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Abstract 

Recently, graph databases have been received much attention in the 

research community due to their extensive applications in practice, such 

as social networks, biological networks and World Wide Web, which 

bring forth a lot of challenging data management problems including 

subgraph search, shortest-path query, reachability verification, pattern 

matching, and so on. Among them, the graph pattern matching is to find 

all matches in a data graph 𝐺 for a given pattern graph 𝑄 and is more 

general and flexible than other problems mentioned above. In this thesis, 

we address a kind of graph matching, the so-called pattern matching with 

, by which an edge in 𝑄 is allowed to match a path of length ≤  in 𝐺. 

In order to reduce the search space when exploring 𝐺 to find matches, we 

propose a novel pruning algorithm to eliminate all unqualified vertices. 

We also propose a strategy to speed up the distance-based join over two 

lists of vertices. Extensive experiments have been conducted, which show 

that our approach makes great improvements in running time compared to 

existing ones.  
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CHAPTER 1 INTRODUCTION 

1.1 What is Pattern Matching? 

Nowadays, in numerous applications, including social networks, 

biological networks, and WWW networks, as well as geographical 

networks, data are normally organized into directed graphs with vertices 

for objects and edges for their relationships. The burgeoning size and 

heterogeneity of networks have inspired extensive interests in querying a 

graph in different ways, such as subgraph search 

[1][2][3][4][5][6][7][8][9][10][11][12][13][14] [15], shortest-path 

queries [16][17][18], reachability queries [16][19][20] [21], and pattern 

matching queries [22][23][24][25][26]. Among them, the pattern 

matching is most difficult, by which we are asked to look for all matches 

of a certain pattern graph 𝑄  in a data graph 𝐺 , each of which is 

isomorphic to 𝑄 or satisfies certain conditions related to 𝑄. As a key 

ingredient of many advanced applications in large networks, the graph 

matching is conducted in many different domains: (1) in the traditional 

relational database research, a schema is often represented as a graph. By 

matching of data instances we are required to map a schema graph to part 

of a data graph to check any updating of data for consistency [27]; (2) in 

a large metabolic network, it is desirable to find all protein substructures 

that contain an --barrel motif, specified as a cycle of  strands 

embraced by an -helix cycle [23]; (3) in the computer vision, a scene is 

naturally represented as a graph 𝐺, where a feature is a vertex in 𝐺 and 

an edge stands for a geographical adjacency of two features[28]. Then, a 

scene recognition is just a matching of a graph standing for a scene to 

another stored in databases.  
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The first two applications mentioned above are typically exact matching, 

called subgraph matching, by which the graph isomorphism checking or 

subgraph isomorphism is required. In other words, the mapping between 

two graphs must be both vertex-label preserving and edge preserving in 

the sense that if two vertices in the first graph are linked by an edge, they 

are mapped to two vertices in the second by an edge as well. It is well-

known that the subgraph isomorphism checking is NP-complete.  

The third application is a kind of inexact matching, called pattern 

matching, which is our mainly focused part in this work. First, two 

matching features from two graphs may disagree in some way due to 

different observation of a same object. Secondly, between two adjacent 

features in a graph may there be some more features in another graph [28] 

figured out by a different observer. This leads to a new kind of queries, 

called pattern matching with 𝛿, by which an edge in a query graph is 

allowed to match a path in a data graph. More specifically, two adjacent 

vertices 𝑣 and 𝑣′ in a query graph 𝑄 can match two vertices 𝑢 and 𝑢′ in a 

data graph 𝐺   with 𝑙𝑎𝑏𝑒𝑙(𝑣)  =  𝑙𝑎𝑏𝑒𝑙(𝑢)  and 𝑙𝑎𝑏𝑒𝑙(𝑣′)  =  𝑙𝑎𝑏𝑒𝑙(𝑢′)  if 

the distance between 𝑢 and 𝑢′ is less than 𝛿. Here, the distance of two 

vertices is defined to be the length of the shortest path connecting these 

two vertices.  

In addition, assuming that the data graphs are unweighted graphs, the 

above parameter 𝛿 means the fewest steps or hops between two specific 

vertices 𝑢  and 𝑢′ . It is easy to know that when 𝛿 = 1 , this pattern 

matching problem is reduced to traditional subgraph exact matching 

problem.  

In a word, pattern matching queries are more flexible, informative and 

challenging compared to traditional subgraph queries. In this work, we 
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will mainly focus on pattern matching queries, for which we propose a 

novel and efficient new method.  

1.2 Current Research 

A lot of work has been done on subgraph matching, but most of them are 

for special kind of graphs, such as [29] for planar graphs and [30] for 

valence graphs, or by establishing indexes 

[23][5][6][7][8][9][13][14][15], or indexing frequent queried subgraphs 

[31][32]. The problem is that all the mentioned above are only suitable 

for subgraph matching, none of which can be applied to pattern matching 

queries, since all the pruning techniques are based on the necessary 

condition of subgraph isomorphism. 

However, there is little work related to pattern matching. In [26], Tong et 

al. discussed the first pattern matching algorithm, called G-Ray. It can do 

pattern matching only when 𝛿 ≤ 2, but it is useless when 𝛿 > 2. In [25], 

Cheng et al. proposed a total different algorithm R-join for pattern 

matching queries but with reachability limitation between two vertices in 

𝐺 rather than 𝛿 defined above. In R-join, an index structure is introduced, 

called 2-hop labeling discussed in [16][17], which is used to facilitate the 

calculation of reachability between each pair of vertices in 𝐺. It is easy to 

know that such index technique can be extended to compute the shortest-

path distance between each pair of vertices in 𝐺. Given two lists , 𝑅  and 

𝑅 , where 𝑅 (𝑅 )  𝐺 with the same label as 𝑣 (𝑣 ) ((𝑣 , 𝑣 ) is a query 

edge in 𝑄.), the join operation between 𝑅  and 𝑅 , namely constructing 

the matched relations by 𝛿 defined above, is costly with time complexity 

𝑂( |𝐸(𝐺)||𝑅 ||𝑅 |). This algorithm has been greatly improved by the 

MD-join of Zou et al. [24]. They map all vertices in 𝐺 into the points in a 
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vector space of k-dimensions by using the so-called LLR-embedding 

technique discussed in [12][33], where 𝑘 is selected to be 𝑂(log |𝑉 (𝐺)|) 

to save space. Based on this index technique, most of shortest-path 

distance calculation between each pair of vertices in 𝐺 can be filtered. 

Then, only small number of tuples need to be checked by using 2-hop 

labeling [16][17]. However, the optimal index size of 2-hop labeling is 

𝑂(|𝑉 (𝐺)| |𝐸(𝐺)|)  and index time complexity is 𝑂(|𝑉 (𝐺)| )  in the 

worst case, which is forbiddingly high for large data graphs. 

Both in R-join [25] and MD-join [24], it is one important issue that the 

matching relations 𝑅  are not the final matching results after join 

operation between each pair of lists, 𝑅  and 𝑅  (corresponding to a query 

edge (𝑣 , 𝑣 ) in 𝑄). The classical natural join is a necessary operation for 

generating all matches. The problem is that their natural join is NP-

complete with time complexity 𝑂(∏ |𝑅 |) , which the running time 

increases dramatically with the query edge number of 𝑄 and also the size 

of  each 𝑅 .  

1.3 Our Method 

In this work, we propose a new framework for pattern matching queries 

by improving R-join [25] and MD-join [24], which mainly contains two 

main parts: 

 Relation Construction. Given a query 𝑄  with 𝑛  vertices, for each 

vertex 𝑣  in 𝑄, we first find a list 𝑅  that include all those vertex 𝑢  in 

data graph 𝐺  with 𝑙𝑎𝑏𝑒𝑙(𝑢 )  =  𝑙𝑎𝑏𝑒𝑙(𝑣 ) . Then, for each edge 

(𝑣 , 𝑣 ) in 𝑄, we need to find all matching pairs (𝑢, 𝑢′) where 𝑢 ∈

𝑅 , 𝑢 ∈ 𝑅  in 𝐺  whose shortest-path distances are ≤ 𝛿 . These 



12 

 

matching tuples can be stored in a relation 𝑅 . In other words, a 

relation 𝑅  include all vertex pairs (𝑢, 𝑢′)  whose shortest-path 

distances are bounded by 𝛿.  

 Matching Construction. Here, 𝑅  is the final matching results if 𝑄 

only a single query edge (𝑣 , 𝑣 ). However, normally query 𝑄 is a 

graph and includes more than one query edge. Thus, finally, we need 

to perform a classical natural join [34] to extract all matching results 

from all relations 𝑅 , each of which corresponds to a query edge in 

𝑄.  

By Relation Construction, we have to perform a shortest-path distance 

computation between two lists, 𝑅  and 𝑅 , online. One naive solution to 

reduce the cost is to pre-compute and store all pair-wise shortest-path 

distance. This method is fast but prohibitively high in space usage 

(𝑂(|𝑉 (𝐺)| )), where |𝑉 (𝐺)| is the number of vertices in 𝐺. The D-join 

algorithm in [24], as a better solution, is still not efficient enough because 

of the huge searching space. 

In order to speed up the process of Relation Construction, we propose a 

notion of Δ-Transitive Closure for data graph 𝐺 denoted as 𝐺 . The idea 

is simple. Since pre-computing and storing all pair-wise shortest-path 

distance has space usage 𝑂(|𝑉 (𝐺)| ), we can only pre-compute part of 

pair-wise shortest-path distances within Δ, where Δ is maximum value 

of possible parameter 𝛿 . Normally, 𝛿  tend to be small for the pattern 

matching problems. By doing this, the space usage is reduced to 

𝑂(|𝑉 (𝐺)| ⋅ 𝑑 ), where 𝑑 is the average degree of data graph 𝐺. It is true 

that in the worst case the space usage is still 𝑂(|𝑉 (𝐺)| ). However, given 

the average degree 𝑑 and Δ tend to be small in practice and the index size 
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of 𝐺  is in general acceptable. For example, a typical directed data graph 

Citeseer, as shown in our experiment section, has 0.38 million vertices 

and 1.7 million edges with 𝑑 = 4.6 (calculated roughly by |𝐸(𝐺)|/𝑉 (𝐺) 

for directed graphs). Normally, we prefer select 𝛿 ranging from 1 to 4, 

that is, Δ = 4. In this example, the index space requirement estimate for 

𝐺  would be 1.9GB, which is more competitive than the 8GB index size 

of 2-hop labeling algorithm. Note that, the Δ could not be too large, for 

the pattern matching query is to find subgraphs that is similar to the 

pattern and adopting big Δ is meaningless to measure such similarity. 

Furthermore, when receiving a query 𝑄, the time complexity of online 

relation construction is much faster than other compared methods like D-

join by an order of magnitude.    

By Matching Construction, it is true that the classical natural join over all 

relations 𝑅  is inescapable for exacting all the matching results, but we 

can do better. That is, in all relations 𝑅 , we can previously remove the 

redundant tuples that are not necessary to participate the final natural 

joins. Based on this observation, in order to prune all relations 𝑅  we 

propose a two-level filtering strategy: 

1) (Domain Filtering) Let 𝑒 = (𝑣 , 𝑣 ) be an edge in 𝑄. Let 𝑢, 𝑢′ be two 

vertices in 𝐺 where 𝑢 ∈ 𝑅  and 𝑢 ∈ 𝑅  (each list 𝑅  called 𝐷𝑜𝑚𝑎𝑖𝑛 

as well). If the shortest-path distance between 𝑢 and 𝑢′ is ≤ 𝛿, then we 

say, 𝑢 and 𝑢′ supports each other. Assume that 𝑒 = (𝑣 , 𝑣 ) is another 

edge in 𝑄, but joining 𝑒 at 𝑣 . If 𝑢′ does not have any support from 𝑅 , 

then 𝑢′ definitely does not belong to any answer and can be removed 

from 𝑅 . More importantly, 𝑢 gets one less support from 𝑅  now. If the 

number of supports of 𝑢 from 𝑅  becomes 0, 𝑢 should also be removed 
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from 𝑅 , which may lead to the elimination of some more vertices 

from some other domains. This propagation process repeats until each 

𝑅  cannot be changed anymore. Lists 𝑅  and relations 𝑅  after 

Domain Filtering are denoted as 𝑅  and 𝑅 , respectively. 

2) (Relation Filtering) Based on Domain Filtering, let 〈𝑢, 𝑢 〉 be a tuple 

in 𝑅 . Assume that (𝑣 , 𝑣 ) and (𝑣 , 𝑣 ) are two edges in 𝑄, incident 

to (𝑣 , 𝑣 ) respectively at 𝑣  and 𝑣 . Then, 〈𝑢, 𝑢 〉 should have at least 

one support from 𝑅 , i.e., there exists at least one vertex 𝑢′′ in 𝑅  such 

that 〈𝑢, 𝑢 〉 ∈ 𝑅  and 〈𝑢′, 𝑢 〉 ∈ 𝑅 . Otherwise, 〈𝑢, 𝑢 〉  should be 

removed from 𝑅 , which may lead to the elimination of 𝑢 and 𝑢′ if 

their supports from a certain domain are all removed in this way. 

Again, such elimination of vertices and tuples can also be propagated 

as described above. Each list 𝑅  and relation 𝑅  after Relation 

Filtering are denoted as𝑅  and 𝑅 , respectively. 

Our theoretical analysis shows that, in the worst case, the cost of the 

Domain Filtering is bounded by 𝑂(|𝐸(𝑄)|𝐷 ) and the cost of Relation 

Filtering is bounded by by 𝑂(|𝑉 (𝑄)| 𝐷′ ), where 𝐷 is the maximum 

size of each list 𝑅 , and 𝐷′  is the maximum size of each list 𝑅 . 

Nevertheless, the average speed of Domain Filtering and Relation 

Filtering are really fast. After above filtering algorithms, in most of case, 

the natural join space would be reduced efficiently, and thus its running 

time could be greatly decreased. Again take, for example, roadNetPA, 

which is a typical data graph. For a typical graph pattern query 𝑄 with 5 

edges and 𝛿 = 4, originally the total number of tuples is more than 0.125 

million and the classical natural join would need 23.2 second to pickup 

all the matching results. But after the Domain Filtering and Relation 
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Filtering, the total number of tuples decrease to 5400 and the natural join 

only need about 279 milliseconds (see section 8.5), which speeds up to 83 

times. It is amazing that the Domain Filtering and Relation Filtering, 

however, spend only 115.6  and 27.9 milliseconds, respectively.  

1.4 Contributions 

The main contributions of this thesis can be summarised as follows: 

1) For handling pattern matching queries over a large data graph 𝐺, we 

propose a general framework which includes two parts, Relation 

Construction and Matching Construction. 

2) In order to enable shortest-path distance computation efficiently in 

Relation Construction, we propose an index method based on the 

notion of Δ -Transitive Closure, 𝐺 , considering the necessary 

condition of pattern matching queries on real data graphs. Such 

approach is simple and fast to get all the matching pairs between two 

list, 𝑅  and 𝑅 , and with reasonable indexing time and size. 

3) In order to speed up the process of Matching Construction, we propose 

a two-level filtering strategy, Domain Filtering and Relation Filtering, 

which will greatly reduce the relations participating the Natural Joins. 

Since the classical Natural Joins used by Matching Construction are 

well-know NP-complete, this pruning strategy is meaningful to 

facilitate its processing. 

4) Finally, extensive experiments are conducted with real synthetic data 

graphs in order to evaluate our proposed algorithms. 

1.5 Structure of the Thesis 

The reminder of the thesis is organized as follows: In Chapter 2, we 

discuss the related work. In Chapter 3, we give the formal definition for 
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pattern matching queries. Chapter 4 is devoted to describe the general 

framework of our method. In Chapter 5 - 7, the details in the framework 

will be fully discussed. A variety of experiments are reported in Chapter 

8.  Finally, a short conclusion and future work is set forth in last Chapter 

9.  
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CHAPTER 2 RELATED WORK 

The graph matching problem has always been one of the main focuses in 

graph database. A great number of methods have been proposed. Roughly 

speaking, all of them can be divided into two categories: subgraph 

matching (exact matching) and pattern matching (inexact matching). By 

the former, for a data graph 𝐺 and a query 𝑄, all the subgraphs of 𝐺, 

which are isomorphic to 𝑄, are obtained. By the latter, a parameter 𝛿 is 

introduced as the vertex pairs’ shortest-path distance tolerance. Compared 

with the subgraph matching, the pattern matching is more flexible and 

informative. 

