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Abstract

We study the well-known lacunary sums of binomial coefficients

considered, most notably, by Christian Ramus, and their connection

to a special kind of harmonic number associated with the first case of

Fermat’s Last Theorem. For one case of Ramus’s famous identity we

obtain a variation in which some of the parameters are replaced by

square matrices of arbitrary dimension.

1 Introduction

This paper examines the family of lacunary binomial sums introduced by
Antoine Augustin Cournot in 1829 [2], and considered to great effect by the
Danish mathematician Christian Ramus (1806–1856) in 1834 [14]. These
take the form

T (N, r,m) :=
m
∑

j=0
j≡r mod N

(

m

j

)

(N > 1), (1.1)

and have been the subject of an extensive literature, which will only be
selectively reviewed here. Moreover, we do not attempt to treat the further
multisections of these sequences into separate congruence classes ofmmodulo
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N , which are usually encountered with j,m ≡ 0 (mod N) and written in the
form

S(N, 0, m) :=

m
∑

j=0

(

Nm

Nj

)

= T (N, 0, N ·m);

nor do we attempt to treat the closely related jump sums studied by Russell
Jay Hendel ([5], and OEIS A244608).

Ramus’s remarkable identity, which reduces (1.1) to a sequence in N , is

T (N, r,m) =
1

N

N−1
∑

j=0

(

2 cos
jπ

N

)m

cos
j(m− 2r)π

N
(m > 0). (1.2)

It can also be written as

T (N, r,m) =
1

N

N−1
∑

j=0

ω(N−j)r
(

1 + ωj
)m

(m > 0), (1.3)

where ω = e
2πi
N is a primitive Nth root of unity. This formula is used by

Hoggatt and Alexanderson [6] to derive closed-form expressions for N =
2, 3, 4, 5, 6, 8, and by Howard and Witt [7] for N = 10. A natural counterpart
to this is the alternating sum

T ∗(N, r,m) :=
m
∑

j=0
j≡r mod N

(−1)(j−r)/N

(

m

j

)

=
1

N

2N−1
∑

j=1
j odd

ω(N−j)r
(

1 + ωj
)m

(m > 0)

= 2 · T (2N, r,m)− T (N, r,m).

(1.4)

This is evaluated by Howard and Witt [7] in the cases of N = 2, 3, 4, 5.
Our method, for reasons that will be explained below, is only applicable

to the case where r = 0, and with ω as above,
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T (N, 0, m) =
1

N

N−1
∑

j=0

(

1 + ωj
)m

(m > 0) (1.5)

and

T ∗(N, 0, m) =
1

N

2N−1
∑

j=1
j odd

(

1 + ωj
)m

(m > 0)

= 2 · T (2N, 0, m)− T (N, 0, m).

(1.6)

Thus, our result is not a full generalization of Ramus’s. However, it does
generalize (1.5) in a different direction from (1.2) or (1.3), extending the
solutions in simple radicals from the instances N = 2, 3, 4, 5, 6, 8, 10 to all
N that are multiples of 2, 3, 4, 5, 6, 8, or 10.

As a preliminary to developing this result, we note that the work of
Konvalina and Liu ([9], p. 12) implies that T (N, 0, m) (with N even) and
T ∗(N, 0, m) (with N odd) satisfy the same simple recurrence relations of
order N − 1,

N−1
∑

j=0

(−1)j
(

N

j

)

an−j = 0. (1.7)

Likewise, T (N, 0, m) (with N odd) and T ∗(N, 0, m) (with N even) satisfy
recurrence relations also of order N − 1,

±2an−N +

N−1
∑

j=0

(−1)j
(

N

j

)

an−j = 0. (1.8)

A few examples of the coefficients in these recurrences are given in the Ap-
pendix, along with some values of the corresponding sequences.
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2 Matrix representations

Charles S. Kahane [8] has shown that the characteristic polynomial corre-
sponding to the recurrence for T (N, 0, m) (1.7) is embodied in the simple
circulant matrix of dimension N ,

CN := CircN(1, 1, 0, 0, 0, . . .) =

























1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0

0 0 1 1
. . . 0 0

...
...

...
. . .

. . .
...

...
0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1
1 0 0 · · · 0 0 1

























.

