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Abstract

Automatically distinguishing different types of plant images is a challenging problem relevant
to both Botany and Computer Science disciplines. Plant identification at the species level is
a computer vision task called fine-grained categorization, which focuses on differentiating
between hard-to-distinguish object classes. This classification problem is complicated and
challenging because of the lack of annotated data, inter-species similarity, the large-scale
features in appearance, and a large number of plant species. A plant classification system
capable of addressing the complexity of this computer vision problem has important implica-
tions for society at large, not only in public computer science education but also in numerous
agricultural activities such as automatic detection of cash crops and non-crop plants (called
weeds). Furthermore, successful automation of crop and weed identification will lead to the
reduction of chemical compounds currently used to eliminate weeds [15]. Deep Convolu-
tional Neural Networks (CNN) can be a solution to perform this computer vision task. In
this thesis, seven different CNN models are deployed to classify 1 million images - from the
TerraByte dataset - of eleven very similar plant species [13]. This robust approach divides the
problem into two main steps: the first step, called the generalist, identifies similar plants and
separates them into different groups that contain indistinguishable plant species. The second
step, called specialist, is used to classify plants within the groups of indistinguishable plants,
including five weed and seven crop species, with high accuracy. The generalist-specialist
CNN network shows that the hierarchical network outperforms simple CNN models in terms
of accuracy and classifying similar plant images. The contributions of this thesis are the
explored different CNN models and improved performance of those models by designing
and implementing the generalist-specialist CNN models for classifying similar plant images.

Keywords: Plant identification, deep convolutional neural networks, hierarchical CNN,
digital agriculture, plant images.
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Chapter 1

Introduction

Botanists and farmers identify plant species based on their considerable knowledge and
make decisions based on visible features, like the colour and size of each species [19].
Identification and classification of plant species is a challenging task because many species
are difficult or impossible to classify without specialized knowledge. For example, focusing
only on morphology – such as leaf size and shape – can be misleading due to many leaves
being similar in appearance across species [70]. For personal gardens or greenhouses, this is
not an issue as it is a simple task to label each species based on where they were planted, or
potted [24]. As a result, removing unwanted species (called weeds) is a straightforward task.
In contrast, most agricultural farms plant the same seed species (called a crop) throughout
an entire field. On this scale, it is not feasible to manually remove weeds as it is a time-
consuming and expensive task that requires many personnel to care for individual plants.
Moreover, as was mentioned above, plant identification is also a difficult problem. For
example, barnyard grass, an annual grassy weed found throughout North America, is visually
very similar to wheat, which is one of Canada’s most essential profitable and cultivated crops.
Due to these issues, farmers use chemical methods, like herbicides to remove weeds. Thus,
an automated solution to identify and classify plant species within an agricultural setting is
essential to improve the quality and yield in large-scale agricultural settings, reduce waste,
and prevent environmental harm through the use of fewer herbicides. Similarly, according
to a report by the Food and Agriculture Organization of the United Nations, plants play a
crucial role in the global food market [16]. Therefore, automated solutions for identification
would also play a major role in human health. Over the last few years, machine learning (ML)
approaches have solved many computer vision problems, such as semantic segmentation
[35], facial recognition [6], and image annotation [73]. These developments were thanks
to the development of large, labelled data sets, high-performance computing technologies,
and powerful new deep learning (DL) algorithms [61, 83]. These DL algorithms have been
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driven primarily by convolutional neural networks (CNN), and have been applied to different
tasks in agriculture. [60] is one example presenting DL techniques for image-based plant
identification at a very large scale. Full fruit detection systems [84] are another practical DL
application to build an accurate, fast and reliable fruit detection system. [10] developed a
deep learning system to learn discriminative features from leaf images along with a classifier
for species identification of plants. A new CNN based framework has been designed by
this study [74] for plant classification of various genotypes. They exploit the power of deep
CNNs for the automatic joint feature recognition of plant genotypes images. Consequently,
ML offers a foundation to develop automated systems that can identify crops and weeds of
many diverse species that will provide an alternative to using herbicides to kill unwanted
plants, which are harmful to the environment and humans.

1.1 Problem Definition

Despite many efforts [60, 10, 74, 84] using DL and new CNN models, developing automated
plant classification algorithms with reasonable performance is still considered a challenging
and unsolved problem. One reason for this is that plants have a very similar shape and colour
representation across species [63]. Some researchers have attempted to solve this problem
via transfer learning methods [51] and new CNN architectures [60, 10, 74, 84].

This thesis explores different DL models to classify plant images, namely, transfer learn-
ing with the VGGNet model [89], designing and developing CNN models, and implementing
generalist-specialist networks inspired by hierarchical tree-based CNN architectures [2]. The
dataset (described in Section 4.1) contains 12 images of plant species, in different stages of
their lives (age). As shown in Section 4.1.3, certain plants are very similar in term of shape,
color and texture. To remove noisy images, the dataset is preprocessed by relabeling and
filtering out images by age (see Section 4.1).

1.2 Proposed Approach

In order to solve the classification of images containing plant species that are very alike, we
explored seven different DL models. Firstly, following previous research on the application of
trasfer learning on plant classification [59], transfer learning using VGGNet was investigated.
Then three simple CNN architectures were designed to determine if a model with reduced
parameters could solve the problem. These three DL models were able to boost the result
of the first model explored. Based on different studies (see Section 3.4) on classifying
images containing very similar objects, we designed a hierarchical tree-based CNN model
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(generalist-specialist network). Here, the main idea is to create groups of classes, where
each group consists of very similar classes. The first component is a network (called a
generalist) for classifying which group (of similar classes) an image belongs to, and the
second component contains several networks, each one responsible for classifying images
within each group of similar classes. The generalist-specialist networks could successfully
classify unrecognizable plant images with high accuracies.

We first preprocessed the data. Relabeling is done to decrease the number of classes,
which simplifies the problem. For example, different types of beans are all relabeled as a bean.
Next, we filtered out very young and very old images from the dataset. Some images are
taken from the early growth stages of the plants in which the plant is barely visible through
the soil. Then we split the samples into train, validation, and test data. Train data is used to
train the models. Validation data is used as a cross-reference to check the performance of
the models while the training process is running. The model does not see the validation and
train data while training. After the training process is done, performance of each mentioned
CNN architecture is assessed and compared with test data to measure how well the model
can generalize.

Additionally, we evaluate and compare our CNN models with one produced by the
company Sightline Innovation, which worked with a portion of the TerraByte1 dataset [12].

1.3 Contribution

The contributions of this thesis described below.

• Processed a large plant dataset containing 1,207,829 labelled images from the TerraByte
dataset, captured and produced during the period from 2020-04-01 to 2020-12-13.

• Explored and evaluated seven different CNN models to classify highly similar im-
ages of plant species from the TerraByte dataset. It includes wheat, canola, oat,
bean, soybean, field pea, yellow foxtail, dandelion, wild bucketwheat, barnyard grass,
smartweed, and Canada thistle.

• Designed and implemented a generalist-specialist CNN model implemented in a
hierarchical tree-CNN structure to classify plant species that are very difficult for
non-specialist humans to classify.

• For plant classification achieved 99.61% accuracy by using generalist-specialist net-
works.

1EMILI https://emilicanada.com/ and Terrabyte https://acs.uwinnipeg.ca/terrabyte/ website.
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• Evaluated and compared those seven CNN models with an externally developed model
trained on a portion of the TerraByte dataset. The results show the generalist-specialist
networks have a better performance of plant identification by 12% in terms of accuracy
from 45.65% to 57.18%.

1.4 Organization

The remainder of this thesis is organized as follows.

• Chapter 2 introduces neural networks and the training process. Additionally, the
structure of the CNN model used in this thesis is defined.

• Chapter 3 is a literature review of digital agriculture and machine learning applications
that solved the traditional agriculture problems. Furthermore, it reviews the DL models
we worked on to solve the computer vision problem, like transfer learning using
VGG16, CNN architecture and hierarchical tree-based CNN models.

• Chapter 4 introduces the dataset used for this work and explains the data preprocessing
steps that have been applied to the dataset. Experimental hardware and software setup,
and implementation details are also discussed. Additionally, an in-depth discussion of
the structure of the CNN architectures used in this thesis is presented.

• Chapter 5 presents the results and analysis of the experiments performed in this thesis.

• Chapter 6 summarizes the work and experiments that have been developed in the thesis
and discusses possible directions for future experiments.



Chapter 2

Theory

Neural networks are machine learning models that come in various forms and are constructed
to solve a wide variety of tasks, including image classification [40]. In this section, we first
describe the structure of artificial neural networks. We then describe convolutional neural
networks.

2.1 Artificial Neural Network

Artificial neural networks (ANN) are inspired by the structure of the human brain, which
includes billions of connected neurons [23]. Each neuron acts like a cell which has many
inputs, and, after processing, a specific output will be produced [23]. For the remainder
of this thesis, we will refer to an ANN as a neural network (NN). The neuron is called a
perceptron, as depicted in Fig. 2.1. NN contain a large number of connected perceptrons.
Each NN network can have different structures with different numbers of perceptrons.

2.1.1 Perceptron

As we mentioned, a perceptron receives many input signals [81]. We can propose a vector ~X
to denote the perceptron input, where ~X = (x0,x1, . . . ,xn), and, for each input value xi, there
is a corresponding weight wi from the vector ~W = (w0,w1, . . . ,wn). A perceptron with input
~X and weights ~W is modeled as

y =
n

Â
i=0

wi ⇥ xi,

y is the output of each perceptron. To have more flexibility and accuracy, we need a bias b,
which shifts the result from the origin or zero value. For example, if there is no bias in the
perceptron and the input is ~X = (0,0, . . . ,0), the output will be 0 no matter the value of the
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Figure 2.1 Structure of a perceptron

weights. A perceptron with input ~X , weights ~W and bias b is formulated as

y =
n

Â
i=0

wi ⇥ xi +b.

2.1.2 Activation Function and Nonlinearity

Activation or nonlinear functions lead to increasing the approximation quality of the NNs. To
make the result of the network nonlinear, the output of each perceptron should pass through
an activation function, which determines whether to activate the neuron or not. There are
three common nonlinear activation functions. The sigmoid function [61] (as defined in Eq.
2.1) limits the output between 0 and 1, tanh [61] (as defined in Eq. 2.2) limits the output
between �1 and 1, and rectified linear unit (ReLU) [61] which in defined in Eq. 2.3. These
functions are defined as:

s(h) =
1

1+ e�h , (2.1)

s(h) =
e2h �1
e2h +1

, (2.2)

s(h) = max(h,0). (2.3)

ReLU is a very commonly used activation function. As shown in Fig. 2.2, ReLU is
defined as



2.1 Artificial Neural Network 7

ReLU(x) =

8
<

:
x if x,� 0,

0 otherwise .
(2.4)

Figure 2.2 A plot of a ReLU non-linearity activation function

We will redefine the perceptron structure with an activation function to optimize the
output of each perceptron as shown in Fig. 2.1 is shown.

2.1.3 Fully Connected Layers

Fully connected l layers is one NN architecture in which all nodes in the previous layer must
be connected to all nodes in the following layer. We assumed l as the number of layers in a
NN, l(k) as layer k and m(k) as the number of nodes in l(k). Let us considet two consecutive
layers, l(k�1) 2 Rm(k�1)⇥1 and l(k) 2 Rm(k)⇥1. For these layers to be fully connected, the
weight matrix connecting them would be defined as w(k) 2 Rm(k�1)⇥m(k)

[17]. The structure
of a fully connected layer is shown in Fig. 2.3.

