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Abstract

White-nose syndrome (WNS) is a new disease of bats that has devastated populations in eastern North America. Infection
with the fungus, Geomyces destructans, is thought to increase the time bats spend out of torpor during hibernation, leading
to starvation. Little is known about hibernation in healthy, free-ranging bats and more data are needed to help predict
consequences of WNS. Trade-offs presumably exist between the energetic benefits and physiological/ecological costs of
torpor, leading to the prediction that the relative importance of spring energy reserves should affect an individual’s use of
torpor and depletion of energy reserves during winter. Myotis lucifugus mate during fall and winter but females do not
become pregnant until after spring emergence. Thus, female reproductive success depends on spring fat reserves while
male reproductive success does not. Consequently, females should be ‘‘thrifty’’ in their use of fat compared to males. We
measured body condition index (BCI; mass/forearm length) of 432 M. lucifugus in Manitoba, Canada during the winter of
2009/2010. Bats were captured during the fall mating period (n = 200), early hibernation (n = 125), and late hibernation
(n = 128). Adult females entered hibernation with greater fat reserves and consumed those reserves more slowly than adult
males and young of the year. Consequently, adult females may be more likely than males or young of the year to survive the
disruption of energy balance associated with WNS, although surviving females may not have sufficient reserves to support
reproduction.
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Introduction

Organisms must balance energy intake against expenditure in

order to survive, and available energy must be partitioned between

maintenance, somatic growth and reproduction. The balance of

energy acquisition and consumption is relatively simple for

hibernating endotherms during the winter. Hibernators accumu-

late a fat store or food cache during the active season and

hibernation reduces over-winter energy expenditure to the point

where stored energy reserves can balance winter energy costs [1].

Any increase in energy expenditure, however, has the potential to

compromise survival [2,3]. White-nose Syndrome (WNS) is a new

disease of bats which appears to cause just such an increase in

energy expenditure leading to perhaps the most rapid wildlife

population declines ever recorded [4,5]. In only the first several

years of the disease, population declines of 30 to 99% (averaging

73%) have been documented at hibernacula in the northeastern

United States [5,6]. The affliction is associated with a fungal

pathogen, Geomyces destructans, that invades exposed skin of the face

and wing membranes [7,8]. Although the direct cause of mortality

is poorly understood, affected bats are emaciated and have

presumably used their hibernation energy stores too rapidly [6].

Preliminary evidence suggests that bats infected with G. destructans

warm up from torpor more frequently and/or for longer periods

during hibernation than unaffected bats, which would explain

their more rapid fat depletion [9,10]. In addition to understanding

the proximate causes of mortality, there is a need to generate

hypotheses about how WNS may affect populations on a longer

timescale. This requires the study of reference populations that

have not yet been impacted by the disease [5,11].

Drastic reductions in body temperature (Tb) and metabolic rate

during torpor can reduce the energy requirements of hibernators

to as low as ,1% of what is needed to defend euthermia [12,13].

Torpid metabolism accounts for only 10–30% of energy

consumption during hibernation while brief arousals to euthermic

Tb account for the remaining majority of energy expenditure [12].

Prolonged, deep torpor will accrue the greatest energetic savings

but also results in physiological/ecological costs. The inability to

drink or urinate while torpid results in the buildup of metabolic

wastes and dehydration stress [14,15]. As torpor progresses a sleep

debt accumulates [16,17] and a decline in synaptic contacts

[18,19] may result in partial memory loss [20], but see [21].

Immune function is diminished during torpor [22] and the need to

activate it may be one factor that triggers arousals [23,24].

Responsiveness to sensory stimuli, coordination and motor ability

are all reduced, which may increase vulnerability to predation
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(although see [25,26]) or rapid environmental changes (e.g.,

flooding of the hibernaculum) [27].