2.1 Subgraph Matching 

For subgraph matching, some early algorithms, such as [35][36], are 

proposed without using index, which have super-linear time complexity 

and only can work for “toy” graphs with about 1K vertices. Later, many 

approaches, such as BitMat [13] and RDF-3X [14], are proposed by 

creating index on distinct edges. The problem with these approaches are 

the excessive use of costly join operations. To avoid excessive joins, 

other approaches, like recent work SpiderMine [31] and [32], are 

proposed by creating index on frequent subgraphs or frequently queried 

subgraphs. The problem with these approaches is that finding and saving 

frequent subgraphs is very costly in both time and space, and queries that 

do not contain frequent subgraphs are not well supported. Another index 

method is proposed in GraphQL [15], which indexes the subgraph within 

distance radius 𝑟  for each vertices. In the same spirit, [9] encode the 

labels of vertices within distance radius 𝑟 into a signature, and then index 

the signature. This approaches are not efficient, as it requires high 

indexing time and space complexity. 
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Unfortunately, all the methods mentioned above are limited to exact 

subgraph matching and not applicable to our mainly focused pattern 

matching problem, since all the pruning techniques are based on the 

necessary condition of subgraph isomorphism.  

2.2 Pattern Matching 

2.2.1 G-Ray 

There is little related work existing for inexact pattern matching query. 

The first algorithm was discussed in [26], in which Tong et al. proposed a 

method called G-Ray (or Graph X-ray) to find subgraphs that match a 

query pattern 𝑄 either exactly or inexactly. If the matching is inexact, an 

edge (𝑣 , 𝑣 ) in 𝑄 is allowed to match a shortest-path of length 2. That is, 

𝑣  and 𝑣  can match respectively two vertices 𝑢  and 𝑢′ , which are 

separated by an intermediate vertex. This algorithm is based on a basic 

graph searching, but with two heuristics being used: 

 Seed selection. Each time to search a data graph 𝐺, a set of starting 

points will be determined. Normally, they are some vertices having the 

same label as a vertex 𝑣 in 𝑄, which has the largest degree. 

 A goodness score function 𝑔(𝑢) (𝑢 ∈ 𝐺) is used to guide the searching 

of 𝐺 such that only the subgraphs with good measurements will be 

explored. 

Although the G-Ray can efficiently find the best-effort subgraphs that 

qualify for 𝑄 , it is not as general and flexible as the graph pattern 

matching with 𝛿 defined in the previous section.    

2.2.2 2-hop labeling 

In R-join [25] and D-join [24], it is necessary to first compute the 

reachability and shortest-path distances between each pair of vertices 𝑢 
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and 𝑢′ in data graph 𝐺. One straightforward solution to reduce the cost is 

to pre-compute and store all pair-wise shortest-path distance. This method 

is fast but requires much space ( 𝑂(|𝑉 (𝐺)| ) ), where |𝑉 (𝐺)|  is the 

number of vertices in 𝐺 . The other straightforward method is to use 

classical Dijkstra’s Algorithm [37], which has time complexity 

𝑂(|𝑉 (𝐺)| 𝑙𝑜𝑔|𝑉 (𝐺)|)  to get all pairs-wise shortest-path distances. 

Although this method has no extra space cost, it is not efficient especially 

for large data graph 𝐺. 

In order to optimize the computation of  shortest-path distance between 

each pair of vertices 𝑢 and 𝑢′ in 𝐺, the 2-hop labeling algorithm is used 

in [24]. Specifically, each vertex 𝑢 in 𝐺 will be assigned a label 𝐿(𝑢) =

(𝐿 (𝑢), 𝐿 (𝑢)) , where 𝐿 (𝑢),𝐿 (𝑢) ⊆ 𝑉 (𝐺) . Vertices in 𝐿 (𝑢) 

and 𝐿 (𝑢) are called centers. There are two kinds of 2-hop labeling: 

reachability labeling and distance labeling. By the former, given two 

vertices 𝑢, 𝑢 ∈ 𝐺, there is a path from 𝑢 to 𝑢′ (denoted as 𝑢 ↝ 𝑢′) if and 

only if 𝐿 (𝑢) ∩ 𝐿 (𝑢 ) ≠ . By the latter, For distance labeling, the 

shortest-path distance between two vertices 𝑢, 𝑢 ∈ 𝐺  (denoted as 

𝐷𝑖𝑠𝑡 (𝑢, 𝑢′)) is computed by using the following equation:  

𝐷𝑖𝑠𝑡 (𝑢, 𝑢 ) = 𝑚𝑖𝑛{𝐷𝑖𝑠𝑡 (𝑢,𝑤) + 𝐷𝑖𝑠𝑡 (𝑤, 𝑢′)|𝑤

∈ (𝐿 (𝑢) ∩ 𝐿 (𝑢′))} 
(1) 

The shortest-path distances between vertices and centers such as 

𝐷𝑖𝑠𝑡 (𝑢 , 𝑤) and 𝐷𝑖𝑠𝑡 (𝑤, 𝑢′) are pre-computed and stored. The size 

of 2-hop labeling can be defined as ∑ (|𝐿 (𝑢)| + |𝐿 (𝑢)|)
∈ ( )

, 

while the size of 2-hop distance labeling is 𝑂(|𝑉 (𝐺)| |𝐸(𝐺)|). Thus, 

according to Equation 1, it need only 𝑂( 𝐸(𝐺)) time to compute the 
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shortest-path distance by distance labeling, since the average size of 

distance labeling for each vertex is 𝑂( 𝐸(𝐺)). 

Note that finding the minimum size of a 2-hop for each 𝑢 in 𝐺 is proved 

to be NP-hard [16]. Therefore, in practice, only a nearly optimal solution 

is used [25][24]. In [16], Cohen et al. proposed a heuristic algorithm 

based on the minimal set-cover problem. Initially, all pairwise shortest-

path distance in 𝐺 are computed, denoted by 𝐷 . Then, in each iteration, 

one vertex 𝑤  in 𝑉 (𝐺)  is selected as a 2-hop center to maximize the 

following equation: 

𝐷( ) ∩ 𝐷

|𝐴 | + |𝐷 |
 (2) 

where 𝐷( )  is the shortest-paths which are covered by 𝑤, 𝐴  contains 

all vertices that can reach 𝑤  and 𝐷  contains all vertices that are 

reachable from 𝑤. Then all paths in 𝐷( )  are removed from 𝐷 . This 

process is iterated until 𝐷 =  , and all selected 2-hop centers are 

returned. However, pre-computing all-pairs shortest-paths is prohibitively 

high in space usage (𝑂(|𝑉 (𝐺)| )). This heuristic algorithm itself also 

requires high running time, which means it is impossible to get all 2-hop 

labeling in reasonable time. 

In [17], Cheng and Yu improve the above method only for directed data 

graphs. Specifically, a large directed graph data G is first converted into a 

directed acyclic graph (DAG) 𝐺↓  by removing some vertices in each 

strong connected components (SCC) of 𝐺. These removed vertices are 

selected as 2-hop centers. Obviously, all shortest-paths that pass through 

these removed vertices are covered by these selected 2-hop centers. Then 

𝐺↓  is partitioned into two subgraphs, 𝐺┴ and 𝐺┬, by a set of vertices as 
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separators, which are also selected as 2-hop centers and must cover all 

shortest-paths across 𝐺┴ and 𝐺┬. This process will continue until these 

subgraphs are small enough to compute the 2-hop labeling directly by 

method in [16]. However, there are many redundant vertices in the above 

2-hop labeling. Thus, some pruning strategies are proposed for reducing 

redundancy based on the previously identified 2-hop labeling which 

makes [17] much faster than [16]. However, there still three problems in 

[17]. Firstly, if 𝐺 is an undirected graph, it is impossible to generate a 

DAG by removing some vertices in 𝐺. Secondly, if 𝐺 is not a sparse 

directed graph, there may exit a large number of SCC in 𝐺, so that a large 

number of vertices need to be removed from 𝐺 to generate a DAG. Thus, 

the size of 2-hop labeling in 𝐺 tends to be very large. Finally, the pruning 

strategies are based on all previously identified 2-hop labeling, which 

need to be cached in memory; otherwise, the frequent swap between 

memory and space will affect the performance dramatically. The running 

time of redundancy checking is also very high. 

In order to adjust method in [17] for undirected data graph 𝐺,  Zhou et al. 

proposed a “betweenness” based method to compute 2-hop distance 

labeling for 𝐺  in [38]. The “betweenness” measures the relative 

importance of a vertex that is needed by others when connecting along 

shortest paths, where vertices that occur on more shortest-paths between 

other vertices have higher betweenness value. Based on this notation, we 

select some vertices with high betweenness value in 𝐺 as 2-hop centers. 

Since computing betweenness is expensive in running time, a simple 

random sampling approach is proposed to estimate betweenness. 

Specifically, the top-k vertices with the highest estimated betweenness 

value are selected as 2-hop centers. Then, at each step, some of these 
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selected vertices are removed in order to separate 𝐺  into subgraphs, 

which is similar to method in [17]. This process continue until the 

subgraphs of 𝐺 is small enough to be compute 2-hop labeling directly by 

method in [16].   

2.2.3 Extend Reachability Join 

According to Equation (1), an reachability join (R-join) algorithm was 

discussed in [25]. The main idea of this algorithm is as follows: based on 

the 2-hop labeling method [17][16], for each center 𝑤, two clusters 𝐹(𝑤) 

and 𝑇(𝑤) of vertices are defined, where via 𝑤 every vertex 𝑢 in 𝐹(𝑤) 

can reach every vertex 𝑢′ in 𝑇(𝑤). Then, an index structure is built based 

on these clusters, by which for each vertex label pair (𝑙, 𝑙′), all those 

centers 𝑤 will be stored in a W-Table if 𝑤 is in 𝐹(𝑤) and labeled 𝑙 or in 

𝑇(𝑤) and labeled 𝑙′. Thus, when a query 𝑄 is submitted, for each edge 

(𝑣, 𝑣′) labeled, for example,  with (𝐴, 𝐵) in 𝑄, all those centers 𝑤 will be 

searched such that in the W-table there exists at least a vertex 𝑢 labeled 𝐴 

in 𝐹(𝑤), and there exists at least a vertex 𝑢′ labeled 𝐵  in 𝑇(𝑤). The 

Cartesian Product of vertices labeled 𝐴 in 𝐹(𝑤) and vertices labeled B in 

T(w) will form the matches of (𝑣, 𝑣′) in 𝑄. This operation is called an R-

join. When the number of edges in 𝑄 is larger than one, a series of R-

joins (called MR-join) need to be conducted. By doing this, the classical 

natural join with join order selection [25] is used to generate the final 

pattern matching results. The worst time complexity of this method is 

bounded by 𝑂(∏ |𝑅 |), where 𝑅  is a subset of vertices in 𝐺 with the 

same label as 𝑙𝑎𝑏𝑒𝑙(𝑣 ) (𝑣 ∈ 𝑉 (𝑄), 𝑖 = 1,… , 𝑛). 

We can simply extend R-join to distance pattern match by using 2-hop 

distance labeling instead of reachability labeling. Given one query edge 
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Distsp(u, u) ≤ δ 

𝑒 = 𝑣 , 𝑣 , we first obtain two lists 𝑅  =  𝑅 𝑙𝑎𝑏𝑒𝑙(𝑣 )  and 𝑅 =

𝑅 𝑙𝑎𝑏𝑒𝑙 𝑣 . In the second step, for each vertex pair (𝑢, 𝑢 ) where 𝑢 ∈

𝑅   and 𝑢 ∈ 𝑅  in the Cartesian product, we need to compute the 𝑑 =

𝐷𝑖𝑠𝑡 (𝑢, 𝑢 ) by Equation 1. If 𝑑 ≤ 𝛿, (𝑢, 𝑢 ) is a matching result. Since 

the large number of shortest distance computation is at least |𝑅 | ⋅ 𝑅 , 

the running time of this naïve extended R-join method (called ER-join) is 

bounded by 𝑂(|𝑅 ||𝑅 | 𝐸(𝐺)), which is really very time consuming.       

2.2.4 Distance-based Join 

In [24], the authors extended the idea of [18] by proposing a Distance-

based join (D-join) for handling pattern matching queries with 𝛿. By this 

method, for each edge 𝑒 = (𝑣 , 𝑣 )  in 𝑄  with label (𝐴, 𝐵) , a D-join 

algorithm is conducted to get all the matches in 𝐺, according to Equation 

3 given below, where 𝑅  and 𝑅  are two lists respectively corresponding 

to 𝑣  and 𝑣  in 𝑄, where 𝑢 and 𝑢′ are two vertices respectively in the two 

lists, and 𝑅  is the a relation that contains all the matches got from join 

operation. 

𝑅 = 𝑅 ⋈ 𝑅  

In order to reduce the cost of this join, the so-called LLR Embedding 

technique discussed in [12][33] is utilized to map all vertices in 𝐺 into 

the points of a k-dimensional vector space. Here 𝑘  is selected to be 

𝑂(log|𝑉 (𝐺)|) to save space. Then, the Chebyshev distance [28] between 

each pair of points u and v in the vector space, referred to as 𝐿 (𝑢, 𝑣), is 

computed. In comparison with the approach discussed in [18], this 

method is more efficient since the Chebyshev distance is easy to 

calculate. Furthermore, the k-medoids algorithm [29] is used to divide 

(3) 
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each 𝑅  (more exactly, the points corresponding to 𝑅 ) into different 

clusters 𝐶 (𝑘 = 1, . . . , 𝑙 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙) . For each cluster 𝐶 , a center 

𝑐  is determined and then the radius of 𝐶 , denoted as 𝑟(𝐶 ), is defined 

to be the maximal 𝐿 -distance between 𝑐  and a point in 𝐶 . During a 

D-join process between lists 𝑅  and 𝑅 , such clusters can be used to 

reduce computation by checking whether 𝐿 (𝑐 , 𝑐 ) > 𝑟(𝐶 ) +

𝑟(𝐶 ) + 𝛿 . If it is the case, the corresponding join (i.e., 𝐶 ⋈ 𝐶 ) 

need not be carried out since the 𝐿 -distance between any two points 

𝑢 ∈ 𝐶  and 𝑢 ∈ 𝐶  must be larger than 𝛿. By using the above main 

pruning method along with Neighbor Area Pruning and Triangle 

Inequality Pruning, all candidate matching results are evaluated, which 

will be further checked by a 2-hop labeling technique in order to get the 

final results. 

Although above D-join algorithm is much better than Extended R-join 

algorithm to obtain all pair-wised shortest-path distances, it still need 

much indexing time and space by using 2-hop labeling and LLR-

embedding.  

2.2.5 Natural Join and Join Order Selection 

Note that the above two important algorithms, R-join and D-join, are 

limited to obtain all relations 𝑅  corresponding to all the edges in query 

𝑄, which can be described by Equation 2. However, since the query 𝑄 is 

normally a graph, such relations 𝑅  are not final matching results and a 

classical natural join operation should be applied for this task. Although 

such operation is given different names, such as Interleave R-join and 

Multi D-join (MD-join), separately, they are essentially using a same 
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method, the classical natural join, but with the different strategies of 

optimization. 

Concretely, before natural joins, we assume that the join order, which is a 

traversal order in query 𝑄, is specified. We will discuses specifically how 

to choose a better join order later.  According to a traversal order in 𝑄, 

we visit one edge 𝑒 = (𝑣 , 𝑣 ) in 𝑄 from vertex 𝑣  in each step. If 𝑣  is 

new encountered, such 𝑒 is called a forward edge; if 𝑣  has already been 

visited, such a 𝑒 is called a backward edge. Essentially, only the forward 

edges need perform R-join or D-join algorithm, while a backward edge is 

a select operation. Given a query 𝑄, a subgraph 𝑄′ induced by all visited 

edges in 𝑄 is called status. All the matches of 𝑄′ obtained by the natural 

joins are stored in a table 𝑀𝑅(𝑄′) , in which columns correspond to 

vertices 𝑣  in 𝑄′. Initially, 𝑄′ is status NULL and then in each step 𝑄 : =

𝑄′ + 𝑒, where 𝑒 is the query edge selected by the join order. this process 

continue until 𝑄 = 𝑄 , which means all the  query edges have been 

visited and 𝑀𝑅(𝑄) is the final matches of query 𝑄. 

The above natural join is used in both Interleave R-join and MD-join, and 

the different part is in the join order selection. For the former, in order to 

get a perfect join order, a traditional dynamic programming algorithm [24] 

is adopted based on a cost model analysis. However, the time complexity 

of this solution is up to 𝑂(𝑛 ⋅ 2 ), where 𝑛 = 𝑉 (𝑄), which is inefficient 

due to the large solution space, especially when |𝐸(𝑄)| is large; for the 

latter, a simple yet efficient greedy solution is proposed to find a good 

join order, which is performing backward edge as early as possible if 

there is one or more backward edge in each natural join step.   