2.1.4 Interpretation of Gradient

A gradient is the collection of partial derivatives of a function. If we assume ~X as an input
vector, a partial derivative of a function f (~X) is denoted as — f (~X), where ~X is a vector
of inputs [64]. For example, the partial derivatives of a simple multiplication function on
two vectors ~x and ~y are defined as f (x,y) = xy is as follows: ∂ f

∂x = y, ∂ f
∂y = x. Partial

derivatives represent the rate of change of a function with respect to the variables surrounding
an immeasurably small region near a specific point [64], formulated as

∂ f (x)
∂x

= lim
h!0

f (x+h)� f (x)
h

,



2.1 Artificial Neural Network 8

Figure 2.3 Graph representation of two fully connected layers, l(k�1) and l(k), connected by
the weight matrix w(k)

where operator ∂
∂x is applied to the function f and returns the derivative, and h is a number

close to 0. Also, the vector of partial derivatives (gradient) — f is represented as — f =h
∂ f
∂x ,

∂ f
∂y

i
= [y,x]. Partial derivatives are used in the process of learning in backpropagation

and optimization algorithms, further described in the following sections.

2.1.5 Loss Function

A loss function is a method of evaluating the performance of a network. If the output of a
NN, as a prediction, is wrong, the loss function will output a higher number, otherwise, it
will output a lower number. One of the most common loss functions for image classification
tasks is the cross-entropy (CE) function. The CE loss function [22] is calculated for each
ground truth vector (y) and predicted vector (ŷ) where c is the total number of classes. It is
computed as bellow where y = (y1, ...,yc)

CrossEntropy Loss =�
c

Â
i=1

yi ln(ŷi) . (2.5)

2.1.6 Back-propagation

In terms of addressing classification problems using supervised learning algorithms [79],
like NN, we should work with a labelled dataset. Based on comparing the result of the loss
function corresponding to an input image and its label, we can assess how close the network’s
output is to the correct label. The backpropagation algorithm looks for the minimum of the
loss function with respect to all the weights in a NN using gradient descent [80]. Once the
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output of the loss function is known, it will be used for the backpropagation algorithm using
gradient descent to update weights. The gradient descent algorithm attempts to decrease the
loss function value until the point where there is no change to the loss function value, also
called convergence [77]. These steps are repeated again and again until the value of the loss
function is less than some predefined threshold or epsilon value.

2.1.7 Learning Rate and Optimizer

A learning rate is the step size of each iteration in the gradient descent or other optimization
algorithms. If the learning rate is too low, convergence will take a long time, but if the
learning rate is too large, there might be no convergence at all. There are advanced and
complex optimization algorithms for training neural networks, such as, momentum, root
mean square propagation (RMSprop) [100], adaptive gradient algorithm (AdaGrad) [27] and
adaptive moment estimation (Adam) [53].

In this thesis, we used Adam which is the most used optimization algorithm. Adam
method stores an exponentially decaying average of past squared gradients v j and keeps an
exponentially decaying average of past gradients m j, where j is the current iteration step. v j

and m j are calculated as
m j = b1m j�1 +(1�b1)d j,

v j = b2v j�1 +(1�b2)d 2
j ,

where b1 and b2 are values close to 1 and d j is the partial derivative of the loss (L) with
respect to the weights (w) at the iteration j. Also, the bias-corrected moment estimates are
calculated as

m̂ j =
m j

1�b j
1

,

v̂ j =
v j

1�b j
2

.

Then, the parameters are updated as

q j+1 = q j �h
m̂ jp
v̂ j + e

.

In this thesis, we have used the follwing values. b1 = 0.9, b2 = 0.999, e = 10�7, and learning
rate (h) = 0.001.



2.2 Convolutional Neural Networks 10

2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are a variant NN architecture originally used in image
processing applications. CNN are usually employed to solve computer vision-related tasks,
like image classification [91]. It was also successfully deployed in natural language [39],
and video processing applications [58]. The input to the network is an image represented
as a 3-dimensional input layer with width, height and depth. The depth of the image is
equivalent to the number of colour channels of the image. As Fig. 2.4 shows, the input layer
has dimensions of 128⇥128⇥3, corresponding to an RGB image of resolution 128⇥128.

CNN architectures can consist of one or more convolutional layers, optionally followed
by downsampling, and then followed by one or more fully connected layers [30]. Fig. 2.4
shows an example of a CNN structure consisting of an input image followed by a pooling
layer, then a convolution layer, another pooling layer, and a fully connected layer. CNN are
typically structured in two parts. The first part, usually called feature extraction, employs
combinations of convolutional and pooling layers. The second part, called classification uses
fully connected layers [42].

Figure 2.4 An example of a convolutional neural network structure for 128⇥128 image and
3 color channels with convolutional layer, pooling layers and fully connected layer [103]

2.2.1 Convolutional Layer

A convolution layer is the main part of a CNN that uses the convolution operation [29]. The
output is the convolutional response of the given input with an associated spatial filter. Filters
are learnable parameters in the format of matrices that respond to a specific pattern observed
at some spatial position in the input. A convolutional layer uses filters to convolve input
data to produce multiple feature maps, called feature extractions [42]. According to [28],



2.2 Convolutional Neural Networks 11

convolutional calculations are carried out based on the following formula:

y(n1,n2, . . . ,nm) =
•

Â
k1=�•

•

Â
k2=�•

. . .
•

Â
km=�•

x(k1,k2, . . . ,km) f (n1 � k1,n2 � k2, . . . ,nm � km) ,

where n is the serial number [31] of output calculated by convolutional calculation; k is the
serial number of input x; (n� k) is the serial number of filter f : m is the dimension of the
convolution.

In this study, we worked on 2D filters that move along two directions: the width and
length directions. Therefore, the value of m equals two. The size of filters is a hyperparameter
that considers different sizes for different CNN architectures [56]. Based on Fig. 2.5, the
green 3x3 square on the blue square is the filter, and the blue square is the 4x4 region of the
input image. A 3x3 filter size is the most common. There are several factors to choose the
right size of filters, like the size of input image [18] and many learnable parameters [92]. The
smaller the filters, the more parameters need to be calculated. Therefore, choosing a small
filter size extends the training time and the number of learnable parameters, but instead, more
features are extracted from input images. The depth of filters is called the activation map or
the depth of the convolutional layer. The filters move on the input image from the top-left
corner all the way to the bottom-right corner using the stride parameter. For a stride value of
s, the filter moves s pixels over the input image. The input image passes through the network
and gets convolved by more filters as it moves deeper, and the output becomes smaller and
smaller. To preserve the original input size, zero-padding P is used. The number and size
of filters, and the amount of zero padding (if any) for each convolutional layer, should be
considered when designing a CNN architecture. If the zero padding is set to one, a one-pixel
border is added to the image with a pixel value of zero. Fig. 2.5 depicts a convolution with a
filter size of 3⇤3 and zero-padding P = 1.

2.2.2 Pooling

The pooling layer can be used after a convolutional layer for the purpose of downsampling
by reducing the spatial size of the features. It acts like a convolution calculation, similarly
using filters and strides. But this time, instead of applying a weight, bias and activation
map, a simpler function is used. An input image is divided into multiple non-overlapping
rectangular sections, called patches, that are passed as input to the pooling function. This
pooling function decreases the size of the output layer while preserving the most important
information or features contained in the input layer.
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Figure 2.5 Convolution with a filter size of 3⇤3 and zero-padding P = 1 over the input blue
grid, where the green grid is the output of the convolutional layer [5]

We will define two important pooling functions to decrease the number of features with
different methods or operations. The type of operation used for pooling layers defines its
type.

1. Max pooling � This method uses the maximum operation and is commonly imple-
mented for converting convolutional features of variable size images to a fix-sized
embedding [21]. The maximum value in a channel within each patch is picked by
max-pooling techniques. A positive effect of max pooling downsampling is that it
extracts the learnable features with a maximum value.

2. Average pooling � This operation calculates the average value of cells on each patch
per channel. It averages out the features in the neighbourhood, creating a blurring
effect [75]. Max pooling completely wipes out the features while downsampling the
feature map, and average pooling preserves the feature information, though it causes
a blurring effect [75]. [90] shows that the average pooling method performs better
on pictures on white background than max-pooling; on the other hand, max-pooling
overperforms on dark background images compared with the average pooling method.

In this thesis, the max-pooling function has been used since it has a better performance
on darker backgrounds [13] and can save computation cost [49].

2.2.3 Overfitting and Regularization

Overfitting is a common problem that affects NN. This is due to the fact that NN can learn
too much from the images from the training dataset, a subset of the data. While NN are
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training, they can memorize unique features and data-specific details found exclusively in
the training dataset, mistaking these as general concepts shared across all similar data-input
[36]. The result of this network on unfamiliar data, typically called a test dataset, does
not perform as well as the training result. This is because the previously identified unique
features memorized from training data do not exist in the new data. In other words, overfitting
occurs where the weights of a NN converage too fast to the training dataset [41]. There are
two main causes for the overfitting problem. One of them is insufficient data, which means
that there are not enough variations of training data. In this case, a NN learnt from the limited
data and extracted the data-specific details and features. Another one is having a complex
model with many layers and parameters. As the complexity of a model increases (based on
the number of parameters) the more specific features are extracted. When we have too much
detail from the training data, the network memorizes exactly the input data.

2.2.4 Regularization

Although many parameters would make NNs to overfit, regularization is an effective way
to obtain a model that generalizes well. To reduce overfitting without simplifying the
network, we can use the regularization technique [33]. Fundamentally, this technique
combats overfitting by penalizing the weight matrices of the network’s nodes, thereby
inhibiting the model’s complexity during training by disrupting its ability to memorize [36].
If a regularization term is added, the model tries to minimize both the loss and complexity
of the model. One common regularization method is to add a hyperparameter termed l to
the loss function, which influences how the weights are adjusted during the gradient descent
algorithm. We look at the three types of regularizers, L1, L2 and dropout.

L1 Regularization

Overfitting occures when some weights are set to large values. One technique is to add a
reguralization factor to the loss fucntion which penalizes large weight values. L1 regulariza-
tion tends to push the regularized values towards zero. Therefore, it is effective in forcing the
weights to become small or very close to zero. L1 regularization is defined as

L1 = l
n

Â
j=1

|w j|

where w 2 Rn.
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L2 Regularization

L2 regularization modifies the regularized values with a square term known as weight decay
or ride regression. L2 regularization pushes the weight values towards zero (but not exactly
zero). L2 regularization is defined as

L2 = l
n

Â
j=1

w2
j .

Dropout

In addition to the L2 and L1 regularization, another famous and powerful regularization
technique is dropout regularization. Dropout is an algorithm for training neural networks
that was described at NIPS 2012 [43]. The training weights are deleted with probability
q = 1� p = 0.5, and the remaining weights are trained. The primary motivation behind
the algorithm is to prevent overfitting problems by forcing neurons to be robust and rely on
population behaviour rather than on the activity of other specific units [7].

2.2.5 Early Termination

NN are trained by presenting labelled input to the network and adjusting the network weights
(using gradient descent) based on the loss function. An epoch denotes the situation where the
entire training set has been passed through the network, and it is an important hyperparameter
during the training process. Too many epochs can lead to overfitting of the training set,
whereas too few may result in underfitting by the network [107]. Early termination is a
method that allows you to specify an arbitrarily large number of training epochs and stop
training once the model performance stops improving on a hold-out validation dataset.



