
Accelerating Computation of
Zernike and Pseudo-Zernike Moments

with a GPU Algorithm

by

Shiying Li

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment
of the requirements for the Master of Science degree.

Department of Applied Computer Science
The University of Winnipeg
Winnipeg, Manitoba, Canada

December 2020

Copyright © 2020 Shiying Li



Abstract

Although Zernike and pseudo-Zernike moments have some advanced prop-
erties, the computation process is generally very time-consuming, which has
limited their practical applications. To improve the computational efficiency
of Zernike and pseudo-Zernike moments, in this research, we have explored
the use of GPU to accelerate moments computation, and proposed a GPU-
accelerated algorithm. The newly developed algorithm is implemented in
Python and CUDA C++ with optimizations based on symmetric properties
and k × k sub-region scheme. The experimental results are encouraging and
have shown that our GPU-accelerated algorithm is able to compute Zernike
moments up to order 700 for an image sized at 512× 512 in 1.7 seconds and
compute pseudo-Zernike moments in 3.1 seconds. We have also verified the
accuracy of our GPU algorithm by performing image reconstructions from
the higher orders of Zernike and pseudo-Zernike moments. For an image sized
at 512× 512, with the maximum order of 700 and k = 11, the PSNR (Peak
Signal to Noise Ratio) values of its reconstructed versions from Zernike and
pseudo-Zernike moments are 44.52 and 46.29 separately. We have performed
image reconstructions from partial sets of Zernike and pseudo-Zernike mo-
ments with various order n and different repetition m. Experimental results
of both Zernike and pseudo-Zernike moments show that the images recon-
structed from the moments of lower and higher orders preserve the principle
contents and details of the original image respectively, while moments of
positive and negative m result in identical images. Lastly, we have proposed
a set of feature vectors based on pseudo-Zernike moments for Chinese char-
acter recognition. Three different feature vectors are composed of different
parts of four selected lower pseudo-Zernike moments. Experiments on a set
of 6,762 Chinese characters show that this method performs well to recognize
similar-shaped Chinese characters.

i



Acknowledgements

I would like to express my deepest appreciation to Dr. Simon Liao. Your
academic knowledge and experience have provided valuable guidance and
suggestions during my research. During the process of writing this thesis, I
was strongly influenced by your rigorous and diligent attitude to studying.
Thank you for your patience and encouragement when I met difficulties and
had doubts about myself. I cannot be more grateful for having you as my
supervisor during my graduate study in the University of Winnipeg.

I am extremely grateful to my thesis committee members, Dr. Christopher
Henry and Christopher Bidinosti, for their very valuable suggestions which
have helped me to improve the thesis significantly.

I would also like to extend my thanks to those who have also studied
under Dr. Liao. Discussions with them have provided me with a great deal
of help in solving problems during research and programming.

Thanks also to the faculty of the Department of Applied Computer Sci-
ence and the Graduate Studies for their assistance in students’ daily campus
life.

I could not have completed this thesis without the support of my family.
I would particularly like to thank my husband, Jie Liang, who has taken
most of the responsibility of raising our baby and ensured me more time on
the research. Finally, thanks to my son, whose smile gives me the courage
and power to overcome any obstacles.

ii



Contents

1 Introduction 1

2 Zernike and Pseudo-Zernike Moments 3

2.1 Image Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Zernike Moments . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Pseudo-Zernike Moments . . . . . . . . . . . . . . . . . . . . . 6

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Zernike and Pseudo-Zernike Moments Computation 9

3.1 Computation Methods . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Optimization Strategies . . . . . . . . . . . . . . . . . . . . . 13

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 GPU Implementation of Moments Computation 20

4.1 CUDA Programming Model . . . . . . . . . . . . . . . . . . . 20

4.2 GPU Implementation Structure . . . . . . . . . . . . . . . . . 22

4.3 GPU Algorithm Optimizations . . . . . . . . . . . . . . . . . 27

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Experimental Results 32

5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Experimental Results of Zernike Moments . . . . . . . . . . . 33

iii



5.3 Experimental Results of Pseudo-Zernike Moments . . . . . . . 44

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Chinese Character Recognition with Pseudo-Zernike Moments 56

6.1 Chinese Character Recognition . . . . . . . . . . . . . . . . . 57

6.2 Pseudo-Zernike Moment Feature Vectors . . . . . . . . . . . . 57

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Concluding Remarks 66

A Source Code for the GPU Kernels 68

iv



List of Figures

2.1 Mapping image plane to a unit circle. . . . . . . . . . . . . . . 4

2.2 The number of Zernike and pseudo-Zernike moments with dif-
ferent order n. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 The images reconstructed from the Zernike moments up to
order 23 of an image sized at 64× 64. . . . . . . . . . . . . . . 12

3.2 Symmetric pixels. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Distribution of the real part of V ∗
nm(x, y) in Zernike moments . 16

3.4 Distribution of the imagine part of V ∗
nm(x, y) in Zernike moments 16

3.5 Distribution of the real part of V ∗
nm(x, y) in pseudo-Zernike

moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Distribution of the imagine part of V ∗
nm(x, y) in pseudo-Zernike

moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 An example of the sub-region scheme with k = 5. . . . . . . . 18

4.1 The three-level hierarchy of threads in CUDA programming
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 An example of how the pixels are reordered. . . . . . . . . . . 23

4.3 An example of parallel reduction process within an eight-
threads block. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 The two utilized testing images . . . . . . . . . . . . . . . . . 32

v



5.2 Images reconstructed from Zernike moments of Fig. 5.1(a)
with maximum order T from 100 to 300 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Images reconstructed from Zernike moments of Fig. 5.1(a)
with maximum order T from 400 to 700 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Images reconstructed from Zernike moments of Fig. 5.1(b)
with maximum order T from 100 to 300 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Images reconstructed from Zernike moments of Fig. 5.1(b)
with maximum order T from 400 to 700 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Reconstructed images of Fig. 5.1(a) from sets of partial Zernike
moments with different order n . . . . . . . . . . . . . . . . . 44

5.7 Reconstructed images of Fig. 5.1(a) from sets of partial Zernike
moments with different repetition m . . . . . . . . . . . . . . 45

5.8 Images reconstructed from pseudo-Zernike moments of Fig. 5.1(a)
with maximum order T from 100 to 300 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 48

5.9 Images reconstructed from pseudo-Zernike moments of Fig. 5.1(a)
with maximum order T from 400 to 700 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 49

5.10 Images reconstructed from pseudo-Zernike moments of Fig. 5.1(b)
with maximum order T from 100 to 300 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 50

5.11 Images reconstructed from pseudo-Zernike moments of Fig. 5.1(b)
with maximum order T from 400 to 700 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 51

vi



5.12 Reconstructed images of Fig. 5.1(a) from sets of partial pseudo-
Zernike moments with k = 11 and different order n . . . . . . 53

5.13 Reconstructed images of Fig. 5.1(a) from sets of partial pseudo-
Zernike moments with different repetition m . . . . . . . . . . 54

6.1 Chinese character pairs with similar structures. . . . . . . . . 56

vii



List of Tables

3.1 Values of ejmθ for eight-symmetric pixels with different m. . . 14

3.2 Values of ejmθ for four-symmetric pixels with different m. . . . 14

4.1 Major memory used by each pixel in the moments computa-
tion phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Zernike moments computation time (in seconds) for Fig. 5.1(a),
with maximum order T from 100 to 700 and sub-region scheme
value k from 1 to 11. . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Comparison of Zernike moments computation time in CPU
and GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 The execution time of some GPU kernels and their corre-
sponding CPU functions with different image sizes. . . . . . . 36

5.4 PSNR values of images reconstructed from Zernike moments
of Fig. 5.1(a) with maximum order T from 100 to 700 and
sub-region scheme value k from 1 to 11. . . . . . . . . . . . . 39

5.5 PSNR values of images reconstructed from Zernike moments
of Fig. 5.1(b) with maximum order T from 100 to 700 and
sub-region scheme value k from 1 to 11. . . . . . . . . . . . . 42

5.6 Zernike moments computation time (in seconds) for Fig. 5.1(a)
with 64-bit precision. . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Pseudo-Zernike moments computation time (in seconds) for
Fig. 5.1(a), with maximum order T from 100 to 700 and sub-
region scheme value k from 1 to 11. . . . . . . . . . . . . . . . 46

viii



5.8 Comparison of pseudo-Zernike moments computation time in
CPU and GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.9 PSNR values of images reconstructed from pseudo-Zernike
moments of Fig. 5.1(a) with maximum order T from 100 to
700 and sub-region scheme value k from 1 to 11. . . . . . . . . 47

5.10 PSNR values of images reconstructed from pseudo-Zernike
moments of Fig. 5.1(b) with maximum order T from 100 to
700 and sub-region scheme value k from 1 to 11. . . . . . . . . 52

6.1 Variance values of pseudo-Zernike moments Ânm with n ≤ 5

calculated by complex number. . . . . . . . . . . . . . . . . . 58

6.2 Variance values of pseudo-Zernike moments Ânm with n ≤ 5

calculated by their real parts. . . . . . . . . . . . . . . . . . . 58

6.3 Variance values of pseudo-Zernike moments Ânm with n ≤ 5

calculated by their magnitudes. . . . . . . . . . . . . . . . . . 59

6.4 Statistics of distances between Chinese character pairs with
three pseudo-Zernike moments feature vectors and the best
Zernike moments feature vector . . . . . . . . . . . . . . . . . 60

6.5 The closest ten pairs of Chinese characters recognized by Vcomplex. 61

6.6 The closest ten pairs of Chinese characters recognized by Vreal. 62

6.7 The closest ten pairs of Chinese characters recognized by Vmagnitude. 62

6.8 Distances of some Chinese character pairs which are very close
in shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



Chapter 1

Introduction

Moments of digital images were first introduced in 1962 by Hu [1]. Since
then, various moments with different kernel functions have been devised
by researchers. Among them, orthogonal moments have several advanced
properties, such as representing images with minimum redundancy informa-
tion and being invariant to rotations and reflections [2]. Zernike moments
and pseudo-Zernike moments are orthogonal moments defined on a circular
domain. They are widely applied in many scientific areas, such as image
analysis, pattern recognition, and watermarking [3].

Although Zernike and pseudo-Zernike moments have some more advanced
properties, their practical applications, such as medical image watermarking
[4] and image retrieval [5], are limited by the higher computational demands,
especially when the applications are real-time or involve a large number of
images. The Zernike and pseudo-Zernike kernel functions include both radial
and exponential polynomials, and the former involves a series of factorials,
which makes it a time-consuming process to calculate. The computational
accuracy is also an important issue for developing applications based on
Zernike or pseudo-Zernike moments, while some researchers have made a
good effort to find solutions in the past a few years [2, 6–10].

Along with optimizing the CPU-based algorithms to improve moments
computation, researchers have applied GPUs to accelerate the computing
processes of Zernike moments in the past a few years. The research results
in Refs. [11–14] show some notable successes in improving the computation
efficiency of Zernike moments with orders lower than 40. However, there is a
lack of research on the GPU accelerated computation for Zernike and pseudo-
Zernike moments with higher orders. In this research, we have developed an

1



algorithm to accelerate Zernike and pseudo-Zernike moments computation
with a CUDA-enabled GPU. To verify the performance of our GPU algo-
rithm, we have conducted image reconstructions from Zernike and pseudo-
Zernike moments with various maximum orders up to 700. Our experimental
results have shown that the newly developed GPU algorithm could provide
the efficient moments computation. To investigate the properties of Zernike
and pseudo-Zernike moments, we have also performed image reconstructions
from different sets of partial moments with diverse order n and different
repetition m.

Chinese character recognition systems based on local structure features
face difficulties to recognize characters with similar structures. Since moment-
based features could capture the global statistic properties of an image rather
than local structure features, they are introduced into Chinese character
recognition systems. We have proposed a method based on pseudo-Zernike
moments for Chinese character recognition. Experiments on a set of 6,762
Chinese characters show that this method performs well to recognize similar-
shaped Chinese characters.

The rest of the thesis is organized as follows. Chapter 2 demonstrates the
definitions and properties of image moments, Zernike moments and pseudo-
Zernike moments. In Chapter 3, three main computation methods of the
moments and two optimization strategies are presented. Chapter 4 intro-
duces the structures and optimizations of our implemented GPU algorithm.
Our experimental results are shown in Chapter 5. Chapter 6 gives details of
applying pseudo-Zernike moments in Chinese characters recognition. Finally,
we will give our concluding remarks in Chapter 7.

2



Chapter 2

Zernike and Pseudo-Zernike Moments

2.1 Image Moments

Image moments are real or complex-valued scalar quantities that describe
the pixels distribution of an image [3, 15]. Mathematically, moments can be
seen as projections of a image function onto a polynomial basis. The general
definition of the (p+q)-th order of moments with the image intensity function
f(x, y) and a moment weighting kernel ψpq(x, y) is given as [16]

Ψpq =

∫
x

∫
y

ψpq(x, y)f(x, y)dxdy, p, q = 0, 1, 2, . . . . (2.1)

The moments are orthogonal if their kernel satisfy the condition of orthogo-
nality ∫ ∫

Ω

ψpq(x, y)ψst(x, y)dxdy = wδpsδqt (2.2)

where w is the normalization coefficient, δps is the Kronecker delta function
and Ω is the area of orthogonality [17].

Zernike moments and pseudo-Zernike moments are both orthogonal mo-
ments defined over a circular domain. To calculate those moments of an im-
age in a Cartesian coordinate system, the image plane needs to be mapped
over a unit disk, with the center of the image taken as the origin point of the
disk, as shown in Fig. 2.1 [18]. Pixels who are entirely located in the circle
will be used in the computation; otherwise, they will be discarded.

3



Figure 2.1: Mapping image plane to a unit circle. The center of the image is
taken as the origin point of the disk. Pixels with any part out of the circle
are discarded.

With such a mapping method, for an image with N × N pixels, the
Cartesian coordinate of the pixel located in the i-th column and j-th row,
notes as (xi, yj), is calculated by

xi =
2× i−N − 1

N
(2.3)

and
yj =

N − 2× j + 1

N
. (2.4)

2.2 Zernike Moments

Zernike moments are orthogonal moments defined over a circular domain.
The Zernike function with order n and repetition m is defined on the unit
disk as [19]

Vnm(x, y) = Rnm(ρ)e
jmθ, x2 + y2 ≤ 1, (2.5)

4



where ρ =
√
x2 + y2 is the length of the vector from the origin to the pixel

(x, y), θ = tan−1(y/x) is the angle between the vector and the x axis, and
j =

√
−1. Vnm is a complex number when m ̸= 0. The real valued radial

Zernike polynomial Rnm(ρ) is defined as [20]

Rnm(ρ) =

(n−|m|)/2∑
s=0

(−1)s
(n− s)!

s!(n+|m|
2

− s)!(n−|m|
2

− s)!
ρn−2s, (2.6)

where n−|m| is an even number, and m is an integer that can take positive,
negative, or zero values while |m| ≤ n.

The Zernike moments of order n with repetitionm, Anm, is defined as [21]

Anm =
n+ 1

π

∫ ∫
x2+y2≤1

f(x, y)V ∗
nm(x, y)dxdy, (2.7)

where * denotes complex conjugate.

The Zernike moments are rotational invariant. If an image f(x, y) is
rotated α degrees counter-clockwise, the Zernike moments of the rotated
image are

A(α)
nm = Anme

−jmα. (2.8)

This leads to
|A(α)

nm| = |Anm|, (2.9)

which means that the magnitudes of the Zernike moments are rotational
invariant [21].

To compute the Zernike moments Anm in a Cartesian coordinate system,
a commonly used format is

Ânm =
n+ 1

π

∑∑
xi

2+yj2≤1

f(xi, yj)V
∗
nm(xi, yj)∆x∆y, (2.10)

where ∆x and ∆y are the sampling intervals in the x and y directions [21],
which are 2

N
.

5



Due to the orthogonality of the Zernike functions, we can reconstruct the
image function f(x, y) by its Zernike moments

f(x, y) =
∞∑
n=0

n∑
m=−n

AnmVnm(x, y). (2.11)

To reconstruct the image function f(x, y) with a finite set of its Zernike
moments in a Cartesian plane, Eq. (2.11) can be approximated by

f̂(xi, yj) =
T∑

n=0

n∑
m=−n

ÂnmVnm(xi, yj), (2.12)

where T is the maximum order of Zernike moments taken into account in the
image reconstruction.

2.3 Pseudo-Zernike Moments

Pseudo-Zernike moments are the modified version of Zernike moments, and
were developed by Bhatia and Wolf [22]. The pseudo-Zernike polynomial of
order n with repetition m is defined on the unit disk as [21]

Vnm(x, y) = Rnm(ρ)e
jmθ, x2 + y2 ≤ 1, (2.13)

where Rnm(ρ) is defined as

Rnm(ρ) =

n−|m|∑
s=0

(−1)s
(2n+ 1− s)!

s!(n+ |m|+ 1− s)!(n− |m| − s)!
ρn−s, (2.14)

where n = 0, 1, 2, . . . ,∞, andm is an integer that can take positive, negative,
or zero values while |m| ≤ n.

Based on Eqs. (2.6) and (2.14), the number of all the Zernike moments
whose order ≤ n is 1

2
(n+1)(n+2), while this number for the pseudo-Zernike

moments is (n + 1)2. For example, as shown in Fig. 2.2, when n = 0, there

6



Figure 2.2: The number of Zernike and pseudo-Zernike moments with dif-
ferent order n. There are 1

2
(n + 1)(n + 2) Zernike moments and (n + 1)2

pseudo-Zernike moments whose order is ≤ n.

are only one Zernike moment and one pseudo-Zernike moment. When n = 4,
the number of Zernike moments is 15 and that of pseudo-Zernike moments
is 25.