26 

 

However, no matter what join order we select, the time complexity of 

natural join is still 𝑂(∏ |𝑅 |) in the worst case, which is, in fact, NP-

complete. The improvement after using a good join order is not obvious 

and even can be ignored in the case that the large amount time is used for 

natural joins. We can do much better, in this work, besides the join order 

selection we propose a novel two-level filtering algorithm to remove all 

the redundant data in the large searching space before Natural Joins are 

conducted, which can significantly speed up the Natural Join process. In 

addition, the above greedy solution to the join order selection can also be 

applied for a little improvement during Natural Joins.  
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CHAPTER 3 PRELIMINARIES 

In this chapter, we give the formal definition of the pattern matching 

queries over a large data graph 𝐺. Firstly, in this thesis, unless otherwise 

specified, 𝐺   is a vertex-labeled graph. Secondly, we will use the 

shortest- path distance to measure the distance between each pair of two 

vertices in 𝐺. 

3.1 Definitions 

Definition 3.1 (Data Graph G) A data graph 𝐺 = (𝑉 (𝐺),𝐸(𝐺), Σ) is a 

vertex-labeled graph. Here, 𝑉 (𝐺) is a set of labeled vertices, 𝐸(𝐺) is a 

set of edges (ordered pairs) each with a nonnegative weight, and Σ is a 

set of vertex labels. Each vertex 𝑢 ∈ 𝑉 (𝐺)  is assigned a label 𝑙 ∈ Σ , 

denoted as 𝑙𝑎𝑏𝑒𝑙(𝑢) = 𝑙. 

Definition 3.2 (Query Q) A query Q is a vertex-labeled graph, 𝑄 =

(𝑉 (𝑄), 𝐸(𝑄)). Here, 𝑉 (𝑄) is a set of labeled vertices, and 𝐸(𝑄) is a set 

of edges. Each vertex 𝑣 ∈ 𝑉 (𝑄) is also assigned a label 𝑙 ∈ Σ, denoted as 

𝑙𝑎𝑏𝑒𝑙(𝑣) = 𝑙.  

Definition 3.3 (List 𝑅(𝑙) and 𝑅  ) Given a data graph 𝐺, we use 𝑅(𝑙) to 

represent a list that includes all those vertices 𝑢 in 𝐺 whose labels are 𝑙 ∈

Σ, i.e., 𝑙𝑎𝑏𝑒𝑙(𝑢) = 𝑙 for each 𝑢 ∈ 𝑅(𝑙). Let 𝑣 ∈ 𝑉 (𝑄), we also use 𝑅  to 

represent a list 𝑅(𝑙 = 𝑙𝑎𝑏𝑒𝑙(𝑣 )).  

Definition 3.4 (Edge Query with 𝛿) Given a data graph 𝐺, an edge 𝑒 =

(𝑣 , 𝑣 ) in a query graph 𝑄 and a parameter 𝛿, the evaluation of e reports 

all matching pairs 〈𝑢 , 𝑢 〉 in 𝐺 if the following conditions hold: 

1) 𝑙𝑎𝑏𝑒𝑙(𝑢 ) = 𝑙𝑎𝑏𝑒𝑙(𝑣 ) and 𝑙𝑎𝑏𝑒𝑙(𝑢 ) = 𝑙𝑎𝑏𝑒𝑙(𝑣 ); 
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2) The distance from 𝑢  to 𝑢  in 𝐺  is not larger than 𝛿 . That is, 

𝐷𝑖𝑠𝑡 (𝑢  , 𝑢 ) ≤ 𝛿. 

Definition 3.5 (Pattern Matching Query with ) Given a data graph 𝐺, a 

query graph 𝑄  with n vertices {𝑣 ,… , 𝑣 }  and a parameter 𝛿 , the 

evaluation of 𝑄  reports all matching results 〈𝑢
1
,… 𝑢 〉   in 𝐺  if the 

following conditions hold: 

1) 𝑙𝑎𝑏𝑒𝑙(𝑢 ) = 𝑙𝑎𝑏𝑒𝑙(𝑣 ) for 1 ≤ 𝑖 ≤ 𝑛;  

2) For any edge 𝑣 , 𝑣 ∈ 𝑄, the shortest path distance between 𝑢  and 𝑢  

in 𝐺 is no larger than 𝛿, i.e., 𝐷𝑖𝑠𝑡 (𝑢
𝑖
 , 𝑢

𝑗
) ≤ 𝛿 (1 ≤ 𝑖 ≤ 𝑛).  

The common symbols used in this thesis are summarized in Table 1. 

data graph 𝐺 query graph 𝑄 

𝑁 = 𝑉 (𝐺) the vertex set of 𝐺 𝑛 = 𝑉 (𝑄) the vertex set of 𝑄 

𝑀 = 𝐸(𝐺) the edge set of 𝐺 𝑚 = 𝐸(𝑄) the edge set of 𝑄 

𝑢  a vertex in 𝐺 𝑣  a vertex in 𝑄 

𝑙𝑎𝑏𝑒𝑙(𝑢 ) the label of 𝑢  𝑙𝑎𝑏𝑒𝑙(𝑣 ) the label of 𝑣  

Table 1: Meaning of used symbols. 

3.2 Example 

 

 

 

 

Figure 1: An examples of a data graph 𝑮 and a query Q.  

Example 1: In Figure 1, we have an example, an undirected and 

weighted data graph 𝐺 , in which the numbers inside the vertices, 

{𝑢 ,… , 𝑢 }, are their IDs and the letters attached to them are their 

labels, and the numbers besides the edges are their weights. There are 

altogether 4 labels, 𝛴 = {𝐴,𝐵,𝐶,𝐷}. In Figure 1(b), we show a simple 

query, an undirected and unweighted graph 𝑄 , which contains three 
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vertices, {𝑣 , 𝑣 , 𝑣 }  labeled with 𝐴 , 𝐵  and 𝐶 , respectively, and three 

query edges {(𝑣 , 𝑣 ), (𝑣 , 𝑣 ), (𝑣 , 𝑣 )} . According to Definition 3.3, 

three lists 𝑅 = 𝑅(𝐴), 𝑅 = 𝑅(𝐵) and 𝑅 = 𝑅(𝐶) will be constructed. 

There are 𝑅 = {𝑢 , 𝑢 , 𝑢 }, 𝑅 = {𝑢 , 𝑢 , 𝑢 } and 𝑅 = {𝑢 , 𝑢 , 𝑢 }. 

According to Definition 3.4 and 3.5, if we choose 𝛿 = 1, it has no any 

matching result; if we choose 𝛿 = 2 , the matching results are 

{〈𝑢 , 𝑢 , 𝑢 〉, 〈𝑢 , 𝑢 , 𝑢 〉}; if we choose 𝛿 = 3, it is easy to know that 

there should be more matching results then before. Obviously, the 

parameter 𝛿 cannot be too large for measuring patter matching properly. 
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CHAPTER 4 FRAMEWORK 

In this chapter, we describe the general framework of our new method for 

inexact pattern matching queries over a data graph 𝐺. We first need to 

give two definitions,  Δ-Transitive Closures and Relations.  

4.1 The Δ-Transitive Closure Definition 

Definition 4.1 (Δ-Transitive Closure 𝐺 ) Given a data graph 𝐺 =

(𝑉 (𝐺), 𝐸(𝐺),𝛴) with vertex set 𝑉 (𝐺) = {𝑢 , 𝑢 , … , 𝑢 }, we define the 

Δ-transitive closure of 𝐺 as the graph 𝐺 = (𝑉 (𝐺), 𝐸 (𝐺), 𝛴) where 

𝐸 (𝐺) = {(𝑢 , 𝑢 , 𝑤): 𝑤 = 𝐷𝑖𝑠𝑡 𝑢 , 𝑢  𝑎𝑛𝑑 𝑤 ≤ 𝛥}.  

In Definition 4.1, we introduce the notation of the Δ-Transitive Closure 

for data graph 𝐺 denoted as 𝐺 . Intuitively, all vertex pairs (𝑢 , 𝑢 ) in 𝐺 

(except for own edges (𝑢 , 𝑢 )) where 𝐷𝑖𝑠𝑡 𝑢 , 𝑢 ≤ Δ are new edges 

added into the original data graph 𝐺, forming 𝐺 . We can perform the 

pattern matching query in 𝐺  instead of 𝐺 when receiving query 𝑄 with 

𝛿. By doing this, we transform an inexact matching to an exact matching, 

since all the shorted-path distances between vertex pairs in 𝐺 are stored 

in GΔ as its edges.  

One important issue is how to decide the value of Δ for GΔ. In the worst 

case the size of 𝐺  is O(|V(G)|2) if Δ is very large, which is forbiddingly 

high for a large data graph 𝐺. By contrast, if Δ is too small, the size of 

𝐺  will also  be small, but it needs to reconstruct 𝐺  if the parameter 𝛿 

for 𝑄 is > Δ.  However, Δ could not be too big, for the pattern matching 

query is to find subgraphs that is similar to the pattern. Adopting big Δ is 

meaningless to measure such similarity. This is well proved by 

experiments in Chapter 8, from which we can see that the number of 
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matching results will increase dramatically with the growth of 𝛿 and such 

large scale of matching results tend to be meaningless in reality. 

Therefore, we prefer a proper value for Δ, which has not only reasonable 

indexing time and size but also big enough value for general patter 

matching queries.   

4.2 The Relation Definition 

Definition 4.2 (𝑅(𝑙, 𝑙′)) Given a data graph 𝐺, we use relation 𝑅(𝑙, 𝑙 ) to 

represent all edges {(𝑢, 𝑢 , 𝑤)} ⊆ 𝐸 (𝐺 ) where 𝑢 ∈ 𝑅(𝑙), 𝑢 ∈ 𝑅(𝑙′). 

Each 𝑅(𝑙, 𝑙′) corresponds to a label pair (𝑙, 𝑙′) where 𝑙, 𝑙 ∈ Σ and 𝑙 ≠ 𝑙′. 

Thus, the total number of 𝑅(𝑙, 𝑙′) is  
( − ) where 𝑘 = |Σ|, since 𝑅(𝑙, 𝑙′) 

equal to 𝑅(𝑙′, 𝑙). Actually, 𝐺  is stored as relation 𝑅(𝑙, 𝑙′).   

 Definition 4.3 (Relation 𝑅 ) When receiving a query 𝑄  with 𝛿 , let 

𝑣 , 𝑣 ∈ 𝐸(𝑄), we use notation 𝑅  to represent (𝑢, 𝑢′, 𝑤) ∈ 𝐸 : 𝑢 ∈

𝑅  𝑎𝑛𝑑 𝑢 ∈ 𝑅  𝑎𝑛𝑑 𝑤 ≤ 𝛿  or (𝑢, 𝑢′, 𝑤) ∈ 𝑅 𝑙𝑎𝑏𝑒𝑙(𝑣 ), 𝑙𝑎𝑏𝑒𝑙 𝑣 ∶

𝑤 ≤ 𝛿 . Each edge 𝑣 , 𝑣  corresponds to a relation 𝑅 . Considering the 

query edge 𝑣 , 𝑣  is equivalent to 𝑣 , 𝑣 , 𝑅  and 𝑅  are actually one 

relation but different order of columns. 

Definition 4.4 (Reduced Relation 𝑅  and Further Reduced Relation 𝑅  ) 

Giving a query 𝑄  with 𝛿 , each relation 𝑅  is generated according to 

Definition 4.2. In relation 𝑅 , most redundant tuples can be filtered by 

using Domain Filtering algorithm, which is denoted as 𝑅 ; the rest of 

redundant tuples in each relation 𝑅  can be further filtered by using 

Relation Filtering algorithm, which is denoted as 𝑅 . Here, the 

redundant tuples are one kind of tuples that are not necessary to 
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participate the Natural Joins, and removing such tuples will not influence 

our matching results. 

Definition 4.5 (Tuples) Give all relations 𝑅 , the tuples are all their 

items (𝑢, 𝑢′, 𝑤) ∈ 𝑅 . 

4.3 Framework 

Now, we begin to discuss the general framework of our method, which is 

illustrated by Figure 2. As discussed in Chapter 1, there are two main 

parts: Relation Construction and Matching Construction. By the former, 

we first generate GΔ (see Definition 4.2) and then construct all relations 

𝑅(𝑙, 𝑙′). Note that this can be pre-computed before receiving a query 𝑄, 

which is offline or an index operation. After that, when receiving a query 

𝑄  with 𝛿 , the online operation gets started. All relations 𝑅  can be 

extract from 𝑅(𝑙, 𝑙 ) efficiently. The algorithms related to 𝐺  are showed 

in Chapter 5. By the latter, based on relation 𝑅  obtained in last part,  it 

can be reduced to 𝑅  by DomainFiltering algorithm and further reduced 

to 𝑅  by RelationFiltering algorithm, which is called two-level filtering 

and will be discussed in Chapter 6. Finally, the classical natural join (see 

Chapter 7) is performed on such fully filtered relations 𝑅  in order to 

obtain all the matching results. 
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Figure 2: The framework of our method. 
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CHAPTER 5  CONSTRUCTION 

As we described in the framework of our method, in order to generate all 

relations 𝑅  (Definition 4.3) for the data graph G, we should first 

construct the Δ-Transitive Closure𝐺  (Definition 4.1). In other words, in 

𝐺  all pair-wised shortest-path distances within Δ  should be pre-

calculated. This is a well-researched area and many algorithms have been 

developed. For unweighted data graphs the classical Breadth-First Search 

(BFS) [37], as a best choice, is simple and efficient, while for weighted 

data graphs we choose Dijkstra’s Algorithm [37]. In this chapter, we will 

discuss these two algorithms. 

5.1 GΔ-BFS 

Algorithm 1: 𝐺 -BFS(G, Δ) 
Input: data graph 𝐺 and 𝛥. 
Output: 𝐸 . 

1. 𝐸 = 𝛷; 
2. for each 𝑢 ∈ 𝑉 (𝐺) do  
3.      𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑊𝐻𝐼𝑇𝐸, 𝑢. 𝑑𝑖𝑠𝑡 = ∞; 
4. for each 𝑠 ∈ 𝑉 (𝐺) do  
5.      call Δ-BFS(𝐺, 𝑠, 𝛥, 𝐸 ); 
6. return 𝐸 ; 
Δ-BFS(𝐺, 𝑠, 𝛥, 𝐸 ) 

7. 𝑠. 𝑐𝑜𝑙𝑜𝑟 = 𝐺𝑅𝐴𝑌 , 𝑠. 𝑑𝑖𝑠𝑡 = 0; 
8. 𝐿𝐼𝑆𝑇 ≔ 𝛷, 𝐿𝐼𝑆𝑇 .append(𝑠); 
9. 𝑄𝑈𝐸𝑈𝐸 ≔ 𝛷 , ENQUEUE (𝑄𝑈𝐸𝑈𝐸, 𝑠); 
10. while 𝑄𝑈𝐸𝑈𝐸 ≠ 𝛷 do 
11.      𝑢 = DEQUEUE(𝑄𝑈𝐸𝑈𝐸); 
12.      if 𝑢. 𝑑𝑖𝑠𝑡 ≥ Δ do break; 
13.      𝐸 = 𝐸 ∪ (𝑠, 𝑢, 𝑢. 𝑑𝑖𝑠𝑡);  
14.      for each 𝑢′ ∈ 𝐺. 𝐴𝑑𝑗[𝑢] do 
15.          if 𝑢′. 𝑐𝑜𝑙𝑜𝑟 == 𝑊𝐻𝐼𝑇𝐸 then 
16.              𝑢 . 𝑐𝑜𝑙𝑜𝑟 = 𝐺𝑅𝐴𝑌 , 𝑢 . 𝑑𝑖𝑠𝑡 = 𝑢. 𝑑𝑖𝑠𝑡 + 1; 
17.              𝑄𝑈𝐸𝑈𝐸.enqeue(𝑢′), 𝐿𝐼𝑆𝑇 .append(𝑢′); 
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18.      𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝐵𝐿𝐴𝐶𝐾; 
19. for each 𝑢 ∈ 𝐿𝐼𝑆𝑇  do 
20.      𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑊𝐻𝐼𝑇𝐸, 𝑢. 𝑑𝑖𝑠𝑡 = ∞; 

Algorithm 1 lists the steps to construct 𝐺  for unweighted data graphs 𝐺. 

In line 5, we can see the BFS is performed for each vertex 𝑠 ∈ 𝑉 (𝐺) as a 

starter. Here, the BFS algorithm we use is generally the same as classical 

one except in line 12-13. Specifically, in line 12, since the searching after 

𝑢. 𝑑𝑖𝑠𝑡 ≥ Δ is unnecessary, the loop will stop; and in line 13, the items 

(𝑠, 𝑢, 𝑢. 𝑑𝑖𝑠𝑡) are added to 𝐸  as new edge in each step. In other words, 

for each starter 𝑠 ∈ 𝑉 (𝐺) , instead of searching the whole graph, our 

searching space is limited by 𝛿, which can reduce the running time and 

space effectively. In addition, in line 8 and 17 we use the 𝐿𝐼𝑆𝑇  in order 

to record all visited vertices that are reset in line 19-20. 

