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Abstract

Rough set based flow graphs represent the flow of information for a given data set where

branches of these could be constructed as decision rules. However, in the recent years, the

concept of flow graphs has been applied to perceptual systems (also called perceptual flow

graphs) where they play a vital role in determining the nearness among disjoint sets of perceptual

objects. Perceptual flow graphs were first introduced to represent and reason about sufficiently

near visual points in images. In this paper, we have given a practical implementation of flow

graphs induced by a perceptual system, defined with respect to digital images, to perform

Content-Based Image Retrieval(CBIR). Results are generated using the SIMPLicity dataset,

and our results are compared with the near-set based tolerance nearness measure(tNM).

Keywords: Content Based Image Retrieval, granular computing, flow graphs, near sets, per-

ceptual system, rough sets.

1 Introduction

Rough set based flow graphs first introduced by Pawlak in [24, 3] to model information flow for a given

data set with branches representing decision rules. The branches of flow graphs can be constructed

as a decision rule and have three coefficients: strength, certainty and coverage associated with each

branch. The entire flow graph can be viewed as a learning structure. Recent work on rough set based

flow graphs includes theoretical and algorithmic aspects of Pawlak flow graphs [6, 27, 30, 29, 31, 1, 41]

as well as practical applications such as music retrieval [14, 5], survival analysis [21], association

rule [2], data mining [42] and granular computing [15].

The basic structure used in rough set-based flow graphs is an information system. However, in

this work, we use a near set flow graph with a perceptual system based on near sets [33, 37, 44, 9]

as its basic structure. The formal model for the near set based flow graphs was introduced in [35]

and elaborated in [40].
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A perceptual system is a specialized form of information system consisting of a set of objects

equipped with a family of probe functions. These probe functions give rise to a number of perceptual

relations between objects of a perceptual system [45]. This approach is useful when decisions on

nearness are made in the context of a perceptual system, i.e., a system consisting of objects and

our perceptions of what constitutes features that best describe these objects. This is especially

important in image retrieval [12].

In a perceptual flow graph (PFG) induced by a perceptual system, a node in the graph is an object

in a perceptual system with normalized flows derived from probe functions. A distinctive feature

of graphs induced by perceptual systems are layers. A layer consists of nodes belonging to a single

feature. Hence, layers are partitions induced by probe function values where nodes within a layer

are not connected. An important characteristic of such flow graphs is that layers greatly influence

nearness measure. Different ordering among set of probe functions generate different results.

Perceptual flow graphs were first introduced in [35] to represent and reason about sufficiently

near visual points in images. In [40], a framework for extended layered perceptual flow graphs

was established, where analysis of such graphs was performed using near set theory. In [36], this

framework was extended to include set of points between pairs of digital image flow graphs. In this

paper we introduce, i) a perceptual flow graph algorithm (PFG) to determine nearness between two

disjoint perceptual systems, ii) a binning method to discretize the real-valued domain of feature

values, iii) an efficient implementation of the algorithm by determining the best combination of a

reduced set of features using entropy-based gain ratio measure iv) experimental comparison with

the tolerance nearness measure results reported in [11] (see also [10]).

The choice of a perceptual system for CBIR application was especially important for two main

reasons: i) probe functions are defined in terms of features of pixels in digital images (e.g., colour,

texture, edges, and moments, ii) retrieval task can be considered as measuring nearness between two

disjoint perceptual systems (i.e., two digital images). In this paper, the term nearness is used in the

context of PFGs whereas the term similarity is used in the context of a specific application such as

CBIR.

The paper is organized as follows. In Sect. 2, we give formal definitions for near sets and rough

set based flow graphs. In Sect. 3, we discuss research related to this paper. In Sect. 4, we present

formal definitions for perceptual flow graphs and an application to CBIR. A discussion of the results

is given in Sect. 6.
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2 Preliminaries

Underlying perceptual flow graphs, is the notion of an ordered perceptual system. In this section,

we give basic definitions of near set theory, rough set based flow graphs and extended layered flow

graphs.

2.1 Perceptual System

The basic structure which underlies near set theory is a perceptual system [38].

Definition 1 ([9]) Perceptual Object. A perceptual object is anything that has its origin in the

physical world i.e. it possesses some characteristics that are observable to the senses.

Definition 2 ([32]) Feature. A feature characterizes some aspect of the makeup of a perceptual

object.

Definition 3 ([33, 34]) Probe Function. A probe function is the real-valued function that rep-

resents the features of a perceptual object.

In this work, probe functions are defined in terms of digital images such as: colour, texture,

gradient and spatial orientation. In relation to the near set theory, probe functions play an important

role by determining the similarity and dissimilarity among given set of images, thereby finding that,

if two objects are associated with same pattern or not.

