The Distribution of Government Assisted Insulation Activities in the City of Winnipeg

by Robert Fenton 1982

The Institute of Urban Studies

FOR INFORMATION:

The Institute of Urban Studies The University of Winnipeg 599 Portage Avenue, Winnipeg phone: 204.982.1140 fax: 204.943.4695 general email: ius@uwinnipeg.ca

Mailing Address: The Institute of Urban Studies The University of Winnipeg 515 Portage Avenue Winnipeg, Manitoba, R3B 2E9

THE DISTRIBUTION OF GOVERNMENT ASSISTED INSULATION ACTIVITIES IN THE CITY OF WINNIPEG

Published 1982 by the Institute of Urban Studies, University of Winnipeg © **THE INSTITUTE OF URBAN STUDIES**

Note: The cover page and this information page are new replacements, 2016.

The Institute of Urban Studies is an independent research arm of the University of Winnipeg. Since 1969, the IUS has been both an academic and an applied research centre, committed to examining urban development issues in a broad, non-partisan manner. The Institute examines inner city, environmental, Aboriginal and community development issues. In addition to its ongoing involvement in research, IUS brings in visiting scholars, hosts workshops, seminars and conferences, and acts in partnership with other organizations in the community to effect positive change.

The Distribution of Government Assisted Insulation Activities in the City of Winnipeg

bу

Robert Fenton

. .

Institute of Urban Studies

"This project was carried out with the assistance of a grant from Canada Mortgage and Housing Corporation under the terms of the External Research Program. The views expressed are those of the author and do not represent the official views of the Corporation."

PREFACE

This research has been undertaken at the Institute of Urban Studies of the University of Winnipeg. The work was conducted under the auspices of a grant from Canada Mortgage and Housing Corporation under the terms of the External Research Program.

The assistance of CMHC, CHIP, the City of Winnipeg Environmental Planning Department, Winnipeg Hydro, Manitoba Hydro and Province of Manitoba Department of Energy and Mines are gratefully acknowledged.

In addition, I wish to thank Ms. C. D. McKee, Ms. C. Sherba and Mr. S. Clatworthy of the Institute of Urban Studies and Mr. J. Hilton and Dr. M. Miller of the University of Winnipeg Computer Science group for their particular assistance. Also, Mrs. K. Uitvlugt must be recognized for her skill and patience in preparing this manuscript.

The conclusions and views expressed are those of the author and do not represent the official views of the Corporation. Any errors and omissions remain the responsibility of the author.

TABLE OF CONTENTS

Section

Page

1.0	INTRODUCTION	1
2.0	THE ANALYSIS	3
2.1 2.2 2.3 2.4	Data Acquisition Neighbourhood Identification CHIP Grant Distribution and Penetration MHIP Distribution and Penetration	3 4 7 22
3.0	CONCLUSION	27
	Appendix A	A1

Summary Data on Neighbourhoods, Numbers of CHIP Grants, MHIP Loans, CHIP and MHIP penetrations

- vi -

LIST OF TABLES

Table		Page
1	Distribution of CHIP Grant Penetrations By Age Code	9
2	Comparison of a Sample of Age Code 4 Neighbourhoods	11
3	Distribution of CHIP Grant Penetrations By Neighbourhood Type	12
4	Comparison of a Sample of Outlying Neighbourhoods	20
5	Distribution of Penetration Rates of MHIP Sorted by Age Code	24
6	Distribution of MHIP Penetration Rates Sorted by Type of Neighbourhood	26

LIST OF MAPS

Мар		Page
1	Distribution of CHIP Grant Penetration Rates in Redevelopment Neighbourhoods	13
2	Distribution of CHIP Grant Penetration Rates in Rehabilitation Neighbourhoods	14
3	Distribution of CHIP Grant Penetration Rates in Major Improvement Neighbourhoods	15
4	Distribution of CHIP Grant Penetration Rates in Conservation Neighbourhoods	16
5	Distribution of CHIP Grant Penetration Rates in Stable Neighbourhoods	17
6	Distribution of CHIP Grant Penetration Rates in Emerging Neighbourhoods	18

.

.

1.0 INTRODUCTION

The desire by governments to promote energy conservation among homeowners led to the initiation during the mid-1970's of a number of incentive programs to encourage residential energy conservation. The two of relevance to Winnipeg and Manitoba were the Canadian Home Insulation Program (CHIP) and the Manitoba Home Insulation Program (MHIP).

CHIP provided taxable grants up to \$500 for reinsulation of homes built prior to 1961. MHIP provided subsidized loans to a maximum of \$1,000 for purchase of energy saving devices and materials. The loan principal plus interest were amortized over time by monthly charges on the borrowers electrical bill.¹

The Canada Mortgage and Housing Corporation provided an External Research Grant to the author to undertake an assessment of the effectiveness of the Canadian Home Insulation Program. The data reported here are one component of the results obtained from that study.

The MHIP data were added to the CHIP data base to provide comparative perspectives on the CHIP take-up or penetration rates.

¹ Both plans have had a range of terms and conditions. This summary reflects the terms in operation at the time the data was collected.

2.0 THE ANALYSIS

2.1 Data Acquisition

The data base for the macro-level analysis consists of the street address of residential units within the City of Winnipeg where insulation work has been undertaken under the auspices of CHIP or where energy conservation activities have been financed by a loan under MHIP. These data were acquired with the assistance of CHIP, Winnipeg Hydro and Manitoba Hydro.

The co-operating agencies were quite concerned about the release of their clients' data without prior approval of the client. For this reason, we were restricted to obtaining only the residence address in question. In order to preserve confidentiality we were also restricted from using the address data in any kind of disaggregated form.

The CHIP data tape acquired from the CHIP office in Montreal contained 27,563 Winnipeg entries. These entries had been derived from the CHIP Grant applications submitted by the applicants. They had not been verified for consistency as to reporting pattern or altered to remove errors such as labelling an 'Avenue' a 'Street' or misspelling of street names etc. The work of cleaning up the file to resolve such problems was relatively successful with recovery of more than 95 per cent of the records according to our sorting criteria. The final total of CHIP Grant entries sorted among the neighbourhoods was almost 26,300.

The acquisition of the data for the MHIP participants provided a

- 3 -

few additional problems. Separate records of participants in the loan program of the Manitoba Government are not maintained. Rather, a record of any positive outstanding loan balance is maintained as an element of the participant's electrical utility account. There are no identifiers in the accounts to differentiate between those electrical utility customers who have not utilized the program and those who utilized the program and completed their repayment obligation. For this reason it was possible to identify only those loans under MHIP which had positive outstanding balances as of mid-summer 1981.

At that time a total of about 9,000 customers of Winnipeg Hydro and Manitoba Hydro with Winnipeg billing addresses had positive outstanding loan balances. It is believed that this represents about 90 per cent of the total number of loans that have been made in the City of Winnipeg under MHIP since its inception in 1977.

One additional problem with the MHIP data is that the address listed for a participant is not necessarily the address where the work was undertaken. In situations involving non-owner occupied dwellings, the billing address and the address of the dwelling reinsulated may differ. This is not perceived to be a major source of difficulty.

2.2 Neighbourhood Identification

The City of Winnipeg Planning Department has identified two hundred and twenty-seven neighbourhoods within the city's boundary for planning and operational studies. These neighbourhoods have been classified into six major types according to primary criteria based on physical

- 4 -

characteristics.

