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ABSTRACT

This thesis presents recent work on exploring machine learning (ML) and

deep learning (DL) models to improve the accuracy of 24 hour precipitation

forecasts. Leveraging a comprehensive North American dataset of precipitation values

from Numerical Weather Prediction (NWP) models and secondary meteorological

features, the research showcases the need of ML techniques in post-processing

NWP precipitation predictions. The evaluation reveals remarkable performance

improvements over baseline model, with certain ML models achieving a 15% reduction

in Mean Absolute Error (MAE), a 5% decrease in Root Mean Squared Error (RMSE),

a 45% reduction in Median Absolute Error (MdAE), and a 50% decrease in Relative

Bias (RB). Convolutional Neural Networks (CNN) and Gradient Boosting Regressor

(GBR) emerged as top performers, demonstrating their proficiency in accurately

predicting daily precipitation.

Keywords: Numerical Weather Prediction (NWP), Precipitation Forecasting,

Machine Learning, Neural Networks, Gradient Boosting, Graph Neural Networks,

Weather Forecast, Post-processing, Meteorological Features.
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Chapter 1

Introduction

Numerical Weather Prediction (NWP) refers to using mathematical models to process

weather data to make forecasts [3]. It is a cornerstone of modern meteorology, playing

a pivotal role in providing forecasts that influence a myriad of sectors, from agriculture

and transportation to emergency management and climate research. In a world ever

more vulnerable to extreme weather events, accurate and timely weather forecasts

are of paramount importance.

Advancements in NWP have undoubtedly revolutionized our ability to anticipate

and prepare for atmospheric phenomena. As the field of meteorology evolved, so

did the recognition of the inherent challenges in NWP, particularly in accurately

predicting complex meteorological phenomena like precipitation [4]. This is due to

the intricate nature of the processes governing precipitation, the inherent uncertainties

in atmospheric dynamics, and the limitations of numerical models. NWP has its roots

in Princeton in the 1950’s [5], when computer technology and our understanding of

atmospheric physics converged to usher in a new era of meteorology. By simulating the

behavior of the atmosphere through complex mathematical equations, NWP models

have enabled meteorologists to forecast weather conditions with increasing accuracy.

These models consider a multitude of variables, such as temperature, pressure, wind

speed, and humidity, to generate predictions about the state of the atmosphere at

various points in the future. It was not until the 1970’s when supercomputing power

became more widely accessible that tackling the entire array of complex mathematical

equations became a practical possibility [6]. Operational NWP centers now provide

predictions covering a broad spectrum of time ranges, from very short-range forecasts

at kilometer-scale resolutions, to global seasonal forecasts at resolutions of tens of

kilometers [2].
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As NWP technology continues to advance, it holds the promise of providing more

accurate, reliable, and timely weather forecasts, thereby benefiting numerous sectors

and helping society adapt to a world increasingly influenced by changing climate

patterns and extreme weather events. In the following sections, we delve deeper into

the motivations driving our research to improve precipitation forecasts by integrating

machine learning (ML) and deep learning (DL) into post-processing of NWP models.

Post processing NWP models, refers to a set of techniques used to refine and improve

the output of NWP models.

1.1 Problem Statement and Motivation

Despite the remarkable progress made in NWP, it is incredibly difficult, if not

impossible to mathematically represent every atmospheric process analytically [2]. To

handle this, processes are discretized both in space and time. Discretization of process

introduces a resolved and unresolved scales of motion within the equations. In other

words, it divides the equations into components that can be accurately simulated

(resolved) and others that are approximated (unresolved). These approximated

unresolved processes require a form of parameterization to describe how they interact

with the processes that are resolved. Parameterization account for radiation,

convection, and diffusion within the atmosphere and at the boundary between the

atmosphere and the Earth’s surface. They are frequently influenced by relatively

small spatial scales [7]. Figure 1.1 derived from [2] visually represents unresolved

processes and their areas of significance. Even though they are not fully resolved,

unresolved processes significantly impact heat and momentum balances at the grid

scale and play a vital role in achieving predictive accuracy [8]. Inherent complexities

of the problem entails introducing simplifications to make the numerical solution more

manageable and to reduce the overall complexity of the equation set. Although with

limited success, Richardson in [9] was the first to demonstrate these simplifications

in 1920’s.

Precipitation is a complex meteorological phenomenon characterized by a wide

range of spatial and temporal scales, making it inherently difficult to predict.

Traditional NWP models often struggle with capturing the subtle variations and

abrupt changes in precipitation patterns. Moreover, the unresolved approximated

processes discussed above result in significant biases and uncertainties in their

forecasts. This persistence of errors in precipitation predictions can have profound
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Figure 1.1: Figure from [2] visualizing unresolved physical processes of weather
prediction.

consequences for both short-term weather forecasting and long-term climate

modeling. It is crucial to explore alternative approaches to improve the precision

and reliability of precipitation forecasts. Data assimilation and post-processing,

the practice of refining NWP model outputs using additional data or statistical

techniques, has emerged as a promising avenue for reducing uncertainties and

enhancing the accuracy of NWP predictions [10]. The introduction of a plethora

of ML and DL algorithms in the recent past have demonstrated their potential

to mitigate the shortcomings of traditional NWP models, making it a subject of

increasing interest in the meteorological community [11, 12].

1.2 Previous Work

In this section, we will discuss our previous work [1] on Machine Learning Approaches

to Improve North American Precipitation Forecasts, which serves as the foundation

for the research presented in this thesis. Our approach involved employing an

ensemble forecasting strategy, consolidating 6 months (Dec 2021 - May 2023) of

NWP precipitation forecasts from multiple meteorological agencies in Canada, the

United States, and Europe. For the development of a machine learning assisted

weather model, we conducted experiments utilizing five distinct machine learning
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techniques: Multiple Linear Regression (MLR), Random Forest Regression (RFR),

Gadient Boosted Regression (GBR), Fully Connected Neural Networks (NN), and

Convolutional Neural Networks (CNN). These methodologies were explored alongside

an existing averaging model that was already in use. Our findings demonstrated that

ML approaches can indeed enhance the accuracy and reliability of NWP precipitation

predictions. The most significant improvements were observed with neural network

variants (NN and CNN), with 17% improvement in the mean absolute error, 3% in

the root mean squared error and 5% in the maximum error. One of our objective was

to train and deploy an optimal machine learning-based weather model for real-time

precipitation forecasting that would surpass the performance of the baseline model.

All of the five ML models, offered under one hour of training time and near-real-time

prediction capabilities.
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Figure 1.2: Overview of the previous and proposed research.
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1.3 Proposed Research

We take advantage of the substantial growth of our dataset, now encompassing 18

months of data from December 2021 to May 2023. We have partitioned the dataset,

utilizing 15 months for training (Dec 2021 up to March 2023) and allocated the

subsequent months (March 2023 up to June 2023) for testing. Following convention

of our previous work, we use the term Weather Models (WMs) to refer the NWP

forecasts employed as inputs and the term trained ML models for the machine learning

models developed. Figure 1.2 summarizes our previous and proposed research.

Longer temporal scope is integral to our research, since it gives the opportunity to

train even more robust ML algorithms and also evaluate the significance of secondary

features like temperature, wind, location, etc. To facilitate this analysis, we conduct

experiments in two phases:

� Phase 1: In this phase we evaluate how, trained ML models employed in our

previous work, evolve when dealing with a large temporal scale, providing a

basis for comparison. For this Dataset 1 is curated, which retains the same set

of input features as the smaller dataset from our previous work, consisting of

precipitation values from the 8 Weather Models (WMs) as shown in Figure 1.3.

� Phase 2: In this phase we will examine the impact of the secondary features,

given the larger time span available for training. We curate Dataset 2 as shown

in Figure 1.3, which encompasses a subset of features from Dataset 1, i.e.,

the 3 best performing WMs, and introduce 9 additional secondary features

discussed in section 4.5. We also deploy two additional Machine Learning

models: XGBoost (XGB) and Graph Neural Networks (GNN), exclusively for

Dataset 2.

Along with the regression metrics used in our previous work, we have introduced

an additional assessment based on confusion matrices which enables us to gauge

how ML models perform at different precipitation levels, offering a more nuanced

understanding of their predictive capabilities. Furthermore, we incorporate Shapley

values [13] into our analysis to investigate the contribution of each feature to the

prediction. This method provides valuable insights into the importance of individual

features and their impact on the overall forecast.

In this thesis,the objective is to provide a comprehensive exploration of the

potential enhancements that ML and DL algorithms can bring to NWP precipitation
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Preliminary Dataset Dataset 1 Dataset 2

Duration : 6 months Duration : (6+12) 18 months 

5 WM's  +  3 WM's Secondary Features8 WM's

GEFS

NAM

REPSGFS

GDPS RDPS

ICON GEPS

GEFS

NAM

REPSGFS

GDPS RDPS

ICON GEPS

Elevation
Latitude

Longitude

Cloud

Wind
U-Wind

V-Wind

Humidity

Temperature

Proposed ResearchPrevious Research

Figure 1.3: Venn diagram defining the datasets provided by Weatherlogics Inc. used
in previous and proposed research.

predictions. Through an in-depth analysis of Dataset 1 and Dataset 2, along with the

introduction of XGBoost and GNN models for Dataset 2, we anticipate shedding

new light on the role of secondary features and their potential to further refine

precipitation forecasts. Our evaluation metrics, including the Confusion Matrix and

Shapley values, will contribute to a more holistic understanding of the performance

and feature importance of ML models in this critical domain. This thesis, delves

deeper into the exploration of ML and DL algorithms with a larger dataset, aiming to

refine and expand the methodologies to achieve even greater precision and reliability

in precipitation predictions.

1.4 Thesis Outline

Chapter 2 introduces related work in the field of weather prediction and post-

processing NWP models. Chapter 3 lays the foundation of the relevant methodologies

and metrics used to train as well as evaluate the machine learning models. Chapter 4

discusses the procuring and pre-processing the datasets used throughout the research.

This chapter explains the process of feature selection for Dataset 1 and Dataset 2.

The results and visualization of our experiments with the two datasets are contained

in Chapter 5. Finally, Chapter 6 concludes on the findings of the previous chapters.
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Chapter 2

Related Works

This section presents research related to machine learning techniques used for

enhancing weather predictions in general like temperature, humidity and wind, among

others. We also discuss research related to post processing forecasts generated

by Numerical Weather Prediction (NWP) models with the utilization of machine

learning and deep learning. Machine learning have long been used in the prediction

of various weather parameter, it can also be applied to address complex meteorological

challenges, such as predicting drought conditions, extreme weather events, and

climate patterns. Post processing NWP models, refers to a set of techniques used

to refine and improve the output of NWP models. These models, while valuable,

often exhibit biases and errors in their forecasts. Post processing involve statistical

corrections and adjustments to model outputs, aiming to provide more accurate and

reliable weather predictions.

2.1 Weather Prediction and Machine Learning

Deo and Sahin’s research [14] employs Artificial Neural Networks (ANN) to predict

the Standardized Precipitation and Evapotranspiration Index (SPEI) in eastern

Australia, incorporating various hydro-meteorological parameters and climate indices

to create a robust predictive model. Le in research [15] investigates the application of

Recurrent Neural Networks (RNNs) to project drought conditions in California. By

considering the Palmer Z Index data and the influence of the 2015-2016 El Niño event,

this study demonstrates a significant correlation between projected and observed

drought conditions, highlighting the utility of RNNs in this context. Haidar [16]
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proposes a deep convolutional neural network (CNN) for monthly rainfall forecasting

in eastern Australia, achieving promising results in comparison to conventional

forecasting models.

Yajing Wu et al. in research [17] proposes quantitative precipitation estimation

based on graph convolutional regression networks. The estimation method converts

the rain gauge network into a graph and uses GCRNs to learn two types of

relationships: the nonlinear relationship between radar reflectivity and rainfall rate,

as well as the spatial correlation among rain gauges. Jiahui Xu et al. in research [18]

proposes HighAir, a hierarchical graph neural network-based method for air quality

forecasting. HighAir constructs a city-level graph and station-level graphs to capture

the spatial dependencies of air quality at different granularities. HighAir uses weather

data and an encoder-decoder architecture on the dataset of Yangtze River Delta city

group, and shows that it outperforms existing methods. Moreover, study [19] employs

XGBoost machine learning to enhance the accuracy of extreme rainfall forecasts,

improving hydrological predictions for flood inundation modeling. Results indicate

improved performance for localized rainfall events, especially during heavy rainfall

and typhoon events. The work presented in [20], uses CNNs to predict total column

water vapour and other key atmospheric variables with six-hour time resolution. Their

model is applicable for subseasonal-to-seasonal forecasting at lead times from two to

six weeks.

Bochenek et al. in research [12] presents a comprehensive review of machine

learning applications used in climate forecasts and numerical weather prediction.

