend of the classes is shown in Fig. 5.1. Note that
not every class was present in the used datasets. Moreover, we wanted to perform this task for data
produced by Landsat 5/7, Landsat 8, and Sentinel-2 data. The area we were interested in was the Lake
Winnipeg watershed. However, this area was too large to use for comparison and contrasting different DL
models due to the associated training time required for a dataset of this size. The result is that we used
four datasets, which include a smaller dataset encompassing the southern extent of Manitoba, as well as
the larger Lake Winnipeg dataset. The first provided dataset, called the southern extent of Manitoba,
was acquired from the Landsat 5/7 (see a red outline in Fig. 5.2 and 5.3), which covers an area of
approximately 148,800 km?. Shortly after that, the Lake Winnipeg watershed datasets were provided
for both Landsat 5/7 and Landsat 8 sensors, which covers an area of six times the size of the southern
extent of Manitoba (see e.g. Fig. 5.4). From Fig. A.3 and Fig. A.5, the Landsat 5/7 Lake Winnipeg
watershed dataset consists of 3 provinces (Alberta, Saskatchewan, and Manitoba), while Landsat 8
counterpart additionally includes part of Ontario and North Dakota but is missing the northern part of

the previous dataset. The size of the Landsat 8 Lake Winnipeg watershed is slightly smaller than the

49

50

CHAPTER 5. IMPLEMENTATION DETAILS

Landsat 5/7 equivalent, but not for a big margin. Also, an additionally provided dataset of the southern

extent of Manitoba was acquired from Sentinel-2 sensors. Most of the experiments were performed on

the Landsat 5/7 southern extent of Manitoba to lower the time needed for training. Then, based on the

results, the best architecture was chosen, and the models for Landsat 5/7 and 8 were generated using

the Lake Winnipeg watershed datasets.

No data

Temperate or sub-polar needleleaf forest
Sub-polar taiga needleleaf forest

Tropical or sub-tropical broadleaf evergreen forest
Tropical or sub-tropical broadleaf deciduous forest
Temperate or sub-polar broadleaf deciduous forest
Mixed Forest

Tropical or sub-tropical shrubland

Temperate or sub-polar shrubland

Tropical or sub-tropical grassland

(CHRNNRNRL

Temperate or sub-polar grassland

Sub-polar or polar shrubland-lichen-moss

Sub-polar or polar grassland-lichen-moss

Sub-polar or polar barren-lichen-moss

Wetland

Cropland

Barren Lands

Urban and Built-up

Water

Snow and Ice

J/INNERECD

Clouds

Figure 5.1: NALCMS land-use classes.

Figure 5.2: Province of Manitoba with the southern extent outlined with red border and the associated Landsat

5/7 scenes that cover this area (green)[15].

5.1. DATASETS

o1

[Wetland

[Cropland

[Barren land

I Urban and built-up

B Temperate or sub-polar needleleaf forest

[Sub-polar taiga needleleaf forest

B Temperate or sub-polar broadleaf deciduous forest
I Mixed forest

[Temperate or sub-polar shrubland ; :\:‘aoter nd ice
[Temperate or sub-polar grassland W and i
’ poar 3 Cloud

[Sub-polar or polar shrubland-lichen-moss

Land Cover Class [Sub-polar or polar grassland-lichen-moss
[None [Sub-polar or polar barren-lichen-moss

100

200 km

500 km

Land Cover Class
[None

Il Temperate or sub-polar needleleaf forest
[Sub-polar taiga needleleaf forest

I Mixed forest

[Temperate or sub-polar shrubland

] Temperate or sub-polar grassland

[Sub-polar or polar shrubland-lichen-moss

[Temperate or sub-polar broadleaf deciduous forest [Barren land

[Sub-polar or polar grassland-lichen-moss
[Sub-polar or polar barren-lichen-moss
[wetland

[cropland

[Urban and built-up
I water

[Snow and ice
[Cloud

Figure 5.4: NALCMS maps of Lake Winnipeg watershed.

52 CHAPTER 5. IMPLEMENTATION DETAILS

Each of the sensors has its characteristics usually represented in the form of four different types of

resolutions [83].

e Spatial resolution — This type of resolution refers to the area of the square on the ground, which

each pixel represents.

e Spectral resolution — This type of resolution indicates the ability of a sensor to measure specific

wavelengths of the electromagnetic spectrum.

e Temporal resolution — This type of resolution refers to the frequency of a satellite to provide

images of the same geographical area.

e Radiometric resolution — This type of resolution describes a satellite’s ability to discriminate very
slight differences in energy. The finer the radiometric resolution of a sensor, the more sensitive it

is to detecting small differences in reflected or emitted energy.

Detailed differences between used sensors can be seen in Table 5.1. Note that we used the same six

bands for all three sensors, and cloud masks were generated using different methods for Landsat 5/7

and Landsat 8 sensors.

Table 5.1: Landsat 5/7, Landsat 8, and Sentinel-2 sensors comparison.

Landsat 5/7 Landsat 8 Sentinel-2

Spectral Bands Blue, Green, Red, NIR, SWIR1, SWIR2 (see Tables 5.2 & 5.3)

. . 10m x 10m
Spatial Resolution 30m x 30m

and 20m x 20m
Radiometric Resolution 8-bit 16-bit 12-bit
Ot
Cloud Mask o QA band .
thresholding method

5.1.1 Landsat 5/7 and Landsat 8

Landsat 5/7 and Landsat 8 are satellites that collect imagery from the surface of the Earth with a
spatial resolution of 30m x 30m. This type of satellite imagery has plenty of bands, each having a
different wavelength. We used the datasets with six-band composition, bands and their characteristics
are described in Table 5.2. The difference between the satellites is mostly due to the format used to

store data. Landsat 5/7 uses 8-bit unsigned integers, while Landsat 8 uses 16-bit. Cloud masks for both

5.1. DATASETS 93

sensors were provided beforehand. Landsat 5/7 datasets labels for the clouds were manually generated
using the Otsu thresholding method [84] on the blue band. Alternatively, labels for the clouds were
manually generated for Landsat 8 using the quality assessment (QA) band [85].

Table 5.2: Spatial resolution and wavelength range of the Landsat 5/7 and Landsat 8 data.

Spectral region Wavelength range (nm) Resolution (m)
Blue (B) 450 - 515 30
Green (G) 525 — 605 30
Red (R) 630 — 690 30
Near Infrared (NIR) 750 — 900 30
Shortwave Infrared (SWIR) 1550 — 1750 30
Shortwave Infrared 2 (SWIR2) 2090 — 2350 30

5.1.2 Sentinel-2

Besides Landsat, the Sentinel-2 dataset of southern Manitoba extent was obtained, where Sentinel-2 is a
satellite that acquires high spatial resolution of 10m x 10m to 60m x 60m optical images at 12-bit format
and stores it using 16-bit unsigned integers. Sentinel-2 data should follow Landsat 8 structure, thus
obliged to have a six-band composition of the same spatial and similar spectral resolutions. However,
corresponding Sentinel-2 bands have a different spatial resolution. Therefore, the acquired Sentinel-2
dataset had some bands interpolated to generate a required six-band composition. Downsampling of
higher 10m x 10m bands to 20m x 20m instead of upsampling was considered because it introduces less
systematic noise during interpolation. The nearest neighbour [53] method was chosen due to its ability
to keep original pixel values after interpolation, while the other methods do not. Detailed information

of the bands are given in Table 5.3.

Table 5.3: Spatial resolution and wavelength range of the Sentinel-2 data.

Spectral region Wavelength range (nm) Resolution (m)
Blue (B) 458 — 523 10
Green (G) 543 — 578 10
Red (R) 650 — 680 10
Near Infrared (NIR) 785 — 899 10
Shortwave Infrared (SWIR) 1565 — 1655 20

Shortwave Infrared 2 (SWIR2) 2100 — 2280 20

o4 CHAPTER 5. IMPLEMENTATION DETAILS

5.2 Data Preprocessing

All satellite data, and corresponding labels, were preprocessed before training due to the size of the
inputs. For example, consider the southern extent of Manitoba dataset with a pixel resolution of 14975
x 13331. This image is completely mismatched with the input to the implemented encoder-decoder
networks, which requires input image resolution of 224 x 224. Similarly, there would not be enough
images of size 14975 x 13331 to train a DL model, and images of this size could not be processed by our
computer hardware. Consequently, we used the data augmentation technique called tiling, introduced

in [12][13][14][15], with some minor improvements.

