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Abstract. The focus of this paper is on a metric free nearness measure for quantifying the

descriptive nearness of digital images. Regions Of Interest (ROI) play an important role in

discerning perceptual similarity within a single image, or between a pair of images. In terms

of pixels, closeness between ROIs can be assessed in light of the traditional closeness between

points and sets and closeness between sets using topology or proximity theory. A metric free

nearness measure is introduced in this paper by finding common patterns among disjoint

description based neighbourhoods obtained from these spatially defined sets. The contri-

bution of this article is a metric free nearness measure implemented within the Proximity

System, an application used to demonstrate near set concepts using digital images.
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1. Introduction

The inspiration for the approach presented in this article is an observation in [1] that the

concept of nearness∗ is a generalization of set intersection. The idea follows from the notion

of set description [3, §4.3], which is a collection of the unique feature vectors (n-dimensional

real-valued feature vectors representing characteristics of the objects) associated with all the
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∗Introduced within the context of Riesz’s proximity [2].
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objects in the set. Describing sets in this manner, at some level, matches the human approach

to describing sets of objects. Furthermore, in comparing disjoint sets of objects, we must at

some level be performing a comparison of the descriptions we associate with the objects within

the sets. Thus, a natural approach for quantifying the degree of similarity (i.e. the nearness or

apartness) between two sets would be to look at the intersection of the sets containing their

unique feature vectors.

The sets considered in this article are obtained from digital images. Specifically, Regions

Of Interest (ROI) play an important role in discerning perceptual similarity within a single

image, or between a pair of images. In this work, four different ROIs are considered. Namely,

a simple set of pixels, a spatial neighbourhood, a descriptive neighbourhood, and a hybrid

approach in which the neighbourhood is formed by spatial and descriptive characteristics of

the objects. In terms of pixels, closeness between ROIs can be assessed in light of the tradi-

tional closeness between points and sets and closeness between sets using topology or proximity

theory [3, 4].

The approach reported here builds on the work of many others. The idea of sets of similar

sensations was first introduced by J. H. Poincaré in which he reflects on experiments performed

by E. Weber in 1834, and G. T. Fechner’s insight in 1850 [5, 6, 7, 8]. Poincaré’s work was inspired

by Fechner, but the key difference is Poincaré’s work marked a shift from stimuli and sensations

to an abstraction in terms of sets together with an implicit idea of tolerance. Next, the idea

of tolerance is formally introduced by E. C. Zeeman [9] with respect to the brain and visual

perception. Zeeman makes the observation that a single eye cannot identify a 2D Euclidean

space because the Euclidean plane has an infinite number of points. Instead, we see things only

within a certain tolerance. This idea of tolerance is important in mathematical applications

where systems deal with approximate input and results are accepted with a tolerable level of

error, an observation made by A. B. Sossinsky [5], who also connected Zeeman’s work with that

of Poincaré’s. In addition to these ideas on tolerance, F. Riesz first published a paper in 1908

on the nearness of two sets [2, 10], initiating the mathematical study of proximity spaces and

the eventual discovery of descriptively near sets. Specifically, Near set theory was inspired by

a collaboration in 2002 by Z. Pawlak and J. F. Peters on a poem entitled “How Near” [11],

which lead to the introduction of descriptively near sets [12, 13]. Next, tolerance near sets were

also introduced by Peters [14, 15], which combines near set theory with the ideas of tolerance

spaces and relations. Finally, a tolerance-based nearness measure was introduced in [16, 17].
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The contributions of this article are several new description-based operators and some of

their properties, and a new metric-free description-based nearness measure. The outline of this

article is as follows. Section 2 briefly describes the Proximity System, the system used to generate

the examples give in this article. Next, Section 3 defines some description-based set operators

and examines some traditional set properties on these new operators. Section 4 outlines several

types of neighbourhoods to which the descriptive-based operators can be applied. Section 5

defines the new metric-free nearness measure.

2. Proximity System

The examples presented in this article were generated with the Proximity System (shown in

Fig. 1), an application being developed to demonstrate the descriptive-based approaches in-

troduced in this article within the context of digital image analysis. The Proximity System

was written in Java and is intended to run in two different operating environments, namely on

Android 4.0 enabled smartphones and tablets, as well as any operating system running a Java

Virtual Machine. Specifically, both applications uses the same back-end libraries to perform

the description-based calculations, where the only differences are the user interface and the

Android 4.0 version has less available features (i.e. probe functions given in Definition 3) due to

restrictions on system resources. A detailed survey of the system is outside the scope of this pa-

per, however, the system is freely available for download†. Finally, to facilitate the introduction

of examples in Section 3, the digital images processed by the Proximity System are formally

given as follows. Define an RGB image as f = {p1,p2, . . . ,pN}, where pi = (ci, ri, Ri, Gi, Bi)
T,

ci ∈ [1,W ], ri ∈ [1, H ], Ri, Gi, Bi ∈ [0, 255], and W,H respectively denote the width and height

of the image and W ×H = N . Moreover, within the context of the Proximity System, define

O as the set of all pixels, i.e. O = f = {p1,p2, . . . ,pN}.