Piyush Joshi et al. in research [21] explores the use of Artificial Neural Networks

(ANN) for precipitation forecasting in the Western Himalayan region using satellite

images. The ANN model trained on infrared and water vapor images shows promise

in qualitative and quantitative precipitation forecasting, with skill scores indicating

its operational potential. Barrera et al. in research [22] does a comparative analysis

of machine learning algorithms for rainfall prediction using time-series data. These

studies evaluate LSTM, Stacked-LSTM, Bidirectional-LSTM, XGBoost, and AutoML

models. Bidirectional-LSTM and Stacked-LSTM with two hidden layers emerge as

the top-performing models in this context.
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2.2 Post Processing NWP models with Machine

Learning

To remove uncertainties and improve upon NWP models, researchers have developed

several strategies, the most common being employing ensembles of multiple

models [23, 24, 25, 26]. Buizza et al. in research [27] studied the effect of NWP

ensemble sizes on its prediction accuracy, having different physical parameters as

inputs to the same NWP model. Elizabeth Ebert in research [28] evaluated the use of

an ensemble of seven independent NWP models and compared them to its individual

members, over Australia. The ensemble models reduce the uncertainties of a single

model but fail to map the non-linear relationships between the model output and

real-world observations.

Krasnopolsky et al. in research [29] develop a nonlinear multimodel ensemble

approach using neural networks to improve 24-hour precipitation forecasts. This

approach significantly reduces biases and improves forecast accuracy compared to

other methods. The NN multi-model ensemble showed significant improvements in

reducing high bias at low precipitation levels, reducing low bias at high precipitation

levels, and sharpening features to make them closer to the observed ones. Gagne

et al. in research [30] leverages machine learning techniques to enhance storm-scale

ensemble probabilistic precipitation forecasts. Logistic regressions and random forests

correct for biases and improve forecast reliability, providing valuable insights into

precipitation predictions. The study [31] propose an ANN to establish relationships

between NWP ensemble forecast and observed 7-day precipitation accumulations.

The study demonstrates that the ANN model compares favorably with a state-of-

the-art postprocessing technique developed for medium-range ensemble precipitation

forecasts.

Casper Sonderby et al. in research [32] introduces MetNet, a neural network that

excels in high-resolution precipitation forecasting. It outperforms numerical weather

prediction at extended lead times, showcasing the potential of deep learning in weather

forecasting. Research [33] extends the work presented in [32] and presents Metnet2, a

neural network for large-scale precipitation forecasting. This model surpasses state-of-

the-art physics-based models, emphasizing the shift towards efficient forecasting using

neural networks. Yun Fan et al. in research [34] propose a statistical post-processing

method utilizing neural networks to enhance NOAA CFS week 3-4 forecasts for

precipitation and temperature. Their results demonstrate significant improvements
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in forecast accuracy compared to traditional methods. Fan et al. [35] conduct a

comparative study of merging approaches for regional precipitation estimation, using

satellite and reanalysis data. Four different methods, including neural networks, are

employed, highlighting the potential for improved regional precipitation estimates.

Cho et al. [36] introduce an ensemble learning approach combining deep learning and

statistical methods for post-processing numerical weather prediction models. This

approach enhances the accuracy of next-day maximum air temperature forecasts,

critical for thermal disaster preparation. Frnda et al. in [37] focus on enhancing

short-term forecasts of air temperature and precipitation by ECMWF using a neural

network-based calibration model. Real observations from weather stations contribute

to model training, showing promising improvements in forecast accuracy.

Li et al. in research [38] and Jha et al. in [39] used bayesian post-processing

techniques discussed in [40] to combine multiple NWP forecasts reducing errors

in rainfall prediction. Zhou et al. in [41] introduce QPFNet, a deep learning

model using basic meteorological variables to forecast precipitation. QPFNet

outperforms ECMWF’s high-resolution model, demonstrating its potential for

improved precipitation forecasting. In [42], authors introduce a 3D neural network

(termed Pangu-Weather) for medium-range global weather forecasting by including

height information as a new third dimension. The AI system includes a hierarchical

temporal aggregation algorithm that involves training a series of models with

increasing forecast lead times on 39 years of global reanalysis weather data.

In [43], graph neural networks are used to model a dense physical weather

forecasting system which is a hybrid physics and machine learning system. In this

model, 6-hour changes across 78 atmospheric variables on a spatial grid of 1-degree

latitude/longitude and a 13-level pressure grid is considered. However, this model

does not consider precipitation. The model is trained on the ERA5 reanalysis dataset

from the European Centre for Medium-Range Weather Forecasts (ECMWF) as well as

a subset of the Global Forecast System (GFS). Lam et al. in [44] refers to a research

study conducted by a team at Google DeepMind introduces a ML based method

called GraphCast for global weather forecasting. GraphCast is trained directly from

ERA5 data and significantly outperforms traditional numerical weather prediction

systems in terms of accuracy and efficiency. This represents a key advancement in

weather forecasting and demonstrates the potential of graph based machine learning

in modeling complex dynamical systems. Dong et al. in research [45] used XGBoost

to bias correct the Global Ensemble Forecast System forecasts. The study used data
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from 689 meteorological stations across seven different climatic regions in China.

XGBoost outperformed forecasting precipitation for 1-8 days ahead.
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Chapter 3

Preliminaries

3.1 Introduction

This chapter explores the integration of various ML techniques, including linear

regression, ensemble methods (Random Forest, Gradient Boosting Regression and

XGBoost), neural networks (Simple Neural Networks, Convolutional Neural Networks

and Graph-based Neural Networks), into the post-processing of NWP precipitation

predictions. In the upcoming sections, we will explore how each machine learning

technique works and how we can use them to make weather forecasts better. We

will also introduce the metrics used to evaluate the performance of the input weather

models and the machine learning approaches.

3.2 Input Means Model (Baseline)

The customary method used in practice to post-process these weather models is to

simply average the inputs from multiple WMs together denoted by Eqn 3.1, in-turn

reducing the biases in the forecast of a particular WM. Throughout this thesis, we

will refer to this method as the Input Means Model (IMM) which will also serve as

the baseline method of post-processing.

ŷIMM =

∑N
i=1 WMi

N
. (3.1)

Here, N is the number of input weather model forecasts, WMi is the input from the

ith weather model and ŷIMM is the averaged prediction. However, IMM has certain

limitations that need to be considered. It assumes that each WM contributing to the
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average is equally weighted. In reality, some models may have a better track record

and should be given more weight, while others might perform poorly and should be

down-weighted or excluded. Additionally, the IMM does not account for the fact that

different models may have different biases for different weather conditions or regions.

In essence, while the IMM serves as a simple and intuitive baseline for post-processing

WM forecasts, it lacks the sophistication required to address the complexity of real-

world weather prediction challenges.

3.3 Machine Learning Fundamentals

Machine learning can be divided broadly into three sub categories, supervised,

unsupervised and reinforcement learning. In this research, we will be focusing on

the first category, supervised learning wherein weather models are trained on labeled

datasets, and each data point is paired with a corresponding output label. As defined

in section 2.2.1 of research [46], the goal of supervised learning is to find a mapping

function f : RD → N for classification or f : RD → R for regression where input

vector x is D dimensional and the output of the function f(x) returns a real number

for regression and a label for classification problems. The learning process involves

minimizing a selected loss function like mean squared error during training, which

guides the model towards making accurate predictions with small iterations.

3.4 Multiple Linear Regression

Multiple linear regression (MLR) is one of the most commonly used statistical

machine learning tool available. It is a supervised machine learning algorithm that

computes the linear relationship between a dependent variable (ŷMLR) and one or

more independent features denoted by (WMi) as shown in Eqn 3.2.

ŷMLR = β0 +
N∑
i=1

βi ⋆ WMi. (3.2)

Here, N is the number of weather model forecasts input to the MLR model. Training

the linear regression model involves estimating the coefficients (βi) and the intercept

(β0) with a goal to minimize the sum of squared errors (SSE) between the actual and

predicted values.
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Figure 3.1: Non-Linear relationship between the precipitation forecasts from GDPS,
RDPS WM’s and Observed values.

MLR assumes that the input features WMs are not highly correlated and the

relationship between the attributes and the observed values is a linear one. Which

might not always be the case as demonstrated in Figure 3.1.

Accurate identification and modeling of these relationships are crucial in machine

learning for making precise predictions and understanding the underlying patterns in

data. If these assumptions are not met, the linear regression algorithm is unable to

produce reliable predictions. Careful consideration of these assumptions is essential

when choosing MLR to post-process WMs precipitation forecasts.

3.5 Ensemble Methods

Ensemble methods, a very popular method in machine learning, revolves around a

concept of combining multiple individual weak models and gather their collective

wisdom to enhance predictive accuracy. In this study, the core building blocks of

the ensemble methods employed are decision trees. Decision trees discussed in [47]

are helpful because they can handle complex decision-making processes and are easy

to understand, like a series of if-else questions, making them valuable for weather

forecasting, an example decision tree is illustrated in Figure 3.2.

The upcoming sub-sections, will discuss the most popular ensemble methods,

particularly Random Forest, Gradient Boosting Regression (GBR), and XGBoost,

and explore their applications in post-processing WMs precipitation forecasts.
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Figure 3.2: Sample decision tree diagram with depth 2 used for predicting the value
of precipitation where sample refers to the data points covered within that leaf and
RDPS, REPS are the input WM’s.

3.5.1 Random Forest

Random Forest regression illustrated by Leo Breiman in [48] is a robust ensemble

learning method that excels in capturing complex relationships within data, making

it particularly valuable for improving WMs forecasts. Several decision trees are

constructed independently, each based on a subset of training samples, and their

individual predictions are later combined by taking an average as depicted in

Figure 3.3.

Mathematically a random forest can be represented as Eqn 3.3.

RF (x) =
1

N

N∑
n=1

Tn(x), (3.3)

where, RF (x) represents the final prediction for the random forest for an input vector

x, N represents the total number of trees in the forest and Tn(x) is the prediction

of the nth decision tree. The ensemble approach promotes robustness and minimizes

overfitting by introducing randomness during both the data sampling (bootstrapping)

and feature selection processes for each tree. This diversity among trees helps reduce

variance and increases the model’s generalization performance.
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Figure 3.3: Random Forest ensemble model consisting of multiple decision trees, with
the parameter n denoting the number of trees in the ensemble.

3.5.2 Gradient Boosting Regression (GBR)

Gradient Boosting is another powerful ensemble learning technique that has gained

popularity in machine learning. The concept of gradient boosting was first introduced

by Jerome Friedman in 2001 in his paper titled Greedy Function Approximation: A

Gradient Boosting Machine [49]. GBR builds an ensemble of weak decision trees,

similar to a Random Forest as shown in Figure 3.4. However, the trees are trained

sequentially in order to correct errors made by previously constructed weak trees.

Training data D containing input vector x = (x0, . . . xn) and target vector y =

(y0, . . . yn) is given as D = {(xi, yi)}ni=1, where N is the number of training examples,

and xi is an ith object with a corresponding true label yi. In this iterative process,

we train M iterations of weak learners sequentially, each denoted as fm(x) : Rn → R,
where fm(x) is the prediction of the mth weak learner and the prediction of the

ensemble is denoted as F (x) =
∑M

m=1 f(x). The first prediction, f0(x) is initialized

by finding the argument that minimizes the loss function L, and is given by f0(x) =

argmin
f

∑n
i=1 L(yi, f(xi)). For every iteration or boosting round m = 1 to M , the

algorithm proceeds by calculating residuals rim, given by Eqn 3.4.

rim = −
[
δL(yi, F (xi)

δF (xi)
)

]
F (x)=Fm−1(x)

. (3.4)

Subsequently, a weak learner is trained to predict these residuals rim. The goal of this
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step is to find a model fm(x) given in Eqn 3.5, that captures the corrections needed

to reduce the total loss.

fm(x) = argmin
f

n∑
i=1

L(rim, f(xi)). (3.5)

The ensemble model is updated by adding a scaled version of the new weak learner.

The scaling factor, represented by ϑ, is called the learning rate and is typically a

small positive value ϑ ∈ {0, 1}. The updated ensemble prediction is given by Fm(x) =

Fm−1(x)+ϑfm(x). After all the M boosting rounds are completed, the final ensemble

model is given as F (x) = FM(x).

Figure 3.4: This figure illustrates a Gradient Boosting ensemble model. With the
parameter M , indicating the number of trees in the ensemble

This approach is especially powerful because it allows you to, effectively handle

complex, non-linear relationships within the data by iteratively adjusting and

improving the functions. It’s like solving a puzzle where each piece makes the picture

clearer.

3.5.3 Extreme Gradient Boost (XGboost)

XGBoost, short for Extreme Gradient Boosting, is a state-of-the-art ensemble

learning algorithm that has gained immense popularity in various machine learning

applications, including the enhancement of NWP precipitation forecasts. Introduced

by Tianqi Chen [50], XGBoost combines the strengths of gradient boosting and

ensemble techniques, making it a powerful tool for capturing complex relationships

within data. XGBoost builds upon the principles of gradient boosting as discussed
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in the above subsection, additionally incorporates regularization terms into its loss

function. This helps control the complexity of individual trees and encourages the

selection of relevant features. In the XGBoost’s introductory paper [50] the objective

function Objt, for the ith tree instance and at the tth iteration, is given by Eqn 3.6.