Chapter 3

Literature Review

Since agriculture directly affects human health and the environment, many studies focus
on using advanced technology and machine learning algorithms to solve current problems
in agriculture. This chapter introduces digital agriculture and discusses how it can solve
some traditional agricultural problems. Secondly, we introduce machine learning and deep
learning concepts that have been applied to the agricultural field. Additionally, related studies
in digital agriculture using machine learning algorithms are reviewed in this chapter.

3.1 Digital Agriculture

Weeds are the most costly category of agricultural pests. Worldwide, weeds cause more
yield loss and increase farmers’ production costs than insect pests. The word weed has been
defined as an unwanted plant or a plant that is a pest in that it interferes with crop or livestock
production [85]. In other words, any plant not intentionally grown requires management to
prevent it from interfering with crop or livestock production called weeding. In this definition,
a weed is a non-crop plant that can become a pest if not managed adequately [85]. A pest is a
living organism, be it a plant, fungus, or animal, that is harmful to and threatens the life and
existence of human beings and human concerns, livestock, crops, and forestry [32]. Bugs,
fruit flies, leafrollers are some examples of pest categories.

To formulate a definition of the concept of digital agriculture, we consider the stages of
agricultural development. Agriculture 1.0 is the first level of agriculture that was based on the
use of manual labour (early 20th century). Agriculture 2.0 is called the "Green Revolution"
(the late 1950s), when fertilizers, pesticides began to be actively used [55]. Fertilizer is a
natural or artificial substance containing the chemical elements that improve the growth and
productiveness of plants [66]. Moreover, a pesticide is any substance used to kill, repel,
or control certain forms of plant or animal life that are considered to be pests. Pesticides
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include herbicides for destroying weeds and other unwanted vegetation, insecticides for
controlling a wide variety of insects, fungicides used to prevent the growth of moulds and
mildew, disinfectants for preventing the spread of bacteria, and compounds used to control
mice and rats [65].

Moreover, pesticide contamination moves away from the target plants, resulting in
environmental pollution. Such chemical residues impact human health through environmental
and food contamination [104]. It is generally accepted that pesticides play an important role
in agricultural development because they can reduce the losses of farm products and improve
the affordable yield and quality of food [3, 96]. Fertilizers and pesticides are a necessary evil
for industrial agriculture [76]. They have adverse effects on soil, plants, environment, and
human health [11]. Nevertheless, high efficiency in the agricultural sector is not currently
possible without herbicides and pesticides [14]. Also, there is a high demand to produce
more agricultural foods and products to meet the growing population. It is vital to have
precise agriculture with less waste and sustainable outcomes [45].

After agriculture 2.0, using fertilizers and pesticides, came agriculture 3.0 called precision
agriculture (the 1990s and 2000s), and agriculture 4.0 called digital agriculture (early 2010s)
[55]. They utilize digital technologies and technical means in agricultural production making
it possible to bring exact measurements to a new level when information on all agricultural
processes and operations exist in digital form, and, at the same time, the transfer, processing
and analysis of data are automated.

The development of technological advances has been growing year by year [88]. Using
digital agriculture to classify plants is one of the trends [50]. Crop and weeds can largely
vary within the same field. Identifying weeds and removing them from the field contributes
significantly to the final yield. Digital agriculture allows scanning large areas of a plant and
distinguishes between weeds and crops. In recent years, research into digital agriculture
using machine learning methods has become an active area of study. [47] believed weeding
is an effective way to increase crop yields. Their focus is on improving weed and crop
recognition accuracy on weed dataset [59]. They found CNN [33] are favourable for multi-
class crops and weeds recognition with limited labelled data in agricultural recognition tasks.
Several studies in digital agriculture are focused on fruit detection from images taken from
agricultural fields or orchards. [46] focuses on recognition and segmentation of overlapping
apples. A model of a harvesting robot vision detector is studied in [106]. The model was
improved to make it more suitable for the recognition and segmentation of overlapped apples.
The method was tested by a random test set with 120 images, and the precision rate reached
97.31%, and the recall rate has reached 95.70%, which can meet the requirements of the
apple harvesting robot’s vision system [46]. [111] uses the same method using mask a model
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called masked region CNN for strawberry detection. These works produce great accuracy
ranging between 90% and 95% with good performance potential for generalization, showing
that deep learning is a viable methodology for yield estimation.

We will explain more about machine learning, deep learning and specifically tree-CNN
deep learning models and how they can play a significant role in developing digital agricul-
ture.

3.2 Machine Learning

Two types of statistical machine learning (ML) techniques, such as supervised and unsuper-
vised learning, have been utilized for precision agriculture [78]. Supervised learning entails
learning a mapping between a set of input variables X and an output variable Y , called labels,
and applying this mapping to predict the outputs for unseen data. Unsupervised learning is
used on ML projects with the absence of class labels by clustering or partitioning of data
[25]. Supervision invokes the idea of a teacher who guides the learning process. Typically
this guidance comes in the form of labelled training examples that can be used to build a
classification model. This external guidance is absent in unsupervised learning; thus, the
process of building a model from the data can be done by clustering or organizing the data
[25]. Some modern clustering techniques such as kernel k-means [93] and spectral clustering
[105] are used for unsupervised learning.

In this study, supervised learning is used to classify crops and weeds. As is mentioned,
for the supervised learning technique, a labelled dataset is required in order to transform the
vast amount of data into helpful information [48]. One of the essential factors to improve the
learning capability of computers is having a significant and clean dataset [94]. Creating an
extensive dataset is the first step of each ML project. The process of data cleaning comes
along with that, which is a process of removing incorrect, corrupted, incorrectly formatted,
or incomplete data. After preparing the input data, we should work on ML algorithms and
frameworks, specific tools to develop mathematical models that acquire knowledge without
the explicit program but by seeing labelled examples.

According to [34], knowledge discovery using ML consists of six steps.

1. Problem specification. It involves gathering information about the application domain.

2. Problem understanding, which relies on previous knowledge about the domain that the
experts have.

3. Data processing,which counts as an important step. It directly affects learning perfor-
mance, as much as the success or failure of ML modelling. For example, augmentation
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is a data processing technique producing more data with different effects, like zoom,
horizontal, vertical effects. In this case, the network sees more images than the dataset
has. Therefore, this data processing technique helps the network to learn from more
diverse labelled images yielding better results, or prediction [99].

4. The machine learning process is the core methodology to obtain models for the
extraction of patterns from input data. It involves the selection of specific algorithms
and frameworks as well as the training and validation of the models.

5. Analysis of the discovered patterns and interpreting their meaning, called evaluation.

6. Exploitation related to implementing the trained machine learning model and tuning it
to incorporate its knowledge in another application for further processing.

3.3 Deep Learning

The applications of Deep Learning (DL) and NN have remarkably increased due to a large
number of advances in many research areas in the last two decades [62]. New papers in
DL are published every month, where examples include image processing [68], computer
vision [69], and object detection [37]. CNN’s are the most common implementation of DL
[61], being widely used in recent years in many scientific and industrial fields. CNN’s have
lately emerged as practical, effective tools in computer vision like object detection or image
classification [52].

New technology and development in hardware, like improvements in graphics processing
unit (GPU) technology and parallel computing help DL. CNN models, which previously
needed months or weeks to train on a database with thousands of images, were able to be
trained in just a few hours or days. In the past, training CNN models were restricted to using
CPUs which made it nearly impossible to train a deeper model with large numbers of layers
and training parameters in a realistic amount of time.

In 2012, the AlexNet model [57] won the ImageNet Large Scale Visual Recognition
Challange(ILSVRC). It was able to outperform other algorithms in the ILSVRC image
recognition and classification task. AlexNet introduced a deep learning model which consists
of five convolutional layers and two fully connected layers. These two huge, fully connected
layers produce model parameters of nearly 138 million parameters.

The success of AlexNet improved the speed and quality of DL research. In 2014,
K.Simonyan and A. Zisserman from the University of Oxford presented the VGG architecture
[89] which achieved 92.7% top-5 test accuracy in the ILSVRC. It won second place in the
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classification and localization challenge in ILSVRC 2014. The VGG architecture is defined
with 16 or 19 sequential convolutional layers. Since this DL model is a lot deeper than
AlexNet, the size of filters used was decreased from 11⇥ 11 and 5⇥ 5 to 3⇥ 3 to reduce
the number of learning parameters. The stride for each convolution layer is fixed to 1 pixel;
the spatial padding of convolutional layer input is 1 pixel for 3⇥3 filter size. As Fig. 3.1
shows, five max-pooling layers carry out spatial pooling. Max-pooling performs over a 2⇥2
pixel window, with stride 2. The input to this DL network is a fixed-size 224⇥224 RGB
image. The red number on the top-left of each box on Fig. 3.1 shows the input size for
each convolutional block. All hidden layers are equipped with the ReLU [8] non-linearity
function. In the end, it has two fully connected layers followed by a softmax for the output.
The softmax function is a function that inputs a vector of n numbers and outputs a vector of
n numbers which their sum equals to one. This DL model has 138 million parameters.

In digital agriculture, many applications take advantage of deep learning models to
classify plants, crops, weeds, and plant disease detection [49]. Full fruit detection systems
[84] are another practical DL application studied at Queensland University of Technology,
Australia. The aim is to build an accurate, fast and reliable fruit detection system, which
is a vital element of an autonomous agricultural robotic platform; it is a crucial element
for fruit yield estimation, and automated harvesting [84]. Apple yield estimation was also
possible from multi-geometry RGB images from an agricultural robot [9]. Disease detection
applications employing CNNs have been recently researched in many research organizations,
such as this study [71] in which the visual pattern identification of different diseases in leaf
images was built by using deep learning. A similar approach was followed by [4], which
used thousands of RGB images of banana leaves to identify the unhealthy banana yields. DL
models have been built to detect the various weed species in the natural environment through
the green colour and size of the leaves in crops and weeds [72]. The focus of this thesis is on
plant classification using the VGG16 deep learning model.

3.4 Tree-CNN Deep Learning Models

Deep learning has significantly improved on visual recognition challenges recently. However,
visual classification between different object categories can still be highly challenging. Some
categories are more difficult to distinguish than others, based on their visual similarities. For
instance, in the CIFAR100 dataset [108], it is easy to distinguish between an apple and a
bus but harder to separate a lemon from an orange. Both lemons and oranges belong to a
fruit category; they have a lot in common based on their appearances, while buses belong to
another coarse category (vehicles 1) as defined within CIFAR100 [108]. We can say objects
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in similar coarse categories are difficult to be separated. One solution to classify perceptually
similar classes is developing dedicated classifiers [108]. For instance, a hierarchical model
can be employed, where an initial classifier is used to group similar classes, and then a series
of specialized classifiers can be used to make decisions within a group of very similar classes.
Models of this type are called hierarchical, or tree-based structures. Fig. 3.2 shows, two
similar plants that can barely be distinguished by human eyes.

In a hierarchical CNN classifier, the upper nodes classify the input images into subgroups
[109]. Then, deeper levels classify deeper discrimination, for example, for fruit or human face
classification problem. The upper nodes classify fruit or human face images into subgrouping
like yellow-coloured objects together or human faces together [109]. Then, deeper nodes
classify bigger differences, such as "lemon" v/s "orange" fruits or "old man," v/s "kid boy,"
human faces. Study [109] proves that hierarchical CNN models perform at par or even
better than standard CNNs. In tree-based or hierarchical CNN structures, initial layers of
a CNN from the top of structure learn very general features [87] that have been exploited
for transfer learning [110, 86]. [108] used the hierarchical CNN’s structure to deal with
distinguishing the similar classes. They designed multi-layer hierarchical CNNs where an
abstract higher-level network initially determines which subnetwork a sample should be
directed to. Lower level networks are designed to find discriminating features amongst
similar classes in the subnetwork. Each sub-network is called a class assignment classifier.