3. Description-based Set Operators

Many interesting properties can be considered by introducing the description of a set. The

following subsections give definitions and properties of new operators considered in the light of

object descriptions.

†As is the case with the NEAR System [18] available at http://wren.ee.umanitoba.ca/
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(a) (b)

Figure 1. Screenshots of Proximity System prototype: a) Android 4 applica-

tion, and b) Desktop application.

3.1. Definitions

A logical starting point for introducing descriptive-based operators begins with establishing a

basis for describing elements of sets. All sets in this work consist of perceptual objects.

Definition 1. Perceptual Object. A perceptual object is something that has its origin in the

physical world.

A perceptual object is anything in the physical world with characteristics observable to the

senses such that they can be measured and are knowable to the mind. In keeping with the

approach to pattern recognition suggested by M. Pavel [19], the features of a perceptual object

are quantified by probe functions.

Definition 2. Feature [20]. A feature characterizes some aspect of the makeup of a perceptual

object.

Definition 3. Probe Function [12, 21]. A probe function is a real-valued function representing

a feature of a perceptual object.

Next, a perceptual system is a set of perceptual objects, together with a set of probe

functions.

Definition 4. Perceptual System [22]. A perceptual system 〈O,F〉 consists of a non-empty set

O of sample perceptual objects and a non-empty set F of real-valued functions φ ∈ F such that

φ : O → R.

Combining Definitions 1 & 3, the description of a perceptual object within a perceptual

system can be defined as follows.
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Definition 5. Object Description. Let 〈O,F〉 be a perceptual system, and let B ⊆ F be a set of

probe functions. Then, the description of a perceptual object x ∈ O is a feature vector given by

ΦB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the vector ΦB, and each φi(x) in ΦB(x) is a probe function value that

is part of the description of the object x ∈ O.

Note, the idea of a feature space is implicitly introduced along with the definition of object

description. An object description is the same as a feature vector as described in traditional

pattern classification [23]. The description of an object can be considered a point in an l-

dimensional Euclidean space Rl called a feature space. Further, a collection of these points, i.e.,

a set of objects A ⊆ O, is characterized by the unique description of each object in the set.

Definition 6. Set Description [3, §4.3]. Let A be a set. Then the set description of A is defined

as

Φ(A) = {Φ(a) : a ∈ A}.

Example 1. Let 〈O,F〉 be a perceptual system, where O contains the pixels in Fig. 2, A ⊆ O,

and B ⊆ F contains probe functions based on the RGB colour model. Then, the set description

of A is Φ(A) = { , , , , }, where each coloured box represents the 3-dimensional real-valed

rgb vector associated the box’s colour.

A

Figure 2. Example demonstrating Definition 6.

Lemma 1. The set description of the empty set is the empty set.
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Proof. Obvious. �

Next, J. Peters and S. Naimpally observed that, from a spatial point of view, the idea

of nearness is a generalization of set intersection [1]. In other words, when considering the

metric proximity, two sets are near each other when their intersection is not the empty set.

Furthermore, they applied this idea to the concept of descriptive nearness in [3, §4.3] by focusing

on the descriptions of objects within the sets. In this case, two sets are considered near each

other if the intersection of their descriptions is not the empty set. The following definitions

build on these concepts and provide the foundation for demonstrating the properties of Table 1

within a description-based nearness framework.

Definition 7. Descriptive Set Union. Let A and B be any two sets. The descriptive (set) union

of A and B is defined as

A ∪
Φ
B = {x ∈ A ∪B : Φ(x) ∈ Φ(A) or Φ(x) ∈ Φ(B)}.

Theorem 1. The descriptive union is equivalent to set union.

A ∪
Φ
B ⇐⇒ A ∪B

Proof. Let a ∈ A and b ∈ B. Since, Φ(a) ∈ Φ(A) ∀a ∈ A (by Definition 6), A ⊆ A ∪
Φ

B.

Similarly, for the set B. By Definition 7, A ∪
Φ
B ⊆ A ∪B. Hence, A ∪

Φ
B = A ∪B. �

As a result of Theorem 1, only counter examples to the properties involving set union in

Table 1 will be considered in this article.

Definition 8. Descriptive Set Intersection [1, 3]. Let A and B be any two sets. The descriptive

(set) intersection of A and B is defined as

A ∩
Φ
B = {x ∈ A ∪B : Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(B)}.