This trade-off between the energetic benefits and the ecolog-

ical/physiological costs of torpor has led to the hypothesis that

torpor should be expressed at an intermediate rather than

maximal level during hibernation if the added energetic costs

can be met [28]. A key prediction of this torpor optimization

hypothesis is that, when excess energy is available, it should be

used to reduce torpor depth and duration, and this is supported by

recent experimental studies. For example, free-ranging eastern

chipmunks (Tamias striatus) with supplemented food caches,

exhibited shorter, shallower torpor bouts than controls [29,30].

Laboratory studies of big brown bats (Eptesicus fuscus) and field

observations of little brown bats (Myotis lucifugus) have also revealed

that individuals with more available energy select warmer

microclimates that would reduce torpor depth and duration

[31]. The torpor optimization hypothesis also predicts that

individuals should increase torpor expression during hibernation

if spring fat reserves are important for survival and/or reproduc-

tion [28]. For example, adult male Richardson’s ground squirrels

(Spermophilus richardsonii) which compete intensely for estrous

females in the spring, experience a slower rate of fat depletion

than adult females during hibernation [32]. However, despite the

accumulating evidence that the expression of torpor during

hibernation should and does vary between individuals, deep,

prolonged torpor may still be considered the ‘‘best’’ strategy for

hibernators during winter [33,34,35].

To test Humphries et al.’s (2003) prediction that the need for

spring fat reserves should influence energy expenditure during

hibernation we examined the effect of age/sex class on the use of

energy reserves in an uninfected population of the species which

appears most susceptible to WNS, the little brown bat (Myotis

lucifugus). Little brown bats hibernate in caves or abandoned mines

and may migrate up to 220 km from summer roosts to hibernacula

[36]. Prior to entrance into hibernation (i.e., immergence) bats

deposit additional fat and mate promiscuously, often around

hibernacula entrances during a period termed ‘‘swarming’’ [37].

Male and female little brown bats invest their energy differently

throughout the year. Although both sexes must acquire sufficient

fat reserves to survive the winter, the timing of their reproductive

investment differs. Male investment consists of spermatogenesis

from May to late August [38], as well as mating during the fall

swarming period and, to some extent, with torpid females during

hibernation [39]. Sperm is stored in the female reproductive tract

throughout hibernation; ovulation and fertilization occur a few

days after emergence from hibernation and parturition takes place

50–60 days later [40,41,42,43]. Kunz, Wrazen & Burnett [37]

argued that females must retain adequate fat upon emergence

from hibernation to mediate the hormonal changes necessary to

stimulate ovulation. Female little brown bats cannot adjust their

investment by decreasing litter size like other mammals [44]

because they have a single pup annually [45], although there is

some evidence of embryo resorption and abortion [46,47].

Therefore, female reproduction is essentially an all-or-nothing

event. This should create strong selective pressure for females to be

more conservative with their fat reserves during winter, especially

given that winter length can vary and females may require an

energetic buffer to support reproduction following longer winters.

Males, on the other hand, are able to invest in reproduction earlier

during hibernation and more incrementally because they can

adjust mating effort to match energy availability. This leads to

what we term ‘‘the thrifty female hypothesis’’ that adult females

should maximize energy savings and rely more heavily on deep

torpor during hibernation, while adult males should spend more

energy to avoid physiological/ecological costs of torpor and

therefore use their fat reserves more quickly during winter.

The torpor optimization hypothesis also predicts differences in

hibernation patterns of young-of-the-year (YOY) compared to

adults. For little brown bats, YOY of both sexes enter hibernation

with proportionally less fat than adults [37,48,49] and experience

greater over-winter mortality [50]. Therefore, the torpor optimi-

zation hypothesis predicts that YOY should use their energy

reserves more thriftily than adults, as in juvenile S. richardsonii

which enter hibernation with lower fat masses than adults, but

undergo a smaller decrease in fat content throughout hibernation

[32]. On the other hand, YOY may be less skilled at budgeting

energy during winter, which could lead to a faster decline in their

reserves. Despite these potential differences in hibernation

strategies and/or abilities of YOY, they have not been

distinguished from adults in past studies of fat depletion by

hibernating bats [36,51,52].

