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Abstract 

Nowadays, information services are a necessity for our everyday lives, the 

necessity of communication and information transmission increases as fast as 

the number of users and the number of the devices. Especially during times 

when direct communication is not an option, there is an increase of the 

demand for these services. Researchers have continuously developed multiple 

options to cope with the transmission increase but solving all the possible 

problems seems away from reality as solutions depend on many case 

scenarios. One of the best approaches is to develop solutions that can cope 

with specific problems or improve specific areas depending on the necessity 

of the network.  

In this thesis, we propose a theorical approach to routing on computer 

networks by analyzing the similarities and differences between transportation 

networks and computer networks. Within transportation networks we focus 

on road networks to carry out this research. The similarities will allow us to 

implement (on computer networks) the Contraction Hierarchies algorithm 

(CH). CH is an interdisciplinary algorithm originally developed for road 

networks, which can provide us with the elements and logic to optimize 

specific routing problems in computer networks. To implement CH, we use 

Software-Defined Networks (SDN). SDN is a computer networks paradigm 

that separates the Data and Control planes. The Data plane is left to the 

network devices to distribute the packages, and the control plane is centralized 

into a Controller. By having a controller with a broad view of the network, we 

implement CH to optimize route selection.  
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Once the route is determined, we study the possibility of using the advantages 

of CH to redistribute traffic in case the network elements suffer from 

unforeseen circumstances during transmissions. The performance of our 

algorithm is measured based on its capability to find an alternative route 

between two nodes (as long as the alternative route is available) and the delay 

produced on the communication while the route is created. The performance 

during unforeseen circumstances demonstrates the capacity of our algorithm 

to maintain the communications and improve the survivability of the network. 
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Chapter 1 

Introduction 

In this thesis, we research the similarities between transportation networks and 

computer networks. Within transportation networks we focus on road 

networks to carry out this research1. The similarities on both systems will 

allow us to implement on computer networks one of the ideas used to improve 

road networks. Road networks algorithms can provide efficient mechanisms 

to optimize network path selection during network devices failures. In this 

work, we explore the option of using Software Define Networks to implement 

our ideas. This chapter sets a general context of our research. First, on Section 

1.1, we start with a general background on content distribution networks. 

Followed by the scope and some limitations to narrow the objectives of our 

research on Section 1.2. Then on Sections 1.3 and 1.4 we provide a brief 

description of the motivation and the problems that inspired us to perform this 

research. Section 1.5 presents the objectives of our research. Finally, on 

Section 1.6, we describe the organization of the rest of the thesis. 

 

1.1 Content distribution background 

With the increase of network infrastructure and topologies, new opportunities 

for information distribution techniques and advertisement arise, we can 

distribute our applications, information, videos, images, etc., at a higher speed 

 
1 Road networks is used as an instance of transportation networks throughout the thesis. 
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regardless of the distance. Organizations with presence in different countries 

and continents can almost instantaneously observe the situation on different 

locations and share information according to their needs. 

Every time a company or organization is created, there is a need to include 

computer programs and network infrastructure (web pages, databases, mobile 

applications and/or desktop applications, etc.). Nowadays businesses that fail 

to make use of technological advances are left behind or disappear. As 

companies keep expanding and include more users to their services, they need 

to implement newer technologies and update the old ones to support more and 

larger loads of data. 

Internet has grown so fast in terms of users, services, and content providers, 

that different ways to share information are needed. The basic client-server 

architecture model of an organization with one (or a few) server(s) distributing 

the content for one or more clients as shown in Figure 1, is not enough 

anymore for big companies like Google, Facebook and Netflix, who distribute 

data amongst millions of users around the world every day. Only increasing 

the number of servers in the same data center, makes close to no difference 

while distributing the information for millions of users in different locations. 

Distribution of data is not the only problem faced, distributing different files 

for each region, different languages, different formats, heavier files such as 

music, videos, databases, and dynamic content on the webpages, makes this 

problem even more complicated. e.g. [Tan15] shows the problematic faced by 

a large organization (Facebook) which manages multiple applications, types 

of data, multiple servers and services, different configurations and updates for 

the apps, and multiple languages for different users.  
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Sending different types of information from one or a few servers to all the 

clients produces huge amounts of traffic on the network. Researchers have 

created and implemented many software and hardware solutions to this 

problem (reduce the traffic while distributing the same amounts of 

information).  

 

Figure 1 Client - Server Architecture 

Amongst the most common hardware solutions, we can think of making 

changes to the network topology. These changes include adding and/or 

changing network devices with better capabilities, new links between the 

devices to improve connectivity, and topology changes. We will briefly 

describe the most common and interesting network topologies we found. 

One of the best hardware options for companies with many files but few 

servers, is sharing data to some clients, and then share it from client to client. 

This model is known as the Peer-to-Peer model (see Figure 2). The peer-to-

peer model (P2P) is a variation of the client-server model where there is no 

specific client or server, when a node (a device in the network) is receiving 

information it becomes the client, but when the same node is sharing the 
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information, then it becomes the server that distributes the information to 

other clients.  

This method has some advantages and disadvantages. When the number of 

users in the network increases also the number of nodes that share the 

information increases, The increased number of users reduces the number of 

servers the organization must possess in order to distribute the information 

and brings high scalability on the system with less cost of transmission. As 

the organization of the network changes, transmissions use the infrastructure 

of other networks. This increases the importance of the routing between users 

and offers multiple paths between them. Nevertheless, when the number of 

clients is scarce or the clients disconnect in the middle of a transmission, the 

transmission is interrupted and the node that is disconnected (sharing or 

receiving the information) will not be available for further transmissions until 

the node’s connection with the network is re-established.  
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Figure 2 P2P Architecture 

The peers in the peer-to-peer network can be clients independent from the 

organization just searching for specific files that they need, and once they get 

the files, the clients can log out of the system or turn off their computers 

without previous notice. As we cannot be certain when a client will be 

available for transmission, we cannot guarantee the availability of the 

transmitters. The files that a client will choose to download and transmit will 

be managed by the user which can modify them and send a corrupted version 

of the same file. If the users decide to delete or move the files from their 

computers, they will not be available anymore. Finally, the speed available for 
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distribution will be different for each peer, depending (amongst other factors) 

on the individual client’s internet connection and computer capabilities. 

A simple peer-to-peer method is a considerable option when the files shared 

are requested by a large number of clients in the network. Nevertheless, it is 

not recommended when the files to be transmitted are of high importance or 

the number of clients is scarce and the few peers are away from each other, 

the transmission peers could be distributed around the globe and the 

transmitter and receiver can be separated geographically by large distances, 

which can produce big delays and lost packages during the transmission. In 

the case of few peers in the network separated by large physical distances the 

strongest advantages of the P2P network are lost, and the times of 

transmission can be larger in comparison with client-server topologies. 

A second hardware option to share information with multiple users happen 

when the organization has different locations with data centers, or the 

organization can obtain (or pay for) storage services around the globe. As seen 

in Figure 3, the branches of the organization can contain a server (or a cluster 

of servers, also known as surrogate servers) to distribute the information with 

local clients. This method has the following advantages:  

• The information is shared in shorter distances relative to the main 

servers.  

• The total amount of clients is distributed among multiple servers.  

• The closest available server is selected for the transmissions.  

• The network administrator(s) of the company or the maintenance team 

of the storage service provider company can deal with problems that 

arise with the servers on the different locations.  
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This topology is known as Content Distribution Network (CDN). 

 

Figure 3 Content Distribution Network 

A content distribution network consists on many servers or clusters distributed 

in “zones” around the area of service. These servers can distribute the 

information to multiple clients in each zone faster and with less errors than 

the main server because the zones are geographically closer to the clients than 

the main server of the organization. These short distances between the clients 

and servers mean less jumps of the packages in the network, less traffic 

generated through the internet, and less clients (bottlenecks) on the main 

server. These zones are distributed strategically depending on different factors 

that benefit the distribution of the information to the clients, such as: 

- If the number of clients in a zone (a city, country, or continent) is too 

large, more servers or different traffic management is required. 
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- If the amount of traffic generated by several users in a geographic area 

is considerable as to redirect it to a closer server instead of moving it 

larger distances to the main server. 

- If the allocation of a new surrogate server can reduce the delay time and 

reduces the packets lost during transmissions.  

- The content to be distributed to the clients is different from zone to 

zone. 

- The distance between the clients and the main server is too large 

compared to that of other branches within the organization. 

- Prevent the main server to become a Single Point of Failure (SPOF2) 

Note that not all these cases mean that we must add a server in that zone. As 

explained in other research works, routing protocols, server distribution, and 

load balance play an important role while transmitting data. Nevertheless, the 

concept of locality with the clients can greatly improve the Quality of Service 

(QoS). 

The clients in a CDN can contact the server that is closer to them and obtain 

the necessary information faster than contacting the original server. This 

method may seem the easiest way to distribute the information, but there are 

many factors to be considered, for example: 

- Internet Service Providers (ISP) routing policies and connections to 

other networks 

- Locating the closest server to the client (sometimes made by Domain 

Name Servers) 

- Synchronization of the branch servers with the main content provider 

 
2 A Single Point of Failure is a part of the system that if it fails, will stop the whole system from working. 



9 
 

- Number of clients that can connect to a server or cluster without 

affecting other services or without generating a bottleneck. 

- Types of services provided by the different servers (match the service 

required by the client) 

- Cache server policies employed by the network administrators 

Examples of how these factors can affect the QoS are found in [Alc14] and 

[Kri09]. D’Alconzo et al show a real case scenario where cache selection 

policies in a large CDN directly affect how users perceive a drop in the 

transmission rates. Krishnan et al show another example in which routing 

policies greatly increase the round-trip time (RTT) of packages sent, in some 

cases up to 300-400 ms (even on packages sent to locations inside of the same 

country). Although these examples are not recent and probably were already 

solved, they show the importance of good management in networks. 

One of the best examples of a CDN is explained in [Nyg10], [She05], and 

[Dil02]. In these research papers the authors explain the importance of CDNs, 

the extension of the Akamai network, how the system works and how it helps 

multiple internet applications at the same time to improve user’s QoS, and 

offers them acceptable levels of performance, reliability, and cost-effective 

scalability. 

As we notice, both methods mentioned above (P2P and CDN) have their own 

advantages and disadvantages which lead to new efforts and topologies to 

solve the problems involved in content distribution and improve the quality of 

service (QoS) using the advantages of both methods. In [Xu17] the authors 

develop a method which uses the advantages of the CDN infrastructure 

without using surrogate servers by recruiting volunteers (regular internet users 
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or any operator with a suitably connected host) who contributes with their 

machines and internet connection to create a content delivery marketplace (as 

the authors named it). In this marketplace, volunteers can sign up with 

multiple content providers to distribute the information via these users who 

would be compensated in some fashion for their services. P2P networks often 

use these kinds of compensations in order to motivate the users to stay 

connected and keep distributing the information. 

Another topology often found and reviewed by researchers in which both 

topologies (P2P and CDN) are merged into one is known as P2P-CDN (the 

name varies depending on the research, but the main idea is similar, see Figure 

4). The P2P-CDN method uses the advantages of both topologies, having a 

main server which distributes the information to edge servers, then other peers 

help the edge server in the process of distributing the information to different 

clients. 

Using the main and surrogate servers as the core of the topology improves the 

availability and locality of the system and having a P2P structure to 

complement the CDN makes the distribution around the edge servers faster 

and more efficient. Also, to change the topology from a CDN to a P2P-CDN 

topology takes few changes when it comes to hardware. Researchers agree 

that as this paradigm solves some of the problems combining the advantages 

of both technologies. On the downside, P2P-CDN also adopts some of the 

disadvantages of using both.  

• The necessity of a software capable of coordinating and distributing 

data using both topologies at the same time.  

• The availability of the P2P nodes.  
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• Update the data version being distributed in the network and making 

sure that the files are not corrupted.  

• Costs related to pay or to maintain different servers in different 

locations (although is being reduced by the P2P structure, it is still 

present), etc.  

 

Figure 4 P2P-CDN 

One clear example of the hybrid CDN-P2P topology is [Ha17] in which the 

authors test this architecture for live video streaming. First the content creator 

uses an audio/video device to create the content which is sent to a server called 

origin server. The origin server’s purpose is to hold the chunks in which the 

video is divided and to distribute the video files to surrogate servers (CDN 

part). Then the surrogate servers distribute the files amongst the users. Finally, 

in the lowest level of the topology, users can interact with each other to 

distribute the files they have received and inform other users of the chunks 



12 
 

they have, in order to trade for others, they are missing (P2P network). This 

method reduces the workload from the surrogate servers and even more from 

the origin server.  

More transmission protocols and topologies are designed day by day, focused 

on decreasing the transmission delays for the clients, improve the Quality of 

Service, reduce the costs of transmissions and hardware costs, improve the 

utilization of the resources, reduce the energy utilization, etc. These 

optimizations help to greatly reduce and optimize the internet traffic, but as 

time passes, the internet traffic produced by new apps, new devices, and new 

users also increases and new optimizations are required.  

In 2011 the Open Networking Foundation (ONF) introduces the Software-

Defined Networks (SDN). SDN is defined by the organization as, “Decouples 

the control and forwarding planes enabling network control to be directly 

programmable”. See Figure 5 for more details on the basic SDN 

infrastructure. Complementary to SDNs the ONF in 2012 introduces the 

OpenFlow protocol which is the “First standard communications interface 

defined between the control and forwarding layers of an SDN architecture”.  