Example 2. Let 〈O1,F〉 and 〈O2,F〉 be perceptual systems corresponding to Fig. 3a & 3c,

respectively, where the perceptual objects and probe functions are defined in the same manner

as Example 1. Moreover, let the blue rectangles in Fig. 3b (resp. Fig. 3d) represent two sets,

A,B, for which the descriptive intersection is considered. Then, the inverted pixels (i.e. pi =

(ci, ri, 255−Ri, 255−Gi, 255−Bi)
T) within these sets represent their descriptive intersection,

i.e. the inverted pixels represent the objects with matching descriptions in both sets.
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(a) (b)

(c) (d)

Figure 3. Example demonstrating Definition 8.

Definition 9. Descriptive Set Difference. The descriptive (set) difference (or descriptive differ-

ence set) between two sets A and B is defined as

A \
Φ

B = {x ∈ A : Φ(x) /∈ Φ(B)}.

Example 3. The descriptive difference between the sets introduced in Example 2 are given

Fig. 4. In this case, the inverted pixels represent all the objects that do not have matching

descriptions in the other set.

Lemma 2. The descriptive difference of a set with itself is the empty set.

A \
Φ

A = ∅

Proof.

A \
Φ

A ⇐⇒ x ∈ A : Φ(x) /∈ Φ(A), (by Definition 9)

⇐⇒ ∅.

�
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(a) (b)

Figure 4. Example demonstrating Definition 9.

Definition 10. Relative Descriptive Complement. Let A be a set, and let B ⊆ A. Then, the

descriptive difference can also be called the relative descriptive complement of B in A, and is

defined as

�A
Φ

(B) = A \
Φ

B = {x ∈ A : Φ(x) /∈ Φ(B)}.

Lemma 3. The relative descriptive complement of a set in itself is the empty set.

�A
Φ

(A) = ∅

Proof.

�A
Φ

(A) ⇐⇒ x ∈ A : Φ(x) /∈ Φ(A), (by Definition 10)

⇐⇒ ∅.

�

Lemma 4. The relative descriptive complement of the empty set is the set itself.

�A
Φ

(∅) = A

Proof.

�A
Φ

(∅) ⇐⇒ x ∈ A : Φ(x) /∈ Φ(∅), (by Definition 10 and Lemma 1)

⇐⇒ A.

�
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Definition 11. Descriptive Set Complement. The descriptive (set) complement of a set A in the

universe U is defined as

�
Φ
(A) = �U

Φ
(A) = U \

Φ

A

Example 4. Considering the perceptual systems introduced in Example 2, the descriptive com-

plement of each set represented by a blue rectangles in Fig. 5 is given by the inverted pixels.

In other words, the inverted pixels represent objects that do not have matching descriptions to

those contained inside the blue rectangle.

(a) (b)

Figure 5. Example demonstrating Definition 11.

Lemma 5. The descriptive complement is not the same as the set complement.

�
Φ
(A) = �(A)

Proof. Let x ∈ U\A, and Φ(x) ∈ Φ(A) (i.e. x has the same description as an object in A). By

Definition 11, x /∈ �
Φ
(A), and, consequently, �

Φ
(A) = �(A). �

3.2. Properties

This section presents properties of the definitions introduced in Section 3.1, where the choice

of properties highlighted here was guided by the list in [24, §R1.14] and are summarized in

Table 1.

Theorem 2. The descriptive complement of the universe is the empty set.

�
Φ
(U) = ∅

Proof. Substitute U for A in �A
Φ

(A) (see Lemma 3). �
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Table 1. Tolerance Class Example

Theorem, Lemma, or Property Description

Counter Example

L3-4, T2-3 �(U) = ∅ �(∅) = U

CE1 �(�(X)) = X

T4 X ∪X = X X ∩X = X

T5 X ∪ U = U X ∩ ∅ = ∅
T6 X ∪ Y = Y ∪X X ∩ Y = Y ∩X Commutativity

X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z = X ∪ Y ∪ Z
Associativity

T7 X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z = X ∩ Y ∩ Z

CE2, L6-L12, T8 X ∪ �(X) = U X ∩ (�(X) = ∅
CE3 X ∪ ∅ = X X ∩ U = X

CE4 X ⊂ X ∪ Y X ∩ Y ⊂ X

T9-10 �(X ∪ Y ) = �(X) ∩ �(Y ) �(X ∩ Y ) = �(X) ∪ �(Y )

CE5, T11 X ⊂ Y ⇔ �(X) ⊃ �(Y ) ⇔ X ∪ Y = Y ⇔ X ∩ Y = X

T12 X ∩ Y = ∅ ⇔ X ⊂ �(Y ) ⇔ Y ⊂ �(X)

T13 X ∪ Y = U ⇔ �(X) ⊂ Y ⇔ �(Y ) ⊂ X

CE6 X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)
Distributivity

T14 X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z)

Theorem 3. The descriptive complement of the empty set is the universe.

�
Φ
(∅) = U

Proof. Substitute U for A in �A
Φ

(∅) (see Lemma 4). �

Counter Example 1. The descriptive complement of the descriptive complement of a set is not

the original set.