It is easy to know the total running time of the classical BFS procedure is 

𝑂(𝑁 + 𝑀), where 𝑁 = |𝑉 (𝐺)| and 𝑀 = |𝐸(𝐺)| (See Table 1) in the 

worst case. Since the BFS procedure is executed on each starter 𝑠 ∈

𝑉 (𝐺) , the time complexity of our Algorithm 1 is 𝑂 𝑁(𝑁 + 𝑀) =

𝑂(𝑁𝑀) at the worst case. However, on average, the time complexity of 

Algorithm 1 should be 𝑂(𝑁𝑑 ) , where 𝑑  is the average degree of 

vertices in 𝐺. Actually, in real data graphs, especially sparse graphs, we 

have 𝑑 ≪ 𝑀  if Δ  is relatively small, which leads to a better 

performance.  

By the space complexity, it is 𝑂(𝑁 )  in the worst case, which is 

prohibitively high in large data graphs. Nevertheless, on average, it needs 

only 𝑂(𝑁𝑑 ) to store 𝐸 . 
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5.2 GΔ-DIJKSTRA 

Algorithm 2: 𝐺 -DIJKSTRA(𝐺, 𝛥) 
Input: data graph 𝐺 and 𝛥. 
Output: 𝐸 . 

1. 𝐸 = 𝛷; 
2. for each 𝑢 ∈ 𝑉 (𝐺) do  
3.      𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑊𝐻𝐼𝑇𝐸, 𝑢. 𝑑𝑖𝑠𝑡 = ∞; 
4. for each 𝑠 ∈ 𝑉 (𝐺) do 
5.      call Δ-DIJKSTRA (𝐺, 𝑠, 𝛥, 𝐸 ); 
6. return 𝐸 ; 
Δ-DIJKSTRA (𝐺, 𝑠, 𝛥, 𝐸 ) 

7. 𝑠. 𝑐𝑜𝑙𝑜𝑟 = 𝐺𝑅𝐴𝑌 , 𝑠. 𝑑𝑖𝑠𝑡 = 0; 
8. 𝐿𝐼𝑆𝑇 ≔ 𝛷, 𝐿𝐼𝑆𝑇 .appedn(𝑠); 
9. 𝑄𝑈𝐸𝑈𝐸 ≔ 𝛷, 𝑄𝑈𝐸𝑈𝐸.enqueue(𝑠); 
10. while 𝑄𝑈𝐸𝑈𝐸 ≠ 𝛷 do 
11.      𝑢 = 𝑄𝑈𝐸𝑈𝐸.extract-min(); 
12.      if 𝑢. 𝑑𝑖𝑠𝑡 ≥ Δ do break; 
13.      𝐸 = 𝐸 ∪ (𝑠, 𝑢, 𝑢. 𝑑𝑖𝑠𝑡); 
14.      for each 𝑢′ ∈ 𝐺. 𝐴𝑑𝑗[𝑢]  do 
15.          if 𝑢′. 𝑐𝑜𝑙𝑜𝑟 ≠ 𝐵𝐿𝐴𝐶𝐾 then 
16.              if 𝑢′. 𝑑𝑖𝑠𝑡 > 𝑢. 𝑑𝑖𝑠𝑡 + 𝑤(𝑢, 𝑢′) do  
17.                  𝑢′. 𝑑𝑖𝑠𝑡 = 𝑢. 𝑑𝑖𝑠𝑡 + 𝑤(𝑢, 𝑢′); 
18.          if 𝑢 . 𝑐𝑜𝑙𝑜𝑟 == 𝑊𝐻𝐼𝑇𝐸 do 
19.              𝑢 . 𝑐𝑜𝑙𝑜𝑟 = 𝐺𝑅𝐴𝑌 ; 
20.              𝑄𝑈𝐸𝑈𝐸.enqueue(𝑢′), 𝐿𝐼𝑆𝑇 .append(𝑢′); 
21.      𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝐵𝐿𝐴𝐶𝐾; 
22. for each 𝑢 ∈ 𝐿𝐼𝑆𝑇  do 
23.      𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑊𝐻𝐼𝑇𝐸, 𝑢. 𝑑𝑖𝑠𝑡 = ∞; 

We adopt Dijkstra’s algorithm to deal with the weighted data graphs, as 

shown in Algorithm 2. Here the Dijkstra’s algorithm we use is generally 

the same as classical one except in line 12-13, which is analogy to 

algorithm 1. So, here its discussion is omitted.  

It is well-known that total running time of the Dijkstra’s procedure is 

bounded by 𝑂((𝑁 + 𝑀)𝑙𝑜𝑔𝑁) , where 𝑁 = |𝑉 (𝐺)|  and 𝑀 = |𝐸(𝐺)| 

(see Table 1), by implementing the min-priority queue as a  Fibonacci 



37 

 

heap. Since the BFS procedure is executed on each starter 𝑠 ∈ 𝑉 (𝐺), the 

time complexity of Algorithm 2 is 𝑂(𝑁(𝑁 + 𝑀)𝑙𝑜𝑔𝑁) = 𝑂(𝑁𝑀𝑙𝑜𝑔𝑁) 

in the worst case. Compared with the Algorithms 1, whose time 

complexity is 𝑂(𝑁𝑀) in the worst case, the Algorithm 2 is little slower. 

This is why we adopt Algorithm 1 for unweighted graph rather than 

Algorithm 2, even Algorithm 2 can compatible unweighted graph as well. 

Similarly, on average, the time complexity of Algorithm 2 should be 

𝑂(𝑁𝑑 𝑙𝑜𝑔𝑑 ), where 𝑑 is the average degree of vertices in 𝐺, and, like 

in Algorithm 1, 𝑑 ≪ 𝑀 . The space complexity of Algorithm 2 is 

exactly the same as Algorithm 1.  

5.3 Example 

 

 

 

 

Figure 3: The 𝚫-Transitive Closure of data graph in Figure 1(a) 
when choosing 𝚫 = 𝟐. 

Example 2: Continue with Example 1. In Figure 3, we create an Δ-

Transitive Closure as an example for the data graphs showed in Figure 

1(a) when choosing 𝛥 = 2, in which the dash lines are the new added 

edges. It is clear to see that the size of Δ-Transitive Closure is much 

smaller than the traditional Transitive Closure of 𝐺. 
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CHAPTER 6 Two-Level Filtering 

After getting all relations 𝑅  (see Definition 4.3), we can use classical 

natural joins to extract all the matching results. Before a natural join 

procedure, we can use the Domain Filtering algorithm to obtain reduced 

relations 𝑅  and the Relation Filtering algorithm to obtain further 

reduced relations 𝑅  when receiving a query 𝑄 with 𝛿 . It is true that 

doing natural joins on 𝑅  is much faster than directly on 𝑅 . In this 

chapter, we will discuss these two filtering algorithms in great details. 

6.1 Domain Filtering 

6.1.1 Algorithm Description 

Definition 6.1 (supports) Let (𝑣 , 𝑣 ) be an edge in query 𝑄. Let 𝑢 and 𝑢′ 

be two vertices in 𝐺  belonging to 𝑅 = 𝑅(𝑙𝑎𝑏𝑒𝑙(𝑣 ))  and 𝑅 =

𝑅(𝑙𝑎𝑏𝑒𝑙(𝑣 )), respectively. If 𝐷𝑖𝑠𝑡 (𝑢, 𝑢′) ≤ 𝛿, then we say, 𝑢 and 𝑢′ 

support each other. 

Definition 6.2 (fully-supported) Let 𝑣  be a vertex in query 𝑄. Let 𝑢 be a 

vertex in 𝐺 belonging to 𝑅 = 𝑅(𝑙𝑎𝑏𝑒𝑙(𝑣 )). If for any edge (𝑣 , 𝑣 ) (or 

(𝑣 , 𝑣 )) ) incident to 𝑣  there exists at least one vertex u in 𝑅 =

𝑅(𝑙𝑎𝑏𝑒𝑙(𝑣 )) such that 𝐷𝑖𝑠𝑡 (𝑢, 𝑢′) ≤ 𝛿 (or 𝐷𝑖𝑠𝑡 (𝑢′, 𝑢) ≤ 𝛿), we say, 

u is fully-supported. 

By the Domain Filtering, what we want is to remove all those vertices 

which are not fully-supported since any of such vertices cannot appear in 

any pattern matching answer to query Q. For this purpose, we will 

associate each vertex 𝑢  in 𝐺  with two data structures: a support list, 

denoted as 𝑢. 𝑆 , which contains all the vertices supporting 𝑢 ; and a 

counter, denoted as 𝑢.𝐶 , which is a list of 𝑛 entries, 𝑢. 𝐶[1],… , 𝑢.𝐶[𝑛], 



39 

 

with each 𝑢.𝐶[𝑖](𝑖 = 1,… , 𝑛) recording how many supports 𝑢 has from 

𝑅 . Each 𝑅  correspond to a vertex 𝑣 (𝑖 = 1, … , 𝑛) in query 𝑄.  In 𝑢. 𝑆, 

each element is of the form 〈𝑗, 𝑢 〉 indicating that 𝑢′ is a vertex from 𝑅 . 

In Figure 4(a), we show all the supports of the vertices shown in Figure 

1(a) when 𝛿 is set to 2, where an edge connecting two vertices 𝑢 and 𝑢′ 

indicates that they support each other. In Figure 4(b), we show the data 

structures of supports and counters. For example, for 𝑢  in 𝑅 = 𝑅(𝐴) 

shown in Figure 4(a), its support list 𝑢 . 𝑆  will contain 〈2, 𝑢 〉 from 𝑅 =

𝑅(𝐵)  and 〈3, 𝑢 〉  from 𝑅 = 𝑅(𝐶))  and not any support from 𝑅 . 

Accordingly, 𝑢 . 𝐶[2] and 𝑢 . 𝐶[3]  are both set to 1 and 𝑢 . 𝐶[1]  is 

meaningless as 𝑢 ∈ 𝑅 . All the counters associated with 𝑢  can be 

represented by an array [-, 1, 1]. 

 

vertex support list S counter  C 

𝑢  {〈2, 𝑢 〉} [0, 1, -] 

𝑢  {〈1, 𝑢 〉, 〈3, 𝑢 〉} [1, -, 1] 

𝑢  {〈1, 𝑢 〉, 〈2, 𝑢 〉, 〈2, 𝑢 〉} [1, 2, -] 

𝑢  {〈1, 𝑢 〉, 〈3, 𝑢 〉} [1, -, 1] 

𝑢  {〈2, 𝑢 〉, 〈3, 𝑢 〉} [-, 1, 1] 

𝑢  {〈2, 𝑢 〉, 〈3, 𝑢 〉} [-, 1, 1] 

𝑢  {〈2, 𝑢 〉, 〈2, 𝑢 〉, 〈3, 𝑢 〉} [-, 2, 1] 

𝑢  {〈1, 𝑢 〉, 〈1, 𝑢 〉, 〈3, 𝑢 〉, 〈3, 𝑢 〉} [2, -, 2] 

𝑢  {〈1, 𝑢 〉, 〈1, 𝑢 〉} [2, 1, -] 

Figure 4: The data structures of vertices for the domain filtering 
algorithm. 

Based on support lists and counters, the domain filtering can be done very 

efficiently in two phases by using a STACK to control the propagation 
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1) In the first phase, when receiving a query 𝑄 with 𝑛 vertices, we will 

process each query edge 𝑒 = (𝑣 , 𝑣 )  in 𝐸(𝑄)  one by one. 

Specifically, for each query edge 𝑒, we first construct the supports and 

counters for vertices 𝑢 ∈ 𝑅 , 𝑅  according to relation 𝑅  generated 

by 𝐺  (Algorithm 1 or Algorithm 2). Then, we will check each vertex 

𝑢 ∈ 𝑅 (𝑖 = 1,… , 𝑛) to see whether its counter 𝑢.𝐶[𝑗] = 0. If it is the 

case, we know that 𝑢  does not have any supports from 𝑅  and 𝑢 

should be removed from 𝑅  and, at the same time, pushed 〈𝑖, 𝑢〉 into 

𝑆𝑇𝐴𝐶𝐾 . Also, the same operation should be performed on each 

vertex 𝑢 ∈ 𝑅 ,   

2) In the second phase, we will pop out the elements from the 𝑆𝑇𝐴𝐶𝐾 . 

Let 〈𝑖, 𝑢〉 be the element currently popped out of the STACK. Then, 

for each element 〈𝑗, 𝑢 〉 in 𝑢. 𝑆, we will decrease 𝑢 . 𝐶[𝑖] by one. It is 

because 𝑢 is a deleted vertex from 𝑅  and thus 𝑢′ has lost one support 

from list 𝑅 . More importantly, if 𝑢′. 𝐶[𝑖] becomes 0, 𝑢′ should be 

removed from 𝑅 , too; and 〈𝑗, 𝑢 〉 should be pushed into 𝑆𝑇𝐴𝐶𝐾 . 

This process repeats until 𝑆𝑇𝐴𝐶𝐾  becomes empty and all the 

remained vertices 𝑢 ∈ 𝑅 (𝑖 = 1,… , 𝑛) must be fully supported now. 

In this way, 𝑅  will be reduced to 𝑅 (𝑖, 𝑗 = 1,… , 𝑛). 

Algorithm 3: DomainFiltering(𝑄, 𝛿, all 𝑅 ) 

Input: query 𝑄, 𝛿 and all relations 𝑅 . 

Output: reduced relations 𝑅 . 
//phase 1: construct the support lists, counters and STACK. 
1. 𝑆𝑇𝐴𝐶𝐾 ≔ 𝛷; 
2. for each (𝑣 , 𝑣 ) ∈ 𝐸(𝑄) do 

3.     get 𝑅 , 𝑅 , 𝑅  

4.     for each (𝑢, 𝑢 ) ∈ 𝑅  do 

5.          𝑢. 𝑆.append(〈𝑗, 𝑢 〉), 𝑢.𝐶[𝑗] + +; 
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6.          𝑢′. 𝑆.append(〈𝑖, 𝑢〉), 𝑢′. 𝐶[𝑖] + +; 
7.     for each 𝑢 ∈ 𝑅  do 
8.          if 𝑢. 𝐶[𝑗] == 0 then  
9.               𝑅 .remove(𝑢), 𝑆𝑇𝐴𝐶𝐾.push(〈𝑖, 𝑢〉); 
10.     for each 𝑢 ∈ 𝑅  do 

11.          if 𝑢 . 𝐶[𝑖] == 0 then 
12.               𝑅 .remove(𝑢′), 𝑆𝑇𝐴𝐶𝐾 .push(〈𝑗, 𝑢 〉);  
//phase 2: process the STACK. 
13. while 𝑆𝑇𝐴𝐶𝐾 ≠ 𝛷  do 
14.      〈𝑖, 𝑢〉 = 𝑆𝑇𝐴𝐶𝐾 .pop(); 
15.      for each 〈𝑗, 𝑢 〉 ∈ 𝑢. 𝑆 do 
16.          if (− − 𝑢 . 𝐶[𝑖]) == 0 then  
17.               𝑅 .remove(𝑢′), 𝑆𝑇𝐴𝐶𝐾 .push(〈𝑗, 𝑢 〉); 

18. return 𝑅 = 𝑅 − {(𝑢, 𝑢 ): 𝑢 ∉ 𝑅  𝑜𝑟 𝑢 ∉ 𝑅 }; 

The Algorithm 3 DomainFiltering( ) is a formal description of the above 

working process. In this algorithm, lines 1 – 12 make up the first phase, 

in which we construct support lists and counters, and initialize STACK by 

appending all removed vertices. In the second phase (lines 13 – 17), 

STACK is utilized to accommodate and propagate any vertex which 

becomes non-supported after some related vertices have been eliminated. 

In line 18, the pruned relations 𝑅  is returned.  
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6.1.2 Example 

 

Figure 5: The Execution of Algorithm 3. 

Example 3: 

 Consider Figure 3 in Example 2 once again. We apply the Algorithm 3 

DomainFiltering( ) to the three domains 𝑅 = 𝑅(𝐴) , 𝑅 = 𝑅(𝐵) , 

and 𝑅 = 𝑅(𝐶) shown in the figure. After the first phase, only one 

vertex 𝑢  is removed from 𝑅  and thus only 〈3, 𝑢 〉  is pushed into 

𝑆𝑇𝐴𝐶𝐾 , because among all the counters only 𝑢 . 𝐶[1]  is 0. We 

illustrate this by the black node in Figure 5(a). 

 In the second phase, we will first pop the top element 〈3, 𝑢 〉 out of 

𝑆𝑇𝐴𝐶𝐾 , and then check the only element in 𝑢 .𝑆 = {〈2, 𝑢 〉} . 

Doing this, 𝑢 . 𝐶[3] = 1 will be decreased by 1, becoming 0. So 𝑢  

will be removed from 𝑅  and, at the same time, 〈2, 𝑢 〉 will be pushed 

into STACK, which is illustrate by the black node in Figure 5(b).  