The pseudo-Zernike moments of order n with repetitionm, Anm, is defined
as [21]

Anm =
n+ 1

π

∫ ∫
x2+y2≤1

f(x, y)V ∗
nm(x, y)dxdy, (2.15)

where * denotes complex conjugate.

To compute the pseudo-Zernike moments Anm in a Cartesian coordinate
system, a commonly used format is

Ânm =
n+ 1

π

∑∑
xi

2+yj2≤1

f(xi, yj)V
∗
nm(xi, yj)∆x∆y, (2.16)

where ∆x and ∆y are the sampling intervals in the x and y directions.

Due to the orthogonality of the pseudo-Zernike functions, we can recon-
struct the image function f(x, y) by its pseudo-Zernike moments

f(x, y) =
∞∑
n=0

n∑
m=−n

AnmVnm(x, y). (2.17)

7



To reconstruct the image function f(x, y) with a finite set of its pseudo-
Zernike moments in a Cartesian plane, Eq. (2.17) can be approximated by

f̂(xi, yj) =
T∑

n=0

n∑
m=−n

ÂnmVnm(xi, yj), (2.18)

where T is the maximum order of pseudo-Zernike moments taken into account
in the image reconstruction.

Same as for the Zernike moments, the magnitudes of the pseudo-Zernike
moments are also rotational invariant.

2.4 Summary

In this chapter, we have given the definitions and properties of image mo-
ments, Zernike moments and pseudo-Zernike moments. The Zernike and
pseudo-Zerniek moments are different in the domain of their repetition m

and the definition of the radial polynomials Rnm(ρ). The number of all the
Zernike moments whose order is less than or equal to n is 1

2
(n + 1)(n + 2),

while that of the pseudo-Zernike moments is (n+ 1)2.

8



Chapter 3

Zernike and Pseudo-Zernike Moments
Computation

3.1 Computation Methods

Computational efficiency and numerical accuracy are two major issues in-
volved in the research of Zernike moments and pseudo-Zernike moments
[3, 21]. Different methods have been proposed to calculate the two kinds
of moments more efficiently and accurately [2, 7–10, 20, 23–26].

Direct Methods

The direct methods use the definition formulas to calculate moments directly.
Equations (2.5), (2.6) and (2.10) are used to calculate Zernike moments, and
Eqs. (2.13), (2.14) and (2.16) are used to compute pseudo-Zernike moments.
Due to the radial polynomial and exponential component in the formulas,
the calculation is time-consuming, especially when the size of the image is
larger and the moment order is higher.

Geometric Moments Methods

The relationship between Zernike moments and geometric moments are given
in Ref. [20] as

Ânm =
n+ 1

π

n∑
k=|m|

n−k=even

S∑
p=0

|m|∑
q=0

(w)qCS
p C

|m|
q Bn,|m|,kGk−2p−q,2p+q, (3.1)

9



where S = (k − |m|)/2, and

w =

−j, m > 0

j, m ≤ 0,
(3.2)

Bn,m,k =
(−1)

n−k
2 (n+k

2
)!

(n−k
2
)!k+|m|

2
)!k−|m|

2
)!
. (3.3)

Hosny [2] expressed pseudo-Zernike moments in terms of geometric and
radial geometric moments as follows:

Ânm =
n+ 1

π
[{A1}k−m=even + {A2}k−m=odd], (3.4)

with

A1 =
n∑

k=m

S1∑
p=0

m∑
q=0

(−j)qCs1
p C

m
q Bn,m,kGk−2p−q,2p+q, (3.5)

A2 =
n∑

k=m+1

S2∑
p=0

m∑
q=0

(−j)qCs2
p C

m
q Bn,m,kHk−2p−q−1,2p+q, (3.6)

where S1 = (k −m)/2, S2 = (k −m− 1)/2, and

Bn,m,k =
(−1)n−k(n+ k + 1)!

(n− k)!(m+ k + 1)!(k −m)!
. (3.7)

The geometric moments Gn,m and radial geometric moments Hn,m are
defined as

Gn,m =

∫
x

∫
y

xnymf(x, y)dxdy, (3.8)

Hn,m =

∫
x

∫
y

xnym(x2 + y2)
1
2f(x, y)dxdy. (3.9)

This method transforms the computation of Zernike and pseudo-Zernike
moments into that of the geometric moments, which can be computed more
accurately. As a result, it removes the numerical errors produced in the direct
method and outperforms the direct method in computational efficiency [2].

10



Recursive Methods

The recursive methods set some initial conditions and derive moments of
different orders and repetitions recursively. They are more efficient and more
stable than the direct method because they do not involve any factorial terms.

Inspired by Prata’s [23] and Kintner’s [24] recursive methods, Chong et
al. proposed the q-recursive method to compute Zernike moments [7] and
pseudo-Zernike moments [8]. Based on Chong’s work, several other recursive
methods were proposed [25, 26].

More recently, Deng et al. proposed a recursive algorithm that outper-
forms other algorithms of computing Zernike moments both in efficiency and
accuracy [9]. The recurrence relations used to compute the radial polynomi-
als Rn,|m|(ρ) in this method are

Rnn(ρ) = ρn, (3.10)

where 0 ≤ n ≤ T , and

Rn|m|(ρ) = r(Rn−1,|m−1|(ρ) +Rn−1,|m+1|(ρ))−Rn−2,|m|(ρ), (3.11)

where n ≥ 2.

Deng and Gwo also proposed a recursive algorithm to compute pseudo-
Zernike moments in 2018 [10]. In their work, the ultimate recursive relations
among the radial polynomials Rnm(ρ) and the intermediate values noted as
Knm(ρ) are

Rnn(ρ) = Knn(ρ) = ρn, (3.12)

where n = 0, 1, 2, . . . , T .

Knm(ρ) = ρ(Rn−1,m−1(ρ) +Rn−1,m(ρ))−Kn−1,m(ρ) (3.13)

and
Kn0(ρ) = 2ρRn−1,0(ρ)−Kn−1,0(ρ), (3.14)

11



where n = 1, 2, . . . , T and m = n− 1, n− 2, . . . , 1.

Rnm(ρ) = Knm(ρ) +Kn,m+1(ρ)−Rn−1,m(ρ), (3.15)

where n = 1, 2, . . . , T and m = n− 1, n− 2, . . . , 1, 0.

(a) (b) (c)

Figure 3.1: The images reconstructed from the Zernike moments up to order
23 of an image sized at 64×64. (a) The original image. (b) The image recon-
structed from Zernike moments computed through the geometric moments
method. It is totally broken because the moments are too inaccurate. (c)
The image reconstructed from Zernike moments computed through Deng’s
recursive moments method. It is much better than the image in (b).

We have done some preliminary experiments to compare the performances
of those computation methods. The moments computed through the direct
methods and the geometric moments methods are inaccurate even when the
order is not too high. For example, when the Zernike moments of an image
sized at 64 × 64 are computed with the geometric moments methods and
the maximum number T is 23, the image reconstructed from them is totally
broken, as shown in Fig. 3.1(b). With the q-recursive methods and Deng’s
recursive methods, the moments are more accurate and the reconstructed
images are like the image shown in Fig. 3.1(c). Deng’s recursive methods are
recently proposed and perform better than the q-recursive method [9, 10].
Therefore we have chosen them and applied the two optimization methods
shown in Section 3.2 in our GPU implementation.

12



3.2 Optimization Strategies

In addition to the above moments calculation methods, there are also some
strategies that can be combined with these methods to improve their perfor-
mance.

Reducing Computation by Symmetric Property

(a) (b)

Figure 3.2: Symmetric pixels. (a) Pixels P1 to P8 are ‘eight-symmetric’. The
polar coordinates of P1 is (ρ0, θ0). P2 to P8 have the same radial coordinate ρ0
with P1, and their angular coordinates can be expressed with θ0. (b) Pixels
P1 to P4 are ‘four-symmetric’.

The symmetric property of moments defined on a circular domain was
widely used by researchers to reduce moments computation time [9, 14, 27].
As shown in Fig. 3.2 (a), the unit disk is separated into eight parts by the
x-axis, y-axis, and lines of y = x and y = −x. For a pixel named P1 with
polar coordinates (ρ0, θ0), where 0 < ρ0 ≤ 1 and π

2
≤ θ0 <

3π
4
, there are

seven corresponding pixels in other seven parts. Those pixels have the same
radial coordinate ρ0 with P1, and their angular coordinates can be expressed

13



with θ0, as shown in Table 3.1. We use ‘eight-symmetric’ to describe the
relationships among these pixels.

Due to the property of ejmθ shown in Table 3.1, we can obtain the Zernike
or pseudo-Zernike polynomials Vnm(x, y) of P2 to P8 through that of P1.
Therefore, the redundant computation of Rnm(ρ) and ejmθ is eliminated, and
the computing time would be reduced significantly.

Table 3.1: Values of ejmθ for eight-symmetric pixels with different m.

Pixel Angle
ejmθ

m mod 4 = 0

ejmθ

m mod 4 = 1

ejmθ

m mod 4 = 2

ejmθ

m mod 4 = 3

P1 θ0 ejmθ0 ejmθ0 ejmθ0 ejmθ0

P2
3π
2
− θ0 e−jmθ0 je−jmθ0 −e−jmθ0 −je−jmθ0

P3 π − θ0 e−jmθ0 −e−jmθ0 e−jmθ0 −e−jmθ0

P4 θ0 − π
2

ejmθ0 jejmθ0 −ejmθ0 −jejmθ0

P5 −θ0 e−jmθ0 e−jmθ0 e−jmθ0 e−jmθ0

P6 θ0 − 3π
2

ejmθ0 −jejmθ0 −ejmθ0 jejmθ0

P7 θ0 − π ejmθ0 −ejmθ0 ejmθ0 −ejmθ0

P8
π
2
− θ0 e−jmθ0 −je−jmθ0 −e−jmθ0 je−jmθ0

Table 3.2: Values of ejmθ for four-symmetric pixels with different m.

Pixel Angle
ejmθ

m mod 4 = 0

ejmθ

m mod 4 = 1

ejmθ

m mod 4 = 2

ejmθ

m mod 4 = 3

P1
3π
4

−1 ejmθ0 ejmθ0 ejmθ0

P2
π
4

−1 jejmθ0 −ejmθ0 −jejmθ0

P3
−3π
4

−1 e−jmθ0 e−jmθ0 e−jmθ0

P4
−π
4

−1 je−jmθ0 −e−jmθ0 −je−jmθ0

14



Similarly, Fig. 3.2 (b) shows that for a pixel P1 on the line y = −x where
x < 0, there are three symmetric pixels. We use ‘four-symmetric’ to describe
such pixels. Their relationships are displayed in Table 3.2.

Let the gray values of pixels P1 to P8 be g1 to g8, then the Zernike (or
pseudo-Zernike) moments with order n and repetition m can be obtained by

Anm =
n+ 1

π
(Enm + Fnm)∆x∆y, (3.16)

where

Enm =
∑
y>−x

∑
−1<x<0

x2+y2≤1

Rnm(ρ)
8∑

i=1

gie
−jmθi (3.17)

with ejmθi as the value of ejmθ for Pi in Table 3.1, and

Fnm =
∑
y=−x

∑
−1<x<0

x2+y2≤1

Rnm(ρ)
4∑

i=1

gie
−jmθi (3.18)

with ejmθi as the value of ejmθ for Pi in Table 3.2.

Improving Accuracy by Sub-region Scheme

In Eqs. (2.10) and (2.16), we use the area of a pixel, ∆x∆y, to estimate the
double integrals of the pixel in Eqs. (2.7) and (2.15). There is an assumption
behind this approximation that the values of f(xi, yj)V ∗

nm(xi, yj) of all the
points inside a image pixel are the same. This is not true because the dis-
tributions of Zernike and pseudo-Zernike polynomials V ∗

nm(x, y) within one
pixel can vary significantly when the orders are high. Figures 3.3 and 3.4
show the distribution of V ∗

nm(x, y) of Zernike moments within one of the cen-
tral pixels. Similarly, Figs. 3.5 and 3.6 show the distribution of V ∗

nm(x, y) of
pseudo-Zernike moments. Within the four figures, n = 30 and m = 10 in
sub-figure (a), while n = 100 and m = 10 in sub-figure (b). As a result, when

15



(a) n = 30,m = 10 (b) n = 100,m = 10

Figure 3.3: Distribution of the real part of V ∗
nm(x, y) in Zernike moments

within one of the central pixels with location of (256, 257) in an image
sized at 512 × 512. In sub-figure (a), n = 30,m = 10. In sub-figure (b),
n = 100,m = 10. The distribution varies more significantly when n is larger.

(a) n = 30,m = 10 (b) n = 100,m = 10

Figure 3.4: Distribution of the imagine part of V ∗
nm(x, y) in Zernike moments

within one of the central pixels with location of (256, 257) in an image
sized at 512 × 512. In sub-figure (a), n = 30,m = 10. In sub-figure (b),
n = 100,m = 10. The distribution varies more significantly when n is larger.

16



(a) n = 30,m = 10 (b) n = 100,m = 10

Figure 3.5: Distribution of the real part of V ∗
nm(x, y) in pseudo-Zernike mo-

ments within one of the central pixels with location of (256, 257) in an image
sized at 512 × 512. In sub-figure (a), n = 30,m = 10. In sub-figure (b),
n = 100,m = 10. The distribution varies more significantly when n is larger.

(a) n = 30,m = 10 (b) n = 100,m = 10

Figure 3.6: Distribution of the imagine part of V ∗
nm(x, y) in pseudo-Zernike

moments within one of the central pixels with location of (256, 257) in an
image sized at 512 × 512. In sub-figure (a), n = 30,m = 10. In sub-figure
(b), n = 100,m = 10.

17



Figure 3.7: An example of the sub-region scheme with k = 5. Without the
sub-region scheme, only the value of the central point (xi, yj) in each pixel
is used to compute moments. The sampling intervals are ∆x and ∆y. With
5 × 5 sub-region scheme, the values of 25 points inside each pixel are used.
The sampling intervals are ∆x

5
and ∆y

5
.

using Eqs. (2.10) and (2.16) to calculate moments, a significant amount of
approximation errors will occur.

In this research, to improve the computational accuracy of Zernike and
pseudo-Zernike moment functions, we have divided each pixel into k×k sub-
regions with the same weights. An example of the sub-region scheme with
k = 5 is shown in Fig 3.7. Without the sub-region scheme, only the value
of the central point (xi, yj) in each pixel is used to compute moments. The
sampling intervals are ∆x and ∆y. With k×k sub-regions scheme, the values
of k2 points inside each pixel are used. The sampling intervals are ∆x

k
and ∆y

k
.

To compute the moments, We have rewritten Eqs. (2.10) and (2.16) as [21]

Ânm =
n+ 1

π

∑∑
xi

2+yj2≤1

f(xi, yj)hnm(xi, yj), (3.19)

where

hnm(xi, yj) =
k∑

s=1

k∑
t=1

V ∗
nm(xis, yjt)

∆x

k

∆y

k
(3.20)

18



and in Eq. (3.20),
xis = xi + (s− k + 1

2
)× ∆x

k
(3.21)

yjt = yj + (t− k + 1

2
)× ∆y

k
(3.22)

In practice, the program treats an image sized at N×N as an image with
N × k×N × k pixels. Each sub-region is treated as a new pixel. All the new
pixels inside the same original pixel have the same gray value. Then we use
another format of Eq. (3.19), as

Ânm =
n+ 1

π

∑∑
xis

2+yjt2≤1

k∑
s=1

k∑
t=1

f(xis, yjt)V
∗
nm(xis, yjt)

∆x

k

∆y

k
(3.23)

to compute the moments. It should be emphasized that when an original
pixel has any parts that are out of the unit circle, all the new pixels in this
original pixel are discarded.

3.3 Summary

There are mainly three kinds of methods used to compute the Zernike and
pseudo-Zernike moments. We have compared them and chosen the most
efficient and accurate recursive methods in our algorithm. This chapter also
explains how the symmetric property is utilized to reduce the computation
time, and how the sub-region scheme is used to improve the accuracy of the
moments computation.

19



Chapter 4

GPU Implementation of Moments
Computation

4.1 CUDA Programming Model

Our GPU-accelerated algorithm runs on NVIDIA GPU and is developed
based on the CUDA programming model. In the CUDA programming model,
a program is executed by the host, which refers to the CPU and its memory,
and the device, which refers to the GPU and its memory. A program function
expected to run on GPU is called a kernel. Host CPU code manages memory
on both the host and the device and launches kernels to GPU. After being
called by host CPU code, a kernel is executed N times in parallel by N
different CUDA threads. As shown in Fig. 4.1, threads are organized in one-
, two-, or three-dimensional structures named blocks. Similarly, blocks are
organized in grids. Each thread within the block and each block within the
grid can be identified by a three-component vector. The numbers of threads
per block and blocks per grid are defined by programmers.