This matrix is just the sum of the N -dimensional identity matrix IN and the
N -dimensional special matrix UN := CircN(0, 1, 0, 0, 0, . . .), variously known
as the basic circulant permutation matrix or primary circulant permutation
matrix or forward shift permutation matrix, or as we shall call it the unit
circulant matrix. It may be readily deduced from Kahane’s result that the
characteristic polynomial of T ∗(N, 0, m) is represented by the skew version
of this matrix, C∗

N := Circ∗N (1, 1, 0, 0, 0, . . .), which is the same as CN except
that all the values below the diagonal — in this case the lone 1 in the lower-
left — are negated. But these two matrices have the additional property,
crucial for our purposes, that the first terms of the first rows of their powers
exactly coincide with the terms of the respective sequences, a fact that will
be proved below. Not being aware of a standard notation for such a relation,
we henceforth use the symbol

.
=, hoping to avoid any possible confusion with

ordinary equality. Some examples for small N will illustrate the pattern:

T (2, 0, m)
.
=

[

1 1
1 1

]m

T ∗(2, 0, m)
.
=

[

1 1
−1 1

]m
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T (3, 0, m)
.
=







1 1 0
0 1 1
1 0 1







m

T ∗(3, 0, m)
.
=







1 1 0
0 1 1
−1 0 1







m

.

In order for the powers of a matrix to coincide with the terms of a recurrence
of degree N , a standard result of matrix theory states that they must agree
in their characteristic polynomials and in their first N terms (counting from
term 0). Thus it only remains to demonstrate that the second of these
conditions is met:

Lemma 2.1. For the N-dimensional circulant matrix CN representing T (N, 0, m)
and the N-dimensional skew-circulant matrix C∗

N representing T ∗(N, 0, m),
the first term of the first row of each of their first N powers (starting from
the power 0) is 1.

Proof. Let UN be the N -dimensional unit circulant matrix, U∗
N be the skew

version thereof, and IN be the N -dimensional identity matrix; then by defi-
nition

Ck
N = {CN + IN}k =

k
∑

j=0

(

k

j

)

In−j
N · U j

N =

k
∑

j=0

(

k

j

)

U j
N , (2.9)

while

(C∗
N)

k =
{

C∗
N + IN

}k
=

k
∑

j=0

(

k

j

)

In−j
N · (U∗

N)
j =

k
∑

j=0

(

k

j

)

(U∗
N )

j. (2.10)

The values of Uk
N , starting at k = 0, are

IN ,

CircN(0, 1, 0, 0, 0, . . .),

CircN(0, 0, 1, 0, 0, . . .),

CircN(0, 0, 0, 1, 0, . . .),
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et cetera, until for k = N they return to IN . The values of (U∗
N)

k, starting
at k = 0, are the same as these, with no appearance of negated terms in the
first row (or indeed anywhere but in the lower-left triangle), until for k = N
they reach −IN . Thus for k < N the final sum in both (2.9) and in (2.10)
corresponds to the circulant matrix

CircN

(

(

k

0

)

,

(

k

1

)

,

(

k

2

)

, . . . ,

(

k

k

)

[, . . .]

)

,

with leading term
(

k
0

)

= 1, and with the bracketted expression indicating
trailing zeros when k < N − 1. Thus the first N values of Uk

N or of (U∗
N)

k

(counting in either case from k = 0) supply the required N consecutive first
terms of first rows equal to 1. Hence the Lemma follows.

We are now ready to state:

Theorem 2.2. For the N-dimensional circulant matrix CN and skew-circulant
matrix C∗

N), the following relations hold:

T (N, 0, m)
.
= Cm

N ;

T ∗(N, 0, m)
.
= (C∗

N)
m.

(2.11)

Proof. It follows from the work of Kahane [8] that the circulant matrix
CN conforms in its characteristic polynomial with T (N, 0, m), and that the
skew-circulant matrix C∗

N conforms in its characteristic polynomial with
T ∗(N, 0, m). Lemma 2.1 establishes that the first N values of the sequences
agree in each case with the N first terms of the first rows of the matrix pow-
ers, as required. Thus, the matrices represent the respective sequences in the
sense defined in the beginning of this section.

3 A variation on Ramus’s identity

Henceforth, for the sake of simplicity, we confine most of the discussion to
T (N, 0, m), since T ∗(N, 0, m) can be so readily derived therefrom. As is well
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known, circulant and skew-circulant matrices whose dimension is a compos-
ite number divisible by d can be partitioned into d square blocks, and the
matrix thus partitioned has the same powers as the original matrix when the
operations are performed element-wise ([3], p. 18). For example, a matrix of
dimension 6 can be partitioned in two different ways, with d = 2, 3:































1 1 0
... 0 0 0

0 1 1
... 0 0 0

0 0 1
... 1 0 0

. . . . . . . . . . . . . . . . . . .