5.2.1 Tiling

Tilling is the process of splitting a bigger image into small-sized squared ones (see e.g. Fig. 5.5a),
also referred to as tiles, where a tile is one 224 x 224 image. For example, from the southern extent
of Manitoba dataset of size 14975 x 13331 around 7,270 tiles were generated. Moreover, to increase
the number of tiles generated from the same image, tilling with 1/2 overlap (shifted tilling) was used
(see e.g. Fig. 5.5b). Shifted tilling increased the number of tiles produced to 29,100, where 26,190
was used for training and 2,910 was used for validation. Splitting tiles for training and validation
was performed randomly with a 90% to 10% ratio, as was done in the previous works [12][13][14][15].
Increasing the validation dataset ratio might provide difficulties with training on the classes with low

presence. Additionally, empty tiles were not included in any of the datasets.

[}

o

(a) Baseline tiling of the map. (b) Tilling of the map with 1/2 shifting.

Figure 5.5: Illustration of the tilling [15].

5.2. DATA PREPROCESSING 55

The resolution of the Lake Winnipeg watershed satellite image is 64394 x 48859 pixels, which results in
approximately 85,400 tiles using the aforementioned augmentation methods. From the generated tiles,
76,800 were used for training and 8,500 for validating. When it comes to this size, random distribution
between training and validation datasets is not desirable. Therefore, a pseudo-random distribution
was implemented with the use of large blocks (see e.g. Fig. 5.6) to ensure that training and validation
sets contain all classes and tiles from all locations. Each tile is assigned to one of the blocks, where
each block is approximately 10000 x 10000 pixels. Then, all tiles in the block were randomly sampled,
ensuring that training and validation sets contain all labels from the current block, leading to better
training and more accurate testing results. Table 5.4 provides the number of tiles present in all of the
generated datasets mentioned above. Note that the Sentinel-2 dataset has no validation tiles due to the

absence of the corresponding labels, and its use in the UDA learning framework.

\

e

Figure 5.6: Illustration of the blocking, where each red square is 10000 x 10000 pixels.

Table 5.4: Size of the generated datasets.

Landsat 5/7 Landsat 5/7 Landsat 8 Sentinel-2
Southern extent Lake Winnipeg Lake Winnipeg Southern extent
of Manitoba watershed watershed of Manitoba
Training images ~29 100 ~85 400 ~107 900 ~34 412

Validation images ~2 900 ~8 500 ~12 000 -

56 CHAPTER 5. IMPLEMENTATION DETAILS

5.2.2 Data Transformation

Training DL models often results in either overfitting or underfitting [56] that is caused by a lack of
variation in the dataset or bad model architecture. One of the simplest ways to resolve this issue is
to shuffle data after every epoch and apply random data transformation on each image [86][87]. Data
transformation ensures that tiles are not represented in the same way during training, and it is achieved

by randomly applying one or more of the following operations.

e Rotation — This transformation rotates the image by 90 degrees 1-4 times (as shown in Fig. 5.7b).

e Flipping — This transformation flips the image left to right, upside down or both (as shown in
Fig. 5.7d).

e Zoom cropping — This transformation upscales image on a scale between 10% and 25%, then crops

224 x 224 image at a random position (as shown in Fig. 5.7c).

Note that, unlike augmentation, transformation is used during training and not before. Also, it does

not increase the number of generated tiles.

(d) Flipping.

Figure 5.7: Transformation of the tiles.

5.3. EXPERIMENTAL SETUP o7

5.3 Experimental Setup

Training of the networks was performed using the TensorFlow [88] Python library with Docker contain-
ers'. Most of the results were generated using an NVIDIA Digits DevBox? containing four Titan X
GPUs with 12GB of memory per GPU, 64 GB DDR4 RAM, and a Core i7-5930K 3.5 GHz processor.
Table 5.5 describes the time needed to train a well-performing model and the approximate prediction
time of the same model on different datasets. The training on the southern extent of Manitoba dataset
varied between 5 and 7 days, while the Lake Winnipeg watershed dataset took between 20 and 30 days.
Also, the prediction time of the network on the non-augmented southern extent of Manitoba datasets
took 8 minutes for the Landsat 5/7 dataset, and 15 minutes for the Sentinel-2 dataset. Additionally,
prediction of the Lake Winnipeg watershed datasets took close to 1.5 hours for both sensors. Most
of the networks were trained with a batch size of 16 on a model that was distributed across 3 GPUs,
leading to a global batch size of 48. However, some network variations used a lower batch size due to
computational complexities. As was earlier carried out in [15], training was performed with a learning
rate of n = 10™* for 100 epochs, then with a learning rate of 7 = 10~ for another 100 epochs using the
Adam optimization algorithm [46].

Table 5.5: Comparison of the training and prediction time for each dataset.

Landsat 5/7 Landsat 5/7 Landsat 8 Sentinel-2
Southern extent Lake Winnipeg Lake Winnipeg Southern extent
of Manitoba watershed watershed of Manitoba
Training time ~5-7 days ~20 days ~25 days ~25 days
Prediction time ~8-10 minutes ~1.5-2 hours ~1-1.5 hours ~15-20 minutes

5.4 Chapter Summary

This chapter presented an overview of datasets used in this thesis, like the southern extent of Manitoba,
and the Lake Winnipeg watershed. Additionally, characteristics of satellite sensors were compared, like
Landsat 5/7, Landsat 8, and Sentinel-2. Also, preprocessing methods and techniques were discussed, in
particular, tiling, blocking, and transformation. Lastly, an experimental setup was presented, where the

system and related software were introduced.

"https://www.tensorflow.org/install/docker
2https://developer.nvidia.com/devbox

https://www.tensorflow.org/install/docker
https://developer.nvidia.com/devbox

o8

CHAPTER 5. IMPLEMENTATION DETAILS

Chapter 6

Experiments, Results, and Analysis

In this chapter, we evaluate and compare the performance of different model variations, which were
trained on the Landsat 5/7 southern extent of Manitoba. Then, based on the results, the best model
combination was selected to train models using Landsat 5/7 and Landsat 8 Lake Winnipeg watershed
datasets. Using a model trained on the Landsat 5/7 dataset will allow us to develop maps from 1984
to 2017, and a model trained on the Landsat 8 dataset will allow us to develop maps starting from
2013 and forward in time. Moreover, the chosen network was also trained with an UDA architecture
for the problem of transferring perceptual knowledge from the labelled Landsat 8 dataset (source) to
the unlabelled Sentinel-2 dataset (target). This experiment was carried out to see if it is possible to
generate accurate LULC maps on the data from the sensor that has no corresponding labels. Lastly,
the results of all generated products are discussed and assessed. The overall training process is depicted

in Fig. 6.1.

6.1 Evaluation Metrics

The performance of the trained models must be evaluated based on some sort of metrics. One of
the most common approaches is to use the loss calculated during training, but the loss function can
provide vague, non-intuitive results (especially when models are performing well). Also, comparison of
loss values can be meaningless when evaluating different architectural designs, because they often use
different loss functions. In this thesis, pixel accuracy, precision, recall, Fl-score, and critical success
index (CSI)! were used to evaluate the results. To begin, pixel accuracy is a metric that calculates the

ratio between the number of correctly classified pixels and a total number of pixels in the image, thus

1CSI is also known as a threat score.