CUDA provides multiple types of memory for the host and the device
to access data. Different memory types have different scopes and speeds.
Global memory, constant memory, and local memory are off-chip memory.
Global memory resides in the device and can be written and read both by
the host and the device. It is by far the largest and most commonly used,
though the slowest memory storage on the GPU [14]. Constant memory can
be read and written by the host, but are read-only for the device. Local
memory is private for each thread, accessible only to a single thread, and as
slow as global memory. Registers and shared memory are on-chip memory

20



Grid 1

Grid 2

Block(0, 0) Block(0, 1)

Block(1, 1)Block(1, 0)

Thread  
(0, 0, 0)

Thread 
 (0, 0, 1)

Thread 
 (0, 1, 0)

Thread  
(0, 1, 1)

Thread 
 (0, 0, 2)

Thread 
 (0, 1, 2)

(1, 0, 1)(1, 0, 0) (1, 0, 2)

Thread  
(0, 0, 0)

Thread 
 (0, 0, 1)

Thread 
 (0, 1, 0)

Thread  
(0, 1, 1)

Thread 
 (0, 0, 2)

Thread 
 (0, 1, 2)

(1, 0, 1)(1, 0, 0) (1, 0, 2)

Thread  
(0, 0, 0)

Thread 
 (0, 0, 1)

Thread 
 (0, 1, 0)

Thread  
(0, 1, 1)

Thread 
 (0, 0, 2)

Thread 
 (0, 1, 2)

(1, 0, 1)(1, 0, 0) (1, 0, 2)

Thread  
(0, 0, 0)

Thread 
 (0, 0, 1)

Thread 
 (0, 1, 0)

Thread  
(0, 1, 1)

Thread 
 (0, 0, 2)

Thread 
 (0, 1, 2)

(1, 0, 1)(1, 0, 0) (1, 0, 2)

Figure 4.1: The three-level hierarchy of threads in CUDA programming
model. The threads are organized in blocks, and the blocks are organized in
grids. The threads shown in this figure are three-dimensional, and the blocks
are two-dimensional.

that provides data at a very high speed. Registers have the same scope as
local memory. Shared memory of a block is accessible for all threads within
the block. It is often used for threads in a block to communicate and share
data.

To execute a kernel on a device, a CUDA program needs to declare and
allocate global memory on the device, and transfer data from the host mem-
ory to the device memory. After the kernel execution is finished, the results
are copied from the device to the host. Minimizing data transfer between the
device and the host could improve the overall performance because the peak
theoretical bandwidth between host memory and device memory is lower

21



than that between the device memory and the GPU [28].

4.2 GPU Implementation Structure

The programs for Zernike and pseudo-Zernike moments both include four
main phases: pre-processing, image data reordering, moments computing,
and image reconstruction. One or more CUDA kernels are used in each
phase, and will be introduced in the following.

Pre-processing

In the pre-processing phase, the CPU program reads the image, divides each
pixel into k×k sub-regions and gets the coordinates of the symmetric pixels.
The GPU kernel Origin_Kernel is used to calculate the values of ρ and θ

for each pixel and mask the image to discard the pixels with any sub-region
falling out of the unit disk.

Image Data Reordering

In NVIDIA GPU implementations, 32 threads within a block are executed
in a group, known as a warp. Threads within a warp must execute the same
instruction at the same time. To implement the symmetric optimization, the
computing kernel needs to judge whether a pixel is eight-symmetric or four-
symmetric and choose corresponding instructions. If kernels process image
data in the initial sequence, there will be a number of warp divergences in
CUDA, resulting in a poor computation efficiency [13].

To solve this problem, Xia [27] proposed an algorithm to reorder the
image data. An example of how the pixels are reordered is shown in Fig. 4.2.
With this method, pixels are reordered in a sequence that all eight-symmetric

22



pixels are put in the first part of the sequence, followed by all four-symmetric
pixels. Thus only one warp will have divergence and the efficiency is improved
significantly. This method is implemented in Reorder_Kernel.

Figure 4.2: An example of how the pixels are reordered with Xia’s method
[27]. The pixels are reordered in a sequence that all eight-symmetric pixels
are put in the first part of the sequence, followed by all four-symmetric pixels.

Moments Computing

Our moments computing phase involves four kernels: Rho_Kernel, Exp_Kernel,
Znm_Kernel, and Znm_Sum_Kernel.

Rho_Kernel and Exp_Kernel calculate the power functions of ρ and the
exponential functions respectively for each pixel. Assuming the number of

23



pixels involved in the moments computation is N , and the maximum order
computed is T , then the output of Rho_Kernel is like

ρ00 ρ01 · · · ρ0N−2 ρ0N−1

ρ10 ρ11 · · · ρ1N−2 ρ1N−1
... . . . ... . . . ...

ρT−1
0 ρT−1

1 · · · ρT−1
N−2 ρT−1

N−1

ρT0 ρT1 · · · ρTN−2 ρTN−1

 (4.1)

and the output of Exp_Kernel is like
e−j0θ0 e−j0θ1 · · · e−j0θN−2 e−j0θN−1

e−j1θ0 e−j1θ1 · · · e−j1θN−2 e−j1θN−1

... . . . ... . . . ...
e−j(T−1)θ0 e−j(T−1)θ1 · · · e−j(T−1)θN−2 e−j(T−1)θN−1

e−jTθ0 e−jTθ1 · · · e−jTθN−2 e−jTθN−1

 (4.2)

Within the two kernels, each thread is responsible for computing data of one
pixel. Their outputs will be the inputs of Znm_Kernel.

Znm_Kernel uses the outputs of Rho_Kernel to computes the values
of Rnm(ρ). Equations (3.10) and (3.11) are employed in Znm_Kernel for
Zernike moments, and Eqs. (3.12) to (3.15) are used for pseudo-Zernike mo-
ments. After this, it calculates the values of f(xis, yjt)V ∗

nm(xis, yjt) (noted
as Z∗

nm(xis, yjt) for Zernike moments and PZ∗
nm(xis, yjt) for pseudo-Zernike

moments) in Eq. (3.23) with all different n and m for each pixel. The pseu-
docode of Znm_Kernel for Zernike moments is provided in Algorithm 1, and
that of pseudo-Zernike moments is shown in Algorithm 2.

Since the values of f(xis, yjt)V ∗
nm(xis, yjt) are given by Znm_Kernel,

Znm_Sum_Kernel calculates the moments based on Eq. (3.23). It adds
all Z∗

nm(xis, yjt) or PZ∗
nm(xis, yjt) with the same n and m up. More details

about Znm_Sum_Kernel and the parallel reduction algorithm used in it will
be introduced in Section 4.3.

24



Algorithm 1 Znm_Kernel for Zernike moments
function Znm_Kernel(ar_znm, ar_img_k, ar_exp_k, ar_rho_k)

total_tmp← 0
if current thread should compute a value then

if current thread processes a pixel that is eight-symmetric then
Load gray values of pixel Pi (1 ≤ i ≤ 8) into loaded_pixels[i]

total_tmp←
∑8

i=1 loaded_pixels[i]
ar_znm[0][0]← total_tmp
Rpp[0]← 1
Rp[1]← ρ
for n from 1 to maximum order T do

total_tmp←
∑8

i=1 loaded_pixels[i]× e−jnθi

▷ ejmθi is the value of ejmθ for Pi in Table 3.1
R[n]← ρn

ar_znm[n][n]← total_tmp×R[n]
if n is even then

R[0]← 2× ρ×Rp[1]−Rpp[0]
end if
for m from n− 2 to 1 by −2 do

total_tmp←
∑8

i=1 loaded_pixels[i]× e−jmθi

R[m]← ρ× (Rp[m− 1] +Rp[m+ 1])−Rpp[m]
ar_znm[n][m]← total_tmp×R[m]

end for
if n is larger than 1 then

for i from 0 to n do
Rpp[i]← Rp[i]
Rp[i]← R[i]

end for
end if

end for
end if
if current thread processes a pixel that is four-symmetric then

Take same steps with the above if block, except that i is always
from 1 to 4, and the value of ejmθ for Pi is from Table 3.2

end if
end if

end function

25



Algorithm 2 Znm_Kernel for pseudo-Zernike moments
function Znm_Kernel(ar_znm, ar_img_k, ar_exp_k, ar_rho_k)

total_tmp← 0
if current thread should compute a value then

if current thread processes a pixel that is eight-symmetric then
Load gray values of pixel Pi (1 ≤ i ≤ 8) into loaded_pixels[i]

total_tmp←
∑8

i=1 loaded_pixels[i]
ar_znm[0][0]← total_tmp
R[n]← 1
A[n]← 1
for n from 1 to maximum order T do

R[n]← ρn

A[n]← R[n]
Rad← R[n]

total_tmp←
∑8

i=1 loaded_pixels[i]× e−jnθi

▷ ejmθi is the value of ejmθ for Pi in Table 3.1
ar_znm[n][n]← total_tmp×Rad
for m from n− 1 to 1 do

A[m]← ρ× (R[m− 1] +R[m])−A[m]
Rad← A[m] +A[m+ 1]−R[m]
R[m]← Rad

total_tmp←
∑8

i=1 loaded_pixels[i]× e−jmθi

ar_znm[n][m]← total_tmp×Rad
end for
A[0]← 2× ρ×R[0]−A[0]
Rad← A[0] +A[1]−R[0]

total_tmp←
∑8

i=1 loaded_pixels[i]
ar_znm[n][0]← total_tmp×Rad
R[0]← Rad

end for
end if
if current thread processes a pixel that is four-symmetric then

Take same steps with the above if block, except that i is always
from 1 to 4, and the value of ejmθ for Pi is from Table 3.2

end if
end if

end function

26



Image Reconstruction

The phase of image reconstruction has four kernels: Rho_Kernel, Exp_Kernel,
Vnm_Kernel, and Fxy_Kernel. Rho_Kernel and Exp_Kernel are similar to
those in moments computing. Vnm_Kernel calculates Vnm(xi, yj) of each
pixel according to Eq. (2.5), where the values of Rnm(ρ) are calculated with
the same recursive methods in Znm_Kernel. Fxy_Kernel uses the output of
Vnm_Kernel and the moments computed in Znm_Sum_Kernel to compute
f̂(xi, yj) based on Eq. (2.12).

4.3 GPU Algorithm Optimizations

Dynamic Data Partition

GPU’s resources, such as registers and memory, will limit its processing ca-
pacity. As discussed in Section 4.1, when transferring data between host and
device, data is copied from host memory to device global memory or verse
vice. In GPU implementation, if either the size of an image or the maximum
order T is too large, there will be too much data needed to be transferred
and it will require more memory than GPU can provide. Under such condi-
tions, we need to partition pixels into several parts and launch related kernels
multiple times through a loop.

To make full use of global memory, instead of setting a fixed number of
pixels for a loop to process, we partition pixels dynamically before launching
kernels. The maximum number of pixels that could be processed in a loop is
limited by current free memory and the size of memory required per pixel.
The former can be obtained by calling CUDA API function cudaMemGet-
Info. For the latter, we have analyzed the major memory used by each pixel
in moments computation phase, as displayed in Table 4.1. Other than the
memory discussed in Table 4.1, we also need extra memory to deal with

27



Table 4.1: Major memory used by each pixel in the moments computation
phase.

Data Type Type Size Amount Total Size

expjkθ Complex64 8 Bytes T + 1 8× (T + 1)

ρk Float32 4 Bytes T + 1 4× (T + 1)

Z∗
nm(x, y) Complex64 8 Bytes (T+1)(T+2)

2
4× (T + 1)(T + 2)

PZ∗
nm(x, y) Complex64 8 Bytes (T+2)2−(T%2)

4
2×((T+2)2−(T%2))

some integer parameters. Based on the above analysis, we have carefully
set the number of pixels in each loop of moments computation, to ensure
that enough memory is provided to avoid allocation failure, and the global
memory is efficiently utilized.

Minimizing Data Transfers and Memory Allocation

As discussed in Section 4.1, when transferring data between host and device, a
straightforward sequence is allocating memory, copying input data to device,
executing kernel, copying output results to host, and releasing memory. Data
transfer and memory allocation could consume considerable time when the
size of data being processed is large. We have used the following two methods
to minimize these operations and reduce time.

• Move memory allocation out of the loop and reuse the allocated mem-
ory. Except for the last loop, the numbers of pixels involved in each
loop are the same. We do not need to allocate and free the memory
for data showed in Table 4.1 in each loop. Instead, our program allo-
cates memory for those data once before the loop, and free them after
the loop is finished. For the last loop, although the number of pixels
processed is less than that of the former loops, the memory can still be

28



used with some vacancy.

• Keep intermediate data in device for future operation. In our program,
the output results of some kernels will be the input of the next kernels.
For example, ρk from Rho_Kernel and e−jkθ from Exp_Kernel will
be used in Znm_Kernel, and Z∗

nm(xi, yj) or PZ∗
nm(xi, yj) computed by

Znm_Kernel will be added up in Znm_Sum_Kernel. To minimize
data transfer, instead of transferring data from device to host after the
kernel, we leave the data in device and use them directly in the next
kernel. The data is updated during each loop and will be destroyed
after loops end.

Reduction Optimization

As we have introduced in Section 4.2, the function of Znm_Sum_Kernel is
computing the moments based on Eq. (3.23). The following part explains the
process in the program of computing Zernike moments, and that of pseudo-
Zernike moments is analogous.

In Znm_Sum_Kernel, assuming the input Z∗
nm includes data of N pixels,

then it is a matrix with N rows and ((T + 2)2 − (T%2))/4 columns, as

Z∗
nm =


Z∗

0,0(x0, y0) · · · Z∗
n,m(x0, y0) · · · Z∗

T,T (x0, y0)

Z∗
0,0(x1, y1) · · · Z∗

n,m(x1, y1) · · · Z∗
T,T (x1, y1)

... . . . ... . . . ...
Z∗

0,0(xN−1, yN−1) · · · Z∗
n,m(xN−1, yN−1) · · · Z∗

T,T (xN−1, yN−1)


(4.3)

Each row shows the moments with different order n and repetition m of a
single pixel. Each column includes the moments of the same order n and
repetition m for all pixels. The function of Znm_Sum_Kernel is called to
calculate the sum of each column.

Shared memory is used here for threads to share data, because it has much

29



higher bandwidth and much lower latency than local or global memory, and
is accessible to all threads within a block [29]. We use parallel reduction [30]
to achieve the adding operations in Eq. (3.23) efficiently.

21 3 9 -5 32 83 46 0 4 -1 33 9 -7 12 13 45 2 6 52Data Value Global Memory

0 1 2 3 4 5 6 7

27 8 94 4 25 95 59 45

0 1 2 3

52 103 153 49 25 95 59 45

0 1

205 152 153 49 25 95 59 45

0

357 152 153 49 25 95 59 45

Thread IDs

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Thread IDs

Thread IDs

Thread IDs

0

357 Global Memory

Thread IDs

Step 1

Step 4

Step 3

Step 2

Step 5

Figure 4.3: An example of parallel reduction process within an eight-threads
block. The shared memory is utilized to improve the reduction speed.

When launching kernel, we set ((T + 2)2 − (T%2))/4 blocks in a grid,
thus each block calculates one column. In the kernel, threads will load data
from global memory into shared memory first. Because threads in a block are
limited, when the number of threads is less than N , a thread needs to load
more than one value, add them up and store the result in shared memory.
An example of the reduction process within a block with eight threads is
shown in Fig. 4.3. In this example, each of thread 0 to thread 2 will load
three values and store their sum in shared memory, while thread 3 to thread

30



7 will load and add up two values. In the following steps, threads read data
from shared memory, execute calculation, and write the result back to shared
memory. After all the data are added up, thread 0 copies the result from
shared memory to global memory.

4.4 Summary

There are four phases in the GPU implementation: pre-processing, image
data reordering, moments computing, and image reconstruction. Based on
the features of the CUDA programming model, we have utilized three mea-
sures to improve the speed of our program. These optimizations include
partitioning the pixels dynamically to make full use of the global memory,
minimizing the data transfers and memory allocation, and making use of the
shared memory in parallel reduction.

31



Chapter 5

Experimental Results

5.1 Experiment Setup

In this research, our programs are developed in Python and CUDA C++.
Python is used in the CPU part of the program, and CUDA C++ is used to
write the GPU kernels. The PyCUDA library is imported to access NVIDIA’s
CUDA parallel computation API. Most real numbers and computations are
processed with the 32-bit floating-point format. The complex numbers are
treated by data type complex64, which is composed of two 32-bit precision
floats. The computer system employed in this experiment is equipped with
an Intel Core i5-8400 2.80GHz CPU with 16GB RAM, running on Ubuntu
18.04.4 LTS operating system. The GPU on our system is TITAN V with a
max clock rate of 1.46 GHz and 12GB global memory.

Figure 5.1 shows the two testing images utilized in our experiment and
both are sized at 512× 512 with 256 gray levels.

(a) (b)

Figure 5.1: The two utilized testing images, which are sized at 512 × 512

with 256 gray levels.

32



To evaluate the accuracy of image reconstruction performance, we have
utilized the Peak Signal to Noise Ratio (PSNR) to measure the qualities of
the reconstructed images. The definition of PSNR is given by

PSNR = 10 log10(
Max2

MSE
), (5.1)

where Max is the maximum gray level of the evaluated image, which is 255
in our experiment, and MSE is the Mean Square Error relating the image
f(xi, yj) and its reconstructed version f̂(xi, yj), assuming both images are
sized at M ×N , then

MSE =
1

MN

M∑
i=1

N∑
j=1

[f(xi, yj)− f̂(xi, yj)]
2. (5.2)

The minimum and maximum integer gray values of a pixel in our testing
images are 0 and 255. Therefore, in our reconstructed image f̂(xi, yj), all
values smaller than 0 and larger than 255 are set to 0 and 255, respectively.
In most cases, the higher PSNR value indicates the less difference between
the two compared images.

Since Zernike moments and pseudo-Zernike moments are defined on the
unit disk, during our moments calculating, we will discard any image pixel
with one of the k2 sub-regions falling outside of the unit disk. On the
other hand, when we perform image reconstructions from Zernike or pseudo-
Zernike moments, only the image pixels with all k2 sub-regions sitting inside
the unit disk are reconstructed.

5.2 Experimental Results of Zernike Moments

Computational Efficiency

We have calculated Zernike moments with different maximum order T and
sub-region scheme k. The running times for computing Zernike moments of

33



image Fig. 5.1(a) are shown in Table 5.1. Due to the same image size, the
computation times of Zernike moments for image Fig. 5.1(b) are the same as
those of Fig. 5.1(a).