�
Φ
(�
Φ
(A)) = A

Proof. By Definition 11, �
Φ
(A) = {x ∈ U : Φ(x) /∈ Φ(A)}. Let x ∈ U\A, a ∈ A, and Φ(x) =

Φ(a). Then, �
Φ
(A) = U\A. Consequently, �

Φ
(�
Φ
(A)) will contain objects from U\A (as shown

in Fig. 6). �

Theorem 4. The descriptive intersection is idempotent.

A ∩
Φ
A = A
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Figure 6. Instance of Counter Example 1.

Proof.

A ∩
Φ
A ⇐⇒ x ∈ A ∪ A : Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(A), (by Definition 8)

⇐⇒ x ∈ A : Φ(x) ∈ Φ(A), (since set union is idempotent)

⇐⇒ A (by Definition 6).

�

Counter Example 2. The descriptive union of a set and its descriptive complement is not the

universe.

A ∪
Φ
�
Φ
(A) = U

Proof. Similar to Counter Example 1 �

Theorem 5. The descriptive intersection of any set with the empty set is itself the empty set.

A ∩
Φ
∅ = ∅

Proof.

A ∩
Φ
∅ ⇐⇒ x ∈ A ∪ ∅ : Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(∅), (by Definition 8)

⇐⇒ x ∈ A : Φ(x) ∈ Φ(A) and Φ(x) ∈ ∅, (by Lemma 1)

⇐⇒ ∅.

�

Theorem 6. Descriptive intersection is commutative.

A ∩
Φ
B = B ∩

Φ
A
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Proof.

x ∈ A ∩
Φ
B ⇐⇒ x ∈ A ∪B : Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(B), (by Definition 8)

⇐⇒ x ∈ A ∪B : Φ(x) ∈ Φ(B) and Φ(x) ∈ Φ(A),

⇐⇒ B ∩
Φ
A.

�

Theorem 7. Descriptive intersection is associative.

A ∩
Φ
(B ∩

Φ
C) = (A ∩

Φ
B) ∩

Φ
C

Proof.

x ∈ A ∩
Φ
(B ∩

Φ
C)

⇐⇒ x ∈ A ∪B ∪C : Φ(x) ∈ Φ(A) and (Φ(x) ∈ Φ(B) and Φ(x) ∈ Φ(C)), (by Definition 8)

⇐⇒ x ∈ A ∪B ∪C : (Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(B)) and Φ(x) ∈ Φ(C),

⇐⇒ x ∈ (A ∩
Φ
B) ∩

Φ
C.

�

Next, Lemmas 6-12 are introduced to prove the descriptive intersection of a set and its

descriptive complement is the empty set (given in Theorem 8).

Lemma 6. Let A,B ⊆ C. Then, the descriptive difference between A and B is a subset of the

descriptive intersection with the relative descriptive complement with respect to C.

A \
Φ

B ⊆ A ∩
Φ
�C
Φ

(B)

Proof.

A \
Φ

B = {x ∈ A : Φ(x) /∈ Φ(B)}, (by Definition 9)

⊆ {x ∈ A : Φ(x) ∈ �C
Φ

(B)}, (by Definition 10)

⊆ A ∩
Φ
�C
Φ

(B). (by Definition 8)

�
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Note, for Lemma 6, equivalence cannot be guaranteed, which is demonstrated in the

following example.

Example 5. Let 〈C,F〉 be a perceptual system, where C contains the pixels in Fig. 7, A,B ⊆ C,

and B ⊆ F contains probe functions based on the RGB colour model. Then, A \
Φ

B = {x1},
�C
Φ

(B) = {x1, x3, x4, x5}, and A ∩
Φ
�C
Φ

(B) = {x1, x3, x4, x5}.

C

A

B

x

x

x

x

x

x

1

2

3

4

5

6

Figure 7. Example demonstrating Lemma 6.

Lemma 7. The descriptive difference is a subset of the descriptive intersection with the descrip-

tive complement.

A \
Φ

B ⊆ A ∩
Φ
�
Φ
(B)

Proof. This follows directly from Lemma 6. Here, let C = U . Since, A,B ⊆ U , the result

follows. �

Lemma 8. Let A,B,C be sets. Then,

(A ∩
Φ
B) \

Φ

C ⊆ (A \
Φ

C) ∩
Φ
(B \

Φ

C).
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Proof.

(A ∩
Φ
B) \

Φ

C ⊆ (A ∩
Φ
B) ∩

Φ
�
Φ
(C), (by Lemma 7)

⊆ (A ∩
Φ
B) ∩

Φ
(�
Φ
(C) ∩

Φ
�
Φ
(C)), (by Theorem 4)

⊆ (A ∩
Φ
�
Φ
(C)) ∩

Φ
(B ∩

Φ
�
Φ
(C)), (by Theorems 7 & 6)

⊆ (A \
Φ

C) ∩
Φ
(B \

Φ

C). (by Lemma 7)

�

Lemma 9. The descriptive difference of the descriptive intersection of two sets with one of these

sets is the empty set.