There are numerous examples using hierarchical classification to extract deeper features
and detail of input images [101]. One of the earliest attempts of a CNN hierarchical approach
[95] used transfer learning where objects are categorized hierarchically to improve network
performance. In some studies, they used different classifiers for different levels of a tree
CNN structure. This study [54] designed a hierarchial classifier by unifying decision trees
and deep CNN layers. A deep CNN hierarchical structure on a large number of images was
studied by [97, 44]. In some research, they used a hierarchical CNN-based classifier to build
a two-stage classifier to separate easy and difficult classes [108].

In our work, we used a tree-CNN structure along with hierarchy labelling. It contains
two levels. The single root is the first level of the tree structure that classifies different groups
containing similar difficult objects. The second level contains a number of nodes that are
equal to the number of difficult groups. In the next sections, we explain our tree-CNN design
principle, network topology, and the algorithm used to implement the network.
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Figure 3.1 The convolutional layer parameters
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Figure 3.2 (a) Pinto Bean and (b) Kidney Bean



Chapter 4

Implementation Details

We discuss the implementation details in this chapter, divided into two parts: data preprocess-
ing and models. Data preparation was one of the most important and time-consuming parts
of this project. This chapter introduces the TerraByte1 dataset [12], describes the process
used to extract the samples used to produce results in this thesis, as well as the rationale
behind these decisions. Furthermore, this chapter explains the DL models used in this study.

4.1 Dataset Preprocessing

Researchers from the TerraByte project have developed a robotic system that is capable of
generating a large number of labelled images per day [12]. The results presented in this
thesis were generated with data from the TerraByte project produced during the period April
1st - December 13th, 2020 from Lab-data dataset [13] . Table 4.1 shows the labels and the
number of images per label. The following operations have been applied as a part of data
preprocessing in this study:

• Re-labeling images were done to decrease the number of classes, hence, simpler
classification problem;

• Filtering plants by age criteria to remove possible noise from the dataset;
• Grouping was done to generate a hierarchical structure of labels.

1Data can be downloaded from the EMILI and Terrabyte website.

https://emilicanada.com/
https://acs.uwinnipeg.ca/terrabyte/
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Table 4.1 1,207,829 numbers of available labeled images from 2020-04-01 to 2020-12-13

Initial label Count Label

Pink Bean 23,447 Bean

Kidney Bean 47,731 Bean

Navy Bean 21,826 Bean

Black Bean 19,673 Bean

Pinto Bean 22,743 Bean

Cranberry Bean 22,892 Bean

FieldPea 55,553 FieldPea

Smartweed 104,660 Smartweed

CanadaThistle 112,658 CanadaThistle

Dandelion 108,713 Dandelion

Soybean 183,663 Soybean

Canola 229,517 Canola

Wheat 90,632 Wheat

YellowFoxtail 22,222 YellowFoxtail

Oat 27,025 Oat

BarnyardGrass 114,874 BarnyardGrass

4.1.1 Re-labeling Samples

To simplify the problem, we have merged different types of beans into one label. This is
shown in Table 4.1 under label column. Fig. 4.1 shows one sample of each bean species to
demonstrate their visual similarities.
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Figure 4.1 Examples of different beans from the dataset, (a) Pinto Bean, (b) Kidney Bean, (c)
Navy Bean, (d) Pink Bean, (e) Black Bean, and (f) Cranberry Bean

4.1.2 Age Filter

Images in the dataset are taken from seedlings to fully grown and flowering plants. Based on
the visual inspection of samples, we have removed any image where the plant is a seedling or
is too old. Different plants grow at different rates. Setting a fixed age to differentiate between
seedlings and adult plants for all plants will not be a good solution. This is due to the fact
that only an empty pot appears in an image if they are too young, and plants that are too
old often have grown outside the boundary of the image. In the context of ML, it should
be possible to train a model capable of classifying seedlings from adults or even flowering
plants. In this thesis, we achieve this by sorting images by age and then visually looking for
thresholds. Table 4.2 shows the minimum and maximum age for each plant; for example, for
beans, we picked bean images from the age of 11 days old to 43 days old. Fig. 4.2 shows the
growth process of Soybean as an example of how images have been sorted and inspected to
find thresholds.
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Figure 4.2 Examples of the growth stages of Soybean in different ages

Table 4.2 Applied age filter on the images and the number of resultant images

Label Min. age (days) Max. age (days) Count

Bean 11 43 121,828

Field Pea 11 39 37,482

Wild Buckwheat 12 91 31,721

Smartweed 14 67 87,931

Canada Thistle 24 91 75,775

Dandelion 24 89 82,677

Soybean 14 66 130,054

Canola 14 65 149,303

Wheat 10 60 59,661

Yellow Foxtail 12 89 20,082

Oat 18 44 27,025

Barnyard Grass 18 43 61,591
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4.1.3 Groupings

One goal of this thesis is to classify very similar images of plants. Thus, the dataset must
be segmented into groups containing highly similar plants to train models to achieve this
goal. Grouping the images was done based on visual similarities of plants. Technically,
choosing the group is a hyperparameter. Different groupings can affect the results of the
related experiments. Adjusting and finding the optimum grouping can be done either by
simple iteration over the search space or using more advanced optimization methods. Doing
so is out of this thesis’s scope. The grouping used in this work is based on visual inspections
done by the author. Figs. 4.3, 4.4, and 4.5 show the applied grouping, Table 4.3 shows the
number of samples available for each group, and Table 4.4 is the final metrics on the extracted
dataset to be used for the experiments.

Figure 4.3 Sample of plants in the G1 group, (a) Bean, (b) Field Pea, and (c) Wild Buckwheat

Figure 4.4 Sample of plants in the G2 group, (a) Smartweed, (b) Canada Thistle, (c) Dande-
lion, (d) Soybean, and (e) Canola
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Figure 4.5 Sample of plants in the G3 group, (a) Wheat, (b) Yellow Foxtail, (c) Oat, (d)
Barnyard Grass

Table 4.3 The number of samples in each group

Group Count

G1 191,031

G2 525,740

G3 173,433
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Table 4.4 Final dataset used for experiments with 883,050 plant images

Label Group Count

Wild Buckwheat G1 31,721

Field Pea G1 37,482

Bean G1 121,828

Canola G2 149,303

Canada Thistle G2 75,775

Dandelion G2 82,677

Soybean G2 130,054

Smartweed G2 87,931

Wheat G3 59,661

Barnyard Grass G3 61,591

Oat G3 27,025

Yellow Foxtail G3 20,082

4.2 Training and Test Data

From the total number of samples, we took 60% for training, 20% for the validation phase of
the training, and 20% for testing the trained model. This data separation is kept constant for
all experiments. As part of the process, we made sure that the 60-20-20 ratio was kept for
all labels. This means, if, for example, 15% of all samples are labelled as Canola, then 15%
of training samples, 15% of validation samples, and 15% of testing samples are labelled as
Canola. The images are all randomized to remove the possible effect of ordering. The number
of each label in the three datasets is shown in Table 4.5. Fig. 4.6 shows the distribution of
different labels in the dataset. In total, 529,825 training samples, 176,610 validation samples,
and 176,615 test samples are used in the experiments. Fig. 4.7 depicts the distribution of
different groups divided by training, validation and test dataset.
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Table 4.5 Training, validation, and test datasets

Label Training Dataset Validation Dataset Test Dataset

Wild Buckwheat 18,818 6,273 6,273

Canada Thistle 45,162 15,054 15,055

Yellow Foxtail 11,835 3,945 3,946

Dandelion 49,396 16,465 16,466

Canola 89,581 29,861 29,861

Barnyard Grass 36,743 12,248 12,248

Bean 73,096 24,366 24,366

Soybean 78,032 26,011 26,011

Smartweed 52,662 17,554 17,554

Wheat 35,796 11,932 11,933

Field Pea 22,489 7,496 7,497

Oat 16,215 5,405 5,405

total 529,825 176,610 176,615



4.2 Training and Test Data 31

Figure 4.6 Distribution of different labels in data

Figure 4.7 Distribution of different groups in the dataset
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4.3 Experiment Hardware and Software Setup

The models were implemented using Python, Tensorflow [1] library. Experiments were
performed using two systems. The first was equipped with 4x NVIDIA Tesla V100s, and 8x
NVIDIA RTX A6000. The software and hardware used are listed in Table 4.6.

Table 4.6 Experiment setup

Setup A Setup B

Tensorflow v 2.4.2 v 2.4.2

CUDA v 11.3.1 v 11.3.1

GPUs 4 x NVIDIA Tesla V100 8 x NVIDIA RTX A6000

CPUs 24 x Intel Xeon 80 x Intel Xeon

RAM 88 GB 470 GB

DISK 200 GB NVMe 200 GB NVMe

4.4 Models

This section introduces the different deep learning models and architectures implemented in
this thesis. The first model is VGG-16 using transfer learning which is a common architecture
in image classification applications [98]. The second model considered in this work are two
hand-crafted CNN architectures. Third, we designed and developed a tree of CNN model,
called generalist-specialist architecture.

4.4.1 Transfer Learning

Following previous research on the application of transfer learning techniques on plant
classification [51], we have used a VGG model which was trained on the ImageNet database
[26]. This model was trained on a dataset of images from 1000 different categories. The idea
is to keep the knowledge of the network (such as learned representations of color, edges, and
texture) and transfer this knowledge to a new domain. As Fig. 3.1 shows, VGG-16 contains
5 convolutional blocks including 16 convolutional layers and 5 pooling layers. The network
has been trained on the ImageNet dataset. To transfer the knowledge of VGG-16 model on
the ImageNet dataset to our model, we removed the last 3 dense layers of the architecture
and attached two dense layers at the end of the network as the new classifier. This is because
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the original model has been trained on the ImageNet, which contains 1000 classes. In our
case, the number of classes is less. To ensure better generalization and avoid overfitting, we
added a dropout layer between two dense layers. As Fig. 4.8 shows, this model has been
divided into two parts. The first part consists of frozen CNN layers which have been trained
using the VGG-16 model, called pretrained VGG-16 model. The classifier part is the second
part that we developed to address the plant classification problem on our plant dataset. Total
parameters of the model is 14,983,500 from which 268,812 are trainable and 14,714,688 are
frozen (pre-trained).

Figure 4.8 Transfer learning with pretrained VGG16 model

4.4.2 Simple CNN models

We designed the simple CNN models to solve the classification of similar plant images to
see if a network with fewer parameters can have the same or even better performance when
compared with the VGG-16 model.

The transfer learning uses pretrained model that has been trained on the ImageNet
database containing more than a thousand objects [102] used for object classification prob-
lems, but our target specifically is plant recognition. For those reasons, we have included a
simple model with three variations that are similar to VGG-16 in their architecture. These
models are built by putting together a series of convolution blocks followed by multiple fully
connected and dropout layers as well as a final activation layer. Fig. 4.9 shows two different
simple CNN models used in this thesis. One model has three convolution blocks, and the
other has five blocks. These models use random initial weights, which are then trained on
our dataset from scratch instead of using unknown pre-trained models to train and optimize
the simple CNN models.