Table 5.1: Zernike moments computation time (in seconds) for Fig. 5.1(a),
with maximum order T from 100 to 700 and sub-region scheme value k from
1 to 11. The times increase when T or k increases.

k\T 100 200 300 400 500 600 700

1 0.11 0.23 0.43 0.53 0.76 1.17 1.72

3 0.60 1.83 3.22 3.79 5.74 9.40 13.78

5 1.55 5.04 8.95 10.30 15.68 25.91 38.05

7 2.95 9.83 17.56 20.11 30.58 50.61 74.36

9 4.82 16.24 29.04 33.19 50.52 83.51 122.74

11 7.17 24.13 43.25 49.48 75.36 124.63 181.13

As demonstrated in Table 5.1, without applying k×k sub-region scheme,
it takes 1.72 seconds to calculate Zernike moments with maximum order
T = 700 of an image sized at 512 × 512. When the numerical sub-region
scheme is applied, the computation time is about 181.13 seconds with k = 11.

We have compared our results with the Zernike moments computation
times of Deng’s recursive method in Ref. [9], where the experiments are
executed in CPU. They have computed the Zernike moments of images sized
at 512× 512 up to 500 orders. Table 5.2 shows the comparison results with
the maximum number T from 100 to 500. The speedup rate is the ratio of
the time used in Deng’s method divided by that in our experiment. From
Table 5.2, when T increases, the speedup rate increases, indicating a better
acceleration of the GPU implementations. When T is 500, our result speeds
up the computation by seven times.

The execution time of some GPU kernels and their corresponding CPU

34



Table 5.2: Comparison of Zernike moments computation times in CPU [9]
and GPU. The speedup rate is the ratio of the time used in CPU divided
by that in GPU. when T increases, the speedup rate increases, indicating a
better acceleration of the GPU implementations.

Maximum Order T 100 200 300 400 500

CPU Results in Ref. [9] 0.22 0.87 1.87 3.32 5.29

Our GPU Results 0.11 0.23 0.43 0.53 0.76

Speedup Rate 2.0 3.8 4.4 6.3 7.0

functions is also compared. We have adapt the Origin_Kernel, Rho_Kernel
and Exp_Kernel into functions that executed in CPU. The data of images
with different sizes are computed through the CPU functions and the GPU
kernels. The maximum moments order T is set as 700, and the k × k sub-
region scheme is not used. The result is shown in Table. 5.3. The speeds of
GPU for these kernels are hundreds or thousands of times faster than CPU.

Computational Accuracy of Image Reconstructions

Some reconstructed images from Zernike moments of Fig. 5.1(a) are shown
in Figs. 5.2 and 5.3. The PSNR values of the reconstructed images are shown
in Table 5.4.

From the reconstructed images of Fig. 5.1(a) shown in Figs. 5.2 and 5.3,
we can observe that when the maximum Zernike moment order T increases,
more details of the original image will be reconstructed. However, when
k = 1, since the k × k sub-region scheme optimization has not been applied,
the reconstructed images are distorted in the edge areas when T goes higher.
As demonstrated in Figs. 5.2 and 5.3, when k increases, the distorted areas
will be reduced. When k is greater than five, the distortion will visually be
eliminated in the reconstructed images.

35



Table 5.3: The execution time of some GPU kernels and their corresponding
CPU functions with different image sizes. The maximum moments order T
is 700, and the k × k sub-region scheme is not used. The speeds of GPU for
these kernels are hundreds or thousands of times faster than CPU.

Image Size Kernel Name CPU GPU Speedup Rate

128× 128

Origin_Kernel 1.49E-02 2.65E-05 563
Rho_Kernel 1.66E-02 4.98E-05 333
Exp_Kernel 3.04E-02 3.50E-05 867

256× 256

Origin_Kernel 5.83E-02 2.67E-05 2,184
Rho_Kernel 6.04E-02 1.88E-04 322
Exp_Kernel 1.18E-01 9.16E-05 1,293

512× 512

Origin_Kernel 2.48E-01 3.41E-05 7,269
Rho_Kernel 2.40E-01 6.10E-04 393
Exp_Kernel 4.52E-01 3.35E-04 1,352

36



k\T 100 200 300

1

3

5

7

11

Figure 5.2: Images reconstructed from Zernike moments of Fig. 5.1(a) with
maximum order T from 100 to 300 and sub-region scheme value k from 1 to
11.

37



k\T 500 600 700

1

3

5

7

11

Figure 5.3: Images reconstructed from Zernike moments of Fig. 5.1(a) with
maximum order T from 400 to 700 and sub-region scheme value k from 1 to
11.

38



Table 5.4: PSNR values of images reconstructed from Zernike moments of
Fig. 5.1(a) with maximum order T from 100 to 700 and sub-region scheme
value k from 1 to 11.

k\T 100 200 300 400 500 600 700

1 26.93 29.61 27.50 23.95 20.87 18.545 16.59

3 26.90 30.59 33.81 36.65 37.45 34.59 32.69

5 26.90 30.60 33.80 36.74 39.36 41.77 43.93

7 26.90 30.60 33.80 36.74 39.35 41.89 44.50

9 26.90 30.60 33.80 36.74 39.36 41.88 44.52

11 26.90 30.59 33.80 36.74 39.37 41.88 44.52

In this research, we have also performed the image reconstructions from
Zernike moments of Fig. 5.1(b). Some reconstructed images of Fig. 5.1(b)
are presented in Figs. 5.4 and 5.5. Table 5.5 shows the PSNR values of
the reconstructed images. These results demonstrate that the performances
of image reconstructions from Zernike moments improve in a similar way to
those of Fig. 5.1(a), though the PSNR values are lower. This can be explained
by the fact that the image reconstruction performance will be affected by the
contents of an image.

It should be noted that we have also applied the 64-bit floating-point
format in our experiments. The times used to compute Zernike moments
are shown in Table 5.6. Although the running times are longer, the PSNR
values of the reconstructed images are almost identical with those of 32-bit
floating-point format. Therefore, we have applied the 32-bit precision in all
other experiments.

39



k\T 100 200 300

1

3

5

7

11

Figure 5.4: Images reconstructed from Zernike moments of Fig. 5.1(b) with
maximum order T from 100 to 300 and sub-region scheme value k from 1 to
11.

40



k\T 500 600 700

1

3

5

7

11

Figure 5.5: Images reconstructed from Zernike moments of Fig. 5.1(b) with
maximum order T from 400 to 700 and sub-region scheme value k from 1 to
11.

41



Table 5.5: PSNR values of images reconstructed from Zernike moments of
Fig. 5.1(b) with maximum order T from 100 to 700 and sub-region scheme
value k from 1 to 11.

k\T 100 200 300 400 500 600 700

1 21.96 23.17 23.50 22.55 20.62 18.72 16.78

3 21.95 23.36 24.97 26.78 28.63 30.02 31.01

5 21.95 23.36 24.96 26.78 28.87 31.33 34.43

7 21.95 23.36 24.96 26.78 28.86 31.33 34.50

9 21.95 23.36 24.96 26.78 28.86 31.33 34.49

11 21.95 23.36 24.96 26.78 28.86 31.32 34.49

Image Reconstructions from Partial Sets of Zernike
Moments

To verify the image information preserved by different sets of Zernike mo-
ments with various orders of n, we have reconstructed the image Fig. 5.1(a)
from partial sets of the moments calculated with k = 11. Figure 5.6 shows
images reconstructed from partial sets of Zernike moments with n = 0 to 50,
n = 51 to 100, n = 101 to 200, n = 201 to 300, n = 301 to 500, and n = 501

to 700, respectively. To make the displayed images more visible, the gray
values of Fig. 5.6(b) to Fig. 5.6(f) are multiplied by 10. Figure 5.6(a), the
image reconstructed from the lower orders of moments, shows the principle
segments of the original image. The images reconstructed from the higher
orders of Zernike moments provide more image details.

We have added up the reconstructed six images shown in Fig. 5.6 to com-
pose a new image, which is identical to the image shown at the bottom row
and right column in Fig. 5.3. This indicates that the information provided
by Zernike moments of each order is non-redundant.

42



Table 5.6: Zernike moments computation time (in seconds) for Fig. 5.1(a)
with 64-bit precision. The computation times are longer than those in Ta-
ble 5.1.

k\T 100 200 300 400 500 600 700

1 0.14 0.33 0.57 0.77 1.14 1.91 3.12

3 0.70 2.42 4.00 5.41 9.15 15.69 26.99

5 1.87 6.43 10.96 14.92 25.14 43.22 74.65

7 3.57 12.54 21.42 29.15 49.03 84.53 145.72

9 5.85 20.68 35.55 48.08 80.94 139.52 240.70

11 8.72 30.81 52.71 71.75 120.73 208.36 359.23

We have also performed image reconstructions from Zernike moments
with zero, positive, or negative values of repetition m. Figure 5.7 demon-
strates some reconstructed images of Fig. 5.1(a), with n = 0 to 700 and
k = 11. From Fig. 5.7(a) to Fig. 5.7(f), the values of m are 0 < m ≤ n,
−n ≤ m < 0, m = 0, 0 ≤ m ≤ n, −n ≤ m ≤ 0, and −n ≤ m ≤ n,
respectively. With such a setting in this experiment, the moments used to
reconstruct Fig. 5.7(d) is the collection of those for Figs. 5.7(a) and 5.7(c),
and the same relationships for Figs. 5.7(e), 5.7(b) and 5.7(c). In addition,
the moments involved to reconstruct Fig. 5.7(f) are composed of those in
Figs. 5.7(a), 5.7(b) and 5.7(c). Our experimental results have shown that
Figs. 5.7(a) and 5.7(b) are identical, and Figs. 5.7(d) and 5.7(e) are the
exactly same image as well.

43



(a) (b) (c)

(d) (e) (f)

Figure 5.6: Reconstructed images of Fig. 5.1(a) from sets of partial Zernike
moments with k = 11 and different order n. (a) n = 0 to 50. (b) n = 51

to 100. (c) n = 101 to 200. (d) n = 201 to 300. (e) n = 301 to 500. (f)
n = 501 to 700. Image in (a) shows the principle segments of the original
image. Images in other sub-figures provide more image details.

5.3 Experimental Results of Pseudo-Zernike
Moments

We have also done all the above experiments on pseudo-Zernike moments.

Computational Efficiency

The running times for computing pseudo-Zernike moments of image Fig. 5.1(a)
are shown in Table 5.7. Due to the same image size, the computation times

44



(a) (b) (c)

(d) (e) (f)

Figure 5.7: Reconstructed images of Fig. 5.1(a) from sets of partial Zernike
moments with n = 0 to 700, k = 11 and different repetition m. (a) 0 < m ≤
n. (b) −n ≤ m < 0. (c) m = 0. (d) 0 ≤ m ≤ n. (e) −n ≤ m ≤ 0. (f)
−n ≤ m ≤ n. Sub-figures (a) and (b) are identical. Sub-figures (d) and (e)
are identical.

of pseudo-Zernike moments for image Fig. 5.1(b) are the same as those of
Fig. 5.1(a).

As demonstrated in Table 5.7, without applying k×k sub-region scheme,
it takes less than 3.06 seconds to calculate pseudo-Zernike moments with
maximum order T = 700 of an image sized at 512×512. When the numerical
sub-region scheme is applied, the computation time is about 343.6 seconds
with k = 11.

From Table 5.1 and 5.7, the time used to compute pseudo-Zernike mo-
ments is approximately twice as much as that of Zernike moments. This
is consistent with the statement in Section 2.3 that the number of polyno-

45



mials included in pseudo-Zernike moments is (n + 1)2 while that of Zernike
moments is 1

2
(n+ 1)(n+ 2).

Table 5.7: Pseudo-Zernike moments computation time (in seconds) for
Fig. 5.1(a), with maximum order T from 100 to 700 and sub-region scheme
value k from 1 to 11. The times increase when T or k increases.

k\T 100 200 300 400 500 600 700

1 0.15 0.41 0.56 0.82 1.30 1.97 3.06

3 0.94 3.19 4.64 6.17 10.75 16.60 25.77

5 2.48 8.65 12.70 17.00 29.65 45.85 71.15

7 4.77 16.98 24.73 33.20 57.94 89.73 139.26

9 7.85 27.93 40.81 54.84 95.74 148.14 230.00

11 11.61 41.71 61.14 81.90 142.95 221.19 343.60

The comparison result of pseudo-Zernike moments computation times
between Deng’s recursive method [10] and ours is shown in Table 5.8.

Table 5.8: Comparison of pseudo-Zernike moments computation times in
CPU [10] and GPU. The speedup rate is the ratio of the time used in CPU
divided by that in GPU.

Maximum Order T 100 200 300 400 500

CPU Results in Ref. [10] 0.39 1.44 3.10 5.43 8.39

Our GPU Results 0.15 0.41 0.56 0.82 1.30

Speedup Rate 2.6 3.5 5.5 6.6 6.5

46



Computational Accuracy of Image Reconstructions

Some reconstructed images from pseudo-Zernike moments of Fig. 5.1(a) are
shown in Figs. 5.8 and 5.9. The PSNR values of the reconstructed images
are shown in Table 5.9.

Similar to images reconstructed from Zernike moments, the images in
Figs. 5.8 and 5.9 show that when the maximum pseudo-Zernike moment order
T increases, more details of the original image will be reconstructed. When
k = 1 and T goes higher, in addition to the distortions in the edge areas, the
centre area becomes white. When k is greater than five, the distortion will
visually be eliminated in the reconstructed images.

Table 5.9: PSNR values of images reconstructed from pseudo-Zernike mo-
ments of Fig. 5.1(a) with maximum order T from 100 to 700 and sub-region
scheme value k from 1 to 11.

k\T 100 200 300 400 500 600 700

1 28.82 28.81 23.83 19.83 16.74 14.18 12.02

3 28.82 33.64 37.10 36.23 33.07 30.48 28.07

5 28.82 33.63 37.38 40.46 42.22 41.18 36.42

7 28.82 33.63 37.37 40.56 42.94 44.13 44.61

9 28.82 33.63 37.37 40.56 43.01 45.048 46.12

11 28.82 33.63 37.37 40.56 43.01 45.07 46.29

Some reconstructed images from pseudo-Zernike moments of Fig. 5.1(b)
are presented in Figs. 5.10 and 5.11. Table 5.10 shows the PSNR values of
the reconstructed images. These results demonstrate that the performances
of image reconstructions from pseudo-Zernike moments improve in a similar
way to those of Fig. 5.1(a), though the PSNR values are lower. This indicates
that the image reconstruction performance of pseudo-Zernike moments is also
affected by the contents of an image.

47



k\T 100 200 300

1

3

5

7

11

Figure 5.8: Images reconstructed from pseudo-Zernike moments of Fig. 5.1(a)
with maximum order T from 100 to 300 and sub-region scheme value k from
1 to 11.

48



k\T 500 600 700

1

3

5

7

11

Figure 5.9: Images reconstructed from pseudo-Zernike moments of Fig. 5.1(a)
with maximum order T from 400 to 700 and sub-region scheme value k from
1 to 11.

49



k\T 100 200 300

1

3

5

7

11

Figure 5.10: Images reconstructed from pseudo-Zernike moments of
Fig. 5.1(b) with maximum order T from 100 to 300 and sub-region scheme
value k from 1 to 11.

50



k\T 500 600 700

1

3

5

7

11

Figure 5.11: Images reconstructed from pseudo-Zernike moments of
Fig. 5.1(b) with maximum order T from 400 to 700 and sub-region scheme
value k from 1 to 11.

51



Table 5.10: PSNR values of images reconstructed from pseudo-Zernike mo-
ments of Fig. 5.1(b) with maximum order T from 100 to 700 and sub-region
scheme value k from 1 to 11.

k\T 100 200 300 400 500 600 700

1 22.41 23.31 22.29 19.84 17.01 14.46 12.20

3 22.41 24.11 26.10 28.23 29.61 29.85 28.33

5 22.41 24.11 26.11 28.57 31.36 34.37 35.04

7 22.41 24.11 26.11 28.57 31.39 35.02 38.00

9 22.41 24.11 26.11 28.57 31.39 35.04 38.20

11 22.41 24.11 26.11 28.57 31.39 35.04 38.25

From Table 5.4 and 5.9, when T = 700 and k = 11, the PSNR value
of image reconstructed from pseudo-Zernike moments of Fig. 5.1(a) is 46.29,
higher than that of Zernike moments, which is 44.52. The same result is
shown in Table 5.5 and 5.10. The reason is that the number of pseudo-
Zernike moments used to reconstruct the image is almost twice as much as
that of Zernike moments.

Image Reconstructions from Partial Sets of Pseudo-
Zernike Moments

To verify the image information preserved by different sets of pseudo-Zernike
moments with various orders of n, we have reconstructed the image Fig. 5.1(a)
from partial sets of the moments calculated with k = 11. Figure 5.12 shows
images reconstructed from partial sets of pseudo-Zernike moments n = 0 to
50, n = 51 to 100, n = 101 to 200, n = 201 to 300, n = 301 to 500, and
n = 501 to 700, respectively. To make the displayed images more visible, the
gray values of Fig. 5.12(b) to Fig. 5.12(f) are multiplied by 10. Figure 5.12(a),

52



the image reconstructed from the lower orders of moments, shows the princi-
ple segments of the original image. The images reconstructed from the higher
orders of pseudo-Zernike moments provide more image details.

We have added up the reconstructed six images shown in Fig. 5.12 to
compose a new image, which is identical to the image shown at the bot-
tom row and right column in Fig. 5.9. This indicates that the information
provided by pseudo-Zernike moments of each order is non-redundant.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Reconstructed images of Fig. 5.1(a) from sets of partial pseudo-
Zernike moments with different order n. (a) n = 0 to 50. (b) n = 51 to 100.
(c) n = 101 to 200. (d) n = 201 to 300. (e) n = 301 to 500. (f) n = 501 to
700. Image in (a) shows the principle segments of the original image. Images
in other sub-figures provide more image details.

