
A GPU-based Laplacian Solver for Magnetostatic Boundary Value

Problems

by

Welitharage Piyumi Madhubhashini

A Thesis submitted to the Faculty of Graduate Studies of

The University of Winnipeg

in partial fulfillment of the requirements of the degree of

Master of Science

Department of Applied Computer Science

University of Winnipeg

Winnipeg, Manitoba, Canada

Copyright c© 2019 by Welitharage Piyumi Madhubhashini

Abstract

Modern graphics processing units (GPUs) have more computing power than CPUs, and thus, GPUs

are proposed as more efficient compute units in solving scientific problems with large parallelizable

computational loads. In our study, we present a GPU algorithm to solve a magnetostatic boundary

value problem, which exhibits parallel properties.

In particular, we solve the Laplace equation to find the magnetic scalar potential in the region between

two coaxial cylinders. This requires discretizing the problem domain into small cells and finding the

solution at each node of the generated mesh. The smaller the cell size is the more accurate the solution

will be. More accurate solution leads to a better estimation of the surface current needed to generate a

uniform magnetic field inside the inner cylinder, which is the final goal. Although solving a mesh with

a large number of smaller cells is computationally intensive, GPU computing provides techniques to

accelerate performance.

The problem domain is discretized using the finite difference method (FDM) and the linear system of

equations obtained from the FDM is solved by the successive over relaxation (SOR) method. The parallel

program is implemented using CUDA framework. The performance of the parallel algorithm is optimized

using several CUDA optimization strategies and the speedup of the parallel GPU implementation over

the sequential CPU implementation is provided.

Keywords: Graphic processing units (GPUs), Parallel programming, Magnetostatics, Finite difference

method (FDM), Successive over relaxation (SOR) method.

Acknowledgment

Above all, I would like to express my very profound gratitude to my supervisors, Dr. Christopher

Bidinosti and Dr. Christopher Henry for their invaluable guidance, encouragement, and all the support

at each step of my thesis and during the master’s degree program. I am indebted to them for sharing

their knowledge and experience with me, not only to complete the thesis successfully but also towards

my future success.

Besides my advisors, I am most grateful to all the members of my thesis committee, Dr. Simon Liao

and Dr. Blair Jamieson for reading my thesis and for their valuable comments.

A very special gratitude goes out to all of my friends and the staff at the department of computer

science for their cheerful support throughout my master’s degree life.

Finally, I must thank my husband and my parents for their countless love and encouragement.

i

Dedication

In dedication to my family.

ii

Contents

Contents iii

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Examples of PDEs Involving the Laplacian Operator . 2

1.2 Classification of Boundary Conditions . 3

1.3 Solution Methods for PDEs . 3

1.4 Problem of Interest . 6

1.4.1 The Behaviour of Φ in Free Space . 6

1.4.2 Choosing Φ Inside the Magnet . 7

1.4.3 Relationship between ∆Φ and Surface Current Density 8

1.4.4 Boundary Value Problem . 10

1.5 GPUs for Performance Acceleration . 13

1.6 Contribution of the Thesis . 16

2 Methodology 17

2.1 Finite Difference Method . 17

2.1.1 Finite Differences . 17

2.1.2 Finite Difference Approximation to the Laplace Equation 20

iii

2.1.3 Applying Boundary Conditions . 21

2.2 Iterative Solution . 25

2.2.1 The Matrix Form of the Linear System . 26

2.2.2 Jacobi Iterative Solver . 27

2.2.3 Gauss Seidel Method . 28

2.2.4 SOR Method . 28

2.2.5 Stopping Criteria . 29

2.2.6 Red-Black SOR Method . 32

3 Parallel Programming with CUDA 35

3.1 CUDA Programming and Execution Model . 35

3.1.1 Synchronization . 38

3.1.2 Warp Divergence . 38

3.2 CUDA Memory Model . 38

3.2.1 Memory Access Patterns . 41

3.3 Single-precision and Double-precision Floating Point Operations 43

3.4 Parallel Reduction . 44

4 Development and Implementation of the Algorithm 51

4.1 Applications of the Red-Black SOR/Gauss-Seidel Method in Literature 51

4.2 Development of the Algorithm . 52

4.3 Serial Implementation . 54

4.4 Baseline Parallel Implementation . 55

4.5 Improving Performance of the Baseline Parallel Implementation 58

4.5.1 Shared Memory Implementation with Reordering 60

4.5.2 Texture Memory Implementation with Reordering 62

4.5.3 Computing More Than One Element Per Thread 64

iv

5 Performance Comparisons and Analysis 65

5.1 Comparison of Different Parallel Solvers . 65

5.2 Data Transferring and Element Reordering Overhead . 67

5.3 Throughput and Speedup Comparison . 68

6 Application to Magnet Design 73

6.1 Solving for the Magnetic Scalar Potential . 73

6.2 Scalar Potential Difference Across the Surface of the Magnet 76

6.3 Convergence of ∆Φ . 76

6.3.1 Mesh Spacing . 78

6.3.2 Outer Cylinder Size . 78

6.3.3 Designing a Theoretical Magnet . 81

6.3.4 Magnetic Field Homogeneity . 83

7 Conclusion 87

7.1 Summary . 87

7.2 Conclusion and Discussion . 89

Appendices 91

A Experimental Determination of ωb 93

Bibliography 97

v

vi

List of Tables

1.1 Boundary conditions of the reduced problem domain. 13

2.1 Derived finite difference formulas for interior nodes, boundaries, and corner nodes. . . . 26

5.1 System descriptions. 66

5.2 Configurations with best performance for each kernel implementation. 68

5.3 The summary of different GPU activities of the parallel solver. 69

A.1 Comparison of ωb values - mesh spacing: 0.01 m. 95

A.2 Comparison of ωb values - mesh spacing: 0.0025 m. 95

vii

viii

List of Figures

1.1 The flow chart of solving a PDE. 4

1.2 A coarse mesh and a fine mesh. 5

1.3 Current carrying surface. 9

1.4 Problem domain. 11

1.5 Reduction of the problem space by symmetry. 12

1.6 Reduced problem domain. 12

1.7 Sequential execution. 14

1.8 Parallel execution. 15

2.1 An example of a descritized 1D domain. 18

2.2 An example of a discretized 2D domain. 20

2.3 The five-point stencil. 21

2.4 Boundaries and corner nodes of the Problem domain. 22

2.5 Red-Black SOR method. 33

3.1 Execution of a CUDA program. 36

3.2 CUDA grid organization - 2D case. 37

3.3 Warp Divergence. 39

3.4 CUDA memory model. 40

3.5 2D spatial locality. 40

3.6 Align and coalesced access pattern. 42

ix

3.7 Non aligned and non coalesced memory access. 42

3.8 Strided memory access. 42

3.9 Padding rows with cudaMallocPitch(). 43

3.10 Thread block sum reduction. 45

3.11 The shuffle down instruction. 47

4.1 Discretized problem domain. 54

4.2 Reordering by colour - Red-Black SOR method. 59

4.3 Shared memory tile with halo elements. 61

5.1 Kernel comparison. 67

5.2 Throughput comparison - Tesla P100. 70

5.3 Throughput comparison - GTX 960m. 71

5.4 Speedup - Tesla P100. 71

5.5 Speedup - GTX 960m. 72

6.1 The contours of Φ inside the magnet. 74

6.2 The contour plot of Φ within the solution region between the two cylinders. 75

6.3 The contours of Φ within the full 2D domain between the two cylinders. 75

6.4 The contours of Φ outside the magnet for different outer boundary sizes. 76

6.5 The scalar potential difference across the body of the magnet. 77

6.6 The scalar potential difference across the cap of the magnet. 77

6.7 Convergence of ∆Φ along the body of the inner cylinder as the mesh spacing decreases. 79

6.8 Convergence of ∆Φ along the cap of the inner cylinder as the mesh spacing decreases. . 79

6.9 Convergence of ∆Φ along the body of the inner cylinder as the outer cylinder size increases. 80

6.10 Convergence of ∆Φ along the cap of the inner cylinder as the outer cylinder size increases. 80

6.11 Total current on the upper half of the cylinder. 81

6.12 Calculating the wire positions on the upper half of the body of the magnet. 82

x

6.13 Calculating the wire positions on the cap of the magnet. 82

6.14 A sample magnet with 20 wires on its surface. 83

6.15 The normalized field difference on-axis for different numbers of wires. 84

6.16 The normalized field difference in the middle 40 cm range on the axis of the cylinder for

different mesh spacings. 85

7.1 The flow of the work presented in the thesis. 88

A.1 The number of iterations vs ω (I). 94

A.2 The number of iterations vs ω (II). 94

xi

Chapter 1

Introduction

A variety of natural phenomena such as fluid dynamics, electrostatics, heat, diffusion, and elasticity are

explained using partial differential equations (PDEs). A PDE gives information about the behavior of

the spatial and temporal changes of a system in the interior of the problem domain in terms of partial

derivatives. There are several important PDEs in physics. Some examples, discussed in the following

section, are the wave equation, heat equation, Poisson equation, and Laplace equation.

One of the most important partial differential operators which appears in most of the PDEs is called

the Laplacian operator, written as ∇2. In a Cartesian coordinate system, the Laplacian of a function u

is given by the sum of second order derivatives of u with respect to each independent variable. In three

dimensions, it appears as

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
. (1.1)

In other coordinate systems, the Laplacian will have different forms, and the Laplacian in cylindrical

coordinates will be discussed explicitly in later chapters. Some general PDEs that involve the Laplacian

operator are described in the following section.

By solving a PDE, we find the unknown function u that satisfies the PDE within the given problem

domain. In order to solve a PDE, the behavior of the function u on the boundaries of the problem

domain needs to be given. A differential equation with a set of boundary conditions on the boundaries

of the problem domain is called a boundary value problem, as discussed further below. The work in

this thesis will focus on numerical solutions of the Laplace equation for magnetostatic applications, as

described in Section 1.4. Analytic solutions to PDEs typically exist only for rather simple geometries

with high symmetry, and in general, one must rely on numerical methods to find the solution. To make

our solution as fast and accurate as possible, we have developed a parallel solver that runs on a graphics

processing unit (GPU).

1

2 CHAPTER 1. INTRODUCTION

1.1 Examples of PDEs Involving the Laplacian Operator

The wave equation is

∇2u =
1

v2

∂2u

∂t2
. (1.2)

Here, the function u may represent the displacement from equilibrium of a vibrating string or of

the vibrating medium (gas, liquid or solid); in electricity, u may be the current or potential along a

transmission line [1]. The quantity v is the velocity of wave propagation and t is the time variable.

The heat/diffusion equation is

∇2u =
1

α2

∂u

∂t
. (1.3)

The function u may be the temperature varying with time in a region with no heat source, or u may be

the concentration of a diffusing substance [1]. The quantity α2 is the diffusion coefficient and t is the

time variable.

The Poisson equation is given by
∇2u = ρ, (1.4)

where ρ is known as the source term. When there is no source term, this reduces to the Laplace equation

∇2u = 0. (1.5)

Both the Poisson and Laplace equations describe steady state situations, meaning that the equations

have no dependence on time. As an example, in electrostatics,

∇2u = −4πρ, (1.6)

where u is the electrostatic potential and ρ is the electric charge density. In a charge free region, ρ = 0

and the electrostatic potential satisfies the Laplace equation [1]. Another example can be found in

Gravity. The gravitational potential u in a region containing mass with mass density ρ is given by the

Poisson equation

∇2u = 4πGρ, (1.7)

where G is the gravitational constant. When there is no mass in the region, the gravitational potential

satisfies the Laplace equation [1]. In magnetostatics, the magnetic scalar potential in a current free

region satisfies the Laplace equation. In our thesis, we solve the Laplace equation to find the magnetic

scalar potential values in a current free region. Our magnetostatic application is explained in detail in

Section 1.4.

1.2. CLASSIFICATION OF BOUNDARY CONDITIONS 3

1.2 Classification of Boundary Conditions

In order to solve a boundary value problem, the behavior of the unknown function u on each boundary

of the region of interest should be defined. Boundary conditions can be classified into the following

three different types:

• Dirichlet Boundary Conditions

Here, the value of the unknown function u on the boundary is given:

u = f,

where f is a given function which is defined on the boundary.

• Neumann Boundary Conditions

Here, the value of the normal derivative of u on the boundary is given:

∂u

∂n
= f,

where n is the unit normal to the boundary surface and f is a given function defined on the

boundary.

• Robin Boundary Conditions

Here, a linear combination of the values of u and its normal derivative on the boundary are given:

au+ b
∂u

∂n
= f,

where a, b are non zero parameters, n is the unit normal to the boundary surface, and f is a given

function defined on the boundary.

There are various analytical and numerical solution strategies for solving a PDE with given boundary

conditions. Analytical methods provide exact solutions, but it is hard to use analytic strategies when

problems are complex. Hence, numerical methods have become more popular for solving PDEs occurring

in real world applications. Even though numerical methods cannot provide the exact solution as do

analytical methods, they are able to give approximate solutions with sufficient accuracy to use in

practice. The next section discusses the procedure of solving a PDE numerically and presents different

methods for doing so.

1.3 Solution Methods for PDEs

Some of the analytic strategies available to solve PDEs can be named as transform methods, separation

of variables, and characteristics methods. Even though these are powerful methods, only a limited

4 CHAPTER 1. INTRODUCTION

number of PDEs can be solved using these analytic strategies [2]. Hence, most of the PDE problems

which occur in real-world applications are solved numerically.

The numerical solution of a PDE is an approximation to the unknown function in the PDE on a finite

discrete grid which represents the original domain. The process of producing a numerical approximation

to an original physical phenomenon is given in Fig. 1.1 [3].

Figure 1.1: The flow of producing a numerical approximation to an original physical phenomenon. First, the
real-world problem is converted into a mathematical model. The mathematical model consists of a PDE which
describes the phenomenon, and the boundary conditions on the boundaries of the problem domain. If the problem
is time-dependent, the model should also include the initial conditions of the system. Then, the PDE is discretized
into a discrete system of linear equations using a discretization method. Each equation of the linear system
represents a node on the problem space. Finally, the numerical solution corresponding to each node of the space
is obtained by solving the linear system using a linear system solver.

The procedure begins by developing a mathematical model from the real physical application. The

mathematical model consists of a PDE which describes the physical system within the region of interest,

and the related boundary conditions. The unknown function u in the PDE can be 1D, 2D or 3D,

according to the dimension of the problem space. As mentioned in Section 1.1, the same PDE can

appear in various phenomena, but the boundary conditions and the solution domain are specific for

each problem. If the problem depends on time, in addition to the boundary conditions, the behavior of

the unknown function u at the initial state should also be given. In this thesis, we solve a magnetostatic

application, which is a steady-state problem and there is no time variable.

The next step is choosing a discretization method which converts the continuous set of information

given by the PDE into a discrete set of data, and that leads to a system of discrete equations. There

are various discretization methods such as finite difference method, finite element method, finite volume

method, and boundary element method. Among these, the most commonly used discretization methods

are finite difference method (FDM) and finite element method (FEM). The finite difference approach is

1.3. SOLUTION METHODS FOR PDES 5

suitable for the problems with simple geometric domains, which can be represented by uniform grids.

Since our problem domain, as will discussed in Section 1.4, is not a complex geometric shape, FDM

is suitable as the discretization method. More details about using FDM for our problem are given in

Chapter 2. If the problem domain is very complicated, and when a non-uniform mesh is required to

represent the problem domain, it is hard to formulate the problem with the finite difference method. In

such cases, the more flexible finite element method is used.

In order for the numerical approximations to be useful, the error in the solution must be minimum.

When increased accuracy is desired, finer meshes are used because finer meshes reduce the discretization

error. However, this accuracy comes with the price of a large computational load and solving such a

problem is time-consuming (see Fig. 1.2).

(a) (b)

Figure 1.2: Overlaying a square problem domain with two different meshes. The grid in (a) represents a coarse
mesh, which has 20 by 20 cells in the mesh. The grid in (b) is the same domain discretized into 100 by 100 cells,
which is a finer mesh compared to the grid in (a). A finer mesh consists of a large number of nodes, therefore a
large number of computations. Solving such a problem is expensive and time-consuming.

The final step of the numerical procedure is solving the large system of linear equations obtained in the

previous step. Methods to solve such a linear system of equations fall under two categories as direct and

iterative. Direct methods achieve the exact solution after a finite number of operations, while iterative

methods achieve the exact solution after an infinite number of iterations [2]. Therefore, for iterative

methods, there are some stopping criteria that can be used to stop the iterative procedure after a finite

number of iterations, when a sufficient accuracy is reached.

Direct methods have some disadvantages over iterative methods when solving large systems. The

number of operations required increases by the square of the number of nodes of the grid and the

storage requirements are excessively large for large systems of equations. Hence, direct solvers are

appropriate for solving small problems only. For large systems of equations such as what we get from

6 CHAPTER 1. INTRODUCTION

FDM, iterative solvers are more suitable [4]. There are two types of iterative methods, stationary and

non-stationary. Stationary methods are older, simple, and easy to implement, but usually less effective.

Non-stationary methods are recent developments and more complex than stationary methods [5]. Some

examples of stationary iterative methods are the Jacobi method, Gauss-Seidel method, and successive

over relaxation method (SOR). We chose the SOR iterative solver for our problem here, and a detailed

discussion of the method is given in Chapter 2. Having a general idea about the numerical solution to a

boundary value problem, in the following section, we describe our magnetostatic application, explain

why we need to solve a boundary value problem, and give details of developing the boundary value

problem from the known physical behavior of the system.

1.4 Problem of Interest

Our study is based on a uniform low field magnet design project proposed by Kyla Smith in her M.Sc.

thesis [6]. Utilizing magnetic scalar potential Φ, her design method determines the required surface

current distribution on a closed cylindrical surface that generates the desired uniform magnetic field

inside the cylinder. The method rests on the fact that the difference in the magnetic scalar potential

∆Φ across a surface boundary is directly related to the current distribution on the surface. Since the

internal “target field” is known, and hence Φinside, the problem reduces to finding the scalar potential

outside the cylindrical surface Φoutside by numerically solving the Laplace equation in this region. The

details are outlined below.

1.4.1 The Behaviour of Φ in Free Space

The behavior of Φ in free space is obtained as below. This analysis applies to any region where there is

no current. According to one of Maxwell’s equations,

~∇× ~H = ~J +
∂ ~D

∂t
, (1.8)

where ~H is the magnetic field strength, ~J is the current density, and ~D is the displacement field. In a

region of free space, there is no current, so ~J = 0. Also, for magnetostatic applications, there is no time

dependence, so the second term on the right hand side in Eq. (1.8) is also zero. Therefore, one can

write
~∇× ~H = 0. (1.9)

Also, ~H can be expressed as the gradient of the scalar potential Φ as

~H = −~∇Φ. (1.10)

1.4. PROBLEM OF INTEREST 7

Another one of Maxwell’s equations gives

~∇ · ~B = 0, (1.11)

where ~B is the magnetic field. The relationship between ~B and ~H when the magnetization is zero is

given by

~B = µ0
~H, (1.12)

where µ0 is the permeability of free space. Using equations (1.11), (1.12), and (1.10), we can write

~∇ · µ0
~H = 0, (1.13)

~∇ · (−µ0
~∇Φ) = 0, (1.14)

∇2Φ = 0. (1.15)

The Laplace equation, then, gives the behavior of Φ in any region where there is no current. We will

use this result in particular to find Φoutside by solving the Laplace equation using numerical methods

as discussed in the previous sections. To solve this PDE, a boundary value problem is designed, and

Section 1.4.4 gives more details about the mathematical model developed.

1.4.2 Choosing Φ Inside the Magnet

The magnetic scalar potential Φ inside the cylindrical volume obeys the Laplace equation as shown

above. As a result, one can choose any solution, or sum of solutions, to this equation to obtain the

magnetic field which needs to be generated. The desired magnetic field ~B here is a uniform field along

the z-axis of the cylinder, which can be written as

~B = Bẑ. (1.16)

Substituting Eq. (1.10) from equations (1.12) and (1.16) gives

B

µ0
ẑ = −~∇Φ. (1.17)

In cylindrical coordinates, ~∇Φ is given by

~∇Φ = r̂
∂Φ

∂r
+ θ̂

1

r

∂Φ

∂θ
+ ẑ

∂Φ

∂z
. (1.18)

According to Eq. (1.17), the gradient of Φ only has a component in ẑ direction. Hence, Φ does not

depend on θ or r. Therefore,

~∇Φ = ẑ
∂Φ

∂z
. (1.19)

8 CHAPTER 1. INTRODUCTION

Substituting Eq. (1.17) from (1.19) gives

B

µ0
ẑ = −ẑ ∂Φ

∂z
, (1.20)

−B
µ0
∂z = ∂Φ, (1.21)

−B
µ0

∫
∂z =

∫
∂Φ, (1.22)

Φinside = −Bz
µ0
. (1.23)

One can easily verify that Eq. (1.23) is indeed a solution to the Laplace equation. Hence, Φinside has

been set according to the desired magnetic field ~B.