Objt =
n∑

i=1

L(yi, Ft−1(xi) + Ft(xi)) + Ω(Ft), (3.6)

where Ω(Ft) = γT + 1
2
λ||w||2 and Ft corresponds to tth tree structure and Ω is the

regularization parameter that penalizes the individual tree in the model. Ω comprises

of adjustable parameters γ and λ, which regulates the number of tree leaves T and

learnt weights w, to avoid over-fitting. With a higher value of λ the optimal output

value Ft(xi) would be closer to 0.

Solving for the optimal output value, XGboost applies the second-order Taylor

approximation to Eqn 3.6 and the objective function is later differentiated, which

means we can ignore the constant values in the Taylor approximation resulting in

Eqn 3.7.

Objt =
n∑

i=1

[giFt(xi) +
1

2
hiF

2
t (xi)] + ΩFt(xi), (3.7)

where gi = δL(yi,Ft−1(xi))
δFt−1(xi)

and hi = δ2L(yi,Ft−1(xi))
δ2Ft−1(xi)

are the first and second order

derivatives of the loss function L respectively. Substituting the value of Ω and the

Eqn 3.7 can be rewritten as Eqn 3.8

Objt =
n∑

i=1

gi(Ft(xi)) +
1

2

n∑
i=1

hi(F
2
t (xi)) + γT +

1

2
λ||w||2. (3.8)

To minimize the objective function Eqn 3.8 we set the derivative equal to 0

resulting in the optimum output value for the tth iteration Ft(xi) shown in Eqn 3.9

Ft(xi) = −
∑n

i=1 gi∑n
i=1 hi + λ

. (3.9)

XGBoost can also incorporate sample weights that assigns different weights to

individual data points during the training process. It allows you to emphasize

the importance of certain data points by assigning them higher weights, which

can be useful when dealing with imbalanced datasets, discovered in this research.

Regularization terms and gradient-based optimization make XGBoost a powerful and
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robust algorithm for a wide range of machine learning problems. It is designed for

parallel and distributed computing, allowing it to efficiently utilize multiple processors

and even use a gpu for faster processing. This is especially beneficial when dealing

with large datasets and complex models like the one used in this research.

3.6 Neural Networks

In recent years, neural networks (NNs) have emerged as powerful tools in the field

of machine learning, demonstrating remarkable capabilities in various applications,

including natural language processing, image recognition, and, notably, weather

forecasting [51, 52, 53, 54, 55]. Neural networks draw inspiration from the structure

and functioning of the human brain, consisting of highly interconnected neurons also

known as perceptrons [56] that process the incoming information.

As depicted in the Figure 3.5, each perceptron P multiplies the weights w =

(w0, . . . wn) with their corresponding inputs x = (x0, . . . xn) to have a weighted sum

and add a learnable bias (b) to get the intermediary value I =
∑n

i=0Wi × xi + b.

x0

x1

...

xn

∑

b

f y

W
0

W1

Wn

I

input layer

summation
activation

output

Figure 3.5: Figure provides an illustration of a Perceptron, which is one of the
fundamental building blocks of artificial neural networks. Where, x = (x0, . . . xn)
is the input vector, w = (w0, . . . wn) is weight vector and b is the bias.

The intermediary value is then passed to an activation function (f) associated with

each neuron, which introduces non-linearity into the model. A common activation

function for regression is ReLU (Rectified Linear Unit), that can be defined as

max(0, I). The activation function determines the neuron’s final output y, as shown

in Eqn 3.10.
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Output(y) = f(0,
n∑

i=0

Wi × xi + b). (3.10)

Although a single perceptron is incredibly powerful to replicate any linearly

separable functions. Many real-world problems are not linearly separable, a single

perceptron struggles to capture complex, nonlinear relationships in data [57]. This

means they cannot learn or compute functions like XOR or parity, which are not

linearly separable. Additionally, perceptrons themselves have no learning capacity

beyond simple weight and bias adjustments.

3.6.1 Neural Networks (NN)

An interconnected multiple-layer perceptron, or a fully connected neural networks,

overcomes the limitations of single perceptrons. It consists of multiple interconnected

layers of neurons (perceptrons) with nonlinear activation functions. These neurons

are organized into layers, typically divided into three primary types as depicted in

the Figure 3.6. The input layer receives raw data as input, which could be numerical

values, images, or any other type of data relevant to the problem at hand which

are then passed to the hidden layer. The hidden layers are the intermediate layers

between the input and output layers. They play a crucial role in capturing complex

patterns and features within the data. The final layer or the output layer, produces

the network’s predictions or classifications based on the patterns learned in the hidden

layers.

Neural Networks learn through a process known as training, during which they

adjust their internal parameters (weights and biases) to minimize a custom loss

function. The learning process or training can be divided into two major phases

forward propagation and backpropagation.

Forward Propagation

When a neural network is created, it is generally initialized with random values,

i.e. the weights of each perceptron is a matrix with random numbers W ∈ R.
During forward propagation, data is fed through the network from the input layer

to the output layer via the hidden layers. Neurons in each layer perform weighted

summations of their inputs, pass the result through the activation function as shown

in Eqn 3.10, and forward the processed data to the next layer. This process continues
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Figure 3.6: Network graph of a (L+ 1)-layer perceptron with N + 1 input units, Wij

is the weights associated with neuron i and j and C are the number of output units.
The lth hidden layer contains m(l) hidden units.

until the output layer produces predictions. After the predictions are made, the

randomly assigned weights are now adjusted by a process known as backward-

propagation or Backpropagation.

Backward Propagation

Backward propagation introduced by [58] is the heart of neural network training. It

involves calculating the gradients of the loss function with respect to the network’s

parameters (weights and biases) as shown in Figure 3.7.

y
(l)
i

y
(l+1)
1

...

y
(l+1)

m(l+1)

δ
(l+1)
1

δ
(l+1)

m(l+1)

Figure 3.7: Backpropagation of errors through the network.
.

The parameter (θli) for the ith neuron in layer l of the neural network, are learnt
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to minimize the loss function (L). Inferring back-propagation defined in [58], partial

derivative of the loss function (L) with respect to each parameter (θli) is computed

with the help of chain rule [59] shown in Eqn 3.11.

δ(L)

δ(θli)
=

δ(L)

δ(yli)

δ(yli)

δ(θli)
, (3.11)

where yli is the output of the ith neuron in layer l and the derivative δ(L)

δ(θli)
can be

intuitively seen as the effect of a parameter on the overall loss. Eqn 3.12 gives us the

updated parameters by applying a learning rate to prevent overfitting.

new θli = θli − (learning rate× δ(L)

δ(θl+1
i )

). (3.12)

After the parameter update forward and backward propagation cycles are repeated

until a desirable output is achieved. This looping through forward and backward

propagation is also popularly known as an epoch.

While NN have demonstrated significant success in a wide range of applications,

they also come with certain challenges and considerations that are important to

address. Precipitation data is inherently spatial in nature. However, the NN model

that is adopted does not consider spatial information. As a result, data points that

are spatially close are treated no different that those that are distant. This leads to

a loss of spatial context which is quite important in many real-world scenarios.

3.6.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) introduced by [60] have emerged as a powerful

class of deep learning models that excel in various computer vision tasks, including

image classification, object detection, and semantic segmentation [61, 62, 63, 64].

Their ability to automatically learn spatial/grid-like features from data makes them

a compelling choice for improving the quality of WM’s precipitation forecasts which

are spatial in nature. At their core, CNNs are composed of layers similar to NN,

additionally CNN’s use convolution and pooling layers defined below to extract spatial

context from the input grid or image as shown in Figure 3.8.



23

input grid
layer l = 0

convolutional layer
with non-linearities

layer l = 1

Pooling layer
layer l = 3

convolutional layer
with non-linearities

layer l = 4

Pooling layer
layer l = 6

fully connected layer
layer l = 7

fully connected layer
output layer l = 8

Figure 3.8: The architecture of the original convolutional neural network, as
introduced by LeCun et al. (1989). The convolutional layers already include non-
linearities and, thus, a convolutional layer actually represents two layers.

Convolution Layer

Convolution layers apply a set of learnable weights or filters (f) to the input

data, allowing to detect local patterns and features. The convolution operation

is particularly effective at capturing spatial information. It achieves this by

systematically overlaying a matrix of weights over each element and its neighbors

in the grid and later taking a weighted sum. The convolution operation can be done

in parallel over each element in the image essentially smoothening the entire image

as depicted in the Figure 3.9.
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0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
0 1 0 0 0 0 0
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M f M ∗ f

Figure 3.9: Convolution operation on the matrix M and filter f of size 3x3.

This capability is especially valuable when working with precipitation data. For

instance, if there is a sudden spike in precipitation values at a specific location on

the grid, potentially resulting from an incorrect reading, applying a convolution layer
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would simply blur the spike and help neural networks to generalize better. The

weights of the filter are learnt during the back-propagation, whereas the filter size is

tune-able hyper-parameter set before the training. As the convolution operation is

dependent on the neighboring pixels, the edges of the matrix M are padded with 0’s

for this research. It helps with keeping the dimensions of the image after convolution

operations consistent.

Pooling Layer

Pooling layers downsample the spatial dimensions of the data, reducing its

computational complexity while retaining important information. The pooling layer

summarizes the features present in a region of the feature map generated by a

convolution layer. Common pooling operations include max pooling and average

pooling. The pooling filter works similarly to a convolution filter by overlapping on

the grid, but instead of taking a weighted sum, it essentially takes the maximum

of the grid elements within that max-pool filter. Further operations in the CNN

are performed on the pooled features, instead of the precisely positioned features

generated by the convolution layer. As a result, the model is more resilient to

variations in the position of the features in the input grid.

Input

369 x 721 x 8 369 x 721 x 64 369 x 721 x 64 369 x 721 x 64

369 x 721 x 1

2D 
Convolution

64 Kernels (3 x 3)

2D 
Convolution

64 Kernels (3 x 3)

2D 
Convolution

1 Kernel (3 x 3)

Output

Normalization
+

2D 
Convolution

64 Kernels (3 x 3)

Figure 3.10: Figure describes a CNN architecture used in this study.

The training of a CNN is quite similar to the NN, the inputs are first passed to

convolutional layer followed by a element wise activation layer that introduces non
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Figure 3.11: Figure visualizes the outputs from the three convolution layers.

linearity into the model as shown in Figure 3.10. Then the outputs are pooled to

get a overview and reduce dimensionality. After this, depending on the underlying

complexity, the outputs are fed through multiple convolution and pooling layers that

helps identify hierarchical features in the data. Lower layers tend to capture simple

features like edges, corners, and textures, while higher layers combine these features

to represent more complex and abstract concepts. This hierarchical feature learning

makes CNNs particularly suitable for improving WMs, as precipitation forecasting

often involves recognizing intricate spatial patterns at various scales as depicted in

Figure 3.11.

For image classification tasks the outputs of the CNN and Pooling layers are

flattened and fed into a NN for further processing. As mentioned above the weights

of the convolution filters are learnable, hence backpropagation is applied to learn

these weights and improve the model accuracy. The ability of convolutional layers

to perform local, grid-based operations makes them a valuable tool for handling

gridded weather data. The convolution layers recognize local features indicative of

precipitation, such as cloud formations, temperature gradients, and wind patterns.

By learning and extracting these patterns, CNNs can contribute to more accurate

precipitation forecasts.
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Figure 3.12: Left: Schematic depiction of multi-layer Graph Convolutional Network
(GNN) for semisupervised learning with C input channels and F feature maps in the
output layer. The graph structure (edges shown as black lines) is shared over layers,
labels are denoted by Yi. Right: t-SNE (Maaten and Hinton, 2008) visualization of
hidden layer activation of a two-layer GNN trained on the Cora dataset (Sen et al.,
2008) using 5% of labels. Colors denote document class.

3.6.3 Graph Convolutional Neural Networks (GNN)

The paper Semi-Supervised Classification with Graph Convolutional Networks [65] by

Thomas N. Kipf and Max Welling presents a novel approach for semi-supervised

learning on graph-structured data. This approach, based on an efficient variant

of convolutional neural networks which operate directly on graphs as shown in the

example Figure 3.12 given by [65], can be adapted for node level regression tasks, such

as predicting precipitation. GNNs learn hidden layer representations that encode both

local graph structures and features of nodes. This makes them particularly suitable

for tasks where spatial relationships between nodes play a crucial role. In the context

of predicting precipitation, each node in the graph represents a weather station and

the edges represent the spatial relationships between nodes such as proximity. An

adjacency matrix (A) is used to represent if a connection between nodes i, j of a

graph exists, where Aij = 1 if node i and j are connected and 0 otherwise. Adjacency

matrix is a square matrix of size N ∗N , where N is the number of nodes (grid points).

The node features are represented as another matrix X of size N ∗D where D is the

number of features (WM forecasts and other meteorological variables) and each row

of X represents the feature vector of a node.