Body condition is a measure of energy reserves relative to a

structural element of the body [53]. As both resource availability

and energetic demands shift seasonally, body condition fluctuates.

For fat-storing hibernators during winter this fluctuation is simple:

with little or no opportunity for energy acquisition, body condition

declines until spring. The thrifty female hypothesis predicts that,

throughout the hibernation period, females will undergo a smaller

decline in body condition than males. To test this prediction, we

assessed the body condition of adult male and female little brown

bats just before hibernation during fall swarming, during early

hibernation, and just before emergence in the spring. We also

assessed changes in body condition of YOY to determine if they

are more conservative in their use of fat reserves than adults.

Methods

This study was conducted north of Grand Rapids (population

,300) in central Manitoba, Canada (53u309N; 99u249W; not to be

confused with Grand Rapids, Michigan, USA). The region is

composed of mature boreal forest with extensive limestone karst

topography. Over 50 caves have been surveyed in the area,

including five confirmed little brown bat hibernacula: Dale’s Cave,

Firecamp Cave, The Abyss and (in the Walter Cook Caves Park

Reserve) Microwave Cave and Iguana Crypt. The greatest

straight-line distance between any of these caves (Abyss and

Iguana) is 31 km. Spring surveys indicate that populations of bats

in each cave range between about 50 and 500 individuals each

winter, although most sites housed several hundred bats (J. Dubois

and C.K.R. Willis, unpublished data). The hibernation period in

this region lasts approximately eight months from mid-September

until mid-May. Temperature data loggers (iButtons, Maxim

Integrated Products, Dallas, Texas, USA) wrapped in insulating

foam to attenuate ultrasonic noise [54] were used to record

ambient temperature (Ta) every two hours in Dale’s, Firecamp and

Microwave. As much as possible, we placed dataloggers in areas

known to be used by bats to ensure recording of microclimates that

bats actually used (particularly in domes or cracks). Microclimates

were similar between caves, which varied between average minima

of 0.861.8uC and average maxima of 8.161.2uC during

hibernation (Figure S1).

Bats were captured with harp traps (G5, Bat Conservation and

Management, Carlisle PA, USA) biweekly during the swarming

period (15 Aug–1 Oct 2009) near the entrances to Dale’s,

Microwave, Firecamp and Abyss. We used data collected during

15–19 Sept 2009 as the sample for pre-hibernation BCI of bats

because by this time at least a few bats had already entered

hibernation while some remained active, which means we sampled
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as close to the start of hibernation as possible. During early

hibernation, torpid bats were captured by hand from Microwave

(28 Nov 2009), Firecamp (28 Nov 2009) and Dale’s (29 Nov 2009).

Near the end of hibernation, bats were captured from Microwave

(27 April 2010), Firecamp (27 April 2010) and Iguana Crypt (28

April 2010). We did not re-enter Dale’s in late hibernation 2010 to

minimize disturbance to these bats, which were also part of

another study. Instead we measured bats from Iguana Crypt, a

similar cave in the region. Bats were sexed, weighed to the nearest

0.01 g (Durascale-100, MyWeigh, ON, Canada) and their forearm

length was measured to the nearest 0.05 mm. We classified

individuals as YOY or adults based on ossification and shape of

wing joints [50], tooth wear [55], and evidence of previous

reproduction [56]. We were readily able to age bats throughout

hibernation which suggests that the short active season in this

region may not permit YOY to fully mature before their first

winter. At the time age was determined we were blind to the body

condition of individuals. All bats were outfitted with a numbered,

lipped aluminum forearm band (2.9 mm, Porzana Ltd., East

Sussez, UK) prior to their release at the site of capture. All

methods were approved by the University of Winnipeg Animal

Care Committee and conducted under Manitoba Conservation

Wildlife Scientific Permit WB06122.

We defined body condition index as mass divided by forearm

length which has been validated in temperate bats [57,58].