With Φinside specified as above and Φoutside to be determined from numerical methods, one can now

determine the discontinuity of the scalar potential at the boundary of the cylindrical surface of the

magnet, which is related to a surface current density as described in the next section. The derivations

given below are based on Section 8.5 from Ref. [7].

1.4.3 Relationship between ∆Φ and Surface Current Density

Let us consider the current carrying surface shown in Fig. 1.3. According to Ampère’s continuity

condition, a surface current density ~K causes a discontinuity in the magnetic field intensity ~H and can

be written as

n̂× (~Ha − ~Hb) = ~K. (1.24)

Here, a and b denotes the two regions either side of the surface (see Fig. 1.3). The variables ~Ha and ~Hb

are the magnetic field intensity on the region a and the region b respectively. The vector n̂ is the unit

normal vector pointing from region b to region a. For a region of free space where there is no current,

the curl of ~H equals to zero. Therefore, we can write ~H using magnetic scalar potential Φ as

~H = −~∇Φ. (1.25)

On a current carrying surface, the curl of ~H is not equal to zero. Hence, the magnetic scalar potential

Φ has no meaning on a such surface. Equation (1.24) states that the tangential component of ~H is

discontinuous where there is a surface current density ~K. Therefore, it is expected that Φ will also

discontinuous on a current carrying surface.

1.4. PROBLEM OF INTEREST 9

Figure 1.3: The figure from [7] shows a diagram of a current carrying surface. Here a and b refer to either side
of the surface and w is the width of the surface. The vector n̂ is a unit normal vector pointing from b to a.

According to the integral form of Ampère’s law,∮
C

~H · d~s =

∮
S

~J · d~a. (1.26)

By following the contour integral around the four segments AB,BB′, B′A′, A′A of Fig. 1.3 as the width

w goes to zero, the left hand side of Eq. (1.26) becomes

∫ B

A
(~Ha · îs) dl + 0 +

∫ A′

B′
(~Hb · (−îs)) dl + 0 =

∫ B

A
(~Ha − ~Hb) · îs dl. (1.27)

Substituting ~H from Eq. (1.25) gives ∫ B

A
(~∇Φb − ~∇Φa) · îs dl. (1.28)

The current density ~J in Eq. (1.26) can be written as

~J = ~Kδ(S), (1.29)

where S refers to the surface and δ(S) is the Dirac delta function, which is zero outside the surface.

The function δ(S) always returns one, when integrating over the width of the Amperian loop of the

right hand side of Eq. (1.26), regardless of the value of the width w. As a result, the right hand side of

Eq. (1.26) becomes ∫ B

A
(~K · în) dl. (1.30)

Now, Eq. (1.26) can be written as

10 CHAPTER 1. INTRODUCTION

∫ B

A
(~∇Φb − ~∇Φa) · îs dl =

∫ B

A
(~K · în) dl,

∫ B

A

~∇Φb · îs dl −
∫ B

A

~∇Φa · îs dl =

∫ B

A
(~K · în) dl. (1.31)

The gradient integral theorem [7, Section 4.1] states that

∫ B

A

~∇Φ · d~s = Φ(B)− Φ(A). (1.32)

Now, we can evaluate the integrals on the left hand side of Eq. (1.31) to give

(Φb
B − Φb

A)− (Φa
B − Φa

A) = (ΦB′ − ΦB)− (ΦA′ − ΦA) = ∆ΦB −∆ΦA . (1.33)

Hence,

∆ΦB −∆ΦA =

∫ B

A
(~K · în) dl. (1.34)

This implies that the amount of integrated surface current in the Amperian loop is the difference

between the discontinuity of Φ at either end of the loop. That is, the difference of discontinuity in Φ

between the locations A and B is the total current passing normal to the strip AA′B′B. As a result,

evenly spaced contours of ∆Φ give a discrete wire winding pattern that can be used to construct the

desired magnet.

1.4.4 Boundary Value Problem

Now we need to develop a boundary value problem to solve for Φoutside by defining the region where we

want to solve the problem and determining the behavior of Φ on the boundaries of the region of interest.

This section gives details about setting the problem domain and constructing boundary conditions as

described in Chapter 3 of Ref. [6].

Here we need to solve the Laplace equation in the region outside the cylindrical magnetic surface.

Therefore, the setup is two co-axial cylinders as shown in Fig. 1.4. The inner cylinder represents the

surface of the magnet and the outer cylinder is to bound the problem domain. Since we intend to use

the finite difference method, it requires the problem domain to be a closed region. Hence, this outer

cylinder does not physically exist and is used only for the computational purpose. Now having a closed

region, we can solve the Laplace equation in the region between two cylinders to find Φoutside. Even

though we solve the Laplace equation in a closed region, what we really need is a free-space solution for

1.4. PROBLEM OF INTEREST 11

Φ outside the inner cylinder. Therefore, we solve the numerical problem several times by expanding

the outer boundary until the solution converges to a true free-space solution. The problem is solved

with the cylindrical coordinate system (r, θ, z), where r is the radial coordinate, θ is the azimuthal

coordinate, and z is the axial coordinate (see the first image of Fig. 1.5).

Figure 1.4: To solve the Laplace equation in the region outside the magnet, the problem domain is set using
two co-axial cylinders. This figure from Ref. [6] shows the inner cylinder and the cross-sectional view of the outer
cylinder. The inner cylinder represents the magnet and the outer cylinder is used to bound the problem domain.
Laplace equation is solved in the region between two cylinders. Since we require a free-space solution to Φoutside,
the numerical problem is solved several times by expanding the outer cylinder until the solution converges to a
free-space solution.

Boundary Conditions

By considering the symmetry of the problem, the 3D solving region can be reduced to a 2D region as

shown in Fig. 1.5. The reduced domain D depends on only the coordinates r and z. As a result, the

computational load and the memory requirement of the problem are greatly reduced.

The blue region of Fig. 1.6 shows the reduced problem domain. There are 6 boundaries and they are

shown by red line segments. Boundaries 1 and 2 are on the outer cylinder; boundaries 3 and 6 are

in between two cylinders; and boundaries 4 and 5 are on the inner cylinder. Now we need to define

the behaviour of Φ on each of these boundaries and a detailed discussion on deriving the boundary

conditions is given in Section 3.4 of Ref. [6]. The outer boundary is considered a superconductor, hence,

it has zero flux passing through it. As a result, the normal derivative of Φ is zero all-over the surface

of the outer boundary. The normal direction of Boundary 1 and Boundary 2 are ẑ and r̂ respectively.

Hence, ∂Φ/∂z = 0 on Boundary 1 and ∂Φ/∂r = 0 on Boundary 2.

Since the medium is the same for either side of Boundary 3, the condition on this boundary is given by

12 CHAPTER 1. INTRODUCTION

Figure 1.5: This figure illustrates the reduction of the problem space by symmetry. The blue area of region A
is the full problem domain. Since the solution does not depend on θ, it reduces to the 2D blue area of region
B. Because of the redial symmetry, we can further reduce the problem domain from B to C. Finally, C can be
reduced to D, since the Φ values of the lower half of the domain C are simply the negative values of the upper
half of C.

Figure 1.6: The blue region indicates the reduced problem domain. Six boundaries which enclose the problem
domain are shown by red line segments. r0 and z0 are the radius and the half-height of the inner cylinder; r1 and
z1 are the radius and the half-height of the outer cylinder. Boundary 1 and Boundary 2 are on the outer cylinder.
Boundary 4 and Boundary 5 are on the inner cylinder. Boundary 3 and Boundary 6 are in the space between two
cylinders.

1.5. GPUS FOR PERFORMANCE ACCELERATION 13

∂Φ/∂r = 0. Boundary 4 has magnetic flux as field lines enter and exit from the top and bottom caps of

the inner cylinder. The condition on Boundary 4 is set according to the magnetic field B which we need

to generate and is given as ∂Φ/∂z = −B/µ0, where µ0 is the permeability of free-space. The magnetic

field B inside the inner cylinder is along the ẑ direction. Hence, Boundary 5 has zero magnetic flux and

the condition on Boundary 5 can be written as ∂Φ/∂r = 0. The scalar potential Φ inside the inner

cylinder at z = 0 is zero. Hence, the condition on Boundary 6 is set as Φ = 0. Table 1.1 shows the

derived conditions for all 6 boundaries and their types.

Table 1.1: Boundary conditions of the reduced problem domain.

Number Boundary Condition Type

1 0 ≤ r ≤ r1 and z = z1
∂Φ
∂z = 0 Neumann

2 r = r1 and 0 ≤ z ≤ z1
∂Φ
∂r = 0 Neumann

3 r = 0 and z0 ≤ z ≤ z1
∂Φ
∂r = 0 Neumann

4 0 ≤ r ≤ r0 and z = z0
∂Φ
∂z = −B

µ0
Neumann

5 r = r0 and 0 ≤ z ≤ z0
∂Φ
∂r = 0 Neumann

6 r0 ≤ r ≤ r1 and z = 0 Φ = 0 Dirichlet

To make the solution of the developed boundary value problem as fast and accurate as possible, we

solve the problem with the help of a GPU by developing a parallel numerical solver. Following section

briefly explains serial vs parallel programming, high computational power, and the evolution of GPUs

as computing devices.

1.5 GPUs for Performance Acceleration

Many scientific and engineering problems such as climate modeling, computer simulations, DNA analysis,

data mining, and data visualization take a long time to execute, because of the heavy load of data

and computation. When considering our magnetostatic problem, as discussed in Section 1.3 and 1.4, a

sufficiently expanded problem domain (to achieve a free-space solution) with a finer mesh (to decrease

the discretization error) gives better numerical approximations, but involves a large computational load.

Therefore, more computational power is needed to efficiently solve such a compute-intensive problem.

14 CHAPTER 1. INTRODUCTION

Until recently, single processor performance has been increased by increasing the number of transistors

in the integrated circuit. However, because of the heat generation, increasing power consumption as

well as a rapidly approaching physical limit to transistor size, it has become impossible to continue

to increase the speed of single processor systems [8]. As a result, the industry has decided to develop

multi-processor systems and hence, the performance improvement is achieved by parallelism [9].

Traditionally, software has been written for serial computation. When executing a serial program, the

computational problem is broken down to a discrete series of instructions. Then, these instructions

are executed sequentially one after another on a single processing core (Fig. 1.7). Even the system

consists of multiple processors, a serial program that is written to run on a single processor is unaware

of the existence of multiple processors. Hence, the performance of a serial program on a system with

multiple processors will be the same as its performance on a single processor of the multiprocessor

system [9]. On the other hand, parallel programs are written to exploit the power of multiple processors

of a multiprocessor system. When executing a parallel program, the problem is broken into discrete

instructions which can be run concurrently. Instructions can be run concurrently if one does not

consume the output of another (i.e. each instruction is independent). Each concurrent instruction is

then executed simultaneously on different cores (Fig. 1.8). Therefore, with parallel computing, certain

problems can be solved in less time than with serial computing.

Figure 1.7: When executing a sequential program, the computational problem is divided into a discrete series
of instructions. These instructions are executed sequentially one after another on a single processing core (e.g. a
central processing unit). A sequential program does not run on more than one processor even the system consists
of multiple processors.

If we need a serial program to run in parallel on a multi-processor system, the program should be

re-written to divide the work load among multiple cores. However, not all algorithms can be accelerated

through parallelism. The level of speedup that can be expected from parallelizing an application

depends on the portion of the application that can be parallelized. If the parallel portion is very small,

a sequential algorithm will perform well and it will be hard to get significant performance gain with

parallelism [10]. Thus, before parallelizing an algorithm to run on a multi-processor system, the serial

and parallel portion of the application should be well recognized.

High computational power is available in several forms. Some examples are high performance computing

1.5. GPUS FOR PERFORMANCE ACCELERATION 15

Figure 1.8: When executing a parallel program, the problem is broken into discrete instructions which can run
concurrently. Instructions can run concurrently if the instructions are independent. These concurrent instructions
can be further divided into a discrete series of sequential instructions. Each concurrent instruction is executed
simultaneously on different cores (e.g. on a multi-processor system).

(HPC) clusters, supercomputers, HPC cloud computing, grid computing, and graphics processing

units (GPUs). Nowadays, among these resources, GPUs have become economically attractive tools

which consist of thousands of cores, hence, thousands of independent instructions can be executed

simultaneously. Hence, GPUs have become popular among program developers and GPUs are used to

reduce the runtime of many compute-intensive applications in both academic and industrial work [10].

GPUs were originally designed to accelerate only graphic tasks. Later, researchers explored the

possibilities to use GPUs for general purpose computing. Since standard graphics APIs such as OpenGL

and DirectX were still the only way to interact with a GPU, anyone who needs to use GPUs to perform

general purpose computing would need to learn OpenGL or DirectX and to code the problem as a

graphic task [8]. In 2006, NVIDIA introduced CUDA, a parallel computing platform that can be used

for general purpose computing on NVIDIA GPUs. With CUDA, developers are able to parallelize

programs which are written in popular programming languages such as C/C++, Python, Fortran, and

MATLAB. With the introduction of the programming language OpenCL by Khronos Group in 2010,

programmers can now develop GPU applications on hardware with GPUs from different vendors (e.g.

AMD, Intel, ATI, NVIDIA). Today, there is a vast community of GPU programmers and many of them

have reported 10 to 100 times speedup of their applications with GPU computing [11].

16 CHAPTER 1. INTRODUCTION

The most computationally intensive part of our numerical problem is updating each node of the grid

with the iterative solver. In order to implement this compute-intensive part on a GPU, the iterative

algorithm should exhibit parallel properties. Since the original SOR method does not exhibit parallel

properties, we use the parallel version of the algorithm, which is called the Red-Black SOR method.

Our GPU algorithm is implemented using the CUDA platform and tested with two NVIDIA GPUs,

namely a GeForce GTX 960m and a Tesla P100.

1.6 Contribution of the Thesis

In her thesis [6], Kyla Smith successfully designed a magnet for low-field magnetic resonance studies,

by solving Φoutside using the Finite Element Method within the software package Mathematica. The

code was run sequentially on her laptop and results were ultimately limited by compute time and

memory. Future implementations of this design method could involve different geometries and different

target field distributions. It might also involve an iterative approach to further refine and optimize coil

winding patterns. As a result, it is very desirable to (i) develop a parallel Laplacian solver for increased

speed, (ii) move the calculation to a server with more memory and compute capability, and (iii) use

home-written rather than commercial software so the code can be run on any system. To achieve these

goals, our research proposes a parallel GPU algorithm to solve the same numerical problem using the

finite difference method. The main focus of this thesis is the development of a parallel algorithm to

achieve performance acceleration over a CPU sequential algorithm, which ultimately allows the code to

run faster, or with a finer mesh (for greater accuracy), or both. Thus, the contribution of this thesis is

to parallelize the compute-intensive numerical part of the magnet design project in Ref. [6] using GPUs.

Chapter 2

Methodology

In this chapter, we explain the numerical methods used to solve the magnetostatic problem described in

the previous chapter. In particular, we use the finite difference method (FDM) to discretize the problem

into a system of linear equations and the successive over relaxation (SOR) iterative solver to solve the

obtained system of equations. The chapter consists of two sections. The first section is about the FDM,

and the second section provides details about the iterative solver. We review the fundamentals of the

FDM, then describe how we apply the method to our magneto-static problem. We next discuss the

SOR iterative solver, the determination of the optimum relaxation parameter, the convergence of the

iterative procedure and the stopping criteria. Finally, we discuss the red-black SOR method, which is

the parallel version of the original SOR solver.

2.1 Finite Difference Method

2.1.1 Finite Differences

For the simplicity, let us first consider the 1D case. Suppose that the behavior of an unknown function

u(x) on the interval (0, L) is given by some PDE. As the first step, assuming equal mesh spacing h,

we discretize the given problem interval as shown in Fig. 2.1. The interval is divided into a number

of equal segments N and there the number of nodes is N + 1. Suppose that ui is a node within the

interval (0, L). Using Taylor series expansion, we can write the value of the node ui+1 as

ui+1 = ui + h
∂ui
∂x

+
h2

2!

∂2ui
∂x2

+
h3

3!

∂3ui
∂x3

+ ... (2.1)

That is, if we know the value of ui and the values of its derivatives at the node i, then we can find

an approximation to the nearby node ui+1. Here we say approximation because the exact value of

17

18 CHAPTER 2. METHODOLOGY

...

0 1 2 3 4 5 6 7 N − 1 N

h h h h h h h h

x = 0 x = L

Figure 2.1: Discretizing the problem interval [0, L] into an N number of equal segments. The mesh spacing
between any two nodes is h. The total number of nodes along the interval is given by (L/h) + 1. The nodes from
1 to N − 1 are interior nodes of the problem domain. Node 0 and node N are boundary nodes.

ui+1 is given by the summation of an infinite number of terms. Now using Eq. (2.1), we can write the

derivative ∂ui
∂x in terms of ui and ui+1 as

∂ui
∂x

=
ui+1 − ui

h
− h

2!

∂2ui
∂x2

− h2

3!

∂3ui
∂x3

− ...,

which can be written as
∂ui
∂x

=
ui+1 − ui

h
+O(h). (2.2)

Here, O(h) is called the leading error term and it reflects the truncation error. For sufficiently small

h, the truncation error will be dominated by the term h
2!
∂2ui
∂x2

, and all the other terms are negligible

compared to this term [12]. Hence, the error is expected to behave roughly like a constant times h,

where the constant has the value of 1
2!
∂2ui
∂x2

, and therefore, we write this leading error using O(h). In

Eq. (2.2), the error is of order h and it can be said that the approximation to ∂ui
∂x has first order of

accuracy. This leading error decreases when we reduce the mesh spacing h [2].

Equation (2.2) gives a forward difference approximation to the first order derivative. Forward difference

means that the approximation is obtained using ui and the value next to it, ui+1. We can also derive

the backward difference formula for the first order derivative using Taylor series expansion of ui−1 as

∂ui
∂x

=
ui − ui−1

h
+O(h). (2.3)

There is another form of approximation, which is called the central difference approximation. This can

be generated using the expansions of both ui+1 and ui−1 as follows:

ui+1 = ui + h
∂ui
∂x

+
h2

2!

∂2ui
∂x2

+O(h3), (2.4)

ui−1 = ui − h
∂ui
∂x

+
h2

2!

∂2ui
∂x2

+O(h3). (2.5)

2.1. FINITE DIFFERENCE METHOD 19

Subtracting the above two equations gives

∂ui
∂x

=
ui+1 − ui−1

2h
+O(h2). (2.6)

This central difference approximation is second order correct, and therefore, better than Eq. (2.2) and

(2.3). The central difference approximation for the second partial derivative ∂2ui
∂x2

can be obtained using

Taylor series expansion of ui+1 and ui−1. The values ui+1 and ui−1 can be written as

ui+1 = ui + h
∂ui
∂x

+
h2

2!

∂2ui
∂x2

+
h3

3!

∂3ui
∂x3

+O(h4), and (2.7)

ui−1 = ui − h
∂ui
∂x

+
h2

2!

∂2ui
∂x2

− h3

3!

∂3ui
∂x3

+O(h4). (2.8)

Adding the above two equations produces

h2∂
2ui
∂x2

= ui+1 − 2ui + ui−1 +O(h4),

and dividing both sides by h2 gives

∂2ui
∂x2

=
ui+1 − 2ui + ui−1

h2
+O(h2). (2.9)

The leading error involved in Eq. (2.9) is O(h2). This is a second order correct central difference

approximation to the second order derivative. We can also derive higher order accurate formulas for

partial derivatives by involving more terms. However, we solve our problem using more accurate second

order central difference approximations.

Now, let us consider the finite difference approximations for nodes on a 2D mesh. In 2D, a node on the

mesh is defined as ui,j as shown in Fig. 2.2. The finite difference formulas for the first and second order

derivatives in 2D with respect to one independent variable are also generated as in the 1D case. They

become

∂ui,j
∂x

=
ui+1,j − ui−1,j

2h
+O(h2), (2.10)

∂ui,j
∂y

=
ui,j+1 − ui,j−1

2h
+O(h2), (2.11)

∂2ui,j
∂x2

=
ui+1,j − 2ui,j + ui−1,j

h2
+O(h2), and (2.12)

∂2ui,j
∂y2

=
ui,j+1 − 2ui,j + ui,j−1

h2
+O(h2). (2.13)

20 CHAPTER 2. METHODOLOGY

î

ĵ

ui,j

0

h

h

Figure 2.2: Discretizing a 2D square domain into equal cells. The mesh spacing is h on both directions. The
red nodes indicate boundary nodes and all the black nodes are interior nodes. A node on the mesh is defined
using two coordinates as ui,j .