Definition 4 ([9]) Perceptual System. A perceptual system is a pair 〈O,F〉, where O is a

nonempty set of perceptual objects and F is a countable set of probe functions φi : O → R.

Definition 5 ([10]) Object Description. Let 〈O,F〉 be a perceptual system and B ⊆ F be a set

of probe functions. Then, the description of the perceptual object x ∈ O is given in terms of the

feature vector :

φB(x) = φ1(x), φ2(x), ....., φi(x), ....., φl(x),

where l is the length of the feature vector φB(x) and φi(x) in φB(x) is a probe function value that is

a part of the perceptual object x ∈ O.

Definition 6 ([22, 38]) Perceptual Indiscernibility Relation. Let 〈O,F〉 be a perceptual sys-

tem. For every B ⊆ F, the perceptual indiscernibility relation ∼B is defined as:

∼B= {(x, y) ∈ O ×O : ∀φi ∈ B. φi(x) = φi(y)} .
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Definition 7 ([10]) Equivalence Class. Let 〈O,F〉 be a perceptual system and let x ∈ O. For a

set B ⊆ F, an equivalence class is defined as:

x/∼B = {x′ ∈ O|x′ ∼B x} .

Definition 8 ([38]) Nearness Relation. Let 〈O,F〉 be a perceptual system and let X,Y ⊆ O. A

set X is near to set Y within the perceptual system 〈O,F〉 (X ��F Y ) if, and only if, there are B1,

B2 ⊆ F and φi ∈ F and there are A ∈ O/∼B1
, B ∈ O/∼B2

, C ∈ O/∼φi
such that A ⊆ X,B ⊆ Y, and

A,B ⊆ C. If a perceptual system is understood, than a set X is near to set Y .

Definition 9 ([38]) Perceptual Near Sets. Let 〈O,F〉 be a perceptual system and let X,Y ⊆ O

denote disjoint sets. Sets X,Y are near sets if, and only if, X ��F Y .

2.2 Rough Set Based Flow Graphs

In this section, we introduce formal notation for flow graphs based on rough sets.

Definition 10 ([24]) Let G = (N,B, ϕ) be a directed, acyclic, finite graph, where N is a set of

nodes, B ⊆ N ×N a set of directed branches, ϕ : B → R
+ a flow function and R

+ denotes a set of

non-negative real numbers.

If (x, y) ∈ B then x is an input of node y denoted by I(y) and y is an output of node x denoted by

O(x). Next, input and output of a flow graph G are defined respectively by I(G) = {x ∈ N : I(x) = ∅}
and O(G) = {x ∈ N : O(x) = ∅}.

These inputs and outputs of G are called external nodes of G whereas other nodes are called

internal nodes of G. If (x, y) ∈ B then we call (x, y) a throughflow from x to y. We will assume in

what follows that ϕ(x, y) 
= 0 for every (x, y) ∈ B. With every node x of a flow graph G, we have its

associated inflow and outflow respectively as: ϕ+(x) =
∑

y∈I(x) ϕ(y, x) and ϕ−(x)=
∑

y∈O(x) ϕ(x, y).

Similarly, an inflow and an outflow for the flow graph G are defined as: ϕ+(G) =
∑

x∈I(G) ϕ−(x)

and ϕ−(G) =
∑

x∈O(G) ϕ+(x). We assume that for any internal node x, ϕ−(x) = ϕ+(x) = ϕ(x),

where ϕ(x) is a throughflow of node x. Similarly then, ϕ−(G) = ϕ+(G) = ϕ(G) is a throughflow of

graph G.

2.3 Normalized Flow Graphs

Definition 11 ([24]) Let G = (N,B, ϕ, σ) be a normalized flow graph, where N is a set of nodes,

B ⊆ N × N a set of directed branches, ϕ : B → R
+ and σ: B → [0, 1] a normalized flow between

nodes.
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With every node x of a normalized flow graph G, the associated normalized inflows and outflows

are defined as: σ+(x) = ϕ+(x)
ϕ(G) =

∑
y∈I(x) σ(y, x) and σ−(x) = ϕ−(x)

ϕ(G) =
∑

y∈O(x) σ(x, y). For any

internal node x, it holds that σ+(x) = σ−(x) = σ(x), where σ(x) is a normalized throughflow of x.

Similarly, normalized inflows and outflows for the flow graph G are defined as: σ+(G) = ϕ+(G)
ϕ(G) =

∑
x∈I(G) σ−(x) and σ−(G) = ϕ−(G)

ϕ(G) =
∑

x∈O(G) σ+(x). It also holds that σ+(G) = σ−(G) = σ(G) =

1.