GNN also comprises of convolution layers similar to a convolution neural network

but instead of working on a matrix/grid-like structure, GNN operates on graph

structures. A convolution layer (H l+1) is described by the Eqn 3.13, propagates
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information from neighboring nodes connected through the graph edges.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H lW l), (3.13)

where, Ã = A+ I denotes the adjacency matrix with inserted self-loops I and D̃ii =∑
j Ãij is the diagonal degree matrix. The adjacency matrix can include other values

than 1 and 0 representing edge weights like proximity information between two points.

H0 is the original inputs feature matrix X as H0 = X, with dimension as N ∗ D,

and H l indicates the lth layer hidden representation of graph. W l are the layer

specific weight matrix learnt during the back-propagation phase. While the original

paper focuses on semi-supervised classification, the underlying principle of GNNs is

applicable to regression tasks as well. The key difference lies in the final layer of the

network and the loss function. For regression tasks, a linear activation function like

ReLU can be used in the final layer to output continuous values. In our research, a

weighted mean squared error (MSE) is used as the loss function.

Euclidean Distance Actual Distance

Figure 3.13: Distance measured between (40’N, 110’W) and (40’N, 90’W) assuming
an euclidean coordinated system vs actual distance

In meteorology and many other geo-spatial applications, positional coordinate

information is crucial for understanding and predicting patterns. GNN’s offer several

advantages when working with geospatial data. Unlike traditional CNNs, which

operate on rigid structured grids, GNN’s can adapt to irregular graph structures.

This adaptability is crucial when working with latitude and longitude data, where

distances between locations cannot be mapped in a euclidian space as shown in

Figure 3.13. GNNs can learn to weigh edges differently, giving more importance to

nearby locations while accounting for the Earth’s curvature. Additionally in weather

prediction, missing data is a common issue due to the sparse distribution of weather

stations. GNNs offer the flexibility to modify or cut edges in the graph to ignore
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nodes with missing data. This allows the network to make predictions even when

data is unavailable for certain locations.

As mentioned in [65] GNNs can capture global context information even a few

layers, allowing them to model large-scale weather patterns and interactions between

distant locations. This enables the network to learn complex spatial dependencies,

which is particularly useful for tasks like NWP precipitation forecasting where spatial

distances and relationships are extremely essential.

Table 3.1: Metrics.

Name Formula

MAE MAE = 1
n

∑n
i=1 |ŷi − yi|

RMSE RMSE =
√

1
n

∑n
i=1(ŷi − yi)2

MdAE MdAE = medianni=1|ŷi − yi|

MaxE MaxE = maxni=1 |ŷi − yi|

CC CC(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

RB Relative Bias =
∑n

i=1(yi−ŷi)∑n
i=1(yi)

POD POD = True Positives
True Positives+False Negatives

FAR FAR = False Positives
True Positives+False Positives

CSI CSI = True Positives
True Positives+False Negatives+False Positives

CM CM ∋ True Positives, False Positives, False Negatives, True Negatives

3.6.4 Evaluation Metrics

In this research, we considered a number of metrics to evaluate our trained ML models.

This section provides an introduction to the performance metrics utilized, which are

outlined in Table 3.1.

� Mean Absolute Error (MAE) [66] provides an understanding on the average

error each model makes across all observations. It is defined as the average
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absolute difference between the predicted and actual values, where n is the

number of observations, ŷi is the predicted output and yi is the actual output

for the ith observation.

� Root Mean Squared Error (RMSE) [66] penalizes larger errors. It is defined

as the square root of the mean squared error (MSE), where n is the number

of observations, ŷi is the predicted output and yi is the actual output for the

ith observation. RMSE is the average squared difference between the predicted

and actual values.

� Maximum Error (MaxE) provides an insight into the worst-case performance

scenario. It is defined as the maximum absolute difference between the predicted

and actual values, where n is the number of observations, ŷi is the predicted

output and yi is the actual output for the ith observation.

� Median Absolute Error (MdAE) is a more robust measure with respect to outlier

values. It is calculated by taking the median of the absolute differences between

the predicted and actual values.

� Pearson Correlation Coefficient (CC) describes the level of association between

the predicted and actual output values, where X and Y are predicted and actual

output values respectively, Cov(X, Y ) is the covariance of the two variables

X, Y , Var(X) is the standard deviation of X and Var(Y ) is the standard

deviation of Y . A CC value of 1 indicates a strong positive relationship, a

CC value of -1 indicates a strong negative relationship, and a CC value of 0

indicates no relationship at all.

� Relative Bias (RB) gives insight on whether a model tends to either over-

estimate or under-estimate the output (e.g., precipitation value). It is defined

as the average difference between the predicted and actual values relative to

the mean of the actual values, where n is the number of observations, ŷi is the

predicted output and yi is the actual output for the ith observation.

� Probability of Detection (POD) measures how well the event of interest

(precipitation) is detected. It is a measure of the ability of a classification

model to correctly predict the presence of a particular class (in our case rainfall

amounts). True Positives are the number of observations where both the

predicted and actual values are same, and False Negatives are observations
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where a prediction wrongly indicates that an event did not occur, when in fact

it did.

� False Alarm Ratio (FAR) measures the rate of erroneous precipitation forecasts.

True Positives are the number of samples where both the predicted and actual

values are same and False positives are instances where a test or prediction

wrongly indicates that an event or condition has occurred.

� Critical Success Index (CSI) is a metric which essentially combines POD and

FAR metrics into a single score. Specifically, it measures the ratio for the

correctly predicted precipitation events to the sum of hits, misses and false

alarms.

� Confusion Matrix (CM) Confusion matrices are a valuable tool for assessing

the performance of models when it comes to predicting precipitation categories,

such as Nil, Light, Moderate, and Heavy. These matrices provide a detailed

breakdown of how well a model classifies observations into these categories. In

the context of precipitation prediction, a confusion matrix helps us understand

not only the accuracy of the model’s predictions but also its ability to distinguish

between different levels of precipitation. The insights gained from confusion

matrices are instrumental in evaluating the model’s ability to differentiate

between various precipitation intensities.
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Chapter 4

Data Procuring, Curating, and

Preparing

The quality and reliability of any weather prediction system are inextricably tied to

the integrity of the data that underpins it. This chapter elucidates the meticulous

processes undertaken in gathering and pre-processing the data that fuels this research.

Specifically, we explore the selection of eight distinct weather models along with

their meteorological features, each contributing a unique perspective on atmospheric

conditions, and the intricate steps undertaken to ensure the compatibility and

consistency of the data from these models.

4.1 Geographical Area Covered

We consider a geographical area that covers the majority of the continental USA and

Canada, along with the surrounding region, as shown in Figure 4.1. Specifically, it

is confined to the 24th parallel from the south, 70th parallel from the north, 218th

meridian from the west, and 308th meridian from the east. The area is gridded at

an increment of 0.125 degrees, starting from the origin at the 24th parallel and 218th

meridian. This results in potentially useful 369 rows and 721 columns, 266,049 grid

units to forecast the daily accumulated precipitation.
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Figure 4.1: The region of study

4.2 Input Weather Model Details

Table 4.1 presents the spatial and temporal attributes of the samples of each of

the WMs as well as their original accumulation periods for precipitation forecasts.

The grid spacing in Table 4.1 represents the WMs after they were regridded for this

study. The WMs natively use various different grid spacings, so they were regridded

to a common grid to make processing easier. The feature of interest is the daily

accumulated precipitation which is considered as a primary input feature as well as

the target output for the ML models. Dozens of other variables ranging from visibility

to soil temperature and convective available potential energy are also predicted by

different subsets of these WMs. However, many of them are intermittent across the

time and space domains so they are not available for wide-scale experimentation. We

will, however, consider the persistent ones as potential secondary features. In the

following subsections, we present a brief description of each of the WMs considered.

GDPS

The Global Deterministic Prediction System (GDPS)1 is a WM that is used for global

data assimilation and medium range forecasting. It is developed by the Meteorological

Service of Canada (MSC) at the Canadian Meteorological Centre (CMC). The version

that is used in this study (v8.0) was released in December, 2021. It provides forecasts

two times a day for a lead time of ten days with three-hourly increments. The forecasts

1https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_
specifications_GDPS_e.pdf

https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_GDPS_e.pdf
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_GDPS_e.pdf
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Table 4.1: Input weather models’ properties.
Spatial Temporal Original

WM Resolution Period Accumulation
Period

GDPS 0.125° 24 h Running total
GEFS 0.125° 24 h 6-hourly
GEPS 0.125° 24 h 6-hourly
GFS 0.125° 24 h Running total
ICON 0.125° 24 h Running total
NAM 0.125° 24 h 12-hourly
RDPS 0.125° 24 h Running total
REPS 0.125° 24 h Running total

are made on Yin-Yang horizontal grid with a horizontal grid spacing of 0.135 degrees

(15 km). It covers a range of variables including precipitation, wind gusts, humidity,

cloud cover, temperature, wind speed and wind directions.

GEFS

The Global Ensemble Forecast System (GEFS)2 is a WM created by the United

States National Centers for Environmental Prediction (NCEP), a branch of National

Oceanic and Atmospheric Administration (NOAA). It has a horizontal grid spacing

of 0.125 degrees (25 km) and a forecast lead time of sixteen days (384 hours) with

an output timestep of three hours. The forecasts are made four times a day. In

our work, version 12.0 is employed, which was released in September 2020. Its suite

of variables include temperature, humidity, wind speed and direction, precipitation

and cloud cover amongst others. Unlike GEFS, this WM does not make a single

deterministic forecast but rather, probabilistic forecasts based on a range of ensemble

members each of which works with a marginally perturbed set of inputs, resulting

in a probabilistic distribution to account for the intrinsic uncertainty of the weather

conditions. This particular WM uses 30 + 1 ensemble members (one is used for

control) and we considered their mean output as the feature, in our study.

2https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gefs.php

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gefs.php
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GEPS

The Global Ensemble Prediction System (GEPS)3 is another WM developed by the

MSC at CMC, Canada. Like GEFS, it is an ensemble WM. It has 20 + 1 perturbed

members. Its forecasts have a lead time of sixteen days, and the forecasts are executed

two times a day with a timestep of three hours. It has a horizontal grid spacing of

0.35 degrees (39 km). The variables covered by this WM include precipitation, wind

speed and direction, temperature and humidity. We used version (v7.0) which was

released in December, 2021.

GFS

The Global Forecast System (GFS)4 is a global WM created by the NCEP of

the United States as part of its suite of numerical tools. It is widely used in

the meteorological community and provides detailed forecasts of global weather

conditions. It produces forecasts four times a day with a lead time of sixteen days and

it has a horizontal grid spacing of 13 km. The first five days have one-hourly forecast

periods and afterwards, it increases to three hours. We used version 16 which was

implemented in March 2021. Its variables include wind gust, temperature, humidity,

wind speed and direction, precipitation and cloud cover.

ICON

ICON (short for the Icosahedral Nonhydrostatic model)5 is a WM developed by the

German weather service, Deutscher Wetterdienst (DWD). This is a global model

that uses an icosahedral grid, which is a type of grid that is based on a geometric

shape with 20 faces, to represent the earth’s surface. The actual global grid is finer,

comprised of 2,949,120 triangles and it amounts to a mesh size of 13 km. Forecasts

are made four times a day, with a lead time of 180 hours for the runs at 00 and 12

UTC. For the 06 and 18 UTC runs, the lead time is 120 hours. For the first 78 hours,

output period is one hour after which it increases to three hours. The variable that

was available from this WM was total precipitation forecast.

3https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_
specifications_GEPS_e.pdf

4https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
5https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_

prediction_modells/icon_description.html

https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_GEPS_e.pdf
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_GEPS_e.pdf
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html
https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html
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NAM

The North American Mesoscale Forecast System (NAM)6 is a WM that provides

forecasts for the United States, Canada, and Mexico. It is developed by the NCEP

of the United States and it uses a high-resolution model to provide detailed forecasts.

The NAM model is typically used for short-range weather forecasting and to support

decision-making in industries such as aviation, energy, and transportation. This WM

runs 4 times a day and makes forecasts with a lead time of 84 hours with a forecast

timestep of 3 hours. Its horizontal grid spacing is 12 km. The suite of variables covered

by this WM include wind gust, temperature, humidity, wind speed and direction, and

precipitation. The timestep is 3 hours.

RDPS

The Regional Deterministic Prediction System (RDPS)7 is developed by the Canadian

Meteorological Centre to produce detailed weather forecasts for Canada and the

United States. It operates on a Limited Area Model (LAM) grid with a size of

1108 by 1082 and a horizontal grid spacing of 0.09 degrees (10 km). We used version

8, which was released in December 2021. Predictions are made 4 times a day and the

forecast lead time is 84 hours. The timestep for the forecasts is 300 seconds. The

set of variables it supports include precipitation, wind gust, humidity, cloud cover,

temperature, wind speed and direction.

REPS

The Regional Ensemble Prediction System (REPS)8 is the ensemble counterpart of

RDPS. It is likewise developed by the CMC and it uses the same grid as RDPS, with

a horizontal grid spacing of 0.09 degrees (10 km) covering Canada and United States.