2.1.2 Finite Difference Approximation to the Laplace Equation

Let us consider our magnetostatic problem described in Section 1.4. The PDE involved in the boundary

value problem is the Laplace equation. Here we first write the Laplace equation in a cylindrical

coordinates as

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
+
∂2Φ

∂z2
= 0. (2.14)

Our problem does not depend on the azimuthal coordinate θ. Hence, the derivative with respect to θ is

equal to zero. Therefore, the 2D Laplace equation for the reduced problem can be written as

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+
∂2Φ

∂z2
= 0. (2.15)

Now suppose that i represents the points along the r direction and j represents the points along the z

direction. The problem domain is discretized by making the grid spacing along the r direction δr, and

the grid spacing along the z direction δz. Now, each derivative in Eq. (2.15) is replaced by the relevant

second order correct central difference approximations as

(Φi−1,j − 2Φi,j + Φi+1,j)

δr2
+

1

ri

Φi+1,j − Φi−1,j

2δr
+

(Φi,j−1 − 2Φi,j + Φi,j+1)

δz2
= 0, (2.16)

where ri = i× δr. Rearranging the terms gives

(Φi−1,j − 2Φi,j + Φi+1,j) +
1

2i
(Φi+1,j − Φi−1,j) +

δr2

δz2
(Φi,j−1 − 2Φi,j + Φi,j+1) = 0. (2.17)

2.1. FINITE DIFFERENCE METHOD 21

Letting α = 1
2i and γ = (δrδz)2, we can write Φi,j as

Φi,j =
1

2(1 + γ)
(Φi−1,j(1− α) + Φi+1,j(1 + α) + Φi,j−1(γ) + Φi,j+1(γ)). (2.18)

This is the finite difference formula to compute all the interior nodes of the problem domain. The value

of Φi,j is given by the weighted sum of the four neighboring values of Φi,j . These 5 nodes together is

called a five-point stencil [13] (see Fig. 2.3). Computing one Φi,j value using its four neighboring nodes

is called one stencil computation.

Φi,jΦi−1,j Φi+1,j

Φi,j+1

Φi,j−1

Figure 2.3: The five-point stencil. If Φi,j is a node on the mesh, the new value of the node is computed using
the weighted sum of the four neighboring nodes of Φi,j . Updating one node using the values of its neighbouring
nodes is called a one stencil computation. If there are N number of nodes on the mesh, the number of stencil
computations required to update the whole mesh is N .

2.1.3 Applying Boundary Conditions

Now we have a formula to compute all the interior nodes of the mesh. As the next step, we examine

the behavior of Φ on the boundaries of the mesh. As shown in Fig. 2.4, there are six boundaries which

enclose the problem domain. The 6th boundary has a Dirichlet condition, and hence, we can apply the

given values directly as the solution to Φ on Boundary 6. All the other five boundaries have Neumann

conditions. Therefore, we derive finite difference formulas for each of these boundaries by applying

given boundary conditions to Eq. (2.18) as below.

22 CHAPTER 2. METHODOLOGY

Figure 2.4: The discretized problem domain. Six boundaries which enclose the problem space are shown by red
line segments, and 6 corner nodes A,B,C,D,E, and F are marked by red circles. The values r0 and z0 are the
radius and the half-height of the inner cylinder. The values r1 and z1 are the radius and the half-height of the
outer cylinder.

Boundary 1 – boundary condition: ∂Φ
∂z = 0.

Applying second order correct central difference formula for the first order derivative gives

Φi,j+1 − Φi,j−1

2δz
= 0, (2.19)

which reduces to the equation

Φi,j−1 = Φi,j+1. (2.20)

When considering the nodes along Boundary 1, nodes Φi,j−1 is outside the problem domain. Having

the Eq. (2.20), we can replace Φi,j−1 with Φi,j+1 and write Eq. (2.18) as

Φi,j =
1

2(1 + γ)
(Φi−1,j(1− α) + Φi+1,j(1 + α) + 2Φi,j+1(γ)). (2.21)

This is the finite difference formula for the nodes on Boundary 1. The value of Φi,j is computed using

the three neighboring nodes of Φi,j inside the problem domain.

Boundary 2 – boundary condition: ∂Φ
∂r = 0.

Applying the finite difference approximation gives

2.1. FINITE DIFFERENCE METHOD 23

Φi+1,j − Φi−1,j

2δr
= 0,

which reduces to the condition
Φi+1,j = Φi−1,j . (2.22)

Replacing Φi+1,j by Φi−1,j in Eq. (2.18), we get the finite difference formula for the nodes on Boundary 2

as

Φi,j =
1

2(1 + γ)
(2Φi−1,j + Φi,j−1(γ) + Φi,j+1(γ)). (2.23)

Boundary 3 – boundary condition: ∂Φ
∂r = 0.

Let us look again at our 2D Laplace equation in a cylindrical coordinates:

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+
∂2Φ

∂z2
= 0. (2.24)

On Boundary 3, r = 0 and ∂Φ
∂r = 0. Then, the term 1

r
∂Φ
∂r assumes the indeterminate form 0/0 on

Boundary 3. Hence, we need to find a valid form of Eq. (2.24) to apply for the nodes on Boundary 3.

As described in Ref. [14], we find the limit of the term 1
r
∂Φ
∂r as r −→ 0, using L’Hospitals rule as

lim
r→0

∂Φ/∂r

r
=
∂2Φ

∂r2
.

Now we can replace the term 1
r
∂Φ
∂r with ∂2Φ

∂r2
, and Eq. (2.24) becomes

2
∂2Φ

∂r2
+
∂2Φ

∂z2
= 0. (2.25)

Eq. (2.25) is a valid form to apply on Boundary 3. By replacing these derivatives with second order

accurate central difference approximations, we get a finite difference formula as

2
(Φi−1,j − 2Φi,j + Φi+1,j)

δr2
+

(Φi,j−1 − 2Φi,j + Φi,j+1)

δz2
= 0. (2.26)

Now let us consider the finite difference formula for the boundary condition ∂Φ
∂r = 0 on Boundary 3:

Φi+1,j − Φi−1,j

2δr
= 0,

which reduces to the condition
Φi−1,j = Φi+1,j . (2.27)

Applying Eq. (2.27) to (2.26) gives the finite difference formula for the nodes on Boundary 3 as

Φi,j =
1

2(2 + γ)
(4Φi+1,j + Φi,j−1(γ) + Φi,j+1(γ)). (2.28)

24 CHAPTER 2. METHODOLOGY

Boundary 4 – boundary condition: ∂Φ
∂z = − B

µ0
.

Applying the finite difference approximation gives

Φi,j+1 − Φi,j−1

2δz
= −B

µ0
,

which can be written as
Φi,j+1 = Φi,j−1 − 2Bδz/µ0. (2.29)

Applying Eq. (2.29) to (2.18) produces the difference approximation to the nodes on Boundary 4 as

Φi,j =
1

2(1 + γ)
(Φi−1,j(1− α) + Φi+1,j(1 + α) + γ(2Φi,j−1 − 2Bδz/µ0)). (2.30)

Boundary 5 – boundary condition: ∂Φ
∂r = 0.

Applying the finite difference approximation gives

Φi+1,j − Φi−1,j

2δr
= 0,

which reduces to the condition

Φi−1,j = Φi+1,j . (2.31)

Applying Eq. (2.31) to (2.18) produces the difference approximation to the nodes on Boundary 5 as

Φi,j =
1

2(1 + γ)
(2Φi+1,j + Φi,j−1(γ) + Φi,j+1(γ)). (2.32)

When considering the corner nodes A,B,C,D,E and F (see Fig. 2.4), the values of the nodes E and F

can be set to Φ = 0 as they are on Boundary 6. Finite difference formulas to compute the other four

corner nodes are derived as below.

Corner node A

Node A satisfies both conditions on Boundary 1 and Boundary 3. Applying both conditions to Eq. (2.18)

gives

Φi,j =
1

2(2 + γ)
(4Φi+1,j + 2Φi,j+1(γ)). (2.33)

2.2. ITERATIVE SOLUTION 25

Corner node B

Node B satisfies both conditions on Boundary 1 and Boundary 2. Applying both conditions to Eq. (2.18)

gives

Φi,j =
1

2(1 + γ)
(2Φi−1,j + 2Φi,j+1(γ)). (2.34)

Corner node C

Node C satisfies both conditions on Boundary 3 and Boundary 4. Applying both conditions to Eq. (2.18)

gives

Φi,j =
1

2(2 + γ)
(4Φi+1,j + γ(2Φi,j−1 − 2Bδz/µ0)). (2.35)

Corner node D

Node D satisfies both conditions on Boundary 4 and Boundary 5. Applying both conditions to Eq. (2.18)

gives

Φi,j =
1

2(1 + γ)
(2Φi+1,j + γ(2Φi,j−1 − 2Bδz/µ0)). (2.36)

2.2 Iterative Solution

Having derived all the finite difference formula needed here, we now discuss the iterative procedure

used to update each node of the mesh until convergence is reached. There are various iterative solvers.

In this study, as mentioned in Chapter 1, we use the successive over relaxation (SOR) method to solve

our problem. In this section, we first explain the matrix structure of the system of linear equations

obtained from the finite difference method. Then we give a detailed description of the SOR solver and

its parallel version.

26 CHAPTER 2. METHODOLOGY

Table 2.1: Derived finite difference formulas for interior nodes, boundaries, and corner nodes.

Interior nodes Φi,j = 1
2(1+γ)(Φi−1,j(1− α) + Φi+1,j(1 + α) + Φi,j−1(γ) + Φi,j+1(γ))

Boundary 1 Φi,j = 1
2(1+γ)(Φi−1,j(1− α) + Φi+1,j(1 + α) + 2Φi,j+1(γ))

Boundary 2 Φi,j = 1
2(1+γ)(2Φi−1,j + Φi,j−1(γ) + Φi,j+1(γ))

Boundary 3 Φi,j = 1
2(2+γ)(4Φi+1,j + Φi,j−1(γ) + Φi,j+1(γ))

Boundary 4 Φi,j = 1
2(1+γ)(Φi−1,j(1− α) + Φi+1,j(1 + α) + γ(2Φi,j−1 − 2Bδz/µ0))

Boundary 5 Φi,j = 1
2(1+γ)(2Φi+1,j + Φi,j−1(γ) + Φi,j+1(γ))

Boundary 6 Φi,j = 0

Corner node A Φi,j = 1
2(2+γ)(4Φi+1,j + 2Φi,j+1(γ))

Corner node B Φi,j = 1
2(1+γ)(2Φi−1,j + 2Φi,j+1(γ))

Corner node C Φi,j = 1
2(2+γ)(4Φi+1,j + γ(2Φi,j−1 − 2Bδz/µ0))

Corner node D Φi,j = 1
2(1+γ)(2Φi+1,j + γ(2Φi,j−1 − 2Bδz/µ0))

Corner node E Φi,j = 0

Corner node F Φi,j = 0

2.2.1 The Matrix Form of the Linear System

The system of linear equations obtained from the finite difference method can be converted into a

matrix structure as

Ax = f, (2.37)

where A is an N ×N coefficient matrix, x is an N × 1 column vector of N variables Φ1,Φ2,Φ3, ...,ΦN,

and f is a N × 1 column vector which contains the constant terms that appear in the equations.

Corresponding to each row of the matrix A is an equation of the form

ai,jΦi+1,j + bi,jΦi−1,j + ci,jΦi,j+1 + di,jΦi,j−1 + ei,jΦi,j = fi,j , (2.38)

where a, b, c, d, e are the corresponding weight values and Φi,j represents the (i, j)th node of the mesh.

If the node is a boundary node or a corner node, some of these weights equal to zero and the equation

2.2. ITERATIVE SOLUTION 27

contains fewer terms than the general form. For most of the equations, fi,j values are zero except for

the nodes on Boundary 4 and the corner nodes C and D (see Table 2.1). We use this general form of

the finite difference formula in later sections to explain theories and to derive new formulas. In the

following sections, before jumping into the SOR method, we first discuss the Jacobi and Gauss-Seidel

iterative solvers. The SOR method is a variant of the Gauss-Seidel method which has faster convergence

than both Jacobi and Gauss-Seidel.

2.2.2 Jacobi Iterative Solver

Jacobi method is a simple and easy to implement method to solve systems of linear equations. In the

Jacobi method, we first guess an initial value for all the nodes of the mesh, then we find the new value

of each Φi,j using the formula

Φn
i,j =

1

ei,j

(
fi,j − (ai,jΦ

n−1
i+1,j + bi,jΦ

n−1
i−1,j + ci,jΦ

n−1
i,j+1 + di,jΦ

n−1
i,j−1)

)
. (2.39)

This is repeated until a suitable stopping criterion is satisfied. Equation (2.39) is obtained by rearranging

the terms of Eq. (2.38), and n is the iteration number. The value of Φi,j of the current nth iteration is

obtained using the values of four neighbors of the previous (n− 1)th iteration. We can also write the

above Jacobi equation in matrix form, starting from Ax = f as described next.

The matrix A can be written as

A = L+D + U, (2.40)

where D is the diagonal part of A, L is the lower triangle of A with zeros on the diagonal, and U is the

upper triangle of A with zeros on the diagonal. Then, the nth iteration of the Jacobi method can be

written using matrix structure as

Dxn = −(L+ U)xn−1 + f.

Multiplying both sides by D−1 gives

xn = −D−1(L+ U)xn−1 +D−1f. (2.41)

The matrix −D−1(L+ U) is called the Jacobi iteration matrix. This appears in different formulas in

later sections when we discuss the SOR method.

Programming of the Jacobi method is easy as we can use the finite difference formula directly in the

algorithm. Two arrays are needed to store Φn
i,j and Φn−1

i,j values. The order in which the nodes are

updated is not important as all the Φn
i,j are computed before any of them are used [2]. However, because

28 CHAPTER 2. METHODOLOGY

of the slow convergence of the method, the Jacobi method is not used to solve large systems of equations

which appear in real-world applications [15].

2.2.3 Gauss Seidel Method

This method is a modification of the Jacobi method [2]. Here we use the most recently updated values,

on the right hand side of Eq. (2.39), as soon as they are available. If we are proceeding along the rows,

by incrementing i for fixed j, the Gauss Seidel equation can be written as

Φn
i,j =

1

ei,j

(
fi,j − (ai,jΦ

n−1
i+1,j + bi,jΦ

n
i−1,j + ci,jΦ

n−1
i,j+1 + di,jΦ

n
i,j−1)

)
. (2.42)

In this method, it is not necessary to store both vectors, Φn and Φn−1. Only one vector of Φ is used and

the old value of Φi,j is overwritten by the new value of Φi,j as soon as it is computed. This method has

faster convergence than the Jacobi method, but, still has slow convergence compared to other iterative

methods [15].

2.2.4 SOR Method

In the SOR method, the Gauss Seidel process is accelerated by generating a weighted sum of the current

and the previous iterates. If we suppose that Φ̃i,j is the current Gauss Seidel iterate given by Eq. (2.42),

then the SOR equation can be written as

Φn
i,j = (1− ω)Φn−1

i,j + ωΦ̃n
i,j . (2.43)

The parameter ω is called the over-relaxation parameter. When ω = 1, the SOR method reduces to

the Gauss Seidel solver. For the stability of the method, ω should be 0 < ω < 2, but, only ω > 1 can

accelerate the convergence of the Gauss Seidel method. When ω < 1, it is called under relaxation [15].

Determining Optimum Relaxation Parameter

As mentioned above, when ω is between 1 and 2, it accelerates the convergence of the Gauss Seidel

method. Although a range of ω values could accelerate the convergence, there is one optimum value ωb,

which gives the fastest convergence. That is, with ωb, the method converges with a minimum number of

iterations. The rate of the convergence of the SOR method strongly depends on the relaxation factor ω

[16]. Smaller differences in the relaxation parameter can cause larger variations of the convergence rate,

2.2. ITERATIVE SOLUTION 29

and hence, the SOR method is not efficient without a good estimation to ωb. Hence, obtaining a good

estimate for the optimum relaxation factor is an important step.

It can be shown [17] that the optimum value ωb is given by

ωb =
2

1 +
√

1− ρ2
jacobi

, (2.44)

where ρjacobi is the spectral radius of the Jacobi iteration matrix. The spectral radius of a matrix is

the modulus of the largest eigen value of that matrix. Finding the spectral radius of a matrix is a

computationally expensive task. Therefore, some formulas have been derived to approximate the value

of ρjacobi, without going through all the expensive computations. It can be shown that the value of

ρjacobi for a Poisson equation with homogeneous Dirichlet or Neumann boundary conditions over a

rectangular domain of size N ×M with the mesh spacing δx and δy [15] is given by

ρjacobi =
cos πJ + (δxδy)2 cos πL

1 + (δxδy)2
, (2.45)

where J = N/δx and L = M/δy are the width and height of the mesh.

Although Eq. (2.45) is very useful when computing rectangular grids, this equation cannot be used

when the problem domain is non-rectangular as our problem. In Ref. [16], Kulsrud has experimented

with different ways to estimate ρjacobi for non-rectangular domain problems. One of them was taking J

and L of Eq. (2.45) as the width and height of the rectangular region which encloses the non-rectangular

domain. For our particular problem, we found that using a rectangular region three times larger (in

each direction) than the circumscribing rectangle worked best. This is described in greater detail in

Appendix A. The method suggested there is used to determine the optimal omega ωb when computing

meshes throughout the rest of the thesis.

2.2.5 Stopping Criteria

In principle, iterative methods will only converge to the exact solution after an infinite number of

iterations. As a result, some criteria are required to stop the iterative procedure when sufficient accuracy

is reached. One way of stopping the iterative process is to terminate the procedure when the difference,

or error, between the solution and the numerical approximation is small enough (i.e. when the error

falls below a user-supplied tolerance). Since we do not know the solution a priori, the actual error is not

30 CHAPTER 2. METHODOLOGY

measurable. As a result, the error at each node must be approximated using some measurable quantity.

In our problem, the relative residual is used to identify the error involved in the approximated solution.

To see this, let xn be the approximation of the exact solution x of the system of linear equations Ax = f

obtained after n iterations. Then

rn = f −Axn (2.46)

is called the residual vector of the approximation xn. Let the error vector associated with xn be en.

Then

en = x− xn.

Since A−1f = x and A−1A = I, where I is the identity matrix, en can be written as

en = A−1f −A−1Axn.

Rearranging the terms gives
en = A−1(f −Axn),

which reduces to the equation
en = A−1rn. (2.47)

Eq. (2.47) can be written using the Euclidean norms as

‖en‖ ≤
∥∥A−1

∥∥ ‖rn‖ . (2.48)

The Euclidean norm of a vector y = (y1, y2, ..., yN) is denoted by ‖y‖ and is defined as ‖y‖ =
√∑N

k=1(yk)2.

Dividing both sides of Inequality (2.48) by ‖x‖ , we get the relative error as

‖en‖
‖x‖

≤
∥∥A−1

∥∥ ‖rn‖
‖x‖

.

Multiplying the numerator and denominator of the right hand side by ‖A‖ gives

‖en‖
‖x‖

≤
‖A‖

∥∥A−1
∥∥ ‖rn‖

‖A‖ ‖x‖
.

Since ‖f‖ ≤ ‖A‖ ‖x‖, the above inequality reduces to

‖en‖
‖x‖

≤ ‖A‖
∥∥A−1

∥∥ ‖rn‖
‖f‖

, (2.49)

where ‖r
n‖
‖f‖ is the relative residual after nth iteration and gives an indication of the relative error ‖e

n‖
‖x‖ .

This relative residual can be measured during the iterative process and can be used as a stopping rule as

‖rn‖
‖f‖

< tolerance, (2.50)

2.2. ITERATIVE SOLUTION 31

where tolerance is a user-supplied value.