SDNs and OpenFlow allow the control plane to be separated from the network 

devices and managed separately by a server (or servers) known as controller, 

which can easily be programed by the network administrators. SDN usage is 

still increasing nowadays. The importance of SDN in this work is the 

implementation of the management capabilities that can help mitigate some 

of the problems on package transmission and route planning which will be 

used and explained during this work. 
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On the software solutions to effectively distribute information through the 

network we can find multiple routing protocols. In this chapter we only 

describe a few commonly used link layer protocols used to find the routes 

between hosts in the network. We choose these protocols due to the 

importance of the functionality and relation to this research. 

 

Figure 5 Software-Defined Network Architecture 

The first protocol to mention is the ARP protocol. This protocol is used to 

communicate between hosts in the local network. ARP sends request and 

response messages through the network nodes. These messages contain 

important information needed to communicate between nodes. Network 

elements use the broadcast address to transmit the request until the message 
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reaches the destination and then an ARP reply message is issued. This ARP 

reply contains the MAC address of the destination host. If the ARP 

communication between each other is successful, then they can begin the 

communication by using other protocols.  

Aside from the simplicity and effectiveness when properly implemented, 

some problems with the ARP protocol are:  

• The traffic produced by the broadcasts and the inability of the network 

to identify if the request has been received before. This means that loops 

between network devices produce multiple unnecessary packages and 

the set of the TTL (Time To Live) becomes important to avoid 

problems. 

• The network elements work as individuals and are uncoordinated. 

• The whole process must be repeated every time a new connection must 

be stablished. This problem also leads to high delay times and 

interruptions on the communication if problems arise. 

Two of the most common protocols used nowadays to find routes between 

hosts in the network are Open Shortest Path First (OSPF) and Intermediate 

System to Intermediate System (IS-IS) [Tei06]. These protocols use network 

metrics or weights to implement Dijkstra’s algorithm. Dijkstra’s algorithm 

calculates the shortest path between nodes on a weighted graph. Each router 

in the network uses multiple messages to communicate to other devices. 

According to the response of the messages, the network devices calculate the 

shortest paths in terms of link weights to every other router and builds its own 

forwarding table. 
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OSPF and IS-IS contemplate internal network problems during transmissions. 

According to [Tei06] these protocols use a series of four events to deal with 

routing events.  

1. Detection: in case of equipment failures, other routers can detect them 

by receiving an explicit alarm or by detecting consecutive keepalive 

messages. 

2. Propagation: after detecting the failure, routers generate link-state 

advertisement messages to inform other routers about the change. 

3. Path re-computation: after receiving a message indicating changes in 

the network, routers recompute their best paths to all other routers. 

4. Forwarding table update(s): some routers may contain more than one 

routing table, one for each network card. 

Although the Dijkstra’s algorithm is comparatively a simple and effective 

algorithm, and the network elements in OSPF and IS-IS present some 

coordination and communication elements, the communication and updates 

amongst network elements can be further improved. 

Despite all the new protocols, topologies and advancement on the area, the 

workload on the networks, number of clients, types of content, and application 

requirements keep increasing day by day. Although there is no specific 

method or topology to safely and effectively cope with all the routing events, 

we can offer multiple ideas to solve specific problems. 
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1.2 Research scope 

Even though the whole internet is often simplified into one single element (as 

in Figure 1), it consists on multiple networks (Autonomous Systems) with 

thousands of servers and network devices interconnected but managed by 

different companies. Due to the division of the management and specific 

characteristics of the network, each network deals with their own challenges.  

Based on the level of connectivity, network routing protocols are different for 

internal networks or intradomain routing (e.g. inside the network of an internet 

service provider) and external communication or interdomain routing (e.g. 

transmission between multiple service providers). Although very often 

packages travel from one network to another, for research purposes focusing 

on the whole internet infrastructure is out of the capabilities of this work. To 

reduce the scope of this research, we will focus on Intradomain Routing 

(internal network communication).  

Under the benefits of using SDNs listed on [Wyt14] this research goes on the 

Network Administration category3, and following the 4-step problem solution 

from Section 1.1, our algorithm copes with the path re-computation and the 

forwarding table updates. 

Finally, [Yu17] divides the survivability mechanisms into: 

• Proactive: different types of proactive mechanisms provide extra 

bandwidth during resource allocation or evaluate the probability of 

failures before these happen. Proactive mechanisms then use the 

 
3 The benefits of SDN for administration are: Administration of the network, traffic distribution according 
to the network owner policies, and energy saving. 
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resources and information previously obtained to prevent and recover 

during unforeseen circumstances.  

• Reactive: these types of mechanisms seek for backup bandwidth only 

after the failure has happened. 

Although we acknowledge the importance of proactive mechanisms and their 

effectivity while mitigating unforeseen circumstances, we are also aware that 

not all network problems can be prevented. Also, to provide a more general 

solution, in this research the proposed mechanism falls on the reactive 

category. 

 

1.3 Motivation 

Technology and computer science are used to improve the quality of our 

everyday lives. One of the areas that has greatly benefited from computer 

science and network development is road networks. Information about real 

time traffic, traffic patterns, weather, transit limitations (slow streets e.g. 

pedestrians cross, hospitals, schools, streetlights, roadblocks, accidents), 

street conditions, etc., can be provided to drivers by using television and radio 

for traffic news, social networks, sensors, cameras, GPS, etc. While network 

technologies like ad-hoc networks, SDNs, or internet of things, are used to 

obtain real time information on road networks, we believe that the same way 

that technology and networks help on the improvement of road networks, the 

experience obtained while tracing everyday routes can be used to improve 

aspects of routing in computer networks. 
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Despite the multiple possible events that can obstruct roads in road networks, 

we believe that sufficient work has been done to prevent or reduce the impact 

of these events. Especially in road networks there are multiple studies that 

propose the use of protocols and technology to improve traffic. The variety of 

research include the structure of the roads and city planification which can be 

related to topology planification on computer networks, and implementation 

of protocols and technologies to improve the traffic planification. In Chapters 

2 and 4 we will explain in detail the logic behind this comparison. 

 

1.4 Problem Statement 

Although network topologies and protocols are designed and refined to 

improve transmission and avoid failures, we still do not have the capacity to 

detect and solve all possible threats to the network. Some of the unforeseen 

events might be related to maintenance or inconsistencies of the network 

paths. The capacity to recover from failures often involves long periods of 

delays since the detection to the re-routing of the network devices. During this 

recovery period, packets may be dropped due to invalid routes [Kva09]. A 

disruption lasting a few hundred milliseconds is long enough to interrupt a 

phone conversation or a video game, and other applications such as web 

transactions are visibly affected by disruptions lasting a few seconds. 

By implementing an SDN, we bring multiple benefits to the network. First, 

we expect to reduce the processing workload on the network elements. By 

shifting the route processing to the controller, the network elements can 

concentrate on the transmission of the data. By knowing the state of the 

network, the controller can use the information from other transmissions to 
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effectively find the packages destination. Finally, by concentrating the 

administration on the controller, the reaction to network events can be 

optimized. Following the previous steps to solve unforeseen events (detection, 

propagation, path re-computation, forwarding-table update), after detecting 

the failure of the device, we can simplify the propagation, reduce the re-

computation to the controller element, and update the routes as required. 

As the effectivity of SDNs depends on the programmability of the controller, 

as expressed on Section 1.2, this work will be focused on providing an 

alternative for Intradomain Routing. This alternative is a reactive 

experimental method based on the inherent similarities between both road and 

computer networks. In comparison to other protocols like Open shortest path 

first (OSPF) or Intermediate System to Intermediate System (IS-IS), our 

method uses the capabilities of SDNs to provide a broad view of the network 

devices connected to the controller. The connection of the network devices to 

the controller copes with the individuality of the elements on the network. In 

comparison to other SDN researches, we believe that the design of our 

algorithm based on road networks improves the chances of working fast while 

the network escalates. Other factor that improves the functionality of the 

algorithm is the creation of the shortcuts that improve the routing as the 

execution progresses. 

 

1.5 Objectives 

Many techniques are being used to handle the packages in a network, 

depending on the logic followed by the route selection algorithm. With the 

implementation of SDNs, new opportunities for network administration arise. 
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Constantly new ideas for the algorithm’s logic are being obtained or improved 

by following an observation process, based on the infrastructure of a specific 

network, examples found in nature, or similar processes from other 

disciplines.  

These algorithms provide the user with the logic of how to handle a process 

found in real life or other disciplines and examples of how these situations are 

solved. By analyzing the elements of the system and their interactions we can 

find similar agents and variables on the problem we are facing, then take the 

examples found in these systems to program an algorithm with similar 

characteristics which can be adjusted to solve our problem. 

The objective of this work is to further improve the content distribution 

algorithm used on a Software-Defined Network’s environment. This 

improvement will be focused mainly on the availability and survivability of 

the network tested while some errors occur on the nodes. We will implement 

an adapted version of the Contraction Hierarchies algorithm along with a re-

routing extra module to improve the availability and efficiency of the network 

routes. The Contraction Hierarchies (CH) algorithm is an algorithm used on 

road networks with similar characteristics to our environment which produces 

an order and shortcuts on the topology. CH will allow us to achieve our 

availability goal and prove that the similarities of both, the road networks and 

computer networks, makes possible the collaboration between both areas. The 

program improvement consist on an extra module to redirect the routes when 

availability issues are present on the nodes, by using the previously calculated 

shortcuts. The final goal is to prove that by using the programmability of 

SDNs along with CH, adding a re-direction module, and by re-calculating the 

new routes in a local way into our SDN server, we can reduce the delays 
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during unforeseen events. By using an interdisciplinary algorithm, we can 

generate a logic to calculate and re-calculate desired routes within computer 

networks, and even save the connection with just a small delay for the re-

routing when pre-established routes face transmission issues.  

The contributions of this research are as follows: 

• First, we will perform an analysis of how computer networks export 

technology to other disciplines (i.e. transit networks), and how 

computer networks also learn from the experience obtained from other 

areas. This will become the foundation for adapting an optimization 

algorithm to our computer networks (Chapters 2 and 3).  

• After the comparative analysis of transit and computer networks, we 

implement an SDN with an interdisciplinary algorithm to administrate 

traffic and take advantage of the centralized administration capabilities 

for the traffic distribution. While doing the implementation of the 

algorithm, we analyze its performance on multiple networks (Chapters 

4 and 5). 

• Finally, we will demonstrate that with the logic obtained on the 

previous objective, separating the control plane from the data plane, and 

by using the shortcuts and hierarchies methodology, we can implement 

an extra module to improve not only the survivability but also the 

scalability of the network while tracing routes. 
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1.6 Organization of the Thesis 

The rest of the thesis is organized as follows. In Chapter 2 we present a brief 

literature review and discuss previous research to provide the appropriate 

context and comparative information. In Chapter 3 we describe the general 

environment needed to implement our ideas, as well as the programs used to 

test it. In Chapter 4 we make a comparative analysis of road networks and 

computer networks and give an introduction to the Contraction Hierarchies 

algorithm used to solve the path selection process problem and the reasons to 

select this algorithm for this work. Also, in Chapter 4 we introduce the pseudo 

algorithms and the reasons to select them. In Chapter 5 we report the 

implementation results of the algorithms from Chapter 4 and perform the 

analysis of the results. Then, based on the analysis, we propose the functions 

of the added module to improve the survivability of our proposed 

environment. Chapter 6 summarizes the case scenarios we use during our tests 

and explains the algorithms we propose to solve them. Then, we show the 

results of our experiments and an analysis of our experiments. Finally, 

Chapter 7 concludes with the contributions of this research, our conclusions, 

and suggestions for future works. 
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Chapter 2 

Related Works 

In this chapter, we provide an overview of the background material and 

introduce previous research theories and algorithms related with those of our 

research. First, in Section 2.1, we explain the importance of the SDN 

architecture and present some of the related works that use this paradigm to 

improve content distribution, path selection, and other important areas in 

networks. In Section 2.2, we mention another work who shares the same view 

that vehicular4 networks and computer SDNs can work together to solve 

common problems. Finally, in Section 2.3, we will focus on the importance 

of Mininet for research purposes. Mininet is the open source network 

simulator tool selected for this work due to its characteristics and 

programmability suitable for this work. This section reviews some of the 

works that focus on Mininet’s performance to understand some of the pros 

and cons of using this simulator from the perspective of other research. 

 

2.1 Software-Defined Networks 

According to the Open Networking Foundation (ONF) [Onf12], one of the 

reasons to re-examine traditional network architectures is the increment of 

mobile devices and its data transmission. This fact is supported by CISCO in 

 
4 Vehicular network is a different area (than road networks) in Transportation Networks that provide 
examples on vehicles communication and information gathering. This work uses some of the vehicular 
network ideas presented on roadside units and information gathering using multiple types of networks 
and infrastructure. 
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the document Visual Networking Index [Cis19] in which the mobile data 

traffic forecast calculates the traffic of 2017 in 12 exabytes per month (only 

on mobile devices), with an increase to 29 exabytes per month for the year 

2019, and an estimate increase to 77 exabytes each month in 2022. This is 

only the increment of mobile services, other areas such as video streaming are 

rapidly increasing too. Forbes’ statistics about the success of the video 

streaming company Netflix in [For18] estimate an increase from 81.52 million 

households subscribed in 2016 to 114.89 million households subscribed in 

2020. In [Cis19b], the global IP traffic forecast estimates an overall traffic 

increase to 396 exabytes per month in 2022, more than three times the traffic 

on 2017 (122 exabytes per month). These numbers were obtained before the 

unforeseen incidents on 2020 which increase the necessity of network services 

and their improvement. 