For any branch (x, y) the strength σ is defined as:

σ(x, y) =
ϕ(x, y)

ϕ(G)
,

where 0 ≤ σ(x, y) ≤ 1. With every branch (x, y) of a normalized flow graph G, the certainty and the

coverage of (x, y) are defined respectively as:

cer(x, y) =
σ(x, y)

σ(x)
,

and

cov(x, y) =
σ(x, y)

σ(y)
,

where σ(x), σ(y) 
= 0 and is defined as:

σ(x) =
Size of equivalence class

Inflow .

In accordance with the previous works [6], here are some consequence properties:

∑
y∈O(x)

cer(x, y) = 1 and
∑

x∈I(y)

cov(x, y) = 1.

In addition,

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y),

and

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(x)

σ(x, y),

have a form of total probability theorem, whereas

cer(x, y) =
cov(x, y)σ(y)

σ(x)
,
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and

cov(x, y) =
cer(x, y)σ(x)

σ(y)
,

are Bayes’ rules.

A (directed) path from x to y (x 
= y), denoted by [x . . . y], is a sequence of nodes x1, . . . , xn such

that x1 = x and xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n − 1. The certainty of the path

[x1...xn] is defined as

cer[x1..xn] =

n−1∏
i=1

cer (xi, xi+1) , (1)

the coverage of the path [x1...xn] is defined as

cov[x1...xn] =

n−1∏
i=1

cov (xi, xi+1) ,

and strength of the path [x1...xn] is defined as

σ[x1...xn] = σ(x1)cer[x1...xn] = σ(xn)cov[x1...xn]. (2)

If [x . . . y] is a path such that x and y are input and output of the graph G, respectively, then [x . . . y]

will be referred to as a complete path.

Since normalized flow graphs are composed of internal and external nodes (inputs and outputs),

if we only focus on input and output, then we require the concept of a complete connection. The

set of all complete paths from x to y (x 
= y) in G, denoted by 〈x, y〉, is a complete connection

of G determined by nodes x and y. For every complete connection 〈x, y〉, its associated certainty,

coverage and strength of the complete connection 〈x, y〉 are:

cer 〈x, y〉 =
∑

[x...y]∈〈x,y〉
cer[x . . . y],

cov 〈x, y〉 =
∑

[x...y]∈〈x,y〉
cov[x . . . y],

and

σ 〈x, y〉 =
∑

[x...y]∈〈x,y〉
σ[x . . . y],

where σ[x . . . y] can be replaced with the equivalent terms given in Eq. 2.

The above definitions are illustrated by means of a digital image consisting of three different

features, namely, red, green and blue shown in Fig.1. Inputs to this normalized flow graph are nodes

r1, r2 and r3, whereas the outputs are nodes b1, b2 and b3. Nodes g1, g2 and g3 represent the internal

6



nodes of the normalized flow graph.
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Figure 1: Normalized flow graph G.

3 Related Works

Relationship between rough sets and flow graphs is discussed in [3] where the basic definitions of

rough sets such as approximations, vagueness, accuracy of approximations and dependency degree

are defined in terms of flow graphs if the initial data is in the form of flow graph. Layers of the

flow graph depict the partition of universe with nodes representing the subsets of the universe. The

branches of the flow graphs carrying coefficients are used in performing rough set approximation.

Information flow in a flow graph is governed by Bayesian rule. In [28, 26, 25], certainty and coverage

coefficients of the flow graph satisfy the Bayesian rule without referring to prior and posterior

probabilities.

Relationship between decision trees and flow graphs is discussed in [26, 31]. A flow graph can

be produced from the decision tree by eliminating the root node. The attributes of the flow graphs

form nodes of the resultant decision tree. When the coefficients of paths are substituted for the

complete path, a fusion flow graph is generated that reveals the overall structure of a flow graph in

a simplified manner. Also, in comparison to the decision trees, flow graphs provide better insight

and understanding of the data structure. Moreover, if the given information system is the decision

table, then the last layer represents the decision attribute, whereas the other layers represent the

conditional attributes. This structure of the flow graph helps in generating the decision rules for a

given data set. The nodes of the flow graph in such situation serve as a logical formula, where the

value of the node say σ(x) is interpreted as a truth value [16] where 〈0, 1〉 i.e. 0 < σ(x) < 1. Thus

σ(x) can be understood as flow distribution ratio, probability or a truth value. With every branch

(x, y) a rule is generated i.e. if x then y where x is a condition and y is a decision. If this sequence

is generated for all the paths in the flow graph then the resultant set of rules together will form a

decision algorithm for a given flow graph.