We have also performed image reconstructions from pseudo-Zernike mo-
ments with zero, positive, or negative values of repetitionm. Fig. 5.13 demon-
strates some reconstructed images of Fig. 5.1(a), with n = 0 to 700 and

53



(a) (b) (c)

(d) (e) (f)

Figure 5.13: Reconstructed images of Fig. 5.1(a) from sets of partial pseudo-
Zernike moments with n = 0 to 700, k = 11 and different repetition m. (a)
0 < m ≤ n. (b) −n ≤ m < 0. (c) m = 0. (d) 0 ≤ m ≤ n. (e) −n ≤ m ≤ 0.
(f) −n ≤ m ≤ n. Sub-figures (a) and (b) are identical. Sub-figures (d) and
(e) are identical.

k = 11. From Fig. 5.13(a) to Fig. 5.13(f), the values of m are 0 < m ≤ n,
−n ≤ m < 0, m = 0, 0 ≤ m ≤ n, −n ≤ m ≤ 0, and −n ≤ m ≤ n, re-
spectively. The experimental results are same with that of Zernike moments;
Figs. 5.13(a) and 5.13(b) are identical, and Figs. 5.13(d) and 5.13(e) are the
exactly same image as well.

5.4 Summary

In this chapter, we have demonstrated the efficiency of our GPU algorithm
by computing the Zernike and pseudo-Zernike moments of an image sized

54



at 512 × 512 up to order 700. A larger k in the k × k sub-region scheme
eliminates the distortions that appear in the image when the maximum order
is high. This approves that the k × k sub-region scheme could reduce the
approximation errors during the computation. Under the same settings, the
computation time and the PSNR values for pseudo-Zernike moments are
both higher than that of the Zernike moments, because a greater number
of moments are included in the former. Compared to the 32-bit floating-
point format, using the 64-bit precision in the computation increases the
computation time, while the accuracy is not improved.

The images that reconstructed from different parts of the moments show
the different information those moments preserve. The moments with lower
orders provide information of the principle segments of the original image,
while the moments with higher orders contain more image details. The mo-
ments whose repetition m are from 0 to n represent the identical information
with those whose m are from 0 to −n.

55



Chapter 6

Chinese Character Recognition with
Pseudo-Zernike Moments

In researches about Chinese character recognition, there are many feature
extraction methods based on the local structures of Chinese characters, like
strokes or feature points [31–34]. Many Chinese characters are similar in
shape and differ only slightly, such as those shown in Fig. 6.1. Those char-
acters with similar structures are hard to discriminate for structure-based
recognition systems [35]. Since moments can capture the global features
of images uniquely, they can be utilized as a complementary candidate to
overcome this problem confronting those Chinese character recognition sys-
tems. By proposing moments-based feature vectors, we can recognize Chinese
characters in the moment spaces and more efficiently to differentiate simi-
lar characters. In recent years, several types of moments have already been
employed in Chinese character recognition systems [36–39].

Figure 6.1: Chinese character pairs with similar structures. It is hard for
structure-based recognition systems to discriminate between them.

In this chapter, we will apply the feature vectors based on pseudo-Zernike
moments to build the Chinese character recognition systems and analyze
their performances. A set of 6,762 Chinese characters defined in the Chinese
standard GB2312 is utilized as testing objects in this research, which are

56



composed of 24× 24 binary pixels.

6.1 Chinese Character Recognition

The core of applying moments into Chinese character recognition is to ex-
tract moment feature vectors of Chinese characters. Different from real-
valued moments, pseudo-Zernike moments are complex and have both real
and imaginary parts. This enables us to utilize three types of values, the
whole complex numbers, the real parts, and the magnitudes of the lower or-
der pseudo-Zernike moments as feature vectors. We will use a set of 6,762
Chinese characters defined in China’s national standard GB2312 as testing
characters. Each Chinese character is a binary image with 24 × 24 pixels.
The positions of ‘0’s form the shape of the character, and the ‘1’s form the
background.

6.2 Pseudo-Zernike Moment Feature Vectors

Statistically, the moments with higher variances are more effective to dif-
ferentiate objects than those of the lower ones [40]. To find the moments
with higher variances, we have calculated the variances of the three types of
values from the pseudo-Zernike moments with order n ≤ 5 for all of the 6,762
Chinese characters. The results are shown in Table 6.1, Table 6.2, and Table
6.3, respectively. The four highest variances within each table are shown
in shadow. Using the moment values with the highest variances, we have
composed the following three pseudo-Zernike moment feature vectors

Vcomplex[f1 = Â40, f2 = Â50, f3 = Â51, f4 = Â52], (6.1)

Vreal[f1 = Re(Â40), f2 = Re(Â50), f3 = Re(Â51), f4 = Re(Â52)], (6.2)
and

Vmagnitude[f1 = |Â00|, f2 = |Â40|, f3 = |Â50|, f4 = |Â52|]. (6.3)

57



Table 6.1: Variance values of pseudo-Zernike moments Ânm with n ≤ 5

calculated by complex number. The four highest variances are shown in
shadow.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
|m| = 0 0.0035 0.0015 0.0020 0.0034 0.0054 0.0054
|m| = 1 0.0014 0.0017 0.0025 0.0040 0.0056
|m| = 2 0.0027 0.0026 0.0044 0.0062
|m| = 3 0.0026 0.0032 0.0048
|m| = 4 0.0031 0.0042
|m| = 5 0.0040

Table 6.2: Variance values of pseudo-Zernike moments Ânm with n ≤ 5 cal-
culated by their real parts. The four highest variances are shown in shadow.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
|m| = 0 0.0035 0.0015 0.0020 0.0034 0.0054 0.0054
|m| = 1 0.0008 0.0009 0.0016 0.0025 0.0038
|m| = 2 0.0021 0.0017 0.0031 0.0048
|m| = 3 0.0012 0.0018 0.0025
|m| = 4 0.0019 0.0027
|m| = 5 0.0019

58



Table 6.3: Variance values of pseudo-Zernike moments Ânm with n ≤ 5

calculated by their magnitudes. The four highest variances are shown in
shadow.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
|m| = 0 0.0035 0.0013 0.0013 0.0015 0.0023 0.0029
|m| = 1 0.0004 0.0004 0.0007 0.0010 0.0015
|m| = 2 0.0007 0.0008 0.0011 0.0019
|m| = 3 0.0006 0.0007 0.0012
|m| = 4 0.0017 0.0017
|m| = 5 0.0010

where Re(·) is the real part of a complex number and | · | is the magnitude of
a complex number. Each kind of vectors formed a four-dimensional pseudo-
Zernike moment feature space. Each Chinese character can be represented
by a vector in the feature space.

We have used the Euclidean distance to measure the distance between
any pair of two Chinese characters. For Vcomplex,

d(vi, vj) =
√

|f1i − f1j|2 + |f2i − f2j|2 + |f3i − f3j|2 + |f4i − f4j|2, (6.4)

where vi and vj (1 ≤ i, j ≤ 6762) are the two pseudo-Zernike moment feature
vectors representing two Chinese characters, and |fki − fkj| is the magnitude
of the difference between two complex numbers fki and fkj. For Vreal and
Vmagnitude,

d(vi, vj) =

√
(f1i − f1j)

2 + (f2i − f2j)
2 + (f3i − f3j)

2 + (f4i − f4j)
2. (6.5)

With the total of 6,762 Chinese characters in the data set, we will obtain
(6762× 6761) /2 = 22, 858, 941 distances in each of feature vector spaces.

59



Table 6.4: Statistics of distances between Chinese character pairs with three
pseudo-Zernike moments feature vectors and the best Zernike moments fea-
ture vector [37]. A lower number of Chinese character pairs in the rows of
low distance indicates a better performance.

d(vi, vj) Vcomplex Vreal Vmagnitude Vcomplex (Zernike)

0–0.01 2 382 1,866 1

0.01–0.02 160 5,618 26,502 103

0.02–0.03 1,458 23,291 103,019 1,431

0.03–0.04 6,656 60,438 244,556 9,356

0.04–0.05 20,698 119,687 443,697 34,357

0.05–0.06 49,165 202,445 680,139 93,979

0.06–0.07 99,181 308,695 933,184 204,098

0.07–0.08 175,069 420,358 1,172,664 376,078

0.08–0.09 274,844 566,927 1,384,329 602,301

0.09–0.10 401,117 707,207 1,544,734 869,781

Above 0.10 21,830,531 20,433,893 16,324,251 20,667,456

Average Distance 0.2018 0.1841 0.1350 0.1633

6.3 Experimental Results

To analyze the recognition power of the proposed pseudo-Zernike moment
feature vectors, Table 6.4 shows the statistic of distances in different value
intervals. As a comparison, the best results of applying Zernike moments
feature vector in a previous research [37] are also represented in Table 6.4.

Comparing the second to fourth columns in Table 6.4, the amount of dis-
tances based on feature vectors Vcomplex in each low-value intervals is less than

60



Table 6.5: The closest ten pairs of Chinese characters recognized by Vcomplex.
The two Chinese characters in each pair are quite different in shapes, com-
ponents, and the number of strokes.

差露 碍礓 唷漤 亮拿 片移

d(vi, vj) 0.0067 0.0095 0.0101 0.0102 0.0114

恰愉 痕吉 朱怃 工十 歌鹰

d(vi, vj) 0.0114 0.0115 0.0116 0.0118 0.0120

those of Vreal and Vmagnitude. This indicates that Vcomplex is more powerful in
recognizing Chinese characters.

We also compared our data to the data generated by Zernike moments
with the same process. The most powerful feature vector in Ref. [37]’s ex-
periment is also Vcomplex, which is listed in the fifth column of Table 6.4.
Comparing the values of two Vcomplexs, when distances are less than 0.03,
the numbers are very close. When distances are between 0.03 and 0.10,
numbers from pseudo-Zernike moments are less than numbers of Zernike
moments. The number of distances above 0.10 and the average distance of
Vcomplex from pseudo-Zernike moments are both larger than those of Zernike
moments. All of the above observations demonstrate that, in terms of recog-
nition power, the pseudo-Zernike moments are more powerful than Zernike
moments with the same order n. The better performance of pseudo-Zernike
moments may rely on the process of extracting feature vectors. Compared
to Zernike moments, pseudo-Zernike provides more moments to select from,
and the selected moments have larger variances than Zernike moments.

We pick out the closest ten pairs of Chinese characters recognized by
Vcomplex, Vreal, and Vmagnitude, and show them in Table 6.5, Table 6.6, and
Table 6.7, respectively.

Each pair of Chinese characters in the three tables are close in the pseudo-

61



Table 6.6: The closest ten pairs of Chinese characters recognized by Vreal.
The two Chinese characters in each pair are quite different in shapes, com-
ponents, and the number of strokes.

奸妊 钙脲 钡稼 缝钛 窘焘

d(vi, vj) 0.0019 0.0034 0.0036 0.0036 0.0039

它阌 舛睨 亮拿 潭亳 靖平

d(vi, vj) 0.0042 0.0042 0.0043 0.0043 0.0044

Table 6.7: The closest ten pairs of Chinese characters recognized by
Vmagnitude. The two Chinese characters in each pair are quite different in
shapes, components, and the number of strokes.

隧剃 掂薏 弹篥 绰肴 炯茴

d(vi, vj) 0.0011 0.0015 0.0018 0.0018 0.0019

财净 洁浴 邺麽 栽颉 呱觎

d(vi, vj) 0.0020 0.0020 0.0023 0.0024 0.0026

62



Zernike moment feature vector spaces. However, they are quite different in
shapes, components, and the number of strokes. Although there are diffi-
culties to recognize them by pseudo-Zernike moment features, these Chinese
character pairs can be easily recognized by recognition systems based on
structural features.

To further display the performance of pseudo-Zernike moment feature
vectors on recognizing Chinese characters, we list the distances of several
Chinese character pairs with similar shapes in the three different pseudo-
Zernike moment feature spaces. These pairs of Chinese characters are not
easy to recognize for Chinese character recognition systems that utilizing
structure features [37]. From Table 6.8, we can see pseudo-Zernike moment
features perform well in recognizing the two characters in each pair.

Based on the above performance, pseudo-Zernike moment feature vectors
could be a good complement to some existing structure feature-based Chinese
recognition systems.

Referring to Eq. (2.9), the pseudo-Zernike moments are rotational invari-
ant. To verify this property, we have applied the proposed three pseudo-
Zernike moment feature vectors to all Chinese characters which are rotated
by 90◦, 180◦, and 270◦, respectively. Our experiment results show that the
magnitudes of moments are invariant, and the distances based on Vmagnitude

are identical to the original ones.

6.4 Summary

In this chapter, the pseudo-Zernike moments feature vectors for Chinese char-
acters recognition are investigated. We choose a set of four lower order
pseudo-Zernike moments with highest variance values from different parts of
the moments, the whole complex moments, the real parts of the moments,
and the magnitudes of the moments to build three pseudo-Zernike moments

63



Table 6.8: Distances of some Chinese character pairs which are very close
in shapes. The values of these distances are relatively high, meaning the
pseudo-Zernike moment features could perform well in recognizing the two
characters in each pair.

搀馋 抄钞 芳坊 赢嬴 日曰

Complex plane 0.0666 0.0644 0.1714 0.1747 0.1545

Real part 0.0662 0.0570 0.1476 0.1715 0.1542

Magnitude 0.0629 0.0341 0.0913 0.1362 0.1320

莸荻 朴扑 鞲鞴 末木 己已

Complex plane 0.0857 0.1495 0.0587 0.1322 0.1348

Real part 0.0772 0.1419 0.0379 0.1135 0.1166

Magnitude 0.0627 0.0890 0.0339 0.1128 0.1116

主柱 壕嚎 诅阻 末未 夭乇

Complex plane 0.1598 0.1582 0.2806 0.0598 0.0963

Real part 0.1480 0.1576 0.2782 0.0596 0.0837

Magnitude 0.1348 0.1267 0.1443 0.0464 0.0780

奖桨 垃拉 伦抡 沦论 大犬

Complex plane 0.0701 0.0851 0.0586 0.0950 0.0817

Real part 0.0687 0.0714 0.0396 0.0918 0.0726

Magnitude 0.0526 0.0284 0.0483 0.0734 0.0386

搏博 俊浚 毫豪 竟竞 辩辨

Complex plane 0.1589 0.1423 0.1099 0.1275 0.1388

Real part 0.1560 0.1414 0.1082 0.1255 0.1385

Magnitude 0.0614 0.1199 0.0922 0.0727 0.1134

64



based feature vectors.

Our experiment results with a set of 6,762 Chinese characters show that
the vectors generated by the whole complex numbers of pseudo-Zernike mo-
ments are the most powerful in distinguishing Chinese characters. Compared
to Zernike moments, the pseudo-Zernike moments provide more moments to
choose from. Therefore, the performance of pseudo-Zernike moments based
feature vectors is also superior to those of Zernike moments.

The Chinese character pairs that are close in pseudo-Zernike moment
feature vector spaces are not similar in structure, and can be recognized by
recognition systems based on local structure features. On the other hand,
the Chinese characters with similar structures are difficult to recognize for lo-
cal structure-based systems, while our pseudo-Zernike moments method can
differentiate them efficiently. In conclusion, the method we proposed could
be a satisfying complementary scheme to other existing Chinese character
recognition systems.

65



Chapter 7

Concluding Remarks

In this research, we have proposed and implemented a GPU-accelerated al-
gorithm to compute Zernike and pseudo-Zernike moments of images. To
improve the computational accuracy of the two kinds of moments, this algo-
rithm employs the recursive relations of the radial polynomials for Zernike
and pseudo-Zernike moments. In addition, we have applied the numerical
k × k sub-region scheme to optimize double integrals and reduce the ap-
proximation errors. To use the full capability of GPU, we have adopted
the symmetric methods, partitioned the pixels dynamically, managed GPU
memory carefully, and used the shared memory in the process of parallel
reduction.

To verify the efficiency of our GPU accelerating computation algorithm,
we have calculated the Zernike and pseudo-Zernike moments of two testing
images sized at 512 × 512 with high orders. The experimental results show
that our approach can provide efficient computation performance to calculate
the moments. Without applying the numerical k × k sub-region scheme, for
an image sized at 512 × 512, it takes 1.7 seconds to calculate the Zernike
moments up to order 700, and 3.1 seconds to calculate the pseudo-Zernike
moments to the same order. When the sub-region scheme is adopted and
k = 11, the running time for Zernike moments is about 181.1 seconds, and
that of pseudo-Zernike moments is 343.6 seconds.

To investigate the accuracy of our GPU algorithm, we have calculated the
PSNR values of the reconstructed images from Zernike and pseudo-Zernike
moments with various maximum orders and different numerical k × k sub-
region schemes. The experimental results show that the higher orders of
moments in image reconstructions may introduce distortion, which can be

66



reduced significantly by increasing the numerical scheme k. For an image
sized at 512 × 512, with the maximum order of 700 and k = 11, the PSNR
values of its reconstructed versions from Zernike and pseudo-Zernike mo-
ments are 44.52 and 46.29 separately.

In this research, we have performed image reconstructions from partial
sets of Zernike and pseudo-Zernike moments with various order n and dif-
ferent repetition m. The experimental results of the two kinds of moments
are similar. We have concluded that the images reconstructed from the lower
orders of moments preserve the principle contents of the original image, while
the higher orders of moments contain more image information on details. We
have also observed that the positive and negative repetition m will result in
the identical reconstructed images.