This huge increase in the network demand requires constant updates in the 

network infrastructure (which increases the expenses on new devices) and a 

change in the information distribution methods.  

There are many proposals to improve distribution depending on the 

process(es) to be optimized. Software-Defined Networking (SDN) as 

previously defined, is a network architecture that decouples the control plane 

from the data plane. SDN eases and centralizes the programing functions of 

the network elements. In the SDN model, the network devices focus on 

forwarding the packages (data plane), while the control plane is delegated to 

a central server known as controller. Nevertheless, SDN is not the only option 

to optimize content delivery. In the survey made by Jia et al [Jia17], the 

content delivery methods presented are classified as Evolutionary and 

Revolutionary. Evolutionary methods are defined as the ones that collaborate 
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with the traditional content delivery solutions (P2P, CDN, etc.), while the 

Revolutionary methods collaborate with the emerging content delivery 

solutions. SDN along with information-centric networks5, are classified as 

revolutionary methods because they propose changes in the current protocols 

and topology. 

According to [Jia17] one of the SDN’s advantages is that by centralizing the 

control layer, the Information Technology department (IT) can configure, 

manage, secure, and optimize multiple network resources via dynamic 

automated SDN programs. These programs are written by the IT department 

directly instead of the multiple vendors of the devices. The advantage of the 

centralized management is that SDN controllers can manage any switch 

independent of the vendor and the configuration time of the network devices 

is greatly reduced and simplified. On the other side, the devices to use must 

be compatible with the OpenFlow protocol which is the software in charge of 

installing the forwarding rules (also named flows) on the devices. 

 

2.1.1 SDN related works  

Once explained the importance of SDNs, in this section we will review some 

related studies using the SDN architecture. Other useful programs also will be 

summarized, to understand how SDN capabilities are improving some areas 

on the networking field. 

 
5 An information-centric network is a new paradigm to change the internet applications from host-centric 
end-to-end communication to data-centric communication [Kop07]. 
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First in [Kuz15] Kuzniar et al analyzes the SDN control plane interaction 

between the controller and real switches and their capacity to obtain and 

implement the forwarding rules under heavy workload conditions. 

In [Wan18] Wang et al uses Mininet (network simulator) to simulate a real 

network topology with OpenFlow, POX (Python version of the program used 

as controller), and openVswitch (switch emulator) and distributes inbound 

traffic to avoid congestions on enterprise networks. This improves the users’ 

Quality of Experience (QoE) and reduces costs in network bandwidth.  

For mobile networks Yin et al [Yin19] used SDN to propose a scheme named 

Hierarchical SDN-based Mobile Management (H-SMM) that uses a 

hierarchical architecture in the control plane to provide intra-domain and 

inter-domain mobility simultaneously. This hierarchical architecture proposal 

is made in response to some issues on SDNs for “being originated in campus 

and enterprise networks and developed in datacenter networks, in the form of 

single control domains”. Due to the long-distance communication nature in 

mobile networks Yin et al consider as a necessity the inclusion of both, single 

and multiple domains. The SDN advantages used at [Yin19] are:  

• Increased capacity of the controller to improve the control and 

programing of the network.  

• Improvement of the management provided by a global controller 

• Better routing capabilities of local controllers. 

Flores Moyano et al [Flo17] propose the application of SDN technology to 

improve service provision in residential networks. This study focuses on a 

device installed by the Internet Service Providers (ISP) located at their user’s 

home networks called Residential Gateway (RGW). RGW performs multiple 
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tasks for the network e.g. traffic filtering, remote management, Dynamic Host 

Configuration Protocol, network address translation, and network address 

translation. Moyano’s proposal is to replace the current RGW which lacks 

accessibility for the user to perform the required configurations and updates 

for an SDN-based RGW that uses the programmability introduced by SDNs 

to insert traffic flows in the data plane devices and increase the flexibility to 

handle residential network traffic.  

Aouadj et al [Aou17] proposes AirNet, a new high-level language for 

programming SDN platforms. During the research, the authors consider 

network virtualization as an approach to achieve simplification, modularity, 

and flexibility of SDN control programs. By creating abstract visions of the 

physical infrastructure, virtualizations expose only the most relevant 

information for high-level control policies. Aouadj et al achieves this 

virtualization by using the edge-fabric abstraction model which separates the 

network elements in edges (support complex network functions and services 

related to the control plane), fabrics (deal with packet transport issues), data 

machines (perform complex operations on packets at the data plane level), 

and hosts and networks (sources and destinations of data flows). 

Wen et al in [Wen17] research the detection of errors in SDNs and classify 

them in two categories. (1) When the error is due to data plane forwarding 

rules not being active on a switch as expected due to firmware or a hardware 

glitch. These are classified as missing faults. (2) A priority fault occurs when 

rules overlap with common matching packets. Since switch control rules can 

contain wild cards (denoted by *) to match with multiple options on a 

matching field, SDN assigns a priority value for each flow and SDN process 

the highest priority rule amongst the matching ones. Both faults (missing 
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faults and priority faults) can lead to undesirable forwarding behavior. Wen et 

al contemplate that missing faults can be discovered with data-plane probing 

tools and existing solutions verify rule existence on the switches. But without 

verifying rule priority order, rule existence cannot warrant forwarding 

correctness. Thus, RuleScope is introduced and provides a series of inspection 

algorithms to detect and troubleshoot forwarding faults on the data plane. 

To prevent network path failure and handle the increase of data in the network 

without increasing operational costs by adding more switches and routers, 

Shamim et al in [Sha18] use openFlow and SDNs with link aggregation 

control protocol (LACP). LACP allows two or more ports in an Ethernet 

switch to be combined to operate as a single virtual port. Using link 

aggregation increases available bandwidth and availability between the 

devices connected. 

In terms of security, Swarmi et al [Swa19] makes a study on SDN security 

issues and defense mechanisms against Distributed Denial of Service (DDoS) 

threats. This attack consists in a large (or slow and controlled) volume of 

packages from multiple sources to be transferred to the network devices, in 

order to saturate the network’s bandwidth or nodes’ memory and CPU and 

make the services unavailable for legitimate users. With the decoupling of the 

data and control planes of the network, SDN switches became simple 

forwarding devices and considered as dumb. By having a centralized policy, 

SDNs becomes a convenient target for DDoS. If the control plane breaks 

down, the complete functionality of the network might be disturbed. 

Nevertheless, the same features of SDNs (its controller’s global view and 

programmability) can be used to control the impact of DDoS attacks. In 
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[Swa19] more detailed information about DDoS, its prevention methods, and 

consequences are provided.  

Finally I will describe the following research by [Dew18] named “Improved 

load balancing on Software-Defined Network-based equal cost multipath 

routing in data center network”, which is the research in this section that is 

closer to the goals of this work. 

Dewanto et al in [Dew18] increases the dynamicity of equal cost multipath 

routing (ECMP) by using the controller to monitor the network in real-time 

for available bandwidths to include in the algorithm and calculate the best path 

to update the switches. The experiments are performed using Mininet with a 

RYU controller, a topology that consists of 20 switches and 16 hosts with 

link’s bandwidth of 8 Mbps, and OpenFlow 1.3 protocol. The measured 

bandwidth is used on the Dijkstra’s Widest Path algorithm along with 

topological information to determine which path has the biggest bottleneck. 

After the path with the maximum available bandwidth is found, the controller 

updates the flow tables on the switches. Finally, when the switches finish with 

the transmission process, they remove the flows previously calculated so the 

controller can choose a new path again with more recent data of the network. 

Although Dewanto et al also uses an SDN architecture and Mininet to improve 

the path selection, the differences with this work lies on the final objective of 

the research. The results on Dewanto’s work are focus on speed improvements 

and content distribution rather than survivability. Dewanto accomplishes his 

goal by using a method named Equal Cost Multipath Routing (ECMP) where 

all possible paths between two nodes are used. We, in comparison to the 

method used in this work, use an interdisciplinary method to further improve 

the speed of the search algorithm. 
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2.2 Vehicular and Computer networks 

While doing our literature review in some digital libraries (e.g. IEEE Xplore, 

ACM, ProQuest, Elsevier, University of Winnipeg Library), we found that the 

idea of combining vehicular networks and computer networks has been 

previously explored. Several authors have proposed the use of mobile 

networks, ad hoc networks, or Internet of Things (IoT) to improve information 

gathering and transit flow (e.g. [Xia15], [Ahn19] and [Muk18]). 

According to [Xia15] and [Har08], in vehicular networks there are mainly two 

kinds of communications, vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I). These communication methods are possible thanks to the 

low-cost and improvement of global-position systems (GPS) and wireless 

receiver devices. Some of the objectives for the communication between 

transit devices are:  

• Increase road safety (e.g. avoid collisions, vehicle remote diagnosis) 

• Transportation efficiency (e.g. reduce traffic congestion, traffic signal 

control, route selection efficiency) 

• Reduce the impact of transportation on the environment. 

An example of the use of internet of things (IoT) on vehicular networks is 

described at [Ahn19]. With the inclusion of sensors, powerful computing, and 

communication capabilities, IoT in vehicles to optimize transit processes has 

become a topic on its own and is called the Internet of Vehicles (IoV). In 

[Ahn19] Sanghyun Ahn and Jonghwa Choi use the V2I type of 

communication to estimate the vehicle queue length for traffic signals. 

Typical methods like video cameras and sensors have deficiencies like high 

computing overhead, maintenance costs and susceptibility to the environment. 
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Using the IoV they improve the estimation of vehicle queue provided by 

typical methods. V2I uses fixed infrastructure RoadSide Units (RSUs)  

[Xia15], in this case named traffic signal controllers. These controllers reduce 

the computing overhead and improve the resilience to environmental 

obstacles. 

For the Ad-hoc networks example, in [Muk18] Mukund B. and N. Gomathi 

use the Lion Algorithm to minimize the routing cost of the VANET. VANETs 

(or Vehicular Ad-hoc NETworks) are local V2V and V2I wireless networks 

which offer direct communication with minimal latency. The Lion Algorithm 

(or Lion Optimization Algorithm) is an optimization algorithm based on lion’s 

social behavior and organization [Yaz16]. Lion Algorithm (LA) provides 

routing with reduced cost and computational complexity. In their research, 

Mukund and Gomanthi propose a modified version of the LA. The 

modification adopts the minimized routing cost under the VANET. 

In 2008 Robert Geisberger, Peter Sanders, Dominik Schulter, and Daniel 

Delling propose the Contraction Hierarchies algorithm. In [Gei08], 

Geisberger et al propose a method to utilize the structure of road networks to 

improve path selection. In [Gei08], the authors propose a series of rules to pre-

process the network as to identify shortcuts and order the elements of the 

network. Then the proposed search algorithm uses the pre-processing results 

to increase the speed of route selection. 

Geisberger et al in [Gei12] use the Contraction Hierarchies (CH) algorithm, 

to pre-process a large road network. The pre-process exploits the inherent 

hierarchical structure of the network by adding shortcut edges. This pre-

process is complemented by another algorithm which calculates the shortest 
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paths (in this case bi-directional Dijkstra). By using the shortcuts produced by 

the pre-process, the path calculation algorithm can optimize the search. The 

motivation was to create a simple algorithm which can be adapted to multiple 

situations. The efficiency and simplicity can be used by mobile devices to 

search for fast routes with a short delay for the user. 

Another relevant research we found for our purposes focused on the vehicular 

networks area is found in [Xia15]. In [Xia15] Xiao and Kui use the data 

gathered by a taxi company to trace a roads map with the frequent traces of 

taxi locations. Then they use the map and SDN architecture to improve 

vehicular path selection by connecting fixed infrastructure Roadside Units 

(RSUs) of the VANET to the SDN controller. The inclusion of the SDN 

paradigm provides the system with important innovation characteristics, e.g. 

resource optimization, packet routing and forwarding, and efficient mobility 

management. The addition of routing and forwarding produced by the 

centralized controller is especially important to greatly promote the efficiency 

of the vehicular system. 

Although Xiao and Kui in [Xia15] focused more on vehicular networks, the 

importance of this paper is that it makes clear that SDNs and vehicular 

networks are alike due to certain similar characteristics on both systems. The 

result of the research in [Xia15] is a map similar to the infrastructure of road 

networks in which SDN is applied. Thereby, we believe that (with few 

modifications), the algorithms used for road networks like the Contraction 

Hierarchies algorithm can be applied to optimize computer networks. 
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2.3 Importance of Mininet 

While doing research on networks, one of the main problems faced before 

doing experiments is to select a suitable, affordable, and realistic testbed that 

can be configured to the research needs. In this section we will analyze other 

options available to carry out network experiments from the point of view of 

other authors. We also review some of the pros and cons found while selecting 

the software used for this research (i.e. Mininet software). 

In [Lan15] and [Lan10] Lantz et al highlights the problematic that researchers 

face while using heavyweight and full machine virtualization programs, as 

well as the option of paying for an expensive testbed. This is an important 

consideration due to the complexity and overhead cost of simulating and 

manage large networks using a virtual machine for each node in the network, 

which can end in a reduction of realism, usability, and scalability of the 

development platform.  

Other research platforms are more realistic by using real servers in different 

locations. But instead of paying for the services, they might ask researchers to 

add resources to the network by contributing with the infrastructure of these 

platforms, or to contribute in a different way other than money. These option 

helps the network to grow larger, but sometimes is less affordable than money 

due to the nature of the resources, the requirements for the experiment, and 

the time that the experiments will last. 