Variation in mass can be largely attributed to pre-hibernation

fattening and subsequent use of these reserves to fuel hibernation

because during hibernation little brown bats do not feed [59] and

muscle mass does not decline appreciably [60].

To assess differences in BCI between age/sex classes for each

sampling period, we used ANOVA with Tukey’s test for pair-wise

comparisons, or non-parametric Kruskal-Wallis tests as appropri-

ate. Data from all swarming sites were pooled because bats were

likely members of the same population, sample sizes at individual

capture sites were low and capture site had no effect on BCI

during swarming (ANOVA, F3,59 p = 0.14). Data from all caves

were pooled as capture site had no effect on BCI during early

hibernation (F2,113 = 0.44, p = 0.65) or during late hibernation

(F2,97 = 1.8, p = 0.18). We calculated effect size (i.e., Cohen’s d) to

compare the magnitude of differences between adult males and

females during each sampling period. This provided a quantitative

indication of the relative difference between sex classes at different

times during hibernation [61]. We used SYSTAT 11 (Systat

Software Inc., Point Richmond, CA, USA) for all significance tests

based on an alpha level of p,0.05. Effect sizes were calculated

using Watkins’ [62] Effect Size Calculator.

Results

We captured a total of 432 little brown bats (72 adult females,

137 adult males, 100 YOY females and 123 YOY males). Of these,

200 were captured swarming around the four cave sites (22 adult

females, 44 adult males, 65 YOY females, and 69 YOY males),

125 were captured during early hibernation from Dale’s (n = 22),

Firecamp (n = 51), and Microwave (n = 52), and 107 were

captured during late hibernation from Iguana Crypt (n = 28),

Firecamp (n = 34), and Microwave (n = 45). Eight bats captured

during swarming were recaptured during early hibernation, 20

bats captured during early hibernation were recaptured during

late hibernation and three bats captured during swarming were

recaptured during late hibernation. Results reported below are

based on analyses which included this small proportion of

recaptured bats. However, when we re-analysed the data

excluding recaptures, there was no change in any of our

conclusions. Proportionally more YOY were captured during

swarming than during early or late hibernation but sex ratios were

virtually identical between early and late hibernation (Figure S2).

Bats weighed 12.0661.11 g (mean 6 SD) just prior to the

beginning of hibernation (i.e., at immergence into hibernation),

10.0860.95 g during early hibernation and 8.4761.01 g during

late hibernation.

Swarming
During the swarming period, near the time of immergence,

there was a significant effect of age/sex class on BCI (ANOVA,

F3,59 = 5.6, p = 0.002; Figure 1). Values for active adult females

were significantly greater than those of adult males (Tukey’s test,

p = 0.002) and YOY females (p = 0.005), and the difference

between adult females and YOY males approached significance

(p = 0.051). There were no significant differences between adult

males, YOY males or YOY females. Effect size for the difference

in BCI between adult males and adult females equated to a 40.7%

overlap between the two frequency distributions (Cohen’s d = 1.1).

Early Hibernation
During early hibernation the effect of age/sex class on BCI was

highly significant (F3,121 = 27.1, p,0.001; Figure 2). Adult females

were in significantly better body condition than adult males

(p,0.001), YOY females (p,0.001) or YOY males (p,0.001).

There were no significant differences between adult males, YOY

males or YOY females. This pattern was consistent across cave

sites, and a significant effect of age/sex class on BCI was observed

in Dale’s (F3,18 = 9.5, p = 0.001), Firecamp (F3,47 = 15.1, p,0.001)

and Microwave (F3,48 = 6.6, p = 0.001). In all caves, adult females

were in significantly better body condition than adult males

(p#0.001) and YOY males (p#0.008). Adult females were in

better condition than YOY females in Dale’s and Firecamp

Figure 1. Body condition indices of bats during fall swarming.
Bats were captured from 15–19 Sept 2009 at the entrances of Abyss,
Dale’s, Firecamp and Microwave caves. Numbers in brackets indicate
sample size and boxes sharing the same letter are not significantly
different from each other. Boxes depict the 25th and 75th percentiles,
lines within boxes mark the median, whiskers represent 95th and the 5th