In [20] quality and predictability of flow graphs are defined in terms of entropy and information
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gain respectively. The paper proposes the definitions for both the joint and conditional entropy in

terms of the throughflow of the flow graph. Entropy of the overall flow graph is calculated, which is

used in the information gain computation for the conditional attributes. The results of information

gain for different conditional attributes are compared to retrieve the attribute with high predictive

power. Also, it is shown that the layers of the flow graphs play a vital role in determining the overall

performance and structure of the flow graph. Since a flow graph can be generated from the decision

tree by eliminating the root node, the inverse order cannot be applied as the layers of flow graphs

can be rearranged any number of times. Hence, with every new arrangement, a new decision tree can

be formed. Moreover, while building the decision tree, the order of attributes with high information

gain is taken into consideration i.e. the attribute with highest information gain forms the first layer

and other layers are formed in a similar manner.

4 Perceptual Flow Graphs

Near set theory introduced in [33, 34] grew out of rough set theory [22, 23] and by the work of

E.Or�lowska on approximation spaces [18, 19]. Disjoint sets containing objects with similar descrip-

tions are near sets. Similarity is determined quantitatively via some description of the objects. Near

set theory is characterized by a perceptual system, whose objects are associated by relations such as

indiscernibility, weak indiscernibility, and tolerance, taking into account descriptions using a tuple

of probe functions [9] which provides a formal basis for identifying, comparing and measuring re-

semblance of objects based upon these descriptions [10]. Near sets are considered as a generalization

of rough sets [44]. The notion of nearness not only differs from indiscernibility but is a more gen-

eral concept and in consequence all basic notions of rough sets can be obtained within the near set

framework [45]. The principal difference between rough set theory and near sets is that near sets can

be discovered without the approximation of sets [38]. The theory of near sets can be summarized in

three simple concepts: a perceptual system, a nearness relation and a near set [46]. The CBIR task

can be considered as measuring nearness between two disjoint perceptual systems (i.e., two digital

images).

4.1 Formal Model

We now present the formal model of flow graphs induced by perceptual systems. Note that a

perceptual system 〈O,F〉, where F = φ1, φ2, . . . φn is a finite set probe functions, gives rise to a

directed acyclic finite graph G = (N, B) [40]. Each probe function φi induces a set of equivalence

classes which will serve as nodes of G: x and y belongs to the same equivalence class of φi provided
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that φi(x) = φi(y). A partition Pφi induced by φi will be called i-th layer. Then N is a disjoint

union of all Pφi . The pair of nodes ([x]φi , [y]φj ) is a directed branch (that is an element of B)

provided that their intersection is non empty and j = i + 1. By intersection we mean, that we seek

objects that share the same values for given probe functions. Note also, that a directed acyclic finite

graph induced by a perceptual system has some specific feature: it posses a linearly ordered set of

layers (the order of probe functions determines the order of layers).

4.2 Normalized Flow Graphs with Layers

In what follows, due to area of application (that is image analysis), we are concerned mainly with

normalized flow graphs whose underlying graphs are induced by perceptual systems. Following above

remarks we shall call these graphs normalized flow graphs with layers, but in the explicit context of

a perceptual system we shall refer to them also as perceptual normalized flow graphs.

Definition 12 ([40]) Let G be a normalized flow graph (see Def. 11) with n layers and ith layer

having ki nodes that are x1
i , x

2
i , . . . , x

ji
i , . . . , x

ki

i , 1 ≤ i ≤ n, 1 ≤ ji ≤ ki where the distance between

node xjl
l and xjm

m can be calculated for both connected and disconnected nodes using as follows:

ρ
(
xjl
l , x

jm
m

)
=

⎧⎪⎨
⎪⎩

σ
(
xjl
l

)
+ σ

(
xjm
m

)− 2σ
〈
xjl
l , x

jm
m

〉
, if C1

∞ , if C2

where C1 is the condition xjl
l and xjm

m are connected nodes, C2 is the condition xjl
l and xjm

m are

disconnected nodes, 1 ≤ l < m ≤ n, 1 ≤ jl ≤ kl and 1 ≤ jm ≤ km.

Note, that in the above calculation of the distance, the connected nodes are not necessarily input

and output nodes. Recall that a connection between input and output node is called a complete

connection. The connection between node xjl
l and node xjm

m can be calculated using

σ
〈
xjl
l , x

jm
m

〉
=

∑

[x
jl
l ...xjm

m ]∈
〈
x
jl
l ,xjm

m

〉
σ[xjl

l . . . xjm
m ],

where

σ[xjl
l . . . xjm

m ] = σ(xjl
l )cer[xjl

l ...x
jm
m ],

and

cer[xjl
l . . . xjm

m ] =

m−1∏
i=l

cer(xji
i , x

ji+1

i+1 ).