We can write the SOR equation (2.53) using the residual rni,j as described next, so that rni,j can be

calculated as a part of computing the new value of Φi,j . To derive the formula, let us consider the

general form of the finite different formula:

ai,jΦi+1,j + bi,jΦi−1,j + ci,jΦi,j+1 + di,jΦi,j−1 + ei,jΦi,j = fi,j . (2.51)

The iterative procedure of solving for Φi,j in the Gauss Seidel method is

Φ̃n
i,j =

1

ei,j

(
fi,j − (ai,jΦ

n−1
i+1,j + bi,jΦ

n
i−1,j + ci,jΦ

n−1
i,j+1 + di,jΦ

n
i,j−1)

)
. (2.52)

Then the SOR equation is given by

Φn
i,j = (1− ω)Φn−1

i,j + ωΦ̃n
i,j . (2.53)

The residual ri,j of the node Φi,j at the nth iteration is

rni,j = fi,j −
(
ai,jΦ

n−1
i+1,j + bi,jΦ

n
i−1,j + ci,jΦ

n−1
i,j+1 + di,jΦ

n
i,j−1 + ei,jΦ

n−1
i,j

)
. (2.54)

Substituting Eq. (2.54) to Eq. (2.52) gives

Φ̃n
i,j =

1

ei,j

(
rni,j + ei,jΦ

n−1
i,j

)
, (2.55)

and Eq. (2.53) becomes

Φn
i,j = (1− ω)Φn−1

i,j + ω(
rni,j
ei,j

+ Φn−1
i,j),

which reduces to the equation

Φn
i,j = Φn−1

i,j + ω
rni,j
ei,j

. (2.56)

After each iteration, ‖rn‖ is calculated and check for the convergence with the stopping rule, ‖rn‖ / ‖f‖ <

tolerance. If the number of nodes on the mesh is N , ‖rn‖ and ‖f‖ are computed as

‖rn‖ =

√√√√ N∑
k=1

(rnk)2 and (2.57)

‖f‖ =

√√√√ N∑
k=1

(fk)2. (2.58)

Algorithm 1 shows the pseudo-code of the SOR method.

32 CHAPTER 2. METHODOLOGY

Algorithm 1 SOR method

INPUT: the maximum number of iterations max ite, the tolerance TOL, the coefficient vectors
a, b, c, d, and e, the over relaxation parameter ω, the norm of the right hand side vector f , the vector
Φ(0), which is the initial guess for Φ.
Set n = 1
while n ≤ max ite do

for i = 1,2,3,...M do
for j = 1,2,3,... N do

ri,j = fi,j −
(
ai,jΦi+1,j + bi,jΦi−1,j + ci,jΦi,j+1 + di,jΦi,j−1 + ei,jΦi,j

)
Φi,j = Φi,j + ω

ri,j
ei,j

end for
end for
if ‖rn‖ / ‖f‖ < TOL then

STOP
end if
Set n = n+ 1

end while
OUTPUT: Φ = (Φ1,Φ2, ...)

2.2.6 Red-Black SOR Method

The original SOR method discussed above is a sequential process. The usual way of computing nodes is

proceeding along the rows or the columns of the mesh. Since the current step consumes the output of

the previous step, computation is serial. In order to run the SOR method in parallel on a GPU, the

steps should be independent to run simultaneously. To achieve this parallelism, an alternative ordering

is used and the method is called the Red-Black SOR method [18]. In this parallel version, the nodes on

the mesh are divided into red and black as a checkerboard pattern. If (i+ j) is even, the node is red, if

(i+ j) is odd, the node is black (see Fig. 2.5). In computation, the red nodes depend only on the black

nodes and vice versa. As a result, the mesh can be computed in two passes. In the first pass, all the red

nodes are updated in parallel; in the second pass, all the black nodes are updated in parallel with the

newly calculated red nodes as Eq. (2.59) and (2.60) indicate:

Φn
i,j = (1−ω)Φn−1

i,j +
ω

ei,j

(
fi,j−(ai,jΦ

n−1
i+1,j+bi,jΦ

n−1
i−1,j+ci,jΦ

n−1
i,j+1 +di,jΦ

n−1
i,j−1)

)
if (i+j) is even, (2.59)

Φn
i,j = (1−ω)Φn−1

i,j +
ω

ei,j

(
fi,j−(ai,jΦ

n
i+1,j +bi,jΦ

n
i−1,j +ci,jΦ

n
i,j+1 +di,jΦ

n
i,j−1)

)
if (i+j) is odd. (2.60)

Algorithm 2 shows the pseudo-code of the Red-Black SOR method. Both serial and parallel versions of

2.2. ITERATIVE SOLUTION 33

this red-black SOR method were implemented in this thesis and their performance was compared.

Figure 2.5: In the Red-Black SOR method, all nodes on the mesh are coloured as red and black as a checkerboard
pattern. When updating nodes, the red nodes depend only on the black nodes and the black nodes depend only
on the red nodes. Therefore, the same colour nodes can be updated in parallel on a GPU, with the entire mesh
updated in two passes.

34 CHAPTER 2. METHODOLOGY

Algorithm 2 Red-Black SOR method

INPUT: the maximum number of iterations max ite, the tolerance TOL, the coefficient vectors
a, b, c, d, and e, the over relaxation parameter ω, the norm of the right hand side vector f , the vector
Φ(0), which is the initial guess for Φ.
Set n = 1
while n ≤ max ite do

for all red nodes do
ri,j = fi,j −

(
ai,jΦi+1,j + bi,jΦi−1,j + ci,jΦi,j+1 + di,jΦi,j−1 + ei,jΦi,j

)
Φi,j = Φi,j + ω

ri,j
ei,j

end for
for all black nodes do
ri,j = fi,j −

(
ai,jΦi+1,j + bi,jΦi−1,j + ci,jΦi,j+1 + di,jΦi,j−1 + ei,jΦi,j

)
Φi,j = Φi,j + ω

ri,j
ei,j

end for
if ‖rn‖ / ‖f‖ < TOL then

STOP
end if
Set n = n+ 1

end while
OUTPUT: Φ = (Φ1,Φ2, ...)

Chapter 3

Parallel Programming with CUDA

In this thesis, our parallel algorithms are implemented using CUDA computing platform which was

introduced by NVIDIA. In order to fully utilize the available compute resources of GPUs, one should

understand the hardware structure of CUDA enabled devices and the programming strategies of CUDA.

In this chapter, we first provide a basic introduction of the CUDA programming model, the hardware

structure, and different optimization techniques in CUDA. Next we discuss single-precision and double

precision floating point operations and how they affect the performance and the accuracy of the

application. In the last section, we provide details of one of the common and most important data

parallel primitive called parallel reduction. Reduction operations are those which reduce a collection of

values to a single value such as the sum, the minimum or the maximum. Since our parallel algorithms

use reduction operations to get the sum out of an array of values, here we describe how to implement

parallel reduction operations using CUDA.

3.1 CUDA Programming and Execution Model

CUDA (Compute Unified Device Architecture) [19] is a general-purpose parallel computing platform

which was created by NVIDIA in 2006. CUDA C is an extension to the C/C++ programing language

with new keywords to enable heterogeneous computing, which is a program that executes code both on

the CPU as well as co-processors, such as a GPU. CUDA C is but one of the programming languages

that can be used to write heterogeneous applications, and is solely used in this thesis. A CUDA program

consists of host code, which runs on the CPU, and device code which runs on the GPU (Fig. 3.1). The

host code is written in C/C++ and the device code, which contains data parallel functions called

35

36 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

Figure 3.1: The figure from Ref. [20] shows the structure of a CUDA program. A CUDA program can have a
mixture of both host and device code. Host code runs on the CPU and device code runs on the GPU. Device
code is executed via data parallel functions called kernels and is written using CUDA C/C++. The blue and
green arrows indicate the execution of instructions, or threads, on the CPU and GPU, respectively.

kernels, is written using CUDA C/C++. The NVIDIA C Compiler (nvcc) is used to compile both host

and device codes in a CUDA program.

A CUDA program structure consists of the following three main steps:

1. Copy data from CPU memory to GPU memory.

2. Invoke one or more CUDA kernels.

3. Copy back data from GPU memory to CPU memory.

Copying data and invoking CUDA kernels are done from the host using specific CUDA functions. When

launching a CUDA kernel from the host, it is required to specify how many threads we need to run

simultaneously. These threads are organized into a two-level hierarchy as block and grid. A block

consists of one or more threads and a grid consists of one or more blocks (Fig. 3.2). We can define these

thread blocks and grids to be 1D, 2D, or 3D; however, since the memory space has a flat organization,

all the multidimensional arrays are linearized into equivalent 1D arrays. For a given grid, the number of

threads in a block is available in the blockDim variable. Each thread in a block and each block in a grid

have a unique index and are available in the variables threadIdx and blockIdx respectively. For a 2D

grid, the global index to access the element at the ith column and the jth row is computed as below:

i = blockIdx.x*blockDim.x + threadIdx.x;

j = blockIdx.y*blockDim.y + threadIdx.y;

index = i + j*width;

3.1. CUDA PROGRAMMING AND EXECUTION MODEL 37

Here, width is the width of the grid. All threads in a grid execute the same kernel function. The

number of threads which can reside in a block and the number of blocks which can reside in a grid are

limited by the available compute resources of the device.

Figure 3.2: CUDA threads are organized into blocks, and blocks are organized into grids. These blocks and
grids can be 1D, 2D or 3D, and this figure from Ref. [20] illustrates the 2D case. All threads in a grid execute the
same kernel function, and the kernel is launched from the host.

The building block of the GPU architecture is known as a streaming multiprocessor (SM). Each SM has

hundreds of CUDA cores which support concurrent execution of hundreds of threads. A GPU generally

has multiple SMs. As a result, thousands of threads can be executed simultaneously in a single GPU.

When a kernel is launched, thread blocks are distributed among available SMs. The number of thread

blocks which can concurrently reside in an SM depends on the available capacity of the SM. When

allocated thread blocks finish execution, new blocks are launched to fill the unoccupied positions in

SMs.

Thread blocks in SMs are further divided into groups of 32 consecutive threads called warps. All threads

in the same warp execute the same instruction at the same time. The number of clock cycles between

an instruction being issued and being completed is defined as latency [20]. The latency of one warp can

be hidden by switching execution to other warps if a sufficient number of active warps are available in

an SM. Therefore, better performance can be achieved when a large number of threads are available for

execution on the GPU.

38 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

3.1.1 Synchronization

Barrier synchronization is commonly used in parallel applications to coordinate parallel activities. In

CUDA, threads within a block are synchronized using the CUDA function __syncthreads(). When a

kernel function calls __syncthreads(), all the threads in a block wait at the calling location until every

thread in the block completes its phase of execution and reaches the location. Thus, __syncthreads()

can be used to ensure that every thread in the block has done with its current step of execution

before it moves to the next step of execution. Although this block synchronization function is useful in

many applications to coordinate communication among threads within a block, __syncthreads() can

decrease the performance of the application as the function forces some warps to stay idle until others

finish their job.

3.1.2 Warp Divergence

Flow-control constructs such as if...then...else, for and while are commonly used in many

programming languages. CPUs include complex hardware to perform these control flow instructions

and have a minimum effect on performance. However, GPUs do not include such complex hardware

to perform CPU control-flow instructions [20]. In GPUs, all threads in a warp must execute the same

instruction at the same time. If the threads in the same warp need to execute different instructions,

the warp will execute each branch path serially, one after the other, which leads to what is called warp

divergence (Fig. 3.3). Divergent branches negatively affect the performance of the application as they

result in some threads of the warp remaining idle, while the other threads execute their branch path.

3.2 CUDA Memory Model

Unlike CPU memory, the CUDA memory model consists of many types of memory which programmers

can explicitly control. Figure 3.4 illustrates the CUDA memory model. Each memory space has its

own capacity, lifetime, and scope. Also, these memory spaces have different latencies, bandwidths (the

amount of data transfers per unit time), and functionalities.

Global memory is the largest memory available and resides in the device memory. Global allocations

are visible to all threads in all kernel functions and they exist for the lifetime of the application. Since

global memory has the highest latency, accessing global memory variables is slow and expensive.

3.2. CUDA MEMORY MODEL 39

Figure 3.3: Diagram from Ref. [21] shows warp divergence. The threads within the same warp execute two
different instructions given by the if...else statement. First, the threads which threadIdx.x < 4 execute
the instructions A and B while the other threads are idle. When it comes to the else statement, idle threads
start executing the instructions X and Y, and threads from the first branch become inactive. After the branch
statement, all threads within the warp re-converge and execute the instruction Z at the same time.

Constant memory is a read-only memory. This also resides in the device memory, but is cached in a per

SM read-only cache to reduce the latency cost associated with reading from memory. The keyword

__constant__ is used when declaring a constant variable. These variables also can be accessed by all

threads in all grids and the lifetime is for the entire execution of the application. Constant memory

is used to store data which do not change over the kernel execution (e.g. mathematical constants).

Memory access is efficient and fast when all threads read from the same memory location.

Texture memory is another read-only memory that resides in the device memory, which is cached in a

per SM read-only cache. Texture memory provides higher bandwidth when the memory access pattern

exhibits 2D spatial locality. This roughly implies that a thread is likely to read from an address “near”

the addresses that nearby threads read [8] as shown in Fig. 3.5. Since the four memory locations shown

in Fig. 3.5 are not coalesced in one-dimensional memory, they will not cache together when loading

from the global memory. Recall, memory is a linear array of bytes, thus the two locations pointed to

by Threads 1 and 3 are stored very far in memory from the locations pointed to by Threads 0 and

2. Texture memory is designed to perform well when loading such data which are close together with

respect to two-dimensions.

The keyword __shared__ is used when declaring a shared memory variable. Shared memory is an

on-chip memory (i.e. resides in SMs), which, therefore, has higher bandwidth and lower latency than

global memory. The lifetime of a shared memory variable is the lifetime of the kernel function. Each

thread block has its own shared memory. All threads in a block have access to the shared memory for

40 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

Figure 3.4: The CUDA memory model consists of many types of programmable memories as shown in this
diagram from Ref. [20]. Global, constant, and texture memory are located in the device memory. Global memory
has the highest latency, but texture and constant memory are cached in a per SM read-only memory for efficient
memory loads. Shared memory, which is private to each block, is an on-chip memory, hence has lower latency.
Registers, which are private to each thread, are the fastest memory available in CUDA. Variables which do not fit
into registers are stored in local memory, which resides in the same location as global memory, and hence, has
higher latency.

Figure 3.5: This figure from Ref. [8] shows an access pattern which exhibits 2D spatial locality. Here, four
consecutive threads access four memory locations, which are spatially close with respect to two-dimension.
Although these four locations are close together in 2D, the two locations pointed to by Thread 1 and Thread 3 are
located very far in linear memory from the locations pointed to by Thread 0 and Thread 2. Since the locations
are not coalesced in linear memory, they will not cache together when loading from global memory and hence,
can affect negatively for the performance. Texture cache is optimized for accessing such data which exhibit 2D
spatial locality.

that block and they cannot access the shared memory of another block. Threads within a block can

cooperate by sharing data through shared memory.

3.2. CUDA MEMORY MODEL 41

Registers, which are private to each thread, are the fastest memory available in a GPU. All the automatic

variables other than arrays that are declared within a kernel function are stored in registers. The

lifetime of a register variable is the lifetime of the kernel function. Variables defined within a kernel

function that do not fit into register space are stored in local memory. Local memory has higher latency

and lower bandwidth as it resides in the same physical location as global memory.

Each memory space is optimized for different purposes. Better performance can be achieved by proper

utilization of these memory spaces. Every memory type discussed above is limited by the amount

available and varies from device to device.

3.2.1 Memory Access Patterns

In most applications, we need to access data which are stored in global memory. Since global memory

has the highest latency and the lowest bandwidth, care must be taken not to waste bandwidth when

accessing data from global memory. A proper access pattern maximizes bandwidth utilization and

increases the performance of the application. In this section, we examine different memory access

patterns and see how they affect the performance of the application.

Align and Coalesced Access

All accesses to global memory are cached through L2 cache. Depending on the hardware architecture

of the GPU and the type of the memory access defined, accesses can also pass through L1 cache. In

architectures like Kepler, Maxwell, and Pascal, L1 cache is not used by default to cache global memory

loads. But we can enable or disable L1 cache at the compile time using compiler options. The L1 cache

line is 128 bytes and the L2 cache line is 32 bytes. We say that an access pattern is aligned if the first

address of a transaction is a multiple of 32 (128 if the L1 cache is used). The memory accesses are

coalesced if all 32 threads in a warp access contiguous memory locations. Both aligned and coalesced

memory accesses are ideal and it is important to arrange accesses to be aligned and coalesced in order

to maximize the global memory throughput.

The figures below illustrate different scenarios of global memory accesses when only the L2 cache is

enabled. Fig. 3.6 shows the ideal memory access pattern. Suppose that each thread in a warp accesses

4 bytes of data. Here, the addresses requested by all the threads in the warp falls within 4 cache lines

of 32 bytes. There are no wasted loads and the bus utilization is 100 percent. Fig. 3.7 shows the worst

case scenario, which is when the memory accesses are neither aligned nor coalesced. In this case, the

4-byte addresses requested by the warp is spread out across the global memory. The addresses can fall

42 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

across N cache lines where 4 ≤ N ≤ 32. Suppose that the requested 32 addresses fall within 32 different

cache lines. Then, the bus utilization is 128 bytes requested / 1024 bytes loaded = 12.5 percent. Strided

memory accesses are also non coalesced memory accesses which result in poor performance. Fig. 3.8

shows adjacent threads accessing memory with a stride of two. As the stride increases, the effective

bandwidth decreases.

Figure 3.6: This figure from Ref. [20] illustrates the aligned and coalesced memory accesses. Each thread
accesses 4 bytes of data and the total memory requested by the warp is 128 bytes. These 128 bytes fall within 4
cache lines of 32 bytes and all threads in the warp access a contiguous chunk of memory. The first address of the
transaction is a multiple of 32.

Figure 3.7: This figure from Ref. [20] illustrates a miss aligned and non coalesced memory accesses. The memory
addresses requested by a single warp is scattered across the global memory. Requested memory addresses fall
within many cache lines. Most of the data loaded is unused, and hence, the bus utilization is very low.

Figure 3.8: Figure from Ref. [22] illustrates adjacent threads accessing global memory with a stride of two.
Each thread reads every other memory location and therefore, accesses are not coalesced. Strided accesses also
cause memory replays, hence, negatively affecting the performance.

When accessing elements in a 2D array, the rows may not align properly and the first address from

the series of addresses requested by a warp would not meet the alignment requirement [23]. Alignment

in 2D arrays can be achieved using a special CUDA memory allocation function (or malloc) called

cudaMallocPitch() :

3.3. SINGLE-PRECISION AND DOUBLE-PRECISION FLOATING POINT OPERATIONS 43

cudaMallocPitch(void **devPtr, size_t *pitchBytes, size_t width, size_t height)

Here devPtr is the device memory pointer, the variable pitchBytes denotes the length in bytes of the

padded row, width is the width of the array row in bytes, and height is the height of the array. Using

this function, the size of the each row is padded by an amount necessary for the alignment requirement

as shown in Fig. 3.9. The amount of bytes of the pitch is passed into the variable pitchBytes. Now,

the index of each element of the 2D array is calculated using the pitch as follows:

int i = (blockIdx.x * blockDim.x + threadIdx.x);

int j = (blockIdx.y * blockDim.y + threadIdx.y);

int pitch = pitchBytes / sizeof(data type);

index = i + j * pitch;

array data padding

pitch

Figure 3.9: The function cudaMallocPitch() is used to allocated memory for 2D arrays in order to meet the
alignment requirement. When cudaMallocPitch() function is called, each row of the array is padded by an
amount of bytes necessary for the alignment. The function determines the best pitch for the given array and
returns it to the program.

3.3 Single-precision and Double-precision Floating Point Operations

Since computer memory is finite, computers cannot store all the numbers with their complete precision.

The precision of a number with infinite decimal places is limited by the number of bits used to represent

the number. Nearly all hardware and programming languages use a common floating-point format to

represent numerical values that is called the IEEE-754 floating-point standard. The IEEE-745 standard

supports two levels of precision in floating-point representation. Single-precision is the 32-bit (4 bytes)

representation of numerical values and corresponds to the data type float in C/C++. A numerical

value represented by a 32-bit float usually yields 8 significant digits. Double-precision is the 64-bit

(8 bytes) representation of numerical values and corresponds to the data type double in C/C++. A

numerical value represented by a 64-bit double usually yields 16 significant digits.

44 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

A number represented as a double-precision value is more precise than a single-precision value as

double-precision numbers use twice as many bits as single-precision numbers. Even though these

double-precision numbers are more precise, this precision comes with both space and performance

cost. A variable which stores as a double-precision value takes up to twice the memory space of a

single-precision value. When considering performance, double-precision floating point operations are

slower in both computation and communication (i.e. data transferring from host to device and device

to host). Even though single-precision floating point operations would be quicker than double-precision

operations, many scientific computations require more precise solutions and therefore must use the

latter to minimize the round-off error. In this thesis, we tested the speed of our algorithms with both

single and double precision operations. Final demonstrations were performed with double precision, in

order to provide the most accurate solutions possible.