Neighbourhood boundaries have been identified on the basis of major physical barriers or other distinguishing characteristics. The boundary criteria include:

- major transportation routes
- barriers, railways, rivers, streams
- land-use changes
- land intensity changes
- changing age of development and buildings
- changing building condition

The resulting pattern of neighbourhoods results in relatively homogeneous characteristics within a given neighbourhood.

One hundred and sixty-four of these are residential neighbourhoods and are classified into one of six categories of Emerging, Stable, Conservation, Rehabilitation, Major Improvement and Redevelopment. The primary physical characteristics to assess the neighbourhood according to this classification scheme are:

- zoning, land use and condition of buildings
- parks, recreation and municipal services available
- existing and potential intrusions
- schools and neighbourhood elements

Secondary criteria for classification include population and family structure, ethnicity, income and tenure and mobility. The remaining neighbourhoods are essentially commercial, industrial, rural or undeveloped.

The distribution of the one hundred and sixty-four neighbourhoods among the classes reflects the City's relatively slow growth in recent

years. In particular:

Emerging	40
Stable	50
Conservation	44
Rehabilitation	19
Major Improvement	9
Redevelopment	2
	164

In order to be eligible for CHIP a dwelling unit must have been constructed prior to 1961. Unfortunately, specific ages for each dwelling unit on the tape were not available. Thus, to further distinguish among neighbourhoods for the purposes of this analysis each neighbourhood was assigned an age classification number in addition to the type category applied by the City . This age code was assigned on the basis of imprecise designations assigned by the City for each neighbourhood. The Age Code and associated criterion was:

Age Code	<u>Criterion</u>
0	over one-half of units built prior to 1946
1	more than one-third built prior to 1946
2	over one-half built 1946-1960
3	more than one-third built between 1946 and 1960 and more than one-third between 1961 and 1971
4	over one-half built during 1961-1971

The City of Winnipeg's neighbourhood classification scheme was utilized because it represents the basic planning tool and unit of analysis being utilized by the local authority. The system provides uniform

- 6 -

coverage of the City. Any particular house number and street name in the City can easily be identified with a neighbourhood code number, neighbourhood name, neighbourhood classification and age code. In general the City of Winnipeg data was more up-to-date and more complete than comparable data from the 1971 or 1976 census.

2.3 CHIP Grant Distribution and Penetration

Each data entry on the CHIP computer tape was matched to a neighbourhood street address listing and a neighbourhood code attached to the CHIP data entry. CHIP entries were then sorted according to neighbourhood cases and cumulated for each code. (See Appendix A.)

The result was a listing of the number of CHIP grants in each of 164 neighbourhoods. Because of variation in the size of each neighbourhood and the number of eligible dwelling units in the neighbourhood, the raw number of grants is relatively meaningless.

In order to obtain a comparative index of the rate of uptake of grants, a penetration rate of the available market was calculated for each neighbourhood. The penetration rate is a percentage of the number of CHIP grants to the number of units in the available market. The available market consisted of all owner occupied single and semi-detached dwelling units in the neighbourhood constructed prior to 1961.

Existing data, however, do not permit the number of pre-1961 dwelling units in each neighbourhood to be specified exactly. The only available

- 7 -

data were the criteria used to classify the neighbourhood by age code as discussed above and the classification of neighbourhoods into the six categories previously mentioned.

On the basis of judgment, certain neighbourhoods were excluded from the penetration rate analysis. First, twenty-one emerging neighbourhoods were deleted for similar reasons. As a result only about 26,200 grants are considered by the analysis.

Penetration rates were calculated for the remaining 144 neighbourhoods on the basis of the number of CHIP grants as a percentage of the number of owner occupied single and semi-detached dwellings. The latter variable was chosen for the base for two reasons. First, a review of the listing of the CHIP grant address tape revealed very few grants at addresses that were obviously apartments. Second, very few owner occupied units in the city would be other than single detached or semiattached units. The condominium apartment block or townhouse development is simply not a major factor in Winnipeg.

A complete listing of the penetration rates calculated for each neighbourhood is presented as Appendix A.

The penetration rate descriptor has the greatest relevance for neighbourhoods in age codes '0', '1', and '2'. Age codes '3' and particularly '4' contain large numbers of dwelling units which would be inelgible for the CHIP grants.

Table 1 presents the mean and standard deviation for the penetration

- 8 -

rates of CHIP in each of the age code categories. As may be seen from the Table, there is a general inverse trend between the mean penetration rate and the age code index. Age code '0' neighbourhoods, the oldest, have a mean penetration rate of almost 32 per cent. The standard deviation for this group is relatively low compared to the mean at 8.8 per cent. The age code '0' subset of neighbourhoods contains 46 observations. Only seven of these lie more than one standard deviation away from the mean.

The two major parameters of the distribution of CHIP grants penetrations in age code '1' and '2' neighbourhoods are relatively similar. The mean is about 27.5 per cent in each while the standard deviation in the age code '3' subset is higher at 8.7 per cent compared to 7.3 per cent.

The penetration rates for age codes '3' and '4' are significantly different from the others. This reflects the lower rate of eligibility of owner occupied households in the areas. The penetration rate for the age code '4' groups could conceivable have been lower had not emerging neighbourhoods with a small number of eligible dwelling units been excluded from the analysis.

			Table	e 1			
Distribution	of	CHIP	Grant	Penetrations	Ву	Age	Code

Age Code	Mean	Standard <u>Deviation</u>
0	31.7	8.8
1	27.6	7.3
2	27.5	8.7
3	11.3	7.9
4	8.8	11.1

Analysis of the significant high outliers in the age code '3' and '4' neighbourhoods was undertaken to see if these could to some extent be explained by a combination of the size of the neighbourhood and its neighbourhood type. For instance Table 2 presents a sample of neighbourhoods from the age code '4' subset.

As can be seen in the Table, three of the neighbourhoods have penetration rates in excess of the mean penetration rate estimated for age code 'O'neighbourhoods. One is designated as a Stable neighbourhood while the other two are Emerging neighbourhoods. The key factor in each of these cases is that the size of the neighbourhood is quite small. Thus, there is likely a nucleus of dwelling units that are sufficiently old to be eligible for the CHIP grant while the balance of the neighbourhood is categorized as age code '4'. Within the oldernuceleus of these neighbourhoods the penetration rate would be significantly higher than the neighbourhood average.

In the case of the other two neighbourhoods listed in Table 2, both were considered to be stable neighbourhoods in the City of Winnipeg's 1978 neighbourhood characterization study. They both, however, were built virtually entirely in the post 1961 era without a substantial nucleus of older dwelling units that would be eligible for the CHIP grant.

The distribution of CHIP penetration rates is considered in another dimension in Table 3 and Maps 1 through 6. The distribution of penetration rates has in this case been estimated using the neighbourhood

- 10 -

Table 2

Comparison of a Sample of Age Code 4 Neighbourhoods

Neighbourhood Code	Name	Туре	CHIP Pen.	Number of Dwellings
2017	Woodhaven	S	33.78	299
3017	The Maples	S	0.04	2678
3025	Tyndall Park	S	0.30	1680
3023	North-Main-West	E	38.81	201
4017	Peguis	E	39.29	56

Table 3

Distribution of CHIP Grant Penetrations By Neighbourhood Type

Туре	Mean	Standard Deviation
٧	44.3	12.6
Μ	33.0	8.0
R	30.4	8.5
С	27.3	9.6
S	15.2	12.3
E	9.9	13.0

- V = Redevelopment
- M = Major Improvement
- R = Rehabilitation
- C = Conservation
- S = Stable
- E = Emerging

MAP 1

- 13

MAP 2

14

ł

MAP 3

17 -

.