59

60 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

andsat 5/7 Southern Bl e
extent of Manitoba prep 9

Architecture

Model extensions Encoder-decoders .
extensions

Determining best

Model assessment —» -
model combination

v

Landsat 5/7 Lake Landsat 8 Lake Sentinel-2 Southern
Winnipeg watershed Winnipeg watershed extent of Manitoba
Data preprocessing Data preprocessing Data preprocessing
e)
Best model Best model Best model
combination combination combination + UDA
_ J
[|
')
Generated maps from
three sensors
_ J

Figure 6.1: Training flowchart, where the blue shapes correspond to data, green shapes correspond to prepro-
cessing, red shapes correspond to models and extensions, yellow shapes correspond to model assessment, and

purple shapes correspond to final generated maps.

providing a general assessment of the prediction, which can be easily compared and understood. Define

n;; as the number of pixels in the image with ground-truth label ¢ and corresponding predicted label j.
Let t; = Z]C:l n;; denote the total number of pixels labelled with label 7, C' is the number of classes,

n;; are the number of pixels correctly predicted, and nj; are the number of incorrectly label pixels (with

6.1. EVALUATION METRICS 61

respect to label 7). [15]. The pixel accuracy is defined as

Accuracy = ZC L
i=1"ti

Based on the pixel accuracy, the best model combination was then trained on bigger datasets. Next,
we will define, precision, recall, F1-score, and CSI. Let class 7 be labelled a positive class, and every
other class labelled a negative class. Then, the true positive, T'P;, is defined as the number of correctly
predicted pixels of the positive class, true negative T'IN; as the number of correctly predicted pixels of
the negative class, false positive F'P; as the number of incorrectly predicted pixels of the positive class,
and false negative F'N; as the number of incorrectly predicted pixels of the negative class. Given these

definitions, we can then define the following metrics.

e Precision - This method calculates how precise are the predictions for the positive class [89]. Also,
it represents how accurate the model performed for detecting the relevant features. The precision

is computed as
TP,

Precision; = m

(6.2)

e Recall - This method calculates how many of the actual positives are correctly labelled by the
model [89]. Also, it reflects the ability of a model to retrieve all the relevant elements within a

dataset. The recall is computed as

TP

e Fl-score - This method provides a method for combining recall and precision to get a single

measure by differentially weighting the recall and precision values [90]. The Fl-score is computed

as ..
Precision; * Recall;

F,=2x (6.4)

Precision; + Recall;’

e (CSI - This method calculates the worst possible scenario of predictions by including not classified
and misclassified positives in the calculation [91]. Also, the calculation of the CSI score is identical
to intersection over union (IoU) [92]. The CSI is computed as

Th

CSI; = .
' TP+ FP,+FN;

(6.5)

62 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

6.2 Comparison of Model Variations

All model combinations introduced in Chapter 4 were trained on the southern extent of Manitoba and
assessed on the validation dataset. Due to time and complexity limitations, some model variations were
ignored. Table 6.1 on the left shows the results of the trained decoders paired with the VGGNet encoder.
Based on the results, the modified U-Net decoder was chosen as the main decoder network because it
has 3 times fewer parameters than plain U-Net with a cost of 0.04% of pixel accuracy. Moreover, using
the modified U-Net decoder allowed for the implementation of more advanced structures elsewhere.
Also, the modified U-Net decoder is more generic and is compatible with any encoders. Table 6.1 on the
right displays the results of all implemented encoders in combination with the Modified U-Net decoder.
VGGNet proved to have the highest pixel accuracy of 90.11%, followed by ResNet at 89.05%.

Table 6.1: Results of the encoder-decoder model variations.

Network Pixel accuracy Network Pixel accuracy
FCN-8 88.28 VGGNet 90.11
U-Net 90.15 GoogleNet 83.14
Feedbackward 89.59 Xception 88.36
Modified U-Net 90.11 ResNet 89.05
(a) Results from the trained VGGNet encoder with (b) Results from the trained different encoders with
different decoders. modified U-Net decoder.

Additionally to encoder and decoder experiments, model extensions were also tested. From the previous

test VGGNet and ResNet encoders with the modified U-Net decoder were chosen. Table 6.2 shows the

results of those two networks trained on OS ranging from 32 to 2, where the OS 32 is the same as the
models without an extension. Both models performed the best with the OS 4, where VGGNet and
ResNet reached 92.4% and 91.42% pixel accuracy, respectively. The ASPP and the context module
model extensions provided a slight performance increase with the networks with the OS 32. However,
both networks did not benefit from these extensions with the OS 4. Therefore, ASPP and context

module extensions were ignored in further tests.

Lastly, VGGNet and ResNet with and without OS extension were trained on different architectural
designs, examples include GAN and progressive GAN (see e.g. Table 6.3). Even though GAN provided
a slight performance increase for the ResNet model with no model extension, other networks performed
identically to the one without, and in some cases slightly worse. Progressive GAN and traditional
GAN, did not provide any increase in performance. Based on the results presented below, adversarial
training had a lesser or no effect at all on the models that performed well on the given dataset. Also,

the ResNet Deeplabv3+ architecture was trained on our dataset, as it is considered a state-of-the-art

6.2. COMPARISON OF MODEL VARIATIONS 63

Table 6.2: Pixel accuracy results from the trained networks with extensions.

(O)\] 32 16 8 4 2
Network
VGGNet 90.11 90.66 91.25 92.4 91.01
VGGNet + ASPP 90.72 - - 92.22 -
VGGNet + context module 90.18 - - 92.04 -
ResNet 89.05 89.72 90.02 91.42 -
ResNet + ASPP - - - 91.37 -
ResNet + context module - - - 90.31 -

semantic segmentation model, but it showed low performance in our dataset reaching 87.43% of pixel
accuracy. Based on all experiments, the model with the best performance and lowest complexity was
VGGNet with modified U-Net and OS 4, which reached 92.4% on the southern extent of the Manitoba
validation dataset. As the pixel accuracy of the model approaches 100% it is getting more difficult to
improve its performance by introducing changes and enhancement to the model and architecture. In
the papers and our experiments, we can see that extensions, like ASPP, context module and GAN can
improve the performance of the model. However, if the model already performs well implementing or
even combining them will not provide further benefit, and in some cases even aggravate the results.
The best performing network architecture is depicted in Fig. 6.2. Next, the worst results based on pixel

accuracy are shown in Fig. 6.3. Similarly, the best results based on pixel accuracy are shown in Fig. 6.4.

Table 6.3: Pixel accuracy results from the trained networks with different architectural designs.

Network \Architectures Regular Deeplabv3+ GAN Progressive GAN

VGGNet 90.11 - 89.99 90.09
VGGNet + OS 4 92.4 - 92.37 92.41
ResNet 89.05 - 89.26 -

ResNet + OS 4 91.42 87.43 91.04 -

64 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

1 224x224x6

224x224x1}
: 224x224x21!
1224x224x64 :
: 224x224x64!

3x3 Conv, 128
3x3 Conv, 128

112x112x128 : Input Image / Predicted | Input to the network or Prediction

: ion +
3x3 Conv, 128 —— Comvonation 3x3 Convolution + Batch

3x3 Cony, 128/ 2 Normalization + ReLU

1 A H
: ' 3x3 Convolution with Stridin
e | Coamotton svana 9

3x3 Cony, 256 + : - - Convolut 3x3 Transposed Convolution with
3x3 Conv, 256 : ranspose onvolution Str|d|ng
64x64x2565
| 3x3 Conv, 256 / 1 H .
: H ArgMax ArgMax operation
s f e
sz ! |
: 33 Conv, 512 3x3 Conv, 512 :
64x64x512
3x3 Conv, 512/ 1 '
4 :
s é
sz
'

(b) Description of each block.

3x3 Conv, 512

64x64x512 1
3x3 Conv, 512 /1 H

(a) Structure of the best model.

Figure 6.2: Network architecture diagram for best model combination: VGGNet encoder with Modified U-Net
decoder and OS 4.

Figure 6.3: Examples of poor results generated by the best model trained on the Landsat 5/7 data from the
southern extent of Manitoba. The first row are ground truth tiles, and second row are predicted tiles.

6.3. PRODUCT GENERATION 65

Figure 6.4: Examples of good results generated by the best model trained on the Landsat 5/7 data from the
southern extent of Manitoba. The first row are ground truth tiles, and second row are predicted tiles.

6.3 Product Generation

The next step, after determining the model combination that performed the best on the southern extent
of Manitoba was to generate products trained on Lake Winnipeg watershed datasets, where the product
is a trained model. As the result, two models were generated: one was trained on the Landsat 5/7
dataset, which allows us to develop maps going back in time; and the second one was trained on Landsat
8 dataset, which allows us to develop maps going forward in time. Moreover, the chosen network was
also trained using UDA architecture to transfer knowledge extracted from Landsat 8 dataset to the
Sentinel-2 to develop accurate LULC maps from the sensor that does not have corresponding labels.

Lastly, the performance of all models was assessed and presented in the form of tables.