4.4.3 Tree of CNNs

Plant images are visually similar, and there are many different types of plant species rec-
ognized in nature and the agriculture industry. Since transfer learning techniques usually
work on many different objects (animals, plants, human faces, etc.), it might not be accurate
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Figure 4.9 CNN models (a) with 3 convolution blocks, (b) with 5 convolution blocks

enough when we are dealing with a large number of specific similar plant species. We need
to design CNN architectures to be trained specifically on plant images and recognize highly
similar plant species. We also show in the Section 5 that the tree-CNN architecture can beat
the transfer learning techniques to recognize plant classes in our dataset. As the goal of this
study is to explore different approaches and compare them, we have considered developing
a tree of CNNs. This approach has been tried before on different domains [82, 67]. The
idea is to group the final classes into families. Classes in a group are more similar to each
other than the classes in other groups. One CNN is trained to classify the group of the input
image, and a number of CNNs, as needed, are trained to classify the classes in each group.
For example, if we have six classes, we may put them into two groups based on their visual
similarities. In this case, three CNNs are needed. One CNN to classify the input images
into groups (G1 and G2). This is called the root CNN. Two CNNs classify input images into
classes that are grouped as G1 and G2, respectively. These CNNs are called leaf CNNs. The
CNNs form a tree-like structure as shown in Fig. 4.10. These models are also referred to as
generalist-specialist since the root CNNs can be considered as a general classifier and leaf
CNNs are the specialized classifiers.

In this thesis, we have developed three tree models, one using transfer learning of VGG-
16, and two using the models discussed in Section 4.4.2. How we decide to group the classes
is a hyperparameter. It has a direct effect on the performance of the models. We have not
tried different groupings in this study and left it to future research. We visually inspected the
images from the dataset and made three groups of plants based on their visual similarities.
The groups are G1, G2, and G3, with compositions shown in Table 4.4. Training of these
CNNs is performed individually. To train the generalist CNN, we have used the relabeled
dataset with G1 to Gn labels, where n is the number of groups (n = 3). To train each specialist
CNN, we have filtered the training and validation datasets to contain only the generalist
images distinguished for the related group. Testing is performed on individual networks
using the following logic:
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Algorithm 1 Tree of CNNs Algorithm

INPUT: X Input image
group = Generalist(X)
if group is G1 then

ŷ = SP1(group)
else if group is G2 then

ŷ = SP2(group)
else

ŷ = SP3(group)
end if
OUTPUT: ŷ predicted label

In Chapter 5, we present the results of each model and show the performance using the
confusion matrix and loss/validation diagrams.

Figure 4.10 Structure of the generalist-specialist model



Chapter 5

Experiments and Results

This chapter introduces different experiments on the Terrabyte dataset [12]. Each experiment
is focused on a different CNN model with parameters. The architecture of each model is
explained, along with the results and subsequent analysis.

5.1 Evaluation Metrics

In this section, we describe the metrics used to evaluate the performance of the models,
namely: precision, recall, F1-score, and accuracy. For a binary classification where the clas-
sifier predicts positive or negative, the precision is the fraction of correct positive predictions.
It answers the question: what proportion of predicted positives is truly positive? It is defined
as T P

T P+FP , FP is the number of incorrectly predicted positives (false positives). Recall, on the
other hand, answers the question: what proportion of actual positives is predicted positive?
It is defined as T P

T P+FN , FN is the number of incorrectly predicted negatives (false negatives).
Accuracy answers the question: what proportion of images — both positive and negative
— were correctly classified? It is defined as T P+T N

T P+FP+T N+FN . Both precision and recall are
well known metrics, but F1-score is also important to compare two classifiers. It is a way to
combine precision and recall into a single number. It is defined as 2⇥precision⇥recall

precision+recall . F1-score
is the harmonic mean of precision and recall that gives larger weight to lower numbers [20].

In multi-class classification, metrics such as precision, recall, and F1-score are defined
for each class. For example, assuming that the classifier has three classes A, B, and C in an
image classification problem, the precision for class B is the number of correctly predicted
B photos out of all predicted B photos. The recall for class B is the number of correctly
predicted B photos out of all actual B photos. The F1-score for class B is the harmonic mean
of precision and recall for class B. For multi-class problems, the per-class metrics can be
combined into single numbers. Macro average is the arithmetic mean of per-class metrics
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where the values of precision, recall, and F1-score are added for all classes and divided by
the number of classes. The macro average gives equal weights to each class. In weighted
average each class is weighted by the number of samples of that class. Another way to
calculate precision, recall, and F1-score for a multi-class problem is called the micro average.
To calculate the micro average precision, we look at whole predictions. T P is the number
of correct predictions through all classes, while each prediction error becomes a FP. The
micro average recall is the same as the micro average precision. Since all the classes are
together, FN is also the number of prediction errors. The micro average F1-score will also
be equal to the micro average precision and recall because in the formula for F1-score the
values factor out. The classifier’s overall accuracy is defined as the proportion of correctly
classified samples out of all samples, which is equal to the micro average F1-score [38].
For that reason, we have replaced the micro average F1-score with accuracy in tables like
Table 5.1.

5.2 Experiment Results

In Chapter 4, the different deep learning models and architectures implemented in this thesis
are discussed. They are based on three defined CNN models, including transfer learning,
simple CNN models and the tree of CNN models. We designed seven different experiments
to explore solving similar plant classification problems. This section will introduce the
seven different experiments with relevant information such as the value of parameters or
the number of convolution layers. Additionally, for each experiment, the test results and
evaluation metrics will be presented in this section.

5.2.1 Experiment E001 (Transfer Learning with VGG16)

The model used in this experiment is VGG-16. We have used the VGG16 model trained
on the ImageNet dataset. After importing the model, all layers were frozen, and then we
fine-tuned the last layer by adding a flattening layer and a fully connected layer followed
by a dropout layer. The last block is trained on the training dataset. The training batch size
is 128, and the maximum epochs allowed is 45. The Adam optimizer is used for training
with a learning rate of 0.001. The training and validation accuracy and loss of the model
while training is included in Appendix A. The model is tested on the test dataset described
in Section 4.2 and the confusion matrix is shown in Fig. 5.1. The overall accuracy of the
predictions is 97.86% for 176,160 test samples, while the recall and F1-scores were close to
each other for all classes. The highest precision is 99.12% for Bean and the lowest precision
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is 94.74% for Yellow Foxtail as shown in Table 5.1. Note that support column is showing the
number of samples in each class.

Figure 5.1 Confusion matrix of E001 model
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Table 5.1 Evaluation metrics for E001 model on test dataset

precision (%) recall (%) F1-score (%) support

Barnyard_Grass 97.59 97.18 97.38 12248
Bean 99.12 97.46 98.28 24366
Canada_Thistle 97.73 97.61 97.67 14933
Canola 97.32 98.59 97.95 29861
Dandelion 97.80 98.44 98.12 16369
Field_Pea 98.39 98.53 98.46 7497
Oat 97.31 96.55 96.93 5398
Smartweed 97.45 97.39 97.42 17391
Soybean 98.08 98.85 98.46 26011
Wheat 97.85 98.75 98.30 11933
Wild_Buckwheat 98.60 96.08 97.32 6219
Yellow_Foxtail 94.74 91.56 93.12 3934

accuracy 97.86 176160
macro avg 97.66 97.25 97.45 176160
weighted avg 97.86 97.86 97.86 176160

5.2.2 Experiment E002 (5 convolution blocks and 3x3 filters)

In this experiment, along with E003 and E004, we studied three similar simple CNN models.
We were inspired by the VGG-16 model that starts with simple CNN blocks. For E001 the
model is formed by 5 convolution blocks described in Section 4.4.2. We want to explore the
CNN with just 5 and 3 convolutional blocks to make it simpler and have fewer parameters to
learn. Since training occurs with a large dataset, a model smaller than VGG-16 (in terms
of number of weights) will train faster and more efficiently. The convolution operation is
performed with strides of 3⇥3 for horizontal and vertical movements, respectively. Then a
flattening layer is used, followed by 1 fully connected layer (1024) with ReLU activation, 1
dropout layer (0.1), and a final fully connected layer with a softmax activation. The training
batch size is 128, and the maximum epochs allowed is 45. The Adam optimizer is used for
training with a learning rate of 0.001. The training and validation accuracy and loss of the
model while training is included in Appendix A. The model was tested on the test dataset,
and the confusion matrix is shown in Fig. 5.2. The overall accuracy of this experiment is
99.63% for all classes. Table 5.2 shows the lowest precision goes for Yellow Foxtail and Oat
with 98.36% and 98.74%, respectively.
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Figure 5.2 Confusion matrix of E002 model

Table 5.2 Evaluation metrics for E002 model on test dataset

precision (%) recall (%) F1-score (%) support

Barnyard_Grass 99.76 99.06 99.41 12248
Bean 99.42 99.96 99.69 24366
Canada_Thistle 99.62 99.31 99.47 14933
Canola 99.79 99.53 99.66 29861
Dandelion 99.54 99.73 99.63 16369
Field_Pea 99.89 99.93 99.91 7497
Oat 98.74 99.80 99.26 5398
Smartweed 99.91 99.66 99.78 17391
Soybean 99.85 99.81 99.83 26011
Wheat 99.77 99.63 99.70 11933
Wild_Buckwheat 99.15 99.57 99.36 6219
Yellow_Foxtail 98.36 99.14 98.75 3934

accuracy 99.63 176160
macro avg 99.48 99.59 99.54 176160
weighted avg 99.64 99.63 99.64 176160
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5.2.3 Experiment E003 (3 convolution blocks and 3x3 filters)

In this experiment, the model is designed with 3 convolution blocks and stride size of 3⇥3
for horizontal and vertical movements, respectively. Then a flattening layer is used, followed
by 1 fully connected layer (1024) with ReLU activation, 1 dropout layer (0.1), and a final fully
connected layer with a softmax activation. The training batch size is 64, and the maximum
epochs allowed is 45. The Adam optimizer is used for training with a learning rate of 0.001.
The difference between E002 and E003 is the number of convolution blocks. The training
and validation accuracy and loss of the model while training is included in Appendix A.
The models are tested on the test dataset, the confusion matrix is shown in Fig. 5.3, and the
performance metrics are shown in Table 5.3. The overall accuracy of this experiment on
all classes is 99.74%. The micro-avg precision and recall of classification for all classes is
99.79% and 99.68% for all classes respectively. The micro-avg F1-score of all type of test
images is 99.70%. The results of Yellow-Foxtail and Oat classification using E003 model
are 99.72% and 99.47% respectively which are higher than the result of the previous model
(E002). It shows the E003 outperforms distinguishing unrecognizable plant images like
Yellow-Foxtail and Oat plant images.

Figure 5.3 Confusion matrix of E003 model
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Table 5.3 Evaluation metrics for E003 model on test dataset

precision (%) recall (%) F1-score (%) support

Barnyard_Grass 99.67 99.66 99.67 12248
Bean 99.77 99.90 99.84 24366
Canada_Thistle 99.64 99.43 99.53 14933
Canola 99.84 99.67 99.76 29861
Dandelion 99.58 99.78 99.68 16369
Field_Pea 99.95 99.95 99.95 7497
Oat 99.47 99.94 99.70 5398
Smartweed 99.57 99.92 99.74 17391
Soybean 99.86 99.83 99.85 26011
Wheat 99.89 99.85 99.87 11933
Wild_Buckwheat 99.73 99.55 99.64 6219
Yellow_Foxtail 99.72 98.63 99.17 3934

accuracy 99.74 176160
macro avg 99.72 99.68 99.70 176160
weighted avg 99.74 99.74 99.74 176160

5.2.4 Experiment E004 (3 convolution blocks and 5x5 filters)

Experiment E004 is similar to experiment E003 described at Section 5.2.3. The difference is
that in the convolutional layers, instead of using strides of 3 and 3, the strides are 5 and 5.
The plot of the accuracy and loss of the model is shown in Fig. A.7 and Fig. A.8, while the
confusion matrix and performance metrics are shown in Fig. 5.4 and Table 5.4.