 In a next step, we will pop 〈2, 𝑢 〉 out of STACK. Again, we will 

check all elements in 𝑢 . 𝑆 = {〈1, 𝑢 〉, 〈3, 𝑢 〉} , but 𝑢  is removed 
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from 𝑅  in the above step. Doing this, 𝑢 . 𝐶[2] == 1  will be 

decreased by 1, becoming 0. So, 〈2, 𝑢 〉 will be pushed into STACK 

(see Figure 5(c) for illustration.)  

 When popping 〈1, 𝑢 〉 out of STACK, we will do the same operations: 

checking 𝑢 . 𝑆 = {〈2, 𝑢 〉, 〈3, 𝑢 〉}, in which 𝑢  was removed in last 

step. We decrease 𝑢 . 𝐶[1] = 2  by 1. Since 𝑢 . 𝐶[1] = 1   is still 

larger than 0, it will not be removed from 𝑅  and no vertex will be 

pushed into 𝑆𝑇𝐴𝐶𝐾 . Now, 𝑆𝑇𝐴𝐶𝐾 becomes empty and the second 

phase stops. What is left is shown in Figure 5(d), from which we can 

see that all the domains 𝑅 , 𝑅 , and 𝑅  are reduced. In other words, 

all the vertices in domains which are not fully supported are removed. 

6.1.3 Computational Complexity and Correctness 

In this subsection, we analyze the running time of DomainFiltering( ) and 

prove its correctness.  

6.1.3.1 Computational complexity 

To know the time complexity of the algorithm, we first analyze the first 

phase. Considering the inner for-loop at lines 3-12, its running time is 

bounded by 

∑ (|𝑅 |
∈

+ |𝑅 | + |𝑅 |) ≤ 𝑂(∑ (|𝑅 |
∈

). 

Now we analyze the running time of the second phase. For this, we 

consider the bounds on the while-loop at line 13 and the for-loop at line 

15. We first notice that each different 〈𝑖, 𝑢〉 can be pushed into STACK at 

most once. Given that 〈𝑖, 𝑢〉  has been removed from 𝑅 , the only 

elements that can be impacted are those in an 𝑅  such that 𝑣  is 

connected to 𝑣  in query 𝑄. Let 𝑑  be the degree of 𝑣 . Since 𝑖 can appear 
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at most 𝐷 times at line 15 and there are at most 𝑑 𝐷 elements of 𝑢. 𝑆 for 

a given 𝑖, line 16 can be executed at most  

𝐷𝑑 𝐷
=

= 𝐷 𝑑
=

= 𝑚𝐷  

times, where 𝑚 = |𝐸(𝑄)| and 𝐷 = max {|𝑅 |, … , |𝑅 |}. Thus, the time 

complexity of DomainFiltering( ) is bounded by 𝑂(𝑚𝐷 ). 

The space overhead is made up of two parts: the space for storing support 

lists and the space for counters. Since in the worst case for a vertex in 𝑅  

its support list may contain all vertices in 𝑅  for each 𝑗  such that 

𝑣 , 𝑣 ∈ 𝑄, the first part is bounded by 

|𝑅 ||𝑅 |
∈

≤ 𝑚𝐷  

And the number of counters is obviously bounded by 𝑂(𝑛 𝐷), where 

𝑛 = |𝑉 (𝑄)|. 

6.1.3.2 Correctness 

To prove the correctness of DomainFiltering( ), we need to explain that 

any remaining vertex in 𝑅  is fully-supported when STACK becomes 

empty. 

Proposition 1 Let Q be a query graph containing 𝑛 vertices 𝑣 ,… , 𝑣 . 

Let 𝑅 = 𝑅 𝑙𝑎𝑏𝑒𝑙(𝑣 ) , … , 𝑅 = 𝑅(𝑙𝑎𝑏𝑒𝑙(𝑣 ))  be 𝑛  lists constructed 

from a data graph 𝐺  according to 𝑄 . When STACK becomes empty 

during the execution DomainFiltering( ) algorithm, each vertex in the 

remaining lists must be fully-supported. 

Proof. Assume that when STACK becomes empty, there is still a vertex 𝑢 

in some 𝑅 , which is not fully-supported. Then, there must be an integer 𝑗 

such that no vertex in 𝑅  supporting 𝑢. Thus, we have 𝑢.𝐶[𝑗] == 0 and 
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by executing lines 16-17, 〈𝑖, 𝑢〉 will definitely be pushed into STACK. It 

is a contradiction. □ 

6.2 Relation Filtering 

6.2.1 Algorithm Description 

Let query 𝑄  has 𝑛  vertices 𝑣 ∈ 𝑉 (𝑄)(𝑖 = 1,… , 𝑛) , and 𝑚  edges 

𝑣 , 𝑣 ∈ 𝐸(𝑄). After running DomainFiltering( ) algorithm, we obtain 

𝑛 reduced lists 𝑅  (𝑖 = 1,… ,𝑛), and 𝑚 reduced relations 𝑅 ( 𝑣 , 𝑣 ∈

𝑄), in which most of redundant tuples are eliminated.  

However, we can do better. That is, we can use the RelationFiltering( ) 

algorithm to further reduce 𝑅  to 𝑅 . Specifically, we will view 𝑄 as a 

“complete” graph by adding a virtual bi-directed edge connecting 𝑣  and 

𝑣  if 𝑣 , 𝑣 ∉ 𝑄, and the corresponding 𝑅  is understood as an always 

true relation. Note that such virtual edges can greatly simplify the 

description but are only in our imagination. For each pair 〈𝑢, 𝑢 〉 ∈ 𝑅 , 

which is not virtual, the following condition must be satisfied: if there 

exist two edges (𝑣 , 𝑣 ), 𝑣 , 𝑣 ∈ 𝑄 , there exists 𝑢 ∈ 𝑅  such that 

〈𝑢, 𝑢 〉 ∈ 𝑅  and  〈𝑢 , 𝑢 〉 ∈ 𝑅 . Any pair 〈𝑢, 𝑢 〉 ∈ 𝑅  not satisfy 

such condition should be eliminated from 𝑅 . We refer to this checking 

as a triangle-check, denoted as 𝑡𝑟𝑖[〈𝑖, 𝑗, 𝑘〉, 〈𝑢, 𝑢′, 𝑢′′〉] . This 𝑡𝑟𝑖 

operation will return true or false to indicate the above condition is 

satisfied or not. This is the basic idea of the RelationFiltering( ) 

algorithm. 

Note that the above triangle-check needs to iterate all vertices 𝑢 ∈ 𝑅  

for each pair 〈𝑢, 𝑢 〉 ∈ 𝑅 , which is not efficient. This procedure could 

be well speeded up by using multi-map which is a data structure like a 
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mapping and can store elements formed by a combination of a key and 

multi-mapped values. By doing this, instead of checking all vertices 𝑢 ∈

𝑅  for each pair 〈𝑢, 𝑢 〉 ∈ 𝑅 , we can obtain qualified vertices 𝑢 ∈ 𝑅  

at one step. We refer to this check as a batch-triangle-check, denoted as 

𝑏𝑡𝑟𝑖[〈𝑖, 𝑗, 𝑘〉, 〈𝑢, 𝑢′〉] . Its procedure is simple. This 𝑏𝑡𝑟𝑖  operation will 

return a set including all qualified  vertices in 𝑅 .  

Obviously, if 〈𝑢, 𝑢 〉  is removed from 𝑅 , 𝑢  and 𝑢′  each will lose a 

support from 𝑅  and 𝑅 , respectively. So, in this way, we may also be 

able to remove a lot of vertices when they have lost all their supports 

from some other list. 

Above process works in a way similar to the DomainFiltering( ) 

algorithm, but with the data structures for supports and counters 

somehow changed. Concretely, each vertex 𝑢′′ ∈ 𝑅 (𝑘 = 1,… , 𝑛) will 

be associated with a set of supports 𝑢. 𝑆  of the form 〈𝑖, 𝑗; 𝑢, 𝑢′〉 where 

〈𝑢, 𝑢′〉 ∈ 𝑅 , indicating that the triangle-check holds: 

𝑡𝑟𝑖[〈𝑖, 𝑗, 𝑘〉, 〈𝑢, 𝑢′, 𝑢′′〉]. In addition, each pair 〈𝑢, 𝑢 〉 in a relation 𝑅  , 

will be associated with a list of 𝑛  counters, denoted 〈𝑢, 𝑢 〉.𝐶 . Each 

counter 〈𝑢, 𝑢 〉. 𝐶[𝑘] in it records how many supports from 𝑅 .  

Algorithm 4: RelationFiltering(𝑄, all 𝑅 , all 𝑅 ) 

Input: query 𝑄 that has 𝑛 vertices 𝑣 , … , 𝑣 ; All filtered lists 𝑅 . 
Output: Further filtered relations 𝑅 (𝑖, 𝑗 = 1, … , 𝑛). 
//phase 1: construct the supports, counters and STACK. 
1. for each 𝑒 = 𝑣 , 𝑣 ∈ 𝐸(𝑄) do 

2.     for each 𝑘(𝑘 = 1,… 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑖, 𝑗) do 
3.         get 𝑅 , 𝑅 ,𝑅 , 𝑅 , 𝑅 , 𝑅 ; 

4.         𝑀𝑀𝐴𝑃 ≔ 𝛷, 𝑀𝑀𝐴𝑃 ≔ 𝛷, 𝑆𝐸𝑇 ≔ 𝛷; 
5.         for each 〈𝑢, 𝑢 〉 ∈ 𝑅  do 𝑀𝑀𝐴𝑃 [𝑢].append(𝑢′′); 
6.         for each 〈𝑢′, 𝑢 〉 ∈ 𝑅  do 𝑀𝑀𝐴𝑃 [𝑢′].append(𝑢′′); 
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7.         for each 〈𝑢, 𝑢 〉 ∈ 𝑅  do 

8.             𝑆𝐸𝑇 ≔ 𝑏𝑡𝑟𝑖[〈𝑖, 𝑗, 𝑘〉, 〈𝑢, 𝑢 〉] = 𝑀𝑀𝐴𝑃 [𝑢] ∩ 𝑀𝑀𝐴𝑃 [𝑢′]; 
9.             if 𝑆𝐸𝑇 == 𝛷 then 
10.                 𝑅 .remove(〈𝑢, 𝑢′〉); 

11.                 if (− − 𝑢.𝐶[𝑗]) == 0 then 
12.                     𝑅 .remove(𝑢), STACK.push(〈𝑖, 𝑢〉); 
13.                 if (− − 𝑢 . 𝐶[𝑖]) == 0 then  
14.                     𝑅 .remove(𝑢′), STACK.push(〈𝑗, 𝑢 〉); 
15.             else then 
16.                 〈𝑢, 𝑢 〉.𝑪[𝑘] = 𝑆𝐸𝑇 . 𝑠𝑖𝑧𝑒; 
17.                 for each 𝑢 ∈ 𝑆𝐸𝑇  do 𝑢 . 𝑆.append(〈𝑖, 𝑗; 𝑢, 𝑢 〉); 
//phase 2: process the STACK. 
18. while 𝑆𝑇𝐴𝐶𝐾 ≠ 𝛷 do 
19.     〈𝑘, 𝑢 〉 = STACK.pop(); 
20.     for each 〈𝑖, 𝑗; 𝑢, 𝑢 〉 ∈ 𝑢′′. 𝑆 do 
21.         if (− − 〈𝑢, 𝑢 〉.𝐶[𝑘]) == 0 then 
22.             𝑅 .remove(〈𝑢, 𝑢′〉); 

23.         if (− − 𝑢. 𝐶[𝑗]) == 0 then 
24.             𝑅 .remove(𝑢), STACK.push(〈𝑖, 𝑢〉); 
25.         if (− − 𝑢. 𝐶[𝑖]) == 0 then  
26.             𝑅 .remove(𝑢′), STACK.push(〈𝑗, 𝑢 〉); 

27. return 𝑅 = 𝑅 − {(𝑢, 𝑢 ): 𝑢 ∉ 𝑅  𝑜𝑟 𝑢 ∉ 𝑅 }; 

The Algorithm 4 RelationFiltering( ) is the formal description of above 

working process. In the first phase (lines 1–17), we create support lists for 

vertices and counters for edges as described above. In addition, a stack 

STACK is initialized with all the elements 〈𝑖, 𝑢〉  such that 𝑢  has been 

removed from the corresponding domain. In line 8, the btri( ) (batch-

triangle-check) is used to speed up the tri( ) (triangle-check) by using 

multi-mapping data structure. In line 4-6, two multi-maps, 𝑀𝑀𝐴𝑃  and 

𝑀𝑀𝐴𝑃 , are initialized, and in line 8 the result set of btri is efficiently 

obtained by an operation of intersection. In the second phase (lines 18 – 

26), we propagate the elimination of vertices which have no supports 
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from at least a different list. In line 27, the pruned relations 𝑅  is 

returned.  

6.2.2 Example 

Example 4: Continue with Example 3. When applying the algorithm 

RelationFiltering( ) to 𝑅 , 𝑅  and 𝑅 ,  as well as 𝑅 , 𝑅 , and  𝑅  

shown in Figure 5(d), the first phase will work as follows: 

1) for (𝑣 , 𝑣 ) ∈ 𝐸(𝑄) and 𝑘 = 3: 

a. for 〈𝑢 , 𝑢 〉:  

𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑓𝑎𝑙𝑠𝑒; 

𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑓𝑎𝑙𝑠𝑒; 

or 𝑏𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 〉] = 𝛷; 

remove 〈𝑢 , 𝑢 〉 from 𝑅 ; 

𝑢 . 𝐶[2] ≔ 𝑢 .𝐶[2] − 1 = 2 − 1 = 1; 

𝑢 . 𝐶[1] ≔ 𝑢 .𝐶[1] − 1 = 1 –  1 = 0; 

remove 𝑢  from 𝑅 ; 

𝑆𝑇𝐴𝐶𝐾 = {〈2, 𝑢 〉}; 

b. for 〈𝑢 , 𝑢 〉:  

𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑡𝑟𝑢𝑒; 

𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑓𝑎𝑙𝑠𝑒; 

or 𝑏𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 〉] = {𝑢 }; 

𝑢 . 𝑆 = {〈1, 2; 𝑢 , 𝑢 〉}; 

〈𝑢 , 𝑢 〉.𝐶[3] ≔ 1; 

c. for 〈𝑢 , 𝑢 〉:  

𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑓𝑎𝑙𝑠𝑒; 

𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑡𝑟𝑢𝑒; 

or 𝑏𝑡𝑟𝑖[〈1, 2, 3〉, 〈𝑢 , 𝑢 〉] = {𝑢 }; 
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𝑢 . 𝑆 = {〈1, 2; 𝑢 , 𝑢 〉}; 

〈𝑢 , 𝑢 〉.𝐶[3] ≔ 1; 

2) for (𝑣 , 𝑣 ) ∈ 𝐸(𝑄) and 𝑘 = 1: 

a. Note that in last step 𝑢  has been removed from 𝑅 , so that 

〈𝑢 , 𝑢 〉 must also be removed from 𝑅 .  

b. for 〈𝑢 , 𝑢 〉: 

𝑡𝑟𝑖[〈2, 3, 1〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑡𝑟𝑢𝑒; 

𝑡𝑟𝑖[〈2, 3, 1; 𝑢 , 𝑢 , 𝑢 〉] = 𝑓𝑎𝑙𝑠𝑒; 

or 𝑏𝑡𝑟𝑖[〈2, 3, 1; 𝑢 , 𝑢 〉] = {𝑢 }; 

𝑢 . 𝑆 = {〈2, 3; 𝑢 , 𝑢 〉}; 

〈𝑢 , 𝑢 〉.𝐶[1] ≔ 1; 

c. for 〈𝑢 , 𝑢 〉:  

𝑡𝑟𝑖[〈2, 3, 1〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑓𝑎𝑙𝑠𝑒; 

𝑡𝑟𝑖[〈2, 3, 1〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑡𝑟𝑢𝑒; 

or 𝑡𝑟𝑖[〈2, 3, 1〉, 〈𝑢 , 𝑢 〉] = {𝑢 }; 

𝑢 . 𝑆 = {〈2, 3; 𝑢 , 𝑢 〉}; 

〈𝑢 , 𝑢 〉.𝐶[1] ≔ 1; 

3) for (𝑣 , 𝑣 ) ∈ 𝐸(𝑄) and 𝑘 = 2: 

a. for 〈𝑢 , 𝑢 〉:  

𝑡𝑟𝑖[〈3, 1, 2〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑡𝑟𝑢𝑒; 

or 𝑏𝑡𝑟𝑖[〈3, 1, 2〉, 〈𝑢 , 𝑢 〉] = {𝑢 }; 

𝑢 . 𝑆 = {〈3, 1; 𝑢 , 𝑢 〉}; 

〈𝑢 , 𝑢 〉.𝐶[2] ≔ 1; 

b. for 〈𝑢 , 𝑢 〉: 

𝑡𝑟𝑖[〈3, 1, 2〉, 〈𝑢 , 𝑢 , 𝑢 〉] = 𝑡𝑟𝑢𝑒; 

or 𝑏𝑡𝑟𝑖[〈3, 1, 2〉, 〈𝑢 , 𝑢 〉] = {𝑢 }; 
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𝑢 . 𝑆 = 𝑢 . 𝑆 ∪ {〈3, 1; 𝑢 , 𝑢 〉} = {〈3, 1; 𝑢 , 𝑢 〉, 〈3, 1; 𝑢 , 𝑢 〉}; 

〈𝑢 , 𝑢 〉. 𝐶[2] ≔ 1; 

In the second phase, we first pop out the only one item 〈2, 𝑢 〉 from 

STACK. Since 𝑢 . 𝑆 is empty, the second phase terminates immediately. 