6.3.1 Landsat 5/7

First, the best model was trained with Landsat 5/7 data from the Lake Winnipeg watershed. The
number of pixels per class and their percentage is shown in Table 6.4. Note that some classes have
a really low presence, e.g. 11, 12, 13 (lichen-moss-related classes) and 19 (snow and ice). On the
other hand, class 0 (no data) has the most pixels due to the non-rectangular shape of the map (see,
e.g., Fig. 5.4). No data labels were mostly ignored in the training as they do not provide any useful

information. Full no data labelled tiles were not included in the training and validation datasets, but

66 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

tiles with the presence of any other label were included. Table 6.5 on the left represents a per-class
assessment of the dataset and on the right shows a global assessment of the predicted map. Additionally,
the error matrix, also known as a confusion matrix, is presented in Table 6.6. Based on the results,
well-performing classes had a higher percentage of pixels than others, e.g. classes 1, 5, 10, 15, 16, 18, 20.
While classes with a low percentage of pixels performed poorly, especially 11, 12, 13 and 19 because it
is well known that deep learning models need a large number of class examples in order to achieve good
performance. Also, forest-related classes with low presence were the most often misclassified with class
1, and the urban and built-up class was misclassified with cropland. Moreover, predicted clouds have
extremely high results because they were generated by a thresholding method [84], and the network did
not have any difficulties mimicking this method due to it being a straightforward function with sufficient
data examples. Overall, performance of the model reached 80.66% pixel accuracy on the validation
dataset, where only a few tiles had no data pixels. The pixel accuracy presented in this dataset is
lower due to the size and amount of extractable features presented in this dataset. Also, thresholding
methods are known to provide inaccurate results. Cloud labels generated by the Otsu thresholding
method did not classify some of the clouds, especially transparent ones, and misclassified bright urban
areas with the clouds. We suggest that this was one of the factors that influenced the performance of
the model. The worst results based on pixel accuracy are shown in Fig. 6.5. Similarly, the best results
based on pixel accuracy are shown in Fig. 6.6. The generated maps based on the Landsat 5/7 dataset
are presented in the Appendix A in the Fig. A.2, and Fig. A.4 with their corresponding ground truth
labels in the Fig. A.1, and Fig. A.3.

6.3. PRODUCT GENERATION 67

Table 6.4: Total number of labels per pixel of the Landsat 5/7 dataset.

Class Name of class # of pixels | % of pixels
None 1031407726 32.7824
Temperate or sub-polar needleleaf forest 488262071 15.5190
Sub-polar taiga needleleaf forest 30020347 0.9542
Temperate or sub-polar broadleaf deciduous forest 170429106 5.4169
Mixed forest 96116915 5.4169
Temperate or sub-polar shrubland 183620158 3.0550

Sub-polar or polar shrubland-lichen-moss 4117649 0.1309
Sub-polar or polar barren-lichen-moss 2302774 0.0732
14 Wetland 156313523 4.9683

Barren land 34526845 1.0974

17 Urban and built-up 26771188 0.8509
18 Water 229553602 7.2962
19 Snow and ice 936557 0.0298
20 Cloud 90890767 2.8889

Table 6.5: Assessment of the predicted Landast 5/7 dataset.

Class Csl Precision Recall Fl-score

Accuracy Accuracy

Accura
S (excluding None) (Validation Dataset)

(b) Pixel accuracy.

Precision Recall Fl-score

Average
Weighted Average

| 2168 | 5547 | 2624 | 3563

Average
(excluding None)
Weighted Average

63.08 (excluding None)

94.45
c) Global assessment.
ECEE ©

(a) Per-class assessment.

68 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

Table 6.6: Confusion matrix of the Landsat 5/7 dataset, where rows represent ground truth labels, and columns

- n o s

represent predicted labels.

Figure 6.5: Examples of poor results generated by the best model trained on the Landsat 5/7 data from the
Lake Winnipeg watershed. The first row are ground truth tiles, and second row are predicted tiles.

6.3. PRODUCT GENERATION 69

“"“

. ' 9‘
Figure 6.6: Examples of good results generated by the best model trained on the Landsat 5/7 data from the
Lake Winnipeg watershed. The first row are ground truth tiles, and second row are predicted tiles.

6.3.2 Landsat 8

Similar to the previous subsection, the best model was trained on the Landsat 8 Lake Winnipeg
watershed. In Section 5.1 we described the difference between Landsat 5/7 and Landsat 8 Lake
Winnipeg watershed datasets. The number of pixels per class and their percentage is shown in Table 6.7,
and the performance of the trained model is presented in Tables 6.8, 6.9. Results provided by the model
trained on the Landsat 8 dataset are similar to the Landsat 5/7 model. However, the pixel accuracy of
the predicted map increased by 8%, and improvements in accuracy were noticed across most of the
classes. These improvements are achieved by providing a 16-bit dataset instead of 8-bit, which made it
easier to distinguish features due to a larger range of values. Note that the cloud class accuracy here is
slightly lower and on the level with the best-performing classes because the cloud mask for Landsat
8 was generated from the QA band provided by the sensor and not the thresholding method. The
worst results based on pixel accuracy are shown in Fig. 6.7. Similarly, the best results based on pixel
accuracy are shown in Fig. 6.8. The generated maps based on the Landsat 8 dataset are presented in

the Appendix A in the Fig. A.6 with corresponding ground truth map, which is shown in the Fig. A.5.

70

CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

Table 6.7: Total number of labels per pixel of the Landsat 8 dataset.

Class

Name of class

[\[e]al=}

Temperate or sub-polar needleleaf forest

Sub-polar taiga needleleaf forest

of pixels

101124573
568110

Temperate or sub-polar broadleaf deciduous forest 106208424

Mixed forest
Temperate or sub-polar shrubland

52604376
36149337

% of pixels
1208979489 50.8798

4.2558
0.0239
4.4698
2.2139
1.5213

Sub-polar or polar shrubland-lichen-moss 4270 1.80E-04

Sub-polar or polar barren-lichen-moss 7.49E-06
14 Wetland 3.7611

Barren land

89369338

17 Urban and built-up 26556386 11176
18 Water 117838940 4.9592
19 Snow and ice 534825 2.25E-02
20 Cloud 43874765 1.8465
Table 6.8: Assessment of the predicted Landast 8 dataset.
Class csl Precision Recall Fl-score
Accuracy Accuracy

Accuracy

(Validation Dataset)

(excluding None)

(b) Pixel accuracy.

Fl-score

Average
Weighted Average

Average
(excluding None)
Weighted Average
(excluding None)

(c) Global assessment.

(a) Per-class assessment.

6.3. PRODUCT GENERATION 71

Table 6.9: Confusion matrix of the Landsat 8 dataset, where rows represent ground truth labels, and columns
represent predicted labels.

0.0 0.00 | 0.00 | 0.00 | 0.00
126 | 3.96 | 1.18 | 0.47 | 0.00 | 0.00 | 0.00 | 2.86 | 0.13 | 0.33 | 0.14 | 0.83 | 0.00 | 0.37
0.09 | 0.19 | 531 | 0.01 | 016 | 0.00 | 1.71 | 0.00 0.02 | 0.14 | 0.00 | 0.79
238 | 091 | 0.00 | 0.00 | 0.00 | 1.98 | 2.64 | 0.08 | 0.44 | 0.67 | 0.00 | 0.24
0.22 | 0.00 | 0.00 | 0.00 | 297 | 0.40 | 0.05 | 0.36 | 0.85 | 0.00 | 0.31
0.00 | 0.00 | 0.00 | 5.36 | 4.66 | 0.83 | 1.03 | 0.85 | 0.00 | 0.26
0.00 | 0.00 | 0.75 | 3.58 | 0.41 | 0.72 | 0.73 | 0.00 | 0.10
0.00 | 213 | 0.00 | 0.14 | 0.00 | 0.19
0.08 | 864 | 0.13 | 0.52 | 0.00 | 0.52
0.00 | 0.00 | 0.00 | 0.56 | 0.00 | 0.00
0.25 | 0.32 | 0.87 | 0.00 | 0.29
0.01 | 0.87 | 0.32 | 0.00 | 0.
0.55 | 0.35 | 1.24
0.39 | 0.00 | 0.20
0.00

E -ﬂ_/”'_'__‘,:

Figure 6.7: Examples of poor results generated by the best model trained on the Landsat 8 data from the Lake
Winnipeg watershed. The first row are ground truth tiles, and second row are predicted tiles.