5.2 Experiment Results 43

Figure 5.4 Confusion matrix of E004 model

Table 5.4 Evaluation metrics for E004 model on test dataset

precision (%) recall (%) F1-score (%) support

Barnyard_Grass 99.67 99.80 99.73 12248
Bean 99.84 99.92 99.88 24366
Canada_Thistle 99.76 99.69 99.73 14933
Canola 99.83 99.87 99.85 29861
Dandelion 99.79 99.79 99.79 16369
Field_Pea 99.99 99.93 99.96 7497
Oat 99.43 100.00 99.71 5398
Smartweed 99.79 99.91 99.85 17391
Soybean 99.94 99.84 99.89 26011
Wheat 99.97 99.81 99.89 11933
Wild_Buckwheat 99.79 99.53 99.66 6219
Yellow_Foxtail 99.64 99.03 99.34 3934

accuracy 99.82 176160
macro avg 99.79 99.76 99.77 176160
weighted avg 99.82 99.82 99.82 176160
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5.2.5 Experiment E010 (Tree of CNN with Transfer Learning)

In this experiment, we use the tree of CNN structure to create a sophisticated model (see
Section 4.4.3). The tree of CNN model is a combination of the following CNNs:

• A VGG16 network that is pre-trained on ImageNet dataset, and the pre-trained weights
are frozen during training. This network is identical to the VGG16 network used
in experiment E001. Only the last layer is trained on the whole training dataset (as
described in Section 4.4.1) with 3 target groups. The purpose of this network is to
classify an image into one of the target groups (G1, G2, or G3).

• Three separate VGG16 networks identical to the VGG16 network used in experiment
E001, but trained on the training dataset of each target group. These networks are used
to classify an image into the final classes (labels) listed in Table 4.4.

Overall, four separate networks are trained individually, each on a separate dataset. One
generalist network to classify an input image into groups and three specialist networks to
classify an input image into the final classes. A controller class is coded to supervise the
process of handling each image and passing it through the correct network until the final
classification is obtained. In general, the training networks on the dataset are not end-to-end
since we have four different CNN groups. Plots of the accuracy and loss of the model,
confusion matrix, and performance metrics for each separate network are given in Appendix
A. The final confusion matrix is shown in Fig 5.5 and Table 5.5 shows the performance
metrics.
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Figure 5.5 Confusion matrix of E010 model

Table 5.5 Evaluation metrics for E010 model on test dataset

precision (%) recall (%) F1-score (%) support

Barnyard_Grass 96.40 97.22 96.81 12248
Bean 98.29 97.71 98.00 24366
Canada_Thistle 97.88 97.42 97.65 14933
Canola 97.44 98.32 97.88 29861
Dandelion 98.25 97.94 98.09 16369
Field_Pea 98.10 97.93 98.02 7497
Oat 97.20 96.29 96.74 5398
Smartweed 97.60 97.64 97.62 17391
Soybean 98.45 98.23 98.34 26011
Wheat 98.20 98.16 98.18 11933
Wild_Buckwheat 96.60 96.96 96.78 6219
Yellow_Foxtail 93.61 93.39 93.50 3934

accuracy 97.72 176160
macro avg 97.34 97.27 97.30 176160
weighted avg 97.72 97.72 97.72 176160
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5.2.6 Experiment E011 (Tree of CNN with simple CNN)

This experiment is similar to experiment E010, and the difference is that the CNN models are
not pre-trained. Instead, this experiment uses the model used in the E002 experiment. That is,
the model architecture used in all the CNNs is the simple CNN described in Section 4.4.2 with
5 convolutional blocks. Four networks are trained individually, each on separate datasets: One
generalist network to classify an input image into groups (G1,G2, and G3) and 3 specialist
networks to classify an input image into the final classes. For the end-to-end evaluation, a
controller is coded to supervise the process of handling each image and passing it through
the correct network until the final classification is obtained. The history, confusion matrix,
and performance metrics for each separate network can be found in Appendix A. The final
confusion matrix is shown in Fig. 5.6 and Table 5.6 shows the performance metrics.

Figure 5.6 Confusion matrix of E011 model
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Table 5.6 Evaluation metrics for E011 model on test dataset

precision (%) recall (%) F1-score (%) support

Barnyard_Grass 98.97 97.48 98.22 12248
Bean 99.91 99.68 99.80 24366
Canada_Thistle 99.74 98.49 99.11 14933
Canola 99.84 99.72 99.78 29861
Dandelion 99.04 99.80 99.42 16369
Field_Pea 99.93 99.61 99.77 7497
Oat 99.52 99.18 99.35 5398
Smartweed 99.22 99.88 99.55 17391
Soybean 99.70 99.88 99.79 26011
Wheat 99.82 97.47 98.63 11933
Wild_Buckwheat 99.66 99.32 99.49 6219
Yellow_Foxtail 87.10 98.53 92.46 3934

accuracy 99.29 176160
macro avg 98.54 99.09 98.78 176160
weighted avg 99.33 99.29 99.30 176160

5.2.7 Experiment E012 (Tree of CNN with simple CNN)

This experiment is similar to experiment E010, and the difference is that the CNN models are
not pre-trained. Instead, this experiment uses the model used in the E003 experiment. That is,
the model architecture used in all the CNNs is the simple CNN described in Section 4.4.2 with
3 convolutional blocks. Four networks are trained individually, each on separate datasets:
One generalist network to classify an input image into groups (G1, G2, and G3) and 3
specialist networks to classify an input image into the final classes. For the end-to-end
evaluation, a controller is coded to supervise the process of handling each image and passing
it through the correct network until the final classification is obtained. The history, confusion
matrix, and performance metrics for each separate network can be found in Appendix A. The
final confusion matrix is shown in Fig. 5.7 and Table 5.7 shows the performance metrics.



5.2 Experiment Results 48

Figure 5.7 Confusion matrix of E012 model

Table 5.7 Evaluation metrics for E012 model on test dataset

precision (%) recall (%) F1-score (%) support

Barnyard_Grass 99.24 99.60 99.42 12248
Bean 99.92 99.49 99.70 24366
Canada_Thistle 99.54 99.46 99.50 14933
Canola 99.68 99.77 99.73 29861
Dandelion 99.41 99.70 99.55 16369
Field_Pea 99.79 99.80 99.79 7497
Oat 98.34 99.91 99.12 5398
Smartweed 99.79 99.69 99.74 17391
Soybean 99.65 99.90 99.77 26011
Wheat 99.97 99.15 99.56 11933
Wild_Buckwheat 99.25 99.57 99.41 6219
Yellow_Foxtail 99.41 97.92 98.66 3934

accuracy 99.61 176160
macro avg 99.50 99.50 99.50 176160
weighted avg 99.61 99.61 99.61 176160
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5.3 Test Dataset Evaluation

All experiments introduced in Section 5.2 were trained on the training dataset and assessed
on the test dataset, which is explained in Section 4. The test dataset contains 176,615 images,
including 12 different classes, namely, Wild Buckwheat, Barnyard Grass, Canada Thistle,
Canola, Dandelion, Smartweed, Bean, Soybean, Wheat, Oat, Field Pea, and Yellow Foxtail.
The test dataset was kept constant for all experiments. We called this test dataset the Main
test dataset. Section 5.2 shows the accurate classification of the test dataset on seven CNN
models. Table 5.8 shows the name of CNN models with their results studied in this thesis.

In addition to the Main test dataset, we took another 3 different test data sets prepared
by Beck et al. [12] to further evaluate the results. These test datasets contain 7 different
classes, including Barnyard Grass, Canada Thistle, Canola, Dandelion, Smartweed, Wild
Buckwheat, and Yellow Foxtail. Since these 3 test sets used Sightline to evaluate their CNN
model with the TerraByte data, we chose these test datasets to first evaluate our models and
compare our results to the Sightline results. The first dataset recorded as “Same Angles”
includes 3,494 images which are similar to the Main test dataset in terms of the background
(blue background) and the camera angles. The second dataset, named “Random Angles”
includes 520 images. The pictures were taken from different angles. The plant images have
a blue background and are taken with different random angles as well as the Main test set.
The “Smart Phone” dataset includes 56 plant images with diverse backgrounds and angles of
the Main test dataset. Data preprocessing has been done on these 3 datasets to make them
ready to use as the test datasets for all the defined seven experiment models in Section 5.2.
We applied the following 2 preprocessing operations. First, the images were re-labelled to
have similar labels as the Main test dataset. Second, a labelling spreadsheet (CSV file) was
created based on the filename of plants and their labels. After the preprocessing step, we
evaluated the seven CNN models by using the 3 new test sets: Same Angles, Random Angles
and Smart Phone test datasets. We evaluated the performance of the models in two different
ways. For the first approach, we used our models, which are trained on not 7 but 12 classes,
since the 12 classes that our models are trained on include the seven classes in the new test
datasets. The results are reported in Table 5.9. The second approach was to train models
from scratch. We used the same datasets described in Section 4.2 as the baseline. Then, we
filtered out the images belonging to the extra 5 classes. The remaining samples are used
for training and validation. The models used for E001 and E002 experiments are slightly
modified. Only the last layer is modified to have 7 classes instead of 12 classes. The testing
results are reported in Tables A.10 and A.11.

The results of a model trained on the datasets [12] by Sightline, along with the accuracy
of the models developed in this study, are listed in Table 5.9.
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Table 5.8 Summary of eveluation for the seven CNN models on the main test dataset

Model Accuracy (%)

E001 97.86
E002 99.63
E003 99.74
E004 99.82
E010 97.72
E011 99.29
E012 99.61

Table 5.9 Comparision of results with Sightline model

Model Dataset Accuracy (%)

Sightline Same Angles 45.65
Random Angles 61.15
Smartphone 58.93

E001 Same Angles 49.62
Random Angles 44.61
Smartphone 12.50

E002 Same Angles 54.23
Random Angles 44.23
Smartphone 14.28

E001-sl Same Angles 54.75
Random Angles 51.15
Smartphone 23.21

E002-sl Same Angles 48.65
Random Angles 40.77
Smartphone 17.86

E010 Generalist Same Angles 78.53
Random Angles 70.19
Smartphone 60.71

E010 Same Angles 48.94
Random Angles 41.35
Smartphone 12.50

E011 Generalist Same Angles 85.26
Random Angles 88.65
Smartphone 55.36

E011 Same Angles 64.45
Random Angles 52.12
Smartphone 10.71

E012 Generalist Same Angles 74.30
Random Angles 76.15
Smartphone 57.14

E012 Same Angles 57.18
Random Angles 45.96
Smartphone 12.50
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5.4 Peer Comparison and Analysis

Table 5.8 shows the result of all 7 CNN models on the Main test set that all are similarly high.
It shows the simple CNN models, including E002 with 99.63% accuracy, E003 with 99.74%,
and E004 with 99.82% accuracy have better results compared with 97.86% accuracy for the
transfer learning with the VGG16 model. The generalist-specialist model used simple CNN
architecture with 99.61% accuracy work significantly better than using transfer learning with
the VGG16 model with 97.72% accuracy. Based on Table 5.9, it can be seen that the accuracy
of our models on the Same Angles and Random Angles dataset are similar except that the
Sightline model has better accuracy on the Smartphone dataset. Classification accuracy of
the E011 and E012 models on the Same Angles dataset is higher than the Sightline result.
The accuracy of classification of the generalist CNN of the E010, E011, and E012 are also
shown. It can be seen that on the generalist level (which classifies the input image into G1,
G2, or G3) is relatively high, which is expected due to our CNN design to classify the similar
plant images. The E011 and E012 models show slightly higher accuracies over E001 and
E002 models.