3.4 Parallel Reduction

Parallel reduction is a fundamental building block in parallel programming and appears in many

algorithms, such as our Laplacian solver. Reduction methods are used to compute a single value from an

array of values. The single value could be the sum, the maximal value, the minimal value, etc. Suppose

that we need to find the sum of an array of values. This task can be done easily by sequentially visiting

each element of the array and adding the current value to the running total. When doing this sum

reduction in parallel, it can be done using an iterative pairwise implementation. First, the array is

partitioned into small segments where each segment contains a pair of elements. Then, each thread

computes the partial sum of each segment and these partial sums are then stored in-place in the original

input array. These newly computed partial sums are the inputs to be summed in the next iteration.

This iterative procedure stops when the input to the next iteration reduces to one. The most commonly

used methods for parallel reduction in CUDA are shared memory reduction and reduction with shuffle

instruction, both of which are described below.

Shared Memory Reduction

Figure 3.10 shows how we can do this sum reduction in parallel using shared memory. The reduction

consists of two levels called (i) block level reduction and (ii) grid level reduction. We first explain how

to do the reduction in block level. If there are N elements in the array, we use N/2 threads to compute

the sum. First, we copy the original array from global memory to shared memory. At the first step, the

stride is half of the block size. Each thread adds the value of its index to the value half of the block size

3.4. PARALLEL REDUCTION 45

away of its index and replaces its value by the computed partial sum. Now, all the partial sums are

stored in the first half of the array. At the second step, the stride is divided by two, then, the threads

add elements that are one quarter a block size away from each other. At the final step, the total sum

of the values of each thread block will be in element 0 of each block. The source code of the shared

memory sum reduction is given in Listing 3.1. The __syncthreads() statement at line 10 is to ensure

that all the partial sums in the previous iteration have been completed before go to the next iteration.

Figure 3.10: This figure illustrates parallel block sum reduction. Since the array contains 8 elements, we need 4
threads to compute the sum. At the first step, each thread reads the value of its index and the value at the half
of the block size away (i.e. the stride is 4) from its index, adds them together and replaces its value by the partial
sum. Then, the partial sums of the threads T0, T1, T2 and T4 are 1, 13, 6, and 9 respectively. At the second step,
only the threads T0 and T1 are active and the stride is 2. Computed partial sums are stored at the index of T0
and T1. At the third step, T0 computes the last partial sum and the total sum of the array is given by the value
at the index of T0.

1 __global__ void reduceSumShared (int *input, int *output, unsigned int n) {

2 // set thread ID

3 unsigned int tid = threadIdx.x; //local index within the block

4 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x; //global index

5 __shared__ int S[];

6 S[tid] = input[idx];// copy data from global memory to shared memory

7

8 for (int stride = blockDim.x/2; stride > 1; stride /= 2) {

9 __syncthreads();

10 if (tid < stride) {

11 S[tid] += S[tid + stride];

12 }

13 }

14 }

Listing 3.1: Shared memory sum reduction.

46 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

After doing this block level reduction, we need to add these block partial sums together to get the total

sum of the array. This final level of reduction is called the grid level reduction and can be done in two

ways. One way is to copy all the partial sums from the device to host and do the sequential reduction

to get the final result. The other way is to use the atomic add operation to do the grid level reduction

on the device, which is discussed later in this section.

Reduction with Shuffle Instruction

In the previous reduction method, shared memory was used to exchange data between threads within

the same thread block, without going through global memory. The shuffle instruction, which is available

since Kepler GPU architecture, enables a thread to directly read a register from another thread in the

same warp without going through shared memory or global memory. Since the shuffle instruction is

a register operation, it has lower latency than shared memory and extra memory is not required to

perform a data exchange [20]. Hence, it is a fast way to cooperate among threads within a warp.

Here we first introduce some terminologies related to the shuffle instruction. A single thread within a

warp is called a lane. The lane index, which is in the range [0, 31], refers to the thread index within the

warp. Since a block can have more than one warp, more than one thread within a block can have the

same lane index. In a 2D thread block, the lane index and the warp index for a given thread can be

calculated via the following code:

laneID = (threadIdx.x + blockDim.x*threadIdx.y) % 32;

warpID = (threadIdx.x + blockDim.x*threadIdx.y) / 32;

There are different variants of shuffle instruction, but, in our reduction method, we use one variant

called __shfl_down(). The __shfl_down() instruction is as follows:

int __shfl_down(int var, int delta, int width=warpSize)

When this instruction is given, each thread shifts its index down the warp by delta lanes, grabs the value

of var at that position and assigns it to its index. Figure 3.11 shows how x = __shfl_down(x,4,32)

works. When the instruction x = __shfl_down(x, 4, 32) is given, the source lane index is calculated

by adding four lanes to the caller’s lane index. As an example, if the caller’s lane index is 0, the source

lane index is calculated as 4. Now, the new value of x corresponding to lane 0 is the value of x held by

lane 4. We can use this __shfl_down to do the sum reduction in parallel. The reduction with shuffle

instruction consists of 3 levels of reduction as (i) warp level reduction, (ii) block level reduction, and

(iii) grid level reduction. The source code for the shuffle warp level reduction is given in Listing 3.2.

After warp reduction, the value corresponding to lane 0 holds the sum of all elements in its warp.

3.4. PARALLEL REDUCTION 47

Figure 3.11: When the instruction x = __shfl_down(x, 4, 32) is given, each thread shifts its index down
the warp by four lanes. Then, the new value of x corresponding to thread 0 is the old value of x corresponding to
thread 4. The new value of x corresponding to thread 1 is the old value of x corresponding to thread 5 and so on.
The last four values of the warp remain unchanged as shifting four lanes down exceeds the boundary of the warp.

1 __device__ __inline__ double warpReduceSum(double val) {

2 val += __shfl_down(val, 16);

3 val += __shfl_down(val, 8);

4 val += __shfl_down(val, 4);

5 val += __shfl_down(val, 2);

6 val += __shfl_down(val, 1);

7 return val;

8 }

Listing 3.2: Shuffle warp sum reduction

The next step is the block level reduction. Listing 3.3 gives the whole code for the block level reduction.

First we compute the lane ID and the warp ID as in line 5 to line 7. Then, the warp reduction is done

in line 9. Now, the lane 0 of each warp contains the partial sum of the warp. As the next step, each

warp partial sum is written to the shared memory (line 11). Since the maximum number of warps which

can reside in a thread block is 32, we have a maximum of 32 partial sums within a block. Therefore, the

maximum amount of shared memory needed in this block reduction is that which can hold 32 elements.

Then, each block is synchronized using __syncthreads() to ensure that all the memory copies are done

before going to the next step. In line 16, the data in shared memory are copied back to the variable

var of the first warp of each block. Finally, the same warp reduction function is used to reduce the first

warp of each block and now the block partial sums reside in the thread 0 of each block.

1 __inline__ __device__ double blockReduceSum(double val) {

2

3 static __shared__ double shared_mem[32];

4

5 int id = threadIdx.x + blockDim.x*threadIdx.y;

6 int lane = id % warpSize; //index of thread within its warp

7 int warp_id = id / warpSize;

8

9 val = warpReduceSum(val); // sum reduction in each warp

48 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

10

11 if (lane == 0) shared_mem[warp_id] = val; // write each partial sum to the shared memory

12

13 __syncthreads();

14

15 // write back to registers

16 val = (id < (blockDim.x*blockDim.y) / warpSize) ? shared_mem[lane] : 0;

17

18 if (warp_id == 0) val = warpReduceSum(val);

19 return val;

20 }

Listing 3.3: Shuffle Block Reduction

The shuffle instruction offers an efficient way of coordinating between threads within the warp. When

considering the performance, the following are the main advantages of using shuffle reduction over

shared memory reduction [24]:

• In shared memory reduction, we read from and write to shared memory multiple times. In shuffle

reduction, warp level reduction is with register operations, which therefore, has lower latency than

shared memory and does not require allocating additional resources. Shared memory is used only

once when it comes to the block level reduction. Also, the amount of shared memory required is

fixed and does not increase with the size of the array to be reduced.

• In shared memory block reduction, __syncthreads() should be used in each step to synchronize

thread blocks, which adds some cost to the algorithm. In shuffle warp reduction, the synchronization

within a warp is implicit in the instruction and there is no need to explicitly add __syncthreads().

After block level reduction, thread 0 of each block holds the block partial sum. Finally, the reduction is

done in grid level in which the block partial sums are added together to get the final total sum. The grid

level reduction, as mentioned previously, can be done sequentially in the host or with atomic operations

in the device, as described next.

Grid Level Reduction with Atomic Add Operation

Atomic operations can be used in device functions to perform read-modify-write operations safely

on 32-bit or 64-bit words. Suppose that we need every thread in a kernel to read from a memory

location, add one to that value, and write the modified value back to the same memory location. Since

more than one thread is trying to read and write to the same memory location, there is competition

3.4. PARALLEL REDUCTION 49

among threads, which is called a race condition. Because of the race condition, the final result is not

deterministic. Atomic operations are used to allow threads to perform such read-modify-write operations

safely, without being interrupted by another thread. The above mentioned read-modify-write operation

can be done with atomicAdd as atomicAdd(ptr, 1), where *ptr is the memory location in which we

need to store the modified value.

In sum reduction, to get the total of block partial sums, we can use AtomicAdd as follows:

AtomicAdd(address, value);

When, this instruction is given, it reads the old value from the location pointed to by address, computes

(old value + value), and stores the result back to memory at the same location.

50 CHAPTER 3. PARALLEL PROGRAMMING WITH CUDA

Chapter 4

Development and Implementation of
the Algorithm

In this chapter, we first review the literature to see the applications of the Red-Black SOR/Gauss-Seidel

method in solving different numerical problems on GPFUs. Then we discuss implementing the serial

Red-Black SOR method using C/C++. The output of this serial algorithm is used later to compare

with the output of the parallel development to ensure that the parallel algorithm works correctly, and

to benchmark the performance of the parallel algorithm. This serial code is then modified using CUDA

C/C++, to run in parallel on a GPU. Since the Red-Black SOR method exhibits inherent parallel

properties, implementing a baseline, non-optimized GPU parallel algorithm is straightforward. After

implementing this baseline parallel algorithm, we then search for the performance inhibitors of this

non-optimized development and improve the performance using several optimization strategies, such

as improving memory access patterns and utilizing the fast memory caches available in GPUs. The

speedup achieved after applying the optimization strategies are described in greater detail in Chapter 5.

The development approach: (i) identifying the optimization opportunities, (ii) applying and testing

the optimization, and (iii) identifying the speedup achieved is a typical approach in developing a

well-performing CUDA application.

4.1 Applications of the Red-Black SOR/Gauss-Seidel Method in Lit-

erature

The Red-Black SOR/Gauss-Seidel method has already been studied by the research community and

has been applied in solving linear systems of equations that occur in different numerical applications.

51

52 CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF THE ALGORITHM

These studies have proposed different optimization strategies in order to accelerate the performance of

the algorithm on GPUs. Following is a review of related GPU based Red-Black SOR or Gauss-Seidel

method implementations.

The Red-Black Gauss Seidel method has been applied to fluid dynamics by Amador and Gomes in

Ref. [25], where they solved the Navier-Stokes equations in parallel using CUDA. Liu at el. have applied

the parallel Red-Black SOR method in solving computational fluid dynamics problems on a GPU with

CUDA in Ref. [26], making use of domain decomposition methods and shared memory to accelerate

the performance of the algorithm. The Red-Black SOR method has been applied by Itu in Ref. [27] in

solving a steady state heat conduction problem with CUDA. They have applied memory padding and

shared memory as the performance acceleration strategies. In Ref. [28], the parabolic equation has been

solved by Foster with Red-Black Gauss Seidel method utilizing GPUs with CUDA. Here the algorithm

has been optimized by changing the ordering pattern of the elements and this strategy was called

“reordering by colour”. The same reordering approach has been used by Konstantinidis and Cotronis in

Ref. [29] and [30] to solve the Laplace equation in a 2D rectangular domain with CUDA. Here, shared

memory and texture memory have been used to reduce the time associated with redundant global

memory accesses. In Ref. [31], Cotronis at el. have used the local modified Red-Black SOR method

to solve the convection diffusion equation on GPUs with CUDA. They have applied the reordering by

colour approach with shared memory and texture memory to optimize the performance.

4.2 Development of the Algorithm

Now having the basic understanding of CUDA programming, memory management, and CUDA

optimization strategies, we now describe the development of the algorithm used in this thesis to solve

the Laplace equation.

The red-black SOR method described in Chapter 2 is implemented as both serial and parallel. The serial

version is implemented with C++ and several parallel versions are implemented with CUDA C/C++.

The relative residual is used as the stopping criterion and the tolerance is chosen to be 0.5× 10−6. The

algorithm requires storage of several variables for the iterative procedure. One array is needed to store

the initial scalar potential values Φ0. Considering that the problem size is n× n, we use an n× n array

U to store the initial Φi,j values. The array U is initialized to zero as our initial guess for the Φi,j values

is zero.

4.2. DEVELOPMENT OF THE ALGORITHM 53

As discussed at the end of Section 2.1.3 in Chapter 2, the general form of the finite difference equation

that we use to update the nodes on the mesh is

ai,jΦi+1,j + bi,jΦi−1,j + ci,jΦi,j+1 + di,jΦi,j−1 + ei,jΦi,j = fi,j . (4.1)

Dividing both sides of Eq. 4.1 by ei,j gives

ai,j
ei,j

Φi+1,j +
bi,j
ei,j

Φi−1,j +
ci,j
ei,j

Φi,j+1 +
di,j
ei,j

Φi,j−1 + Φi,j =
fi,j
ei,j

, (4.2)

which allows us to avoid the division in each iteration. Now, four n× n weight arrays W 1,W 2,W 3,W 4

are used to store the weights of four neighbouring nodes of Φi,j , where W 1
i,j =

ai,j
ei,j

,W 2
i,j =

bi,j
ei,j
,W 3

i,j =
ci,j
ei,j
,

and W 4
i,j =

di,j
ei,j

. These weights are pre-calculated and stored before beginning the iterative process and

are not modified throughout the iterative procedure. The values
fi,j
ei,j

are not stored in a separate array

as most of the fi,j values are zero. Non-zero fi,j values appear only in the equations of the nodes on

Boundary 4 and the corner nodes C and D. These non-zero
fi,j
ei,j

values are added to the computation

using a few conditional statements.

Even though our problem domain is L-shaped, our 2D arrays represent all the nodes on the rectangular

domain as shown in Fig. 4.1. Each node is accessed by the index [i+ j × width], where i is the column

index, j is the row index, and width is the number of nodes along the i axis of the grid. The blue

region of Fig. 4.1 is our problem domain and the nodes outside the blue area do not belong to the

problem. Hence, the weights W 1
i,j ,W

2
i,j ,W

3
i,j ,W

4
i,j corresponding to the nodes outside the domain are set

to zero and as a result, the outside nodes remain zero throughout the iterative procedure. For all the

grid implementations, r1 = z1, where r1 and z1 are the radius and the half-height of the outer cylinder

respectively. In the end, the radius and the half-height of the inner cylinder (r0 and z0) are chosen to

be 0.25 m and 0.5 m respectively, allowing us to benchmark results against the work of Ref. [6]. These

two values remain the same for all the grid implementations.

Having the Eq. (4.2), the residual of each node is computed as

Ri,j = Fi,j −
(
W 1
i,jΦi+1,j +W 2

i,jΦi−1,j +W 3
i,jΦi,j+1 +W 4

i,jΦi,j−1 + Φi,j

)
, (4.3)

where Ri,j =
ri,j
ei,j

and Fi,j =
fi,j
ei,j

. As discussed in Section 2.2.5, the updated value of Φi,j is given by

Φi,j = Φi,j + ωRi,j , (4.4)

where ω is the relaxation parameter. When computing the relative residual, we divide the R norm by

the F norm, where

54 CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF THE ALGORITHM

Figure 4.1: This figure illustrates overlaying the problem domain with a rectangular mesh. The blue region
indicates the problem domain of our magnetostatic application. The boundaries are shown by the red line
segments and the corner nodes are shown by the red circles. The nodes on the white region are outside the
domain and do not belong to the problem space. We set the weights W 1

i,j ,W
2
i,j ,W

3
i,j ,W

4
i,j , corresponding to those

nodes to zero, and hence, they remain zero throughout the iterative procedure and do not affect the computation
of the nodes in the problem region.

‖R‖
‖F‖

=

√
(r1e1)2 + (r2e2)2 + (r3e3)2 + ...+ (rkek)2√
(f1e1)2 + (f2e2)2 + (f3e3)2 + ...+ (fkek)2

. (4.5)

Here, k is the total number of nodes on the mesh.

4.3 Serial Implementation

The serial red-black SOR method is implemented using two for loops to compute the red and black

elements on the mesh. If (i+ j)%2 = 0, the node is red, if (i+ j)%2 = 1, the node is black. The source

code of the serial version is given by Listing 4.1.

1 int repeat = 1;

2 int i_stride = 1;

3 int j_stride = width;

4 while (repeat <= MAX_ITE) {

5 double res_sum = 0;

6 for (int j = 0; j < height; j++) { // height is the # nodes along j direction

7 for (int i = 0; i < width; i++) { // width is the # nodes along i direction

8 if ((i + j) % 2 == 0) { // compute red nodes

9 double temp = 0;

10 double old_val = 0;

11 double res = 0;

12 index = i + j*width;

4.4. BASELINE PARALLEL IMPLEMENTATION 55

13

14 old_val = U[index];

15 temp += (i == 0) ? 0 : U[index - i_stride] * W1[index];

16 temp += (i == width-1) ? 0 : U[index + i_stride] * W2[index];

17 temp += (j == 0) ? 0 : U[index - j_stride] * W3[index];

18 temp += (j == height - 1) ? 0 : U[index + j_stride] * W4[index];

19

20 if (j == h && i == 0) {

21 res = F1 - (temp + old_val);} // F1 is the f_(i,j)/e_(i,j) of node C

22 else if (j == h && i > 0 && i <= r0) { // F2 is the f_(i,j)/e_(i,j) of boundary 4

and node D

23 res = F2 - (temp + old_val);}

24 else

25 res = - (temp + old_val); // f_(i,j) is zero for all other nodes

26

27 U[index] = old_val + omega*res; // replace the old value with new value

28 res_sum += (res*res);}}} //

29

30 for (int z = 0; z < z1_nodes; z++) {

31 for (int r = 0; r < r1_nodes; r++) {

32 if ((r + z) % 2 == 1) { // compute black nodes

33 //same code as for the red nodes goes here

34 }}}

35

36

37 if (sqrt(res_sum) / F_norm < TOL) { // F_norm is the norm of F

38 cout << "number of iterations :" << repeat << endl;

39 break;}

40

41 repeat++;

42 }

Listing 4.1: Red-black SOR method - serial version

4.4 Baseline Parallel Implementation

As discussed before, the Red-Black SOR method is inherently parallel and as a result it is straightforward

to write a first-go, or baseline implementation that will run on a GPU. This baseline implementation

is described below. It is then profiled using CUDA tools to identify the performance bottlenecks and

subsequent improvements are made to remove or reduce these bottlenecks. This is a typical approach

in developing a well-performing CUDA application.

In this baseline parallel implementation, an n× ceil(n/2) grid of threads is used to compute an n× n

mesh. The mesh is computed with two kernel calls, one for the red and black elements respectively.

The source code of the kernel function of the baseline parallel implementation is given in Listing 4.2.

56 CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF THE ALGORITHM

The node Φi,j is red if (i+ j) is even; black if (i+ j) is odd. Since the red or black elements do not

depend on the values of the nodes of their same color, all the red nodes can be computed in parallel

and subsequently all the black nodes can be computed in parallel. In this baseline implementation, all

the memory accesses are through global memory and no other fast memories available are used. In each

kernel call, each thread reads from every other memory location of five arrays W1, W2, W3, W4 and U

(lines 18-21 and line 24). Since the adjacent threads read the global memory with a stride of 2, the

memory accesses are not coalesced. In line 25, each thread reads corresponding four neighbouring nodes

from U to compute the new value of Φi,j , and replace the old Φi,j with the new value (line 36).