(A ∩
Φ
B) \

Φ

A = ∅

(A ∩
Φ
B) \

Φ

B = ∅

Proof.

(A ∩
Φ
B) \

Φ

A ⊆ (A \
Φ

A) ∩
Φ
(B \

Φ

A), (by Lemma 8)

⊆ ∅ ∩
Φ
(B \

Φ

A), (by Lemma 2)

= ∅. (by Theorems 6 & 5)

(A ∩
Φ
B) \

Φ

B ⇐⇒ (B ∩
Φ
A) \

Φ

B, (by Theorem 6)

⇐⇒ ∅. (from above)

�

Lemma 10. Let A,B, and C be sets. Then,

(A \
Φ

B) ∩
Φ
C = (A ∩

Φ
C) \

Φ

B.
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Proof.

x ∈ (A \
Φ

B) ∩
Φ
C,

⇐⇒ x ∈ A ∪ C : (Φ(x) ∈ Φ(A) and Φ(x) /∈ Φ(B)) and Φ(x) ∈ Φ(C), (by Defns 8 & 9)

⇐⇒ x ∈ A ∪ C : Φ(x) ∈ Φ(A) and Φ(x) /∈ Φ(B) and Φ(x) ∈ Φ(C),

⇐⇒ x ∈ A ∪ C : (Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(C)) and Φ(x) /∈ Φ(B),

⇐⇒ x ∈ (A ∩
Φ
C) \

Φ

B.(by Defns 8 & 9)

�

Lemma 11. The descriptive intersection of the descriptive difference with the second set is the

empty set.

(A \
Φ

B) ∩
Φ
B = ∅

Proof.

(A \
Φ

B) ∩
Φ
B ⇐⇒ (A ∩

Φ
B) \

Φ

B, (by Lemma 10)

⇐⇒ ∅. (by Lemma 9)

�

Lemma 12. The descriptive intersection of a set and its relative descriptive complement of B

in A is the empty set.

B ∩
Φ
�A
Φ

(B) = ∅

Proof.

B ∩
Φ
�A
Φ

(B) ⇐⇒ (A \
Φ

B) ∩
Φ
B, (by Theorem 7 & Definition 10)

⇐⇒ ∅. (by Lemma 11)

�

Theorem 8. The descriptive intersection of a set and its descriptive complement is the empty

set.

A ∩
Φ
�
Φ
(A) = ∅
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Proof. Substitute U for A and A for B in Lemma 12. �

Counter Example 3. The descriptive intersection of a set with the universe is not the original

set.

A ∩
Φ
U = A

Proof. By Definition 8,A ∩
Φ
U = {x ∈ U : Φ(x) ∈ Φ(A)}. Let x ∈ U\A, a ∈ A, and Φ(x) = Φ(a).

Then, A ∩
Φ
U = A. �

Counter Example 4. The descriptive intersection of two sets is not a subset of each.

A ∩
Φ
B � A

A ∩
Φ
B � B

Proof. By Definition 8. �

Next, to prove Theorem 10, De Morgan’s laws for set difference with respect to the

descriptive approach presented here need to be given.

Theorem 9. Let A,B,C be sets. Then,

A \
Φ

(B ∩
Φ
C) = (A \

Φ

B) ∪
Φ
(A \

Φ

C),

A \
Φ

(B ∪
Φ
C) = (A \

Φ

B) ∩
Φ
(A \

Φ

C).

Proof.

x ∈ A \
Φ

(B ∩
Φ
C) ⇐⇒ x ∈ A : Φ(x) /∈ Φ(B ∩

Φ
C), (by Definition 9)

⇐⇒ x ∈ A : Φ(x) /∈ (Φ(A) ∩ Φ(B)), (by Definition 8)

⇐⇒ x ∈ A : Φ(x) /∈ Φ(B) or Φ(x) /∈ Φ(C), (by De Morgan’s Law)

⇐⇒ x ∈ (A \
Φ

B) ∪
Φ
(A \

Φ

C). (by Definitions 7 & 9)
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x ∈ A \
Φ

(B ∪
Φ
C) ⇐⇒ x ∈ A : Φ(x) /∈ Φ(B ∪

Φ
C), (by Definition 9)

⇐⇒ x ∈ A : Φ(x) /∈ (Φ(A) ∪ Φ(B)), (by Definition 7)

⇐⇒ x ∈ A : Φ(x) /∈ Φ(B) and Φ(x) /∈ Φ(C), (by De Morgan’s Law)

⇐⇒ x ∈ (A \
Φ

B) ∩
Φ
(A \

Φ

C). (by Definitions 8 & 9)

�

Theorem 10. Let A,B be sets. Then,

�
Φ
(A ∩

Φ
B) = �

Φ
(A) ∪

Φ
�
Φ
(B),

�
Φ
(A ∪

Φ
B) = �

Φ
(A) ∩

Φ
�
Φ
(B).