As may be seen in the Table, the mean penetration rate declines progressively as one moves from the Redevelopment neighbourhoods through to the Emerging neighbourhoods. This progression is to be expected for several reasons. First, the ordering of the neighbourhood types in the Table corresponds to decreasing average neighbourhood age. Thus a higher proportion of dwelling units would be expected to be eligible for CHIP in the Redevelopment and Major Improvement neighbourhoods than in the Stable or Emerging.

Second, the two Redevelopment neighbourhoods and many of the Major Improvement neighbourhoods are served by social agencies which might assist residents in obtaining CHIP grants. This would be a particularly significant factor in the case of NIP neighbourhoods.

Table 4 presents a sample of penetration rates that represent significant variation from the mean for the neighbourhood type. The sample provides a full range of the major relevant neighbourhood types as well as capturing two age groups of particular interest.

The range of penetration rates for CHIP covered in the Table includes the bound of the 'normal' penetration rates for CHIP. The reason for the major differences between neighbourhoods of similar age code and neighbourhood type can be summarized under two to three categories. For example, the discrepency between North St. Boniface and Centennial can be explained by the difference in timing of the neighbourhood redevelopment process. North St. Boniface is one of

- 19 -

Neighbourhood Code	Age Code	Name	Туре	CHIP Pen.	Number of Dwellings
5001	0	North St. Boniface	М	15.8	379
1002	0	Centennial	М	42.5	252
5003	0	Tissot	R	5.9	34
1008	0	Daniel MacIntyre	R	42.1	1968
6009	2	Wildwood	С	6.2	354
6005	2	Maybank	С	41.5	554
1019	0	Armstrong Point	S	5.0	100
6012	2	Crescent Park	S	35.1	777

.

Table 4

Comparison of a Sample of Outlying Neighbourhoods

- M = Major Improvement
- R = Rehabilitation
- C = Conservation
- S = Stable

the older NIP Neighbourhoods and substantial upgrading occured prior to the implementation of the CHIP grants. Many of the units in the area would have had insulation upgrading done under other auspices. Centennial neighbourhood on the other hand is currently in the midst of redevelopment and CHIP grant funds will be used for reinsulation activities so that other available social funds may be channelled to other priorities. Centennial neighbourhood is benefitting from the service of several active neighbourhood groups and social agencies.

The remaining neighbourhoods with low CHIP penetration rates are unlikely targets for blitz marketing techniques by the major direct sales insulating companies. Tissot is the smallest neighbourhood of the group with only 34 owner occupied single and semidetached dwelling units. The assessment in Tissot is about \$2,750. which is about one standard deviation below the mean assessment for the Type.

Armstrong's Point is a relatively small neighbourhood with a high proportion of large, turn of the century, homes that are difficult to insulate. The income levels in the neighbourhood are quite high with a result that the burden of heating bills over the last five years will have been relatively low. These factors in combination would render the neighbourhood an unattractive target for the blitz techniques which were successful in other areas. Wildwood neighbourhood, while significantly larger, presents an equally unattractive target for the direct sellers of insulation, partly because the neighbourhood is relatively isolated from other neighbourhoods by virtue of its position on an oxbow of the Red River. In addition, because of their income levels, the occupants will have been relatively immune to the pressure of rising energy costs and thus not susceptible to the attraction of superficial insulation, provided at low cost, by a taxable government grant.

The other neighbourhoods in the Table all provide examples of relatively high penetration rates for CHIP grants. Daniel MacIntyre, Crescent Park and Maybank neighbourhoods are all middle class neighbourhoods which would be relatively susceptible to the mass marketing techniques employed by the insulation contractors. Substantial numbers of the dwelling units in these neighbourhoods are relatively small one and one half or two storey units which could have blown cellulose attic insulation added at costs well within the range of the CHIP grant limits.

2.4 MHIP Distribution and Penetration

The procedure undertaken to identify the distribution of MHIP take-up and distribution parallelled the methodology used in the CHIP grant analysis. Neighbourhood identifiers were attached to each entry on the MHIP file and then the entries were sorted by neighbourhood. The number of loans in each neighbourhood was then obtained by cumulation.

- 22 -

Active loans were identified in 144 neighbourhoods in the City of Winnipeg. As with the CHIP analysis, the penetration rate was calculated on the basis of the number of loans outstanding as a percentage ratio of the number of owner occupied dwelling units in each neighbourhood. In this case, there was no age criterion to determine eligibility; thus, the problem of distinguishing between neighbourhoods with a low penetration of eligible dwellings and a low number of eligible dwellings is not a factor.

A complete listing of the penetration rates by MHIP for the 144 neighbourhoods used in the analysis is included in Appendix A. As can be seen in the Appendix the penetration rates achieved by MHIP are generally below those achieved by CHIP.

Table 5 summarized the penetration of MHIP in terms of mean penetration rates and standard deviations for the neighbourhood subsets sorted according to age code. The mean penetration rate is inversely correlated with the age code; falling from 10 per cent in the oldest neighbourhoods to about 5 per cent in the youngest. As discussed previously the distinction between age code '3' and age code '4' neighbourhoods may be quite blurred and the similarity between mean penetration rates is not surprising.

The distribution of MHIP penetration rates sorted by neighbourhood type is present in Table 6. The trend for the average penetration rate to be higher in the neighbourhoods more likely to be subject

- 23 -

to public intervention is obvious. The two Redevelopment neighbourhoods have penetration rates averaging about 12 per cent while the Stable and Emerging neighbourhoods have an approximately 5 per cent peneration rate.

Table 5 Distribution of Penetration Rates of MHIP Sorted by Age Code

<u>Age Code</u>	Mean	Standard Deviation
0	10.2	3.3
1	9.5	3.1
2	6.7	2.8
3	4.7	2.6
4	5.1	2.4

The pattern of outliers substantially more than one standard deviation away from the means is interesting. In the Rehabilitation neighbourhoods, both of the significant outliers lie below the mean. Tissot was one of the lower penetration rate neighbourhoods in the CHIP grant analysis. Lord Selkirk Park is a small neighbourhood with 65 owner occupied dwellings.

In the Major Improvement neighbourhoods both significant outliers lie above the mean for the category. Centennial neighbourhood had a penetration rate for the CHIP grants that was also significantly above the mean for the category. William Whyte is another neighbourhood where active public interventions are underway. The Conservation neighbourhoods have significant outliers above and below the mean for the category. Paddock, St. John's Park and West Elmwood all lie significantly more than one standard deviation above the mean. Holden, Wildwood and Alpine Place all have penetration rates lying more than one standard deviation below the mean.

All of the significant outliers for the Stable neighbourhoods lie above the mean. North River Heights, a middle class neighbourhood, has the second highest penetration rate of any neighbourhood in the class. Sir John Franklin, Woodhaven and Silver Heights are other neighbourhoods that have penetration rates substantially more than one standard deviation above the mean. Several neighbourhoods have penetrations lying slightly more than one standard deviation below the mean but the discrepancy is not nearly so pronounced as for the four neighbourhoods listed above.

The fact that several middle class neighbourhoods in the Stable category lie significantly above the mean penetration rate for the type should not be particularly surprising given the nature of the program. Loans made under MHIP can be used for many purposes other than incremental insulation. The interest subsidy available through the loan plan is not taxable and the loan makes a convenient method of financing a relatively large purchase.

For the Emerging neighbourhoods, the significant outliers again are above the mean. In this case, the neighbourhoods are North Main West and Southglen.