0 0 0
... 1 1 0

0 0 0
... 0 1 1

1 0 0
... 0 0 1































or



































1 1
... 0 0

... 0 0

0 1
... 1 0

... 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0
... 1 1

... 0 0

0 0
... 0 1

... 1 0
. . . . . . . . . . . . . . . . . . . . .

0 0
... 0 0

... 1 1

1 0
... 0 0

... 0 1



































.

It is evident by inspection that a partition of such matrices into blocks is a
compound matrix of dimension d having the form

M := Circd(a, b, 0, 0, 0, . . .) =



















a b 0 . . . 0

0 a b
. . .

...

0 0 a
. . . 0

...
...

...
. . . b

b 0 0 . . . a



















, (3.12)

where only a and b are non-zero, a consisting of zeros except for a diagonal
of 1s and a superdiagonal of 1s, and b consisting of zeros except for a single
±1 in the lower-left corner.

The general expression for the powers of a circulant compound matrix in
which the submatrices are not expected to commute under multiplication is
given in a important paper of 1969 by Lovass-Nagy and Powers [13] which
deserves to be better known. We require only the following very special case
of an unnumbered result on p. 128 of their paper:
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Lemma 3.1. For the compound matrix M of dimension d as in (3.12), with

a, b being square matrices and ω = e
2πi
d a primitive dth root of unity, we have

Mm .
=

1

d

d−1
∑

j=0

(

a + b · ωj
)m

(m > 0). (3.13)

As an immediate consequence, we have the following corollary (which we
designate a theorem only for convenience of reference):

Theorem 3.2. If N is divisible by d, the circulant matrix CN may be ex-
pressed as Circd(a, b, 0, 0, 0, . . .) as in (3.12), with a, b being square matrices
of dimension N/d such that a consists of zeros except for a diagonal of 1s and
a superdiagonal of 1s, and b consists of zeros except for a 1 in the lower-left
corner; then for ω = e

2πi
d a primitive dth root of unity,

T (N, 0, m)
.
=

1

d

d−1
∑

j=0

(

a + b · ωj
)m

(m > 0). (3.14)

The correspondence of this theorem with Ramus’s identity (1.3) is obvious
in the extremal case d = N , which gives a = 1, b = 1. In the other extremal
case, d = 1, it gives a = CN , b = 0, and thus corresponds with Theorem 2.2.
For d = 2, the only other value of d leading to a totally real matrix, it gives

T (N, 0, m)
.
=

(a + b)m + (a− b)m

2
= T (N/2, 0, m) + T ∗(N/2, 0, m),

(3.15)

providing an alternate derivation of (4.26) below. Using this in conjunction
with (1.6), we further have for even N ,

T ∗(N, 0, m)
.
=

(a+ bi)2m + (a− bi)2m

2
.
= ℜ

(

{a± bi}2m
)

,
(3.16)
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where in the second part the choice of sign is immaterial since ℜ(a + bi) =
ℜ(a− bi). For N divisible by 4, the decomposition of T (N, 0, m) with d = 4
is analogous:

T (N, 0, m)
.
=

1

4

{

(a+ b)m + (a− b)m + (a + bi)m + (a− bi)m
}

. (3.17)

Next in simplicity is the decomposition of T (N, 0, m) for N divisible by 3,
with d = 3:

T (N, 0, m)
.
=

1

3







(a + b)m +

(

a+ b · −1 + i
√
3

2

)m

+

(

a + b · −1 − i
√
3

2

)m






.

(3.18)
Setting

a =







1 1 0
0 1 1
0 0 1






, b =







0 0 0
0 0 0
1 0 0






,

in (3.18) gives (a+ b)m
.
= T (3, 0, m), so that

T (9, 0, m)
.
=

1

3
· 2

m + 2 cos(mπ/3)

3
+
2

3
·ℜ





{

a + b · −1 ± i
√
3

2

}m


 , (3.19)

where the choice of sign in the last term is immaterial. If we wish, we can
replace the cosine with the closed-form evaluation (Schwatt [17], p. 179)

cos(mπ/3) =
1

4
(−1)⌊

n+1
3

⌋
(

3 + (−1)n+⌊n+1
3

⌋
)

.

This result (3.19) may be compared with the evaluation of N = 9 given by
Hendel [5], and of the analogous s∗(0, 9) by Sun ([18], pt. 2, Theorem 2.4).
Admittedly, results like (3.19), while they formally entail smaller matrices
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than those given by the general formula (Theorem 2.2), would likely have
little value for computational purposes.