72 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

Figure 6.8: Examples of good results generated by the best model trained on the Landsat 8 data from the Lake
Winnipeg watershed. The first row are ground truth tiles, and second row are predicted tiles.

6.3.3 Sentinel-2

In the last experiment, the best model was trained using the UDA architecture, where the source
domain was the labelled Landsat 8 dataset, and the target domain was the Sentinel-2 dataset. To assess
the performance of the model, Landsat 8 NALCMS labels were upscaled to the same resolution as the
Sentinel-2 dataset using the nearest neighbour algorithm [53], and, during the evaluation, cloud labels
were ignored. Also, the Sentinel-2 dataset was generated from 2018 scenes, while upscaled Landsat 8
NALCMS labels are from the 2017 dataset. This means that the assessment of the model presented
below does not fully express the performance of the generated models, and the actual performance
can be either worse or better. The pixel distribution of the labels is shown in Table 6.10, and the
results provided by the generated model presented in Table 6.11. The model reached 66.72% pixel
accuracy and performed relatively well on the cropland and water classes. The worst results based on
pixel accuracy are shown in Fig. 6.10. Similarly, the best results based on pixel accuracy are shown in
Fig. 6.11. However, generated model misclassified bright large water bodies with clouds, which can be
seen in Fig. 6.9. This misclassification could have happened due to higher reflectance on these water
bodies making them almost white in the RGB bands, and a big difference in value range between
Landsat 8 and Sentinel-2 sensors. Additionally, water from the Sentinel-2 sensor could have resembled
clouds to the Conditional Generator part of the UDA architecture from the Landsat 8 sensor, thus
making the difference in value range even bigger. To resolve an issue with bright large water bodies, a

water mask of the large bodies was generated manually and applied to the predicted map. Then, the

6.3. PRODUCT GENERATION 73

best model was retrained on the corrected dataset (see, e.g., Table 6.12). The newly trained model
performed slightly better, and the Fl-score of the water class increased by 6%. This experiment has
shown that it is possible to transfer extracted knowledge from one sensor and apply them to a sensor
with slightly different characteristics. The worst results based on pixel accuracy are shown in Fig. 6.12.
Similarly, the best results based on pixel accuracy are shown in Fig. 6.13. The generated maps based on
the Sentinel-2 dataset are presented in the Appendix A in the Fig. A.8, and Fig. A.9 with corresponding
ground truth labels, which is shown in the Fig. A.7.

Table 6.10: Total number of labels per pixel of the upscaled Landsat 8 dataset.

Class Name of class # of pixels | % of pixels
None 132129912 27.4273
Temperate or sub-polar needleleaf forest 10008201 2.0775
Sub-polar taiga needleleaf forest 750 2.00E-04
Temperate or sub-polar broadleaf deciduous forest 75579277 15.6886
Mixed forest 10328661 2.1440
Temperate or sub-polar shrubland 1144587 2.3134

Sub-polar or polar barren-lichen-moss 13 2.70E-06

14 Wetland 23585867 4.8959
16 Barren land 1493685 0.3101
17 Urban and built-up 7763713 1.6116
18 Water 39496305 8.1986

Table 6.11: Assessment of the predicted Sentinel-2 dataset using UDA architecture.

Class (o] Precision Recall Fl-score
0 2290 Accuracy
19.32 43.46 25.82 32.39 Accuracy (excluding None)
1.33E-10 100.00 1.33E-10 2.67E-10
75.18 66.06

13.12 43.25 15.85 23.20

9.60 21.30 14.88 17.52 (b) Pixel accuracy.

23.18 39.89 35.62 37.64 I csl IPrecisionI Recall I Fl-score

7.08E-02 2.70 7.26E-02 1.41E-01 Average
7.69E-09 100.00 7.69E-09 1.54E-08 Weighted Average
25.34 40.05 40.83 40.44 Average

(excluding None)
Weighted Average
(excluding None)

(c) Global assessment.

(a) Per-class assessment.

74 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

Figure 6.9: Misclassified bright large water bodies by the UDA model.

Figure 6.10: Examples of poor results generated by the UDA model trained on the Sentinel-2 southern Manitoba
extent. First row is ground truth tiles, and second row is predicted tiles.

6.3. PRODUCT GENERATION 75

Table 6.12: Assessment of the predicted Sentinel-2 dataset using the best model, which was trained on the

generated dataset with applied water mask.
Fl-score

Precision

Accuracy
(excluding None)

Accuracy

23.21 30.71
1.33E-10 2.67E-10

18.14
1.33E-10

13.39 20.68

1.53)

9.54 21.29 14.74 17.42 (b) Pixel accuracy.

23.20 39.87 35.69 37.66 | csi | precision | Recall | Fi-score |
7.26E-11 100.00 7.26E-1 1.45E-10 Average 29.65 64.06 36.09 37.89
7.69E-09 100.00 7.69E-09 Weighted Average

Average
(excluding None)
Weighted Average
(excluding None)

25.97 42.93

(c) Global assessment.

(a) Per-class assessment.

Tt

Figure 6.11: Examples of good results generated by the UDA model trained on the Sentinel-2 southern Manitoba
extent. First row is ground truth tiles, and second row is predicted tiles.

76 CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

Figure 6.12: Examples of poor results generated by the best model trained on the corrected Sentinel-2 southern
Manitoba extent. First row is ground truth tiles, and second row is predicted tiles.

Figure 6.13: Examples of good results generated by the best model trained on the corrected Sentinel-2 southern
Manitoba extent. First row is ground truth tiles, and second row is predicted tiles.

6.4. CHAPTER SUMMARY 77

6.4 Chapter Summary

This chapter presented the experiments used to find the best encoder-decoder variation. The results

have shown that the best model variation is the VGGNet encoder with modified U-Net decoder and OS

fixed at 4 that reached 92.4% accuracy. Additionally, this model variation was trained on larger Landsat
5/7 and Landsat 8 datasets that reached 80.66% and 88.04% accuracy, respectively. This shows that
with the use of generated models, it’s possible to produce fairly accurate LULC maps from mentioned
sensors for any year starting from the 1984. Lastly, the UDA learning framework was used to transfer
perceptual knowledge from the Landsat 8 dataset to the Sentinel-2 dataset. However, the model had a

relatively poor performance reaching 65.72% accuracy.

78

CHAPTER 6. EXPERIMENTS, RESULTS, AND ANALYSIS

Chapter 7

Conclusion

In this thesis, we aimed to continue the work presented in [12][13][14] by introducing new and modifying
existing NN designs. This was achieved by testing four encoders and decoders, where the best combination
was VGGNet with modified U-Net decoder, which reached 90.11% pixel accuracy on the validation
dataset. Then, many different extensions were applied to the network, where most of them slightly
improved the performance of the network, and only the output stride fixed at 4 pushed prediction
accuracy to the 92.4% on the validation dataset. Combining multiple extensions did not provide any
improvements. Additionally, different architectural designs were tested in the form of adversarial training
and custom encoder-decoder design (Deeplabv3+). Adversarial architecture had a slight improvement
on the networks without extensions but did not have any effect on the best variation of the model,
while Deeplabv3+ architecture performed poorly compared to other architectures. Based on the results,
the better the model performs on the given dataset, the lesser effect adversarial training has. The same

pattern can be seen in previous work [15].

Two models were trained on the large Landsat 5/7 and Landsat 8 datasets, separately. The generated
Landsat 5/7 LULC map had a lower pixel accuracy of 80.66% due to the difference in size between
the southern extent of Manitoba and Lake Winnipeg watershed datasets, the number of extractable
features presented in the larger dataset, and the presence of the noise in the form of wrongly classified
and not classified clouds. The generated Landsat 8 LULC map had a better pixel accuracy of 88.04%
due to the use of 16-bit values instead of 8-bit and more accurate cloud labels. Lastly, the model was
trained on the Landsat 8 and Sentinel-2 datasets using UDA architecture. The Sentinel-2 LULC map
had a relatively poor performance on most classes except water and cropland. However, these results do
not fully represent the performance of the generated model, due to differences in the actual resolution,

and years of the developed and ground truth LULC maps, and the fact that cloud labels were ignored

79

80 CHAPTER 7. CONCLUSION

during the evaluation. With the use of generated models, we can produce fairly accurate LULC maps

from three sensors for any year starting from the 1984.