We can consider several reasons why the results of our models E001 to E012 CNN, on
the Main test dataset, are of higher accuracy than the Random Angles and Smart Phone test
datasets.

Firstly, before training our models, we filtered the training and test datasets by the age
of each class of plants. The networks are trained with plant images at specific ages. For
example, Canola images range from 14 to 65 days old (Section 4 introduced the applied age
filter on the images). It means the networks trained on Canola images between this range.
There is a possibility that these new test datasets contain plant images out of the range we
used in the training dataset.

Secondly, since the images Sightline picked for their test sets, taken on 27 and 29 April are
a very small portion of all images from the TerraByte dataset that we picked for training and
test sets, we can not evaluate our models accurately by just test sets from a small proportion
of data. For instance, [13] shows the number of images that have been taken in April is
15,015, which is a very small portion of 1.2 million images from the TerraByte dataset.

Generalization and overfitting problems might be the third reason. If our models were
better in generalization, we might have as good accuracy as on these new test datasets.
When the result of the test dataset is far from the validation dataset, it might be due to
overfitting. But in our project, we cannot have this problem because of the following reasons.
A model can overfit the training dataset when there are not enough variations of training data.
When data is not sufficient in number, the model can not generalize well. The overfitting
issue can be solved by providing more data for the model to train. Our models are trained
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with 530,000 samples, and the reason for overfitting does not seem to be a lack of data.
Another reason that could contribute to overfitting is the complexity of the model. A complex
model with many layers and parameters can overfit the data and needs more training data
to generalize well. Our models are relatively simple, and we have used dropout layers to
reduce overfitting. Overfitting is detected when the model does not generalize well. We
use a validation dataset to help the model generalize in the training process. The model
does not train on the validation dataset. At the end of each epoch, the model is evaluated by
running the model against the validation dataset. When the model shows high accuracy on
the training dataset and low accuracy on the validation dataset, it means overfitting occurred.
Overfitting (and underfitting) can be visualized by plotting the history of the accuracy and
loss over training time (epoch). When accuracy curves for training and validation diverge,
it is a sign of overfitting or underfitting. Our models, while training, did not show such
behaviour. A model can also overfit if the validation dataset is not helpful. A validation
dataset that does not have enough samples for different classes can affect the model. For
this research, the whole dataset is randomized before splitting into training, validation, and
test sets. Also, as discussed in Section 4.2, we have used 60% of the dataset for training,
20% for validation, and 20% for testing. Also, we have made sure that the validation and
testing datasets have the same ratio of classes as the training dataset (See Figure 4.6 for more
details). For testing purposes, we have used the test dataset. The test dataset is not used
for training or validation. All the explored models in this thesis perform pretty well during
training and do not show overfitting signs. However, they might not be generalizing well
on the test datasets. We suspect that one reason could be that the samples in the validation
dataset, although randomized, are similar to the ones in the training dataset, in a way that
the validation dataset is not helpful and the models might be overfitting. That could explain
why the accuracy of the models is high on the test dataset prepared by this research, but the
models perform poorly on the foreign dataset described above. In a future study, we could
apply several generalization methods, like data augmentation and change the background of
the pictures on the validation dataset.



Chapter 6

Conclusion

The automatic classification of crops and weeds is challenging in computer vision due to
similar shape and colour representation across species. We aimed to design and implement
different CNN architectures to solve the plant classification problems for similar plant images.
We used a large plant dataset containing 1,207,829 labelled images from the TerraByte
dataset, captured and produced from 2020-04-01 to 2020-12-13. This dataset includes 12
plant species, including wheat, canola, oat, bean, soybean, field pea, yellow foxtail, dandelion,
wild bucketwheat, barnyard grass, smartweed, and Canada thistle. Most of these species are
very challenging to be recognized by humans due to the similar size and shape of their leaves.
Before implementing CNN models, the following three data preprocessing operations were
applied to the plant images. Firstly, image re-labelling was done to simplify the problem
space. Secondly, the plants were filtered by age. For example, we only kept images of canola
with ages between 14 to 65 days. Thirdly, plant species were placed into similar groups. Then,
three diverse CNN architectures were explored and implemented to solve the classification of
highly similar plant images. One of those was the transfer learning using VGG-16, that could
classify the plant species with 97.86% accuracy. The second CNN architecture was related to
the simple CNN models, including different layers and parameters. The highest accuracy for
those models was 99.82%. The hierarchical tree-based CNN (general-specialist networks)
was the third architecture explored and implemented. The generalist-specialist networks
could improve transfer learning using VGG-16 from 97.86% accuracy to 99.61% accuracy.
The performance of each mentioned CNN architecture was evaluated and compared by
randomly picking a test set from the database. Additionally, we assessed and compared our
CNN models with a model produced by Sightline Innovation, which worked with a portion
of the TerraByte dataset. The results showed that the generalist-specialist networks had a
better performance than the Sightline model on the same plant images by 18.80%.
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This thesis explored CNN architectures to solve highly similar plant species using the
TerraByte dataset. Even so, we can mention below suggestions for future work:

• Since we got different results from the same dataset with different time duration, one
future task can be research into important parameters for the appearance of plant images,
like the effect of temperature, sunshine or the lighting system on the greenhouse for
different months of the year.

• Image segmentation to separate the plant from the background can be employed as a
preprocessing step. This will eliminate the possibility that the models would account
for the background.

• Research into classifying breed of plants. In the Terrabyte dataset, the breed of plants
is available. This can be used to investigate different breeds of plants.

• Creating a dataset from images taken from field and greenhouse would build a founda-
tion for further research to classify real-world images. These images can be used as
validation and test datasets in an effort to create and train models that can generalize
what they learn to field images.

• Explore multispectral and hyperspectral imaging techniques to determine if the infor-
mation present in the additional spectral bands improves the classification metrics or
allows the development of models with fewer training samples.
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Appendix A

Experiment Results

A.1 Training History for E001

Figure A.1 Accuracy of E001 model while training
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Figure A.2 Loss of E001 model while training

A.2 Training History for E002

Figure A.3 Accuracy of E002 model while training
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Figure A.4 Loss of E002 model while training

A.3 Training History for E003

Figure A.5 Accuracy of E003 model while training
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Figure A.6 Loss of E003 model while training

A.4 Training History for E004

Figure A.7 Accuracy of E004 model while training
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Figure A.8 Loss of E004 model while training

A.5 Training and Testing of Individual CNNs for E010

This section contains the results of train and test of the individual CNNs in the experiment
E010.

Figure A.9 Accuracy of E010/Generalist model while training
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Figure A.10 Loss of E010/Generalist model while training

Figure A.11 Confusion matrix of E010/Generalist model
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Table A.1 Evaluation metrics for E010/Generalist model on test dataset

precision recall f1-score support

G1 98.16 97.81 97.99 38082
G2 98.96 99.05 99.00 104565
G3 98.80 98.92 98.86 33513

accuracy 98.76 176160
macro avg 98.64 98.59 98.62 176160
weighted avg 98.75 98.76 98.75 176160

Figure A.12 Accuracy of E010/G1 model while training
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Figure A.13 Loss of E010/G1 model while training

Figure A.14 Confusion matrix of E010/G1 model
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Table A.2 Evaluation metrics for E010/G1 model on test dataset

precision recall f1-score support

Bean 99.86 99.87 99.86 24366
Field_Pea 99.69 99.68 99.69 7489
Wild_Buckwheat 99.66 99.63 99.65 6209

accuracy 99.79 38064
macro avg 99.74 99.73 99.73 38064
weighted avg 99.79 99.79 99.79 38064

Figure A.15 Accuracy of E010/G2 model while training
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Figure A.16 Loss of E010/G2 model while training

Figure A.17 Confusion matrix of E010/G2 model
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Table A.3 Evaluation metrics for E010/G2 model on test dataset

precision recall f1-score support

Canada_Thistle 98.79 98.01 98.40 14933
Canola 98.33 99.26 98.80 29861
Dandelion 99.09 98.59 98.84 16369
Smartweed 98.75 98.94 98.84 17388
Soybean 99.52 99.08 99.30 26009

accuracy 98.88 104560
macro avg 98.90 98.78 98.84 104560
weighted avg 98.88 98.88 98.88 104560

Figure A.18 Accuracy of E010/G3 model while training
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Figure A.19 Loss of E010/G3 model while training

Figure A.20 Confusion matrix of E010/G3 model
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Table A.4 Evaluation metrics for E010/G3 model on test dataset

precision recall f1-score support

Barnyard_Grass 97.99 98.29 98.14 12248
Oat 97.38 97.09 97.23 5393
Wheat 98.47 98.60 98.53 11933
Yellow_Foxtail 96.57 95.64 96.10 3946

accuracy 97.90 33520
macro avg 97.60 97.41 97.50 33520
weighted avg 97.89 97.90 97.90 33520

A.6 Training and Testing of Individual CNNs for E011

This section contains the results of train and test of the individual CNNs in the experiment
E011.

Figure A.21 Accuracy of E011/Generalist model while training
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Figure A.22 Loss of E011/Generalist model while training

Figure A.23 Confusion matrix of E011/Generalist model



A.6 Training and Testing of Individual CNNs for E011 77

Table A.5 Evaluation metrics for E011/Generalist model on test dataset

precision recall f1-score support

G1 99.92 99.65 99.78 38082
G2 99.85 99.92 99.88 104565
G3 99.80 99.90 99.85 33513

accuracy 99.85 176160
macro avg 99.86 99.82 99.84 176160
weighted avg 99.85 99.85 99.85 176160

Figure A.24 Accuracy of E011/G1 model while training
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Figure A.25 Loss of E011/G1 model while training

Figure A.26 Confusion matrix of E011/G1 model
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Table A.6 Evaluation metrics for E011/G1 model on test dataset

precision recall f1-score support

Bean 99.96 99.98 99.97 24366
Field_Pea 99.99 99.87 99.93 7489
Wild_Buckwheat 99.90 99.95 99.93 6209

accuracy 99.96 38064
macro avg 99.95 99.93 99.94 38064
weighted avg 99.96 99.96 99.96 38064

Figure A.27 Accuracy of E011/G2 model while training
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Figure A.28 Loss of E011/G2 model while training

Figure A.29 Confusion matrix of E011/G2 model
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Table A.7 Evaluation metrics for E011/G2 model on test dataset

precision recall f1-score support

Canada_Thistle 99.86 98.57 0.9921 14933
Canola 99.93 99.81 0.9987 29861
Dandelion 99.14 99.85 0.9949 16369
Smartweed 99.43 99.98 0.9970 17388
Soybean 99.89 99.95 0.9992 26009

accuracy 0.9970 104560
macro avg 99.65 99.63 0.9964 104560
weighted avg 99.70 99.70 0.9970 104560

Figure A.30 Accuracy of E011/G3 model while training
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Figure A.31 Loss of E011/G3 model while training

Figure A.32 Confusion matrix of E011/G3 model
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Table A.8 Evaluation metrics for E011/G3 model on test dataset

precision recall f1-score support

Barnyard_Grass 99.29 97.54 98.41 12248
Oat 99.59 99.22 99.41 5393
Wheat 99.87 97.48 98.66 11933
Yellow_Foxtail 87.44 99.01 92.87 3946

accuracy 97.96 33520
macro avg 96.55 98.31 97.34 33520
weighted avg 98.15 97.96 98.01 33520

A.7 Testing of Individual CNNs for E012

This section contains the results of train and test of the individual CNNs in the experiment
E012.