The final results can be stored as a graph shown in Figure 6, in which all 

the redundant elements are removed from 𝑅 , 𝑅  and 𝑅  as well as 𝑅 , 

𝑅 , and  𝑅 . By exploring a path, we can get an answer to our query.  

 

Figure 6: The result after DomainFiltering( ) and RelationFiltering( ). 

6.2.3 Computational Complexity 

The time complexity of the algorithm can be easily analyzed. We need 

only to count the number of times lines 21-26 are executed, which is 

bounded by 𝑂(𝑛 𝐷 ) , where 𝑛 = 𝑉 (𝑄)  and 𝐷 =

𝑚𝑎𝑥{|𝑅 |,… , |𝑅 |}. 

To know the space overhead, we first analyze the space used by all 

counters associated with the pairs in all 𝑅 ’s: 〈𝑢, 𝑢 〉. 𝑪 , which is 

bounded by 

|𝑅 ||𝑅 ||𝐶|
∈

≤ 𝑂(𝑛 𝐷 ) 

For storing support lists, we need even a larger space: 

|𝑅 |
∈

(|𝑅 ||𝑅 |)
∈

≤ 𝑂(𝑛 𝐷 ) 

Finally, concerning the correctness of the algorithm, we have the 

following proposition. 

8 

7 9 

10 

4 
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Proposition 2 Let 𝑄  be a directed query graph containing 𝑛  vertices 

𝑣 ,… , 𝑣 . Let 𝑅 , … , 𝑅  be 𝑛  reduced lists constructed by executing 

DomainFiltering( ). When 𝑆𝑇𝐴𝐶𝐾  becomes empty, any pair 〈𝑢, 𝑢 〉 in a 

remaining 𝑅 (𝑖 ≠ 𝑗)  must have at least a support from any other list 

𝑅 (𝑘 ≠ 𝑖, 𝑗). 

Proof. The proposition can be proven in a way similar to Proposition 1.  
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CHAPTER 7 NATURAL JOIN AND 

JOIN ORDER SELECTION 

After running the DomainFiltering( ) and RelationFiltering( ) algorithms 

when receiving a query 𝑄, we obtain 𝑚 reduced relations 𝑅 , in which 

all redundant items are removed. However, this is not the final answer to 

a pattern match query by Definition 3.5; and a series of join operations, 

called classical Natural Joins, need to be performed. 

7.1 Natural join 

Given a query 𝑄, we visit each edge 𝑒 = 𝑣 , 𝑣 ∈ 𝐸(𝑄) in each step 

according to a specific join order (we will discuses this in the next 

subsection). During the traversal of 𝑄 , a subgraph 𝑄′ (called status) 

induced by all visited edges in 𝑄 is maintained. Initially, 𝑄′ is set to be 

NULL. Then, in each step, a new edge 𝑒 = (𝑣 , 𝑣 ) is added to 𝑄′, 𝑄 ≔

𝑄 ∪ (𝑣 , 𝑣 ). This process will continue until 𝑄 == 𝑄. For such a new 

edge 𝑒 = (𝑣 , 𝑣 ), if its vertex 𝑣  or 𝑣  not have been visited before, it is 

called a forward edge; otherwise, it is called a backward edge. The 

matching results can be recorded in a table 𝑀𝑅(𝑄′), in which each result 

is denoted as 〈𝑣 , … , 𝑣 ; 𝑢 , … , 𝑢 〉, where 𝑢 ∈ 𝑅 , 𝑢 ∈ 𝑅  and𝑉 (𝑄 ) =

𝑣 ,… , 𝑣 and 𝑖, 𝑗 ≤ 𝑛. Obviously, the forward edge and backward edge 

should be handle in different ways. 

 Forward edge processing. Let 𝑒 = (𝑣 , 𝑣 ) be a forward edge. Assume 

that 𝑣 (𝑖 < 𝑘) is a vertex not having been visited while 𝑣 (𝑖 < 𝑘) have 

been visited. An equal-join 𝑀𝑅(𝑄′) ⋈ 𝑅   needs to be performed. 

The matching results is then augmented from 𝑀𝑅(𝑄 ) =
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〈𝑣 , … , 𝑣 ; 𝑢 , … , 𝑢 〉 to 𝑀𝑅(𝑄 + 𝑒) = 〈𝑣 , … , 𝑣 , 𝑣 ; 𝑢 , … , 𝑢 , 𝑢 〉 , 

where 𝑢 ∈ 𝑅  and 𝑘 ≤ 𝑛.  

 Backward edge. Let 𝑒 = (𝑣 , 𝑣 ) be a backward edge. We will can 

scan the intermediate table 𝑀𝑅(𝑄′)  to filter out all those tuples that 

do not match pairs (𝑢 , 𝑢 ) ∈ 𝑅 . After filtering, we obtain 

𝑀𝑅(𝑄 + 𝑒) from 𝑀𝑅(𝑄′). Essentially, this is a selection operation 

based on the Definition 3.5.  

It is easy to see that the time complexity of this equal join is 𝑂(∏ 𝑅 ). 

Considering 𝑅  are effectively filtered relations from 𝑅 , the natural 

join on relations 𝑅  should be much faster than on original relations 𝑅 . 

7.2 Example 

Example 5: Continue with Example 4. When applying the Natural Join 

to 𝑅 , 𝑅 , and  𝑅  shown in Figure 6, the process will work as follow 

2 steps: 

1) For 𝐸(𝑄 ) = {(𝑣 , 𝑣 )}, (𝑣 , 𝑣 ) is a new visited forward edge. The 

𝑀𝑅(𝑄 ) is: 

〈1, 2; 𝑢 , 𝑢 〉 

〈1, 2; 𝑢 , 𝑢 〉 

2) For 𝐸(𝑄 ) = {(𝑣 , 𝑣 ), (𝑣 , 𝑣 )} , (𝑣 , 𝑣 )  is a new visited forward 

edge. The 𝑀𝑅(𝑄 ) = 𝑀𝑅(𝑄 ) ⋈ 𝑅 : 

〈1, 2, 3; 𝑢 , 𝑢 , 𝑢 〉 

〈1, 2, 3; 𝑢 , 𝑢 , 𝑢 〉 

〈1, 2, 3; 𝑢 , 𝑢 , 𝑢 〉 

〈1, 2, 3; 𝑢 , 𝑢 , 𝑢 〉 
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3) For 𝐸(𝑄 ) = {(𝑣 , 𝑣 ), (𝑣 , 𝑣 ), (𝑣 , 𝑣 )}, (𝑣 , 𝑣 ) is a backward edge. 

The 𝑀𝑅(𝑄 ) = 𝑀𝑅(𝑄 ) ⋈ 𝑅 : 

〈1, 2, 3; 𝑢 , 𝑢 , 𝑢 〉 

〈1, 2, 3; 𝑢 , 𝑢 , 𝑢 〉 

Example 5 shows all the steps of a natural join. In the first step, (𝑣 , 𝑣 ) is 

a first encountered forward edge, and the matching result table 𝑀𝑅 is 

simply equal to 𝑅 . In the second step, (𝑣 , 𝑣 ) is a forward edge, and 

there are 4 intermediate records in 𝑀𝑅 by joining with 𝑅 . In the last 

step, (𝑣 , 𝑣 ) is a backward edge, and only 2 records are left after the 𝑀𝑅 

being filtered by 𝑅 . Therefor, the final matching results of the example 

in Figure 5 are 〈𝑢 , 𝑢 , 𝑢 〉  and 〈𝑢 , 𝑢 , 𝑢 〉 . By comparing with the 

Natural Joins directly on Figure 5(a), which is neither filtered by the 

DomainFiltering( ) nor by the RelationFiltering( ), the number of 

intermediate records in 𝑀𝑅 is up to 6.  

7.3 Join Order Selection 

Before we do a natural join, the join order should be defined. A join order 

corresponds to a traversal order in query 𝑄, which may somehow affect 

the performance of the Natural Joins. This is a well researched area and 

many strategies for finding a good nesting order have been proposed, 

which can be described as follow [39]:  

 Deterministic Algorithms. This kind of algorithms, such as dynamic 

programming algorithm, constructs a solution step by step in a 

deterministic manner, either by applying a heuristic or by an 

exhaustive search.  

 Randomized Algorithms. This kind of algorithms first define a set of 

movers. Each of the algorithms performs a random walk along the 
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edges according to certain rules, terminating as soon as no more 

applicable moves exist or a time limit is exceeded. The best order 

obtained so far is used as the join order. 

 Genetic Algorithms. This kind of algorithms makes use of a 

randomized strategy very similar to the biological evolution in a 

search for good problem solutions. The basic idea is to start with a 

random population and generate offspring by random crossover and 

mutation. The “fittest” members of the population survive the 

subsequent selection; the next generation is based on these. The 

algorithm terminates as soon as there is no further improvement or 

after a predetermined number of generations. The fittest member of 

the last population is the solution. 

 Hybrid algorithms. This kind of algorithms combine the strategies of 

pure deterministic and pure randomized algorithms: solutions obtained 

by deterministic algorithms are used as starting points for randomized 

algorithms or as initial population members for genetic algorithms. 

However, all the above strategies of speeding up the join operation are 

specifically designed for relational database, and not quite efficient and 

suitable for graph pattern matching queries since our patterns mostly are 

graphs with many edges. For instance, a dynamic programming 

algorithm, as a exhaustive search of Deterministic Algorithms, works well 

only for few relations, and can be prohibitively expensive for more than 

five or six relations. 

In our implementation, We adopt a simple yet efficient greedy solution 

proposed in [24] in order to find a good join order. The heuristic rule of 

this greedy solution is simple: given a status 𝑄′, if there is a backward 

edge 𝑒  attached to 𝑄′ , the next status is 𝑄 = 𝑄 ∪ 𝑒 ; otherwise, a 

forward edge 𝑒 is chosen. In other words, the backward edges have higher 
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priority than backward edges during each traversal step. In this thesis, all 

the experiments are under such a greedy join order selection except in 

section 8.8, where we test the impact of different join order selections.  
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CHAPTER 8 EXPERIMENT 

In this chapter, we evaluate our methods and some existing approaches 

over a variety of real and synthetic data graphs. We divided the 

experiments in five pars. In the first part, we use all real data graphs (See 

Table 3) to compare all methods against each other and to study how well 

our method perform on real data graphs. In the second part, we vary the 

number of edges and the value of 𝛾  for two types of synthetic data 

graphs,  ER and SF, respectively, in order to compare all methods against 

each other and study how well our method perform on synthetic data 

graphs. In the last three parts, we study in depth of our method. In the 

third part for synthetic data graphs, we study the impact of label set size 

since the less labels imply bigger average size of list 𝑅 . In the forth part 

for real data graphs, we fix the value of 𝛿 but vary the edge number of 

query 𝑄 in order to see its effect. The last part is also for real data graphs, 

by which we fix both the 𝛿 and |𝑄(𝐸)|, but vary the shape of query Q in 

order to study how it affects the performance.  

8.1 Settings 

All methods are implemented in C++, compiled by Visual Studio 2013 

with optimization of O2 (maximize speed). All of our experiments are 

performed on a desktop computer with 64-bit Windows 10 operating 

system, Intel I7-7700 3.6GHz CPU and 14G RAM. Since the physical 

memory is limited to 14G, the frequent swap between memory and disk 

will affect the performance if all needed data cannot be cashed into 

memory. 
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8.2 Tested Methods  

We have tested altogether three methods listed below. Each of them 

includes two main steps, Relation Construction (RC for short) and 

Matching Results Construction (MC for short):  

 Extend Reachability Join (ER-join for short) [25]. 

RC: 2-hop labeling (2HL for short) [16][17][38]. 

MC: Classical Natural Join (N-join for short) [34]. 

 Multi Distance-based Join (MD-join for short) [24]. 

RC: LLR-Embedding (LE for short) [33] and 2-hop labeling (2HL for 

short) [16][17]. 

MC: Classical Natural Join (N-join for short) [34]. 

 Our Method (discussed in this work). 

RC: Δ-Transitive Closure of data graph 𝐺 (𝐺  for short) (ours). 

MC: DomainFiltering (DF for short) (ours), Relation Filtering (RF for 

short) (ours), Classical Natural Join (N-join for short) [34] and Join 

Order Selection (JOS for short) [24][39]. 

 index (offline) query (online) 

methods algorithms time space algorithms time 

ER-join 
2-hop labeling 𝑂(𝑁 ) 𝑂(𝑁

√
𝑀) ER-join (RC) 𝑂(

√
𝑀|𝑅 ||𝑅 | ) 

   Natural Join (MC) 𝑂( |𝑅 |) 

MD-join 
2-hop labeling 𝑂(𝑁 ) 𝑂(𝑁

√
𝑀) D-join (RC) 𝑂(

√
𝑀|𝑅 ||𝑅 | ) 

LLE-Embedding 𝑂(𝑁 𝑙𝑜𝑔𝑁) 𝑂(𝑁𝑙𝑜𝑔 𝑁) Natural Join (MC) 𝑂( |𝑅 |) 

ours 

𝐺  by Dijkstra 𝑂(𝑁𝑑 𝑙𝑜𝑔𝑁 𝑂(𝑁𝑑 ) GΔ (RC) 𝑂( |𝑅 |) 

   DF (MC) 𝑂(𝑚𝐷 ) 

   RF (MC) 𝑂(𝑛 𝐷 ) 

   Natural Join (MC) 𝑂( |𝑅 |) 

Table 2: The summary of all tested methods. 

In Table 2, we compare the above methods in terms of theoretical time 

and space complexity for both index (offline) and query(online) stages. In 

the query stages, each of the above methods has two steps, relation 
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construction (RC) and matching results construction (MC). Each of them 

will be extensively tested. 

8.3 Tested Data Graphs 

In the experiments, we use both real and synthetic data graphs. Table 3 

and Table 4 summarize all the important parameters of the tested graphs. 

In both tables, for each graph, we show: 

- whether a graph is directed or undirected; 

- number of vertices; 

- number of edges; 

- whether a graph is labeled. (If a graph is not labeled, we will 

randomly assign its vertices the labels out of an alphabet Σ.) 

- the size of Σ; (If a graph is not labeled, we will randomly assign its 

vertices the labels out of an alphabet Σ.) 

- whether a graph is weighted; (If a graph is not weighted, we will 

randomly assign its edges the weight from 1 to 1000.) 

- average degree of vertex calculated by | ( )|
| ( )|

 for directed graphs 

and | ( )|
| ( )|

 for undirected graphs; 

- the density of graphs calculated by | ( )|
| ( )|

 for directed graphs and 

| ( )|
| ( )|

 for undirected graphs; and 

- the average number of vertices with a same label calculated by 

| ( )|
| | . 

Table 3 lists all the details of real data graphs. The Yeast, as a protein-to- 

protein interaction network in budding yeast, comes from vlado 

(http://vlado.fmf.uni-lj.si/pub/networks/datas/); the Citeseer is come from 

konect (http://konect.uni-koblenz.de/networks/citeseer); and all the other 
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real graphs are come from SNAP (http://snap.stanford.edu/data/index. 

html). All the data graphs 𝐺  are sorted by the number of vertices, 

indicating scales.  

data graphs directed 
𝑁 = 

|𝑉 (𝐺)| 
𝑀 = 

|𝐸(𝐺)| 
labeled |Σ| weighted 

avg. 
degree 

density 
avg. 

|𝑅(𝑙)| 

yeast no 2,361 7,182 yes 13 no 6.1 2.58E-03 196.8 
wikiVote yes 7,115 103,689 no 100 no 14.6 2.05E-03 71.2 

citeHepph yes 34,546 421,578 yes 124 1-1000 12.2 5.33E-04 278.6 
webStanford yes 281,903 2,312,497 no 100 no 8.2 3.53E-04 2,919.0 
comDBLP no 317,080 1,049,866 no 500 no 6.6 2.67E-04 23.5 

webNotreDame yes 325,729 1,497,134 no 100 1-1000 4.5 2.91E-05 3,257.3 
citeseer yes 384,413 1,751,463 no 500 no 4.6 2.09E-05 768.8 

webBerkStan yes 685,230 7,600,595 no 500 no 11.1 1.41E-05 3,426.2 

webGoogle yes 875,713 5,105,039 no 500 1-1000 5.8 1.19E-05 1751.4 
roadNetPA no 1,088,092 1,541,898 no 50 no 2.8 1.62E-05 21761.8 
roadNetTX no 1,379,917 1,921,660 no 20 1-1000 2.8 6.66E-06 68995.8 

citePatterns yes 3,774,768 16,518,948 no 100 1-1000 4.4 2.60E-06 37747.7 

Table 3: The summary of real date graphs. 