This thesis presents a solution for Landsat 5/7, Landsat 8, and Sentinel-2 LULC map generation
using the NALCMS dataset. Even so, there are a lot more directions for future work. For example,
generating custom encoder-decoder architecture by heavily modifying ResNet and Xception encoders
to include many convolutional operations on the original width and height of the input images, thus
providing more sharp results, similarly to what was done in the VGGNet. Additionally, modifying
the ASPP model extension by altering the dilation rate and order of the convolutional operation,
or implementing an alternative counterpart, which will provide better results on the remote sensing
datasets. However, one of the most important directions is to increase the performance of the UDA
architecture by improving an existing or implementing a different architectural design. For example,
including reconstruction of the input to help network extract features from the target dataset more
easily, improving histogram alignment between source and target domains [74] or constructing more
advanced adversarial training [30] by modifying both generator and discriminator networks. Also, NNs
can be trained on high-resolution 11-bit datasets like Quickbird, Worldview 2/3, and GeoEye' to provide
sharp and more detailed LULC maps. Furthermore, a multi-sensor model can be considered by training
a network on multiple datasets from different sensors at once, making a more generic and versatile

model, which can be used to develop LULC maps from the different sensors without prior training.

1ht‘cps ://www.eo4idi.eu/eodsd-knowledge-portal/3-remote-sensing-technology/32-platforms/
322-digitalglobe

https://www.eo4idi.eu/eo4sd-knowledge-portal/3-remote-sensing-technology/32-platforms/322-digitalglobe
https://www.eo4idi.eu/eo4sd-knowledge-portal/3-remote-sensing-technology/32-platforms/322-digitalglobe

Appendix A

Ground Truth and Generated LULC
Maps

Land Cover Class [Sub-polar or polar grassland-lichen-moss

7 None [Sub-polar or polar barren-lichen-moss
Il Temperate or sub-polar needleleaf forest B Wetland

[Sub-polar taiga needleleaf forest E51 Cropland

[Temperate or sub-polar broadleaf deciduous forest I Barren land

I Mixed forest : wban and built-up
[Temperate or sub-polar shrubland ater)
[Snow and ice
] Temperate or sub-polar grassland 3 dioud
[Sub-polar or polar shrubland-lichen-moss ou

100 200 km

Figure A.1: Ground truth map of the southern extent of Manitoba for Landsat 5/7 dataset.

81

82 APPENDIX A. GROUND TRUTH AND GENERATED LULC MAPS

Land Cover Class 1 Sub-polar or polar grassland-lichen-moss
1 None I Sub-polar or polar barren-lichen-moss
I Wetland

Il Temperate or sub-polar needleleaf forest [Cropland
[Sub-polar taiga needleleaf forest ropian

B Temperate or sub-polar broadleaf deciduous forest : Satl;;en lazdb ;
I Mixed forest rban and built-up

I Water
1 Snow and ice
[1 Cloud

[Temperate or sub-polar shrubland
[Temperate or sub-polar grassland
I Sub-polar or polar shrubland-lichen-moss

100 200 km

Figure A.2: Predicted map of the southern extent of Manitoba for Landsat 5/7 dataset using best model.

83

250 500 km

Land Cover Class [Sub-polar or polar grassland-lichen-moss
[None [Sub-polar or polar barren-lichen-moss
I Temperate or sub-polar needleleaf forest B Wetland

[Sub-polar taiga needleleaf forest [Cropland

[Temperate or sub-polar broadleaf deciduous forest [Barren land

[Mixed forest [Urban and built-up
[Temperate or sub-polar shrubland I water .

[Temperate or sub-polar grassland [Snow and ice

[Sub-polar or polar shrubland-lichen-moss [Cloud

250 500 km

Land Cover Class 1 Sub-polar or polar grassland-lichen-moss
[None [Sub-polar or polar barren-lichen-moss

I Temperate or sub-polar needleleaf forest B Wetland

[Sub-polar taiga needleleaf forest [Cropland

[l Temperate or sub-polar broadleaf deciduous forest [Barren land

[Mixed forest [Urban and built-up
[Temperate or sub-polar shrubland Il Water

[Temperate or sub-polar grassland [Snow and ice
[Sub-polar or polar shrubland-lichen-moss [Cloud

Figure A.4: Predicted map of the Lake Winnipeg watershed for Landsat 5/7 dataset using best model.

84

APPENDIX A. GROUND TRUTH AND GENERATED LULC MAPS

Land Cover Class [sub-polar or polar grassland-lichen-moss
[None Sub-polar or polar barren-lichen-moss
Il Temperate or sub-polar needleleaf forest [wetland
[Sub-polar taiga needleleaf forest 3 Cropland

Temperate or sub-polar broadleaf deciduous forest =3 Barren land
[l Mixed forest Urban and built-up

[Temperate or sub-polar shrubland [water)
] Temperate or sub-polar grassland [snow and ice
[Sub-polar or polar shrubland-lichen-moss [Cloud

Figure A.5: Ground truth map of the Lake Winnipeg watershed for Landsat 8 dataset.

Land Cover Class [sub-polar or polar grassland-lichen-moss
[None [Sub-polar or polar barren-lichen-moss
Il Temperate or sub-polar needleleaf forest [wetland

I Sub-polar taiga needleleaf forest Cropland
[l Temperate or sub-polar broadleaf deciduous forest [Barren land
Mixed forest I Urban and built-up
[Temperate or sub-polar shrubland I water
] Temperate or sub-polar grassland [snow and ice
[Sub-polar or polar shrubland-lichen-moss [Cloud

Figure A.6: Predicted map of the Lake Winnipeg watershed for Landsat 8 dataset using best model.

85

[Sub-polar or polar grassland-lichen-moss
Il Sub-polar or polar barren-lichen-moss
I Wetland

[Cropland

[Barren land

Il Urban and built-up

Land Cover Class

1 None

Il Temperate or sub-polar needleleaf forest

[Sub-polar taiga needleleaf forest

I Temperate or sub-polar broadleaf deciduous forest
I Mixed forest

[Temperate or sub-polar shrubland B Water .
[Temperate or sub-polar grassland L_J Snow and ice
[1 Cloud

I Sub-polar or polar shrubland-lichen-moss

Figure A.7: Ground truth map of the southern extent of Manitoba for Sentinel-2 dataset.

86 APPENDIX A. GROUND TRUTH AND GENERATED LULC MAPS

[Sub-polar or polar grassland-lichen-moss
Il Sub-polar or polar barren-lichen-moss
I Wetland

[Cropland

[Barren land

Il Urban and built-up

Land Cover Class

1 None

Il Temperate or sub-polar needleleaf forest

[Sub-polar taiga needleleaf forest

I Temperate or sub-polar broadleaf deciduous forest
I Mixed forest

[Temperate or sub-polar shrubland B Water .
[Temperate or sub-polar grassland L_J Snow and ice
[1 Cloud

I Sub-polar or polar shrubland-lichen-moss

P A

Figure A.8: Predicted map of the southern extent of Manitoba for Sentinel-2 dataset using best model trained
on UDA architecture.

87

[Sub-polar or polar grassland-lichen-moss
Il Sub-polar or polar barren-lichen-moss
I Wetland

[Cropland

[Barren land

Il Urban and built-up

Land Cover Class

1 None

Il Temperate or sub-polar needleleaf forest

[Sub-polar taiga needleleaf forest

I Temperate or sub-polar broadleaf deciduous forest
I Mixed forest

[Temperate or sub-polar shrubland B Water .
[Temperate or sub-polar grassland L_J Snow and ice
[1 Cloud

I Sub-polar or polar shrubland-lichen-moss

Figure A.9: Predicted map of the southern extent of Manitoba for Sentinel-2 dataset using best model trained
on corrected dataset.

88

APPENDIX A. GROUND TRUTH AND GENERATED LULC MAPS

Bibliography

[1]

2]

P. Treitz and J. Rogan, “Remote sensing for mapping and monitoring land-cover and land-use

change,” Progress in Planning, vol. 61, no. 4, pp. 269-279, 2004.