Version 4 is used, which was released in December 2021. The ensemble consists of

20 + 1 members. It runs 4 times a day with a forecast lead time of 72 hours. The

timestep is 300 seconds. Amongst the forecast variables delivered by the model are

precipitation, humidity, temperature, wind speed and direction.

6https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/nam.php
7https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_

specifications_RDPS_e.pdf
8https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_

specifications_REPS_e.pdf

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/nam.php
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_RDPS_e.pdf
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_RDPS_e.pdf
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_REPS_e.pdf
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_REPS_e.pdf
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RDPA - Ground Truth Target

We used the Canadian Regional Deterministic Precipitation Analysis System (CaPA-

RDPA)9 from CMC, as precipitation estimates to represent the ground truth for our

precipitation forecasts. This system works on the same grid for the RDPS, covering

the United States and Canada. The analyses are executed four times a day (00, 06,

12, 18Z), producing estimates for the preceding six-hour window. The grid spacing

is 10 km. RDPA version 5.2.0 is used.

4.3 Dataset Acquisition

The primary data source for our research comprises the datasets made available by

Weatherlogics Inc. These datasets are invaluable for our study, as they contain rich

meteorological information crucial for post-processing NWP precipitation forecasts

using machine learning techniques. To access and retrieve the required data

securely, we developed a custom python script designed to interact with the AWS

S3 infrastructure. This script facilitated the download of raw datasets stored in the

S3 bucket, making them accessible for further analysis and processing. The collected

data spans a significant time frame of 18 months, starting from December 2021, up to

June 2023. This temporal range was selected to encompass a diverse range of weather

patterns and conditions for machine learning models to learn.

4.4 Data Preparation and Augmentation

Data preparation is a critical step in preparing the raw datasets obtained from the

AWS S3 bucket for subsequent analysis and machine learning model development.

The downloaded files from S3 had a specific structure, where each file contained data

for multiple weather models, each with different precipitation accumulation periods,

in .grib format. This section outlines the steps taken to pre-process the data and

organize it for further analysis.

The first step in data pre-processing involved unzipping the downloaded files

from the AWS S3 bucket. These files were in a compressed format and needed

to be extracted for further analysis. The data files were stored in the GRIB

9https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_capa_rdpa_e.
pdf

https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_capa_rdpa_e.pdf
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_capa_rdpa_e.pdf
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(Gridded Binary) format, a widely used format for encoding and efficiently storing

meteorological data. Each grib file contains a collection of messages, with

each message representing a specific meteorological variable (e.g., precipitation,

temperature, humidity) along with information about the variable, grid, and time.

To access and manipulate data in grib files, we utilized the pygrib library, a powerful

Python module designed for handling grib-formatted data. It simplifies the extraction

of data from grib files by providing a pythonic interface to interact with grib files

without needing to handle the intricacies of the binary format.

GRIB Messages 
0-6 hrs

6 - hourly accumulated 
GRIB fIles

GRIB Messages 
6-12 hrs

GRIB Messages 
12-18 hrs

GRIB Messages 
18-24 hrs

Numpy Matrix 
0-24 hrs

24 hrs accumulated 
Numpy Files

 - Extraction
 - Accumulation
 - Conversion

Processing

Figure 4.2: Process of consolidating the 24 hourly daily accumulated values

To calculate the 24-hour accumulated precipitation values, we iterated through

each date within the dataset, accessing the corresponding grib data files. For each

date, we processed data from all the weather models and extracted the relevant

precipitation messages. To produce a grid of daily accumulated precipitation,

we perform summation across time steps within the 24-hour window as shown in

Figure 4.2. In addition to accumulated precipitation, we used pygrib to extract

secondary meteorological variables such as temperature, humidity and others, from

their respective grib messages. These variables were processed in a similar manner to

create 24-hour accumulated values.

Our data acquisition and preprocessing pipeline is summarized in Figure 4.3. For

further analysis and machine learning model development, we converted the grib files

into a 2D tensor grid with shape (369, 721). For every ML model that permitted data

in a tabular format, we created a tensor where each column represented a forecast by

an individual WM. This was done by flattening and concatenating daily grid forecasts

of respective WMs. In this setup, each row constitutes a data point for a particular

location and the rows can be shuffled without regards to latitude, longitude and date.

The last column is used for the RDPA ground truth data as the target.

The convolutional neural network architecture utilizes a 3D tensor where, each
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Figure 4.3: Data acquisition & preprocessing pipeline from [1].

slice is the 2D grid forecast by a given WM. In this case, a data sample is composed

of the all the 2D grids of 24hr accumulated forecasts by our input WMs as shown in

left of Figure 4.4.

Data for the GNN model was generated with PyTorch Geometric, which is a

powerful library for handling graph datasets in PyTorch, enabling researchers and

developers to work with structured data in the form of graphs efficiently. PyTorch

geometric library provides a wide range of tools and utilities for creating custom graph

neural network architectures and conducting experiments on graph-based models. It’s

flexibility, combined with its seamless integration with PyTorch, makes it a preferred

choice for anyone working on graph-based deep learning tasks, allowing to harness
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Figure 4.4: Left: 3D tensor made from 2D grid forecast, Right: A single graph node
feature derived from the 3D tensor

the full potential of neural networks in the context of structured data represented

as graphs. In our case, the node features of a 24hr accumulated graph is defined

as the flattened version of 3D tensor used in CNN. A single node feature is made

from concatenating a point from a particular location of the grid from each 2D slice

as shown in right of Figure 4.4. Bi-directed weighted edges are made between the

adjacent points of the 2D grid. The weight of each edge is a normalized inverse of

haversine distance [67] D between two points l1 and l2 is given by Eqn 4.1. The

intuition is to reward datapoints in close proximity to a considered node and punish

those points that are farthest from that node.

I = sin2(
∆lat

2
) + cos(lat1) ⋆ cos(lat2) ⋆ sin

2(
∆lon

2
),

D =
λ

rearth ⋆ 2 ⋆ arctan 2(
√
I,
√
1− I)

,
(4.1)

where, I is an intermediary value, ∆lat is the difference in latitude between the two

points, ∆lon is the difference in longitude between the two points and lat1 and lat2
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are the latitudes of the two points l1 and l2. rearth is substituted by the mean radius

of the Earth (6,371 km) and λ is the user-defined normalization hyper-parameter.

Through trial and error we found that an optimal value for λ ranges from 4 − 7.

An arbitrary graph network of nodes and edges when overlay over the earth can be

visualized in Figure 4.5.

a) Sample Graph Network overlayed over the Earth b) Area of interest

Figure 4.5: Left: A visualization of a sample global graph network, Middle: A
flattened 2D graph representation over the Earth, and Right: A flattened graph
over a specific region of interest

For all ML models excluding GNN, we have only considered the interaction

between two data points either to be same or non-existent. As demonstrated in

Figure 4.5 this is clearly not the ideal case when dealing with geometric data,

where the curvature of the earth must be incorporated to capture nuanced spatial

dependencies. Recent research by Google DeepMind in [44] shows that the 2D grids

from various WM’s as a graph can help capture these dependencies.

Throughout the experiments, the data set was further cleaned and enhanced as

necessary by preprocessing methods such as removing the rows with missing cells,

removing the days with missing data or input spectrum normalization, depending on

the methodologies used.

4.5 Feature Selection

Alongside daily accumulated precipitation (PR), we also considered twelve secondary

features that are present in our data set. The features are summarized in Table 4.2.

These include WM-bound features like 2 m air temperature (TM), 2 m relative

humidity (RH), U-component of the wind at 10 m above ground (UW), V-component

of the wind at 10 m above ground (VW), total cloud cover percentage (CL), wind
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gusts at 10 m above ground (GS); the elevation of the ground surface (EL); the spatial

features of latitude (LT) and longitude (LN); and the temporal features in forms of

varying representations of julian date (JD).

Table 4.2: List of considered input features. Cardinality shows the number of input
WMs that can produce this feature. For WM-agnostic geographical and spatio-
temporal features it defaults to (1).

Feature Shorthand Unit Cardinality
Daily precipitation PR kg / m2 8
2 metre air temperature TM K 7
2 metre relative humidity RH % 7
10 metre U wind component UW m / s 7
10 metre V wind component VW m / s 7
10 metre wind gust GS m / s 4
Total cloud coverage CL % 4
Elevation EL m 1
Latitude LT ° 1
Longitude LN ° 1
Julian date JD - 1
Julian date (cosine) Cos(JD) - 1
Julian date (sine) Sin(JD) - 1

Table 4.2 also shows the cardinality of each feature. The primary feature of

precipitation is available in every WM, whereas the secondary ones are only available

in a subset of them. In any event, because the number of WM-bound features to be

considered are proportional to the number of WMs that produce them, experimenting

with all of their combinations would prohibitively increase the complexity of the input

space. Furthermore, whether they carry the potential to improve the ML models

would still have to be assessed, particularly for the secondary features. We therefore

opted for a correlation analysis to select the optimal features.

In our previous work, we explored pairwise correlation of RDPA (ground truth)

against 123 potential feature form, summarized in Table 4.3. These derived features

include the daily mean (average of eight 3-hourly values) and standard deviation of

individual WM forecasts as well as the aggregated values of multiple WMs (e.g. cross-

model means of daily mean forecasts). Note that daily mean and daily accumulated

precipitation are completely correlated so they can be used interchangeably for the

purpose of this analysis.

The results of the correlation analysis over a sample set of 3 months is shown
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Table 4.3: List of considered feature aggregations.
Aggregation Method Features to consider (per WM) # Features
Daily mean PR, TM, RH, UW, VW, GS, CL 44
Daily std PR, TM, RH, UW, VW, GS, CL 44
Mean of daily means PR, TM, RH, UW, VW, GS, CL 7
Mean of daily std PR, TM, RH, UW, VW, GS, CL 7
Std of daily means PR, TM, RH, UW, VW, GS, CL 7
Std of daily std PR, TM, RH, UW, VW, GS, CL 7
Unary (spatial) LT, LN, 2
Unary (temporal) JD, cos(JD), sin(JD) 3
Unary (geographical) EL 1
Gauged Precip. Ground truth 1
Total 123

Table 4.4: Absolute correlations of 123 feature aggregations against the RDPA ground
truth target referred from [1]. Temporal window: (Jan 2022 up to Apr 2022).
Feature Corr Feature Corr Feature Corr Feature Corr

Ground Truth 1.00 GS std (NAM) 0.34 RH std of mean 0.20 TM std (RDPS) 0.07

PR mean (REPS) 0.94 UW std (GEPS) 0.34 VW mean (GDPS) 0.19 TM std (GEPS) 0.07

PR mean of means 0.93 VW std (NAM) 0.34 VW mean (NAM) 0.19 UW mean (NAM) 0.07

PR mean (RDPS) 0.93 VW mean of std 0.33 VW mean of means 0.19 LT 0.06

PR std (REPS) 0.91 GS mean of means 0.33 VW mean (REPS) 0.19 sin (JD) 0.05

PR mean (GDPS) 0.91 VW std (GEFS) 0.33 VW mean (GEFS) 0.19 UW mean (GFS) 0.04

PR mean (GEPS) 0.91 UW std (REPS) 0.33 VW mean (RDPS) 0.19 UW mean of means 0.04

PR std (RDPS) 0.91 GS mean of std 0.32 VW mean (GFS) 0.19 UW mean (GEFS) 0.04

PR mean of std 0.90 VW std (RDPS) 0.32 CL std (GEFS) 0.19 UW mean (GEPS) 0.04

PR std (GDPS) 0.89 VW std (GDPS) 0.32 TM mean (REPS) 0.18 TM std (GEFS) 0.03

PR mean (GEFS) 0.88 VW std of std 0.32 TM mean (RDPS) 0.18 UW mean (REPS) 0.03

PR mean (ICON) 0.87 GS mean (GFS) 0.31 VW mean (GEPS) 0.18 UW mean (GDPS) 0.03

PR mean (GFS) 0.86 RH mean (GDPS) 0.31 TM mean (GDPS) 0.18 UW mean (RDPS) 0.03

PR std (ICON) 0.85 VW std (GEPS) 0.30 TM mean (GEPS) 0.18 JD 0.03

PR mean (NAM) 0.85 GS mean (RDPS) 0.30 TM mean of means 0.18 cos (JD) 0.02

PR std of std 0.82 GS mean (GDPS) 0.30 TM mean (GEFS) 0.17 CL std (RDPS) 0.02

PR std of mean 0.80 RH mean (RDPS) 0.30 VW std of means 0.16 RH std (RDPS) 0.02

PR std (GEPS) 0.77 VW std (REPS) 0.30 TM mean (NAM) 0.16 RH std (NAM) 0.02

PR std (GEFS) 0.75 GS std (RDPS) 0.29 UW std of means 0.16 RH std (GDPS) 0.02

PR std (GFS) 0.73 RH mean (REPS) 0.29 TM mean (GFS) 0.15 TM std of means 0.02

PR std (NAM) 0.68 GS std (GDPS) 0.29 CL mean of std 0.13 RH std (GEFS) 0.02

CL mean (RDPS) 0.45 UW std of std 0.28 TM std of std 0.13 RH std (GFS) 0.02

CL mean (GDPS) 0.44 CL mean (GEFS) 0.28 RH mean (GEFS) 0.13 RH mean of std 0.01

CL mean of means 0.38 GS std (GFS) 0.28 RH mean (GFS) 0.12 RH std (REPS) 0.00

GS mean (NAM) 0.38 CL mean (GFS) 0.26 CL std of std 0.10 RH std of std 0.00

UW std (NAM) 0.37 RH mean (GEPS) 0.26 EL 0.09 RH std (GEPS) 0.00

UW std (GFS) 0.36 RH mean of means 0.25 LN 0.09 CL std (GDPS) 0.00

UW mean of std 0.36 CL std of mean 0.22 TM std (NAM) 0.09

UW std (GEFS) 0.36 RH mean (NAM) 0.22 TM std (GDPS) 0.08

UW std (GDPS) 0.35 GS std of mean 0.21 TM std (REPS) 0.08

UW std (RDPS) 0.35 CL std (GFS) 0.20 TM mean of std 0.07

VW std (GFS) 0.34 GS std of std 0.20 TM std (GFS) 0.07

in Table 4.4. As observed, the most correlated features against the ground truth -

RDPA are the different forms of daily precipitation features, dominating the top of
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the table, with all of the 8 WMs having a correlation value of more than 0.85 for

daily mean.