Proof.

�
Φ
(A ∩

Φ
B) ⇐⇒ U \

Φ

(A ∩
Φ
B), (by Definition 11)

⇐⇒ (U \
Φ

A) ∪
Φ
(U \

Φ

B), (by Theorem 9)

⇐⇒ �
Φ
(A) ∪

Φ
�
Φ
(B). (by Definition 11)

�
Φ
(A ∪

Φ
B) ⇐⇒ U \

Φ

(A ∪
Φ
B), (by Definition 11)

⇐⇒ (U \
Φ

A) ∩
Φ
(U \

Φ

B), (by Theorem 9)

⇐⇒ �
Φ
(A) ∩

Φ
�
Φ
(B). (by Definition 11)

�

Counter Example 5. The descriptive intersection with subset is not the original subset.

A ⊆ B � A ∩
Φ
B = B

Proof. Replace U with B in Counter Example 3. �

Continuing on, Lemmas 13-16 are required to prove Corollary 1. Both Theorem 11 and

its Corollary are in regard to the set theory property that compliments invert subsets.
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Lemma 13. The description of the descriptive complement of the descriptive complement of a

set is the description of the set.

Φ(�
Φ
(�
Φ
(A))) = Φ(A)

Proof.

Φ(x) ∈ Φ(�
Φ
(�
Φ
(A))) ⇐⇒ Φ(x) ∈ Φ(U) : Φ(x) /∈ Φ(�

Φ
(A)), (by Definition 11)

⇐⇒ Φ(x) ∈ Φ(U) : Φ(x) ∈ Φ(A), (by Definition 11)

⇐⇒ Φ(x) ∈ Φ(A).

�

Lemma 14. Descriptions of descriptive complements are equal if the descriptions of the original

sets are equal.

Φ(A) = Φ(B) ⇐⇒ Φ(�
Φ
(A)) = Φ(�

Φ
(B))

Proof.

Φ(x) ∈ Φ(�
Φ
(A)) ⇐⇒ Φ(x) /∈ Φ(A), (by Definition 11)

⇐⇒ Φ(x) /∈ Φ(B), (since Φ(A) = Φ(B))

⇐⇒ Φ(x) ∈ Φ(�
Φ
(B)).

�

Lemma 15. The description of the descriptive union of two sets is equal to the union of their

descriptions.

Φ(A ∪
Φ
B) = Φ(A) ∪Φ(B)

Proof.

Φ(x) ∈ Φ(A ∪
Φ
B) ⇐⇒ Φ(x) ∈ Φ(A) or Φ(x) ∈ Φ(B), (by Definition 7)

⇐⇒ Φ(A) ∪ Φ(B).

�

Lemma 16. The description of the descriptive intersection of two sets is equal to the intersection

of their descriptions.

Φ(A ∩
Φ
B) = Φ(A) ∩Φ(B)
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Proof.

Φ(x) ∈ Φ(A ∩
Φ
B) ⇐⇒ Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(B), (by Definition 8)

⇐⇒ Φ(A) ∩ Φ(B).

�

Theorem 11. The descriptive complement inverts subsets.

A ⊆ B ⇐⇒ �
Φ
(B) ⊆ �

Φ
(A)

Proof.

x ∈ �
Φ
(B) ⇐⇒ x ∈ U and Φ(x) /∈ Φ(B), (by Definition 11)

⇐⇒ x /∈ B, (by Definition 6)

⇐⇒ x /∈ A, (since A ⊆ B)

⇐⇒ x ∈ �
Φ
(A). (by Definition 11)

Further,

x ∈ �
Φ
(A) ⇐⇒ x ∈ U and Φ(x) /∈ Φ(A), (by Definition 11)

⇐⇒ x /∈ A, (by Definition 6)

⇐⇒ x ∈ B\A or x ∈ U\B, (since A ⊆ B)

where,

x ∈ B\A ⇐⇒ x ∈ B and x /∈ A,

⇐⇒ Φ(x) ∈ Φ(B) and Φ(x) /∈ Φ(A), (by Definition 6)

⇐⇒ x /∈ �
Φ
(B), (by Definition 11)

and

x ∈ U\B ⇐⇒ x ∈ �
Φ
(B) or x /∈ �

Φ
(B). (by Lemma 5)

Consequently, x ∈ �
Φ
(B) implies that x ∈ �

Φ
(A), but x ∈ �

Φ
(A) implies that x may or may not

be in �
Φ
(B). Thus, A ⊆ B ⇐⇒ �

Φ
(B) ⊆ �

Φ
(A). �
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Corollary 1. The descriptive complement inverts description subsets.

Φ(A) ⊆ Φ(B) ⇐⇒ Φ(�
Φ
(B)) ⊆ Φ(�

Φ
(A))

Proof.