1 __global__ void solverKernel(double* U, double* __restrict__ W1, double* __restrict__ W2,

double* __restrict__ W3, double* __restrict__ W4, bool red_black, int width, int height,

int r0, int h, double* total_res_sum) {

2

3 int i = (blockIdx.x * blockDim.x + threadIdx.x);

4 int j = (blockIdx.y * blockDim.y + threadIdx.y);

5 int i_stride = 1;

6 int j_stride = width;

7

8 i *= 2;

9 if ((j % 2) != red_black)

10 r++;

11

12 int index = i + j*width;

13 double temp = 0;

14 double old_val = 0;

15 double res = 0;

16 double residual_sum = 0;

17

18 double left = W1[index];

19 double right = W2[index];

20 double top = W3[index];

21 double bottom = W4[index];

22

23 if (i < width && j < height) {

24 old_val = U[index];

25 temp = left * U[index - r_stride] + right * U[index + r_stride] + top * U[index -

z_stride] + bottom * U[index + z_stride];

26

27 if (j == h && i == 0) {

28 res = F1 - (temp + old_val);} // F1 is the f_(i,j)/e_(i,j) of node C

29

30 else if (j == h && i > 0 && i <= r0) {

31 res = F2 - (temp + old_val);} // F2 is the f_(i,j)/e_(i,j) of boundary 4 and node D

32

33 else {

34 res = - (temp + old_val);}

35

4.4. BASELINE PARALLEL IMPLEMENTATION 57

36 U[index] = old_val + omega*res; //replace the old value by new value

37 }

38 residual_sum = res*res;

39 residual_sum = blockReduceSum(residual_sum);

40 if (threadIdx.x + blockDim.x*threadIdx.y == 0) {

41 atomicAdd(total_res_sum, residual_sum);}

42 }

Listing 4.2: Red-black SOR method - Baseline parallel version

Here, the boolean variable red_black is 0 when computing the red nodes and 1 otherwise. The variables

omega, F1 and F2 are stored as constant variables. The square of the residual of each node is stored in

a register variable called residual_sum (line 38). To add those square residual values together, the

parallel reduction is used. In our algorithm, we use the parallel reduction with shuffle instruction to

get the sum of square residual values. The function blockReduceSum() (line 39) is the block reduction

function given in Listing 3.3 in Section 3.4. As in lines 40 and 41 in Listing 4.2, we use atomic add

operation to sum up all the block partial sums of residual_sum and the total value is stored at the

memory location pointed to by total_res_sum.

In the host, we check the stopping criterion and if the relative residual is less than the given tolerance,

stop the iterative process. The host code of our baseline Red-Black SOR algorithm is given in Listing

4.3.

1 //in the host

2 int repeat = 1;

3 while (repeat <= MAX_ITE){

4 solverKernel <<<dimGrid, dimBlock >>> (...); // launch kernel to update red elements

5 solverKernel <<<dimGrid, dimBlock >>> (...); // launch kernel to update black elements

6 //copy total_res_sum from device to host

7 cudaMemcpy(total_res_sum_h, total_res_sum, sizeof(double), cudaMemcpyDeviceToHost);

8 //calculate the relative residual and check for convergence

9 if (sqrt(*total_res_sum_h) / F_norm < 0.5*pow(10, -6)) {

10 cout << "Number of iteration :" << repeat << endl;

11 break;

12 }

13 repeat++;

14 }

Listing 4.3: Host code of Red-Black SOR algorithm.

58 CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF THE ALGORITHM

4.5 Improving Performance of the Baseline Parallel Implementation

The next step is to identify the optimization opportunities for our baseline parallel implementation. Here

we use nvprof, the primary profiling tool for CUDA applications to recognize the performance inhibitors

of the baseline solverKernel. The algorithm is executed and profiled on GTX 960m to evaluate the

efficiency of the kernel. Some of the more important metrics related to our baseline solverKernel are

the following:

branch efficiency : 99.9%

global load efficiency : 48.29%

global store efficiency : 47.77%

dram read throughput : 49.768 GB/s

dram write throughput : 10.977 GB/s

dram utilization : High

The metric branch efficiency is the percentage of the ratio of non divergent branches to total

branches. Since the branch efficiency is almost 100%, there is no issue with branch divergence

in the baseline solverKernel. The metric global load efficiency is defined as the ratio of the

requested global memory load throughput to the required global memory load throughput. The metric

global store efficiency is the same as global load efficiency, but for global memory stores.

Lower load/store memory efficiency indicates that there are more memory transactions per request. If

memory accesses are properly coalesced and aligned, there are no memory access replays, and load/store

efficiency should be 100%. In the baseline solverKernel, both metrics are far less than 100%, meaning

that the kernel has many non coalesced memory accesses. The total device memory bandwidth is the

sum of the forth and fifth metrics and is roughly 60 GB/s here. Since the peak memory bandwidth

of the device is 80 GB/s, the device memory utilization is 75%, resulting in a dram utilization

that is indicated to be High. Overall, then, the poor global load/store efficiency, which indicates high

bandwidth waste, requires the most attention. As a result, the most important first step in optimizing

solverKernel is to improve the memory access pattern to optimize the device memory bandwidth

utilization.

An optimization strategy which improves the memory access pattern of the red-black kernel is referred

to as element reordering by colour in Ref. [29, 30, 31]. In this approach, the grid elements are split into

two grids according to their colour (see Fig. 4.2). Now, adjacent threads can access consecutive memory

locations when computing red or black nodes. This reordering method eliminates the strided access

4.5. IMPROVING PERFORMANCE OF THE BASELINE PARALLEL IMPLEMENTATION 59

pattern that occurred in the baseline implementation. As shown in Fig. 4.2, the computation requires

two grids as U_red and U_black to store the red and black elements separately. In the first pass, the

red nodes are updated by reading the neighboring nodes from the black grid. In the second pass, the

black nodes are updated by reading the neighboring nodes from the previously updated red grid. In

either pass, one grid is updated by reading from the other grid.

Figure 4.2: In the element reordering by colour approach, the nodes are separated into two grids according to
their colour. The red elements are updated by reading neighbouring nodes from the black grid and vice versa. The
positions of the left and right neighbouring nodes depend on the row number j. Suppose that we are computing
the red nodes. If j is odd, the left and the right neighbours of Φred

i,j are Φblack
i,j and Φblack

i+1,j respectively (see element

8 and its left and right neighbours 7 and 9). If j is even, the left and the right neighbours of Φred
i,j are Φblack

i−1,j

and Φblack
i,j respectively (see element 32 and its left and right neighbours 31 and 33). When computing the black

nodes, it is the other way around.

Based on this reordering, accessing neighbouring nodes is not as simple as before. Suppose that we

update the red node Φred
i,j . The top and the bottom neighbours of Φred

i,j are Φblack
i,j−1 and Φblack

i,j+1. The

positions of the left and right neighbours depend on the value of the row number j (see elements 8 and

32 in Fig. 4.2). If j is odd, the left neighbour of Φred
i,j is Φblack

i,j and the right neighbour is Φblack
i+1,j . If j is

even, the left neighbour is Φblack
i−1,j and the right neighbour is Φblack

i,j . When updating the black elements,

indexing the top and the bottom neighbours is the same, but it is the opposite when accessing the left

and right neighbours. Since the positions of neighbouring nodes depend on the colour of the node and

the row number, a new variable is required to keep track on the colour of the node and whether the row

number is even or odd:

bool line_no = ((j + red_black) % 2 == 0) ? 1 : 0;

The boolean variable red_black is 0 if we update red elements and 1 otherwise. The variable line_no

depends on both the row number j and the variable red_black. Since we read from four weight arrays

W1, W2, W3 and W4, we split these weight arrays also as red and black to ensure coalescing. In order to

achieve the alignment requirement as discussed in Section 3.2.1, these 2D arrays are allocated to the

60 CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF THE ALGORITHM

memory using cudaMallocPitch() and the new width of the arrays is stored into the variable pitch.

Suppose that we are updating a red element. Then, the four neighbours can be accessed using line_no

and pitch as below:

int i = (blockIdx.x * blockDim.x + threadIdx.x);

int j = (blockIdx.y * blockDim.y + threadIdx.y);

int index = i + j*pitch;

double temp = W1_red[index] * U_black[index - line_no] + W2_red[index] * U_black[index + 1

- line_no] + W3_red[index] * U_black[index - pitch] + W4_red[index] * U_black[index +

pitch];

Here, W1_red, W2_red, W3_red, W4_red are the weight arrays corresponding to red elements.

When computing the elements of one particular colour, reading from and writing to that particular

array is contiguous, but reading neighbouring nodes from the other array is not coalesced. Although

the coalesced access pattern is not possible with accessing neighbouring nodes, we can see that the

accessing pattern exhibits data sharing properties. Most of these neighbour elements are used in the

computations of four elements, meaning that the same node value is loaded four times from global

memory. Therefore, it is advantageous to use the fast memories available in the GPU to reduce the time

associated with redundant global memory accesses. Two strategies taken to achieve this are described

in the following sections.

4.5.1 Shared Memory Implementation with Reordering

Here, the reordering by colour approach is implemented with shared memory. The neighbouring nodes

are cached in shared memory as accessing shared memory is faster than accessing global memory. There

are four neighbours per node and each thread needs to access these four values from the opposite colour

grid. The four neighbours are Φi,j , Φi,j−1, Φi,j+1 and Φi+1,j or Φi−1,j depending on the row number.

For some threads, some of these values reside outside the boundary of the block and belong to some

other thread blocks. Since the threads of a block cannot see the elements of the shared memory of

another thread block, these values should be loaded into the respective shared memories for threads to

access them. The elements that are involved in multiple shared memory tiles and loaded by multiple

blocks are referred to as halo elements [10].

For an M × N thread block, an (M + 2) × (N + 2) shared memory tile is needed to hold the block

interior nodes as well as the halo elements as shown in Fig. 4.3. There are various ways that we can

copy data from global memory to shared memory. In this implementation, the interior nodes and the

4.5. IMPROVING PERFORMANCE OF THE BASELINE PARALLEL IMPLEMENTATION 61

halo elements are copied to shared memory as given in Listing 4.4. Each interior node is copied by each

thread of its index (line 11). The threads which threadIdx.x is zero, load the left and right halos (line

15 to 17). The threads which threadIdx.y is zero, load the top and bottom halos (line 21 to 23). The

corner halo elements are not loaded as they do not involve in any computation. After copying data, all

the thread blocks are synchronized before moving to the next step.

Figure 4.3: If the block size is M × N , the required shared memory tile is (M + 2) × (N + 2). The yellow
elements are the block interior nodes and the white elements around the block are called halo elements. These
halo elements loaded by multiple blocks and therefore, are involved in multiple shared memory tiles.

1 int i = (blockIdx.x * blockDim.x + threadIdx.x);

2 int j = (blockIdx.y * blockDim.y + threadIdx.y);

3 int index = i + j*pitch; //global index

4

5 __shared__ double S[BLOCK_HEIGHT + 2][BLOCK_WIDTH + 2];

6 //index to access shared memory tile

7 int sr = threadIdx.x + 1;

8 int sz = threadIdx.y + 1;

9

10 //read block interior elements from U to S

11 S[sz][sr] = U[index];

12

13 //read halo elements

14 //read left and right halos

15 if (threadIdx.x < 1) {

16 S[sz][threadIdx.x] = U[index - 1];

17 S[sz][threadIdx.x + 1 + BLOCK_WIDTH] = U[index + BLOCK_WIDTH];

18 }

19

20 //read top and bottom halos

21 if (threadIdx.y < 1) {

22 S[threadIdx.y][sr] = U[index - pitch];

23 S[threadIdx.y + 1 + BLOCK_HEIGHT][sr] = U[index + BLOCK_HEIGHT*pitch];

24 }

25

62 CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF THE ALGORITHM

26 __syncthreads();

Listing 4.4: Copying data from global memory to shared memory

4.5.2 Texture Memory Implementation with Reordering

Alternatively, the reordering approach is also implemented using texture memory. Texture memory is a

device memory which is efficient when the memory accesses are spatially localized. Memory accesses

exhibit 2D spatial locality if the threads in the same warp read memory addresses that are close together

(Section 3.2). Since our algorithm processes four neighbouring nodes, they are spatially localized, and

so the performance can be improved by loading neighbouring nodes through texture cache. Double

precision textures are not supported in the current version of CUDA. Therefore, int2 textures are used

and converted them into double precision values using the user-defined function texfetchDouble()

given in Listing 4.5. In order to use the texture memory, first we need to declare two 2D texture

references for our input arrays U_red and U_black as follows:

texture<int2, 2> texRed;

texture<int2, 2> texBlack;

These texture references are then bound to the memory buffers using cudaBindTexture2D() as follows:

cudaChannelFormatDesc desc = cudaCreateChannelDesc(32, 32, 0, 0,

cudaChannelFormatKindSigned);

cudaBindTexture2D(NULL, texRed, U_red, desc, (width + 1)/2, height, pitchBytes);

cudaBindTexture2D(NULL, texBlack, U_black, desc, width_half, height, pitchBytes);

where cudaChannelFormatDesc describes the format of the texture elements. In our case, it is int2

and has two 32-bit components. The arguments of the function cudaBindTexture2D() are as below:

Offset in bytes - NULL

Texture reference to bind - texRed

2D memory area on device - U_red

Channel format - desc

Width of the array - (width + 1)/2

Height of the array - height

Pitch in bytes - pitchBytes

Here, the variable width is the number of nodes along the width of the mesh before separate it into red

and black.

4.5. IMPROVING PERFORMANCE OF THE BASELINE PARALLEL IMPLEMENTATION 63

In the kernel function, the neighbouring nodes are loaded through texture cache using texRed and

texBlack. We declare another texture reference called texRead. Then, texRead is texRed if we

compute black nodes and texBlack if we compute red nodes. Textures are fetched using the function

texfetchDouble() as given in Listing 4.6.

1 __inline__ __device__ double texfetchDouble(texture<int2, 2> t, int i, int j) {

2 int2 val = tex2D(t, i, j);

3 return __hiloint2double(val.y, val.x);

4 }

Listing 4.5: texfetchDouble() function.

1 ...

2

3 int i = (blockIdx.x * blockDim.x + threadIdx.x);

4 int j = (blockIdx.y * blockDim.y + threadIdx.y);

5

6 int index = i + j*pitch;

7 bool line_no = ((j + red_black) % 2 == 0) ? 1 : 0;

8

9 //reading four weight values

10 dataType left = d_L[index];

11 dataType right = d_R[index];

12 dataType top = d_T[index];

13 dataType bottom = d_B[index];

14 //declare another texture reference and assign texRed or texBlack according to the colour

of the nodes

15 texture<int2, 2> texRead = (red_black == 0) ? texBlack : texRed;

16

17 dataType temp = 0;

18 dataType old_val = 0;

19 dataType res = 0;

20 dataType residual_sum = 0;

21

22 if (i < ((width + 1) / 2) - (1 - line_no) && j < height) {

23

24 old_val = write_U[index];

25

26 temp = left * texfetchDouble(texRead, i - line_no, j) +

27 right * texfetchDouble(texRead, i + 1 - line_no, j) +

28 top * texfetchDouble(texRead, i, j - 1) +

29 bottom * texfetchDouble(texRead, i, j + 1);

30

31 ...

32

33 write_U[index] = old_val + res*omega; //replace the old value by the new value

34

35 ...

36 }

64 CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF THE ALGORITHM

37 ...

Listing 4.6: Reading neighbouring nodes through texture memory using texfetchDouble() function within the
solverKernel.

4.5.3 Computing More Than One Element Per Thread

In some CUDA applications, the performance can be further improved by increasing the work load of

each thread. Therefore, both shared memory and texture memory versions are written so that each

thread computes more than one node of the mesh. Performance of the algorithms are compared by

varying the number of node computations per thread. All the performance comparison results are shown

in the next chapter.

Chapter 5

Performance Comparisons and Analysis

In this chapter, we analyze the performance of the implemented serial and parallel algorithms. We

compare different configurations of the parallel solvers on multiple problem sizes to identify the best set

of configurations which give faster performance. Then, we obtain the throughput for each solver. The

throughput is computed as the number of stencil computations per second. Finally, we compare the

running time of the serial and parallel versions to identify the speedup achieved through parallelism.

The performance comparison is carried out on two different systems. System descriptions are listed in

Table 5.1.

5.1 Comparison of Different Parallel Solvers

Three main parallel solvers were implemented using different techniques. Kernel 1 is the baseline, which

is the non-optimized version of the parallel algorithm. This uses only global memory and the memory

access pattern is not coalesced. Kernel 2 uses reordering by colour technique with shared memory.

Kernel 3 was also implemented with reordering by colour approach, but uses texture memory instead

of shared memory. Kernel 2 and Kernel 3 were also tested by increasing the workload per thread. In

our parallel solver, the workload can be increased by computing more than one stencil per thread.

The number of stencil computations per thread is referred to as thread granularity in Ref. [29, 30, 31].

Kernel 2 and Kernel 3 were tested for different thread granularities to identify the optimum granularity

which gives the fastest performance. In addition, all the kernels were tested with different thread block

configurations. The parameter values which gives the fastest performance for each kernel were chosen

for the next experiments. Figure 5.1 shows the computational time for each kernel implementation

on both GPUs. For the kernel comparison, the problem size was chosen as 4001× 4001 and the time

65

66 CHAPTER 5. PERFORMANCE COMPARISONS AND ANALYSIS

Table 5.1: System descriptions. We used two systems for testing performance, System 1 is an ASUS laptop with
NVIDIA Geforce GTX 960m GPU and System 2 is a UW GPU server with a Tesla P100 card. Even though both
of these GPUs can be used for general purpose computing, these GPUs are basically designed by NVIDIA for
different purposes. NVIDIA Geforce series is basically designed for optimizing gaming performance and NVIDIA
Tesla series is developed for accelerating compute intensive scientific problems such as simulations, data science
problems and deep learning algorithms.

System 1 System 2

CPU Intel core i5 @ 2.30 GHz Intel Xeon(R) CPU @ 2.60GHz

RAM 16 GB 125 GB

GPU

NVIDIA Geforce GTX 960m
Compute capability 5.0
640 CUDA cores
Peak memory bandwidth 80 GB/s

NVIDIA Tesla P100 GPU
Compute capability 6.0
3584 CUDA cores
Peak memory bandwidth 549 GB/s

GPU device memory 2 GB 12 GB

PCIe bus v3.0 x16 (8.0 GT/s) v3.0 x16 (8.0 GT/s)

C++ compiler
Microsoft Visual Studio
C++ 2015 compiler

GCC C++ compiler

CUDA compiler nvcc nvcc

Operating System Windows 10 Linux

required to solve the input problem for 1000 iterations was measured. All the time measurements were

for double precision computations.

For the GTX 960m, the texture memory implementation (K3) with thread granularity 8 gave the fastest

performance. The shortest compute time (only for the kernel function) is 12946 ms. For the Tesla P100,

the best performance was given by the shared memory implementation (K2) with thread granularity 1,

which had a compute time of 2161 ms. According to Fig. 5.1, the shared memory implementation (K2)

with granularity 2 can be chosen as the parallel version which gives the better performance on both

GPUs. All the parallel versions are around 5 or 6 times faster when running on the Tesla P100 than on

the GTX 960m. The reason for this performance difference is that the Tesla P100 has around 5 times

as many CUDA cores as in the GTX 960m. The best thread block configuration for Kernel 1 on the

GTX 960m was obtained as 256× 1 and on the Tesla P100, it was 64× 16. The optimum configurations

for Kernel 2 and Kernel 3 on each device are listed in Table 5.2.

The total device memory required by our parallel implementations for double-precision computations

can be computed using the following formula:

Total device memory in bytes =
r1

mesh spacing
× z1

mesh spacing
× 10(ten such arrays)× 8 bytes,

5.2. DATA TRANSFERRING AND ELEMENT REORDERING OVERHEAD 67

Figure 5.1: Performance of the three different parallel solvers for different thread granularities. K1: baseline
implementation, K2: shared memory implementation, K3: texture memory implementation. Time measurements
for all the kernel implementations were obtained after running the algorithm for 1000 iterations with the problem
size 4001 × 4001. For the comparison, only the kernel execution times were measured. The minimum time
achieved using the Tesla P100 is 2161 ms, which was for K2 with granularity 1. For the GTX 960m, the minimum
time was obtained for K3 with granularity 8 and the time was 12946 ms. All the kernel computations were double
precision computations.

where r1 and z1 are the radius and the half-height of the outer cylinder. We can compare the total

memory required with the available device memory to check whether the problem fits within the memory

limit of the device.