percentiles and dots indicate outliers.
doi:10.1371/journal.pone.0021061.g001
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(p#0.003), but not Microwave (p = 0.089). In all caves, there were

no significant differences between adult males, YOY males or

YOY females. The effect size for the difference in BCI between

adult males and adult females equated to a 27.3% overlap in the

two frequency distributions (Cohen’s d = 1.6), which was a larger

effect than that during swarming. The percent decline in BCI was

greatest between swarming and early hibernation for all age/sex

classes. During this interval, percent decline in BCI was similar for

adult females, adult males and YOY females, while BCI of YOY

males declined more rapidly (Table 1).

Late Hibernation
During late hibernation the effect of age/sex class on BCI was

highly significant (F3,105 = 38.3, p,0.001; Figure 3). Adult females

were in significantly better body condition than adult males

(p,0.001), YOY females (p,0.001) or YOY males (p,0.001).

There were no significant differences between adult males, YOY

males or YOY females. This pattern was consistent across cave

sites, and a significant effect of age/sex class on BCI was observed

in Iguana (F3,24 = 8.3, p = 0.001), Firecamp (F3,30 = 8.5, p,0.001)

and Microwave (F3,41 = 18.5, p,0.001). In all caves adult females

were in significantly better body condition than adult males

(p#0.009), YOY females (p#0.011), and YOY males (p#0.003)

and there were no significant differences between adult males,

YOY males or YOY females. Effect size for the difference in BCI

between adult males and females was greatest during this sampling

period (Cohen’s d = 2.4) and represented only a 12.5% overlap

between the two frequency distributions.

Between early hibernation and late hibernation the decline in

BCI of adult males was the greatest, followed by that of YOY

females, YOY males and adult females (Table 1). By late

hibernation adult females had experienced the lowest percentage

decline in BCI, followed by YOY females, adult males and YOY

males (Table 1). Moreover, the magnitude of difference in BCI

between adult females and adult males, as represented by effect

size, progressively increased throughout hibernation from a

relatively small effect during fall swarming (Cohen’s d = 1.1), to

an intermediate effect size in early hibernation (d = 1.6), to a large

effect by spring (d = 2.4; Figure 4).

Discussion

Our findings support the prediction of the thrifty female

hypothesis that female little brown bats should exhibit a slower

decline in body mass during winter than males. Not only was the

decline in BCI for adult females (24.8%) less than that of adult

males (30.7%), the magnitude of difference in adult male and

female BCI steadily increased throughout hibernation. Some of

this difference could reflect the allometry of metabolic rate which

predicts that smaller bats (i.e., males) should decline in body

condition faster than larger ones (i.e., females) simply because of

higher mass-specific metabolic rates [63]. However, the effect of

body mass on mass-specific metabolic rate is negligible during

deep torpor [64] and male bats still exhibited a greater rate of

decline in total fat reserves (i.e., a greater whole-animal metabolic

rate; 112 mg fat/week vs. 98 mg fat/week for females). Therefore,

differences in rates of decline in BCI were greater than predicted

based on body size alone (Table 1). Our data also suggest that this

difference is more strongly influenced by avoidance of physiolog-

ical/ecological costs of torpor rather than by increased male

activity due to mating. During early hibernation, when mating

frequency is highest, the average decline in adult male BCI was

only 106% that of adult females (Table 1) [39]. On the other hand,

during late hibernation, when hibernaculum temperatures are

lower (Figure S1) and, presumably the physiological/ecological

costs of torpor would be greater, the decline in BCI for males was

nearly 130% that of females (Table 1). Thus, males lost less fat,

relative to females, during early hibernation. If the difference in

rates of decline was primarily the result of mating activity by

males, the opposite pattern should occur. Therefore, our findings

are consistent with the hypothesis that males spent more energy to

avoid costs of torpor.