The fact that the first term in the right-hand side of (3.14) is 1
d
(a+ b)m

.
=

T (N/d, 0, m) proves that d · T (N, 0, m)− T (N/d, 0, m) represents an integer
sequence. For example, the recurrence for 3 · T (9, 0, m)− T (3, 0, m) is

xn − 6xn−1 + 15xn−2 − 19xn−3 + 12xn−4 − 3xn−5 + xn−6 = 0. (3.20)

It can be shown that such sequences have order N −N/d, but as their orders
are higher than those of the corresponding sequences studied by Hendel [5],
it does not seem worth the space to present a proof here.

The reason we cannot expect to extend Theorem 3.2 so as to provide a
full generalization of Ramus’s identity (1.3) is that when r 6= 0, T (N, r,m)
evidently cannot be represented by a circulant matrix for N > 2. At least,
it certainly has no such representations for N = 3, 4, as established by an
exhaustive search. Fortunately, however, it is the case r = 0 that has interest-
ing parallels with the special harmonic numbers considered in the following
section.

4 The connection to some special harmonic

numbers, and the first case of FLT

Before its complete proof by Andrew Wiles, a major result for the first case
of Fermat’s last theorem (FLT), that is, the assertion of the impossibility of
xp+yp = zp in integers x, y, z, none of which is divisible by the exponent and
where p is a prime greater than 2, was the 1909 theorem of Wieferich that the
exponent p must satisfy the congruence qp(2) :=

2p−1−1
p

≡ 0 (mod p), where

qp(2) is known as the Fermat quotient of p, base 2. This celebrated result
was to be generalized in many directions. One of these was the extension of
the congruence to bases other than 2, the first such step being the proof of
an analogous theorem for the base 3 by Mirimanoff in 1910. Another grew
out of the recognition that some of these criteria could be framed in terms
of certain special Harmonic numbers of the form
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H⌊p/N⌋ :=

⌊p/N⌋
∑

j=1

1

j
(4.21)

for N > 1, and with ⌊·⌋ denoting the greatest-integer function. Furthermore,
H⌊p/N⌋ is the case k = 0 of a sum studied by Lerch [12] and other writers,

s(k,N) :=

⌊
(k+1)p

N
⌋

∑

j=⌊kp

N
⌋+1

j 6=p

1

j
, (4.22)

where ⌊·⌋ denotes the greatest-integer function, and it is always assumed that
p is sufficiently large that s(k,N) contains at least one element; the provision
j 6= p is necessary when k + 1 = N . In their landmark joint paper of 1995,
Dilcher and Skula [4] established the surprising result that the vanishing
modulo p of the sum in (4.22) was a necessary criterion for the failure of
the first case of FLT for the exponent p, for all N from 2 to 46, and all
corresponding values of k.

In order to delineate the connection with lacunary binomial sums, it is
also convenient to define an alternating version of the sum just mentioned,

s∗(k,N) :=

⌊
(k+1)p

N
⌋

∑

j=⌊kp

N
⌋+1

j 6=p

(−1)j

j
. (4.23)

Now such sums as those in (4.22) and (4.23) are extremely intractable to
calculate for large p. Thus when the twin brothers Zhi-Hong Sun and Zhi-
Wei Sun showed, in separate papers published just over a decade apart, that
they could be evaluated modulo p in terms of simple functions of the lacunary
binomial sums considered above, the result was not only of great theoretical
interest but provided a powerful new computational technique. First, Z.-H.
Sun ([18], pt. 1) showed that for a prime p,
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N(1− T (N, 0, p))

p
≡
{

s(0, N) (mod p) if N is even

s∗(0, N) ≡ −s(1, 2N) (mod p) if N is odd.

(4.24)
Later, Z.-W. Sun ([20]; see also [19]) completed the analysis by showing that
for a prime p,

N(1− T ∗(N, 0, p))

p
≡
{

s(0, N) (mod p) if N is odd

s∗(0, N) ≡ −s(1, 2N) (mod p) if N is even.

(4.25)
We note in passing the advantageous decomposition

s(0, 2N) ≡ s(0, N) + s∗(0, N) (mod p), (4.26)

where by symmetry the right-hand side has the same value regardless of the
parity of N , a value in agreement with (3.15), (4.24), and (4.25).

The insights supplied by the equivalences proved by the Sun brothers
would allow all of the historical results for s(N, 0) to be obtained in a uniform
way. However, in actuality these have seemingly only been employed in Z.H.
Sun’s own paper of 1993 ([18], pt. 2, Theorems 2.1 and 2.4) to evaluate
s(0, 16) and s∗(0, 9)[≡ s(1, 18) mod p]. The culmination of developments
obtained by other techniques is represented by the 2015 study of Al-Shaghay
and Dilcher [1], which evaluated s(k, 24) for all values of k, thus subsuming
all previous results for which N is a divisor of 24.