We now introduce the formalism for establishing nearness between two normalized flow graphs

G and G′ necessary of comparing digital images.
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Definition 13 ([40]) Let G = (N,B, ϕ, σ) be a normalized flow graph with n layers and the ith layer

having ki nodes where 1 ≤ i ≤ n, 1 ≤ ji ≤ ki: x1
i , x

2
i , . . . , x

ji
i , . . . , x

ki

i . Let G′ = (N ′, B′, ϕ′, σ′) be

a normalized flow graph with n′ layers and the i′ th layer having k′i nodes: x′1
i , x

′2
i , . . . , x

′ji
i , . . . , x′ki

i .

The distance between path
[
xj1
1 xj2

2 . . . xjn
j1

]
in G and path

[
x′j1
1 x′j2

2 . . . x′jn
j1

]
in G′ such that node xji

i

in G and node x′ji
i in G′, 1 ≤ i ≤ n, represent probe functions for the same feature is defined as

ρp

([
xj1
1 xj2

2 . . . xjn
j1

]
,
[
x′j1
1 x′j2

2 . . . x′jn
j1

])
=

∣∣∣σ
[
xj1
1 xj2

2 . . . xjn
j1

]
− σ′

[
x′j1
1 x′j2

2 . . . x′jn
j1

]∣∣∣
max

{
σ
[
xj1
1 xj2

2 . . . xjn
j1

]
, σ′

[
x′j1
1 x′j2

2 . . . x′jn
j1

]} .

Next, the distance between a set of paths of two flow graphs G and G′ is given in the following

definition.

Definition 14 ([40]) Let G = (N,B, ϕ, σ) be a normalized flow graph with n layers and the ith layer

having ki nodes where 1 ≤ i ≤ n, 1 ≤ ji ≤ ki: x1
i , x

2
i , . . . , x

ji
i , . . . , x

ki

i . Let G′ = (mN ′, B′, ϕ′, σ′) be

a normalized flow graph with n′ layers and the i′ th layer having k′i nodes: x′1
i , x

′2
i , . . . , x

′ji
i , . . . , x′ki

i .

The distance between a set of paths of two normalized flow graphs G and G′ is defined by

Dρp(G,G′) =

⎧⎪⎨
⎪⎩

inf {ρp (p, p′) : p ∈ P, p′ ∈ P ′} , if C3,

∞ , if C4,

where P is the set of all the paths from G, P ′ is the set of all the paths from G′, C3 is the condition

P 
= ∅ and P ′ 
= ∅, and C4 is the condition P = ∅ or P ′ = ∅.

In practical applications, determining the set of all possible paths among given input and output

nodes of the normalized flow graph results in lengthy execution time. So, in order to overcome this

problem, Def. 14 has been modified. Instead of searching for all the possible paths among input and

output nodes of the normalized flow graph, we only focus on the set of shortest paths among input

and output nodes of the normalized flow graph. The set of shortest paths is labelled SP .

So, the new definition to find distance between a set of paths of two normalized flow graphs G
and G′ is defined as

Definition 15 Let G = (N,B, ϕ, σ) be a normalized flow graph with n layers and the ith layer

having ki nodes where 1 ≤ i ≤ n, 1 ≤ ji ≤ ki: x1
i , x

2
i , . . . , x

ji
i , . . . , x

ki

i . Let G′ = (N ′, B′, ϕ′, σ′) be a

normalized flow graph with n′ layers and the i′ th layer having k′i nodes: x′1
i , x

′2
i , . . . , x

′ji
i , . . . , x′ki

i .

Dρp(G,G′) =

⎧⎪⎨
⎪⎩

inf {ρp (p, p′) : p ∈ SP, p′ ∈ SP ′} , if C3,

∞ , if C4,

where SP is the set of all the shortest paths from G, SP ′ is the set of all the shortest paths from G′,
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C3 is the condition SP 
= ∅ and SP ′ 
= ∅, and C4 is the condition SP = ∅ or SP ′ = ∅.

Example:

We now return to Fig.1, to illustrate an example of shortest distance computation between node r1

and node b2. First, we calculate σ 〈r1, b2〉 as follows:

σ 〈r1, b2〉 = inf {σ [r1g1b2] , σ [r1g2b2]} ,

= inf{σ(r1)cer [r1g1b2] , σ(r1)cer [r1g2b2]},

= inf{σ (r1) cer (r1, g1) cer (g1, b2) ,

σ (r1) cer (r1, g2) cer (g2, b2)},

= inf{(0.3125)(0.6)(0.4), (0.3125)(0.4)

(0.429)},

= inf {0.075, 0.053625} = {0.053625} .