In our previous work [1], the practical implementation of a proposed approach was

one of the highest priority and the improved machine learning approach needed to be

resource-light with manageable memory and processing time. In particular, we aimed

for solutions which can be deployed on a desktop computer with tensorflow-capable

GPU, with a memory consumption of under 16 GB and a processing time of under

one hour for training and near real-time for prediction. The early training of the ML

models suggested that the secondary features did not result in a major contribution

given the limited training data of 4 months (Dec 2021 - Apr 2022). Consequently, in

our previous work we only employed 8 daily accumulated precipitation (PR) values

as features against our target value of daily precipitation. In this thesis, we extended

the use of the same 8 WMs with a larger training dataset of 15 months. Henceforth,

we will refer to this expanded preliminary dataset as Dataset 1.

Table 4.5: List of features considered in Dataset 1 and Dataset 2.
Dataset 1 Dataset 2
PR (RDPS) PR (RDPS)
PR (REPS) PR (REPS)
PR (GEPS) PR (GEPS)
PR (GDPS) 2 metre air temperature
PR (GEFS) 2 metre relative humidity
PR (GFS) 10 metre U wind component
PR (ICON) 10 metre V wind component
PR (NAM) PR 10 metre wind gust

Total cloud coverage
Elevation
Latitude
Longitude

Additionally we will explore the importance and effects of using secondary features

with creation of a new dataset, aptly named Dataset 2. The aim is to investigate the

meteorological features previously left unexplored due to the increased complexity.

In Dataset 2, we considered the top three WMs from our correlation analysis and

initial testing, which are RDPS, REPS, and GEPS along with the secondary features

summarized in Table 4.5. It is worth noting that not all secondary features were

available in all of the eight weather models (WMs). Among them, the RDPS WM

stands out, as it included all the secondary feature data. Furthermore, the secondary
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features from the RDPS model exhibited high correlation with the target values,

making it a crucial dataset for our analysis. By capitalizing on the availability of

more data, we seek to evaluate the worth of these secondary features in enhancing the

predictive capabilities of our machine learning models. Moreover, we have included

two powerful machine learning models, XGBoost and GNN, for generating forecasts

using Dataset 2. This approach promises to yield valuable insights into the interplay

between secondary features and machine learning models, potentially uncovering new

avenues for refining our NWP post-processing techniques.

To ensure the validity and robustness of our machine learning models, we

divided the collected data into two distinct subsets of training and testing. Data

spanning from December 2021 to March 2023, serves as the training data for model

development. It encompasses a significant portion of our data and offers the necessary

historical context for training. Data with temporal range from March 2023 up to June

2023 has been earmarked for model testing and validation. It offers a more recent

dataset for evaluating the model’s generalization capabilities and keep the testing

season similar to our previous work in [1] for a comprehensive comparison.
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Chapter 5

Results and Discussion

In this chapter, we present the outcomes of our experimentation with various machine

learning and deep learning models for improving precipitation prediction. Our

objective is to assess the performance of each model in predicting precipitation

patterns and to gain insights into their strengths and limitations. We employ

Dataset 1 in a selection of models, namely IMM, MLR, RFR, GBR, NN, and

CNN. Additionally, we leverage the potential of Dataset 2, utilizing it specifically

with XGBoost and GNN to explore previously unexplored secondary meteorological

features, enhancing our understanding of their predictive capabilities. In the model

development process, a two-fold validation approach was employed for parameter

tuning. This method involved dividing the dataset into two subsets, allowing for

robust validation while optimizing model parameters. The hyper-parameters of the

trained ML models can be found in Table A.1 in the appendix section.

This chapter is organized into sections, with each section dedicated to a specific

evaluation metric employed in our study, summarized in Table 5.1. Additionally, we

provide visualization of some precipitation maps in the appendix in A.1, to compare

the predicted precipitation patterns. Similar to our previous work, we studied the

results in two separate contexts, spatial and temporal. For the spatial context, we

considered our data grid of 369 by 721 cells. For each cell, we combined the results

of the validation dates by taking their location wise daily mean, resulting in a 2D

map. Then we further consolidated every 14 neighboring cells to create a visually

identifiable grid. Fig 5.1 gives a visualization of the mean precipitation for the

validation period (March 2023 up to June 2023). For the temporal context, we

combined the results across the entire precipitation map of a day and created one

daily data point along the time axis.
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Figure 5.1: Spatial representation of mean precipitation for the validation period
(March 2023 up to June 2023).

5.1 Mean Absolute Error (MAE)

MAEmeasures the average absolute difference between predicted and observed values,

providing insights into the models’ accuracy. In evaluating the performance of all

WMs and trained machine learning models using the Mean Absolute Error (MAE)

metric, we observe noteworthy results. Among the input WM, RDPS exhibited the

lowest MAE with a value of 0.75 mm/day, followed closely by REPS at 0.76 mm/day.

GFS and NAM, on the other hand, exhibited slightly higher MAE values at 1.35 and

1.07, respectively.

Comparing these input WMs models to the baseline Input Means Model (IMM), it

is evident that IMM had a MAE of 0.70, demonstrating reasonable accuracy. However,

not all the trained machine learning models outperformed IMM in terms of MAE.

Notably, the GBR and CNN stood out as the top-performing ML models, achieving

MAE values of 0.63 and 0.59 mm/day, respectively. Simple NN’s are seen to be

the worst performers among other ML models with an MAE of 0.78 mm/day. It is

interesting to note that in our previous work [1] NN and CNN’s had similar MAE of

0.79 and 0.78 mm/day respectively and GBR with MAE of 0.85 mm/day.

In spatial terms as depicted in Fig 5.4, the models exhibited varying performance

across different geographical regions. Generally, lower MAE values were observed

in drier zones, particularly in the south-western US and the northern territories.

Conversely, higher MAE values were noted in the eastern half of the US, as well as
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Figure 5.2: Mean absolute error (spatial). Lower is better.

Figure 5.3: Mean absolute error (temporal). Lower is better.

along the Pacific coasts of the northwestern US and British Columbia. Machine

learning algorithms introduced improvements, visible in the form of smaller and

lighter shades of red on the spatial precipitation distribution map. These results

provide an initial glimpse into the models’ performance based on MAE, paving the

way for further analysis of temporal trends shown in Fig 5.3.
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We observe a similar pattern emerged as the spatial performance where, on most

days, the trained ML models outperformed the input WMs. CNN can be clearly seen

having the lowest MAE, closely followed by GBR. Once again, GFS emerged as the

poorest model, followed by NAM and ICON.

5.2 Root Mean Squared Error (RMSE)

RMSE measures the square root of the average squared difference between predicted

and observed values, providing insights into the models’ accuracy in predicting

variability. It is more sensitive to larger errors than MAE. In assessing the

performance of both the machine learning models and weather models using the

RMSE metric, referring Fig 5.4, we find significant variations in the results. Among

the input WM, RDPS and REPS exhibited the lowest RMSE values, at 1.64 and

1.83 mm/day, respectively. IMM demonstrated a RMSE of 1.53 mm/day, indicating

reasonable accuracy. All of the trained machine learning models consistently

outperformed the input WM in terms of RMSE.

CNN stood out as the top-performing ML models for this metric, achieving RMSE

values of 1.45 mm/day, followed by GBR with RMSE 1.46 mm/day. MLR and RFR

also demonstrated strong performance with a RMSE of 1.48 mm/day. In contrast,

NN, GNN, and XGBoost displayed slightly higher RMSE values ranging from 1.57 to

1.63 mm/day. Previously, CNN and NN had similar performance with RMSE of 1.82

mm/day, and more importantly GBR performed worse with RMSE of 1.88 mm/day.

The spatially distribution of errors is similar to MAE varying performance across

different geographical regions. Temporally, we see the machine learning approaches

lowering the RMSE as before, with the gradient boosted regression giving the lowest

RMSE and CNN following closely behind shown in Fig 5.5. For some days XGBoost

does show signs for reducing the overall RMSE.

5.3 Median Absolute Error (MdAE)

MDAE, which measures the median of absolute difference between predicted and

observed values, provides valuable insights into the models performance in predicting

the weather without getting influenced from outliers. Among the input weather

models, RDPS stands out as the top-performer in terms of MDAE with an

impressively low value of 0.13 mm/day. GDPS also demonstrate strong performance
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Figure 5.4: Root mean squared error (spatial). Lower is better.

Figure 5.5: Root mean squared error (temporal). Lower is better.

with MDAE values of 0.17 mm/day. In contrast, some input WMs such as GEFS,

GEPS, GFS, ICON, and NAM exhibit relatively higher MDAE values ranging from

0.24 to 0.32 mm/day, indicating room for improvement in their predictions.

Comparing the ML models to the baseline IMM with an MDAE of 0.20 mm/day,

we can see in Fig 5.6 that several machine learning models have managed to
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Figure 5.6: Median absolute error (spatial). Lower is better.

Figure 5.7: Median absolute error (temporal). Lower is better.

outperform IMM. Notably, CNN stands out as the top-performing machine learning

model with an impressively low MDAE of 0.11 mm/day, highlighting its capability

to predict weather accurately. On the other hand, NN exhibits a higher MDAE of

0.27 mm/day, indicating a relatively weaker performance compared to other machine

learning models. Spatially high errors are concentrated in the north west and south
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east. Some input WM have high errors in the lower middle, but these errors are

comfortably reduced by CNN and GNN models.

Temporal results shown in Fig 5.7, align with the spatial results. CNN being the

best machine learning performer and RDPS being the best WM. NN is the worst

overall performing machine learning model followed by GEFS WM. Our previous

work shows that CNN and NN had a impressive performance both spatially and

temporarily, but NN fails to show much improvement this time.

5.4 Maximum Error (MaxE)

MaxE, which measures the maximum absolute difference between predicted and

observed values, provides insights into the models performance under extreme

conditions. Evaluating the performance of both machine learning models and input

WMs using the MaxE metric reveals notable findings. Among the input weather

models, REPS demonstrated the lowest averaged MaxE with a value of 8.62 mm/day,

followed closely by GEPS at 9.50 mm/day. On the other hand, GFS exhibited

the highest averaged MaxE at 17.47 mm/day, indicating the model’s challenges in

capturing extreme conditions.

We do note that there is a visible correlation of MaxE with the observed

precipitation, showing that high errors come from wet zones of lower east coast and the

low errors come from dry zones. As shown in Fig 5.8 the baseline IMM, had a MaxE

of 8.22 mm/day, demonstrating reasonable performance under extreme conditions.

When considering machine learning models, the GBR and XGBoost stood out as

the top-performing ML models, achieving MaxE values of 8.03 and 8.08 mm/day,

respectively. RFR, MLR and NN also exhibited promising performance with MaxE

values ranging from 8.10 to 8.18 mm/day. Interestingly CNN and GNN had the

highest maximum errors of 8.22 and 8.63 mm/day respectively. In our preliminary

study maximum errors of GBR, RFR and CNN were among the highest among the

trained ML models.

Temporally, it can be observed in Fig 5.9 that RDPS and GFS show a higher error

value on most days. The trained ML models provide the low error across the daily

forecast dates, with XGboost and GNN performing slightly better on a few days with

higher overall precipitation.
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Figure 5.8: Maximum error (spatial). Lower is better.

Figure 5.9: Maximum error (temporal). Lower is better.

5.5 Correlation Coefficient (CC)

The Correlation Coefficient is a vital metric for assessing the degree of linear

relationship between predicted and observed values. In this evaluation of machine

learning models and input WM, we present the results of this metric, shedding light
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on the models’ ability to capture linear dependencies. Among the input WM, REPS

exhibited the highest CC with a value of 0.91, closely followed by RDPS at 0.90. On

the other hand, GFS and NAM exhibited comparatively lower CC values at 0.50 and

0.78, respectively.