Mininet can create a large network in a single laptop with Linux features using 

a single and simple python API. The network can contain gigabits of 

bandwidth and hundreds of nodes (switches, hosts, and controllers). The entire 

network can be packed as a virtual machine so others can download, examine, 
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and modify it. These characteristics help the user to avoid installation of 

unnecessary software and complicated management. 

While Mininet provides an easy to manage, escalate, and lightweight testbed 

for networks and SDNs, it is by no means perfect. Jiaqui Yan and Dong Jin 

[Yan17] introduce the notion of virtual time for containers to improve Linux 

based technology for SDNs. This work’s premise is that Mininet lacks in 

terms of fidelity because the operative system serializes the virtual machines 

rather than the parallel scenario of a physical testbed. The serialization and 

the limitation of physical resources can limit the scalability capabilities of the 

system.  

Nevertheless, this research’s goal is to improve the characteristics of SDN 

routing by taking advantage of the similarities between road and computer 

networks. The similarities will allow us to adapt the algorithms from road 

network to work on computer networks. As the improvements are evaluated 

while we simulate errors in the network, we highlight the value of a re-routing 

extra module in the SDN algorithm. This extra module must have the capacity 

to adapt and improve the content distribution while answering to unexpected 

errors in the network. To fulfill this purpose, the capabilities of Mininet are 

considered sufficient for the realization of our experiments. All we require 

from Mininet is a script to randomly stop the switches while the transmissions 

are in process, to prove the efficiency of our algorithm for solving these issues. 

In addition, the algorithms will be executed in the RYU controller. The 

controller is linked to Mininet but it does not depend on Mininet’s execution, 

and the serialization can be (to a certain degree) controlled by managing the 

threads with code. Thus, we believe that the serialization of the processes does 

not greatly affect the results of the experiments. 
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Chapter 3 

SDN Environment 

In this chapter we present the general setup to be used for the algorithms 

testing, including the programs selected, the topologies and some backup 

programs that will improve the realism of the experiment’s results. First, in 

Section 3.1, the general architecture of the experimental environment is 

defined and described. In this section we will explain how all the programs 

will interact with each other to produce the desired results. In Section 3.2, we 

describe the programs and protocols used on the experiments. Finally, in 

Section 3.3, we introduce the topologies used and the reasons why these where 

selected.  

 

3.1 SDN General Architecture 

In this section we describe the general architecture of the network used for 

testing. The general architecture can be seen in Figure 6. In this section we 

describe the relation between the different elements of the environment.  

The entire SDN environment is simulated in a virtual machine with Ubuntu 

18.04.  Mininet, as seen in Figure 6, is used to implement the entire data plane. 

The options introduced while executing Mininet allows us to run other 

functions of the data plane, such as:  

• A script on Mininet is used to simulate the custom virtual infrastructure 

(Switches and Hosts of “custom topology” in Figure 6).  
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• The traffic on the data plane is simulated by the Distributed-Internet 

Traffic Generator (D-ITG) introduced in Section 3.2.5 

• Finally, for the data plane, Mininet uses OpenVSwitch to simulate the 

software of the switches.  

Complementary to Mininet (data plane), the controller (control plane in Figure 

6) is run using the RYU controller. Even though the network (hardware and 

software) is entirely simulated on Mininet, the code used by the controller to 

manage the traffic of the network can be used on a real controller setup.  

RYU controller contains several modules with files that manage the behavior 

of the virtual switches. The network administrator can select and modify the 

specific file that contains the code to be implemented. As seen in our SDN 

environment (Figure 6), in the controller we include the different functions, 

algorithms, sequence and analysis that the program will follow when 

receiving flow requests from the switches. Our code is used to plan and 

balance the routes for the traffic in the network. In addition to the analysis 

program, we can add multiple modules used to discover and manage the 

network elements. Once the network elements are identified, we can also 

include code to obtain information in real time to use in the flows. 

Finally, as seen in Figure 6, to connect both the control and data planes, we 

use OpenFlow. This allows the controller to obtain the information of the 

network elements and allows Mininet to do queries for the routes and receive 

the flows to redirect the information. 
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Figure 6 SDN General Environment 
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3.2 Programs and protocols used 

3.2.1 Software-Defined Networks 

According to the Open Networking Foundation [Onf19], Software-Defined 

Networking is the physical separation of the network control plane from the 

forwarding (data) plane. The control plane in its basic form is delegated to a 

device named controller which dictates the logic of how the forwarding plane 

will work. The controller can coordinate several devices at the same time, as 

long as the devices are compatible with the protocol in charge of 

communicating with the SDN controller (e.g. OpenFlow). More than one 

controller can be used on the architecture. These multiple controllers can 

improve the network control plane’s scalability, availability, and prevent 

single points of failure. 

By separating and centralizing the control plane, administrators can manage 

the entire SDN-based infrastructure from the SDN controller(s). This 

centralization allows administrators to dynamically adjust network traffic 

according to their needs or according to the applications on the network. These 

changes can be programmed by the administrators on automated SDN 

programs due to the neutral nature of the OpenFlow protocol, which allows 

the communication with the network elements independently of their vendors. 

The improvement in programmability makes possible the faster inclusion of 

network infrastructure, which can use the same programs on the controller to 

produce the flow tables it needs to work. 

In the SDN architecture, after the control plane is taken to the controller, the 

devices of the data plane are left as “dumb” devices who’s only function is to 

forward the packages. When a package arrives to the data plane device, it is 
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sent to the controller to be analyzed and to decide the path to take. The paths 

to follow are received by the network devices as flows. These flows are the 

rules to which the next packages will be compared to forward the packages.  

To determine how the packages will be forwarded, the controller connects on 

an upper layer named application layer. This application layer (also known as 

application plane), contain SDN applications executed on the controller that 

control the network’s behavior. Figure 7 shows the logical architecture of the 

SDN networks, which combines the data, control and application planes with 

the northbound APIs and southbound APIs6. 

 

Figure 7 SDN Architecture 

 
6 OpenFlow is the standard southbound API to connect the control and data planes. 



40 
 

3.2.2 OpenFlow 

OpenFlow is the first and most widespread open SDN standard protocol to 

connect the control and the data planes [Mah18]. It can be described as a 

forwarding table management protocol where a group of forwarding tables are 

maintained in each of the OpenFlow forwarding elements (switches, routers, 

etc.). The forwarding table consist of forwarding/matching rules called flow 

rules, which dictate the operation performed for each packet that matches a 

flow rule upon arrival. 

 

 

 

Figure 8 Flow table. Example obtained from [Onf12] 

 

Figure 8 shows a representation of a Flow Table in SDN networks found in 

[Onf12]. As seen in Figure 8, some of the characteristics on the flows are:  
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• In the case a package characteristics match with the characteristics 

defined on the flows, the package will perform the action defined by 

the matching flow (row in the table).  

• The flows can contain a default field defined by *, this means that only 

the defined fields will be compared. 

• The flow at the bottom which contains only default fields (*), will send 

the packages to the controller to be analyzed and install new flows if 

needed.  

Additional to the fields on Figure 8, the flow tables contain a column named 

priority. This priority field is a numerical value that determines the order in 

which the flows will be executed in the following way:  

• If a package matches with more than one flow, the flow to take action 

will be defined by a priority field defined on the flows.  

• The flow with the highest priority will be the action to take by the 

packages. 

The importance of a proper priority number selection is that, if a flow 

like the one who sends the packages to the controller takes a higher 

priority, all the packages will be sent to the controller, even if the route 

has been previously defined. Furthermore, the route selection can be 

improved or distorted by the flow selected by the priorities. 

In the document “Software-Defined Networking: The new norm for 

networks” [Onf12] from the Open Networking Foundation the authors define 

the OpenFlow protocol as the basic primitives that can be used by an external 

software application to program the forwarding plane of the network devices. 
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This protocol must be implemented on both, the software of the SDN 

controller and the infrastructure devices that will apply it. 

SDN architecture provides multiple benefits to the network [Onf12]: 

• Centralized control of multi-vendor environments: as long as the 

network element supports the OpenFlow protocol, the controller, 

regardless of their vendors, can manage the elements.  

• Reduced complexity through automation: SDN management 

framework makes it possible to develop tools that automate 

management tasks. 

• Higher rate of innovation: SDN allows network operators to program 

and reprogram the network in real time to meet specific business needs 

and user requirements as they arise. 

• Increase network reliability and security: SDN allows the network 

operators to define high-level configuration and policy statements.  

• OpenFlow-based architecture eliminates the need to individually 

configure network devices which reduces the likelihood of network 

failures due to configuration or policy inconsistencies. 

• OpenFlow control model allows network operators to apply policies at 

a granular level. 

• SDN infrastructure can better adapt to dynamic user needs. 

Although SDNs still have some problems, identified by Wen et al [Wen17] 

and Swarmi et al [Swa19] including: 
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• Missing fault occurs when a rule is not active on a switch mainly 

attributed to the switch’s firmware or hardware or a rule-update 

message lost. 

• Priority fault occurs when two or more overlapping rules (with common 

matching packets) violate the designated priority order, since SDN 

packages are processed by the highest-priority rule amongst the 

matching ones, this can lead to undesirable forwarding behavior. 

• Single point of failure, in SDN cases produced by the controller(s) 

which centralizes the control plane of the network. 

• Security attacks to the network elements, especially to the controller 

which can greatly obstruct the network performance. 

 

3.2.3 Mininet 

This brief explanation of Mininet’s importance is a complement of Chapter 2 

Section 2.3. This section focuses on information of how Mininet will be 

involved to the main infrastructure, instead of the related works of the pros 

and cons of using Mininet. 

One of the most important phases of research is testing. During this process, 

we test the ideas defined into the hypothesis to obtain some results to support 

our research. The environment of the tests plays an important role in the 

veracity of the results. As discussed in Chapter 2, network testing needs to 

contemplate fault tolerance and scalability. Full machine virtualization and 

heavyweight containers increase the network complexity, increase the 

overhead, and reduce the usability and scalability [Lan15]. Also, heavyweight 
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containers often consume significant hardware resources and requires 

complicated management. 

Mininet is a system for rapidly prototyping large networks on the constrained 

resources of a single machine. Using OS-level virtualization features 

(processes and network namespaces), it allows the network to scale to 

hundreds of nodes. Using Mininet, the user can dynamically create 

customized virtual testbeds. Mininet supports lightweight virtualization and 

allows users to implement a new feature or architecture and test it on large 

topologies with application traffic. The entire network can be packed as a VM 

for others to download it, run it, examine it, and modify it. The use of Mininet 

is important for this work because: 

• Allows the connectivity with SDN controllers and virtual SDN 

switches.  

• Easy to program and change personalized network topologies. 

• Allows the use of multiple and customized controllers. 

• Includes a command line to run useful commands and scripts with 

multiple commands. 

• Allows the use of additional xTerminals for additional and individual 

command execution on the network elements. 

• Easy management and inspection of virtual switches. 

• Open software easy to install and configure. 

These characteristics allow us to use Mininet as the core program to simulate 

the data plane of the network. The easy connectivity with the controller allows 
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Mininet to obtain the flows needed to distribute the packages and observe the 

changes through xTerminals. XTerminals are individual windows that can be 

setup for each node in the Mininet infrastructure to run more complex and 

interactive commands that require constant or parallel execution. The 

xTerminals also allows the connection with other programs to improve the 

veracity of the network. Finally, each xTerminal allows the individual 

management of the nodes, to improve the control over the network. 

3.2.4 RYU Controller 

A controller in the SDN paradigm is an element in the network that centralizes 

the control plane of the forwarding devices in the network on a component 

that supplies flow table rules to OpenFlow devices. This element manages, 

centralizes and makes programmable the package forwarding process to 

improve the data layer in the network.  

The selected controller for this work was RYU controller due to the 

characteristic of the code which makes it easy to understand, easy to 

manage, and the functions needed for the experiments worked as intended7. 

For more information, from the RYU getting started homepage we can 

highlight the following characteristics [Ntt11]: 

“RYU is a component-based software-Defined Networking framework. 

RYU provides software components with well-defined API's that make it easy 

for developers to create new network management and control applications. 

RYU supports various protocols for managing network devices, such as 

 
7 Other controllers were tested during this research, but the results and execution did not work as 
expected of the program. 
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OpenFlow, Netconf, OF-config, etc. About OpenFlow, RYU supports fully 

1.0, 1.2, 1.3, 1.4, 1.5 and Nicira Extensions. 

All the code is freely available under the Apache 2.0 license. RYU is fully 

written in Python.” 

Other alternatives instead of a RYU controller are listed next [Git19]: 

• Beacon (Java) 

• Floodlight (Java) 

• Trema (Ruby) 

• POX (Python) 

• NOX 

Our reasons to select RYU were: 

• The programing language Python, which is easy to understand, and we 

have experience working with it.  

• The complexity of the code which uses few functions and validations 

but keep the code simple and understandable for the user to program 

personalized functions. 

 

3.2.5 D-ITG (Distributed Internet Traffic Generator) 

Multiple types of systems, who generate different types of objects and data, 

affect networks nowadays. To test and develop these new systems, an 

important factor is the generation of network workload that represents the 
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variety of network data. There can be two types of traffic generation, by 

hardware or by software. According to Botta et al in [Bot12] a realistic 

network workload approach should:  

• Realistically represent the complexity of a real, specific network 

scenario(s).  

• Measure indicators of the performance experienced by such workload.  

• Allow the alteration of specific properties of such workload for the 

purpose of the experiment. 

As shown in the D-ITG manual by Botta et al. [Bot13] D-ITG is a platform 

capable of producing and analyzing IPv4 and IPv6 traffic. D-ITG uses the 

most common performance metrics (e.g. throughput, delay, jitter, packet loss) 

at packet level. At the transport layer, D-ITG supports several protocols e.g. 