Then, by Def. 12, we have

ρ (r1, b2) = σ(r1) + σ(b2) − 2σ 〈r1, b2〉 = 0.3125 + 0.4375 − 2(0.053625) = 0.64275.

By Def. 15, the distance between set of shortest paths in Figure 2 and 3 is computed as:

ρ ([r1b1] , [r
′
1, b

′
1]) =

|inf {σ [r1g1b1] , σ [r1g2b1]} − inf {σ [r′1, g′1, b′1]}|
max {inf {σ [r1g1b1] , σ [r1g2b1]} , inf {σ [r′1, g

′
1, b

′
1]}}

,

=
{
| inf{(0.3125)(0.6)(0.6), (0.3125)(0.4)(0.143)}

− inf{(0.375)(0.333)(0.5)}|
}

÷max
{

inf{(0.3125)(0.6)(0.6),

(0.3125)(0.4)(0.143)}, inf{(0.375)(0.333)(0.5)}
}
,

=
|inf {0.1125, 0.017875}− inf{0.06243}|

max {inf {0.1125, 0.017875} , inf{0.06243}},

=
|0.017875− 0.06243|

max {0.017875, 0.06243},

= 0.7136,

...
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ρ ([r3b2] , [r′3, b
′
2]) =

{
|{inf {σ [r3g2b2] , σ [r3g3b2]}} − inf{{σ [r′3g

′
2b

′
2] , σ [r′3g

′
3b

′
2]} |}

}

÷max
{

inf {σ [r3g2b2] , σ [r3g3b2]} , inf {σ [r′3g
′
2b

′
2] , σ [r′3g

′
3b

′
2]}

}
,

=
{
| inf{(0.375)(0.6667)(0.429), (0.375)(0.333)(0.5)}

− inf{(0.375)(0.333)(0.333), (0.375)(0.667)(0.333)}|
}

÷max
{

inf{0.375)(0.6667)(0.429), (0.375)(0.333)(0.5)},

inf{(0.375)(0.333)(0.5), (0.375)(0.667)(0.333)}
}
,

= | inf {0.107255, 0.0624375}− inf {0.04158, 0.08329}|

÷max
{

inf {0.107255, 0.0624375} , inf {0.04158, 0.08329}
}
,

=
|0.0624375− 0.04158|

max {0.0624375, 0.04158} = 0.334.

Next, consider the distance between set of paths of G and G′, then by Def. 15, we have

Dρp(G,G′) = inf {ρ ([r1b1] , [r′1b
′
1]) , . . . , ρ ([r3b2] , [r′3b

′
2])} = inf {0.7136, . . . , 0.334} = 0.334.

The degree of nearness between two normalized flow graphs depends upon the value of distance

computation performed above. Two images are completely near to each other, if, the result from

the above computation is zero. In case of non-zero value, closer the resultant value to the zero, more

similar(near) the images are.
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σ = 0.1875,       cer = 0.429

Figure 2: Normalized flow graph G.

4.3 Application to CBIR

The PFG algorithm is applied to a CBIR problem, where the goal is to retrieve digital images from

databases based on the content of an image rather than on some semantic string or keywords asso-

12
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Figure 3: Normalized flow graph G′.

ciated with the image. The content of the image is determined by probe functions that characterize

features such as colour, texture, shape of objects, and edges. In our approach to CBIR, a search

entails analysis of content, based on a nearness measure between a query image and a test image. To

generate results, the SIMPLIcity image database [43], a database of images containing 10 categories

with 100 images in each category, was used (see, e.g., Fig. 4). The categories are varied with different

objects and scenes, and images in different categories can also resemble each other. This dataset

was selected to provide a basis for comparison with the tolerance nearness measure results reported

in [11] (see also [10]).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Sample images from SIMPLIcity dataset.
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The results were generated by partitioning the images into subimages, where each subimage is

considered an object in the near set sense, i.e. each subimage is a perceptual object, and each object

description consists of the values obtained from image-based probe functions applied to the subimage.

This technique of partitioning an image and assigning feature vectors (i.e. object descriptions) to

each subimage is an approach that has also been traditionally used in CBIR.

The results in this article are obtained using the same test data for the results reported in [11].

In particular, each subimage is of size 20 × 20 (resulting in 456 objects per image pair). In [11],

images were characterized by 18 features (obtained via probe functions), namely 4 texture features

obtained from the grey-level co-occurrence matrix of subimage, the first and second moments of u

and v in the CIELUV colour space, the number of edge pixels contained in the subimage based on

Mallat’s multiscale edge detection method [17], and the Zernike moments of order 4, excluding Ã00.