The baseline IMM showed a CC of 0.91, indicating a reasonable degree of linear

relationship. Interestingly, among the trained machine learning models, GBR and

CNN emerged as the top performers, achieving CC of 0.92 each. Notably, the

majority of machine learning models, including MLR, RFR, XGBoost, NN, and GNN,

maintained Correlation Coefficients of 0.91, demonstrating consistent performance

similar to our previous work.

Figure 5.10: Correlation coefficient (spatial). Higher is better.

In spatial terms we can see in Fig 5.10, machine learning algorithms introduced

improvements, particularly in regions where correlation coefficients were initially

lower, as indicated by the shifting to higher values on the spatial precipitation

distribution map. It appears the lowest correlation is observed at the upper and

lower center of the map. Temporarily their is relatively low cross-model variation
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Figure 5.11: Correlation coefficient (spatial). Higher is better.

and all ML models perform better than the input WM as depicted in Fig 5.11.

5.6 Relative Bias (RB)

Relative Bias is a crucial metric for assessing the models’ ability to predict the

direction of the observed values. It measures the average relative difference between

predicted and observed values and offers valuable insights into bias tendencies. Among

the input weather models, GFS exhibited the most noticeable negative bias with a

Relative Bias value of -0.64. ICON, GDPS, RDPS, and REPS had relatively modest

positive biases, with values ranging from 0.18 to 0.27.

By observing Fig 5.12, IMM displayed a relatively low positive bias of 0.14,

suggesting a slight overestimation of precipitation. Among the trained machine

learning models, GBR and CNN showed the lowest biases, with values of 0.11 and

-0.07, respectively. It is worth noting that CNN displayed a negative bias, indicating

an inclination to under predict precipitation. Spatially, it can be seen that most of

the input WM over predict the lower west coast denoted by blue color. Interestingly,

XGBoost has both high and low bias extreme in that region. GNN similarly to CNN

is also able to reduce high bias in the same region.

Temporal investigation reveals a similar result as shown in Fig 5.13. Again, trained

machine learning models (GBR, NN and CNN) perform significantly better than the

rest of the models.
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Figure 5.12: Relative bias (spatial). The closer to zero, the better.

Figure 5.13: Relative bias (spatial). The closer to zero, the better.

5.7 Probability Of Detection (POD)

Probability of Detection (POD) measures the ability of models to correctly predict

the occurrence of an event. In Fig 5.14 it can be seen that among the input WMs,

REPS demonstrated the highest POD with a score of 0.81, closely followed by GEPS
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and RDPS at 0.78. On the other hand, GFS had a lower POD at 0.33, indicating

challenges in correctly predicting certain events.

Figure 5.14: Probability of detection (spatial). Higher is better.

Figure 5.15: Probability of detection (spatial). Higher is better.

Comparing these trained ML models to the baseline IMM with a POD of 0.79, we

observe variations in performance. Interestingly, not all the trained machine learning
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models outperformed IMM in terms of POD. Notable standouts include MLR, RFR,

GBR and GNN, all achieving a POD above of 0.81, showcasing their capability

in event detection. Convolutional neural network (CNN) also displayed strong

performance, with a POD of 0.79. Meanwhile, neural networks (NN) demonstrated

a lower score, which was also the case in our previous set of experiments.

Fig 5.15 shows the temporal results. In temporal terms, GEPS once again achieved

the highest result, with REPS as the second best. These WMs are followed by the

remaining trained ML models. The POD for most of the ML models look similar but

their is a noteworthy difference between NN and the rest of the models.

5.8 False Alarm Ratio (FAR)

The False Alarm Rate (FAR) metric is instrumental in evaluating the accuracy of

identifying false positive predictions in the machine learning models and the input

WM. In the spatial context as depicted in Fig 5.16, the FAR metric reveals interesting

insights into the models’ performance. Among the input WM, RDPS exhibited the

lowest FAR with a value of 0.22, closely followed by GDPS at 0.26. Other WMs such

as ICON, REPS, and NAM also showed competitive FAR values ranging from 0.31

to 0.34. On the other hand, GFS demonstrated a higher FAR of 0.47, indicating a

greater tendency for false alarms.

Comparing input WMs to the baseline IMM, it is notable that IMM had a FAR

of 0.30, suggesting a moderate ability to identify false alarms. Among the machine

learning models, CNN stands out as the top performer with a remarkably low FAR of

0.19, while GNN and GBR also delivered impressive results with a FAR of 0.24. GBR

and CNN are able to reduce a cluster of high false alarm regions observed around the

Canadian Prairies in all input WM’s. The remaining ML models showed FAR values

in the range of 0.25 to 0.35, demonstrating varying degrees of accuracy in detecting

false alarms.

Fig 5.17 shows the temporal performance. We see CNN is the lowest by a

comfortable margin, followed by RDPS and NN. The temporal graph shows that

NN does a better job than GBR reducing false alarms, and MLR and XGboost are

the worst performers.



58

Figure 5.16: False alarm ratio (temporal). Lower is better.

Figure 5.17: False alarm ratio (temporal). Lower is better.

5.9 Critical Success Index (CSI)

The Critical Success Index (CSI) metric assesses the accuracy of model predictions

by considering both hits (correct positive predictions) and misses (observed positive

events not predicted). Spatially, among the input WM, RDPS exhibited the highest
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CSI score, with a value of 0.66, indicating its proficiency in capturing critical weather

events. It was closely followed by REPS at 0.60 and GDPS at 0.59, showcasing their

reliability in predicting events accurately.

As shown in Fig 5.18 the baseline IMM showed a CSI score of 0.60, signifying

reasonably accurate predictions. Comparatively, the machine learning models also

showed competitive performance, with CNN achieving the highest CSI at 0.67 followed

by GNN and GBR with CSI 0.66, indicating a significant ability to predict critical

weather events successfully. NN and XGBoost scored 0.54 and 0.59, respectively,

indicating their moderate success in capturing critical events.

Figure 5.18: Critical score index (temporal). Higher is better.

In temporal analysis shown in Fig 5.19, similar patterns were observed, CNN,

RDPS and GBR are the top performers. GFS, MLR, NAM and ICON can be

categorized as poor performers. Baseline IMM and the remaining models achieved

decent critical score index values.
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Figure 5.19: Critical score index (temporal). Higher is better.

5.10 Confusion Matrix (CM)

A confusion matrix is a tabular representation indicating the number of true positive,

true negative, false positive, and false negative predictions to assess the model’s

accuracy and error rates. Inspired by [68] and information from domain experts, we

bin the predicted and observation data into 4 precipitation (PR) levels. These bins

are labelled as following: Nil : PR < 0.20mm/day, Light : 0.20mm/day <= PR <

5mm/day, Moderate: 5mm/day <= PR < 20mm/day and Heavy : 20mm/day <=

PR.

In the Fig 5.20 we can see how the top performing machine learning models along

with our baseline IMM classify the precipitation into 4 categories. In the appendix

in A.3 we share confusion matrix of MLR and RFRmodels. For the Nil category, CNN

achieved the highest score, correctly identifying days with no precipitation, while NN

and GBR also demonstrated strong performance. In the Light precipitation category,

MLR, GBR and GNN outperformed the other models, displaying sensitivity to light

precipitation events. For the Moderate category, NN exhibited superior precision

closely followed by XGBoost, minimizing false alarms, which is crucial in scenarios

requiring accurate moderate precipitation forecasts. Lastly, the most sensitive and

difficult to predict Heavy category, XGBoost and GNN showcased a robust ability to

predict heavy precipitation events, suggesting its utility in applications demanding

early detection of extreme weather conditions.
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Figure 5.20: Confusion matrix of various ML models

5.11 Discussion

The results of our experiments provide valuable insights into the strengths and

weaknesses of various machine learning models. The results indicate that CNN

and GBR exhibit robust performance across various evaluation metrics, showcasing

their versatility and reliability in post-processing NWP models. Interestingly, the

performance of GBR has notably improved from our previous study, showcasing its

adaptability to the larger dataset. However, it is worth noting that each model has its

own set of strengths and weaknesses, making them suitable for different applications

based on specific requirements.

In terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE),

we observed that the Gradient Boosting Regression (GBR) and Convolutional Neural

Network (CNN) emerged as top performers, displaying lower MAE and RMSE values.

This indicates their proficiency in accurately predicting daily precipitation.

When assessing the models’ ability to predict extreme conditions (MaxE), CNN

excelled again, outperforming other models. In terms Correlation Coefficient, GBR

and CNN again stood out, showcasing their capability to establish strong relationships

between predicted and observed values.
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Table 5.1: Averaged results for the entire testing dataset. Best values are highlighted.
The top 8 rows are input WMs. IMM is the baseline model.

MAE RMSE MdAE MaxE CC RB POD FAR CSI
GDPS 0.85 2.02 0.17 11.04 0.86 0.21 0.74 0.26 0.59
GEFS 0.97 2.04 0.32 10.62 0.83 0.27 0.67 0.40 0.46
GEPS 0.90 1.85 0.30 9.5 0.87 0.38 0.78 0.39 0.53
GFS 1.35 3.23 0.28 17.47 0.50 -0.64 0.33 0.47 0.25
ICON 1.01 2.28 0.24 12.08 0.82 0.18 0.59 0.31 0.46
NAM 1.07 2.49 0.25 13.49 0.78 0.23 0.58 0.34 0.45
RDPS 0.75 1.83 0.13 10.21 0.90 0.21 0.78 0.22 0.66
REPS 0.76 1.64 0.21 8.62 0.91 0.27 0.81 0.32 0.60
IMM 0.70 1.53 0.20 8.22 0.91 0.14 0.79 0.30 0.60
MLR 0.65 1.48 0.16 8.14 0.91 0.19 0.84 0.28 0.64
RFR 0.64 1.48 0.16 8.10 0.91 0.12 0.83 0.28 0.64
GBR 0.63 1.46 0.14 8.03 0.92 0.11 0.83 0.24 0.66
NN 0.78 1.57 0.27 8.18 0.91 -0.23 0.66 0.25 0.54
CNN 0.59 1.45 0.11 8.22 0.92 -0.07 0.79 0.19 0.67
XGB 0.73 1.58 0.20 8.08 0.91 0.17 0.78 0.31 0.59
GNN 0.72 1.63 0.17 8.63 0.91 0.23 0.81 0.24 0.66

The analysis of Relative Bias (RB) yielded intriguing results, showcasing distinct

bias tendencies within the CNN and GBR models. CNN exhibited a slight negative

bias, while GBR demonstrated a modest positive bias, implying a tendency for

underprediction and overprediction of precipitation, respectively. MLR showcased

a noteworthy Probability of Detection (POD), reflecting its aptitude for accurately

forecasting precipitation events. Additionally, False Alarm Ration (FAR) and Critical

Success Index (CSI) demonstrated that CNN, GNN and GBR excelled in accurately

predicting critical weather events with low false alarms.

The confusion matrix analysis provides further insights into the abilities of the

machine learning models to correctly predict different precipitation levels. While

CNN and GBR demonstrated a overall performance, they were unable to repeat the

same performance with higher precipitation levels. On the other hand, XGBoost and

GNN perfromed exceedingly well in predicting heavy and moderate precipitation even

though they were not as effective as CNN in terms of most of the discussed metrics.

The exceptional overall performance of CNN and GBR, can be attributed to

their incredible ability to predict lower levels of precipitation. This proficiency along

with the substantial prevalence of days with low precipitation values in the dataset

contributes to reduced metrics like MAE and RMSE. On the other hand NN, XGBoost
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and GNN display a balance in their predictive capabilities. In case of XGBoost

and GNN this might be due to the presence of secondary meteorological features,

which other models do not have access to. We can analyze this theory by studying

the shapley values, these values help to understand how the model’s predictions are

affected by the presence or absence of specific features for a given instance.

5.11.1 Shapley Analysis

The concept of Shapley values, a pivotal development in the field of cooperative game

theory, can be traced back to the pioneering work of Lloyd Shapley in 1953 [13].

Shapley values, are often used to explain the contribution of individual features or

elements within a dataset to the output of a machine learning model. They provide

insights into the importance of each feature in the decision-making processes. Below

we have discussed Shapley values for GBR and NN with Dataset 1, as well as XGBoost

with Dataset 2.

For a comprehensive understanding, we randomly sampled 500 data points from

each of the four previously mentioned precipitation levels in both datasets. We then

assessed the performance of GBR, NN, and XGBoost models using the shap python

library. Shap library provides multiple visualization of shap values out which we

selected the shap summary plot. The results of shap summary plot for different levels

of precipitation are shown below, and are easy to interpret. The horizontal position of

points tells us about SHAP values, showing how they affect the model’s predictions.

The color of these points indicates whether a feature value is high (in red) or low (in

blue). For instance, if we take a look at Figure 5.21, when the rdps variable in an

GBR model has low values (colored in blue), it tends to push the prediction lower.

Conversely, when the rdps variable has high values (colored in red), it tends to push

the prediction higher.