5.2 Data Transferring and Element Reordering Overhead

In our parallel solvers, host to device memory transfers for large arrays at the beginning of the

computation are not required. Both input grids and weight arrays can be initialized on the device. Only

four constant terms are transferred from host to device at the beginning using cudaMemcpyToSymbol()

and the time overhead is negligible. At the end of the computation, the solution grid is needs to be

transferred from device to host, but this data transfer overhead is also insignificant compared to the

68 CHAPTER 5. PERFORMANCE COMPARISONS AND ANALYSIS

Table 5.2: Configurations with best performance for each kernel implementation.

Device Kernel Granularity Block size

Tesla P100 K2 1 64× 2

K3 1 64× 4

GTX 960m K2 2 256× 1

K3 8 128× 1

computational time. Another data processing step includes separating and reordering data according

to their colour. Data separation into red and black is needs to be done on four weights arrays at the

beginning of the computation. At the end of the computation, two red and black solution arrays should

be combined into one final solution. It was found that the time for this pre and post data ordering was

also very small compared to the kernel compute time.

Table 5.3 shows the time taken by different GPU activities of the parallel algorithm for multiple problem

sizes. The time measurements were obtained using nvprof with the option --print-gpu-summary.

Here we used both systems for the analysis and all the time measurements were obtained using the K3

solver (K3 with granularity 8 on System 1 and K3 with granularity 1 on System 2). The algorithm

consists of four kernel functions: allocWeightsKernel() is used to fill the arrays W1, W2, W3, and

W4; sepatareWeightsKernel() is used to separate weight arrays into red and black; solverKernel()

updates the value of each node of the mesh; and reorderKernel() combines the red and black solution

arrays into a one. According to the data listed in Table 5.3, we can conclude that more than 98% of the

time is taken by the computation (i.e. by the solverKernel()) and data transferring and reordering

overhead is negligible.

5.3 Throughput and Speedup Comparison

Throughput was measured as the number of million stencil computations per second. Figure 5.2 and 5.3

illustrate the throughput for GPU and CPU implementations. Here, the kernel functions used for the

experiment are with their optimum parameters corresponding to each GPU. Both single-precision and

double-precision computations were considered. Higher throughput values were obtained for larger data

sets on GPUs as when computing larger problem sizes, streaming multiprocessors are well occupied

and GPUs can efficiently reduce latencies of warps. In both GPUs, single-precision computations were

5.3. THROUGHPUT AND SPEEDUP COMPARISON 69

Table 5.3: The summary of different GPU activities of the parallel solver K3 on System 1 and System 2. Here
“Iterations” is the number of iterations required for convergence when TOLERANCE is given as 0.5× 10−6. The
algorithm consists of four kernel functions: “Solver kernel” updates the nodes of the mesh; “Alloc weights kernel”
is used to fill weights arrays with corresponding weights; “Separate weights kernel” separates the weights arrays
into red and black; and “Reorder elements kernel” combines separated red and black elements into one array. The
column “Memcpy DtoH” shows the time required to copy data from Device to Host and “Memcpy HtoD” shows
the time required to copy data from Host to Device. The column “CUDA memset” shows the time required to
set all CUDA arrays to zero at the beginning.

(a) Time for different GPU activities on System 1 (with the GTX 960m)

Mesh size Iterations
Time

Solver
Kernel

(s)

Memcpy
DtoH
(ms)

CUDA
memset

(ms)

Alloc
weights
kernel
(ms)

Separate
weights
kernel
(ms)

Reorder
elements

kernel
(ms)

Memcpy
HtoD
(µs)

1001× 1001 8279 7.0 8.5 7.7 1.3 0.9 0.23 2.82

2001× 2001 15832 51.4 20.9 19.4 5.4 3.7 0.92 2.72

3001× 3001 23265 168.3 37.3 33.3 12.1 8.3 2.09 2.75

4001× 4001 30888 396.5 58.8 45.3 21.5 14.7 3.72 2.75

(b) Time for different GPU activities on System 2 (with the Tesla P100)

Mesh size Iterations
Time

Solver
Kernel

(s)

Memcpy
DtoH
(ms)

CUDA
memset

(ms)

Alloc
weights
kernel
(ms)

Separate
weights
kernel
(ms)

Reorder
elements

kernel
(ms)

Memcpy
HtoD
(µs)

1001× 1001 8279 1.2 13.4 8.6 0.09 0.17 0.06 4.26

2001× 2001 15832 8.7 34.9 17.1 0.38 0.64 0.22 4.45

3001× 3001 23265 28.4 60.6 24.3 0.85 1.43 0.49 4.74

4001× 4001 30888 66.8 95.6 32.0 1.44 2.53 0.87 4.74

faster than double-precision computations (see Section 3.3). In our case, using double-precision values

reduces the throughput nearly by half. Since double-precision variables can represent values with wider

range and they are twice as long as single-precision values, double-precision floating point operations

are slower in both computation and communication. When considering CPU algorithms, the intel core

i5 CPU with visual C++ compiler gives almost the same performance for both double-precision and

single-precision calculations, while the intel Xeon(R) CPU with GCC C++ compiler performs better on

single-precision calculations.

70 CHAPTER 5. PERFORMANCE COMPARISONS AND ANALYSIS

As the final experiment, the speedup of the GPU implementations were compared over the CPU

sequential implementations. The speedup factors obtained for eight different problem sizes on the Tesla

P100 and four different problem sizes on the GTX 960m are shown in Fig. 5.4 and Fig. 5.5 respectively.

Here, both the baseline non-optimized parallel version and the optimized parallel algorithm which gives

the fastest performance (K2 with granularity 1 on the Tesla P100 and K3 with granularity 8 on the

GTX 960m) were considered for the comparison. The speedup was calculated by measuring the total

run time required to finish 1000 iterations. The total computation time includes the data pre/post

ordering and data transferring overhead. The speedup factor was computed as below:

speedup factor = serial algorithm time/parallel algorithm time.

(a) Double precision computations. (b) Single precision computations.

Figure 5.2: The throughput comparison for the CPU sequential implementation and the three different kernels
on the Tesla P100 for different problem sizes. Kernel 1: baseline GPU implementation; Kernel 2: shared memory
implementation with granularity 1; Kernel 3: texture memory implementation with granularity 1. Throughput
was measured for both single and double precision computations.

According to the experiment data, even the unoptimized parallel version is significantly faster than the

serial algorithm on both systems. If we consider the problem size 4001× 4001, for the double precision

computations, the baseline version is 8 times faster than the serial version on the GTX 960m, and it is

26 times faster on the Tesla P100. For the single precision computations, the speedup factor is 16 on

the GTX 960m and on the Tesla P100, the baseline version is 39 times faster than the serial version.

After optimizing the algorithm, for the double precision computations, the optimized version is 14 times

faster than the serial version on the GTX 960m. On the Tesla P100, the speedup factor of the optimized

version is 49. For the single precision computations, on the GTX 960m, the optimized version is 27

times faster and on the Tesla P100, it is 62 times faster.

5.3. THROUGHPUT AND SPEEDUP COMPARISON 71

(a) Double precision computations. (b) Single precision computations.

Figure 5.3: Throughput comparison for the CPU sequential implementation and the three different kernels on
the GTX 960m for different problem sizes. Kernel 1: baseline GPU implementation; Kernel 2: shared memory
implementation with granularity 2; Kernel 3: texture memory implementation with granularity 8. Throughput
was measured for both single and double precision computations.

(a) Double precision computations. (b) Single precision computations.

Figure 5.4: The speedup of the GPU implementation on the Tesla P100 over the CPU sequential implementation.
Baseline (Kernel 1) is the unoptimized parallel version of the algorithm. Kernel 2 (with granularity 1) is the
optimized parallel version which gives the fastest performance on the Tesla P100.

72 CHAPTER 5. PERFORMANCE COMPARISONS AND ANALYSIS

(a) Double precision computations. (b) Single precision computations.

Figure 5.5: The speedup of the GPU implementation on the GTX 960m over the CPU sequential implementation.
Baseline (kernel 1) is the unoptimized parallel version of the algorithm. Kernel 3 (with granularity 8) is the
optimized parallel version which gives the fastest performance on the GTX 960m.

Chapter 6

Application to Magnet Design

After implementing a numerical solver, the next important step is to test whether the simulated results

are correct regarding the behavior of the system. Therefore, it is necessary to use a validation method

to analyze the correctness of the simulated data obtained from the implemented algorithm. There are

various validation methods and one way of validating a numerical algorithm is comparing the solutions

to be validated with the solutions through other numerical methods previously validated [32]. Since

Kyla Smith has validated her results in her M.Sc. thesis, we use the results given in Ref. [6] as a

reference to validate our parallel numerical solver.

As discussed in Section 1.4, our problem of interest is the design of a cylindrical electromagnet for

low-field MRI. The design method requires that we solve the magnetic scalar potential between two

nested cylindrical volumes, with the boundary conditions given in Table 1.1. Ideally, the outer cylinder

is much larger than the inner cylinder, giving the free-space solution for the magnet windings on the

latter. Since the memory requirements and run-time are proportional to the area between the cylinders,

it is important that the outer cylinder be only as large as necessary to provide a solution with sufficient

accuracy. As a result, an important step in the design process is to check the convergence of the solution

as a function of the ratio of the outer to inner cylinder dimensions, as well as mesh size. As shown

below, we recover the same results as in Ref. [6] and with similar rates of convergence, keeping in mind

that different methods and mesh geometries were employed (FEM versus FDM).

6.1 Solving for the Magnetic Scalar Potential

As in Ref. [6], we first define α and β as the ratios of the radius and the half-height of the inner and

outer cylinders:

73

74 CHAPTER 6. APPLICATION TO MAGNET DESIGN

α = r1/r0, and (6.1)

β = z1/z0, (6.2)

where r1 and r0 are the radii of the outer and inner cylinder, while z1 and z0 are the half-heights of the

outer and inner cylinder. In all the experiments, r0 and z0 are fixed and have the values of 0.25 m and

0.5 m.

First, we compute Φinside, which is the scalar potential inside the inner cylinder. As discussed in Section

1.4.2, the magnetic scalar potential Φ inside the magnet is given by Φinside = −Bz/µ0, where z varies

within the range [−0.5, 0.5] and µ0 = 4π × 10−7 is the permeability of free space. The desired uniform

magnetic field B is chosen to be 0.008 T as in Ref. [6]. The contour plot of Φinside associated with B is

shown in Fig. 6.1. As we can see, these contours of Φinside are horizontal and evenly spaced.

A solution for Φ in the region between two cylinders (i.e. Φoutside) is obtained by solving the Laplace

equation using the implemented algorithm and the contour plot of Φoutside is shown in Fig. 6.2. Since

zero flux passing through the boundaries 1,2,3, and 5, the contours of Φ are normal to these boundaries.

Now, using the symmetry, we can map this solution to get the complete solution for the full 2D domain

as in Fig. 6.3.

Figure 6.1: The contour plot of Φinside. The contours of Φ inside the inner cylinder (i.e. magnet) are horizontal
and uniformly spaced. The quantity Φ is given in units of amperes (A).

Since we need a free space solution for Φ outside the magnet, we repeatedly solve the problem while

increasing the outer boundary until Φ reaches its free space solution (i.e. until the effect of the outer

6.1. SOLVING FOR THE MAGNETIC SCALAR POTENTIAL 75

Figure 6.2: The contours of Φ within the solution region between the two cylinders. The solution for Φ is
obtained using α = 4, β = 2, and the mesh spacing of 0.002 m on both sides of the mesh. Φ is given in units of
amperes.

Figure 6.3: The contours of Φ within the full 2D domain between the region between two cylinders. Here,
Φ(−z) = −Φ(z) and the negative contours are shown by dashed lines. the results are with α = 4, β = 2, and the
mesh spacing is 0.002 m on both sides of the mesh.

boundary to the solution is minimum). Figure 6.4 shows the variation of the solution of Φ as outer

boundary size increases.

76 CHAPTER 6. APPLICATION TO MAGNET DESIGN

(a) α = 4 and β = 2. (b) α = 8 and β = 4. (c) α = 12 and β = 6.

Figure 6.4: The variations of contours of Φoutside as the outer boundary size increases. Here, the inner cylinder
size (r0 and z0) is fixed and the outer boundary size (r1 and z1) varies as the given α, β values.

6.2 Scalar Potential Difference Across the Surface of the Magnet

Having the values of Φinside and Φoutside, now we compute the discontinuity of the scalar potential Φ at

the boundary of the cylindrical surface of the magnet. As discussed in Section 1.4.3, this scalar potential

difference ∆Φ is related to a surface current density and is used later to design the wire placement of

the magnet. The scalar potential difference ∆Φ is given by

∆Φ = Φoutside − Φinside. (6.3)

Figure 6.5 shows ∆Φ along the body of the inner cylinder, where |r| = r0 and −z0 ≤ z ≤ z0. The

difference ∆Φ along the caps of the inner cylinder is shown in Fig. 6.6, where |z| = z0 and −r0 ≤ r ≤ r0.

These figures showing the scalar potential difference across the magnet surface are the same as what

was achieved by Kyla in Ref. [6].

6.3 Convergence of ∆Φ

Even though the implemented algorithm is used to solve for Φoutside, the quantity that is important to

determine the wire placement is ∆Φ. Since we are using a numerical method to obtain ∆Φ, we need to

check for the convergence of ∆Φ over two parameters: (i) mesh spacing and (ii) outer boundary size.

6.3. CONVERGENCE OF ∆Φ 77

Figure 6.5: The scalar potential difference ∆Φ across the body of the magnet for α = 28, β = 14, and the mesh
spacing of 0.002 m on both sides of the mesh.

Figure 6.6: The scalar potential difference ∆Φ across the cap of the magnet for α = 28, β = 14, and the mesh
spacing of 0.002 m on both sides of the mesh.

78 CHAPTER 6. APPLICATION TO MAGNET DESIGN

6.3.1 Mesh Spacing

As discussed in Section 1.3, coarse meshes involve higher discretization error and fine meshes involve

lower discretization error. As a result, the solution is more accurate when the mesh spacing is smaller.

In order to see the convergence of ∆Φ as the mesh spacing decreases, we generate the solution for

Φoutside for different mesh spacings and compute the normalized difference in ∆Φ as

Normalized difference in ∆Φ =
∆Φ−∆Φsmallest

∆Φsmallest
, (6.4)

where, ∆Φsmallest refers to the ∆Φ corresponding to the mesh with the smallest mesh spacing. For this

convergence test, the smallest mesh spacing was chosen as 0.002 m. Figures 6.7 and 6.8 shows the log

normalized difference in ∆Φ along the body and the cap of the inner cylinder respectively. Here, the log

scale was used to visualize the normalized difference in ∆Φ, because with the log scale, a large range of

data can be displayed without small values being compressed down into the bottom of the graph.

According to Fig. 6.7 and 6.8, we can see that the normalized difference in ∆Φ decreases as the mesh

spacing decreases. These results of convergence of ∆Φ when varying the mesh spacing, are consistent

with what Kyla has achieved in Ref. [6], noting that our method and the method in Ref. [6] were not

identical.

6.3.2 Outer Cylinder Size

Since the finite difference method requires the problem space to be a closed region, the outer cylinder

is used for the computational purpose to bound the problem domain. A true free space solution for

Φoutside can be obtained when the outer boundary is at infinity. Therefore, the outer cylinder must be

sufficiently away from the inner cylinder, so that the changes of the outer cylinder size have a minimum

effect on ∆Φ. We calculate ∆Φ by varying the outer cylinder size and compute the normalized difference

in ∆Φ as

Normalized difference in ∆Φ =
∆Φ−∆Φlargest

∆Φlargest
, (6.5)

where ∆Φlargest refers to ∆Φ corresponding to the problem with the largest outer cylinder size. The

largest outer cylinder size was chosen as 7 m by 7 m, hence, α = 28 and β = 14. Figures 6.9 and 6.10

shows how the log normalized difference in ∆Φ changes along the body and the cap of the inner cylinder

as the outer cylinder size increases (i.e. as α, β →∞). For these experiments, the mesh spacing was

chosen to be 0.002 m on both sides of the mesh. According to the graphs, the normalized difference in

6.3. CONVERGENCE OF ∆Φ 79

∆Φ decreases as the outer cylinder size increases and the results are consistent with the results given in

Ref. [6], again keeping in mind that two different methods (FEM versus FDM) were employed.

Figure 6.7: The convergence of ∆Φ along the body of the inner cylinder as the mesh spacing decreases. The
normalized difference in ∆Φ was calculated using the smallest mesh spacing as 0.002 m on both sides of the mesh.
All the results were obtained with α = 28 and β = 14. The graph was plotted using 50 values within the region
[0, 0.5].

Figure 6.8: The convergence of ∆Φ along the cap of the inner cylinder as the mesh spacing decreases. The
normalized difference in ∆Φ was calculated using the smallest mesh spacing as 0.002 m on both sides of the mesh.
All the results were obtained with α = 28 and β = 14. The graph was plotted using 25 values within the region
[0, 0.25].

80 CHAPTER 6. APPLICATION TO MAGNET DESIGN

Figure 6.9: The convergence of ∆Φ along the body of the inner cylinder as the outer cylinder size increases. To
compute the normalized difference in ∆Φ, ∆Φlargest was computed for α = 28 and β = 14. The mesh spacing was
0.002 m on the both sides of the mesh. For clarity, only every fifth point is shown.

Figure 6.10: The convergence of ∆Φ along the cap of the inner cylinder as the outer cylinder size increases. To
compute the normalized difference in ∆Φ, ∆Φlargest was computed for α = 28 and β = 14. The mesh spacing was
0.002 m on the both sides of the mesh. For clarity, only every second point is shown.

6.3. CONVERGENCE OF ∆Φ 81

In this chapter, by plotting different graphs for different quantities, we could conclude that the results

obtained from the implemented parallel solver are numerically correct compared to the results given

by Kyla in Ref. [6]. Therefore, our algorithm can be used in practice to estimate the surface current

distribution for a given target field. This surface current then can be discretized into wires to design the

magnet. Since our main focus in this thesis is to implement an efficient parallel Laplace solver, in this

study, we do not discuss wire placement methods in detail. In the following section, we only discuss

designing a theoretical magnet.

6.3.3 Designing a Theoretical Magnet

After computing the magnetic scalar potential differences over the magnetic surface, these results were

used to demonstrate a wire winding pattern for designing a conceptual magnet. The total current on

the upper half of the cylinder was obtained using the ∆Φ at the locations A and B (see Fig. 6.11) as

follows:

Total current on the upper half = ∆ΦB −∆ΦA

Figure 6.11: The difference of the discontinuity in Φ between the locations A and B gives the total current on
the upper half of the cylinder.

As the next step, this total current was divided into N equal segments, where N is the number of wires

selected for the upper half of the magnet. Now we can calculate the size of a current step (Istep) as

Istep =
∆ΦB −∆ΦA

N
.

Since the total number of wires on the full cylinder is 2N , the total number of wires is an even number.

Hence, starting at the center of the magnet, then we calculated the values ∆Φi corresponding to each

82 CHAPTER 6. APPLICATION TO MAGNET DESIGN

wire on the cylindrical surface as follows:

∆Φi = (i− 0.5)× Istep. (6.6)

Then, the (ri, zi) position on the cylindrical surface corresponding to each ∆Φi was calculated using the

graphs 6.5 and 6.6. Here, the interpolation was done using the interpolate.interp1d() function in

Python. Figures 6.12 and 6.13 show an example of calculating the wire positions on the upper half of

the cylinder for 10 wires. Figure 6.14 shows a sample magnet with 20 wires on its body and the caps.

Figure 6.12: The process of calculating the wire positions (ri, zi) on the upper half of the body of the magnet.
For the body wires, ri = 0.25 m and zi values are obtained using the interpolated function for ∆Φ along the
magnet body. In this example, 8 out of 10 wires are on the upper half of the body.

Figure 6.13: The process of calculating the wire positions (ri, zi) on the cap of the magnet. For the cap wires,
zi = 0.5 m or -0.5 m depending on whether it is the upper cap or the lower cap, and ri values are obtained using
the interpolated function for ∆Φ along the cap of the magnet. In this example, 2 out of 10 wires are cap wires.

6.3. CONVERGENCE OF ∆Φ 83

Figure 6.14: A sample magnet with 20 wires on its surface. There are 4 cap wires represented by green colour.
The orange colour wires are body wires and this design has 16 body wires.