Figure A.33 Confusion matrix of E012/Generalist model
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Table A.9 Evaluation metrics for E012/Generalist model on test dataset

precision recall f1-score support

G1 99.87 99.65 99.76 38082
G2 99.81 99.92 99.86 104565
G3 99.85 99.77 99.81 33513

accuracy 99.83 176160
macro avg 99.84 99.78 99.81 176160
weighted avg 99.83 99.83 99.83 176160

Figure A.34 Confusion matrix of E012/G1 model
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Table A.10 Evaluation metrics for E012/G1 model on test dataset

precision recall f1-score support

Bean 99.99 99.89 99.94 24366
Field_Pea 99.99 99.93 99.96 7489
Wild_Buckwheat 99.52 99.98 99.75 6209

accuracy 99.91 38064
macro avg 99.83 99.93 99.88 38064
weighted avg 99.91 99.91 99.91 38064

Figure A.35 Confusion matrix of E012/G2 model
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Table A.11 Evaluation metrics for E012/G2 model on test dataset

precision recall f1-score support

Canada_Thistle 99.68 99.50 99.59 14933
Canola 99.81 99.86 99.83 29861
Dandelion 99.58 99.75 99.66 16369
Smartweed 99.95 99.79 99.87 17388
Soybean 99.92 99.97 99.94 26009

accuracy 99.81 104560
macro avg 99.79 99.77 99.78 104560
weighted avg 99.81 99.81 99.81 104560

Figure A.36 Confusion matrix of E012/G3 model
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Table A.12 Evaluation metrics for E012/G3 model on test dataset

precision recall f1-score support

Barnyard_Grass 99.45 99.84 99.65 12248
Oat 98.41 99.96 99.18 5393
Wheat 99.99 99.24 99.61 11933
Yellow_Foxtail 99.67 98.56 99.11 3946

accuracy 99.50 33520
macro avg 99.38 99.40 99.39 33520
weighted avg 99.50 99.50 99.50 33520

A.8 Test Results for E001 on Weed Seedling Dataset

Table A.13 Evaluation metrics for E001 model on test dataset, SameAngles

precision recall f1-score support

Barnyard Grass 84.38 07.71 14.14 350
Bean 00.00 00.00 00.00 0
Canada Thistle 47.72 18.65 26.82 504
Canola 33.43 48.90 39.72 456
Dandelion 90.23 54.34 67.83 357
Field Pea 00.00 00.00 00.00 0
Oat 00.00 00.00 00.00 0
Smartweed 35.29 94.44 51.38 504
Soybean 00.00 00.00 00.00 0
Wheat 00.00 00.00 00.00 0
Wild Buckwheat 87.06 68.23 76.50 513
Yellow Foxtail 94.39 45.68 61.56 810

accuracy 49.63 3494
macro avg 39.37 28.16 28.16 3494
weighted avg 68.67 49.63 50.31 3494
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Table A.14 Evaluation metrics for E001 model on test dataset, RandomAngles

precision recall f1-score support

Barnyard Grass 71.43 04.42 08.33 113
Bean 00.00 00.00 00.00 0
Canada Thistle 80.49 60.00 68.75 55
Canola 54.14 75.22 62.96 113
Dandelion 97.37 61.67 75.51 60
Field Pea 00.00 00.00 00.00 0
Smartweed 28.42 88.52 43.03 61
Soybean 00.00 00.00 00.00 0
Wheat 00.00 00.00 00.00 0
Wild Buckwheat 80.00 07.02 12.90 57
Yellow Foxtail 48.28 22.95 31.11 61

accuracy 44.62 520
macro avg 41.83 29.07 27.51 520
weighted avg 64.80 44.62 41.59 520

Table A.15 Evaluation metrics for E001 model on test dataset, Smartphone

precision recall f1-score support

Barnyard Grass 00.00 00.00 00.00 8
Bean 00.00 00.00 00.00 0
Canada Thistle 14.29 12.50 13.33 8
Canola 23.08 37.50 28.57 8
Dandelion 22.22 25.00 23.53 8
Field Pea 00.00 00.00 00.00 0
Oat 00.00 00.00 00.00 0
Smartweed 16.67 12.50 14.29 8
Soybean 00.00 00.00 00.00 0
Wheat 00.00 00.00 00.00 0
Wild Buckwheat 00.00 00.00 00.00 8
Yellow Foxtail 00.00 00.00 00.00 8

accuracy 12.50 56
macro avg 06.35 07.29 06.64 56
weighted avg 10.89 12.50 11.39 56
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A.9 Test Results for E002 on Weed Seedling Dataset

Table A.16 Evaluation metrics for E002 model on test dataset, SameAngles

precision recall f1-score support

Barnyard Grass 28.57 00.57 01.12 350
Bean 00.00 00.00 00.00 0
Canada Thistle 62.02 60.91 61.46 504
Canola 46.67 92.32 62.00 456
Dandelion 53.60 18.77 27.80 357
Field Pea 00.00 00.00 00.00 0
Oat 00.00 00.00 00.00 0
Smartweed 28.80 39.48 33.31 504
Soybean 00.00 00.00 00.00 0
Wheat 00.00 00.00 00.00 0
Wild Buckwheat 76.66 74.27 75.45 513
Yellow Foxtail 91.52 63.95 75.29 810

accuracy 54.24 3494
macro avg 32.32 29.19 28.04 3494
weighted avg 60.00 54.24 53.25 3494

Table A.17 Evaluation metrics for E002 model on test dataset, RandomAngles

precision recall f1-score support

Barnyard Grass 33.33 00.88 01.72 113
Bean 00.00 00.00 00.00 0
Canada Thistle 55.56 72.73 62.99 55
Canola 56.02 82.30 66.67 113
Dandelion 29.09 26.67 27.83 60
Field Pea 00.00 00.00 00.00 0
Oat 00.00 00.00 00.00 0
Smartweed 46.51 65.57 54.42 61
Soybean 00.00 00.00 00.00 0
Wheat 00.00 00.00 00.00 0
Wild Buckwheat 54.05 35.09 42.55 57
Yellow Foxtail 40.82 32.79 36.36 61

accuracy 44.23 520
macro avg 26.28 26.34 24.38 520
weighted avg 44.82 44.23 40.05 520
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Table A.18 Evaluation metrics for E002 model on test dataset, Smartphone

precision recall f1-score support

Barnyard Grass 100.00 12.50 22.22 8
Bean 00.00 00.00 00.00 0
Canada Thistle 16.67 12.50 14.29 8
Canola 14.29 25.00 18.18 8
Dandelion 22.22 25.00 23.53 8
Field Pea 00.00 00.00 00.00 0
Smartweed 33.33 12.50 18.18 8
Soybean 00.00 00.00 00.00 0
Wheat 00.00 00.00 00.00 0
Wild Buckwheat 100.00 100.00 100.00 8
Yellow Foxtail 16.67 12.50 14.29 8

accuracy 14.29 56
macro avg 18.47 09.09 10.06 56
weighted avg 29.02 14.29 15.81 56

A.10 Training and Testing for E001 on Sightline data

Followings are the tests that are summariesed in Table 5.9 of Section 5.3.

Table A.19 Evaluation metrics for e001-sl model on test dataset, SameAngles

precision recall f1-score support

Barnyard Grass 96.15 07.14 13.30 350
Canada Thistle 60.54 26.79 37.14 504
Canola 43.09 47.15 45.03 456
Dandelion 87.22 55.46 67.81 357
Smartweed 32.03 96.03 48.04 504
Wild Buckwheat 89.80 68.62 77.79 513
Yellow Foxtail 81.82 62.22 70.69 810

accuracy 54.75 3494
macro avg 70.09 51.92 51.40 3494
weighted avg 69.67 54.75 54.23 3494
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Table A.20 Evaluation metrics for e001-sl model on test dataset, RandomAngles

precision recall f1-score support

Barnyard Grass 77.78 12.39 21.37 113
Canada Thistle 83.78 56.36 67.39 55
Canola 64.33 89.38 74.81 113
Dandelion 83.33 41.67 55.56 60
Smartweed 25.12 83.61 38.64 61
Wild Buckwheat 40.00 03.51 06.45 57
Yellow Foxtail 60.00 68.85 64.12 61

accuracy 51.15 520
macro avg 62.05 50.82 46.91 520
weighted avg 63.73 51.15 47.20 520

Table A.21 Evaluation metrics for e001-sl model on test dataset, Smartphone

precision recall f1-score support

Barnyard Grass 00.00 00.00 00.00 8
Canada Thistle 50.00 25.00 33.33 8
Canola 25.00 75.00 37.50 8
Dandelion 12.50 25.00 16.67 8
Smartweed 30.00 37.50 33.33 8
Wild Buckwheat 00.00 00.00 00.00 8
Yellow Foxtail 00.00 00.00 00.00 8

accuracy 23.21 56
macro avg 16.79 23.21 17.26 56
weighted avg 16.79 23.21 17.26 56

A.11 Training and Testing for E002 on Sightline data

Followings are the tests that are summariesed in Table 5.9 of Section 5.3.
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Table A.22 Evaluation metrics for e002-sl model on test dataset, SameAngles

precision recall f1-score support

Barnyard Grass 00.00 00.00 00.00 350
Canada Thistle 36.36 43.65 39.68 504
Canola 68.96 50.66 58.41 456
Dandelion 51.54 18.77 27.52 357
Smartweed 24.88 74.40 37.29 504
Wild Buckwheat 93.57 70.96 80.71 513
Yellow Foxtail 87.72 54.69 67.38 810

accuracy 48.65 3494
macro avg 51.86 44.73 44.43 3494
weighted avg 57.18 48.65 49.01 3494

Table A.23 Evaluation metrics for e002-sl model on test dataset, RandomAngles

precision recall f1-score support

Barnyard Grass 77.78 12.39 21.37 113
Canada Thistle 83.78 56.36 67.39 55
Canola 64.33 89.38 74.81 113
Dandelion 83.33 41.67 55.56 60
Smartweed 25.12 83.61 38.64 61
Wild Buckwheat 40.00 03.51 06.45 57
Yellow Foxtail 60.00 68.85 64.12 61

accuracy 51.15 520
macro avg 62.05 50.82 46.91 520
weighted avg 63.73 51.15 47.20 520
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Table A.24 Evaluation metrics for e002-sl model on test dataset, Smartphone

precision recall f1-score support

Barnyard Grass 33.33 00.88 01.72 113
Canada Thistle 34.57 50.91 41.18 55
Canola 69.09 67.26 68.16 113
Dandelion 34.78 26.67 30.19 60
Smartweed 25.71 73.77 38.14 61
Wild Buckwheat 50.00 22.81 31.33 57
Yellow Foxtail 41.77 54.10 47.14 61

accuracy 40.77 520
macro avg 41.32 42.34 36.84 520
weighted avg 43.32 40.77 36.46 520
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