- 25 -

Table 6

Distribution of MHIP Penetration Rates Sorted by Type of Neighbourhood

Туре	Mean	Standard Deviation
V	12.1	0.9
М	10.5	2.7
R	10.6	3.7
С	8.6	3.3
S	5.1	2.3
E	5.3	2.9

.

3.0 CONCLUSION

The preceding data demonstrate that the CHIP program achieved higher penetration than MHIP. This undoubtedly results, at least in part, from the saturation marketing techniques used by insulation contractors to market CHIP. A further factor may be that homeowners prefer grants to loans for such activities.

The penetration rates for both CHIP and MHIP reflect a prior impressions of the distribution of penetration rates. The older neighbourhoods were constructed well before modern insulation became available and are most likely to have renovations underway for other purposes - the most propitious time for reinsulating a dwelling.

APPENDIX A

Summary Data on Neighbourhoods, Numbers of CHIP Grants, MHIP Loans, CHIP and MHIP penetrations

Key

Neigh	-	Neighbourhood Code Number
Age	-	Age Code Number
Туре	-	Neighbourhood Type Code
Dwell	-	Number of Owner-Occupied Single & Semi- detached Dwelling Units
CHIP		Number of CHIP Grants
MHIP	-	Number of MHIP Loans
CHPPEN	-	(CHIP÷ DWELL) *100
MHPPEN		(MHIP÷ DWELL) *100

NE I GH	NAME	AGE	TYPE	DWELL	CHIP	MHIP	CHPPEN	MHPPEN
1001 2001	LOGAN/CPR KENSINGTON	0 0	V V	96 94	34 50	11 12	35.42 53.19	11.46 12.77
NEIGH	NAME	AGE	ТҮРЕ	DWELL	CHIP	MHIP	CHPPEN	MHPPEN
1002 1003 1004 1005 2002 3001 3002 4001 5001	CENTENNIAL MEMORIAL SPENCE WEST ALEXANDER BROOKLANDS DUFFERIN WILLIAM-WHYTE CHALMERS NTH-STN- BONIFACE	0 0 0 0 0 0 0 0	M M M M M M	252 300 480 738 700 382 1317 2325 379	107 85 197 247 202 138 468 829 60	38 30 47 54 62 38 190 255 30	42.46 28.33 41.04 33.47 28.86 36.13 35.54 35.66 15.83	$ \begin{array}{r} 15.08 \\ 10.00 \\ 9.79 \\ 7.32 \\ 8.86 \\ 9.95 \\ 14.43 \\ 10.97 \\ 7.92 \\ \end{array} $
NEIGH	NAME	AGE	TYPE	DWELL	CHIP	MHIP	CHPPEN	MHPPEN
1006 1007 1008 1009 1010 1011 1012 1013 1014 2003 3003 3004 3005 3006 4002 4003 4004 5002	EARL-GREY EBBY WENTWORTH DANIEL-MAC LORD ROBERTS MCMILLAN RIVER - OSBOURNE STN-MATTHEWS WESTMINISTER WESTON KING-EDWARD BURROWS-CENTRAL LORD-SELKIRK-PK LUXTON STN-JOHNS MELROSE TALBOT-GREY VICTORIA-WEST CTRL-STN-	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	R	$1064 \\ 244 \\ 1968 \\ 1434 \\ 416 \\ 113 \\ 1268 \\ 1862 \\ 1449 \\ 1861 \\ 1421 \\ 65 \\ 781 \\ 1880 \\ 464 \\ 778 \\ 950 \\ 941 \\ 181 \\ 180 \\ 941 \\ 180 \\ 190 \\ 18$	$\begin{array}{c} 389 \\ 71 \\ 828 \\ 546 \\ 115 \\ 33 \\ 526 \\ 590 \\ 555 \\ 601 \\ 400 \\ 14 \\ 269 \\ 655 \\ 131 \\ 254 \\ 249 \\ 189 \end{array}$	$128 \\ 30 \\ 266 \\ 212 \\ 59 \\ 12 \\ 150 \\ 235 \\ 202 \\ 207 \\ 128 \\ 1 \\ 108 \\ 221 \\ 45 \\ 84 \\ 78 \\ 59 \\ 1 \\ 108 \\ 25 \\ 1 \\ 108 \\ 25 \\ 1 \\ 108 \\ 25 \\ 1 \\ 108 \\ 25 \\ 1 \\ 108 \\ 25 \\ 1 \\ 1 \\ 108 \\ 25 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	36.56 29.10 42.07 38.08 27.64 29.20 41.48 31.69 38.30 32.29 28.15 21.54 34.44 34.84 28.23 32.65 26.21 20.09	$12.03 \\ 12.30 \\ 13.52 \\ 14.78 \\ 14.18 \\ 10.62 \\ 11.83 \\ 12.62 \\ 13.94 \\ 11.12 \\ 9.01 \\ 1.54 \\ 13.83 \\ 11.76 \\ 9.70 \\ 10.80 \\ 8.21 \\ 6.27 \\ 12.62 \\ 13.62 \\ 13.62 \\ 10.80 \\ 1$
5003	BONIFACE TISSOT	0	R	34	2	1	5.88	2.94

NEIGH	NAME	AGE	TYPE	DWELL	CHIP	MHIP	CHPPEN	MHPPEN
1015	MINTO	0	С	1790	664	164	37.09	9.16
1016	RIVERVIEW	0	С	1374	469	141	34.13	10.26
1017	ROSLYN	4	С	122	5	5	4.10	4.10
1018	SARGENT-PK	0	С	1957	730	130	37.30	6.64
2004	BRUCE-PARK	1	С	566	184	56	32.51	9.89
2005	DEER-LODGE	0	С	1347	451	142	33.48	10.54
2006	PADDOCK	1	Ċ	16	2	3	12.50	18.75
3007	BURROWS-KEEWATIN	2	С	341	104	43	30.50	12.61
3008	INKSTER-FARADAY	Ó	С	1266	362	106	28.59	8.37
3009	JEFFERSON	2	Ċ	2557	807	152	31.56	5 94
3010	MYNARSKI	2	č	318	92	17	28.93	5 35
3011	NTH-PT-DOUGLAS	ō	č	483	135	53	27.95	10 97
3012	ROBERTSON	2	č	1636	553	123	33.80	7.52
3013	STN-JOHN'S-PK	ō	č	120	49	19	40.83	15.83
3014	SEVEN-OAKS	1	č	1082	319	82	29 48	7 58
3015	SHAUGNHESSY-PK	2	Č	706	203	63	28 75	8 92
4005	FAST-FL MWOOD	2	õ	966	338	91	34 99	9.72
4006	KFRN-PK	3	Č	582	93	48	15 98	8 25
4007	MUNROF-WEST	2	Č	1084	394	100	36 35	9 23
4008	RADISSON	1	Č	1269	210	88	16 55	6 93
4009	WEST-FL MWOOD	Ō	C C	753	344	108	45 68	14 34
5004	ALPINE PLACE	3	Č	18	3	100	16 67	14.04
5005	ARCHWOOD	Ő	č	314	92	37	29 30	11 78
5006	DUERESNE	ñ	Č	102	24	12	23 53	11.76
5007	FI M-PK	ñ	č	581	172	60	29 60	10 22
5008	GLENWOOD	Õ	č	1499	482	132	32 15	2 21
5009	HOLDEN	2	č	56	7	2	12 50	3 57
5010	IAVALLEE	2	č	214	42	1/	19 63	5.57
5010	MAGINOT	л Л	č	211	33	10	19.03	5 52
5012	NORRERRY	- -	č	168	117	34	25.00	7 26
5012	NORWOOD_FAST	ů Ú	C C	1100	286	0/I	24.03	7.20
5010	NORWOOD-WEST	1	č	0.95	200	01	24.03	7.90
5015	STN_GEODGE	1	ĉ	1037	30/	01	27 00	9.24
5015	VADENNES	1	C C	357	115	36	37.99	0./0
5010		2	Č	501	151	50	25 55	10.00
6001	CRESCENTWOOD	0	Ċ	751	253	02	22.00	9.90
6001	REALMONT	2	C	7J1 011	100	63	22.09	11.05
6002		2	C C	21	100	1	23.10	1.03
6003	CDANT DV	1	C C	216	01	24	23.01	4.70
6004	MAN DANK	1	C C	510	220	24	23.03	/.59
6005	PIAT-DANK	2	C C	554	2.30	40	41.52	0.00
0000	PUINI-RUAD	2	U	665	225	52	33.83	7.82
bUU/	KUCKWOOD	1	C	1028	339	84	32.98	8.17
6008	VAKSIIY-VIEW	3	C	530	63	39	11.89	7.36
6009	WILDWOOD	2	С	354	22	7	6.21	1.98