We have also investigated the application of pseudo-Zernike moments in
Chinese characters recognition. We choose a set of four lower order pseudo-
Zernike moments with the highest variance values from different parts of the
moments and build three feature vectors based on pseudo-Zernike. A set of
6,762 Chinese characters defined in the Chinese standard GB2312 is utilized
in this research to test our proposed pseudo-Zernike moments feature vectors.
Our experimental results show that the three different feature vectors can
provide satisfied recognition performances independently, and the vectors
generated by the whole complex numbers of pseudo-Zernike moments are
the most powerful in distinguishing Chinese characters.

67



Appendix A

Source Code for the GPU Kernels

The programs of Zernike moments and pseudo-Zernike moments computation
share the same GPU kernels of Origin_Kernel, Rho_Kernel, Exp_Kernel,
Reorder_Kernel, and Znm_Sum_Kernel. Their Znm_Kernel, Vnm_Kernel,
and Fxy_Kernel are similar. In the following we will give the source code
for the GPU kernels of Zernike moments computation.

Source code A.1: Origin_Kernel
1 __global__ void o r i g i n_ke rn e l ( f l o a t * rho , f l o a t * theta ,
2 f l o a t *mask , f l o a t * step , i n t *width )
3 {
4 cons t i n t tx = threadIdx . x ;
5 cons t i n t ty = threadIdx . y ;
6 cons t i n t bw = blockDim . x ;
7 cons t i n t bh = blockDim . y ;
8 cons t i n t bx = blockIdx . x ;
9 cons t i n t by = blockIdx . y ;
10
11 cons t i n t loca l_width = *width ;
12 cons t f l o a t l o c a l_ s t ep = * s t ep ;
13 i n t hal f_width = loca l_width / 2 ;
14
15 i n t row = by * bh + ty ;
16 i n t c o l = bx * bw + tx ;
17 i n t pos = row * loca l_width + co l ;
18 // Ca l cu l a t e rho and the ta o f p i x e l s
19 i f ( row < loca l_width && co l < loca l_width ){
20 f l o a t x = −1 + 1/ f l o a t ( loca l_width ) +

68



21 l o c a l_ s t ep * f l o a t ( c o l ) ;
22 f l o a t y = 1 − 1/ f l o a t ( loca l_width )
23 − l o c a l_ s t ep * f l o a t ( row ) ;
24 rho [ pos ] = sq r t ( powf (x , 2) + powf (y , 2 ) ) ;
25 the ta [ pos ] = atan2 (y , x ) ;
26
27 // Ca l cu l a t e mask o f the l e f t upper qua r t e r o f
28 // the o r i g i n a l image
29
30 i f ( row < hal f_width && co l < hal f_width ){
31 i n t l e f t_corne r_pos = row * hal f_width + co l ;
32 f l o a t l e f t_corner_x = −1 + l o c a l_ s t ep * c o l ;
33 f l o a t l e f t_corner_y = 1 − l o c a l_ s t ep * row ;
34 f l o a t l e f t_corne r_rho =
35 s q r t ( powf ( l e f t_corner_x , 2)
36 + powf ( l e f t_corner_y , 2 ) ) ;
37 i f ( l e f t_corne r_rho <= 1){
38 mask [ l e f t_corne r_pos ] = 1 ;
39 }
40 }
41 }

Source code A.2: Exp_Kernel
1 # in c l ud e <pycuda−complex . hpp>
2 typede f pycuda : : complex<f l o a t > scmplx ;
3 __global__ void exp_kernel ( scmplx *ar_exp ,
4 f l o a t * ar_arctan , i n t *m, i n t * cu r r en t_p i x e l s )
5 {
6 cons t i n t tx = threadIdx . x ;
7 cons t i n t ty = threadIdx . y ;
8 cons t i n t bw = blockDim . x ;

69



9 cons t i n t bh = blockDim . y ;
10 cons t i n t bx = blockIdx . x ;
11 i n t pos = tx + ty *bw + bx*bw*bh ;
12 i f ( pos < (*m) * (* cu r r en t_p i x e l s ) ) {
13 i n t idx_orig in_y = pos / (* cu r r en t_p i x e l s ) ;
14 i n t idx_orig in_x = pos % (* cu r r en t_p i x e l s ) ;
15 ar_exp [ pos ] = exp(−scmplx (0 ,
16 ar_arctan [ idx_orig in_x ] * ( f l o a t ) ( idx_orig in_y ) ) ) ;
17 }
18 }

Source code A.3: Rho_Kernel
1 __global__ void rho_kerne l ( f l o a t *ar_rho ,
2 f l o a t * r ho_ f i l t e r e d , i n t *m, i n t * cu r r en t_p i x e l s )
3 {
4 cons t i n t tx = threadIdx . x ;
5 cons t i n t ty = threadIdx . y ;
6 cons t i n t bw = blockDim . x ;
7 cons t i n t bh = blockDim . y ;
8 cons t i n t bx = blockIdx . x ;
9 i n t pos = tx + ty *bw + bx*bw*bh ;
10 i f ( pos < (*m) * (* cu r r en t_p i x e l s ) ) {
11 i n t idx_orig in_y = pos / (* cu r r en t_p i x e l s ) ;
12 i n t idx_orig in_x = pos % (* cu r r en t_p i x e l s ) ;
13 ar_rho [ pos ] =
14 pow( r h o_ f i l t e r e d [ idx_or ig in_x ] , idx_or ig in_y ) ;
15 }
16 }

Source code A.4: Reorder_Kernel
1 #in c l ud e <pycuda−complex . hpp>

70



2 __global__ void r eo rde r_ke rne l (
3 f l o a t *img_out ,
4 f l o a t * img_in ,
5 i n t * octant_coord ,
6 i n t * cu r r en t_p ixe l s ,
7 i n t * current_four_count ,
8 i n t * current_eight_count ,
9 i n t *width_k ,
10 i n t *k
11 )
12 {
13 cons t i n t bx = blockIdx . x ;
14 cons t i n t bw = blockDim . x ;
15 cons t i n t tx = threadIdx . x ;
16 cons t i n t ty = threadIdx . y ;
17
18 cons t i n t cur rent_pixe l s_g =
19 * cu r r en t_p i x e l s ;
20 cons t i n t current_four_count_g =
21 * current_four_count ;
22 cons t i n t current_eight_count_g =
23 * current_eight_count ;
24 cons t i n t width_k_g = *width_k ;
25 cons t i n t k_g = *k ;
26 cons t i n t N = width_k_g / k_g ;
27
28 cons t i n t pos = bw * bw * bx + ty * bw + tx ;
29
30 i f ( pos < current_pixe l s_g ){
31 i n t row_k = octant_coord [ 2 * pos ] ;
32 i n t col_k = octant_coord [ 2 * pos + 1 ] ;

71



33 i n t row = row_k / k_g ;
34 i n t c o l = col_k / k_g ;
35 i n t minus_row = N − 1 − row ;
36 i n t minus_col = N − 1 − c o l ;
37
38 i f ( pos < current_eight_count_g ){
39
40 img_out [ pos ] = img_in [ row * N + co l ] ;
41 img_out [ pos + current_eight_count_g ]
42 = img_in [ c o l * N + row ] ;
43 img_out [ pos + 2 * current_eight_count_g ]
44 = img_in [ row * N + minus_col ] ;
45 img_out [ pos + 3 * current_eight_count_g ]
46 = img_in [ c o l * N + minus_row ] ;
47 img_out [ pos + 4 * current_eight_count_g ]
48 = img_in [ minus_row * N + co l ] ;
49 img_out [ pos + 5 * current_eight_count_g ]
50 = img_in [ minus_col * N + row ] ;
51 img_out [ pos + 6 * current_eight_count_g ]
52 = img_in [ minus_row * N + minus_col ] ;
53 img_out [ pos + 7 * current_eight_count_g ]
54 = img_in [ minus_col * N + minus_row ] ;
55
56 } e l s e {
57 i n t pos_base =
58 current_eight_count_g * 7 + pos ;
59 img_out [ pos_base ] = img_in [ row * N + co l ] ;
60 img_out [ pos_base + current_four_count_g ]
61 = img_in [ row * N + minus_col ] ;
62 img_out [ pos_base + 2 * current_four_count_g ]
63 = img_in [ minus_row * N + co l ] ;

72



64 img_out [ pos_base + 3 * current_four_count_g ]
65 = img_in [ minus_row * N + minus_col ] ;
66 }
67 }
68 }

Source code A.5: Znm_Kernel
1 # in c l ud e <pycuda−complex . hpp>
2 // ’ o rde r ’ i s the maximum order o f moments taken i n t o
3 // account , noted as T in the text , and passed by the
4 // host code .
5 # de f i n e l o c a l_o rd e r ” ” ” + orde r + ”””
6 typede f pycuda : : complex<f l o a t > scmplx ;
7 __device__ scmplx get_total_tmp ( i n t s i g , i n t num,
8 f l o a t * loaded_pixe l s , scmplx exp_n ) ;
9 __global__ void znm_kernel (
10 scmplx *ar_znm ,
11 f l o a t *ar_img_k ,
12 f l o a t *ar_rho_k ,
13 scmplx *ar_exp_k ,
14 i n t * cu r r en t_p ixe l s ,
15 i n t * current_four_count ,
16 i n t * current_eight_count )
17 {
18 cons t i n t tx = threadIdx . x ;
19 cons t i n t ty = threadIdx . y ;
20 cons t i n t bw = blockDim . x ;
21 cons t i n t bh = blockDim . y ;
22 cons t i n t bx = blockIdx . x ;
23
24 cons t i n t cu r r e n t_p i x e l s_ l o c a l =

73



25 * cu r r en t_p i x e l s ;
26 cons t i n t cur rent_e ight_count_loca l =
27 * current_eight_count ;
28 cons t i n t current_four_count_loca l =
29 * current_four_count ;
30
31 // Ca l cu l a t e the t o t a l number o f moments
32 cons t i n t znm_count = ( i n t ( l o c a l_o rd e r / 2) + 1)
33 * ( i n t ( l o c a l_o rd e r / 2) + 1 + lo ca l_o rd e r % 2 ) ;
34 f l o a t l oaded_p ixe l s [ 8 ] ;
35 i n t pos = tx + ty *bw + bx*bw*bh ;
36 f l o a t rho = ar_rho_k [ cu r r e n t_p i x e l s_ l o c a l + pos ] ;
37
38 i f ( pos < cu r r en t_p i x e l s_ l o c a l ){
39
40 f l o a t R[ l o c a l_o rd e r + 1 ] ;
41 f l o a t Rp [ l o c a l_o rd e r + 1 ] ;
42 f l o a t Rpp [ l o c a l_o rde r + 1 ] ;
43 scmplx total_tmp = scmplx ( 0 , 0 ) ;
44 scmplx pixel_sum ;
45 i n t znm_pos = 0 ;
46
47 // Proce s s p i x e l s that are e ight−symmetric
48 i f ( pos < current_e ight_count_loca l ){
49
50 // Load the va lue o f p i x e l s
51 f o r ( i n t i = 0 ; i < 8 ; i++){
52 l oaded_p ixe l s [ i ] = ar_img_k [
53 i * cur rent_e ight_count_loca l + pos ] ;
54 pixel_sum += loaded_p ixe l s [ i ] ;
55 }

74



56
57 ar_znm [ pos * znm_count ] = pixel_sum ;
58
59 Rpp [ 0 ] = 1 ;
60 Rp [ 1 ] = rho ;
61
62 // Ca l cu l a t e znm by the r e c u r s i v e method
63 f o r ( i n t n = 1 ; n <= lo ca l_o rde r ; n++){
64
65 scmplx exp_n =
66 ar_exp_k [ n * cu r r en t_p i x e l s_ l o c a l + pos ] ;
67 f l o a t exp_n_real = exp_n . r e a l ( ) ;
68 f l o a t exp_n_imag = exp_n . imag ( ) ;
69
70 i f ( n == 1){
71 total_tmp = scmplx (
72 ( l oaded_p ixe l s [ 0 ] − l o aded_p ixe l s [ 6 ]
73 − l o aded_p ixe l s [ 2 ] + loaded_p ixe l s [ 4 ] )
74 * exp_n_real
75 + ( l oaded_p ixe l s [ 1 ] − l o aded_p ixe l s [ 7 ]
76 − l o aded_p ixe l s [ 3 ] + loaded_p ixe l s [ 5 ] )
77 * exp_n_imag ,
78
79 ( l oaded_p ixe l s [ 0 ] − l o aded_p ixe l s [ 6 ]
80 + loaded_p ixe l s [ 2 ] − l o aded_p ixe l s [ 4 ] )
81 * exp_n_imag
82 + ( l oaded_p ixe l s [ 1 ] − l o aded_p ixe l s [ 7 ]
83 + loaded_p ixe l s [ 3 ] − l o aded_p ixe l s [ 5 ] )
84 * exp_n_real
85 ) ;
86

75



87 ar_znm [ pos * znm_count + 1 ] =
88 total_tmp * rho ;
89 cont inue ;
90 }
91
92 total_tmp =
93 get_total_tmp (0 , n , l oaded_pixe l s , exp_n ) ;
94 R[ n ] =
95 ar_rho_k [ n * cu r r en t_p i x e l s_ l o c a l + pos ] ;
96 znm_pos = ( i n t (n / 2) + 1) *
97 ( i n t (n / 2) + 1 + n % 2) − 1 ;
98 ar_znm [ pos * znm_count + znm_pos ] =
99 total_tmp * R[ n ] ;
100
101 i f ( n % 2 == 0){
102 R[ 0 ] = 2 * rho * Rp [ 1 ] − Rpp [ 0 ] ;
103 ar_znm [ pos * znm_count
104 + znm_pos − n / 2 ]
105 = pixel_sum * R [ 0 ] ;
106 }
107
108 total_tmp = scmplx ( 0 , 0 ) ;
109
110 f o r ( i n t m = n − 2 ; m > 0 ; m = m − 2 ){
111
112 exp_n = ar_exp_k [
113 m * cu r r en t_p i x e l s_ l o c a l + pos ] ;
114 exp_n_real = exp_n . r e a l ( ) ;
115 exp_n_imag = exp_n . imag ( ) ;
116
117 total_tmp = get_total_tmp (0 , m,

76



118 loaded_pixe l s , exp_n ) ;
119 R[m] =
120 rho * (Rp [m−1] + Rp [m+1]) − Rpp [m] ;
121 znm_pos = ( i n t ( ( n − 1) / 2) + 1) *
122 ( i n t ( ( n − 1) / 2) + 1 + (n − 1) % 2)
123 − 1 + i n t ( (m + 2) / 2 ) ;
124 ar_znm [ pos * znm_count + znm_pos ] =
125 total_tmp * R[m] ;
126 total_tmp = scmplx ( 0 , 0 ) ;
127 }
128
129 f o r ( i n t i = 0 ; i <= n ; i++){
130 Rpp [ i ] = Rp [ i ] ;
131 Rp [ i ] = R[ i ] ;
132 }
133
134 }
135
136 } e l s e {
137 // Proce s s p i x e l s that are four−symmetric
138 f o r ( i n t i = 0 ; i < 4 ; i++){
139 l oaded_p ixe l s [ i ] =
140 ar_img_k [ cur rent_e ight_count_loca l * 7 +
141 i * current_four_count_loca l + pos ] ;
142 pixel_sum += loaded_p ixe l s [ i ] ;
143 }
144 ar_znm [ pos * znm_count ] = pixel_sum ;
145 total_tmp = scmplx ( 0 , 0 ) ;
146
147 Rpp [ 0 ] = 1 ;
148 Rp [ 1 ] = rho ;

77



149
150 f o r ( i n t n = 1 ; n <= lo ca l_o rde r ; n++){
151 scmplx exp_n =
152 ar_exp_k [ n * cu r r en t_p i x e l s_ l o c a l + pos ] ;
153 f l o a t exp_n_real = exp_n . r e a l ( ) ;
154 f l o a t exp_n_imag = exp_n . imag ( ) ;
155
156 i f ( n == 1){
157 total_tmp =
158 l oaded_p ixe l s [ 0 ] * exp_n +
159 l oaded_p ixe l s [ 1 ]
160 * scmplx(−exp_n_imag , exp_n_real ) +
161 l oaded_p ixe l s [ 2 ] * pycuda : : con j ( exp_n )
162 + loaded_p ixe l s [ 3 ] *
163 scmplx(−exp_n_imag , −exp_n_real ) ;
164 ar_znm [ pos * znm_count + 1 ] =
165 total_tmp * rho ;
166 cont inue ;
167 }
168
169 total_tmp = get_total_tmp (1 , n ,
170 loaded_pixe l s , exp_n ) ;
171 R[ n ] =
172 ar_rho_k [ n * cu r r en t_p i x e l s_ l o c a l + pos ] ;
173 znm_pos = ( i n t (n / 2) + 1) *
174 ( i n t (n / 2) + 1 + n % 2) − 1 ;
175 ar_znm [ pos * znm_count + znm_pos ] =
176 total_tmp * R[ n ] ;
177
178 i f ( n % 2 == 0){
179 R[ 0 ] = 2 * rho * Rp [ 1 ] − Rpp [ 0 ] ;

78



180 ar_znm [ pos * znm_count
181 + znm_pos − n / 2 ]
182 = pixel_sum * R [ 0 ] ;
183 }
184
185 total_tmp = scmplx ( 0 , 0 ) ;
186
187 f o r ( i n t m = n − 2 ; m > 0 ; m = m − 2){
188 exp_n = ar_exp_k [
189 m * cu r r en t_p i x e l s_ l o c a l + pos ] ;
190
191 total_tmp = get_total_tmp (1 , m,
192 loaded_pixe l s , exp_n ) ;
193 R[m] =
194 rho * (Rp [m−1] + Rp [m+1]) − Rpp [m] ;
195 znm_pos = ( i n t ( ( n − 1) / 2) + 1) *
196 ( i n t ( ( n − 1) / 2) + 1 + (n − 1) % 2)
197 − 1 + i n t ( (m + 2) / 2 ) ;
198 ar_znm [ pos * znm_count + znm_pos ] =
199 total_tmp * R[m] ;
200 total_tmp = scmplx ( 0 , 0 ) ;
201 }
202 f o r ( i n t i = 0 ; i <= n ; i++){
203 Rpp [ i ] = Rp [ i ] ;
204 Rp [ i ] = R[ i ] ;
205 }
206 }
207
208 }
209
210 }