Φ(A) ⊆ Φ(B)

⇐⇒ Φ(A) ∩Φ(B) = Φ(A), (intersection with subset is subset)

⇐⇒ Φ(A ∩
Φ
B) = Φ(A), (by Lemma 16)

⇐⇒ Φ(�
Φ
(A ∩

Φ
B)) = Φ(�

Φ
(A)), (by Lemma 14)

⇐⇒ Φ(�
Φ
(A) ∪

Φ
�
Φ
(B)) = Φ(�

Φ
(A)), (by Theorem 10)

⇐⇒ Φ(�
Φ
(A)) ∪Φ(�

Φ
(B)) = Φ(�

Φ
(A)), (by Lemma 15)

⇐⇒ �
Φ
(B) ⊆ �

Φ
(A). (union with superset is superset)

�

Theorem 12. The descriptive intersection is empty if one of the sets is the subset of the de-

scriptive complement.

A ∩
Φ
B = ∅ ⇐⇒ A ⊆ �

Φ
(B).

Proof.

A ∩
Φ
B = ∅ ⇐⇒ ∀x ∈ A ∪B,Φ(x) /∈ Φ(A) or Φ(x) /∈ Φ(B), (by Definition 8)

⇐⇒ ∀x ∈ A,Φ(x) /∈ Φ(B), (by Definition 6)

⇐⇒ A ⊆ �
Φ
(B) (by Definition 11).

Similarly for B. �

Theorem 13. A union between two sets that produces the universe implies the descriptive com-

plement of one of the sets is the subset of the other.

A ∪B = U ⇐⇒ �
Φ
(A) ⊆ B
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Proof.

x ∈ �
Φ
(A) ⇐⇒ x ∈ U : Φ(x) /∈ Φ(A), (by Definition 11)

⇐⇒ x ∈ U\A : Φ(x) /∈ Φ(A),

⇐⇒ x ∈ B : Φ(x) /∈ Φ(A), (since A ∪B = U)

=⇒ A ∪B = U ⇐⇒ �
Φ
(A) ⊆ B.

�

Counter Example 6. Set union does not distribute over descriptive intersection.

A ∪ (B ∩
Φ
C) = (A ∪B) ∩

Φ
(A ∪ C)

Proof. Let a1, a2 ∈ A, b ∈ B, c ∈ C, c /∈ A : Φ(a1) = Φ(b),Φ(a2) = Φ(c),Φ(a1) /∈ Φ(C),

and Φ(a2) /∈ Φ(B). Then, b, c /∈ B ∩
Φ

C, and, consequently, b, c /∈ A ∪ (B ∩
Φ

C). However,

a1, a2, b ∈ A ∪B, a1, a2, c ∈ A ∪ C, and, as a result, b, c ∈ (A ∪B) ∩
Φ
(A ∪ C). �

Theorem 14. Descriptive intersection is distributive over set union.

A ∩
Φ
(B ∪ C) = (A ∩

Φ
B) ∪ (A ∩

Φ
C)

Proof.

x ∈ A ∩
Φ
(B ∪ C),

⇐⇒ x ∈ A ∪B ∪ C : Φ(x) ∈ Φ(A) and, either, Φ(x) ∈ Φ(B) or Φ(x) ∈ Φ(C),

⇐⇒ x ∈ A ∪B ∪ C : (Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(B)) or (Φ(x) ∈ Φ(A) and Φ(x) ∈ Φ(C)),

⇐⇒ x ∈ (A ∩
Φ
B) ∪ (A ∩

Φ
C).

�

4. Application to Description-based Neighbourhoods

Section 3 introduced descriptive operators and their properties, but made no stipulation about

how the set operands are formed. This section outlines several types of neighbourhoods to which

the above operators can be applied.

Definition 12. Spatial Neighbourhood (without focus). A spatial neighbourhood without focus

is a traditionally defined set, i.e. it is a collection of objects.
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The set operands from Examples 1-4 are examples of spatial neighbourhoods without focus,

which are simply collections of pixels.

Definition 13. Spatial Neighbourhood (with focus). Let x, y ∈ O be perceptual objects, let d(x, y)

denote any form of distance metric between x and y, and let Nd(x, r) = {y ∈ O : d(x, y) < r}
denote an open ball (using any distance metric d(x, y)) with with radius r ∈ [0,∞), and centre

x. Then, a spatial neighbourhood with focus x is defined as Nd(x, r) for some x ∈ O.

The term focus used here is synonymous with the centre associated with an open ball, yet is

preferred (in this context) since spatial neighbourhoods may still have an object that can be

considered the spatial centre of the set. Moreover, the term focus implies conscious directed

attention, which is more in line with the idea of using description-based neighbourhoods as part

of a formal framework for quantifying the perceptual nearness of objects and sets of objects.