The torpor optimization hypothesis generates conflicting

predictions for adult female little brown bats. Females enter

hibernation with larger fat reserves than males and are, therefore,

predicted to use their excess energy to reduce use of torpor.

However, they need additional energy to support spring

reproduction, which means they should conserve energy by

increasing use of torpor. Our findings support Humphries et al.

[28] prediction that individuals of the sex which depends on spring

fat reserves to reproduce should rely more heavily on torpor to

help hoard resources for reproduction. Conserving resources for

spring reproduction appears to take precedence over mitigating

potential costs of torpor. Echidnas are known to use a similar

approach, employing facultative hibernation if they are in good

body condition to maintain reserves until the reproductive season,

whereas those with insufficient reserves continue to forage [65].

The thrifty female strategy may also apply to other species of

temperate, hibernating bats. For example, female E. fuscus and

Perimyotis subflavus both decline in mass at a slower rate than males

during hibernation [51,52].

In addition to being thrifty in their fat expenditure during

winter, accumulating more fat prior to hibernation appears to be a

second way that females increase their chances of successful

reproduction. Adult females in our study entered hibernation in

better condition than adult males or YOY, which is consistent with

Figure 2. Body condition indices of bats during early hiberna-
tion. Bats were captured on 28, 29 Nov 2009 in Dale’s, Firecamp and
Microwave caves. Numbers in brackets indicate sample size and boxes
sharing the same letter are not significantly different from each other.
Boxes depict the 25th and 75th percentiles, lines within boxes mark the
median, whiskers represent 95th and the 5th percentiles and dots
indicate outliers.
doi:10.1371/journal.pone.0021061.g002
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past studies of little brown bats based on body fat indices or body

mass [48,49,50] and that of other temperate, hibernating bat

species, including Eptesicus fuscus, Perimyotis subflavis, M. yumanensis

and M. thysanodes [48,51,52]. In several species of vespertilionid

bats, including little brown bats, females are structurally larger and

have proportionately greater wing areas than males [66,67]. This

sexual dimorphism may be driven by demands of flying with a

large fetus (,25% of maternal weight [66]) and/or the pressure to

reduce heat loss and avoid torpor during summer while rearing

young [67]. However, a larger body size could also allow females

to store and carry proportionally more body fat than males prior to

hibernation without substantially compromising flight ability. On

the other hand, males may enter hibernation in worse condition

than females simply because mating prior to hibernation is more

costly to males than females [37,49].

Females that emerge from hibernation with greater energy

reserves likely have improved reproductive success. For example,

in female Columbian ground squirrels (Spermophilus columbianus),

Table 1. Average percent decline in little brown bat body condition index (BCI; mass/forearm length) and rate of mass loss
between swarming (15–19 Sept 2009), early hibernation (28, 29 Nov 2009) and late hibernation (27, 28 April 2010).

Adult female Adult male YOY female YOY male All females All males
All age/sex
classes

Swarming – Early Hibernation % Autumn BCI 15.20% 16.50% 15.50% 20.10% 12.40% 17.20% 16.20%

(71 days) mg/day 26.8 28.3 23.2 35.1 24.8 30.6 27

Early – Late Hibernation % Autumn BCI 9.40% 14.20% 13.20% 12.70% 12.10% 14.00% 13.30%

(140 days) mg/day 8.9 11.4 12 10.8 11 11 11

Swarming – Late Hibernation % Autumn BCI 24.60% 30.70% 28.70% 32.80% 24.40% 31.20% 29.50%

(211 days) mg/day 14.9 17.1 15.8 19 16 18 17

g/240 days* 3.58 4.1 3.78 4.56 3.72 4.27 4.08

*Duration of hibernation season in Ontario (Fenton, 1970). This value has been used by other several other studies of winter energy budgets, although it may be shorter
than the duration of hibernation for individuals from our more northerly study site.
doi:10.1371/journal.pone.0021061.t001