 

data 
graph 

directed |𝑉 (𝐺)| parameter 
synthetic 

label 
|Σ| weighted 

avg. 
degree 

avg. 
|𝑅(𝑙)| 

ER no 100,000 
|𝐸(𝐺)| =

[100𝑘, 500𝑘] 
yes 100 - 500 no 2-10 1000 - 200 

SF yes 100,000 𝛾 = [2.1, 2.9] yes 100 - 500 no  1000 - 200 

Table 4: The summary of synthetic data graphs. 

 

Figure 7: The edge number of SF graphs varying by 𝜸. 

Table 4 list two different synthetic data graphs: 

1) ER (Erdos Renyi Model). This kind of graphs is a classical random 

graph model. It defines a random graph as 𝑁  vertices connected by 𝑀  
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edges, chosen randomly from the 𝑁(𝑁 − 1)/2 possible edges. We set 

𝑁 = 100𝐾 and vary 𝑀  from 100𝐾 to 500𝐾. 

2) SF (Scale-Free Model). This kind of graphs is created by using the 

graph generator gengraph-win (http://fabien.viger.free.fr/liafa/genera 

tion/), by which the power-law distribution (𝑝(𝑑) = 𝛼𝑑− ) is followed 

when generating vertices and edges. Usually, 2 < 𝛾 < 3  is chosen 

[40]. We vary 𝛾 from 2.1 to 2.9 and their corresponding number of 

edges are shown in Figure 7.   

For both ER and SF graphs, we fix |𝑉 (𝐺)| = 100𝐾  but vary the number 

of labels, which are randomly assigned to all vertices, from 100 to 500 for 

special experiments below. For easy testing, we also define the ER as 

undirected graphs but the SF as directed graphs.  

8.4 Tested Query Graphs 

We have used 14 different pattern queries in Figure 8 for the tests, which 

are sorted by the number of edges. 

 

Figure 8: The examples of queries with different patterns. 

(a) (b) (c) (d) (e) (f) 

(n) 

(k) (j) (i)(h) (g) (l) 

(m) 
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Such pattern queries could be roughly divided into four categories 

according to their shapes: a line-pattern (LP for short) has a linear 

structure as shown in Figure 7(a), (b), (c), and (l); a tree-pattern (TP for 

short) has a tree structure as shown in Figure 4(e), and (j); a graph-

patterns (GP for short) has a graph structure as shown in Figure 7(f), (g), 

(h), (i), and (m), which have approximately equal number of forward 

edges and backward edges; a complete-graph-pattern (CP for short) has a 

complete graph structure as shown in Figure 7(d), (k), (n), in which every 

pair of distinct vertices is connected by a unique edge. 

In the first to third experiments, we test a GP pattern shown in Figure 

7(h), which has 5 query edges (3 forward edges and 2 backward edge) 

and 4 vertices. In the fourth experiment, we still use this graph pattern but 

varying the number of edges from 3 to 9. In the final experiment, we 

show how the four patterns affect our query performance.  

8.5 First Experiment: Real Graphs Performance 

In our first experiment, we compare the performance of our method with 

the ER-join and MD-join on the real data graphs of Table 3. The major 

performance criteria here are the indexing time and sizes (offline), as well 

as the query time (online). We expect to see a tradeoff between indexing 

costs and query performance.  

8.5.1 The Indexing Times and Sizes for Different Methods 

Note that, as show in Table 2, for the index procedure the ER-join only 

use the 2-hop labeling and MD-join incudes both the 2-hop labeling and 

LLR-embedding method. The indexing time and sizes of the ER-join and 

MD-join are summarized in Figure 9. It clearly shows that both the ER-

join and MD-join do not scale well on large graphs, since the 2-hop 

labeling both they use have large indexing time and size. In particular, 
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MD-join needs some more indexing time and size for the LLR-

Embedding. However, our method has much less running time and space 

usage for establishing indices by fixing Δ = 4 for unweighted graphs and 

Δ = 800 for weighted graphs. 

 

(a) Index times 

 
(b) Index sizes 
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Figure 9: The indexing times (seconds) and sizes (MB) of real data 
graphs for different methods. Methods with indexing time over 2 

hours are not showed. 

8.5.2 The Index Times and Sizes for Our Method 

The indexing times and sizes of our method are summarized in Figure 10, 

from which we can see that  the index times and sizes increase 

dramatically with the value of Δ, especially for the data graphs with 

bigger degrees of vertices. However, the value of Δ is normally small for 

the pattern queries in practice. In our experiments, we only tested the case 

of Δ = {1, 2, 3, 4}  for unweighted and Δ = {200, 400, 600, 800}  for 

weighted graphs. 
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(a) Index sizes 

Figure 10: The indexing times (Seconds) and size (MB) of real data 
graphs for our method by varying Δ. 

8.5.3 The Query Times for Different Methods 

After indexing, we begin to test the query times of different methods. In 

this test, we fix the query 𝑄 shown in Figure 7(h), a five edges graph 

pattern, but vary the 𝛿 in order to see the effects of 𝛿. We vary 𝛿 from 1 to 

4 for unweighted graph and 200 to 800 for weighted graph since it is 

meaningless to choose too large 𝛿 for tests.  

8.5.3.1 The query time for each real data graph 

As shown in Table 2, we divide the whole running time into two parts: 

Relation Construction (RC) and Matching Results Construction (MC). 

Figure 11 summarizes the query time of different methods for each real 

data graph. We observe that both ER-join and MD-join have much more 

query time than N-join since only the N-join is in the RC part for both 

ER-join and MD-join. For the RC part we can see that MD-join is much 
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them. This is mainly because our method does not have running time for 

RC part since all relations have been constructed offline. Furthermore, 

our method can speed up the N-join process in varying ways, especially, 

for small 𝛿. Such a huge improvement makes our method suitable for 

pattern matching queries on large data graphs. 

(a) yeast (b) wikiVote (c) citeHepph 

(e) webstanford (f) comDBLP (g) webNotreDame 

(e) citeseer (f) webBerkStan (g) webGoogle 
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(h) roadNetPA (i) roadNetTX (j) citePatterns 

Figure 11: The query times (seconds) of each real data graph for 
different methods by fixing the query (as Fig. 7(h)) but varying δ. 

8.5.3.2 The query times for each δ 

In Figure 12, we summarize the query times for each 𝛿.  It is easy to see 

that the MD-join improves more for the running time of MC than the ER-

join when δ is small. For our method, it performs better when δ is small 

as well. However, when 𝛿 = 4(800) we can see that our method nearly 

has no speeding-up to N-join for some data graphs such as yeast, 

comDBLP and citeseer. This is explained by that a larger 𝛿 implies less 

limitations and less tuples can be filtered by our DF&RF algorithms. 
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(b) δ = 2 (400) 

 

(c) δ = 3 (600) 
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(d) δ = 4 (800) 

Figure 12: The query times (seconds) of each δ for different methods 
by fixing the query (as Fig. 7(h)). 

 

8.5.3.3 The tuple numbers and matching result numbers 

In Figure 13, we report tuple numbers and matching results numbers. We 

can see that as 𝛿 increase, the tuples numbers dramatically increase, as so 

does the numbers of matching results. This is why all methods need more 

query time for bigger 𝛿. In the opposite, when δ is small, some of data 

graphs have no or quite few matching results, which explains why the 

queries are very fast since the N-join process is almost not necessary.  
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(a) Total tuple numbers 

 

(b) Matching result numbers 

Figure 13: The total tuple numbers and matching result numbers of 
all real data graphs (for all methods) by fixing the query (as Fig. 7(h)) 

but varying δ. 
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8.5.4 The Query Times for Our Method 

8.5.4.1 The query times for each graphs 

Figure 14 reports the query times of our method in detail. We can see that 

the running times of the DF and RF filtering algorithms are very fast, but 

nearly linearly increasing with 𝛿. In general, if the many tuples are left 

after DF&RF, the query time of our method is mainly spent on final N-

join after the DF and RF. However, by using efficient DF and RF filtering 

algorithm, our method perform much better than the classical N-join. 

(a) yeast (b) wikiVote (c) citeHepph 

(e) webstanford (f) comDBLP (g) webNotreDame 

(e) citeseer (f) webBerkStan (g) webGoogle 
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(h) roadNetPA (i) roadNetTX (j) citePatterns 

Figure 14: The detail query times (seconds) of real data graphs for 
our method by fixing the query (as Fig. 7(h)) but varying 𝜹. 

8.5.4.2 The tuple numbers filtered by DF&RF 

Table 5 reports the tuples numbers of the real data graphs filtered by 

DF&RF algorithms for different 𝛿. From this, it can be seen that our DF 

algorithm is very effective by removing most useless tuples from 

relations; and our RF algorithm can further remove the some tuples from 

relations. When δ is small a few tuples are left, which can greatly speed 

up the classical N-join process. Note that for some smaller data graphs 

but with higher density, like yeast and wikiVote graphs, our DF&RF 

algorithms cannot remove too many tuples since only a small proportion 

of tuples is useless.    
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roadNetTX 3776 0 0 9624 0 0 18200 42 42 29860 131 131 

citePatterns 5538 5 5 18378 40 30 44625 3515 446 92373 24361 2818 
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Table 5: The tuple numbers of real data graphs after DF&RF by 
fixing the query (as Fig. 7(h)) varying δ. 

8.6 Second Experiment: Synthetic Graphs Performance 

In our second experiment, we compare the performance of our method 

against the ER-join and the MD-join on the synthetic data graphs 

described in Table 4. We choose the vertex number 𝑛 = 100,000 and fix 

the label size |Σ| = 200. Also, for the undirected ER graphs we vary the 

number of edges from 100,000 up to 500,000, thereby increasing the 

density and the average degree of vertices increase from 2 to 10; for the 

directed SF graphs we vary the parameter 𝛾 from 2.1 to 2.9 by which the 

number of edges decrease as in Figure 7, thereby decreasing the density. 

We expect to see a tradeoff between indexing costs and query 

performance.  

8.6.1 The Index Times and Sizes for Different Methods 

Figure 15 and 16 summarize the index times and sizes of the ER and SF 

graphs for the different methods, respectively. For establishing index, the 

results clearly shows that both ER-join (by using 2 hop labeling) and 

MD-join (by using 2-hop labeling and LLR embedding) do not scale well 

on ER graphs with more edges and SF graphs with smaller 𝛾. However, 

our method has much less indexing time and sizes both in ER and SF 

graphs.  
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(a) Index time (b) Index sizes 

Figure 15: The index times (seconds) and sizes (MB) of ER data 
graphs for different methods by fixing label size = 200 but varying 

edge number. 

(a) Index time (b) Index sizes 

Figure 16: The index times (seconds) and sizes (MB) of SF data 
graphs for different methods by fixing label size = 200 but varying 𝜸. 

8.6.2 The Index Times and Sizes for Our Method 

The index time and sizes of ER and SF graphs for our method are 

summarized in Figure 17 and 18, respectively. For ER graphs the index 

times and sizes increase dramatically with the 𝛿 and edge number; for SF 

graphs the index times and sizes decrease dramatically with 𝛾. In other 

words, our method perform much better on sparse graphs to establish 

indices. 
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(a) index time (b) index size 

Figure 17: Indexing times (seconds) and sizes (MB) of the ER graphs 
(label size = 200) for our method by varying edge number. 

 

  
(a) index time (b) index size 

Figure 18: Indexing times (seconds) and sizes (MB) of the SF graphs 
(label size = 200) for our method by varying 𝜸. 

8.6.3 The Query Times for All Methods Comparing 

After indexing, we begin to test the query times of different methods. In 

this test, we still fix the query 𝑄 shown in Figure 7(h) but vary δ from 1 

to 4, since it is meaningless to choose too large 𝛿 for tests. In addition, for 

ER graphs we generate 5 graphs with different edge number ranging from 

100𝐾 to 500𝐾; for SF graphs we generate 5 graphs with different value 

of 𝛾 ranging from 2.1 to 2.9. 
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8.6.3.1 The Query Times for Each Graph 

Figure 19 and 20 summarize the query times of ER and SF graphs for 

different methods, respectively. We can see that our method have much 

less query time than other methods and the query time increase 

dramatically with δ. However, for ER graphs with 500𝐾  edges, 𝛿 = 4 

and for SF graphs with 𝛾 = 2.1, 𝛿 = 4, our method has less speedup for 

N-join. This is mainly because the proportion of redundant tuples tend to 

small in dense graphs. 

(a) |𝐸(𝑄)|=100k (b) |𝐸(𝑄)|=200k (c) |𝐸(𝑄)|=300k 

 

(e) |𝐸(𝑄)|=400k (f) |𝐸(𝑄)|=500k  

Figure 19: The query times of ER graphs (label size = 200) with 
different edge numbers for different methods by varying δ.  
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(a) 𝛾 = 2.1 (b) 𝛾 = 2.3 (c) 𝛾 = 2.5 

 

(e) 𝛾 = 2.7 (f) 𝛾 = 2.9  

Figure 20: The query times of SF graphs (label size = 200) with 
different 𝜸 for different methods by varying δ.  
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In Figure 21 and 22, we summarize the query times in ER and SF graphs 
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our method has the much better performance than other methods 

especially when the 𝛿 is small. 
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(a) δ =1 (b) δ = 2 

  
(a) δ =3 (b) δ = 4 

Figure 21: The query times of ER graphs (label size = 200) with each 
𝜹 for different methods by varying edge numbers. 
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(a) δ =3 (b) δ = 4 

Figure 22: The query times of SF graphs (label size = 200) each 𝜹 for 
different methods by varying 𝜸. 

8.6.3.3 The Tuple Numbers and Matching Result Numbers 

In Figure 23 and 24, we report the tuple numbers and match result 

numbers for ER and SF graphs, respectively. We can see that with the 

increasing of 𝛿, the tuple numbers increase dramatically, which lead to 

much more match result numbers. This is why all methods need more 

query time for bigger δ.  For both ER and SF graphs, the tuple numbers 

and matching result numbers increase sharply with the their edge 

numbers and 𝛾, respectively, since their graph densities increase.   
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Figure 23: The total tuple numbers and match result numbers of ER 
graphs for our method by varying δ and the edge number. 

(a) Total tuple numbers (b) Match result numbers 

Figure 24: The total tuple numbers and match result numbers of SF 
graphs for our by varying δ and 𝜸. 

8.6.4 The Query Time for Our Method 

8.6.4.1 The query time for each graph 

Figure 25 and 26 reports the query time of our method with more details 

for the ER and SF graphs, respectively. We can see that the running time 

of DF and RF filtering algorithms are so fast, nearly linearly increasing 

with 𝛿. The query time of our method is mainly spent on final N-join after 

DF and RF filtering. By using efficient DF and RF filtering algorithm, 

our method perform much better than classical N-join. 
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(d) |𝐸(𝑄)|=400k (e) |𝐸(𝑄)|=500k  

Figure 25: The detail query times of ER graphs for our method by 
varying δ. 

(a) 𝛾 = 2.1 (b) 𝛾 = 2.3 (c) 𝛾 = 2.5 

 

(d) 𝛾 = 2.7 (e) 𝛾 = 2.9  

Figure 26: The detail query times of SF graphs for our method by 
varying δ. 

8.6.4.2 The Tuple Numbers Filtered by DF&RF 

Table 6 and 7 reports the tuple numbers of ER and SF graphs filtered by 

DF and RF for different δ, respectively. It is easy to see that our DF 

filtering algorithm is very effective, which can remove most of the 

redundant tuples. However, our RF filtering algorithm can further remove 
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means there is no matching results. With the increase of graph density, 

the proportions of redundant tuples will decrease. This well explain why 

our method has better performance in sparse graphs.  

 
δ = 1 δ = 2 δ = 3 δ = 4 

|𝐸(𝑄)| total after DF after RF total after DF after RF total after DF after RF total after DF after RF 

100K 42 0 0 174 0 0 394 0 0 790 9 9 

200K 68 0 0 456 0 0 2072 5 5 8454 1461 183 

300K 120 0 0 1030 0 0 6596 36 35 38812 19123 3733 

400K 172 0 0 1816 0 0 14856 5954 211 115864 57932 44735 

500K 216 0 0 2768 0 0 27886 13554 706 262850 131425 130665 

Table 6: The tuple numbers of ER graphs with different edge 
numbers after DF&RF by varying δ. 