Definition 14. Description-Based Neighbourhood. Let x, y ∈ O be perceptual objects with object

descriptions given by Φ(x),Φ(y), and let ε ∈ R. Then, a description-based neighbourhood is

defined as

Nx,ε = {y ∈ O : |Φ(x)− Φ(y)| < ε}.
A point y is a member of Nx,ε, if and only if, |Φ(x)− Φ(y)| < ε.

Example 6. Consider a perceptual system defined in a manner similar to Example 1. Then,

the inverted pixels in Fig. 8b represent a description-based neighbourhood, where the focus

(centre) of the neighbourhood is represented by the enlarged dark pixel. Note, ε = 0.23 (out of

a maximum of
√
3) was used to generate this neighbourhood.

Definition 15. Bounded-Descriptive Neighbourhood. Let x, y ∈ O be perceptual objects with

object descriptions given by Φ(x),Φ(y), and let ε ∈ R. Then, a bounded-descriptive neighbour-

hood is defined as

N◦
x,ε = {y ∈ O : |Φ(x) − Φ(y) < ε| and y ∈ Nd(x, r)}.

In other words, a point y is a member of N◦
x,ε, if and only if, y is descriptively similar to some

point z inside Nd(x, r) with centre x and radius r.

Example 7. As in all the previous examples, assume a perceptual system similar to Example 1.

Then, the inverted pixels in Fig. 8d represent a bounded-descriptive neighbourhood, where the

focus (centre) of the neighbourhood is the enlarged green pixel. Here, ε = 0.17 was used to

generate this neighbourhood.
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(a) (b)

(c) (d)

Figure 8. Example demonstrating Definitions 13 & 14.

5. Metric-Free Nearness Measure

This section introduces a metric-free description-based nearness measure using the descrip-

tive operators introduced in Section 3, and is related to work on a tolerance-based nearness

measure reported in [16, 17]. Furthermore, the approach presented here has direct applica-

tion to image analysis and is related to the rough set image analysis approaches reported

in [25, 26, 27, 28, 29, 30, 31, 32]. Similarly, this measure can be applied to the problem of

content-based image retrieval [33] in a manner similar to the tolerance nearness measure ap-

proached taken in [34, 35, 36]. As in the case of the tolerance nearness measure, both approaches

aim to quantify the similarity between sets of objects based on object description. However, the

tolerance nearness measure is obtained using tolerance classes (see, e.g. [37]) obtained from the

union of the sets under consideration, while the description-based nearness measure is based

on the descriptive operators presented in this article. The idea that motivated this measure

comes from the observation in [1] that nearness is considered a generalization of intersection.

Intuitively speaking, we perceive sets of objects to be similar or near in some manner when they

share common characteristics. Thus, if considering set descriptions (as given in Definition 6),

the descriptive intersection should not be empty if we consider the sets to be similar with respect
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Table 2. Nearness Measure Values for Images in Fig. 9

Image Neighbourhood Type dNM

Fig. 9a
Spatial (without focus)

0.54

Fig. 9b 0.74

Fig. 9d
Bounded-Descriptive Neighbourhood

0.37

Fig. 9f 1

to one or more features. Keeping these ideas in mind, a metric-free description-based nearness

measure, dNM , is defined as follows.

Definition 16. Metric-Free Description-Based Nearness Measure. Let X,Y ⊆ O be sets of

perceptual objects within a perceptual system. Then, a metric-free description-based nearness

measure is defined as

dNM(X,Y ) = 1−
|X ∩

Φ
Y |

|X ∪ Y | .

The nearness measure produces values in the interval [0, 1], where, for a pair of sets X,Y , a

value of 0 represents complete resemblance, and a value of 1 intimates no resemblance.

Example 8. Consider a perceptual system defined in a manner similar to Example 1, except

using only probe functions based on the red and green components from the RGB colour model.

Then, the dNM values of the images in Fig. 9 are given in Table 2, where two different types

of neighbourhoods are considered in the descriptive intersection. Specifically, Fig. 9a & 9b

contain spatial neighbourhoods, and Fig. 9c & 9e depict the bounded-descriptive neighbour-

hoods (obtained with ε = 0.23) that are used in generating the descriptive intersection given

in Fig. 9d & 9f. Notice, as expected, in all cases the dNM is lower when comparing the two

mushrooms. Also, there are no objects in the two neighbourhoods in Fig. 9e that have matching

descriptions. Hence, the empty intersection and dNM = 1.

6. Conclusion

This article presented several new description-based operators and some of their properties,

and a new metric-free description-based nearness measure. The Proximity System was used

to demonstrate practical application of these description-based operators to digital images.

Moreover, the results presented in Section 5 lay the foundation for applying the dNM introduced

here to the problem of content-based image retrieval. Future work will consist of the application
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Example demonstrating Definition 16.

of the dNM to content-based image retrieval problems and comparison of the dNM with the

established tNM .
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