- A.5 -

1019 ARMSTRONG'S-PT 0 S 100 5 2 5.00 2.00 2007 BIRCHWOOD 2 S 277 76 8 27.44 2.89 2008 BOOTH 4 S 964 81 29 8.40 3.01 2009 BUCHANAN 4 S 705 15 40 2.13 5.67 2010 CRESTVIEW 4 S 705 15 40 2.13 5.67 2011 GLENDALE 4 S 710 1 37 0.14 4.52 2012 HERTAGE-PK 4 S 782 92 44 11.76 5.63 2015 SILVER-HTS 2 S 1337 379 85 20.63 4.63 3016 GARDEN-CITY 2 S 1403 3.66 4.63 3017 THE-MAPLES 4 S 603 29 21 4.68	NEIGH	NAME	AGE	TYPE	DWELL	CHIP	MHIP	CHPPEN	MHPPEN
2007 BIRCHWOOD 2 S 277 76 8 27.44 2.89 2008 BOOTH 4 S 964 81 29 8.40 3.01 2010 CRESTVIEW 4 S 2430 10 105 0.41 4.32 2011 GLENDALE 4 S 150 17 7 11.33 4.67 2012 HERITAGE-PK 4 S 710 1 37 0.14 5.21 2014 KIRKFIELD-PK 4 S 782 92 44 11.7 5.63 2015 SILVER-HTS 2 S 1637 30 3.78 10.03 2016 WGSTMOD-A 4 S 664 107 30 3.78 10.03 3016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3017 THE-MAPLES 4 S 603 29 23 </td <td>1019</td> <td>ARMSTRONG' S-PT</td> <td>0</td> <td>S</td> <td>100</td> <td>5</td> <td>2</td> <td>5.00</td> <td>2.00</td>	1019	ARMSTRONG' S-PT	0	S	100	5	2	5.00	2.00
2008 BOTH 4 S 964 81 29 8.40 3.01 2009 BUCHANAN 4 S 705 15 40 2.13 5.67 2010 CRESTVIEW 4 S 2430 10 105 0.41 4.32 2011 GLENDALE 4 S 160 17 7 11.33 4.67 2014 KIRTELO-PK 4 S 782 92 44 11.76 5.63 2015 SILVER-HTS 2 S 1525 499 140 32.72 9.18 2016 MESTMODD-B 4 S 299 101 30 33.78 10.03 3016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4011 KILDONAN-DR 2 S 2076	2007	BIRCHWOOD	2	S	277	76	8	27.44	2.89
2009 BUCHANAN 4 S 705 15 40 2.13 5.67 2010 CRESTVIEW 4 S 2430 10 105 0.41 4.32 2011 GLENDALE 4 S 150 17 7 11.33 4.67 2012 HERITAGE-PK 4 S 700 1 37 0.14 5.63 2015 SILVER-HTS 2 S 1525 499 140 32.72 9.18 2016 KESTNODO-A 4 S 664 107 30 16.11 4.52 2017 MOODAVEN 4 S 2637 117 0.04 4.35 3016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3017 THE-MAPLES 4 S 603 29 22 4.81 3.65 4010 KILDARE-RENDONA 3 S 2029 73	2008	BOOTH	4	S	964	81	29	8.40	3.01
2010 CRESTVIEW 4 S 2430 10 105 0.41 4.32 2011 GLENDALE 4 S 150 17 7 11.33 4.67 2012 HERITAGE-PK 4 S 782 92 44 11.76 5.63 2016 SILVER-HTS 2 S 1525 499 140 32.72 9.18 2016 WESTMOD-A 4 S 269 101 30 33.78 10.03 2017 WODDHAVEN 4 S 253 47 98 1.86 3.87 2016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3017 THE-MAPLES 4 S 2637 1 117 0.04 4.35 2018 MARGARET-PK 4 S 2663 19 125 24.98 6.02 4011 KILDARE-REDONDA 3 S 2076 501 118 3.60 5.82 4013 ROSSMERE-A 2	2009	BUCHANAN	4	S	705	15	40	2.13	5.67
2011 GLENDALE 4 S 150 17 7 11.33 4.67 2012 HERITAGE-PK 4 S 710 1 37 0.14 5.21 2014 KIRKFIELD-PK 4 S 782 92 44 11.76 5.63 2015 SILVER-HTS 2 S 1525 499 140 32.72 9.18 2016 WESTMOD-A 4 S 293 101 30 33.78 10.03 2024 WESTMOD-B 4 S 2687 1 117 0.04 4.63 2016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3017 THE-MPLES 4 S 2687 1 117 0.04 4.35 3018 MARGARET-PK 4 S 2687 1 117 0.04 4.35 4011 KILDONAN-DR 2 S 2076 519 199 103 28.27 7.31 4013 ROSSMERE-A	2010	CRESTVIEW	4	S	2430	10	105	0.41	4.32
2012 HERITAGE-PK 4 S 710 1 37 0.14 5.21 2014 KIRKFIELD-PK 4 S 782 92 44 11.76 5.63 2015 SILVER-HTS 2 S 782 92 44 11.76 5.63 2016 WESTWOOD-A 4 S 664 107 30 15.11 4.52 2017 WODMAVEN 4 S 2633 47 98 1.86 3.87 3016 GARDEN-CITY 2 S 1837 79 85 20.63 4.63 3017 THE-MAPLES 4 S 2687 1 117 0.04 4.35 4011 KILDONAN-DR 2 S 2079 73 118 3.60 5.82 4012 MUNROE-EAST 2 S 2076 519 125 24.98 6.02 4013 ROSSMRER-A 2 S 2066	2011	GLENDALE	4	S	150	17	7	11.33	4.67
2014 KIRKFIELD-PK 4 S 782 92 44 11.76 5.63 2015 SILVER-HTS 2 S 1525 499 140 32.72 9.18 2016 WESTWOOD-A 4 S 299 101 30 33.78 10.03 2017 WOODAVEN 4 S 299 101 30 33.78 10.03 2024 WESTWOOD-B 4 S 2533 47 98 1.86 3.87 3016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3018 MARGARET-PK 4 S 603 29 22 4.81 3.65 4010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4013 ROSSMERE-A 2 S 2761 550 109 19.92 3.95 4043 ROSSMERE-A 2 S <td< td=""><td>2012</td><td>HERITAGE-PK</td><td>4</td><td>S</td><td>710</td><td>1</td><td>37</td><td>0.14</td><td>5.21</td></td<>	2012	HERITAGE-PK	4	S	710	1	37	0.14	5.21
2015 SILVER-HTS 2 S 1525 499 140 32.72 5.18 2016 WESTWOOD-A 4 S 664 107 30 15.11 4.52 2017 WODHAVEN 4 S 299 101 30 33.78 10.03 2024 WESTWOOD-B 4 S 2533 47 98 1.86 3.87 3017 THE-MAPLES 4 S 2687 1 117 0.04 4.35 4010 KILDARE-REDONDA 3 S 2029 73 118 3.66 5.82 4011 KILDARE-REDONDA 3 S 2029 73 118 3.66 6.28 4012 MURROE-EAST 2 S 2076 519 125 24.98 6.02 4013 ROSSMERE-A 2 S 1076 48 68 4.46 6.32 4013 ROSSMERE-B 2 S 1076 48 68 4.46 6.32 5020 NIAKWA-PK	2014	KIRKFIELD-PK	4	S	782	92	44	11.76	5.63
2016 WESTWOOD-A 4 S 664 107 30 16 11 4.52 2017 WOODHAVEN 4 S 299 101 30 33.78 10.03 2024 WESTWOOD-B 4 S 299 101 30 33.78 10.03 3016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3017 THE-MAPLES 4 S 603 29 22 4.81 3.65 4010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4011 KILDONAN-DR 2 S 2076 519 125 24.98 6.02 4013 ROSSMERE-A 2 S 2761 550 109 19.92 3.95 4043 ROSSMERE-B 2 S 1507 504 86 4.46 6.3.25 5021 PULBERRY 4	2015	SILVER-HTS	2	S	1525	499	140	32.72	9.18
2017 WOODHAVEN 4 S 299 101 30 33.76 10.03 2024 WESTMOOD-B 4 S 2533 47 98 1.86 3.87 3016 GARDEN-CTTY 2 S 1837 379 85 20.63 4.63 3017 THE-MAPLES 4 S 2687 1 117 0.04 4.35 3010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4011 KILDONAN-DR 2 S 1409 399 103 28.32 7.31 4012 MUNROE-EAST 2 S 2078 519 125 24.98 6.02 4013 ROSSMERE-B 2 S 1507 504 82 3.44 5.44 5019 MINNETONKA 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S	2016	WESTWOOD-A	4	S	664	107	30	16.11	4.52
2024 WESTWOOD-B 4 S 2533 47 98 1.86 3.87 3016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3017 THE-MAPLES 4 S 603 29 22 4.81 3.65 3018 MARGARET-PK 4 S 603 29 22 4.81 3.66 4010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4011 KILDARE-REDONDA 2 S 1409 399 103 28.32 7.31 4012 MUNROE-EAST 2 S 2078 519 125 24.98 6.02 4013 ROSSMERE-A 2 S 2076 61 14 29.61 6.80 5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.80 5021 PULBERRY 4 S 1076 48 68 4.46 6.32 5024 VISTA <t< td=""><td>2017</td><td>WOODHAVEN</td><td>4</td><td>S</td><td>299</td><td>101</td><td>30</td><td>33.78</td><td>10.03</td></t<>	2017	WOODHAVEN	4	S	299	101	30	33.78	10.03
3016 GARDEN-CITY 2 S 1837 379 85 20.63 4.63 3017 THE-MAPLES 4 S 2687 1 117 0.04 4.35 3018 MARGARET-PK 4 S 603 29 22 4.81 3.65 4010 KILDARE-REDNDA 3 S 2029 73 118 3.60 5.82 4011 KILDONAN-DR 2 S 1409 399 103 28.32 7.31 4012 MUNROE-EAST 2 S 2076 519 125 24.98 6.02 4013 ROSSMERE-B 2 S 1507 504 82 33.44 5.44 5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.80 5020 MIAKAA-PK 4 S 1236 92 53 7.44 4.29 5023 VICORIA-CRESCENT 4 S	2024	WESTWOOD-B	4	S	2533	47	98	1.86	3.87