From (4.24) and (4.25), it will be obvious that T (N, 0, p) ≡ T ∗(N, 0, p) ≡
1 mod p for all N, p, and that the Dilcher-Skula criteria for p to fail the first
case of Fermat’s Last Theorem translate for sums of Ramus’s type as

T (N, 0, p) ≡ 1 (mod p2) (4.27)

for all N between 2 and 23, and all even N between 24 and 46.
Finally, it may be mentioned that Emma Lehmer’s famous result ([11],

p. 360)
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(

p− 1

⌊jp/N⌋

)

≡ (−1)⌊jp/N⌋
(

1− pH⌊jp/N⌋

)

(mod p2) (4.28)

allows evaluations of these special binomial coefficients to be applied to these
special harmonic numbers. The important 2011 study by Kuzumaki and
Urbanowicz [10] found expressions in terms of simple linear recurrences for
N = 24 and of j < N , and thus, implicitly, for s(k, 24) for all values of k.

A comparison of (4.28) with (4.24) and (4.25) reveals the existence of a
threefold correspondence between lacunary binomial sums of Ramus’s type,
the type of special harmonic numbers under discussion, and special binomial
coefficients considered by Lehmer. However, while the special harmonic num-
bers have a natural relationship to the other two objects, the relationship of
those two to each other would involve a very convoluted expression.

5 Appendix

A few examples of the recurrences for the sequences T (N, 0, m) and T ∗(N, 0, m)
are given in Tables 1 and 2 below. These are given in the form

cN · xN + cN−1 · xN−1 + . . .+ c0 · x0 = 0.

Some examples of the two sequences with m starting at 0 follow, with
OEIS references provided where applicable:

• T (2, 0, m): 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536, 131072, 262144, . . . (OEIS A011782)

• T ∗(2, 0, m): 1, 1, 0, –2, –4, –4, 0, 8, 16, 16, 0, –32, –64, –64, 0, 128,
256, 256, 0, –512, . . . (OEIS A146559)

• T (3, 0, m): 1, 1, 1, 2, 5, 11, 22, 43, 85, 170, 341, 683, 1366, 2731, 5461,
10922, 21845, 43691, 87382, 174763, . . . (OEIS A024493)

• T ∗(3, 0, m): 1, 1, 1, 0, –3, –9, –18, –27, –27, 0, 81, 243, 486, 729, 729,
0, –2187, –6561, –13122, –19683, . . . (OEIS A057681)
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Table 1: Recurrent sequences for T (N, 0, m) for small values of N
N coefficients c in descending order
2 1,−2, 0
3 1,−3, 3,−2
4 1,−4, 6,−4, 0
5 1,−5, 10,−10, 5,−2
6 1,−6, 15,−20, 15,−6, 0
7 1,−7, 21,−35, 35,−21, 7,−2
8 1,−8, 28,−56, 70,−56, 28,−8, 0
9 1,−9, 36,−84, 126,−126, 84,−36, 9,−2
10 1,−10, 45,−120, 210,−252, 210,−120, 45,−10, 0

Table 2: Recurrent sequences for T ∗(N, 0, m) for small values of N
N coefficients c in descending order
2 1,−2, 2
3 1,−3, 3, 0
4 1,−4, 6,−4, 2
5 1,−5, 10,−10, 5, 0
6 1,−6, 15,−20, 15,−6, 2
7 1,−7, 21,−35, 35,−21, 7, 0
8 1,−8, 28,−56, 70,−56, 28,−8, 2
9 1,−9, 36,−84, 126,−126, 84,−36, 9, 0
10 1,−10, 45,−120, 210,−252, 210,−120, 45,−10, 2
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• T (4, 0, m): 1, 1, 1, 1, 2, 6, 16, 36, 72, 136, 256, 496, 992, 2016, 4096,
8256, 16512, 32896, 65536, 130816, . . . (OEIS A038503)

• T ∗(4, 0, m): 1, 1, 1, 1, 0, –4, –14, –34, –68, –116, –164, –164, 0, 560,
1912, 4616, 9232, 15760, 22288, 22288, . . . (similar to OEIS A099586
which however is not defined for m = 0)

• T (5, 0, m): 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 254, 474, 859, 1574, 3004,
6008, 12393, 25773, 53143, 107883, . . . (OEIS A139398)

• T ∗(5, 0, m): 1, 1, 1, 1, 1, 0, –5, –20, –55, –125, –250, –450, –725, –1000,
–1000, 0, 3625, 13125, 34375, 76875, 153750, . . . (not in OEIS)
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