TCP, UDP, SCTP, DCCP, and ICMP. For the final point to consider for traffic 

generators we have the characteristics of ITGSend and ITGRecv. ITGSend is 

the sender component of D-ITG and work in three different modes: 

• Single-flow read the configuration of a single traffic flow toward a 

single ITGRecv (D-ITG receiver module). 

• Multi-flow read the configuration of multiple traffic flows toward one 

or more receivers through a script file. 

• Daemon run as a daemon listening on a UDP socket for instructions. 

Finally, D-ITG is a software type of traffic generator. [Unk15] shows that D-

ITG is compatible with the Mininet configuration proposed in this work. 
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3.3 Topologies for path selection 

3.3.1 Fat Tree topology 

Fat Tree is a variation of the regular Tree topology where the special 

characteristic is that the number of nodes going to higher layers is the same 

number of nodes going to lower layers. As a variation of the tree topology (see 

Figure 9a), fat tree uses a hierarchy relationship between the layers with the 

core at the top (see Figure 9b). The core contains less switches than lower 

layers. Nevertheless, the higher the layer, the capacity of the switches also 

increases, so the higher layers are said to be thicker than the lower ones. On 

the bottom layer connecting the servers or hosts, we have the edge layer. 

Below the core layer we have the aggregation layer which distributes the 

information between the edge and core layers.  

 

Figure 9 (a) Tree Topology  (b) Fat Tree Topology 

One of the characteristics of the fat tree topology to be used on this work is 

the hierarchy of the switches on the fat tree topology. Also, the multiple paths 

to reach the different hosts. In terms of path selection and content distribution, 
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having a second path available through different switches to reach the same 

destination can produce loops. Nevertheless, depending on the algorithm 

selected for the routing, the multiple paths should not be a problem and can 

even be an advantage, in our case if a switch gets disconnected and we need 

to choose a different path. Under normal circumstances. The bi-directional 

Breadth-First Search algorithm keeps track of the visited nodes (for more 

information, see Chapter 4 pseudo algorithms). The visited node list allows 

the algorithm to evaluate if a route search is returning to a previous node to 

avoid loops in the search. While sending the information, the switches use the 

flows obtained from the controller to decide where to redirect the packages. 

 

3.3.2 Custom topology 

Other than the fat tree topology, we needed a smaller topology which allow 

us to have multiple case scenarios but in simpler forms than those of the fat 

tree. While using this topology, we were able to variate it according to our 

experiment needs which improve the analysis and gave us some ideas to 

perform our algorithm. The final form of this topology can be seen in Figure 

10, nevertheless multiple switches were added or deleted as needed to perform 

our tests. 
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Figure 10 Custom Test Topology 
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Chapter 4 

Path Selection Implementation 

In this section, we introduce the pseudo-algorithms to use for the experiments 

in this research. The first algorithm to implement is the pre-processing phase 

of the Contraction Hierarchies Algorithm (CH). CH is originally used and 

proposed for road networks. The second algorithm corresponds to the query 

phase of our work. We implement a modified bi-directional search which uses 

the advantages obtained from the Contraction Hierarchies algorithm. The third 

algorithm responds to unforeseen events on the network. We implemented a 

recovery algorithm in cases of switches failing and use the advantages of the 

CH and SDNs to optimize this process. 

 

4.1 Pre-Processing Phase 

4.1.1 Contraction Hierarchies and Road Networks 

Road networks is an area of traffic management that, as computer networks, 

is in constant study and optimization due to its everyday importance.  

Contraction Hierarchies CH is an algorithm proposed for road networks by 

Geisberger et al. in [Gei08] based on the hierarchical nature of road networks. 

Although the authors of the CHs algorithm focused on using CH for road 

networks, it can be implemented on graphs that hold similar characteristics to 

the hierarchical abstraction of a road network. The computer networks 
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characteristics and the inclusion of SDN allow us to implement CH (with few 

modifications) on computer networks. 

The abstraction of road networks consists of roads with certain cars capacity 

and direction. These roads can be small streets that go only one-way, two-way 

streets, avenues, and highways with high speed and high capacity, etc. To 

arrive to their destination, drivers must take multiple roads, and the way to 

change between roads is to take a turn on intersections. A general trip often 

goes from a small slow street to another road that allows the user to travel 

faster (and so on) in order to decrease the travel time, then back to another 

slower road which finally will connect to a destination. While we mention 

slow or fast travel, this not always refers to speed. In our everyday lives, 

multiple factors affect the way we travel and according to our needs we might 

need to optimize different parameters. This gives road networks a simple 

hierarchy according to road capabilities and frequency of use. Finally, if a 

driver traces a path from the streets connecting its source and destination 

points to a higher hierarchical road, there will be a point (or multiple points) 

where these paths can intersect. By calculating the shortest intersection of 

these routes, we can obtain the shortest path between a defined source and a 

defined destination. By making the analogy with computer networks, we can 

say the following:  

• The roads, car flow direction, and car capacity work as the connection 

between network elements and their bandwidth. We can classify these 

network connections into hierarchies depending on the parameters to 

calculate the fastest routes. 
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• The intersections distribute the traffic through different paths as 

network elements distribute the packages through the links.  

• Hosts work like the starting point and destination of the drivers.  

• The drivers use roads in similar ways to the packages of the computer 

networks. 

• Finally, to trace the routes while considering the variables affecting the 

traffic, drivers can use devices who have a broad view of the network 

(like GPSs). With the implementation of SDNs, we can obtain similar 

information to improve our network routes. 

These similarities can be applied in different ways by researchers. In previous 

examples (Chapter 2 Section 2.2), road infrastructure which is located at 

important points of the roads (like intersections) are the ones connected to the 

SDN infrastructure (controller). For this example, the network infrastructure 

is the one acting like the roads and intersections. The direction of the roads is 

discarded because in our implementation the links between network devices 

work both ways. 

The CH algorithm is a path optimization algorithm for road networks, which 

uses the pre-processing phase to improve the path selection phase. As the 

network becomes larger, the pre-processing phase times increase but allows 

an improvement compared to normal search and bi-directional search 

algorithms. A good performance on the pre-processing phase can lead to a 

greater optimization on the routing phase. In addition, the re-routing phase 

added in this work can also be enhanced by simplifying the new routes by 

using SDNs and the CH results. 
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Before explaining the Contraction Hierarchies algorithm, the following points 

are important to understand the pseudocode. As explained before, we can use 

the formulas from the original algorithm [Gei08] with few modifications. 

Considering a graph G with vertices V (nodes) from 1-to-n and edges E (links) 

from 1-to-m   

𝐺 = (𝑉, 𝐸) 

• We consider a node 𝑣 ∈ 𝑉 contracted when we temporary remove it 

from the graph in order to replace paths of the form [𝑢, 𝑣, 𝑤] ∈  𝑉 by 

the shortcut [𝑢, 𝑤].  

• During contractions, u and w are nodes from V with higher priority than 

v. 

• To determine if a shortcut is needed, we compare other paths [𝑢, 𝑤] that 

does not go through v. A shortcut is added if the shortcut [u, w] is the 

shortest path from u to w. 

• To calculate the priority of a node v we use the Edge Difference (ED) 

method and the following equation. 

𝑒𝑑(𝑣) = 𝑠(𝑣) − 𝑖𝑛(𝑣) − 𝑜𝑢𝑡(𝑣)              (Equation 4.1) 

 ED is the difference between the number of links contracted and the 

number of shortcuts that can be created. 

o S(v): number of shortcuts when contracting v 

o In(v): links with destination v 

o Out(v): links with source v 
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• After contracting a node v, the priority of the neighbors can change. 

The new priority values of the neighbors are recalculated, and the order 

can be modified. 

4.1.2 CH pre-processing pseudo algorithm 

In this algorithm we have the information of the network as input, and the 

shortcuts and node order as outputs. “Adjacent_nodes” is an important 

function in which, given a specific switch id, returns the links and shortcuts 

where the source is the input switch.  

First, we calculate the importance or edge difference of each node v. To do 

this, we use the “calculate_edge_difference” (ED) function, this function uses 

the “adjacent_nodes” function to obtain the second and third value of the edge 

difference equation8 4.1. To obtain the first value, we use the third procedure 

“alternative_routes”. While searching for alternative routes, given two 

adjacent nodes to v, we search for a path between them other than through v. 

This procedure can be limited to a search for a route different than v with 

“max_len”9 jumps. After calculating all the “ed” values of all the nodes, we 

select the node with the highest “ed” value and use the procedure 

“node_contraction” to contract the selected node. The result of contracting a 

node is to “eliminate” this node temporarily and to add the necessary 

shortcuts. The node contracted receives a contraction number based on the 

turn it was contracted. Finally, we re-use the “adjacent_nodes” and 

 
8 As mentioned before, the direction of the links is irrelevant, so input and output links are reduced to the 
same “links” value. 
9 Max_len is the number of jumps from v to the adjacent nodes being evaluated src-v-dst contains 2 
jumps. The number can increase when the adjacent node is a shortcut. 
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“calculate_edge_difference” procedures to re-calculate the “ed” value of the 

neighbor nodes and repeat the process until all nodes have been contracted. 

 

INPUT:   

Links_Information  

//Dictionary with port objects  

//(Port number, switch ID, active flag) 

//A link is a pair of ports = {source_port, destination_port}  

 Active_switch  

//Dictionary with active switch information  

//(ID to match with links) 

OUTPUT RESULT:  

Shortcuts     

//of the initial topology 

 Node_order     

//order of importance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

PROCEDURE: adjacent_nodes[sw]  

//Uses link and shortcut information  

//return adjacent nodes 

For  link in links_information do 

    if link.source.id equals sw.id then //compares link source  

                                                                      //and function input switch 

    adjacent ← link 

 

    End 

End 

 

For shortcut in shortcuts do 

    if shortcut.source.id equals sw.id then 

    adjacent ← shortcut 

 

    End 

End 

Return adjacent                                   //adjacent links/shortcuts to  

                                                                //input switch (sw) 
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PROCEDURE: Calculate_edge_difference[]     

//inspired on the equation 4.1 

For switch(sw) in active_switch do  

                             // Calculates initial importance of the switches 

    adjacent_nodes[sw] 

    𝑒𝑑(𝑣) = 𝑠(𝑣) − 𝑖𝑛(𝑣) − 𝑜𝑢𝑡(𝑣) 

                           //Importance = possible shortcuts – In/Out links 

    Importance[sw] ← ed 

End  //The “ed” value defines the order to contract the nodes 

Return Importance  
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PROCEDURE: alternative_routes[start, stop, v, max_len] 

//simple search of paths different than v 

Level = 1 

Visited = {}               //nodes visited = {node_route: level} 

Visited = {start : 0} //nodes visited and jumps from node “start” 

For i = 0, 1, 2, … max_len do 

    For node in visited do 

    If node.level equals level - 1 then 

    Adjacent = adjacent_nodes[node] 

    For adjacent in Adjacent do 

    If adjacent equals stop then 

    Return true 

    Else 

    Visited ← {route_to_adjacent: level} 

    End 

    End 

    End 

    Level = level + 1 

    End 

End 

Return false 
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PROCEDURE: node_contraction[sw]  

//Contracts the higher importance node 

Adjacent = adjacent_nodes[sw] 

Node_order ← {sw: order_number} //order number increases by 1  

                                                                 //each contraction 

For x in range(len(adjacent)) do       //len is the int number of  

                                                                //elements in adjacent 

    For y in range(x + 1, len(adjacent)) do 

                                                              //range(start, stop, increase(def = 1)) 

    Max_length = len(adjacent[x]) + len(adjacent[y]) 

    Alternative_routes(adjacent[x], adjacent[y], sw, max_length) 

                                                     //alternative_routes returns T or F 

    If alternative_routes equals false then 

    shortcuts ← adjacent[x] + sw + adjacent[y]  

                                              //shortcut = src-v-dest 

    End 

    End 

End 

 

 

4.2 Query (Search) Phase 

After performing the pre-processing phase of the Contraction Hierarchies 

algorithm, we must select an algorithm to manage the queries for routes. This 

algorithm will calculate the shortest path from the Source to Destination (S to 

D) using the shortcuts of the CH algorithm.  
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We can find multiple options in literature depending on the type of network 

we are managing and the conditions of the source and destination. For trees 

the simplest option is Depth-First Search (DFS). DFS has a big problem, in 

our examples the source changes so the top of the graph is different on each 

query. While it is possible to rearrange the graph to solve this problem, other 

available options are better for this case scenario. 

A common practice on graphs is to assign a weight value to each path between 

the nodes, then we calculate the value of the distance between source and 

destination based on these weights.  

One of the most used algorithms used to find the shortest route from S to D is 

the Dijkstra algorithm. The Dijkstra algorithm (or Dijkstra’s shortest path first 

algorithm) is an easy to implement and easy to understand path algorithm. 

This algorithm uses the weights of adjacent nodes to the source to select the 

path to follow. Then it selects the path to the adjacent node with the minimum 

weight and adds the weight of the following adjacent paths. The process of 

adding the weights of the routes and selecting the minimum path value 

continues until the destination node is reached. This process guarantees that 

the shortest path in terms of the weights is selected. 