D. Lu and Q. Weng, “A survey of image classification methods and techniques for improving

classification performance,” International Journal of Remote Sensing, vol. 28, no. 5, pp. 823-870,
2007.

L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep learning in remote sensing
applications: A meta-analysis and review,” ISPRS Journal of Photogrammetry and Remote Sensing,

vol. 152, pp. 166-177, 2019.

A. Mayr, G. Klambauer, T. Unterthiner, and S. Hochreiter, “Deeptox: toxicity prediction using

deep learning,” Frontiers in Environmental Science, vol. 3, p. 80, 2016.

F. Milletari, S.-A. Ahmadi, C. Kroll, A. Plate, V. Rozanski, J. Maiostre, J. Levin, O. Dietrich,
B. Ertl-Wagner, K. Botzel et al., “Hough-cnn: deep learning for segmentation of deep brain regions

in mri and ultrasound,” Computer Vision and Image Understanding, vol. 164, pp. 92-102, 2017.

P. Pérez de San Roman, J. Benois-Pineau, J.-P. Domenger, F. Paclet, D. Cataert, and A. de
Rugy, “Saliency driven object recognition in egocentric videos with deep cnn: toward application
in assistance to neuroprostheses,” Computer Vision and Image Understanding, vol. 164, pp. 8291,

2017, deep Learning for Computer Vision.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep
convolutional neural networks,” Artificial Intelligence Review, vol. 53, no. 8, pp. 5455-5516, 2020.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 3431-3440.

89

90

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

BIBLIOGRAPHY

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder

architecture for image segmentation,” IFEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 39, no. 12, pp. 2481-2495, 2017.

F. P. Luus, B. P. Salmon, F. Van den Bergh, and B. T. J. Maharaj, “Multiview deep learning

for land-use classification,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 12, pp.
2448-2452, 2015.

J. Wang, C. Luo, H. Huang, H. Zhao, and S. Wang, “Transferring pre-trained deep cnns for remote

scene classification with general features learned from linear pca network,” Remote Sensing, vol. 9,

no. 3, p. 225, 2017

C. J. Henry, C. D. Storie, M. Palaniappan, V. Alhassan, M. Swamy, D. Aleshinloye, A. Curtis, and
D. Kim, “Automated lulc map production using deep neural networks,” International Journal of

Remote Sensing, vol. 40, no. 11, pp. 4416-4440, 2019.

C. D. Storie and C. J. Henry, “Deep learning neural networks for land use land cover mapping,” in
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018,
pp. 3445-3448.

V. Alhassan, C. Henry, S. Ramanna, and C. Storie, “A deep learning framework for land-use/land-

cover mapping and analysis using multispectral satellite imagery,” Neural Computing and Applica-
tions, pp. 1-16, 2019.

V. Alhassan, “Automated land use and land cover map production: A deep learning
framework,” Master’s thesis, University of Winnipeg, Winnipeg, Canada, 2018. [Online]. Available:
https://winnspace.uwinnipeg.ca/handle/10680/1579

K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Computer
Vision — ECCV 2016, vol. 9908. Cham: Springer International Publishing, 2016, pp. 630-645.

F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1251-1258.

B. Wang, J. Glossner, D. Iancu, and G. N. Gaydadjiev, “Feedbackward decoding for semantic
segmentation,” arXiv preprint arXiv:1908.08584, 2019.

https://winnspace.uwinnipeg.ca/handle/10680/1579

BIBLIOGRAPHY 91

[19]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image
segmentation,” in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015.
Cham: Springer International Publishing, 2015, pp. 234—241.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous
separable convolution for semantic image segmentation,” in Proceedings of the Furopean Conference

on Computer Vision (ECCV), 2018, pp. 801-818.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality,

stability, and variation,” arXwv preprint arXiv:1710.10196, 2017.

W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han, “Domain-specific batch normalization for
unsupervised domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 7354-7362.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint

arXw:1511.07122, 2015.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial networks,” arXiv preprint arXiv:1406.2661, 2014.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”

arXiv preprint arXiw:1409.1556, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.
770-778.

in Proceedings

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic

image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848, 2018.

92

[30]

[34]

[35]

BIBLIOGRAPHY

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 7167-7176.

W. Hong, Z. Wang, M. Yang, and J. Yuan, “Conditional generative adversarial network for
structured domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018, pp. 1335-1344.

J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the dartmouth
summer research project on artificial intelligence, august 31, 1955, Al Magazine, vol. 27, no. 4, pp.
12-12, 2006.

F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell

Aeronautical Laboratory, 1957.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436—444,
2015.

F. Li and A. Karpathy, “CS231n: Convolutional neural networks for visual recognition,” Course

Notes, Stanford University, 2015.

C. Sammut and G. I. Webb, Eds., Mean Squared Error. Boston, MA: Springer US, 2010, pp.
653-653. [Online]. Available: https://doi.org/10.1007/978-0-387-30164-8_528

Y. N. Wu, Cross Entropy. Boston, MA: Springer US, 2014, pp. 154-154. [Online]. Available:
https://doi.org/10.1007/978-0-387-31439-6_743

J. L. McClelland, D. E. Rumelhart, P. R. Group et al., Parallel distributed processing. MIT Press
Cambridge, MA, 1986, vol. 2.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research, Y. W. Teh and M. Titterington,
Eds., vol. 9, JMLR Workshop and Conference Proceedings. Chia Laguna Resort, Sardinia, Italy:
PMLR, 13-15 May 2010, pp. 249-256.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444,
2015.

https://doi.org/10.1007/978-0-387-30164-8_528
https://doi.org/10.1007/978-0-387-31439-6_743

BIBLIOGRAPHY 93

[41]

[42]

[43]

[51]

[52]

M. D. Binder, N. Hirokawa, and U. Windhorst, Eds., Gradient Descent. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1765-1766. [Online|. Available: https:
//doi.org/10.1007 /978-3-540-29678-2_2075

L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of the Trade. Springer,
2012, pp. 421-436.

9

Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,” in Neural

Networks: Tricks of the Trade. Springer, 2012, pp. 437-478.

T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude,” COURSERA: Neural Networks for Machine Learning, vol. 4, no. 2, pp. 26-31,
2012.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic

optimization,” Journal of Machine Learning Research, vol. 12, no. 7, 2011.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” arXiv preprint

arXiv:1603.07285, 2016.

K. Bai, “A comprehensive introduction to different types of convolutions in
deep learning,” Feb 2019. [Online]. Available: https://towardsdatascience.com/

a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint

arXw:1511.07122, 2015.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 3431-3440.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”
science, vol. 313, no. 5786, pp. 504-507, 2006.

M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013.

https://doi.org/10.1007/978-3-540-29678-2_2075
https://doi.org/10.1007/978-3-540-29678-2_2075
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

94

[53]

[57]

[59]

[60]

BIBLIOGRAPHY

R. Olivier and C. Hangiang, “Nearest neighbor value interpolation,” International Journal
of Advanced Computer Science and Applications, vol. 3, no. 4, 2012. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2012.030405

E. J. Kirkland, Bilinear Interpolation. Boston, MA: Springer US, 2010, pp. 261-263. [Online].
Available: https://doi.org/10.1007/978-1-4419-6533-2_12

G. Birkhoff and H. L. Garabedian, “Smooth surface interpolation,” Journal of Mathematics and
Physics, vol. 39, no. 1-4, pp. 258-268, 1960. [Online|. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/sapm1960391258

H. Zhang, L. Zhang, and Y. Jiang, “Overfitting and underfitting analysis for deep learning
based end-to-end communication systems,” in 2019 11th International Conference on Wireless

Communications and Signal Processing (WCSP). 1EEE, 2019, pp. 1-6.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France:
PMLR, 07-09 Jul 2015, pp. 448-456.

M. M. YAPICI, A. TEKEREK, and N. TOPALOCU}LU7 “Literature review of deep learning research
areas,” Gazi Mihendislik Bilimleri Dergisi (GMBD), vol. 5, no. 3, pp. 188-215, 2019.

D. T. Grozdié¢, S. T. Jovici¢, and M. Subotié, “Whispered speech recognition using deep denoising
autoencoder,” Engineering Applications of Artificial Intelligence, vol. 59, pp. 15-22, 2017.