However, due to large runtimes, a reduced set of features were used to obtain results.

Specifically, the machine learning tool, Weka [7], was used to perform feature reduction among

the 18 features listed above. Weka aims to provide a comprehensive collection of machine learning

algorithms and data pre-processing tools, thereby allowing users to quickly experiment with machine

learning algorithms on new data sets. The goal of feature reduction is to select the best subset of

features from the given list that is necessary and sufficient to describe the target concept [39].

Feature reduction can also be performed from rough set based methods such as reduct and core [8].

However for this work, the gain ratio algorithm [13] was selected to perform feature reduction on

data reported in [11]. The top four features selected after performing the evaluation were: the

number of edge pixels, Zernike moment of order 11, the average U and average V value from the

CIELUV colour space.

Algorithm 1 details the approach to using normalized flow graphs for CBIR. First, the input

to the algorithm is a dataset containing the output of real-valued probe functions obtained by

processing all images in a given CBIR image database. Next, the output is a matrix quantifying

the similarity of each pair of images in the database. Specifically, for a given a, b (representing two

images in the database), two graphs, G,G′, are created. Then, Defn. 15 is used to populate row

a and column b of the matrix. These matrix values are used to rank the results for a given query

image. For example, row a of the matrix can be sorted (from lowest to highest), and the order of the

sorted values represent the retrieval results for query image a. In other words, the sorted distance

measures represent the retrieved images from the database relevant to query image a (from best to

worst).

Next, the body of Algorithm 1 summarizes the approach to using Defn. 15 for CBIR, i.e. it

presents the approach for determining the degree of nearness between two perceptual normalized

14



Algorithm 1: Perceptual Flow Graph Algorithm

Input : Processed image dataset (i.e. probe functions output for all images in database).
Output: Matrix, M , populated by Defn. 15.

1 for each probe function φi do
2 Discretize all output for φi into n bins.

3 for a in database do
4 Generate flow graph G for image a.
5 for b in database do
6 Generate flow graph G′ for image b.
7 Quantify the degree of similarity between flow graphs G and G′ s.t. Dρp(G,G′) =

⎧⎪⎪⎨
⎪⎪⎩

inf
{
ρp

([
xj1
1 . . . xjn

j1

]
,
[
x′j1
1 . . . x′jn

j1

])
:
[
xj1
1 . . . xjn

j1

]
∈ SP,

[
x′j1
1 . . . x′jn

j1

]
∈ SP ′

}
;

if SP 
= ∅ and SP ′ 
= ∅,
∞; if SP = ∅ or SP ′ = ∅,

where SP and SP ′ denote set of shortest paths in G and G′, respectively.
8 Populate row a and column b of M with Dρp(G,G′).
9 Populate row b and column a of M with Dρp(G,G′) (unless a == b).

flow graphs for use in CBIR. First, the probe function input is discretized into n bins to reduce

algorithm runtime, where n ∈ {5, 10, 15, 20, 25, 30, 35}. Second, for a given a, b, two graphs, G,G′,

are constructed with the following order of probe functions: Avg. V value from CIELUV, Zernike

moment of order 11, number of edge pixels and Avg. U value from CIELUV. Layers of the flow

graph can be rearranged any number of times, and with every different arrangement, a new result is

obtained [20]. The order of layers mentioned above was selected because it produced the best results

for all possible permutations of the four probe. Next, Dijkstra’s Shortest Path Algorithm [4] was

required to implement Defn. 15. Recall, this algorithm performs addition on edge weights as traversal

proceeds along the paths of the graph. However, multiplication was used in this implementation to

reflect the calculation of certainty for a path (see Eq. 1). Finally, as was mentioned, the approach

presented here is compared with the tolerance nearness measure [11].

5 Tolerance Nearness Measure

Tolerance nearness measure quantifies the similarity of two images as follows. First, the subimages

represent objects in a perceptual system, i.e, let the sets X and Y represent the two images to be

compared where each set consists of the subimages obtained by partitioning the images. Further-

more, the set of all objects in this perceptual system is given by Z = X ∪ Y . Then, sets called

tolerance classes are obtained from Z, where each pair of objects in the set a tolerance relation and

the set is maximal with respect to inclusion. Next, the nearness of X and Y is determined by the

distribution of the tolerance classes between the two sets X and Y . The idea is that tolerance classes
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obtained from images containing similar content (based on the selected probe functions) should be

evenly divided between the two sets X and Y .