In case we don’t have the values of weights or these values were not 

previously assigned to the graph, we can use the Breadth-First Search (BFS) 

algorithm. This algorithm works in a similar way to the Dijkstra’s algorithm 

but instead of the weights, BFS uses the number of jumps as the metric to 

determine the shortest path. One of the advantages of BFS is that it keeps track 

of the visited nodes, this allows the algorithm to work even if loops are present 

in the graph. BFS as well as Dijkstra, continues until the destination node has 
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been found and returns the path as well as the distance (number of jumps) of 

the shortest path. 

Finally, one of the main optimizations to the Dijkstra and BFS algorithm is 

the bi-directional search (BS). BS can be implemented when both the source 

and destination of a search are static. The BS process uses the same search 

methodology from Dijkstra and BFS but instead of searching from S to D, it 

searches both ways at the same time (S to D and D to S). The process ends 

when both graphs of visited nodes intersect, and the minimum path can be 

calculated. BS reduces the complexity of the path search. 

 

4.2.1 Changes to the algorithm during the searching 

phase 

Due to the multiple parameters that can affect a network’s performance and 

the lack of a real case scenario with real performance data, in this research we 

follow a general approach on the searching parameters. To take advantage of 

the SDN paradigm and CH algorithm we implement the search algorithm 

proposed in [Gei08] with a unidirectional jump-based approach. This means 

that the algorithm used is a bi-directional BFS on an unweighted graph. The 

benefits from CH remain the same based on the number of jumps, this means 

that the BFS algorithm is both, limited by the node order and improved by the 

shortcuts obtained in the previous phase. 

 

4.2.2 Query pseudo algorithm 

For the convenience of the query algorithm we create a different function in 

which the results of the pre-processing phase are used. The previously 
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introduced (in Section 4.1.2) “adjacent_node” procedure is re-used in this 

section, but some modifications are implemented. While searching for 

adjacent nodes, we limit the node search to those which have a destination 

with a higher node contraction order (or node order) value than the source. All 

the searches for nodes in the Query section are performed with this modified 

“adjacent_node” function. 

To calculate the shortest route, first we search for adjacent nodes to the source 

and destination nodes and place them on level 1. Then we search for adjacent 

nodes to those on level 1 and place them on level 2 and so on. This process is 

repeated until both searches return cero adjacent nodes and a shortest route 

can be calculated. After calculating the route, we use a global variable to keep 

track of the active routes and we implement the route on the necessary 

switches. The final process is implemented on the third procedure 

“Install_flow_route” which install the flows on all the switches of the required 

route in both directions when an answer is needed. The flows can be specific 

to a protocol so the administrator can change the configuration to install the 

flows from source-to-destination and destination-to-source in one go, or only 

from source-to-destination. 

 

INPUT:  

Source(src) 

//src is an integer variable that represents the ID of the source 

//switch obtained from the package that triggers the query event 

Destination(dst)  

//dst is an integer variable that represents the ID of the destination 

//switch obtained from the active_switch variable in Section 4.1.2 

//and the dst mac address on the package that triggers the event 
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Node_order  

 //int list with the order in which the nodes were contracted 

//obtained as output from the pre-processing phase (Section 

//4.1.2) 

Shortcuts  

 //String list with the shortcuts of the network 

//obtained as output from the pre-processing phase (Section  

//4.1.2) 

Active_switch  

//same as the input from last algorithm (Section 4.1.2) 

Links_information  

//same as the input from last algorithm (Section 4.1.2) 

 

OUTPUT RESULT:  

Global_routes  

//string array with the calculated routes as Src-V-Dst 

 Flow_route  

//install flows in switches from the previous route 

  //not an actual variable 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

PROCEDURE: adjacent_nodes[sw]  

//Uses link and shortcut information, return adjacent nodes 

For  link in links_information do 

    if link.src.id equals sw.id and link.dst.order > sw.order then 

//compares link source id with function input switch id and 

//destination order must be a higher order than source order  

    adjacent ← link 

 

    End 

End 

 

For shortcut in shortcuts do 

    if shortcut.src.id equals sw.id and shortcut.dst.order > sw.order then 

//compares link source id with function input switch id and 

//destination order must be a higher order than source order  

    adjacent ← shortcut 

 

    End 

End 

Return adjacent  

                //adjacent links/shortcuts to input switch (sw) 

 

 

 

 

 

 

 



66 
 

PROCEDURE: bi_directional_breadth_first_algorithm[src, dst] 

Level = 1 

Visited = {}                                       //nodes visited = {node_route: level} 

Visited = {src: 0, dst: 0}                 //route to nodes visited and  

//jumps from node “start” 

If route[src_dst] is in Global_routes then 

    Return route[src_dst] 

End 

For node in visited do 

    If node.level equals level - 1 then 

    Adjacent = adjacent_nodes[node] 

    For adjacent in Adjacent do 

    If adjacent.order_number < node.order_number then  

    Ignore lower order nodes 

    Else if adjacent in visited and source_of visited.node_route  

    not equal to source_of adjacent.node_route 

    Global_routes ← Calculate_final_route() 

    Return Calculate_final_route() 

    Else 

    Visited ← {route_to_adjacent: level} 

    End 

    End 

    End 

    Level = level + 1 

End 
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PROCEDURE: install_flow_route[route, src_ip, dst_ip, package] 

priority = len(route) 

package_type = package.ether_types               //protocol of the package  

                                                                                  //received by the controller 

For switch in range(len(route) – 1, -1, -1) do  //reverse loop through the route 

    If switch is the last element in route then 

    Out_port = port_connecting_to_dst_ip 

    In_port = Link_information.port_number where src = switch                                                                                                                                                                                                          

                    and dst = route_previous_element 

    If switch is the first element in route then 

    In_port = port_connecting_to_src_ip 

    Out_port = Link_information.port_number where src = switch                                                                                                                                                                                                          

                    and dst = route_next_element 

    else 

    In_port = Link_information.port_number where src = switch                                                                                                                                                                                                          

                    and dst = route_previous_element 

    Out_port = Link_information.port_number where src = switch                                                                                                                                                                                                          

                    and dst = route_next_element 

    End 

    Datapath = Active_switch.switch.datapath 

    Add_flow(switch = datapath, priority, package_type, source = src_ip,  

                      destination = dst_ip, actionOutput = out_port) 

    Add_flow(switch = datapath, priority, package_type, source = dst_ip,  

                      destination = src_ip, actionOutput = in_port) 

End 

Datapath.send_msg(datapath, actionOutput = out_port, package) 
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4.3 Recovery Procedure 

For the recovery phase we use the built-in functions of the controller to trigger 

an event when a switch is disconnected. At this point we can execute the 

functions we need to recover the paths. The recovery process consists in two 

phases, the first phase tries to recover the active routes, and the second phase 

evaluates when we need to re-do the complete route. 

To recover the active paths, we use the global routes variable obtained in the 

query phase. In case we find an active path, who uses the stopped switch, we 

use two kind of functions to try to find an alternative path.  

The first function is called “limited_bi_directional_search”. In this case, the 

word “limited” refers to the extra limitations on the search (See Section 6.2.2 

for more information). 

If the limited search returns a positive result, the new path is calculated. If the 

result is negative, then we proceed to the second option called 

“Unlimited_bi_directional_search”. If between the source and destination 

nodes exist an alternative route, we must be able to reach it with a broader 

search from source to destination. If our modified BFS algorithm fails, we 

have another phase on the unlimited search, but before using this option, a 

change in the shortcuts must be done. See Section 6.2.3 for more information. 
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4.3.1 Recovery pseudo algorithm 

INPUT:  

Shortcuts  

 //list of strings, similar to links 

//obtained from pre-processing algorithm 

Active_switch  

 //Dictionary of active switches 

//same as previous algorithms 

Links_information  

//dictionary of active links with information like:  

//source, destination, and active flag 

Global_Routes  

// list with strings type Src-V-Dst 

OUTPUT RESULT:  

Updated_global_routes 

 New_flow_route  

//function that renews the flow routes in the switches 

 Updated_shortcuts 

  //Only when necessary updates the shortcuts list 
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PROCEDURE: re_calculate_route[routes, sw_id]  

                           //quick search for alternative fast routes  

Previous_sw = routes[x - 1] 

Next_sw = routes[x + 1] 

        //value X is the index of switch_id in routes 

Limited_Bi_directional_search[previous_sw, next_sw] 

If Limited_bi_directional_search returns Null then 

Unlimited_Bi_directional_search[src, dst] 

End  

Return new_route 

 

PROCEDURE: switch_leave_monitor[ev]  

  //built-in event for switch disconnecting 
Switch_id = ev.switch.id //ev contains the information of the event 

Active_switch.delete(switch_id) 

For routes in Global_Routes do 

    If switch_id in routes  

    and switch_id is not routes.src  

    and switch_id is not routes.dst then 

                            //if the switch stopped is the source or destination,                    

                            //then re-routing is not possible 

    New_route = Re_calculate_route(routes, switch_id) 

    Global_routes ← New_route 

    Install_flow_route(New_route, source, destination) 

    End 

End 
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Chapter 5 

Algorithm Analysis 

In this chapter we describe the results of the implementations to the algorithms 

from Chapter 4 and perform an analysis to understand how the algorithms 

work, the constraints, and propose a solution. As described previously in 

Section 4.2.1, the scope of these experiments is to propose and test our 

algorithms for a general environment to provide a theorical way to recover 

communications. To do this, we apply our algorithms in multiple types of 

networks and situations and here we provide the main scenarios. 

 

5.1 Contraction Hierarchies Implementation  

To fully understand the logic behind the “why the shortcuts and node order 

are created that way”, we implement the CH algorithm in multiple topologies. 

One of the most useful topologies is shown in Figure 11. 
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Figure 11 Test Topology 

There are multiple reasons as to why we implement this topology. The main 

reason is that the switches offer multiple paths to reach a destination, this 

prove to be useful while testing our shortest path search. The second reason is 

to test the capacity of our algorithm to mitigate the problems with sending 

packages on topologies with loops. Finally, the topology is shorter than the 

Fat Tree topology which makes it easier to analyze. The analysis of a smaller 

graph allows us to identify the patterns of the algorithm. The patterns obtained 

gave us the idea to separate the graph into smaller segments to analyze the 

logic of each one. As an extra reason the shortcuts created while processing 

this topology are easier to draw in order to analyze the graph and realize the 

algorithms explanation. 

After pre-processing the Figure 11 topology by applying the algorithm from 

Section 4.1.2, Figure 12 shows the result node order. The numbers inside the 

brackets represents the order in which the nodes were contracted. The 

contraction order means that during the query phase, a switch with a 

contraction order “n” will limit his search to other nodes with higher 
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contraction number than its own. For example, switch 4 with node order 1 can 

search for switches number 12 and 5 with node orders 10 and 2 respectively, 

but not to switch 3 who has a contraction number 0. Figure 13 shows the 

results from the perspective of the shortcuts, these are also affected by the 

node order. 

 

Figure 12 Node Order 

 

Figure 13 Shortcuts 
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5.2 Contraction Hierarchies Analysis 

To analyze the performance of the CH algorithm, we needed a way to find and 

isolate the multiple paths and shortcuts between our switches and analyze the 

routing behaviors and constraints. As mentioned in the previous section, the 

best method we found to understand the CH algorithm, is to split our 

topologies into smaller sections. Each section analyzed represents a possible 

loop in the topology which contains one or more ways to connect our source 

and destination switches. Then we trace the direction of the node order and 

shortcuts on each sample. This method allows us to isolate at least two routes 

between the source and destination switches that belong to the same section 

and analyze if our CH configuration allows our query algorithm to obtain an 

alternative route if the original is interrupted. The results are as follows. 

 

Figure 14 Top Loop 
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Figure 15 External loop 

Figures 14 and 15 represent the top and external loops of the topology. Each 

loop has a local minimum, switches 4 and 3 respectively. In these cases, the 

loops formed contain only two search directions. If we follow the possible 

search paths from the local minimum and trace a line until the end, we will 

find the local maximum, switches 12 and 10 respectively. The external blue 

and green arrows represent the start, direction, and end of the searches that 

can be done with the links in those loops. The internal red lines represent the 

shortcuts previously obtained that involve only switches in that loop. 

While making a search from any switch to any other switch, we always try to 

obtain the shortest possible route. The analysis of Figures 4 and 5 indicates 

that while searching for our path, the bi-directional search will follow one of 

the two paths until the search reaches a local maximum. In case the shortest 

path needs to go through the local minimum, the nodes can make use of the 

shortcuts to reach their destination. 

The last loop is a different case because of its composition. As seen in Figure 

16, the lower loop consists in two local minimums (switches 3 and 6) and two 

local maximums (switches 12 and 10) which produces shortcuts on multiple 
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sides to move across the local minimum. Nevertheless, the normal algorithm 

still works for these cases and the number of shortcuts increases the speed of 

the path calculation. 

 

Figure 16 Lower Loop 

After separating the previous topology and understanding the logic behind it, 

we proceed to do the same with the fat tree topology. Figure 17 represents a 

numbered version of the topology explained in Chapter 3. This topology is 

more complex, but the principles are the same. First, we identify a series of 

simple loops with simple patterns by applying the CH pre-processing and 

separating the loop sections. As the topology has multiple similar loop 

structures between its different layers, we will only show one example of each 

different structure. Nevertheless, the switches involved in the other structures 

will be described. 
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Figure 17 Fat Tree with Node Order 

In Figure 18 we can see the shortest loops in the fat tree topology. Segments 

a, b and c are simple because there is only one minimum, one maximum and 

no shortcuts. Similar patterns to Figure 18a are repeated 4 times on the links 

between the aggregation and edge layers of the topology (the different layers 

are explained in Section 3.3). The pattern in 18b is repeated 6 times with the 

switches 17 and 18 and combinations of switches 9, 11, 13 and 15. Finally, 

the pattern in Figure 18c is repeated three more times with the switches 10, 

19, 20 and either 12, 14 or 16.  