3017 THE-MAPLES 4 S 2687 1 117 0.04 4.35 3018 MARGARET-PK 4 S 603 29 22 4.81 3.65 4010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4011 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4012 MUNROE-EAST 2 S 2761 550 109 19.92 3.95 4043 ROSSMERE-A 2 S 1507 504 82 33.44 5.49 5018 MINNETON-CRESCENT 0 S 206 61 14 29.61 6.80 5020 NIAKWA-PK 4 S 154 33 5 21.43 3.25 5021 PULBERRY 4 S 1236 92 53 7.44 4.29 5025 WINSOR-PK 2 S 3200 685 247 21.41 7.72 6014 AGASSIZ <td< td=""><td>3016</td><td>GARDEN-CITY</td><td>2</td><td>S</td><td>1837</td><td>379</td><td>85</td><td>20.63</td><td>4.63</td></td<>	3016	GARDEN-CITY	2	S	1837	379	85	20.63	4.63
3018 MARGARET-PK 4 S 603 29 22 4.01 3.65 4010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4011 KILDONAN-DR 2 S 1409 399 103 28.32 7.31 4012 MUNRDE-EAST 2 S 2078 519 125 24.98 6.02 4013 ROSSMERE-A 2 S 2761 550 109 19.92 3.95 4043 ROSSMERE-B 2 S 1507 504 82 33.44 5.44 5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.82 5020 NIAKWA-PK 4 S 126 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 1236 92 51.43 3.25 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2	3017	THE-MAPLES	4	S	2687	1	117	0.04	4.35
4010 KILDARE-REDONDA 3 S 2029 73 118 3.60 5.82 4011 KILDONAN-DR 2 S 1409 399 103 28.32 7.31 4012 MUNROE-EAST 2 S 2078 519 125 24.98 6.02 4013 ROSSMERE-A 2 S 2761 550 109 19.92 3.95 4043 ROSSMERE-B 2 S 1507 504 82 33.44 5.44 5018 KINGSTON-CRESCENT 0 S 206 61 4 9.61 6.80 5020 NIAKWA-PK 4 S 1076 48 68 4.46 6.32 5021 PUBERRY 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 2320 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS	3018	MARGARET-PK	4	S	603	29	22	4.81	3.65
4011 KILDONAN-DR 2 S 1409 399 103 28.32 7.31 4012 MUNRDE-EAST 2 S 2078 519 125 24.98 6.02 4013 ROSSMERE-A 2 S 2761 550 109 19.92 3.95 4043 ROSSMERE-B 2 S 1507 504 82 33.44 5.44 5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.80 5020 NIAKWA-PK 4 S 1076 48 68 4.46 6.32 5021 PULBERRY 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 1236 92 53 7.44 4.29 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.27 6011 CRESCENT-PK <t< td=""><td>4010</td><td>KILDARE-REDONDA</td><td>3</td><td>S</td><td>2029</td><td>73</td><td>118</td><td>3.60</td><td>5.82</td></t<>	4010	KILDARE-REDONDA	3	S	2029	73	118	3.60	5.82
4012 MUNROE-EAST 2 S 2078 519 125 24.98 6.02 4013 ROSSMERE-A 2 S 2761 550 109 19.92 3.95 4013 ROSSMERE-B 2 S 1507 504 82 33.44 5.44 5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.80 5020 NIAKMA-PK 4 S 1076 48 68 4.46 6.32 5020 NIAKMA-PK 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 1236 92 53 7.44 4.29 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 A6ASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRI-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK	4011	KILDONAN-DR	2	S	1409	399	103	28.32	7.31
4013 ROSSMERE-A 2 S 2761 550 109 19.92 3.95 4043 ROSSMERE-B 2 S 1507 504 82 33.44 5.44 5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.80 5019 MINNETONKA 4 S 1076 48 68 4.46 6.32 5020 NIAKMA-PK 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 1236 92 53 7.44 4.29 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.27 6010 AGASSIZ 2 S 773 16 3 9.25 1.73 6011 CRESCENT-PK 2 S 777 273 56 35.14 7.27 6014 ERIC-COY 3	4012	MUNROE-EAST	2	S	2078	519	125	24.98	6.02
4043 ROSSMERE-B 2 S 1507 504 82 33.44 5.44 5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.80 5019 MINNETONKA 4 S 1076 48 68 4.46 6.32 5020 NIAKWA-PK 4 S 1236 92 53 7.44 4.29 5021 PULBERRY 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 232 28 3 12.07 1.29 5024 VISTA 3 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3	4013	ROSSMERE-A	2	S	2761	550	109	19.92	3.95
5018 KINGSTON-CRESCENT 0 S 206 61 14 29.61 6.80 5019 MINNETONKA 4 S 1076 48 68 4.46 6.32 5020 NIAKMA-PK 4 S 154 33 5 21.43 3.25 5021 PULBERRY 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 232 28 3 12.07 1.29 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3	4043	ROSSMERE-B	2	S	1507	504	82	33.44	5.44
5019 MINNETONKA 4 S 1076 48 68 4.46 6.32 5020 NIAKWA-PK 4 S 154 33 5 21.43 3.25 5021 PULBERRY 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 232 28 3 12.07 1.29 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6014 ERIC-COY 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S <td< td=""><td>5018</td><td>KINGSTON-CRESCENT</td><td>0</td><td>S</td><td>206</td><td>61</td><td>14</td><td>29.61</td><td>6.80</td></td<>	5018	KINGSTON-CRESCENT	0	S	206	61	14	29.61	6.80
5020 NIAKWA-PK 4 S 154 33 5 21.43 3.25 5021 PULBERRY 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 232 28 3 12.07 1.29 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6014 MARLTON 3 S </td <td>5019</td> <td>MINNETONKA</td> <td>4</td> <td>S</td> <td>1076</td> <td>48</td> <td>68</td> <td>4.46</td> <td>6.32</td>	5019	MINNETONKA	4	S	1076	48	68	4.46	6.32
5021 PULBERRY 4 S 1236 92 53 7.44 4.29 5023 VICTORIA-CRESCENT 4 S 232 28 3 12.07 1.29 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6016 MARTHERS 2	5020	NIAKWA-PK	4	S	154	33	5	21.43	3.25
5023 VICTORIA-CRESCENT 4 5 232 28 3 12.07 1.29 5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6014 ERIC-OY 3 S 159 27 9 16.98 5.66 6015 FORT-RICHMOND 3 S 159 27 9 16.98 5.66 6016 JMBN-MITCHELL 2	5021	PULBERRY	4	S	1236	92	53	7.44	4.29
5024 VISTA 3 S 354 7 17 1.98 4.80 5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6016 MARLTON 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S 424 113 21 26.65 4.95 6020 NTH-RIVER-HTS 0 <td< td=""><td>5023</td><td>VICTORIA-CRESCENT</td><td>4</td><td>S</td><td>232</td><td>28</td><td>3</td><td>12.07</td><td>1.29</td></td<>	5023	VICTORIA-CRESCENT	4	S	232	28	3	12.07	1.29
5025 WINDSOR-PK 2 S 3200 685 247 21.41 7.72 6010 AGASSIZ 2 S 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6017 MARLTON 3 S 159 27 9 16.98 5.66 6019 MOUNT-BATTEN 3 S 675 33 20 4.89 2.96 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXEDO 3 <td>5024</td> <td>VISTA</td> <td>3</td> <td>S</td> <td>354</td> <td>7</td> <td>17</td> <td>1.98</td> <td>4 80</td>	5024	VISTA	3	S	354	7	17	1.98	4 80
6010 AGASSIZ 2 5 173 16 3 9.25 1.73 6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6017 MARLTON 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S 424 113 21 26.65 4.95 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.22 4.17 6021 OLD-TUXEDO 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3	5025	WINDSOR-PK	2	S	3200	685	247	21.41	7.72