6.3.4 Magnetic Field Homogeneity

After computing the wire positions on the magnetic surface, we used these data to compute the magnetic

field along the axis of the cylinder. The magnetic field per unit current at a point z on the axis due to

ith current loop can be computed using an application of the Biot-Savart law as follows:

Bzi(z)

I
=

µ0r
2
i

2(r2
i + (z − zi)2)3/2

, (6.7)

where µ0 is the permeability of free space and (ri, zi) is the radius and z-position of the ith current loop

on the magnet surface. The net magnetic field at point z was obtained by summing up the contribution

from each current loop as follows:

Bz(z)

I
=

N∑
i=1

Bzi(z)

I
, (6.8)

where N is the total number of wires. Figure 6.15 shows the normalized field difference on-axis for

different numbers of wires. According to the figure, we can see that the number of wires greatly

affects the field homogeneity and the field homogeneity increases as the number of wires increases. The

efficiency of the magnetic field was computed as

χ =
B

I
(6.9)

using B at the centre of the magnet. The field efficiencies for different numbers of wires are as below:

• for 50 wires : χ = 0.045 mT/A

84 CHAPTER 6. APPLICATION TO MAGNET DESIGN

Figure 6.15: The normalized field difference on-axis for different numbers of wires. The field homogeneity
increases as the number of wires increases. After 400 wires, the improvement of the homogeneity becomes less
significant.

• for 100 wires: χ = 0.090 mT/A

• for 200 wires: χ = 0.18 mT/A

• for 300 wires: χ = 0.27 mT/A

• for 400 wires: χ = 0.36 mT/A

• for 500 wires: χ = 0.45 mT/A

As we can see, the field efficiency also increases with the number of wires.

Figure 6.16 shows the normalized field difference for different numbers of wires only for the middle

40 cm range of the magnet. Here we have plotted the same graph by varying the mesh spacing of the

grid. We considered four different mesh spacings, 0.0025 m, 0.002 m, 0.001 m, and 0.0005 m. According

to the graphs, we can see that the ppm values of the normalized difference decrease as the mesh spacing

decreases. By looking at the results, we can expect field difference to decrease by further reducing the

mesh spacing. However, it cannot be further reduced because of the memory limitation.

When comparing our results with the results presented in Kyla’s thesis, these middle-range ppm values

are slightly higher than Kyla’s results. There are several reasons that we can think of for these differences.

6.3. CONVERGENCE OF ∆Φ 85

(a) Mesh spacing 0.0025 m. (b) Mesh spacing 0.002 m.

(c) Mesh spacing 0.001 m. (d) Mesh spacing 0.0005 m.

Figure 6.16: The normalized field difference in the middle 40 cm range on the axis of the cylinder for different
mesh spacings. The field homogeneity improves as we decrease the mash spacing.

First of all, since two different discretization methods have employed (the finite difference method versus

the finite element method), we cannot expect both methods to behave exactly the same way. Different

numerical methods can work differently (in terms of the rate of convergence over the mesh spacing) on

the same problem. Also, without implementing and experimenting with both methods, it is difficult to

say in advance which method works better in terms of the rate of convergence over the mesh spacing.

In addition, the interpolation function also may have an effect on our results. Tiny changes in the

interpolated values can cause a large difference at the ppm-level. When the mesh is finer, there are

more data points and then the interpolation algorithm can predict more accurately since more data

points are available to interpolate. That might be one of the reasons for receiving better results for field

values when the mesh is finer.

86 CHAPTER 6. APPLICATION TO MAGNET DESIGN

Chapter 7

Conclusion

As the concluding remark of our work, in this chapter we first summarize what has been presented in

this thesis. Then we discuss what we have achieved and further improvements possible for this work.

7.1 Summary

We have implemented an efficient parallel solver for solving the magnetostatic applications described in

Ref. [6]. The development of the solver consists of several steps and the flowchart depicting the process

of solving the problem is shown in Fig. 7.1.

Our magnetostatic problem, the physical model, and the mathematical formulation of the problem

were explained in Chapter 1 based on Ref. [6]. The magnetostatic problem was to design a uniform

low-field magnet which was cylindrical in shape. The physical model described that the difference in the

magnetic scalar potential across the surface of the cylinder is directly related to the current distribution

of the surface which generates the desired magnetic field. Since the internal “target” field is known, the

scalar potential inside the cylinder was set accordingly. As a result, the problem reduced to finding the

scalar potential outside the cylinder by solving the Laplace equation in the region outside the cylinder.

Therefore, we needed to create a mathematical model to solve the Laplace equation in the desired

region. The model included defining the problem domain and determining the behavior of the magnetic

scalar potential on each boundary of the domain. The goal of this thesis was to develop an efficient

GPU-based tool to solve this boundary value problem and not to explore specific coil winding patterns.

The next step was to solve the Laplace equation within the defined domain using derived boundary

conditions. Chapter 2 described the numerical methods that we used to solve the problem, which were

the finite different method (FDM) and successive over relaxation (SOR) method. The FDM was used

87

88 CHAPTER 7. CONCLUSION

Figure 7.1: The flowchart presents the flow of the work which has been presented in this thesis. The first three
steps until the mathematical model formulation of the flow are based on Ref. [6] and this thesis mainly focus on
the proceeding steps.

to discretize the continuous information given by the Laplace equation into a discrete set of linear

equations. The SOR method was then used to solve the obtained linear system iteratively until the

convergence is reached.

Since our aim was to implement this iterative solver on a GPU, a brief description of parallel programming

with CUDA was given in Chapter 3. Chapter 4 described the implementation details of the iterative

solver. The serial algorithm was implemented first and then the code was modified to run in parallel

in multiple cores. After identifying the optimization opportunities, this first-go, or baseline parallel

implementation was accelerated using CUDA optimization strategies. The performance and the speedup

achieved by using different optimization techniques were given in Chapter 5.

The last step was to test whether the simulated results given by the implemented algorithm are correct

regarding the behavior of the system. The magnetic scalar potential inside and outside the cylinder,

and other related results were shown in Chapter 6. To validate our solutions, we used the results given

in Ref. [6] as a reference and we could recover the same results.

7.2. CONCLUSION AND DISCUSSION 89

7.2 Conclusion and Discussion

We could implement an efficient and accurate GPU parallel solver which can be used in the magnet

design project in Ref. [6]. The algorithm was approximately 13 times faster than the sequential CPU

code even in my laptop (with a GPU GTX 960m) and it is approximately 50 times faster when running

on a Testa P100. Because of the high computing power of GPUs, our parallel code has the ability to

solve finer meshes (for greater accuracy) which consist of large computational load efficiently with less

amount of time. Since we used C++ and CUDA C to implement the algorithm, the code can be run on

any system which has an NVIDIA GPU.

The implemented algorithm can be used to solve cylindrical-shaped problems with different target field

distributions, but the implementation is not able to handle the problems with different geometries. In

order to use the algorithm for a different geometric-shaped problem, one should derive corresponding

finite difference equations, fill the weight arrays W1,W2,W3,W4 with new values and make appropriate

changes to the boundary limits of the code according to the corresponding geometric shape.

When using the SOR method as the iterative solver, the choice of the over-relaxation parameter ω

strongly affects the rate at which the SOR method converges. Even though the optimal omega ωb can

be computed using the spectral radius of the Jacobi iteration matrix ρjacobi, calculating ρjacobi requires

an impractical amount of computation. Since ωb depends on the factors such as the geometric shape of

the domain and the mesh spacing, the method to estimate ωb described in this thesis works only for

our particular problem. Therefore, as an improvement for the algorithm, one can try the ad hoc SOR

method given in Ref. [33], in which a different relaxation factor ω is determined for each node of the

mesh, depending on the coefficients of the finite difference equations, the nature of the problem domain,

and the boundary conditions.

Future complementary work to this thesis could include the development of a GPU-based winding

pattern optimizer and a GPU-based Biot-Savart solver. This would allow one to take the results of our

Laplacian solver and quickly determine what might be the best winding pattern for the electromagnet

based on calculations of the magnetic field homogeneity.

90 CHAPTER 7. CONCLUSION

Appendices

91

Appendix A

Experimental Determination of ωb

In our study, the SOR method is used to update each node of the mesh until the convergence is reached.

The choice of the over-relaxation parameter ω significantly affect the rate at which the SOR method

converges. Figure A.1 and A.2 shows how the number of iterations varies with the value of ω, when the

mesh size is 401 × 401 and TOLARENCE is given as 0.5 × 10−6. Figure A.1 shows the variation of

the number of iterations when ω varies in the second decimal place. When ω is 1.91, the number of

iterations is more than 50000, but when ω is 1.99, the number of iterations is less than 10000. Figure

A.2 illustrates the variation of the number of iterations of the same problem when ω varies in the third

decimal place. When ω changes from 1.991 to 1.995, the number of iterations required to converge

has reduced by half. These results imply that the choice of ω strongly affects the rate of convergence

of the SOR method. Even though the value of ω is a critical parameter, it is difficult to determine

in advance the value of ω that is optimal with respect to the rate of convergence when the problem

is non-rectangular. Also, the optimum omega ωb varies with the size of the problem domain and the

mesh spacing. Therefore, we ran some experiments to determine ωb for our particular problem and the

experimental details are described below.

One of the Kulsrud’s experiments in Ref. [16] suggests to estimate ρjacobi with Eq. (2.45) for non-

rectangular problems using the dimensions of the rectangular region which encloses the non-rectangular

region. For our particular problem, we found that the ρjacobi obtained for a rectangle 3 times larger (in

each direction) than the region which encloses our problem domain gives a better approximation for ωb.

That is, if our circumscribing region is N ×M, there is a rectangular problem of size 3N × 3M , whose

ωb is approximately equal to ωb of our non-rectangular problem. Thus, if the circumscribing region of

93

94 APPENDIX A. EXPERIMENTAL DETERMINATION OF ωB

Figure A.1: This figure illustrates number of iterations required to converge as ω varies from 1.91 to 1.99.
The results are obtained by solving a r1 = 4 m by z1 = 4 m problem with the mesh spacing of 0.01 m. When
ω increases in the second decimal place, the number of iterations required decreases and when ω = 1.99 the
algorithm converges only after 6661 iterations.

Figure A.2: This shows the variation of the number of iterations required to converge for the same problem
illustrated in Fig. A.1, when ω varies in the third decimal place. When considering ω values up to three digits,
the algorithm converges with a minimum number of iterations if ω is 1.995. The results are obtained by solving a
r1 = 4 m by z1 = 4 m problem with the mesh spacing of 0.01 m.

our problem is N ×M with the mesh spacing of δr and δz in each direction, ρjacobi is computed as

ρjacobi =
cos π

3J + (δrδz)2 cos π
3L

1 + (δrδz)2
, (A.1)

where J = (N/δr) and L = (M/δz). After computing ρjacobi, Eq. (2.44) is used to compute ωb. Table A.1

95

and Table A.2 show the actual ωb values and ωb values computed by Eq. (A.1) and Eq. (2.44). The

actual ωb values corresponding to each mesh size are obtained by trial and error for five significant

digits. The radius and the half-height of the inner cylinder (r0 and z0 of Fig. 2.4) are set as 0.25 m and

0.5 m for all the computations, as they are the dimensions which need to be used in the magnet design

project. Four problem domains are considered for the comparison; N ×M as 1 m× 1 m, 2 m× 2 m,

3 m× 3 m and 4 m× 4 m. Here we use square domains, because we consider equal sizes for both r1

and z1, which are the radius and the half-height of the outer cylinder.

Table A.1: Comparison of ωb values of our non-rectangular problem with ωb values of the corresponding
rectangular problem. Mesh spacing is 0.01 m on both sides.

Mesh size of the
circumscribing region

of the non-rect. domain
(N/0.01) × (M/0.01)

Mesh size of the
corresponding

rectangular
domain

3(N
0.01

) × 3(M
0.01

)

ρjacobi of the
3(N

0.01
) × 3(M

0.01
)

rectangular
problem

by Eq. (A.1)

ωb of the
3(N

0.01
) × 3(M

0.01
)

rectangular
problem

by Eq. (2.44)

Actual ωb of the
non-rect. problem
by trial & error
for 5 sig. digits

100× 100 300× 300 0.99994516 1.97927172 1.9790

200× 200 600× 600 0.99998629 1.98958176 1.9892

300× 300 900× 900 0.99999390 1.99303862 1.9927

400× 400 1200× 1200 0.99999657 1.99477536 1.9945

Table A.2: Comparison of ωb values of our non-rectangular problem with ωb values of the corresponding
rectangular problem. Mesh spacing is 0.0025 m on both sides.

Mesh size of the
circumscribing region

of the non-rect. domain
(N/0.0025) × (M/0.0025)

Mesh size of the
corresponding

rectangular
domain

3(N
0.0025

) × 3(M
0.0025

)

ρjacobi of the
3(N

0.0025
) × 3(M

0.0025
)

rectangular
problem

by Eq. (A.1)

ωb of the
3(N

0.0025
) × 3(M

0.0025
)

rectangular
problem

by Eq. (2.44)

Actual ωb of the
non-rect. problem
by trial & error
for 5 sig. digits

400× 400 1200× 1200 0.99999657 1.99477536 1.9947

800× 800 2400× 2400 0.99999914 1.99738046 1.9973

1200× 1200 3600× 3600 0.99999961 1.99823520 1.9982

1600× 1600 4800× 4800 0.99999978 1.99867422 1.9986

96 APPENDIX A. EXPERIMENTAL DETERMINATION OF ωB

Eq. (A.1) works better if the radius r0 and the half-height z0 of the inner cylinder is 0.25 m and 0.5 m

respectively. If we change the dimensions of the inner cylinder by giving different values for z0 and r0,

Eq. A.1 may not give a better approximation to ρjacobi to get an good approximation to ωb.

Bibliography

[1] M. L. Boas, Mathematical methods in the physical sciences. John Wiley & Sons, 2006.

[2] D. R. Lynch, Numerical partial differential equations for environmental scientists and engineers: a

first practical course. New York: Springer, 2005.

[3] Y. Shapira, Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented Approach.

Society for Industrial and Applied Mathematics, 2006.

[4] P. E. Rijtema and V. Elias, Regional approaches to water pollution in the environment, vol. 20.

Springer Science & Business Media, 2012.

[5] V. N. Kaliakin, “Introduction to approximate solution techniques, numerical modeling, and finite

element methods,” 2001.

[6] K. M. Smith, “A homogeneous rf-shielded magnet for low-field magnetic resonance studies,” Master’s

thesis, University of Manitoba, Manitoba, Canada, 2019.

[7] H. A. Haus and J. R. Melcher, Electromagnetic fields and energy, vol. 107. Prentice Hall Englewood

Cliffs, NJ, 1989.

[8] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU

Programming, Portable Documents. Addison-Wesley Professional, 2010.

[9] P. Pacheco, An introduction to parallel programming. Elsevier, 2011.

[10] D. Kirk and W.-m. Hwu, “Programming massively parallel processors: a hands-on approach,” 2013.

[11] W. H. Wen-mei, GPU Computing Gems Jade Edition. Elsevier, 2011.

[12] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state

and time-dependent problems, vol. 98. Siam, 2007.

97

98 BIBLIOGRAPHY

[13] P. Knabner and L. Angerman, Numerical Methods for Elliptic and Parabolic Partial Differential

Equations. Texts in Applied Mathematics, Springer New York, 2006.

[14] E. H. Chao, S. F. Paul, R. C. Davidson, and K. S. Fine, “Direct numerical solution of poissons

equation in cylindrical (r, z) coordinates,” tech. rep., Princeton Univ., Princeton Plasma Physics

Lab., NJ (United States), 1997.

[15] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical recipes-the art of scientific

computing. Cambridge University Press, Cambridge, 2007.

[16] H. E. Kulsrud, “A practical technique for the determination of the optimum relaxation factor of

the successive over-relaxation method,” Communications of the ACM, vol. 4, no. 4, pp. 184–187,

1961.

[17] G. D. Smith and G. D. Smith, Numerical solution of partial differential equations: finite difference

methods. Oxford university press, 1985.

[18] I. Epicoco and S. Mocavero, “The performance model of an enhanced parallel algorithm for the sor

method,” in International Conference on Computational Science and Its Applications, pp. 44–56,

Springer, 2012.

[19] N. Corporation, “Cuda zone.” https://developer.nvidia.com/cuda-zone, August 2019.

[20] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA c programming. John Wiley &

Sons, 2014.

[21] L. Durant, O. Giroux, M. Harris, and N. Stam, “Inside volta: The world’s most advanced

data center gpu,” NVidia Parallel for All Blog, Available at: https: // devblogs. nvidia. com/

inside-volta/ , 2017.

[22] C. NVIDIA, “Cuda c best practices guide v. 4.0,” 2011.

[23] S. Cook, CUDA programming: a developer’s guide to parallel computing with GPUs. Newnes, 2012.

[24] J. Luitjens, “Faster parallel reductions on kepler,” Parallel Forall. NVIDIA Corporation. Available

at: https: // devblogs. nvidia. com/ faster-parallel-reductions-kepler/ , 2014.

[25] G. Amador and A. Gomes, “Cuda-based linear solvers for stable fluids,” in 2010 International

Conference on Information Science and Applications, pp. 1–8, IEEE, 2010.

https://developer.nvidia.com/cuda-zone
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/faster-parallel-reductions-kepler/

BIBLIOGRAPHY 99

[26] J. T. Liu, Z. S. Ma, S. H. Li, and Y. Zhao, “A gpu accelerated red-black sor algorithm for

computational fluid dynamics problems,” in Advanced Materials Research, vol. 320, pp. 335–340,

Trans Tech Publ, 2011.

[27] L. Itu, C. Suciu, F. Moldoveanu, and A. Postelnicu, “Gpu optimized computation of stencil based

algorithms,” in 2011 RoEduNet International Conference 10th Edition: Networking in Education

and Research, pp. 1–6, IEEE, 2011.

[28] D. L. Foster, “Gpu acceleration of solving parabolic partial differential equations using difference

equations,” in Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA), p. 1, The Steering Committee of The World Congress in

Computer Science, 2011.

[29] E. Konstantinidis and Y. Cotronis, “Accelerating the red/black sor method using gpus with cuda,”

in International Conference on Parallel Processing and Applied Mathematics, pp. 589–598, Springer,

2011.

[30] E. Konstantinidis and Y. Cotronis, “Graphics processing unit acceleration of the red/black sor

method,” Concurrency and Computation: Practice and Experience, vol. 25, no. 8, pp. 1107–1120,

2013.

[31] Y. Cotronis, E. Konstantinidis, and N. M. Missirlis, “A gpu implementation for solving the

convection diffusion equation using the local modified sor method,” in Numerical Computations

with GPUs, pp. 207–221, Springer, 2014.

[32] R. Jauregui and F. Silva, “Numerical validation methods,” Numerical analysis—theory and appli-

cation, pp. 155–174, 2011.

[33] L. W. Ehrlich, “An ad hoc sor method,” Journal of Computational Physics, vol. 44, no. 1, pp. 31–45,

1981.

	Contents
	List of Tables
	List of Figures
	Introduction
	Examples of PDEs Involving the Laplacian Operator
	Classification of Boundary Conditions
	Solution Methods for PDEs
	Problem of Interest
	The Behaviour of in Free Space
	Choosing Inside the Magnet
	Relationship between and Surface Current Density
	Boundary Value Problem

	GPUs for Performance Acceleration
	Contribution of the Thesis

	Methodology
	Finite Difference Method
	Finite Differences
	Finite Difference Approximation to the Laplace Equation
	Applying Boundary Conditions

	Iterative Solution
	The Matrix Form of the Linear System
	Jacobi Iterative Solver
	Gauss Seidel Method
	SOR Method
	Stopping Criteria
	Red-Black SOR Method

	Parallel Programming with CUDA
	CUDA Programming and Execution Model
	Synchronization
	Warp Divergence

	CUDA Memory Model
	Memory Access Patterns

	Single-precision and Double-precision Floating Point Operations
	Parallel Reduction

	Development and Implementation of the Algorithm
	Applications of the Red-Black SOR/Gauss-Seidel Method in Literature
	Development of the Algorithm
	Serial Implementation
	Baseline Parallel Implementation
	Improving Performance of the Baseline Parallel Implementation
	Shared Memory Implementation with Reordering
	Texture Memory Implementation with Reordering
	Computing More Than One Element Per Thread

	Performance Comparisons and Analysis
	Comparison of Different Parallel Solvers
	Data Transferring and Element Reordering Overhead
	Throughput and Speedup Comparison

	Application to Magnet Design
	Solving for the Magnetic Scalar Potential
	Scalar Potential Difference Across the Surface of the Magnet
	Convergence of
	Mesh Spacing
	Outer Cylinder Size
	Designing a Theoretical Magnet
	Magnetic Field Homogeneity

	Conclusion
	Summary
	Conclusion and Discussion

	Appendices
	Experimental Determination of b
	Bibliography