The pattern in Figure 18d also contains only 4 switches, but the difference is 

that it contains two maximums and two minimums. As analyzed before, this 

requires a shortcut connecting both maximums. The pattern in Figure 18d is 

repeated 3 times with the switches 19 and 20, and two more switches between 

12, 16 and 14.  
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Figure 18 Fat tree small loops 

After isolating the small loops of Figure 18, the complexity increases for the 

remaining part of the structure analysis. Due to the links patterns of the lower 

layers of the fat tree topology, the following loops which connect most of the 

nodes involve all the layers of the topology (the three layers explained on 

Section 3.3.1). While isolating the following loops, the multiple possible 

shortcuts and path combinations caused multiple variations even on similar 

structures creating multiple types of similar loops. Next, we will show the 

multiple segments we found but we will omit those with repeated shortcuts 

and links flow. 
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As we can observe in Figure 17, the nodes 17 and 18 as well as nodes 19 and 

20 have similar link patterns. Thus, the following loops are a combination of 

the links connecting node 17 with 19 and 20, or node 18 with 19 and 20. When 

node 17 tries to connect with either 19 or 20, it must go to a switch in the 

aggregation layer (9, 11, 13 or 15), then to the edge layer (1, 2, 3, 4, 5, 6, 7 or 

8) and return to a different switch on the aggregation layer (10, 12, 14 or 16) 

and back to the core. For example, in Figure 19a, we connect switch 18 and 

20 of the core layers. The connections of 18 and 20 with the aggregation layer 

are 18-11, 18-13, 20-12 and 20-14. Nodes 11 and 12 have at least one mutual 

node in the edge layer like 4, and 13 with 14 can be connected through 6 in 

the edge layer thus forming a loop. Finally, we add the possible shortcuts 

involving the nodes on each loop and the direction of the node order. 

Following the same logic, multiple loops are formed involving different 

combinations of the same shortcuts as shown next.  
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Figure 19 Loops obtained from the analysis of the fat tree topology 

After separating the different loops in the fat tree topology, we can observe 

similar cases to those obtained from Figures 4, 5 and 6. Something worth 

mentioning about these new loops is that most of them have three minimum 

and three maximum nodes but they still follow the pattern for the searches. As 

we can observe in Figure 19a, three of the 5 shortcuts we have can be used to 

connect the 3 maximums when needed to reach our destination. Finally, the 

number of shortcuts decrease as we change the nodes 18 and 20 for the 17 and 

19 respectively, and nodes 4 and 6 for nodes 3 and 5. This decrease of 

shortcuts corresponds to similar structures with nodes in lower node orders. 

We can conclude that the algorithm gives preference to searches with higher 

node orders that accelerate the procedure with the shortcuts. 
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5.3 Recovery Phase Analysis 

Up to this point we have a functional implementation of the CH algorithm and 

the modified version of the bi-directional search. Nevertheless, when 

performing a search and stopping at least one of the switches in the route, we 

have multiple scenarios. 

In Figure 14 we can observe a shortcut from 5 to 12 (5-4-12). While tracing 

the route from 5 to 12, this shortcut is useful because it allows us to do a fast 

search in a single step. The main problem comes when switch 4 is stopped. In 

this case, we can see that there is another route through 5-6-13-12. The new 

route has two problems involved with the CH algorithm. The first problem is 

that the previous shortcut calculation does not contribute towards the 

calculation of the fastest route. The second is that, contrary to its purpose, the 

node order prevents node 12 to search towards node 13 because it has a lower 

order value. This means that node 5 must loop through all the remaining 

elements by itself, which converts the algorithm into a normal BFS.  

In Figure 15 we have a similar case than the previous one. In this example, if 

we try to go from switch 6 to 8 and a switch in the shortcut 6-5-4-3-8 fails, we 

will have no gain with respect to the shortcuts. Nevertheless, the bi-directional 

search does still contribute towards speeding up the path calculation. Node 8 

can still search through nodes 9 and 10, and node 6 can search through nodes 

7, 11 and 10 which would reduce the number of steps from 5 (in the original 

BFS) to only 3. In the worst-case scenario, nodes like 3 and 4 contain most 

shortcuts in this loop, in cases when these types of nodes are stopped, the event 

will nullify most of the shortcuts available. 
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Fortunately, in cases like the one shown in Figure 16, the biggest advantages 

of the chosen algorithms arise. As mentioned before the loop in Figure 16 

contains two local minimum nodes, which produces shortcuts on two different 

areas of the loop. In the case of communication between nodes 12 and 9 for 

example, and the interruption of the path between them, if the path 12-4-3-8-

9 gets interrupted, we can still calculate another path between our source and 

destination while optimizing the search with the advantages of CH. In general, 

the pattern on Figure 16 is repeated, in Figure 19a when we have three 

maximums and three minimums the shortcuts improve the communication to 

the different maximums and through the minimums. 
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Chapter 6  

Experiments and Results 

This chapter describes the constraints we found during our experiments and 

our proposals to solve them. In [Gei12], Geisberger et al. contemplate a 

dynamic scenario due to the constant changes on road networks. In this work, 

we believe that contemplating a dynamic network is the right approach due to 

events that can occur on computer networks. Nevertheless, our approach is 

different in both, the type of events that we contemplate, and the way we 

tackle the problems. 

 

6.1 Query Constraints 

As explained before, considering our network limitations and lack of real case 

scenarios, our proposed network does not contemplate dynamic weights. This 

means that changes on links weights due to changes on the networks are harder 

to contemplate, so we decide to limit our events to disconnections. Next, as 

described on Section 2.1.1, Shamim et al in [Sha18] did some work on link 

aggregation and used SDNs to implement an option during unforeseen events 

on the links. Due to the individual nature of network devices, during our 

research we often found a network element-based concern about the switches 

proper communication during link disconnection or switch disconnection. In 

computer networks, both cases (a link or a device disconnection) need to be 

effectively informed to other switches and in SDN cases to the controller. 

Thus, our approach was based on computer network circumstances and the 
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algorithm’s performance analysis performed in Chapter 5 which led us to our 

approach. 

From Chapter 5 we can observe that the searches from source and from 

destination of the bi-directional search tend to converge into the local 

maximums. The main problem comes when the path to the maximums or the 

path between the maximum is interrupted. To exemplify these cases, we found 

mainly 3 examples. 

 

6.1.1 Direct Query Between Local Maximums 

The first problem example is in the example from Figure 16. We found a 

problem while tracing the paths between the local maximums (10 and 12). 

Usually, local maximums in a loop cannot move to other nodes through 

normal links because the adjacent nodes have a lower node order. To solve 

these cases, CH generates a shortcut between the local maximum to connect 

the nodes where the searches converge. The problem comes when this shortcut 

is cut by one of our unforeseen events, then we would need to find another 

path between nodes 10 and 12. In these cases our search won’t be able to 

generate another path.  

 

6.1.2 Query Stops on Different Local Maximums 

A similar problem occurs when in a recovery search one of the nodes tries to 

contact a local maximum i.e. in Figure 16, node 7 contacting node 10 through 

7-11-10. In this example, when 11 fails, 7 only contains one path that leads to 

the local maximum 10, a shortcut to 13, and 13 can reach 12. 10 is 
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uncommunicated because its shortcuts were cut by 11. While 7 can still 

perform some movements, it can only reach 12, thus producing a variation of 

the problem in Section 6.1.1 and a disconnection between 7 and 10. 

 

6.1.3 Unnecessary Elements in the Calculated Routes 

Finally, while splitting the graph into the multiple loops helps us to analyze 

the individual pieces, we must not miss the whole picture. In Figure 14 while 

connecting 6 and 12 through 6-13-12, if 13 stops, it might seem like the 

connection between 6 and 12 is lost such as in our previous example. While 

looking at Figure 6, node 6 is also a minimum and has no search capabilities. 

Nevertheless, while looking at Figure 15, node 6 has a shortcut to 8 (through 

6-5-4-3-8), note that node 12 is not in this figure. Finally, Figure 16 contains 

a route from 8 to 12 that does not involve node 13, thus, the route from 6 to 

12 is possible (6-5-4-3-8-3-4-12). The result from the query is long and 

contains unnecessary nodes for the final route while moving twice through 

nodes 3 and 4 and having 8 as an unnecessary node. While the final route 

should be 6-5-4-12, the recovery node was unable to identify these loops. So, 

to improve the final route, a final route-processing method was implemented. 

6.2 Proposed Solutions 

6.2.1 Unnecessary Element Search 

While calculating the routes we found problems with unnecessary loops like 

the one presented on the final example of the previous Section 6.1.3. This 

issue was easily solved by adding a little procedure on the route calculated. 
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PROCEDURE: Eliminate_final_route_loops[final_route] 

For x in range(len(final_route)) do 

    For y in range(x + 1, len(final_route)) do 

    If final_route[x] equals final_route[y] then 

    New_route = Delete_elements_between_x_and_y_plus_y() 

    End 

    End 

End 

This new procedure can be implemented while calculating any of the final 

routes through the implementation to avoid unnecessary loops. 

“Eliminate_final_route_loops” iterates through the elements of the calculated 

route and eliminates the intermediate elements when it founds the first match. 

In the previous example, we can observe that the recovery route 6-5-4-3-8-3-

4-12 contains two unnecessary loops. In this case, X iterates through the 

elements starting from 6, Y iterates through the rest and compares them. The 

“if” comparison will not return positive until x reaches the value 4 (in the 3rd 

position) and Y reaches 4 (in the 7th position), then the procedure will delete 

the elements in-between (3-8-3) this will also eliminate the internal loop. 

Finally, the only step towards our final route is to delete either of the repeated 

values (node 4) and our route will be ready to be installed. 

 

6.2.2 Alternative Switch Search 

Previously in Section 4.3.1, we mentioned two types of recovery functions. 

After analyzing the logic behind the pre-processing (Chapter 5), now we can 
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analyze the reasons for these functions. The first one named 

“Limited_bi_directional_search” corresponds to examples when it would be 

faster to find an alternative route to the stopped switch, rather than a 

completely different one. 

First, we calculate the previous and next indexes of the switch stopped in a 

route, then we realize a search without going back to the source and 

destination switches of the original route. This makes sense when there are 

other routes connecting both switches and we can simply replace the lost 

switch in the fastest way possible. This also corresponds to how we 

implemented the algorithm because if there are two routes between the same 

points, it only contemplates the shortest. In case the two possible routes have 

the same length, then it ignores the first one and only adds a shortcut through 

the second one. The equations to calculate the values for the limited search 

were presented in the procedure “re_calculate_route” in Section 4.3.1, the rest 

is a simple bi-directional search using the input values for the limited search. 

For the particular case of the “Limited_bi_directional_search” we will ignore 

the node order during the search, this will return results like node 17 (node 

order 0) instead of node 18 (node order 19) in Figure 17, as long as the 

resulting node can replace the event node. Finally, we include a max_len value 

to limit the number of iterations on the search. While using 1 as max_len can 

be useful to replace nodes like 18 and 17, in Figure 14 we can increase 

max_len to replace 5 in 4-5-6 with a short route through 4-12-13-6. This value 

can be changed according to our needs, but higher values might not return 

better routes. 
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PROCEDURE: Limited_bi_directional_search[previous_sw, next_sw] 

Level = 1 

Visited = {}  

Visited = {start: 0, stop: 0}  

For i = 0, 1, 2, … max_len do 

    For node in visited do 

    If node.level equals level - 1 then 

    Adjacent = adjacent_nodes[node] 

    For adjacent in Adjacent do 

    if adjacent in visited and source_of                             

    visited.node_route not equal to source_of  

    adjacent.node_route 

    alternative_route ← Calculate_alternative_route() 

    Return Calculate_alternative_route() 

    Else 

    Visited ← {route_to_adjacent: level} 

    End 

    End 

    End 

    Level = level + 1 

    End 

End 

Return false 
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6.2.3 Recovery Search 

When replacing the switch of the event is not possible, we must re-calculate 

the complete route. Here is when the second option mentioned in Section 4.3.1 

“unlimited_bi_directional_search” comes in. In this case, the word unlimited 

refers to the lack of restrictions of the algorithm while we search for a different 

path to take, the algorithm is separated into two phases.  

During the first phase, we perform a normal bi-directional search with the 

available nodes (node order restrictions and shortcuts included), to try to 

locate an alternative route (if the route exists within the CH restrictions). If 

the search reaches the maximum values available but these two maximums 

cannot communicate, then we implement the second part of the algorithm. 

The second phase of the unlimited search activates when the shortcut between 

the maximums is cut as seen in Sections 6.1.1 and 6.1.2, but there is still an 

alternative path for our route. Here we must find the alternative route between 

our maximums without the restriction of the CH algorithm, this will restart 

the communication while maintaining the CH node order and shortcuts.  

While tracing the new path between the local maximums, we perform what 

we call an unlimited search. To find the new route, we can calculate a new 

path by using links and available shortcuts. In this case, we can go to any node 

despite the node order. This will guarantee a new shortcut through an available 

route and a new connection between local maximums. This new connection 

can be added to the shortcut variables to help other searches that include these 

nodes. This method is more effective in comparison to a normal bi-directional 

search from source to destination because by using the normal algorithm we 
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obtain a faster path, but we do not contribute to calculate others. By using our 

method, the shortcut can improve other path calculations.  