6 Results and Discussion

This section presents CBIR results using Algorithm 1 and compares them with those reported with

the tolerance nearness measure. The results are presented using precision vs recall plots, where the

idea is to retrieve all images from the same category as the query image before images from any

other category. Each image in the SIMPLIcity database was compared with each other image, and

the results are sorted in the ascending order. Typically, the smallest value represents the “nearest”

image, which typically is the query image itself. Similarly, in the ideal case, all images from the same

category would be retrieved before any images from other categories. In this case, precision would

be 100% until recall reached 100%, at which point precision would drop to the number of images in

query category / number of images in the database. As a result, our final value of precision will be

∼11% since we used 9 categories each containing 100 images. Note, only 9 categories were used since

the category 4 (cartoons of dinosaurs) are easy to retrieve and their inclusion would only increase the

runtime of the experiment. The results for PFG are presented in Fig. 5 - 8, where the PFG average

precision vs. recall plots are given in Fig. 5 and 7, and the PFG best precision vs. recall results are

given in Fig. 6 and 8. These plots were generated for bin numbers n ∈ {5, 10, 15, 20, 25, 30, 35}. On

the other hand, the results for tNM are shown in Fig. 9 - 12, where the tNM average precision vs.

recall plots are given in Fig. 9 and 11, and the tNM best precision vs. recall results are given in

Fig. 10 and 12.

Next, the following discusses some observations of the reported results. First, notice that some

of the curves have a sharp point of inflection (see, e.g., bin no = 35 at 28% recall in Fig. 5(a) and

for ε = 0.1 at 18% in Fig. 9(a)). These points represent the location at which, on average, the

distance measure values for a particular query image and the remaining images become infinite (i.e.,

the measure indicates these images are not near each other). In order to consistently provide this

clear demarcation, any images from the same category as the query image that produced an infinite

distance measure were ranked last in the search, thus giving this same feature in all the plots.

The results for the PFG best plots are reported in Fig. 6 and 8. The drop at 78% recall for

bin no = 15 in Fig.6(a) signifies that 78 images are retrieved accurately from the correct category

before an image from the category different to the query image category is encountered. It must

be noticed that number of images to be retrieved correctly depends entirely on the bin number. In

some cases, lower bin numbers retrieve more number of images from the exact category than the

higher bin numbers. As in Fig. 6(c), 6(e), 6(f), 8(a), 8(b), 8(c), lower bin numbers (5) fetch more
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Figure 5: PFG Average precision versus recall plots grouped by category: (a) - (f) Cat. 0 - 6
(excluding cat. 4).
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(f)

Figure 6: PFG Best precision versus recall plots grouped by category: (a) - (f) Cat. 0 - 6 (excluding
cat. 4).
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Figure 7: PFG Average precision versus recall plots grouped by category: (a) - (c) Cat. 7 - 9.
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Figure 8: PFG Best precision versus recall plots grouped by category: (a) - (c) Cat. 7 - 9.
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Figure 9: tNM Average precision versus recall plots grouped by category: (a) - (f) Cat. 0 - 6
(excluding cat. 4).
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(f)

Figure 10: tNM Best precision versus recall plots grouped by category: (a) - (f) Cat. 0 - 6 (excluding
cat. 4).
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Figure 11: tNM Average precision versus recall plots grouped by category: (a) - (c) Cat. 7 - 9.
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Figure 12: tNM Best precision versus recall plots grouped by category: (a) - (c) Cat. 7 - 9.

number of images from the same category as the query image, while in 6(d), higher bin number (35),

retrieves more number of images from the correct category. Comparing PFG results with tNM, it

was observed that for the tribal category, PFG fetched more number of images from the database

than tNM, whereas for the category of beaches, buses, elephants, flowers and horses, tNM showed

higher retrieval of accurate images. On the other hand, for buildings, mountains and food categories,

both PFG and tNM had comparable retrieval of images from the databases. Overall, it was observed

that PFG was able to generate comparable results with tNM.

7 Conclusion

The contribution of this paper is a practical implementation of perceptual flow graph (PFG) al-

gorithm which uses a perceptual indiscernibility relation from near sets and data pre-processing

strategy, binning, to perform CBIR on digital images. Perceptually relevant information was ex-

tracted from a set objects formed from pairs of images, where each object has an associated object

description. Overall, PFG is able to demonstrate comparable performance with tolerance nearness

measure (tNM) measure in terms of precision and recall on the SIMPLIcity image database which

is a repository of images containing 10 categories with 100 images in each category. An important

characteristic of the perceptual flow graphs are probe functions that characterize features. Selection

of probe functions and the order of their representation in a perceptual flow graph are the two key

steps involved in computing nearness. Future work includes experiments with other image data sets

for different combination of probe functions and their ordering. Furthermore, the theory of flow
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graphs can be extended by introducing tolerance to the nearness measure computation. Another

application of the PFG algorithm is to consider multimedia data sets.
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