Figure 3. Body condition indices of bats during late hiberna-
tion. Bats were captured on 27, 28 Apr 2009 in Iguana, Firecamp and
Microwave caves. Numbers in brackets indicate sample size and boxes
sharing the same letter are not significantly different from each other.
Boxes depict the 25th and 75th percentiles, lines within boxes mark the
median, whiskers represent 95th and the 5th percentiles and dots
indicate outliers.
doi:10.1371/journal.pone.0021061.g003

Figure 4. Body condition indices of bats throughout the
hibernation period. A) adult females, B) adult males, C) young-of-
the-year females and D) young-of-the-year males. Data from all caves
are pooled and numbers in brackets represent pooled sample sizes for
each sampling period. Boxes depict the 25th and 75th percentiles, lines
within boxes mark the median, whiskers represent 95th and the 5th

percentiles and dots indicate outliers.
doi:10.1371/journal.pone.0021061.g004

Changes in Body Conditions of Hibernating Bats
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spring emergence weight is positively correlated with the number

of young that survive their first winter [68]. Female bats with

larger remaining fat reserves may be able to emerge from

hibernation earlier in the spring because they have energy

available to endure periods of inclement weather and low insect

availability [69]. This could allow for earlier parturition, which

would be beneficial because bats born earlier have a greater

chance of surviving their first winter and breeding their first year

[11,70].

We found no evidence to support the hypothesis that YOY

hibernate more conservatively than adults, despite smaller pre-

hibernation energy reserves. Both male and female YOY declined

in BCI more rapidly than their adult counterparts. It is possible

that YOY are inexperienced and require time to learn behaviours

important for conserving fat (e.g., microclimate selection, choice of

huddling partners). In other species behaviours associated with

hibernation must be learned. For example, the hibernation

burrows of juvenile Columbian ground squirrels are often poorly

constructed and too shallow relative to those of adults [71].

Moreover, although body size did not appear to influence relative

rates of fat loss for adult males and females, if YOY are smaller

than adults, with greater surface-area to volume ratio, their

inexperience could exacerbate the effects of a smaller body size

(i.e., higher rates of heat loss and greater energetic costs of

euthermia during periodic arousals). Adult alpine marmots

(Marmota marmota) reduce the energetic cost of euthermic periods

for YOY by huddling with them in family groups and arousing

synchronously [72]. It is not known if bats maintain similar social

connections with relatives during hibernation, but if clustering

increases inclusive fitness, relatedness could help explain bats’

choices of huddling partners within hibernacula.

On average, the over-winter decline in fat reserves for the little

brown bats we studied in Manitoba, Canada (29.5% or 119 mg/

week; Table 1) was nearly identical to the 29.3% mass loss predicted

by Thomas, Dorais & Bergeron [73], but greater than the 25%

over-winter decline in body mass (or 91 mg/week) observed

between October and April in an Ontario population of this same

species [36]. Fenton [36] did not detect a difference in rates of fat

loss between males and females, but he did not differentiate YOY

from adults, which may have obscured sex differences. To test this

possibility we re-analyzed our data without differentiating YOY

from adults (Table 1). Although we still found significant differences

between sexes, failing to differentiate bats by age decreased effect

sizes and partially masked the difference between males and

females. Therefore, we recommend that future studies of hiberna-

tion energetics in bats aim to differentiate YOY from adults.

For all age/sex classes the most rapid weight loss occurred

between swarming and early hibernation (Table 1), which could

reflect two factors. First, loss of mass during early hibernation may

actually be greater than during late hibernation because average Ta

in the hibernaculum is higher early in the winter and above

‘‘optimal’’ for torpor expression (Figure S1). Ideal Ta for hibernating

little brown bats has usually been considered to be about 2uC
[74,75], although Boyles & McKechnie [76] recently presented

evidence that temperatures several degrees higher may be optimal if

hibernaculum microclimate fluctuates. Warmer Ta reduces torpor

expression [77,78] and, therefore, energetic savings. This could

make early hibernation more energetically costly than late

hibernation, but more favorable in terms of physiological/ecological

costs of torpor. Second, despite our efforts to capture bats early in

the night before feeding, and hold them until they had defecated,

swarming bats likely had gut contents which may have caused us to

overestimate body condition. Differential mortality among age/sex

classes could also explain the pattern we observed. However,

mortality was low throughout the study (n = 3), despite the fact that

caves were small and dead bats were easily found. More important,

we observed virtually identical age/sex class ratios in early and late

hibernation (Figure S2), which means the same proportion of bats

from each age/sex class were still alive in spring. This suggests that

the pattern we observed, of a falling rate of decline in BCI later in

the winter, especially for adult females, accurately reflects how bats

expend their energy reserves during winter.