6011 CTRL-RIVER-HTS 0 S 1197 348 87 29.07 7.27 6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6017 MARLTON 3 S 159 27 9 16.98 5.665 6018 MATHERS 2 S 424 113 21 26.65 4.95 6019 MOUNT-BATTEN 3 S 675 33 20 4.89 2.96 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXED0 3 S 360 80 15 22.22 4.17 6025 STN-NORBERT 4<	6010	AGASSIZ	2	S	173	16	3	9.25	1.73
6012 CRESCENT-PK 2 S 777 273 56 35.14 7.21 6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6017 MARLTON 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S 424 113 21 26.65 4.95 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXEDO 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3 S 108 5 3 4.63 2.78 6024 ROBLIN-PK 3 S 307 4 10 1.30 3.26 6025 STN-NORBERT 4	6011	CTRL-RIVER-HTS	0	S	1197	348	87	29.07	7.27
6014 ERIC-COY 3 S 749 69 32 9.21 4.27 6015 FORT-RICHMOND 4 S 2371 28 120 1.18 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6017 MARLTON 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S 424 113 21 26.65 4.95 6019 MOUNT-BATTEN 3 S 675 33 20 4.89 2.96 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXED0 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3 S 108 5 3 4.63 2.78 6024 ROBLIN-PK 3 S 307 4 10 1.30 3.26 6025 STN-NORBERT 4 S	6012	CRESCENT-PK	2	Š	777	273	56	35.14	7.21
6015 FORT-RICHMOND 4 S 2371 28 120 1.11 5.06 6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6017 MARLTON 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S 424 113 21 26.65 4.95 6019 MOUNT-BATTEN 3 S 675 33 20 4.89 2.96 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXEDO 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3 S 108 5 3 4.63 2.78 6021 OLD-TUXEDO 3 S 307 4 10 1.30 3.26 6024 ROBLIN-PK 3 S 307 4 10 1.30 3.26 6025 STN-NORBERT 4	6014	ERIC-COY	3	Š	749	69	32	9.21	4.27
6016 JNBN-MITCHELL 2 S 300 112 19 37.33 6.33 6017 MARLTON 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S 424 113 21 26.65 4.95 6019 MOUNT-BATTEN 3 S 675 33 20 4.89 2.96 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXEDO 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3 S 108 5 3 4.63 2.78 6024 ROBLIN-PK 3 S 307 4 10 1.30 3.26 6025 STN-NORBERT 4 S 307 4 10 1.30 3.26 6028 STH-RIVER-HTS 2 S 930 325 111 34.95 11.94 6027 SOUTHBOINE 3 <t< td=""><td>6015</td><td>FORT-RICHMOND</td><td>4</td><td>S</td><td>2371</td><td>28</td><td>120</td><td>1.18</td><td>5.06</td></t<>	6015	FORT-RICHMOND	4	S	2371	28	120	1.18	5.06
6017 MARLTON 3 S 159 27 9 16.98 5.66 6018 MATHERS 2 S 424 113 21 26.65 4.95 6019 MOUNT-BATTEN 3 S 675 33 20 4.89 2.96 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXEDO 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3 S 108 5 3 4.63 2.78 6024 ROBLIN-PK 3 S 321 32 10 9.97 3.12 6025 STN-NORBERT 4 S 307 4 10 1.30 3.26 6026 SIR-JOHN-FRANKLIN 2 S 930 325 111 34.95 11.94 6027 SOUTHBOINE 3 S 180 1 4 0.56 2.22 6028 STH-RIVER-HTS 2 <	6016	JNBN-MITCHELL	2	S	300	112	19	37.33	6.33
6018 MATHERS 2 S 424 113 21 26.65 4.95 6019 MOUNT-BATTEN 3 S 675 33 20 4.89 2.96 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXEDO 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3 S 108 5 3 4.63 2.78 6024 ROBLIN-PK 3 S 321 32 10 9.97 3.12 6025 STN-NORBERT 4 S 307 4 10 1.30 3.26 6026 SIR-JOHN-FRANKLIN 2 S 930 325 111 34.95 11.94 6027 SOUTHBOINE 3 S 180 1 4 0.56 2.22 6028 STH-RIVER-HTS 2 S 896	6017	MARLTON	3	S	159	27	9	16.98	5.66
BOIR MATHERS 2 3 11 <t< td=""><td>co10</td><td>MATHERS</td><td>2</td><td>s</td><td>424</td><td>113</td><td>21</td><td>26.65</td><td>4.95</td></t<>	co10	MATHERS	2	s	424	113	21	26.65	4.95
b019 MOUNT-BATTEN 3 3 5 073 30 10 10.52 6020 NTH-RIVER-HTS 0 S 2054 671 216 32.67 10.52 6021 OLD-TUXED0 3 S 360 80 15 22.22 4.17 6022 RIDGEDALE 3 S 108 5 3 4.63 2.78 6024 ROBLIN-PK 3 S 321 32 10 9.97 3.12 6025 STN-NORBERT 4 S 307 4 10 1.30 3.26 6026 SIR-JOHN-FRANKLIN 2 S 930 325 111 34.95 11.94 6027 SOUTHBOINE 3 S 180 1 4 0.56 2.22 6030 VIALOUX 3 S 177 9 4 5.08 2.26 6031 WELLINGTON-CRESCENT 0 S 521	6018	MATHERS MOUNT DATTEN	2	5	675	33	20	4.89	2,96
6020 NIH-RIVER-HIS 0 3 5 2004 012 21.0	6019	MUUNI-BAIIEN	0	2	2054	671	216	32.67	10.52
6021 0LD-TOLEDO 3 5 500 00 10 11	6020		3	5	360	80	15	22.22	4.17
6022 RIDGEDALE 3 3 100 3 100 9.97 3.12 6024 ROBLIN-PK 3 S 321 32 10 9.97 3.12 6025 STN-NORBERT 4 S 307 4 10 1.30 3.26 6026 SIR-JOHN-FRANKLIN 2 S 930 325 111 34.95 11.94 6027 SOUTHBOINE 3 S 180 1 4 0.56 2.22 6028 STH-RIVER-HTS 2 S 896 179 33 19.98 3.68 6030 VIALOUX 3 S 177 9 4 5.08 2.26 6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25	6021		2	5	108	5	3	4.63	2.78
6024 ROBLIN-PK 3 3 3 321 32 13 326 6025 STN-NORBERT 4 S 307 4 10 1.30 3.26 6026 SIR-JOHN-FRANKLIN 2 S 930 325 111 34.95 11.94 6027 SOUTHBOINE 3 S 180 1 4 0.56 2.22 6028 STH-RIVER-HTS 2 S 896 179 33 19.98 3.68 6030 VIALOUX 3 S 177 9 4 5.08 2.26 6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25 6020 UETDALE 4 S 1303 1 93 0.08 7.14	6022	RIDGEDALE	2	5	321	32	10	9.97	3.12
6025 STN-NORBERT 4 3 307 4 10 11.94 6026 SIR-JOHN-FRANKLIN 2 S 930 325 111 34.95 11.94 6027 SOUTHBOINE 3 S 180 1 4 0.56 2.22 6028 STH-RIVER-HTS 2 S 896 179 33 19.98 3.68 6030 VIALOUX 3 S 177 9 4 5.08 2.26 6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25 6020 UETRALE 4 S 1303 1 93 0.08 7.14	6024	RUBLIN-PK	3	2	307	4	10	1.30	3.26
6026 STR-JOHN-FRANKLIN 2 3 500 510 111 64,55 111 64,55 111 64,55 111 64,55 12,22 6027 SOUTHBOINE 3 S 180 1 4 0.56 2.22 6028 STH-RIVER-HTS 2 S 896 179 33 19.98 3.68 6030 VIALOUX 3 S 177 9 4 5.08 2.26 6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25 6020 USETDALE 4 S 1303 1 93 0.08 7.14	6025	STN-NUKDERI	4	5	030	325	111	34.95	11.94
6027 SOUTHBUINE 5 5 100 1 6000 11 6028 STH-RIVER-HTS 2 S 896 179 33 19.98 3.68 6030 VIALOUX 3 S 177 9 4 5.08 2.26 6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25 6032 USETDALE 4 S 1303 1 93 0.08 7.14	6026	SIK-JUHN-FRANKLIN	2	5	180	1	4	0.56	2.22
b028 STR-RIVER-RTS Z S 050 175 050 1550 0500 6030 VIALOUX 3 S 177 9 4 5.08 2.26 6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25 6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25	6027	SUUTHBUINE	5	5	206	170	33	19,98	3.68
6031 WELLINGTON-CRESCENT 0 S 521 138 43 26.49 8.25	6028	SIM-KIVEK-MIS	2	5	177	1/5	4	5.08	2,26
5031 WELLINGIUN-CRESCENT 0 5 321 100 43 100 000 000 000 000 000 000 000 000 00	6030	VIALUUA	0	с с	521	138	43	26.49	8,25
	6031	WELLINGIUN-UKESCENI	4	S	1303	100	93	0.08	7.14