For Nil and Light precipitation values shown in Fig 5.21 and Fig 5.22, we can

observe that GBR and NN place significant reliance on a small number of WM’s

when there are substantial deviations in their prediction values. This indicates that

GBR and NN are highly dependent on the performance of specific input weather

variables. In contrast, XGBoost appears to distribute its reliance more evenly across

various secondary meteorological features when making decisions.

For Moderate and Heavy precipitation values shown in Fig 5.23 and Fig 5.24,

the NAM weather model takes on growing importance for both the GBR and NN.
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Figure 5.21: Shapley values for randomly sampled Nil precipitation level

Figure 5.22: Shapley values for randomly sampled Light precipitation level

Additionally, XGBoost exhibits an increasing dependence on the three input weather

models for significant deviations in its predictions.

Figure 5.23: Shapley values for randomly sampled Moderate precipitation level

In general, the RDPS weather model emerges as the most influential factor in
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Figure 5.24: Shapley values for randomly sampled Heavy precipitation level

shaping the decisions of both the GBR and NN models, regardless of the precipitation

levels. Interestingly, GBR does not seem to give much consideration to the GFS

weather model, while NN tends to disregard REPS. This observation could potentially

provide an explanation for NN’s sub-par performance. Unlike GBR and NN, XGBoost

considers most of its features to take a decision. XGBoost’s balanced performance

in all precipitation levels can be attributed to the presence of information from

secondary features. All features collectively contribute significantly in the decision

making process, especially when precipitation levels are high and shows that it is not

dependent/heavily biased on a single feature.

Table 5.2: Model Training and Testing Times
Model IMM MLR RFR GBR XGB NN CNN GNN
Train 10 sec 65 sec 18 mins 5 mins 14 mins 30 mins 25 mins 15 mins
Test 10 sec 5 sec 5 sec 20 sec 2 mins 10 sec 10 sec 10 sec

The Shapley values have provided valuable insights into the feature importance

and their contributions to model predictions. However, it is essential to consider

not only the decision-making aspects but also the computational efficiency of the

above mentioned models. The time performance of each model is summarized in the

Table 5.2. Training times for all the models are within the 30-minute range, and

the inference times for most of the models are under 20 seconds, with the exception

of XGBoost. This is a particularly important factor in scenarios where real-time or

rapid model deployment is essential.

In developing the precipitation prediction model for 24-hour accumulated

forecasts, a deliberate decision was made to exclude recurrent neural network (RNNs)

and LSTMs. The nature of the task did not inherently demand a temporal model,
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as the focus was on capturing granular patterns rather than sequential dependencies

over time. This choice was driven by a preference for model interpretability and

considerations regarding available data size. In scenarios requiring more fine-grained

predictions, such as 3-hourly intervals, the use of RNNs might have been more justified

due to their effectiveness in capturing temporal dependencies at shorter intervals.

In summary, our study highlights the diverse strengths and trade-offs of

different machine learning models for precipitation prediction. Understanding their

performance metrics, bias tendencies, and feature contributions, alongside their

computational efficiency, allows for informed model selection based on specific

application needs and constraints. Further research and model refinement can build

upon these findings to enhance the accuracy and efficiency of precipitation forecasting.
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Chapter 6

Conclusions

Numerical Weather Prediction models have made remarkable strides in meteorology,

allowing us to forecast atmospheric conditions with increasing accuracy. Despite

these advancements, the forecasting of precipitation remains one of the most enduring

challenges in the field. The complex, multi-scale nature of precipitation phenomena,

the limitations of NWP models, and inherent uncertainties in atmospheric dynamics

have necessitated a search for innovative approaches to improve precipitation

predictions. In this thesis, we embarked on a comprehensive exploration of the

fusion of 24-h period NWP precipitation forecast using an ML and DL covering

most of the continental USA and Canada with dataset provided by WeatherLogics

Inc. Our preliminary work reported in [1], provided a foundation for this research,

demonstrating that machine learning and deep learning algorithms can indeed

enhance the accuracy and reliability of NWP precipitation predictions.

In our previous work, we focused on a six-month dataset of 8 NWP

models and employed 5 machine learning techniques, including Multiple Linear

Regression, Random Forest Regression, Gradient Boosting Regression, Neural

Networks and Convolutional Neural Networks, demonstrating that machine learning

can significantly enhance the accuracy of NWP precipitation predictions. The larger

dataset in our thesis, spanning 18 months, allowed us to dive deeper into the impacts

of machine learning on precipitation forecasting. We expanded our dataset to include

9 additional secondary features like temperature, wind, location, etc, and trained

additional machine learning models: XGBoost and Graph Neural Networks. Our

analysis encompassed evaluation metrics such as Mean Absolute Error, Root Mean

Squared Error, Median Absolute Error, Maximum Error, Correlation Coefficient,

Relative Bias, Probability of Detection, False Alarm Rate, Critical Success Index,
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and Confusion Matrix, providing a detailed understanding of model performance.

Our extensive evaluation of different machine learning models and input weather

models for daily precipitation prediction has yielded valuable insights into their

performance. We have assessed these models using various metrics, shedding light

on their capabilities in predicting different aspects of precipitation. Convolutional

Neural Networks and Gradient Boosting Regression emerged as top performers,

displaying optimum performance on most metrics compared to the baseline methods

currently deployed. With 15% improvement in Mean Absolute Error, 5% in Root

Mean Squared Error, 45% in Median Absolute Error and 50% in Relative Bias,

signifying proficiency of Convolutional Neural Networks in accurately predicting daily

precipitation. Gradient Boosting Regression and XGBoost were able to approximately

reduce extreme errors by 2%. Furthermore, all trained machine learning models

exhibit high correlation compared to the input weather models and the IMM baseline.

Out of the input weather models RDPS and REPS, show the lowest of errors and high

capabilities to predict accurate precipitation in the regions of US and Canada. The

confusion matrix show that, although Convolutional Neural Networks and Gradient

Boosting Regression displayed strong overall performance, XGBoost and Graph

Neural Networks demonstrated balanced performance across different precipitation

levels with an above 80% accuracy in detecting heavy precipitation.

Furthermore, the Shapley values analysis revealed insights into feature importance

and their contributions to model predictions. RDPS weather model appeared

as the most influential factor in shaping model decisions for Gradient Boosting

Regression and Neural Networks, while XGBoost distributed its reliance more evenly

across various secondary meteorological features. Given the 500 randomly selected

datapoints, XGBoost’s balanced performance might be due to its consideration

of multiple features. This suggests that the secondary features do hold valuable

information and should be considered while training machine learning models in future

research.

By incorporating a more extensive dataset, we observed a substantial enhancement

in the performance of both Gradient Boosting Regression and Convolutional Neural

Networks compared to our prior research. With an even longer time frame, it

would be interesting to see the performance improvements with XGBoost and graph

based neural networks, especially considering the integration of more meteorological

features. There remains a vast landscape of potential future work in this field.

One promising avenue for further research is the exploration of even more advanced
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machine learning algorithms and techniques. This could involve the utilization of

cutting-edge deep learning models, such as Transformers and Reinforcement Learning,

to improve the modeling of complex meteorological processes. Additionally, the

incorporation of high-resolution satellite and remote sensing data, along with more

extensive ground-based observations, can further enhance the input features for

machine learning models, potentially leading to more precise precipitation forecasts.

In the realm of climate change and extreme weather events, future work can delve

into how machine learning can be harnessed to improve long-term climate modeling.

This study highlights the strengths and weaknesses of different machine learning

models and input weather models for daily precipitation prediction. The choice

of the model should depend on the specific requirements of the application, such

as the need for real-time predictions, accuracy in extreme conditions, or balanced

performance across different precipitation levels. Understanding the changing nature

of precipitation patterns in a warming world and adapting NWP models to these

shifts is an area with high societal relevance. Our research contributes to the

evolving field of meteorology by offering a comprehensive exploration of machine

learning methods with an expanded dataset. The integration of secondary features

and the introduction of new machine learning models present an opportunity to

achieve even greater precision and reliability in precipitation predictions. The results

from this research have the potential to revolutionize the way we approach next day

precipitation forecasting, with far-reaching implications for various sectors influenced

by weather forecasts.



70

Bibliography

[1] Sengoz C, Ramanna S, Kehler S, Goomer R, Pries P (2023) Machine learning

approaches to improve north american precipitation forecasts. IEEE Access

11:97664–97681, DOI 10.1109/ACCESS.2023.3309054

[2] Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather

prediction. Nature 525(7567):47–55

[3] Pu Z, Kalnay E (2019) Numerical Weather Prediction Basics: Models, Numerical

Methods, and Data Assimilation, Springer Berlin Heidelberg, Berlin, Heidelberg,

pp 67–97

[4] Hou A, Kakar RK, Neeck SP, Azarbarzin AA, Kummerow CD, Kojima M, Oki

R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission.

Bulletin of the American Meteorological Society 95:701–722

[5] Charney JG, Fjörtoft R, Neumann Jv (1950) Numerical integration of the

barotropic vorticity equation. Tellus 2(4):237–254

[6] Lynch P (2008) The origins of computer weather prediction and climate

modeling. Journal of computational physics 227(7):3431–3444

[7] Williams PD (2005) Modelling climate change: the role of unresolved processes.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences 363(1837):2931–2946

[8] Grenier H, Bretherton CS (2001) A moist pbl parameterization for large-scale

models and its application to subtropical cloud-topped marine boundary layers.

Monthly weather review 129(3):357–377



71

[9] Richardson LF, Lynch P (2007) Weather Prediction by Numerical Process, 2nd

edn. Cambridge Mathematical Library, Cambridge University Press, DOI 10.

1017/CBO9780511618291

[10] Rodwell M, Palmer T (2007) Using numerical weather prediction to assess

climate models. Quarterly Journal of the Royal Meteorological Society: A journal

of the atmospheric sciences, applied meteorology and physical oceanography

133(622):129–146

[11] Schultz MG, Betancourt C, Gong B, Kleinert F, Langguth M, Leufen

LH, Mozaffari A, Stadtler S (2021) Can deep learning beat numerical

weather prediction? Philosophical Transactions of the Royal Society A

379(2194):20200097

[12] Bochenek B, Ustrnul Z (2022) Machine learning in weather prediction and

climate analyses—applications and perspectives. Atmosphere 13(2):180

[13] Shapley LS (1953) Stochastic games. Proceedings of the national academy of

sciences 39(10):1095–1100
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Appendix A

Appendix

A.1 Precipitation Forecasts

This section includes sample visualizations of the 24 hour accumulated precipitation

derived from RDPA (ground truth) and forecasts from trained ML algorithms:

Machine learning Regression (MLR), Random Forest Regression (RFR), Gradient

Boosting Regression (GBR), XGBoost (XGB), Simple Neural Networks (NN),

Convolutional Neural Networks (CNN) and Graph Neural Networks (GNN). We also

share visualization of the errors made by the trained ML models to better understand

the strengths and weakness of each model. The trained ML models can be seen to

perform better than the baseline Input Means Model (IMM), with most errors located

in the wet regions and low errors are scene in drier areas.
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A.1.1 Visualization for 1st March, 2023

Figure A.1: Visualization of accumulated precipitation for March 1st 2023.

Figure A.2: Visualizing error in accumulated precipitation for March 1st 2023.
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A.1.2 Visualization for 1st April, 2023

Figure A.3: Visualizing accumulated precipitation for April 1st 2023

Figure A.4: Visualizing error in accumulated precipitation for April 1st 2023
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A.1.3 Visualization for 1st May, 2023

Figure A.5: Visualizing accumulated precipitation for May 1st 2023

Figure A.6: Visualizing error in accumulated precipitation for May 1st 2023
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A.2 Model Parameters

Table A.1: Trained ML model hyperparameters yielding the most optimal results.
Model Specifications
MLR Loss: squared error
GBR Number of trees:100

Tree depth: 7
Loss: squared error

RFR Tree depth: 7
Number of trees: 10
Loss: squared error

NN Number of trainable params: 109,201
Number of hidden layers : 2
Number of neurons in hidden layer : (1000, 100)
Dropout: 0.1
Optimizer: RMSprop
Batch size: 200,000
Loss: squared logarithmic error
Normalized: Yes (Z-Score)

CNN Number of trainable params: 79,105
Number of hidden layers: 3
Dropout: 0.1
Optimizer: RMSprop
Kernel initialization: Random normal
Kernel count and shape: 64× (3× 3)
Batch size: 1
Loss: squared logarithmic error
Normalized: Yes (Z-Score)

XGBoost Number of trees: 500
Tree depth: 15
Sample Weights: Yes
Gamma: 0.1
Subsample: 0.5
Alpha and Lambda: 0.3

GNN Number of trainable params: 1,105
Number of hidden layers: 2
Batch size: 1
Kernel shape: 10× 10
Dropout: 0.001
Optimizer: Adam
Kernel initialization: Xavier
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A.3 Confusion Matrix

Figure A.7: Confusion matrix of Machine Learning Regression (MLR) and Random
Forest Regression (RFR) for different precipitation levels. Both of the trained ML
models show a good performance when predicting low precipitation levels, but perform
poorly when predicting higher precipitation levels.
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