79



211 }
212 __device__ scmplx get_total_tmp ( i n t s i g , i n t num,
213 f l o a t * loaded_pixe l s , scmplx exp_n){
214
215 scmplx total_tmp = scmplx ( 0 , 0 ) ;
216 f l o a t exp_n_real = exp_n . r e a l ( ) ;
217 f l o a t exp_n_imag = exp_n . imag ( ) ;
218
219 //Make use o f symmetric p r o p e r t i e s
220 i f ( s i g == 0){
221 i f (num % 4 == 0){
222 total_tmp = ( loaded_p ixe l s [ 0 ] + loaded_p ixe l s [ 6 ]
223 + loaded_p ixe l s [ 3 ] + loaded_p ixe l s [ 5 ] ) * exp_n
224 + ( l oaded_p ixe l s [ 1 ] + loaded_p ixe l s [ 2 ]
225 + loaded_p ixe l s [ 4 ] + loaded_p ixe l s [ 7 ] )
226 * pycuda : : con j ( exp_n ) ;
227 } e l s e i f (num % 4 == 1){
228 total_tmp = ( loaded_p ixe l s [ 0 ] − l o aded_p ixe l s [ 6 ] )
229 * exp_n + ( loaded_p ixe l s [ 1 ] − l o aded_p ixe l s [ 7 ] )
230 * scmplx ( exp_n_imag , exp_n_real )
231 + ( l oaded_p ixe l s [ 4 ] − l o aded_p ixe l s [ 2 ] )
232 * pycuda : : con j ( exp_n )
233 + ( l oaded_p ixe l s [ 3 ] − l o aded_p ixe l s [ 5 ] )
234 * scmplx(−exp_n_imag , exp_n_real ) ;
235 } e l s e i f (num % 4 == 2){
236 total_tmp = ( loaded_p ixe l s [ 0 ] + loaded_p ixe l s [ 6 ]
237 − l o aded_p ixe l s [ 3 ] − l o aded_p ixe l s [ 5 ] ) * exp_n +
238 ( l oaded_p ixe l s [ 2 ] + loaded_p ixe l s [ 4 ]
239 − l o aded_p ixe l s [ 1 ] − l o aded_p ixe l s [ 7 ] )
240 * pycuda : : con j ( exp_n ) ;
241 } e l s e {

80



242 total_tmp = ( loaded_p ixe l s [ 0 ] − l o aded_p ixe l s [ 6 ] )
243 * exp_n − ( l oaded_p ixe l s [ 2 ] − l o aded_p ixe l s [ 4 ] )
244 * pycuda : : con j ( exp_n )
245 − ( l oaded_p ixe l s [ 3 ] − l o aded_p ixe l s [ 5 ] )
246 * scmplx(−exp_n_imag , exp_n_real )
247 − ( l oaded_p ixe l s [ 1 ] − l o aded_p ixe l s [ 7 ] )
248 * scmplx ( exp_n_imag , exp_n_real ) ;
249 }
250 } e l s e {
251
252 i f (num % 4 == 0){
253 total_tmp = ( loaded_p ixe l s [ 0 ] + loaded_p ixe l s [ 1 ]
254 + loaded_p ixe l s [ 2 ] + loaded_p ixe l s [ 3 ] ) * exp_n ;
255 } e l s e i f (num % 4 == 1){
256 total_tmp = loaded_p ixe l s [ 0 ] * exp_n +
257 l oaded_p ixe l s [ 1 ] *
258 scmplx(−exp_n_imag , exp_n_real )
259 + loaded_p ixe l s [ 2 ] * pycuda : : con j ( exp_n )
260 + loaded_p ixe l s [ 3 ] *
261 scmplx(−exp_n_imag , −exp_n_real ) ;
262 } e l s e i f (num % 4 == 2){
263 total_tmp = ( loaded_p ixe l s [ 0 ] − l o aded_p ixe l s [ 1 ] )
264 * exp_n + ( loaded_p ixe l s [ 2 ] − l o aded_p ixe l s [ 3 ] )
265 * pycuda : : con j ( exp_n ) ;
266 } e l s e {
267 total_tmp = loaded_p ixe l s [ 0 ] * exp_n −
268 l oaded_p ixe l s [ 1 ] *
269 scmplx(−exp_n_imag , exp_n_real )
270 + loaded_p ixe l s [ 2 ] *
271 pycuda : : con j ( exp_n ) − l o aded_p ixe l s [ 3 ] *
272 scmplx(−exp_n_imag , −exp_n_real ) ;

81



273 }
274 }
275 r e tu rn total_tmp ;
276 }

Source code A.6: Znm_Sum_Kernel
1 /* The input i s a matr ix with s i z e o f number o f
2 * cu r r en t_p i x e l s by number o f moments . We need to
3 * c a l c u l a t e the sum o f each column , i . e . adding up
4 * the znm o f a l l p i x e l s under one s p e c i f i c moment .
5 * Each moment i s c a l c u l a t e d by one b lock and each
6 * thread in t h i s b lock may load and add up more
7 * than one va lu e s . The s i z e o f the shared memory
8 * i s equa l to the number o f th r eads in a b lock .
9 * I t i s used f o r r educ t i on . For example , when one
10 * b lock has 512 threads , the s i z e o f shared memory
11 * i s 512* d a t a s i z e . Assuming the r e are 3380 p i x e l s ,
12 * and 3080 ÷ 512 = 6 . 0 2 . Then each thread l oad s and
13 * adds up 7 va lu e s， and 440 threads are t r u e l y used .
14 */
15
16 # in c l ud e <pycuda−complex . hpp>
17
18 typede f pycuda : : complex<f l o a t > scmplx ;
19 __global__ void znm_sum_kernel (
20 scmplx *ar_zsum ,
21 scmplx *ar_znm ,
22 i n t *znm_count ,
23 i n t * cu r r en t_p i x e l s )
24 {
25 cons t i n t tx = threadIdx . x ;

82



26 cons t i n t bx = blockIdx . x ;
27 cons t i n t bw = blockDim . x ;
28 ex te rn __shared__ scmplx s_data [ ] ;
29 // Ca l cu l a t e the number o f va lu e s each thread l oad s .
30 i n t data_per_pos = ( (* cu r r en t_p i x e l s ) − 1) / bw + 1 ;
31 i n t pos_in_block = 0 ;
32 s_data [ tx ] = 0 ;
33
34 i f ( bx < (* znm_count ) ){
35 //Load and add up va lu e s and s t o r e to shared memory
36 f o r ( i n t i = 0 ; i < data_per_pos ; i ++){
37 pos_in_block = i * bw + tx ;
38 i f ( pos_in_block < (* cu r r en t_p i x e l s ) ) {
39 s_data [ tx ] +=
40 ar_znm [ pos_in_block * (* znm_count ) + bx ] ;
41 }
42
43 }
44
45 __syncthreads ( ) ;
46 //Reduction
47 f o r ( i n t i = blockDim . x / 2 ; i > 0 ; i /= 2){
48 i f ( tx < i ){
49 s_data [ tx ] = s_data [ tx ] + s_data [ tx + i ] ;
50 }
51 __syncthreads ( ) ;
52 }
53
54 i f ( tx == 0){
55 ar_zsum [ bx ] = s_data [ 0 ] ;
56 }

83



57
58 }
59
60 }

Source code A.7: Vnm_Kernel
1 # in c l ud e <pycuda−complex . hpp>
2 # de f i n e l o c a l_o rd e r ” ” ” + orde r + ”””
3 typede f pycuda : : complex<f l o a t > scmplx ;
4 __device__ void get_ar_vnm( i n t s i g , i n t num,
5 scmplx temp , scmplx *ar_vnm_temp ) ;
6 __global__ void vnm_kernel (
7 scmplx *ar_vnm ,
8 f l o a t *ar_rho ,
9 scmplx *ar_exp ,
10 i n t * cu r r en t_p ixe l s ,
11 i n t * current_eight_count )
12 {
13 cons t i n t tx = threadIdx . x ;
14 cons t i n t ty = threadIdx . y ;
15 cons t i n t bw = blockDim . x ;
16 cons t i n t bh = blockDim . y ;
17 cons t i n t bx = blockIdx . x ;
18 cons t i n t vnm_count = ( i n t ( l o c a l_o rd e r / 2) + 1)
19 * ( i n t ( l o c a l_o rd e r / 2) + 1 + lo ca l_o rd e r % 2 ) ;
20 cons t i n t cu r r e n t_p i x e l s_ l o c a l = * cu r r en t_p i x e l s ;
21 cons t i n t cur rent_e ight_count_loca l =
22 * current_eight_count ;
23
24 i n t pos = tx + ty *bw + bx*bw*bh ;
25 f l o a t rho = ar_rho [ c u r r e n t_p i x e l s_ l o c a l + pos ] ;

84



26
27 i f ( pos < cu r r en t_p i x e l s_ l o c a l ){
28
29 f l o a t R[ l o c a l_o rd e r + 1 ] ;
30 f l o a t Rp [ l o c a l_o rd e r + 1 ] ;
31 f l o a t Rpp [ l o c a l_o rde r + 1 ] ;
32 scmplx temp = scmplx ( 0 , 0 ) ;
33 f l o a t temp_real = 0 ;
34 f l o a t temp_imag = 0 ;
35 i n t vnm_pos = 0 ;
36
37 i f ( pos < current_e ight_count_loca l ){
38 scmplx ar_vnm_temp [ 6 ] ;
39
40 ar_vnm [ pos * 8 * vnm_count ] = 1 ;
41 ar_vnm [ ( pos * 8 + 1) * vnm_count ] = 1 ;
42 ar_vnm [ ( pos * 8 + 2) * vnm_count ] = 1 ;
43 ar_vnm [ ( pos * 8 + 3) * vnm_count ] = 1 ;
44 ar_vnm [ ( pos * 8 + 4) * vnm_count ] = 1 ;
45 ar_vnm [ ( pos * 8 + 5) * vnm_count ] = 1 ;
46 ar_vnm [ ( pos * 8 + 6) * vnm_count ] = 1 ;
47 ar_vnm [ ( pos * 8 + 7) * vnm_count ] = 1 ;
48
49 Rpp [ 0 ] = 1 ;
50 Rp [ 1 ] = rho ;
51
52 f o r ( i n t n = 1 ; n <= lo ca l_o rde r ; n++){
53
54 i f ( n == 1){
55 temp =
56 ar_exp [ ( * cu r r en t_p i x e l s ) + pos ] * rho ;

85



57 ar_vnm [ pos * 8 * vnm_count + 1 ]
58 = temp ;
59 temp_real = temp . r e a l ( ) ;
60 temp_imag = temp . imag ( ) ;
61 ar_vnm [ ( pos * 8 + 4)* vnm_count
62 + 1 ] = pycuda : : con j ( temp ) ;
63 ar_vnm [ ( pos * 8 + 1)* vnm_count
64 + 1 ] = scmplx ( temp_imag , temp_real ) ;
65 ar_vnm [ ( pos * 8 + 2)* vnm_count
66 + 1 ] = −pycuda : : con j ( temp ) ;
67 ar_vnm [ ( pos * 8 + 3)* vnm_count
68 + 1 ] = scmplx(−temp_imag , temp_real ) ;
69 ar_vnm [ ( pos * 8 + 5)* vnm_count
70 + 1 ] = scmplx ( temp_imag , −temp_real ) ;
71 ar_vnm [ ( pos * 8 + 6)* vnm_count
72 + 1 ] = −temp ;
73 ar_vnm [ ( pos * 8 + 7)* vnm_count
74 + 1 ] = −scmplx ( temp_imag , temp_real ) ;
75 cont inue ;
76 }
77 R[ n ] =
78 ar_rho [ n * cu r r en t_p i x e l s_ l o c a l + pos ] ;
79 vnm_pos = ( i n t (n / 2) + 1) *
80 ( i n t (n / 2) + 1 + n % 2) − 1 ;
81 temp = ar_exp [ n * (* cu r r en t_p i x e l s )
82 + pos ] * R[ n ] ;
83 ar_vnm [ pos * 8 * vnm_count
84 + vnm_pos ] = temp ;
85 ar_vnm [ ( pos * 8 + 4)* vnm_count
86 + vnm_pos ] = pycuda : : con j ( temp ) ;
87 get_ar_vnm (0 , n , temp , ar_vnm_temp ) ;

86



88 ar_vnm [ ( pos * 8 + 1)* vnm_count
89 + vnm_pos ] = ar_vnm_temp [ 0 ] ;
90 ar_vnm [ ( pos * 8 + 2)* vnm_count
91 + vnm_pos ] = ar_vnm_temp [ 1 ] ;
92 ar_vnm [ ( pos * 8 + 3)* vnm_count
93 + vnm_pos ] = ar_vnm_temp [ 2 ] ;
94 ar_vnm [ ( pos * 8 + 5)* vnm_count
95 + vnm_pos ] = ar_vnm_temp [ 3 ] ;
96 ar_vnm [ ( pos * 8 + 6)* vnm_count
97 + vnm_pos ] = ar_vnm_temp [ 4 ] ;
98 ar_vnm [ ( pos * 8 + 7)* vnm_count
99 + vnm_pos ] = ar_vnm_temp [ 5 ] ;
100
101 i f ( n % 2 == 0){
102 R[ 0 ] = 2 * rho * Rp [ 1 ] − Rpp [ 0 ] ;
103 temp = R [ 0 ] ;
104 temp_real = temp . r e a l ( ) ;
105 temp_imag = temp . imag ( ) ;
106 ar_vnm [ pos * 8 * vnm_count +
107 vnm_pos − n / 2 ] = temp ;
108 ar_vnm [ ( pos * 8 + 4)* vnm_count +
109 vnm_pos − n / 2 ] = temp ;
110 ar_vnm [ ( pos * 8 + 1)* vnm_count +
111 vnm_pos − n / 2 ] = temp ;
112 ar_vnm [ ( pos * 8 + 2)* vnm_count +
113 vnm_pos − n / 2 ] = temp ;
114 ar_vnm [ ( pos * 8 + 3)* vnm_count +
115 vnm_pos − n / 2 ] = temp ;
116 ar_vnm [ ( pos * 8 + 5)* vnm_count +
117 vnm_pos − n / 2 ] = temp ;
118 ar_vnm [ ( pos * 8 + 6)* vnm_count +

87



119 vnm_pos − n / 2 ] = temp ;
120 ar_vnm [ ( pos * 8 + 7)* vnm_count +
121 vnm_pos − n / 2 ] = temp ;
122 }
123
124 temp = scmplx ( 0 , 0 ) ;
125 f o r ( i n t m = n − 2 ; m > 0 ; m = m − 2){
126 R[m] = rho * (Rp [m−1] + Rp [m+1])
127 − Rpp [m] ;
128 vnm_pos = ( i n t ( ( n − 1) / 2) + 1) *
129 ( i n t ( ( n − 1) / 2) + 1 + (n − 1) % 2)
130 − 1 + i n t ( (m + 2) / 2 ) ;
131 temp = R[m] *
132 ar_exp [m * (* cu r r en t_p i x e l s ) + pos ] ;
133 ar_vnm [ pos * 8 * vnm_count
134 + vnm_pos ] = temp ;
135 ar_vnm [ ( pos * 8 + 4)* vnm_count
136 + vnm_pos ] = pycuda : : con j ( temp ) ;
137 get_ar_vnm (0 , m, temp , ar_vnm_temp ) ;
138 ar_vnm [ ( pos * 8 + 1)* vnm_count
139 + vnm_pos ] = ar_vnm_temp [ 0 ] ;
140 ar_vnm [ ( pos * 8 + 2)* vnm_count
141 + vnm_pos ] = ar_vnm_temp [ 1 ] ;
142 ar_vnm [ ( pos * 8 + 3)* vnm_count
143 + vnm_pos ] = ar_vnm_temp [ 2 ] ;
144 ar_vnm [ ( pos * 8 + 5)* vnm_count
145 + vnm_pos ] = ar_vnm_temp [ 3 ] ;
146 ar_vnm [ ( pos * 8 + 6)* vnm_count
147 + vnm_pos ] = ar_vnm_temp [ 4 ] ;
148 ar_vnm [ ( pos * 8 + 7)* vnm_count
149 + vnm_pos ] = ar_vnm_temp [ 5 ] ;

88



150 temp = scmplx ( 0 , 0 ) ;
151 }
152 f o r ( i n t i = 0 ; i <= n ; i++){
153 Rpp [ i ] = Rp [ i ] ;
154 Rp [ i ] = R[ i ] ;
155 }
156 }
157 } e l s e {
158 scmplx ar_vnm_temp [ 2 ] ;
159 i n t base_row =
160 cur rent_e ight_count_loca l * 8
161 + ( pos − cur rent_e ight_count_loca l ) * 4 ;
162 ar_vnm [ base_row * vnm_count ] = 1 ;
163 ar_vnm [ ( base_row + 1) * vnm_count ] = 1 ;
164 ar_vnm [ ( base_row + 2) * vnm_count ] = 1 ;
165 ar_vnm [ ( base_row + 3) * vnm_count ] = 1 ;
166
167 Rpp [ 0 ] = 1 ;
168 Rp [ 1 ] = rho ;
169
170 f o r ( i n t n = 1 ; n <= lo ca l_o rde r ; n++){
171 i f ( n == 1){
172 temp =
173 ar_exp [ ( * cu r r en t_p i x e l s ) + pos ] * rho ;
174 ar_vnm [ base_row * vnm_count + 1 ] = temp ;
175 temp_real = temp . r e a l ( ) ;
176 temp_imag = temp . imag ( ) ;
177 ar_vnm [ ( base_row + 2) * vnm_count + 1 ]
178 = pycuda : : con j ( temp ) ;
179 ar_vnm [ ( base_row + 1)* vnm_count + 1 ]
180 = scmplx(−temp_imag , temp_real ) ;