NEIGH	NAME	AGE	TYPE	DWELL	CHIP	MHIP	CHPPEN	MHPPEN
3020	LEILA-MCPHILLIPS	4	Е	94	3	7	3.19	7.45
3023	NTH-MAIN-WEST	4	Ε	201	78	27	38.81	13.43
3024	TEMPLETON-SINCLAIR	4	Ε	230	7	8	3.04	3.48
3025	TYNDALL-PK	4	E	1680	5	67	0.30	3.99
4016	MISSION-GARDENS	4	E	581	7	36	1.20	6.20
4017	PEGUIS	4	E	56	22	2	39.29	3.57
4018	RIVER-EAST	4	E	1902	48	80	2.52	4.21
4019	SPRINGFIELD-NTH	4	E	389	5	12	1.29	3.08
4020	SPRINGFIELD-STH	4	E	261	3	6	1.15	2.30
4022	VALLEY-GARDENS	4	E	1561	4	75	0.26	4.80
4025	TRANSCONA-STH	4	E	143	23	8	16.08	5.59
5026	MEADOW-WOOD	4	E	1024	8	58	0.78	5.66
5028	RICHFIELD	4	E	22	2	1	9.09	4.55
5030	SOUTHGLEN	4	E	140	7	19	5.00	13.57
6033	BETSWORTH	4	E	861	28	52	3.25	6.04
6036	ELMHURST	4	E	568	13	31	2.29	5.46
6037	FAIRFIELD-PK	4	E	18	6	1	33.33	5.56
6040	MONTCALM	4	E	37	4	1	10.81	2.70
6042	PARC-LA-SALLE	4	E	503	1	16	0.20	3.18
6046	WAVERLEY-HTS	4	E	1258	1	53	0.08	4.21
6053	CHEVRIER	4	E	67	16	3	23.88	4.48
6058	WILKES-STH	4	E	27	6	1	22.22	3.70