Given links between WNS and hibernation energy balance

[6,10], our results have implications for the survival and

reproduction of bats suffering from this new disease. No data are

available to determine if WNS affects age/sex classes differentially,

but if afflicted individuals adjust hibernation patterns in reference to

their ‘‘normal’’ rates of fat depletion, then our results predict that

adult females will be most likely to survive the disruption of energy

balance caused by WNS because they enter hibernation with

proportionally greater energy reserves and use these reserves more

conservatively. Affected females could therefore use resources

allocated for reproduction to fuel the additional time out of torpor

which appears to be caused by WNS [9] and may be more likely to

survive until the end of hibernation. However, females that emerge

with BCI similar to males will likely have lower levels of

reproductive success and may even forgo reproduction. Frick et al.

[11] observed a decline in the proportion of reproductive females at

a maternity colony in New Hampshire co-incident with the spread

of WNS. The females they observed may have survived hibernation

by expending fat normally reserved for reproduction. More data are

clearly needed on overwinter survival of WNS-affected male bats

but differential mortality/reduced reproduction could have impor-

tant consequences for populations and for models which aim to

predict impacts of WNS for populations.

Our results may also have implications for how WNS is

spreading throughout North America. Male survivors of WNS

may be more likely to be vectors for the fungus than females, as

males likely use colder summer roosts than females, where fungal

conidia may be more likely to persist [7]. In addition, although

data are scarce, anecdotal evidence suggests males may be more

likely to make large-scale migrations between mating swarms/

hibernacula, at least in little brown bats [36,79]. If males are less

likely to survive but more likely to spread the disease then the

differential mortality predicted by our results could mean that the

rate of spread is actually slower than a ‘‘worst-case scenario’’

because the most likely summer vectors for the fungus (i.e., males)

may be the first to be killed. More work is needed to test these

hypotheses and it is also critical to determine the persistence of

fungal material on bats or in summer roosts of both males and

females to better understand how WNS is spreading in the wild.

Our results suggest that strong selection pressure acts on female

little brown bats to ensure energy availability for spring

reproduction because females enter hibernation with larger

reserves and use these reserves more conservatively. This pattern

could also increase the likelihood that females will survive

disruptions to hibernation such as WNS, although WNS will

likely have consequences for reproduction, and is clearly still

causing mortality of enormous numbers of females. Young-of-the-

year used their hibernation energy reserves more rapidly than

adults, but we observed no evidence of higher levels of winter

mortality. This suggests that, at least in some years at some sites,

juvenile mortality is not higher than that of adults although this is

commonly cited in the literature [50,80,81]. Our study emphasizes

the need to consider how age and sex influence variation in energy

expenditure in free-ranging bats and the potential for differential

mortality to influence population trends and responses to

disturbances like WNS.
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Supporting Information

Figure S1 Monthly average ambient temperature in
hibernacula. Mean 6 standard deviation in A) Dale’s cave B)

Firecamp cave C) Iguana crypt and D) Microwave cave. Closed

circles denote the winter of 2008/2009 (beginning on 17

September) and open circles denote the winter of 2009/2010.

Diamonds indicate data from Bilecki [82].

(TIF)

Figure S2 Proportion of age/sex classes captured. Bats

were captured during fall swarming (15 Aug–1 Oct 2009), early

hibernation (28, 29 Nov 2009), and late hibernation (27, 28 April

2010).

(TIFF)
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