89



181 ar_vnm [ ( base_row + 3)* vnm_count + 1 ]
182 = −scmplx ( temp_imag , temp_real ) ;
183 cont inue ;
184 }
185 R[ n ] = ar_rho [ n * cu r r en t_p i x e l s_ l o c a l + pos ] ;
186 vnm_pos = ( i n t (n / 2) + 1) *
187 ( i n t (n / 2) + 1 + n % 2) − 1 ;
188 temp =
189 ar_exp [ n * (* cu r r en t_p i x e l s ) + pos ] * R[ n ] ;
190
191 ar_vnm [ base_row * vnm_count + vnm_pos ] = temp ;
192 ar_vnm [ ( base_row + 2)* vnm_count + vnm_pos ]
193 = pycuda : : con j ( temp ) ;
194
195 get_ar_vnm (1 , n , temp , ar_vnm_temp ) ;
196 ar_vnm [ ( base_row + 1)* vnm_count + vnm_pos ]
197 = ar_vnm_temp [ 0 ] ;
198 ar_vnm [ ( base_row + 3)* vnm_count + vnm_pos ]
199 = ar_vnm_temp [ 1 ] ;
200
201 i f ( n % 2 == 0){
202 R[ 0 ] = 2 * rho * Rp [ 1 ] − Rpp [ 0 ] ;
203 temp = R [ 0 ] ;
204 temp_real = temp . r e a l ( ) ;
205 temp_imag = temp . imag ( ) ;
206 ar_vnm [ base_row * vnm_count +
207 vnm_pos − n / 2 ] = temp ;
208 ar_vnm [ ( base_row + 2)* vnm_count +
209 vnm_pos − n / 2 ] = temp ;
210 ar_vnm [ ( base_row + 1)* vnm_count +
211 vnm_pos − n / 2 ] = temp ;

90



212 ar_vnm [ ( base_row + 3)* vnm_count +
213 vnm_pos − n / 2 ] = temp ;
214 }
215
216 temp = scmplx ( 0 , 0 ) ;
217 f o r ( i n t m = n − 2 ; m > 0 ; m = m − 2){
218 R[m] = rho * (Rp [m−1]
219 + Rp [m+1]) − Rpp [m] ;
220 vnm_pos = ( i n t ( ( n − 1) / 2) + 1) *
221 ( i n t ( ( n − 1) / 2) + 1 + (n − 1) % 2)
222 − 1 + i n t ( (m + 2) / 2 ) ;
223 temp = R[m] * ar_exp [
224 m * (* cu r r en t_p i x e l s ) + pos ] ;
225
226 ar_vnm [ base_row * vnm_count
227 + vnm_pos ] = temp ;
228 ar_vnm [ ( base_row + 2)* vnm_count
229 + vnm_pos ] = pycuda : : con j ( temp ) ;
230 get_ar_vnm (1 , m, temp , ar_vnm_temp ) ;
231 ar_vnm [ ( base_row + 1)* vnm_count
232 + vnm_pos ] = ar_vnm_temp [ 0 ] ;
233 ar_vnm [ ( base_row + 3)* vnm_count
234 + vnm_pos ] = ar_vnm_temp [ 1 ] ;
235 temp = scmplx ( 0 , 0 ) ;
236 }
237 f o r ( i n t i = 0 ; i <= n ; i++){
238 Rpp [ i ] = Rp [ i ] ;
239 Rp [ i ] = R[ i ] ;
240 }
241 }
242

91



243 }
244
245 }
246 }
247
248 __device__ void get_ar_vnm( i n t s i g , i n t num,
249 scmplx temp , scmplx *ar_vnm_temp){
250 f l o a t temp_real = temp . r e a l ( ) ;
251 f l o a t temp_imag = temp . imag ( ) ;
252 i f ( s i g == 0){
253 i f (num % 4 == 0){
254 ar_vnm_temp [ 0 ] = pycuda : : con j ( temp ) ;
255 ar_vnm_temp [ 1 ] = pycuda : : con j ( temp ) ;
256 ar_vnm_temp [ 2 ] = temp ;
257 ar_vnm_temp [ 3 ] = temp ;
258 ar_vnm_temp [ 4 ] = temp ;
259 ar_vnm_temp [ 5 ] = pycuda : : con j ( temp ) ;
260
261 } e l s e i f (num % 4 == 1){
262 ar_vnm_temp [ 0 ] = scmplx ( temp_imag , temp_real ) ;
263 ar_vnm_temp [ 1 ] = −pycuda : : con j ( temp ) ;
264 ar_vnm_temp [ 2 ] = scmplx(−temp_imag , temp_real ) ;
265 ar_vnm_temp [ 3 ] = scmplx ( temp_imag , −temp_real ) ;
266 ar_vnm_temp [ 4 ] = −temp ;
267 ar_vnm_temp [ 5 ] = −scmplx ( temp_imag , temp_real ) ;
268
269 } e l s e i f (num % 4 == 2){
270 ar_vnm_temp [ 0 ] = −pycuda : : con j ( temp ) ;
271 ar_vnm_temp [ 1 ] = pycuda : : con j ( temp ) ;
272 ar_vnm_temp [ 2 ] = −temp ;
273 ar_vnm_temp [ 3 ] = −temp ;

92



274 ar_vnm_temp [ 4 ] = temp ;
275 ar_vnm_temp [ 5 ] = −pycuda : : con j ( temp ) ;
276
277 } e l s e {
278 ar_vnm_temp [ 0 ] = −scmplx ( temp_imag , temp_real ) ;
279 ar_vnm_temp [ 1 ] = −pycuda : : con j ( temp ) ;
280 ar_vnm_temp [ 2 ] = −scmplx(−temp_imag , temp_real ) ;
281 ar_vnm_temp [ 3 ] = scmplx(−temp_imag , temp_real ) ;
282 ar_vnm_temp [ 4 ] = −temp ;
283 ar_vnm_temp [ 5 ] = scmplx ( temp_imag , temp_real ) ;
284
285 }
286
287 } e l s e {
288 i f (num % 4 == 0){
289 ar_vnm_temp [ 0 ] = temp ;
290 ar_vnm_temp [ 1 ] = temp ;
291
292 } e l s e i f (num % 4 == 1){
293 ar_vnm_temp [ 0 ] = scmplx(−temp_imag , temp_real ) ;
294 ar_vnm_temp [ 1 ] = −scmplx ( temp_imag , temp_real ) ;
295
296 } e l s e i f (num % 4 == 2){
297 ar_vnm_temp [ 0 ] = −temp ;
298 ar_vnm_temp [ 1 ] = −pycuda : : con j ( temp ) ;
299
300 } e l s e {
301 ar_vnm_temp [ 0 ] = scmplx ( temp_imag , −temp_real ) ;
302 ar_vnm_temp [ 1 ] = scmplx ( temp_imag , temp_real ) ;
303
304 }

93



305 }
306 }

Source code A.8: Fxy_Kernel
1 # in c l ud e <pycuda−complex . hpp>
2 typede f pycuda : : complex<f l o a t > scmplx ;
3 __global__ void fxy_kerne l (
4 scmplx *ar_fxy ,
5 scmplx *ar_moments ,
6 scmplx *ar_vnm ,
7 i n t * order ,
8 i n t *vnm_count ,
9 i n t * cu r r en t_p i x e l s )
10 {
11 cons t i n t tx = threadIdx . x ;
12 cons t i n t bx = blockIdx . x ;
13 cons t i n t bw = blockDim . x ;
14 cons t f l o a t p i = atan ( 1 . ) * 4 ;
15
16 i n t pos = bx * bw + tx ;
17 scmplx temp = scmplx (0 , 0 ) ;
18
19 i f ( pos < (* cu r r en t_p i x e l s ) ) {
20 i n t n0 = 0 ;
21 //When n i s even
22 f o r ( i n t i = 0 ; i <= (* orde r ) ; i = i + 2){
23 n0 = i / 2 * ( i / 2 + 1 ) ;
24 temp += ( i + 1) / p i * ar_moments [ n0 ] *
25 pycuda : : con j (ar_vnm [ pos * (* vnm_count ) + n0 ] ) ;
26 f o r ( i n t j = i ; j > 0 ; j = j − 2){
27 temp += ( i + 1) / p i * ( ar_moments [

94



28 n0 + j / 2 ] * pycuda : : con j (ar_vnm [
29 pos * (* vnm_count ) + n0 + j / 2 ] ) +
30 pycuda : : con j ( ar_moments [ n0 + j / 2 ] ) *
31 ar_vnm [ pos * (* vnm_count ) + n0 + j / 2 ] ) ;
32 }
33 }
34 //When n i s odd
35 f o r ( i n t i = 1 ; i <= (* orde r ) ; i = i + 2){
36 n0 = ( ( i − 1) / 2 + 1) * ( ( i − 1) / 2 + 1 ) ;
37 f o r ( i n t j = i ; j > 0 ; j = j − 2){
38 temp += ( i + 1) / p i * ( ar_moments [
39 n0 + ( j − 1) / 2 ] * pycuda : : con j (ar_vnm [
40 pos * (* vnm_count ) + n0 + ( j − 1) / 2 ] ) +
41 pycuda : : con j ( ar_moments [ n0 + ( j − 1) / 2 ] )
42 * ar_vnm [ pos * (* vnm_count )
43 + n0 + ( j − 1) / 2 ] ) ;
44 }
45 }
46 ar_fxy [ pos ] = temp ;
47 }
48 }

95



Bibliography

[1] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE
TRANSACTIONS ON INFORMATION THEORY, vol. 8, no. 2,
pp. 179–189, 1962.

[2] K. M. Hosny, “Fast computation of accurate pseudo zernike moments
for binary and gray-level images.,” Int. Arab J. Inf. Technol., vol. 11,
no. 3, pp. 243–249, 2014.

[3] G. A. Papakostas, “Over 50 years of image moments and moment invari-
ants,” in Moments and Moment Invariants - Theory and Applications
(G. A. Papakostas, ed.), vol. 1, Science Gate Publishing, 2014.

[4] K. M. Hosny, M. M. Darwish, K. Li, and A. Salah, “Parallel multi-core
cpu and gpu for fast and robust medical image watermarking,” IEEE
Access, vol. 6, pp. 77212–77225, 2018.

[5] S. Li, M.-C. Lee, and C.-M. Pun, “Complex zernike moments features for
shape-based image retrieval,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 39, no. 1, pp. 227–237,
2008.

[6] C. Singh, E. Walia, Pooja, and R. Upneja, “Analysis of algorithms for
fast computation of pseudo zernike moments and their numerical stabil-
ity,” Digital Signal Processing, vol. 22, no. 6, pp. 1031 – 1043, 2012.

[7] C.-W. Chong, P. Raveendran, and R. Mukundan, “A comparative anal-
ysis of algorithms for fast computation of zernike moments,” Pattern
Recognition, vol. 36, no. 3, pp. 731 – 742, 2003.

[8] C.-W. Chong, P. Raveendran, and R. Mukundan, “An efficient algo-
rithm for fast computation of pseudo-zernike moments,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 17, no. 6,
pp. 1011–1023, 2003.

96



[9] A.-W. Deng, C.-H. Wei, and C.-Y. Gwo, “Stable, fast computation of
high-order zernike moments using a recursive method,” Pattern Recog-
nition, vol. 56, 03 2016.

[10] A.-W. Deng and C.-Y. Gwo, “Fast and stable algorithms for high-order
pseudo zernike moments and image reconstruction,” Applied Mathemat-
ics and Computation, vol. 334, pp. 239 – 253, 2018.

[11] M. Ujaldon, “Gpu acceleration of zernike moments for large-scale im-
ages,” in Proceedings of the 2009 IEEE International Symposium on
Parallel and Distributed Processing, (USA), pp. 1–8, IEEE Computer
Society, 2009.

[12] P. Toharia, O. D. Robles, R. Suárez, J. L. Bosque, and L. Pastor, “Shot
boundary detection using zernike moments in multi-GPU multi-CPU
architectures,” Journal of Parallel and Distributed Computing, vol. 72,
no. 9, pp. 1127 – 1133, 2012.

[13] M. J. Martín Requena, P. Moscato, and M. Ujaldón, “Efficient data
partitioning for the gpu computation of moment functions,” Journal of
Parallel and Distributed Computing, vol. 74, no. 1, pp. 1994 – 2004,
2014.

[14] Y. Xuan, D. Li, and W. Han, “Efficient optimization approach for fast
gpu computation of zernike moments,” Journal of Parallel and Dis-
tributed Computing, vol. 111, pp. 104 – 114, 2018.

[15] J. Flusse, T. Suk, and B. Zitová, 2D and 3D Image Analysis by Moments.
Wiley & Sons Ltd., 2016.

[16] R. Mukundan, S.-H. Ong, and P. Lee, “Image analysis by tchebichef
moments,” IEEE transactions on image processing : a publication of the
IEEE Signal Processing Society, vol. 10, pp. 1357–64, 02 2001.

97



[17] B. Xiao, L. Li, Y. Li, W. Li, and G. Wang, “Image analysis by fractional-
order orthogonal moments,” Information Sciences, vol. 382-383, pp. 135
– 149, 2017.

[18] K. M. Hosny, “A systematic method for efficient computation of full and
subsets zernike moments,” Inf. Sci., vol. 180, pp. 2299–2313, 2010.

[19] von F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner
verbesserten form, der phasenkontrastmethode,” Physica, vol. 1, no. 7,
pp. 689 – 704, 1934.

[20] C.-H. Teh and R. T. Chin, “On image analysis by the methods of mo-
ments,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 10, pp. 496–513, July 1988.

[21] S. Liao, “Accuracy analysis of moment functions,” in Moments and Mo-
ment Invariants - Theory and Applications (G. A. Papakostas, ed.),
vol. 1, pp. 33–56, Science Gate Publishing, 2014.

[22] A. B. Bhatia and E. Wolf, “On the circle polynomials of zernike and
related orthogonal sets,” Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 50, no. 1, pp. 40–48, 1954.

[23] A. Prata and W. Rusch, “Algorithm for computation of zernike polyno-
mials expansion coefficients,” Applied Optics, vol. 28, no. 4, pp. 749–754,
1989.

[24] E. Kintner, “On the mathematical properties of the zernike polynomi-
als,” Journal of Modern Optics, vol. August 1976, pp. 679–680, 11 2010.

[25] Q.-Y. Yang, F. Gao, and Q. Nie, “A modified l-iterative algorithm for
fast computation of pseudo-zernike moments,” in 2009 2nd International
Congress on Image and Signal Processing, pp. 1–5, 2009.

[26] M. S. Al-Rawi, “Fast computation of pseudo zernike moments,” Journal
of Real-Time Image Processing, vol. 5, no. 1, pp. 3–10, 2010.

98



[27] T. Xia, “Gpu-accelerated algorithm to compute bessel-fourier mo-
ments,” Master’s thesis, The University of Winnipeg, 2020.

[28] N. Corporation, “Cuda best practices guide,” 07 2020.

[29] N. Corporation, “Cuda programming guide,” 07 2020.

[30] M. Harris et al., “Optimizing parallel reduction in cuda,” Nvidia devel-
oper technology, vol. 2, no. 4, p. 70, 2007.

[31] K. Gan and K. Lua, “A new approach to stroke and feature point ex-
traction in chinese character recognition,” Pattern Recognition Letter,
vol. 12, pp. 381–387, 1991.

[32] J. Liu and S. Ma, “An overview of printed chinese character recognition
techniques,” in Proceedings of the International Conference on Chinese
Computing, (Singapore), pp. 325–333, June 4-7 1996.

[33] C. Lu, “A survey on chinese computing research,” Hong Kong Computer
Journal, vol. 9, no. 12, 1993.

[34] Y. H. Zhang and C. P. Liu, “The analysis and suggestion to the evalua-
tion of chinese character recognition systems,” Proc. 1992 International
Conference on Chinese Information Processing, pp. 407–412, 1992.

[35] R. Dai, C.-L. Liu, and B. Xiao, “Chinese character recognition: History,
status and prospects,” Frontiers of Computer Science in China, vol. 1,
pp. 126–136, 05 2007.

[36] S. Liao, A. Chiang, Q. Lu, and M. Pawlak, “Chinese character recogni-
tion via gegenbauer moments,” in Object recognition supported by user
interaction for service robots, vol. 3, pp. 485–488 vol.3, Aug 2002.

[37] T. Wang and S. Liao, “Chinese character recognition by zernike mo-
ments,” in 2014 International Conference on Audio, Language and Im-
age Processing, pp. 771–774, July 2014.

99



[38] H. Bing and S. Liao, “Chinese character recognition by tchebichef mo-
ment features,” Lecture Notes on Software Engineering, vol. 1, no. 4,
p. 392, 2013.

[39] Y. Wu and S. Liao, “Chinese characters recognition via racah moments,”
in 2014 International Conference on Audio, Language and Image Pro-
cessing, pp. 691–694, July 2014.

[40] S. Liao and J. Chen, “Object recognition with lower order gegenbauer
moments,” Lecture Notes on Software Engineering, vol. 1, no. 4, pp. 387–
391, 2013.

100