M. Al-Ayyoub, A. Nuseir, K. Alsmearat, Y. Jararweh, and B. Gupta, “Deep learning for arabic
nlp: A survey,” Journal of Computational Science, vol. 26, pp. 522—-531, 2018.

J. Kim, O. Sangjun, Y. Kim, and M. Lee, “Convolutional neural network with biologically inspired

retinal structure,” Procedia Computer Science, vol. 88, pp. 145-154, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEFE, vol. 86, no. 11, pp. 2278-2324, 1998.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Advances in Neural Information Processing Systems, vol. 25, pp. 1097-1105,

2012.

http://dx.doi.org/10.14569/IJACSA.2012.030405
https://doi.org/10.1007/978-1-4419-6533-2_12
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1960391258
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1960391258

BIBLIOGRAPHY 95

[64]

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture
for computer vision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016, pp. 2818-2826.

L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille, “Semantic image segmenta-
tion with task-specific edge detection using cnns and a discriminatively trained domain transform,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 4545-4554.

F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for
volumetric medical image segmentation,” in 2016 Fourth International Conference on 3D Vision

(3DV). 1EEE, 2016, pp. 565-571.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 652-660.

J. Huang and S. You, “Point cloud labeling using 3d convolutional neural network,” in 2016 23rd

International Conference on Pattern Recognition (ICPR). 1EEE, 2016, pp. 2670-2675.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic image segmen-
tation with deep convolutional nets and fully connected crfs,” arXiv preprint arXiv:1412.7062,
2014.

P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using adversarial networks,”

arXiw preprint arXiw:1611.08408, 2016.

E. Collier, K. Duffy, S. Ganguly, G. Madanguit, S. Kalia, G. Shreekant, R. Nemani, A. Michaelis,
S. Li, A. Ganguly, and S. Mukhopadhyay, “Progressively growing generative adversarial networks for
high resolution semantic segmentation of satellite images,” in 2018 IEEFE International Conference

on Data Mining Workshops (ICDMW). 1EEE, 2018, pp. 763-769.

Y. Sun, E. Tzeng, T. Darrell, and A. A. Efros, “Unsupervised domain adaptation through self-
supervision,” arXiv preprint arXiv:1909.11825, 2019.

Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for domain adaptation of semantic
segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 6936-6945.

96

[74]

[76]

[77]

78]

[79]

[80]

[81]

BIBLIOGRAPHY

J. Wang, J. Chen, J. Lin, L. Sigal, and C. W. de Silva, “Discriminative feature alignment: Improving

transferability of unsupervised domain adaptation by gaussian-guided latent alignment,” Pattern

Recognition, vol. 116, p. 107943, 2021.

A. Sharma, X. Liu, X. Yang, and D. Shi, “A patch-based convolutional neural network for remote

sensing image classification,” Neural Networks, vol. 95, pp. 19-28, 2017.

P. Li, P. Ren, X. Zhang, Q. Wang, X. Zhu, and L. Wang, “Region-wise deep feature representation

for remote sensing images,” Remote Sensing, vol. 10, no. 6, p. 871, 2018.

J. Sherrah, “Fully convolutional networks for dense semantic labelling of high-resolution aerial

imagery,” arXiv preprint arXiv:1606.02585, 2016.

G. Chen, X. Zhang, Q. Wang, F. Dai, Y. Gong, and K. Zhu, “Symmetrical dense-shortcut deep fully
convolutional networks for semantic segmentation of very-high-resolution remote sensing images,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 5,

pp. 1633-1644, 2018.

R. Kemker, C. Salvaggio, and C. Kanan, “Algorithms for semantic segmentation of multispectral
remote sensing imagery using deep learning,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 145, pp. 60-77, 2018.

V. Khryashchev, R. Larionov, A. Ostrovskaya, and A. Semenov, “Modification of u-net neural
network in the task of multichannel satellite images segmentation,” in 2019 IEEE East-West Design
€ Test Symposium (EWDTS). 1EEE, 2019, pp. 1-4.

M. Papadomanolaki, K. Karantzalos, and M. Vakalopoulou, “A multi-task deep learning framework
coupling semantic segmentation and image reconstruction for very high resolution imagery,” in
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019,
pp- 1069-1072.

B. Benjdira, K. Ouni, M. M. Al Rahhal, A. Albakr, A. Al-Habib, and E. Mahrous, “Spinal cord

segmentation in ultrasound medical imagery,” Applied Sciences, vol. 10, no. 4, p. 1370, 2020.

D. DiBiase and A. John, “The nature of geographic information,” An Open Geospatial Textbook.

URL: hittps://www. e-education. psu. edu/natureofgeoinfo/c6 _ p12. html (hamtad 2020-04-09),
2008.

BIBLIOGRAPHY 97

[84]

[89]

[90]

[91]

[92]

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.

(1999) Landsat collection 1 level-1 quality assessment band. [Online]. Available: https://www.usgs.

gov/media/images/landsat-8-quality-assessment-band-attributes-and-possible-values

D. Ho, E. Liang, X. Chen, I. Stoica, and P. Abbeel, “Population based augmentation: Efficient
learning of augmentation policy schedules,” in Proceedings of the 36th International Confer-

ence on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and

R. Salakhutdinov, Eds., vol. 97. PMLR, 09-15 Jun 2019, pp. 2731-2741.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,”

Journal of Big Data, vol. 6, no. 1, pp. 1-48, 2019.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,”

arXiw preprint arXiw:1605.04467, 2016.

F. W. Lancaster, Fvaluation of the MEDLARS demand search service. US Department of Health,
Education, and Welfare, Public Health Service, 1968.

C. J. Van Rijsbergen, “A new theoretical framework for information retrieval,” in Acm Sigir Forum,

vol. 21, no. 1-2. ACM New York, NY, USA, 1986, pp. 23-29.

J. T. Schaefer, “The critical success index as an indicator of warning skill,” Weather and Forecasting,

vol. 5, no. 4, pp. 570-575, 1990.

P. J. Roebber, S. L. Bruening, D. M. Schultz, and J. V. Cortinas Jr, “Improving snowfall forecasting
by diagnosing snow density,” Weather and Forecasting, vol. 18, no. 2, pp. 264-287, 2003.

https://www.usgs.gov/media/images/landsat-8-quality-assessment-band-attributes-and-possible-values
https://www.usgs.gov/media/images/landsat-8-quality-assessment-band-attributes-and-possible-values

	Supervisory Committee
	Contents
	List of Tables
	List of Figures
	Introduction
	Problem Definition
	Proposed Approach
	Contribution of the Thesis
	Organization of the Thesis

	Methodology
	Neural Network
	Perceptron
	Interpretation of Gradient
	Loss function
	Backpropagation
	Initialization
	Input Normalization
	Optimization

	Convolutional Neural Network
	Convolutional Layer
	Pooling Layer
	Upsampling Layer
	Activation Layer
	Batch Normalization Layer
	Fully Connected Layer

	Chapter Summary

	Literature Review
	Deep Learning
	Deep Convolutional Neural Networks
	Deep Convolutional Encoder-Decoders
	Extensions

	Unsupervised Domain Adaption
	DNNs in Remote Sensing
	Chapter Summary

	Neural Network Models
	Encoder-Decoder
	Encoders
	VGGNet
	GoogleNet
	Xception
	ResNet

	Decoders
	FCN
	U-Net
	Modified U-Net
	Feedbackward

	Model Extensions
	Layer-Level Modifications
	Output Stride
	Atrous Spatial Pyramid Pooling
	Context Module

	Architectures
	Deeplabv3+ Architecture
	Generative Adversarial Network
	Progressive Architecture
	Structured Domain Adaptation Network

	Chapter Summary

	Implementation Details
	Datasets
	Landsat 5/7 and Landsat 8
	Sentinel-2

	Data Preprocessing
	Tiling
	Data Transformation

	Experimental Setup
	Chapter Summary

	Experiments, Results, and Analysis
	Evaluation Metrics
	Comparison of Model Variations
	Product Generation
	Landsat 5/7
	Landsat 8
	Sentinel-2

	Chapter Summary

	Conclusion
	Ground Truth and Generated LULC Maps
	Bibliography