 
δ = 1 δ = 2 δ = 3 δ = 4 

𝛾 total after DF after RF total after DF after RF total after DF after RF total after DF after RF 

2.1 196 11 11 2934 1517 1471 8956 6226 6093 15471 12283 11893 

2.3 83 0 0 1230 313 312 4274 2524 2474 8188 5390 5284 

2.5 74 0 0 483 32 32 1845 619 607 3574 1990 1966 

2.7 59 0 0 181 0 0 500 30 30 1103 124 124 

2.9 47 0 0 132 0 0 278 0 0 491 0 0 

Table 7: The tuple numbers of SF graphs with different 𝜸 after 
DF&RF by varying δ. 

8.7 Third Experiment: Impact of Label Numbers 

We next analyze the performance of our method while varying the 

number of labels using synthetic graphs. Here, all the numbers of vertices 

for tested synthetic graph are set to |𝑉 (𝐺)| = 100𝐾 ; we fix |𝐸(𝑄)| =

300𝐾 for ER graphs and 𝛾 = 2.5 for SF graphs; and for both ER and SF 

graphs we vary the number of labels from 100 to 500 which are assigned 

to vertices of data graph randomly; and, at the same time, we vary the 

value of 𝛿 from 1 to 4. Obviously, as the number of labels increase the 

average list size |𝑅(𝑙)| will decrease. Our aim here is to better understand 

the impact of both the number of labels and 𝛿 on the query performance 

of our method. We expect that the more labels will lead to the less query 

time.  
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8.7.1 The Query Times for Each 𝜹 

Figure 27 and 28 show the query time of the ER and SF graphs for our 

method by fixing |𝐸(𝐺)| = 300𝐾  and 𝛾 = 2.5 , but varying label 

numbers and 𝛿, respectively. We observe that in the ER graphs the query 

time decreases with the increase of labels for all 𝛿 value. However, in the 

SF graphs the query time generally decrease with the increase of labels 

for 𝛿 = 1, 2 , but some fluctuations occur for 𝛿 = 3, 4 . This is mainly 

because the ER kind of graphs are random graphs whose edges are 

randomly chosen from all possible edges, but the SF kind of graphs are 

not random graphs whose edges are generated according to power-low 

distribution (see Section 8.4). Such non-average distributions of edges for 

the SF graphs will lead to some different query performances compared 

with the ER graphs. 

 

Figure 27 : The query times of ER graphs (|𝑬(𝑮)| = 𝟑𝟎𝟎𝑲) for our 
method by varying label numbers and δ. 
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Figure 28 : The query times of SF graphs (𝜸 = 𝟐. 𝟓) for our method  
by varying label numbers and δ. 

8.7.2 The Tuple Numbers and Matching Result Numbers 

Figure 29 and 30 shows the tuple numbers and matching result numbers 

of the ER and SF graphs for our method, respectively. We observe that in 

the ER graphs the tuple number and matching number decrease with the 

increase of labels for all 𝛿 , but in the SF graphs this trend has some 

fluctuations. This well explains the query performances shown above. 

  
(a) Total tuple numbers (b) Matching result numbers 

Figure 29: The tuple numbers and matching result numbers of the 
ER graphs (edge number = 300) for our method by varying label 

numbers and 𝜹. 
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(a) Total tuple numbers (b) Matching result number 

Figure 30: The tuple numbers and match result numbers of the SF 
graphs (𝜸 = 𝟐. 𝟓) for our method by varying label numbers and 𝜹. 

8.7.3 The Tuple Numbers Filtered by DF&RF 

Table 8 and 9 shows the tuple numbers filtered by DF and RF algorithms, 

respectively. We observe that our DF and RF algorithms are powerful to 

remove redundant tuples especially when 𝛿  is small. This is why our 

method is efficient for evaluating pattern matching queries. In addition, 

with the increase of labels the tuple numbers decrease and the proportions 

of redundant tuples are decrease.  

 
δ = 1 δ = 2 δ = 3 δ = 4 

|Σ| total after DF after RF total after DF after RF total after DF after RF total after DF after RF 

100 574 0 0 4228 10 10 26140 9045 768 156302 78017 35685 

200 120 0 0 1030 0 0 6596 36 35 38812 19123 3733 

300 74 0 0 394 0 0 2558 5 5 15694 7477 591 

400 48 0 0 276 0 0 1758 0 0 10398 4711 310 

500 32 0 0 176 0 0 1060 5 5 6052 2448 141 

Table 8: The tuple numbers of ER graphs (edge number = 300) 
filtered by DF&RF by varying label number and δ. 

 
δ = 1 δ = 2 δ = 3 δ = 4 

|Σ| total after DF after RF total after DF after RF total after DF after RF total after DF after RF 

100 373 0 0 2544 146 117 7379 2422 1808 13473 8465 6238 

200 74 0 0 483 32 32 1845 619 607 3574 1990 1966 

300 21 0 0 79 0 0 299 0 0 803 33 13 

400 17 0 0 75 0 0 334 32 32 943 287 256 
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500 8 0 0 17 0 0 67 0 0 185 0 0 

Table 9: The tuple numbers of SF graphs (edge number = 300) 
filtered by DF&RF by varying label number and δ. 

8.8 Forth Experiment: Impact of Query Edge Numbers And 

Join Order Selections 

In this subsection, we show the performance of our method as we vary 

the number of query edges, |𝐸(𝑄)|. The query graphs are taken form 

those shown in Figure 7 and have approximately equal numbers of 

forward edges and backward edges. For such a query pattern, we vary the 

number of query edges from 3 to 9. We expect that as the query edges 

grow a higher speeding-up over the classical N-join will be obtained for 

our method. 

8.8.1 The Query Time for Each Graph 

Figure 31 shows that as the query edges grow the difference between our 

method and the classical N-join increase. The reason for this is that more 

edges in a query means a higher restriction and therefore more percentage 

of useless tuples can be filtered. As discussed in Section 7.2, the join 

order can also affect the performance of the N-join. Thus, Figure 31 also 

compares the N-join and our method with and without join order 

selections. We can see that a good join order can significantly speed up 

the classical N-join procedure. However, the good join order nearly does 

not have improvement for our method. This is because that our DF&RF 

algorithms remove almost all the useless tuples, which greatly reduces the 

searching space. Obviously, when |𝑄(𝐸)| ≤ 3 the join order selection has 

no effects to both the classical N-join and our method, since fewer query 

edges mean fewer joins and in this case the order of joins become less 

important. 



87 

 

(a) yeast (b) wikiVote (c) citeHepph 

(d) webstanford (e) comDBLP (f) webNotreDame 

(g) citeseer (h) webBerkStan (i) webGoogle 

(j) roadNetPA (k) roadNetTX (l) citePatterns 

Figure 31: The query times for each real data graphs by varying the 
number of query edges. 
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8.8.2 The Query Time for Each Query Edge Number 

Figure 32 shows the query time of our method for all the real data graphs 

by varying the number of query edges. We can not observe a clear trend 

of query times for the different number of query edges. This is mainly 

because more query edges produce more tuples which increase the 

searching space, but at the same time, more query edges impose more 

restrictions so that the DF&RF algorithms are more powerful in reducing 

the relations participating the N-join.  

 
Figure 32: The query times of our method for all data graphs by 

varying the numbers of query edges. 

8.8.3 The Tuple Numbers and Matching Result Numbers 

Figure 33 shows the tuple numbers and matching result numbers for the 

different number of query edges. We can see that the total tuples increase 

linearly with query edges. However, the number of matching results do 

not have a clear trend, which explains the variation of query time shown 

above.  
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(a) Total tuple numbers 

 

(b) Matching result numbers 

Figure 33: The total tuple numbers and matching result numbers for 
all data graphs by varying the number of query edges. 
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comparison, the number of the tuples removed by the RF is relatively 

small. More importantly, with the increase of query edges more tuples 

can be filtered by the DF&RF, which significantly expedite the classical 

N-join process. 

 
|𝐸(𝑄)| = 3 |𝐸(𝑄)| = 5 |𝐸(𝑄)| = 7 |𝐸(𝑄)| = 9 

graphs total after DF after RF total after DF after RF total after DF after RF total after DF after RF 

yeast 5300 2364 2115 7440 3220 2822 8062 3049 2506 9980 3624 2962 

wikiVote 808 741 692 1407 1266 1145 2223 1978 1833 3067 2714 2532 

citeHepph 1280 931 336 2146 1386 392 2821 1676 423 3435 1885 479 

webStanford 945 197 194 1466 127 127 2171 92 91 3011 44 44 

comDBLP 708 59 56 1140 14 14 1532 0 0 1884 0 0 

webNotreDame 398 208 33 600 267 25 746 35 34 1037 47 46 

citeseer 319 7 6 536 5 5 786 0 0 1017 0 0 

webBerkStan 560 109 91 1215 159 150 1736 223 214 2058 227 227 

webGoogle 511 88 76 929 68 68 1254 62 62 1549 34 34 

roadNetPA 21148 789 788 35144 98 98 49246 7 7 63686 0 0 

roadNetTX 5914 114 114 9624 0 0 13588 0 0 17534 0 0 

citePatterns 11015 458 362 18378 40 30 25810 10 10 33262 0 0 

Table 10: the tuple numbers for each real data graphs after DF &RF 
algorithms by varying the number of query edges. 

8.9 Fifth Experiment: Impact of Query Patterns 

Finally, we analyze the performance of our method by varying the query 

patterns but fixing the number of query edges to 6. Here we test 4 kinds 

of queries LP6, TP6, GP6 and CG6 corresponding to 4 patters (see 

Section 8.4) with 6 query edges against 12 real data graphs (see Table 3). 

We expect to see the different query patterns can affect the query 

performance. 

8.9.1 The Query Time for Each Graphs 

From Figure 34, we can see that LP6 and TP6 tend to require much more 

query time than GP6 and CG6 for both the N-join and our methods,  

especially for small graphs such as yeast and wikiVote, as they are of 

complicated structures and have fewer matching results. We also observe 
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that for GP6 and CG6 our method have a larger speeding-up to the 

classical N-join for LP6 and TP6. The reason is that for the same number 

of query edges both GP6 and CG6 generally have much more limitations 

than LP6 and TP6, which lead to a higher percentage of redundant tuples 

eliminated by our DF&RF algorithms. Obviously, the CG6, as a complete 

graph pattern, has the most limitation and the percentage of tuples 

removed by our DF&RF algorithms is the highest among all these query 

patterns. So, for this kind of query, a big difference between the N-join 

and ours can be observed. 

(a) yeast (b) wikiVote (c) citeHepph 

(e) webstanford (f) comDBLP (g) webNotreDame 

(e) citeseer (f) webBerkStan (g) webGoogle 
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(h) roadNetPA (i) roadNetTX (j) citePatterns 

Figure 34: The query times of each real graph for N-join and our 
method by fixing |𝑬(𝑸)| = 𝟔 but varying the query patterns. 

8.9.2 The Query Times for Each Pattern Query 

From Figure 35, it is clear to see that our methods have mostly a better 

performance for GP6 and CG6 than LP6 and TP6. However, for larger 

data graphs, this running time differences becomes small. This can be 

explained by their matching result numbers (see the next section).  

 

Figure 35: The query times of each query pattern for our method by 
fixing |𝑬(𝑸)| = 𝟔. 
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that their matching results have a big differences. In general, LP6 and 

TP6 have much more matching results than GP6 and CG6.  

 

(a) Total tuple numbers 

 

(b) Matching result numbers 

Figure 36: The tuple numbers and matching result number of each 
query pattern for our method by fixing the query number = 6. 
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8.9.4 The Tuple Numbers Filtered by DF&RF 

Table 11 shows the tuple numbers after filtered by DF and RF algorithms 

for the different queries of patterns. For LP6 and TP6, we observe that the 

DF algorithm can filter a large percentage of tuples especially for large 

data graphs, but the RF algorithm has almost no effect since both LP and 

TP contain no triangles. Only for GP6 and CG6, the RF algorithm is able 

to remove some unqualified tuples. Generally, our DF and RF algorithms 

are more powerful to remove redundant tuples in GP6 and CG6 than in 

LP6 and TP6. This explains why our method performs better in GP6 and 

CG6.  

 
LP6 TP6 GP6 CG6 

graphs total after DF after RF total after DF after RF total after DF after RF total after DF after RF 

yeast 16258 7577 7577 22702 10127 10127 18752 8332 8095 25364 11388 10318 

wikiVote 2048 1850 1850 1968 1804 1804 1932 1672 1649 2095 1839 1631 

citeHepph 2353 1837 1837 2685 2179 2179 2454 1708 1056 2667 1649 271 

webStanford 2202 381 381 2246 525 525 2142 105 105 2169 236 232 

comDBLP 1180 60 60 1316 49 49 1214 0 0 1310 22 21 

webNotreDame 718 135 135 792 257 257 762 291 95 771 306 18 

citeseer 663 28 28 651 23 23 660 0 0 681 0 0 

webBerkStan 1276 186 186 1090 29 29 1390 12 12 1050 43 43 

webGoogle 1002 63 63 1070 261 261 1045 83 83 988 64 58 

roadNetPA 42454 0 0 42674 0 0 42236 6 6 42168 45 45 

roadNetTX 11730 0 0 11524 0 0 11668 0 0 11722 12 12 

citePatterns 22062 775 775 22490 999 999 22197 29 29 22250 18 18 

Table 11: The tuple numbers of each real data graphs after DF&RF 
algorithms by fixing |𝑬(𝑸)| = 𝟔 but varying the query patterns. 

  



95 

 

CHAPTER 9 CONCLUSION AND 

FUTURE WORK 

9.1 Conclusion 

In this thesis, we present and analyze a new general framework for 

performing patter matching queries over large data graphs. We divide the 

problems of pattern matching queries into two part, RC (Relation 

Construction) and MC (Matching Results Construction). For RC part, 

considering that the value of 𝛿  tends to be small in pattern matching 

queries, we propose the notion of Δ-Transitive Closure, 𝐺 , where Δ is 

the maximum value of received 𝛿 , instead of the traditional transitive 

closure. By doing this, we reduce the running time to 𝑂(𝑁𝑑 )  for 

unweighted data graphs and 𝑂(𝑁𝑑 𝑙𝑜𝑔𝑑 ) for weighted data graphs on 

average, respectively, where 𝑁 = |𝑉 (𝐺)| and 𝑑 is the average degree of 

vertices in data graphs. We also reduce the space usage to 𝑂(𝑁𝑑 ) in 

both unweighted and weighted data graphs on average. Most importantly, 

all of this can be done offline as indexes and do not need online running 

time when receiving a query with 𝛿. 

For the MC part, the classical Nature Joins are adopted to construct all the 

matching results. However, this kind of Natural Joins is NP-complete, 

taking 𝑂(∏ |𝑅 |) running time. To speed up the MC part, we propose 

two-level filtering strategy, DF (Domain Filtering) and RF (Relation 

Filtering), in order to remove the redundant tuples that are not necessary 

to participate the Natural Joins in all relations 𝑅 . The running time DF 

and RF are both bounded by 𝑂(𝑚𝐷 ) and 𝑂(𝑛 𝐷 ), respectively, where 

𝑚 = |𝐸(𝑄)| , 𝐷 = max {|𝑅 |,… , |𝑅 |}  and 𝐷′  is the 𝐷  firstly filtered 
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by DF. From the experiments we can see our two filtering algorithms are 

very efficient to speed up the Natural Joins and with reasonable running 

time. 

9.2 Future Work 

As a future work, we will optimize the indexing time and size in order to 

well handle large data graphs since currently the real-life graphs tend to 

be larger and larger. For example, “Facebook” has 2.2 billion monthly 

active users (January 2018), which is a huge social network graph. The 

straightforward method is to use the parallel computing to speed up the 

indexing process. In this way, the related algorithms should be redesigned 

by the parallel programming and one or more GPU are required. 

Furthermore, in order to reduce the index size, we could choose to 

calculate the shortest-path distances online when receiving a query with 

𝛿. This may require reasonable running time if it is sped up by the parallel 

computing.  

The other topic is to extend the shortest-path distance limitation used in 

this thesis to other kind of limitations. For example, as we mentioned in 

the related work,  in [25], the reachability limitation is used to handle the 

graph pattern matching problems. In addition, in [41], a new limitation, 

called label-constrained reachability, is proposed. Specifically, for a 

directed edge-labeled graph, we want to know if there is a path for a 

given source vertex to a given target vertex using only edges with labels 

from a restricted subset. This is a fundamental query in some social 

networks like a citation network. Besides, if our data graphs are 

geographic graphs (such as our tested graphs roadNetPA and roadNetTx 

shown in Table 5), the shorted-path distance can also be easily extended 

to Euclidean distance or Chebyshev distance.   
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