 

PROCEDURE: unlimited_bi_directional_search[src, dst] 

Level = 1 

Visited = {}  

Visited = {src: 0, dst: 0}  

For node in visited do 

    If node.level equals level - 1 then 

    Adjacent = adjacent_nodes[node] 

    For adjacent in Adjacent do 

    If adjacent.order_number < node.order_number then  

    Ignore lower order nodes 

    Else if adjacent in visited and source_of                         

    visited.node_route not equal to source_of  

    adjacent.node_route 

    Global_routes ← Calculate_final_route() 

    Return Calculate_final_route() 

    Else 

    Visited ← {route_to_adjacent: level} 

    End 

    End 

    End 

    Level = level + 1 

End 
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Src_maximum, dst_maximum = Calculate_search_maximums() 

Level = 1 

Visited = {}  

Visited = {src_maximum: 0, dst_maximum: 0}  

For node in Visited do 

    If node.level equals level - 1 then 

    Adjacent = adjacent_nodes[node] 

    For adjacent in Adjacent do 

    if adjacent in visited and source_of                         

    visited.node_route not equal to source_of  

    adjacent.node_route 

    Shortcuts←shortcut_from_maximum_to_maximum() 

    unlimited_search_phase_one() 

    Else 

    Visited ← {route_to_adjacent: level} 

    End 

    End 

    End 

    Level = level + 1 

End 

This last option can create loops as the ones mentioned in Section 6.2.1, in 

these cases we use the proposed “Eliminate_final_route_loops” procedure on 

the same section to obtain the final route. 
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6.3 Results 

To test our algorithms, we use the implementation from Chapter 4 and the 

topologies from Section 3.3. The pre-processing algorithm is automatically 

activated once all the switches and links connect to the controller.  

Our general setup consists on several steps. First, after the pre-process has 

been completed, we select two specific switches which connecting route being 

stopped can generate our specific constraints from Section 6.1. Then, we send 

20 packages between the source and destination. To make the times more 

constant, we waited for the first 10 packages to be sent. After the first 10 

packages, we stopped specific switches of the routes that produced variations 

of the problems presented on Section 6.1. Finally, we let our program find and 

run the corresponding solutions from Section 6.2 to fix and re-install the 

routes. Each graph in this section represents a step of the proposed solution 

and the time the different algorithms take to fix the routes. The algorithm 

follows a specific order. First it tries to fix the original route by using the 

algorithm on Section 6.2.2 (“limited_bi_directional_search”). If this 

procedure fails, then it tries to obtain a different route by using the first phase 

of the algorithm in Section 6.2.3 (“unlimited_bi_directional_search”). In case 

it fails, then the second phase of the algorithm in 6.2.3 tries to fix the 

infrastructure and calculate a route. 

To optimize the survivability of the transmission, we focus on providing 

solutions in a specific order to optimize the recovery time. The first set of 

experiments and Figure 20 represent the cases when the route can be fixed by 

using the “limited_bi_directional_search” from Section 6.2.2. In this first 

series of experiments, we stopped switches that affect active routes and that 
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can be easily replaced by alternative similar routes without re-calculating the 

complete route. For example, in the topology of Figure 12, while connecting 

switches 3 and 7 (route 3-4-5-6-7), we stopped switch 5. The algorithm was 

able to calculate a replacement route (like 3-4-12-13-6-7) if the replacement 

route exists within two simple limitations. First, the search for the alternative 

route must not go back to the original source and destination (3 and 7). 

Second, the iterations for the search are lower than our max len value of 3 (see 

Section 6.2.2 for more examples). First, we implemented the general setup 

and stopped the switches as mentioned in the previous example. Our graph (in 

Figure 20) shows the average time vs package number behavior amongst 10 

runs. We can observe that the selected switches were stopped after the 10th 

package and as shown in the respective Table 1 numeric values, we experience 

an average delay of 33.06 ms for the 11th package. 

 

Figure 20 Alternative Switch Recovery 
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Packet 1 2 3 4 5 6 7 8 9 10 

Time (ms) 79.17 0.683 0.1599 0.2046 0.2249 0.274 0.293 0.213 0.2008 0.2003 

           

Packet 11 12 13 14 15 16 17 18 19 20 

Time (ms) 33.06 1.2557 0.2733 0.4003 0.2327 0.2432 0.21 0.2341 0.24 0.2763 

Table 1 Limited bi-directional search values 

 

When the first algorithm fails to fix the route, the program access the second 

algorithm (“unlimited_bi_directional_search” Section 6.2.3) to try to 

calculate one of the alternative routes.  

The next part of our recovery process corresponds to the first phase explained 

in Section 6.2.3. This process corresponds to the cases when a completely new 

route needs to be calculated but we can still calculate this route by using the 

benefits of the CH algorithm. We implement the general setup explained at 

the beginning of this section and stop the corresponding switches so our 

program runs the first phase of the recovery search. A specific example of a 

switch for this section is seen on Figure 17 when switch 1 connects with 

switch 3 (route 1-9-18-11-3). If switch 9 is stopped, switches 1 and 18 cannot 

be connected by using the previous procedure. In this case, we need to 

recalculate the complete route. Nevertheless, we can still calculate the route 

by using the benefits of the CH pre-processing. As seen in Figure 19n the 

green arrows from switch 1 lead to switch 12 which has connection with 

switch 3 thus generating the route 1-10-20-12-3. This experiment has multiple 

variations as we can reproduce the same process by stopping either switch 9 

or switch 11. In the graph of phase two (Figure 21) similar to phase one, we 

observe the average time-package behavior of nine test runs following the 

general setup with switches being stopped after the 10th package. In this case, 
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in the corresponding Table 2 numeric values, we observe an increment of the 

average time up to 37ms. Considering the fluctuation of the times needed to 

restore the communication, a small increment on the average time was 

expected due to the extra process of route search.  

 

Figure 21 Recovery search process one 
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Packet 11 12 13 14 15 16 17 18 19 20 

Time (ms) 36.8888 0.8472 0.5348 0.4148 0.2175 0.2275 0.2825 0.309 0.2111 0.2594 

Table 2 Unlimited bi-directional search phase 1 values 

When both the processes described previously fail, the second process (first 

part of the “unlimited_bi_directional_search”) returns the local maximums 

reached (i.e. 12 and 10 from the examples in Sections 6.1.1 and 6.1.2), then 

we proceed to the final phase of the recovery process, this phase corresponds 

to the final function described in Section 6.2.3. In this phase, the path cannot 
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be re-calculated using the modified BFS algorithm (available shortcuts and 

node order) but we might still have a path available. For a specific case of this 

phase, we can consider the case scenarios described in Sections 6.1.1 and 6.1.2 

in which our searches reach different local maximums and we must reconnect 

both before fixing our route. We use the output of the previous phase (12 and 

10) as the input values for the final procedure. 

The final phase is executed automatically only after the previous phases failed, 

because of the time needed to try the previous phases is still present, we 

expected a time increase in the package transmission.  

Figure 22 shows the average of eight experiments. Similar to the previous 

experiments we use the general setup and stopped the switches as explained 

in Sections 6.1.1 and 6.1.2, the transmissions were interrupted after the 10th 

package. In the Table 3 numeric value representation, we can observe an 

average time increase up to 50.58ms, which is expected as the final phase 

involves two different searches.  

 

Figure 22 Recovery search final phase 
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Packet 1 2 3 4 5 6 7 8 9 10 

Time (ms) 65.975 0.4391 0.1912 0.2108 0.2425 0.1663 0.1805 0.2083 0.2273 0.244 

           

Packet 11 12 13 14 15 16 17 18 19 20 

Time (ms) 50.5875 1.4142 0.2923 0.1928 0.2668 0.2273 0.248 0.2652 0.2183 0.2307 

Table 3 Unlimited bi-directional search phase 2 values 
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Chapter 7  

Conclusions and Future Works 

After researching and implementing our ideas, we can say that there are two 

essential points on our research.  

First, the analysis of other research which lead to the idea of comparing 

computer and road networks. By reading other works, we often found that 

most implementations of interdisciplinary algorithms were not the full 

algorithm but “modified” versions of them. After reading a few articles we 

observe that those modifications were mostly to adapt to the necessities and 

the types of graphs where they were needed. While the comparison of 

Computer and road networks show many useful similarities that allow us to 

implement the Contraction Hierarchies algorithm, we believe that the key 

point was to identify the differences of the networks in order to fully adapt 

other algorithms to our requirements. To find these differences, we believe 

that dedicating some effort on the comparison was essential. 

Second, the implementation of the Software-Defined Networks paradigm 

facilitates the coordination between network devices and is essential to 

implement centralized algorithms to coordinate the network. Our setup allows 

us to analyze the advantages of the CH algorithm on the network and plan the 

re-routing procedures. The selected pre-processing procedures created a logic 

on the nodes order and shortcuts that allow the algorithm to create routes as 

long as there is a path available, and in most cases to improve the path 

selection with the shortcuts and node order even when some elements were 

disconnected.  
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In general, we observe an expected increment on the times involved on every 

phase of recovery. The times obtained at the beginning of the simulation 

oscillate between 50ms and 120ms. Although the times above 100ms were 

few, we still counted these experiments as we believe that these results did not 

affect the re-routing process and we consider that multiple factors are involved 

while obtaining these times. Some examples of these factors are the following: 

• First, as this is the first time doing these kinds of experiments, we 

wanted to make sure the data obtained before the recovery process was 

as accurate as possible. To do this, our code includes many validations 

and console outputs to rectify our data.  

• Next, at least 10ms were lost during the code involved on the thread 

management. This time loss was entirely on purpose and more 

information is provided later on this chapter.  

• Finally, we need to consider the lack of resources and our hardware 

factor. We believe that our environment for testing being a single virtual 

machine on a laptop is a factor to consider while running multiple 

threads. 

Nevertheless, and taking into consideration the limitations of our 

implementation, we believe that out results during the re-routing are 

satisfactory due to the following reasons.  

• First, similar to the routing process, the 10ms time loss while managing 

the threads is also involved on the re-routing process. This means that 

the final times of our procedure should be at least 10ms faster when 

implemented on a different setup. 



103 
 

• Our recovery process fits our implementation of the Contraction 

Hierarchies algorithm and finds the routes as long as they exist. 

• While we can appreciate an increase of the transmission times during 

the recovery process, these times were never higher than those of the 

original routing process, the connection was not interrupted, and during 

our experiments the packages were not lost. 

 

As our approach is based on the survivability of the network, we believe that 

one of the advantages of our method is to avoid the re-contraction of the nodes 

as much as possible to optimize the route re-calculation. In a large network, a 

server needs to calculate multiple routes as fast as possible and fix the current 

ones in the shortest amount of time to keep the communication active and 

reduce delays. To observe how our algorithm behaves during transmissions, 

we focused on optimizing the re-routing procedure for cases when 

communication is active. Thus, we believe our multiple step approach is a 

good option to optimize time when the solution can be easier than re-

calculating the whole route, and in case of complete re-calculation, it allows 

other searches to take advantage of the results obtained. 

While our research was able to restore the communication between nodes, 

there is more work that can be done. As mentioned on Chapter 2, while 

centralizing the control layer in a single device improves the coordination 

between the network elements, there are some security aspects that need to be 

taken into consideration.  

First, we created a single point of failure. After reading other research papers 

we conclude that there are other works focused on solving this problem. Thus, 
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we believe that focusing on our problem is a good start for researching SDN 

communications. 

In the future, we would like to do a performance test on our chosen controller 

with more data available. While Mininet and RYU controller allow us to setup 

some characteristics to simulate a complete network, we believe that more 

testing is required. Using the number of jumps as weight measure for the 

routes is sufficient as a general setup, but to add more realism to our 

implementation, more parameters are required. We can add more case 

scenarios depending on specific needs of an organization’s network like type 

of data, type of applications, extension of the network and topology, amount 

of data required to be transferred, etc. 

On the Contraction Hierarchies algorithm side, as explained by its creators, 

we can implement multiple variations of the pre-processing method which 

affect the effectivity of the results. While we did not perform tests and analysis 

on all the different implementations, we would like to find how these changes 

influence the results of the pre-process and how would that differ from our 

analysis performed in Chapter 5. 

While we focus on different areas (than [Gei12]) like:  

• A different type of network.  

• Put more emphasis on the nodes rather than the links.  

• Focus on disconnections rather than other possible changes in the 

network, and  

• Focus on fixing the whole routes rather than the shortcuts.  
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We also have some similarities, we tried to preserve the original node order 

as much as possible instead of re-contracting the whole graph and correct the 

query. Nevertheless, we believe that the differences in methods came from 

our desire to optimize the survivability of the network. 

During the process of installing the flows on the network elements, we 

detected an inconvenience with Mininet. Our implementation can install 

multiple flows on a single packet_in10 event. Nevertheless, we discover that 

during the flow distribution, the serialization of Mininet processes had 

problems while installing the flows on the network elements before the thread 

in execution sends the package to the next element, thus creating an extra 

unnecessary packet_in event. We controlled this problem using python thread 

functions but adding an extra delay time was necessary. To solve this, we 

believe that testing the performance on a different type of environment is 

essential. 

In general, we were able to understand the performance of SDNs and to test 

our limitations. Our interdisciplinary setup allows us to implement our ideas 

and to analyze the performance of our algorithm to solve our specific problem. 

During our tests, the theorical analysis and positive results added to the fact 

that communication between hosts was not interrupted and only suffer small 

delays, encourage us to improve our setup and hope that this work can 

encourage the readers to expand our ideas. 

 

  

 
10 Packet_in is the name of the controller function that process the request for routes on the controller. 
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