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The development of state-of-the-art convolutional neural networks (CNN) has allowed

researchers to perform plant classification tasks previously thought impossible and rely

on human judgment. Researchers often develop complex CNN models to achieve better

performances, introducing over-parameterization and forcing the model to overfit on a

training dataset. The most popular process for evaluating overfitting in a deep learning

model is using accuracy and loss curves. Train and loss curves may help understand

the performance of a model but do not provide guidance on how the model could be

modified to attain better performance. In this article, we analyzed the relation between

the features learned by a model and its capacity and showed that a model with higher

representational capacity might learn many subtle features that may negatively affect its

performance. Next, we showed that the shallow layers of a deep learning model learn

more diverse features than the ones learned by the deeper layers. Finally, we propose

SSIM cut curve, a new way to select the depth of a CNN model by using the pairwise

similarity matrix between the visualization of the features learned at different depths by

using Guided Backpropagation. We showed that our proposed method could potentially

pave a new way to select a better CNN model.

Keywords: explainable AI, deep learning—artificial neural network, Guided Backpropagation, neural network

visualization, convolutional neural network

1. INTRODUCTION

Deep learning approaches have been widely adopted into agriculture (Weng et al., 2019; Chandra
et al., 2020) (i.e., precision agriculture, crop breeding, plant phenotyping) due to their ability to
extract complex features from a large amount of data (Montavon et al., 2019). In recent years,
the focus has shifted toward developing tools to optimize the performance of the models to
help researchers integrate deep learning models easily into their studies (Humphrey et al., 2017;
Ubbens and Stavness, 2017; Ubbens et al., 2018). Despite the recent development, deep learning
models are often considered as “black box” (Tzeng and Ma, 2005; Oh et al., 2019). To improve the
trustworthiness of models and to design them effectively for the unique challenges that appear with
specialized datasets, many recent studies have focused on explaining the learning and prediction
of deep learning models (Tzeng and Ma, 2005; Mostafa and Mondal, 2021). However, explainable
deep learning models in plant phenotyping still remains to be an active field of research with room
for improvement (Ubbens and Stavness, 2017; Chandra et al., 2020; Hati and Singh, 2021). Plant
image datasets are often different from general image datasets due to small sample sizes, highly
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FIGURE 10 | Comparison of the Cut Position (Layer) VS SSIM cut curve for ResNet models for (A) Weedling and (B) Plant Village dataset at Epoch (1). The value in

the legend of the chart indicate the training and testing accuracy of the model.

FIGURE 11 | Comparison of the Cut Position (Layer) VS SSIM cut for different epochs of (i) Weedling and (ii) Plant Village dataset using (a) ResNet-50 and (b)

2-Conv-ResNet. The value in the legend of the chart indicate the training and testing accuracy of the model.

the capacity of the model. As a result, the training of the smaller
models can be stopped before it is optimized (Caruana et al.,
2000).

The advantage of the SSIM cut curve is that it helps select an
optimizedmodel. By looking at the SSIM cut of models of various
depth, we propose the depth that is likely to provide better
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FIGURE 12 | Comparison of the Cut Position (Layer) VS SSIM cut curve for the ResNet-50, ResNet-50-10%, 2-Conv-ResNet, and 2-Conv-ResNet-10% models, and

Cut Value Difference for the ResNet-50, ResNet-50-10% for different datasets at Epoch (1). The value in the legend of the chart indicate the training and testing

accuracy of the model. (A) Weedling. (B) Plant village.

accuracy. For a fixed model, the shape of the SSIM cut curve
remains similar whether we stop early or not (see Figures 6, 10).
Therefore, we look at the SSIM cut curves of models built after
the first epoch to expedite the process.

Note that early stopping may be used while training the model
to expedite the model selection by generating SSIM cut curves.
However, here we only used one training epoch to generate the
curves. Once we select an appropriate model by examining the
generated SSIM cut curves, we do not use any early stopping
criteria on the selected model.

3.5. Summary
In summary, our experimental results suggest that the extraction
of features of a deep learning model depends on the capacity of
the model (RQ1). Our analysis of the SSIM curve shows that the
GBP visualizations of the initial convolutional layers of a model
are muchmore diverse than the GBP visualizations for the deeper
layers (RQ2). Furthermore, the rate of change and the SSIM cut
curve’s elbow point can be used for model selection (RQ3). Since
the SSIM cut curve is consistent for a model throughout different
training epochs, we can use it to choose a model depth at an early
training stage. This can save a lot of time in a traditional approach
that compares models after fully training them.

3.6. Testing With Segmented Images
Table 2 illustrates the accuracy of different models on the
Weedling and Plant Village dataset for segmented images.

For segmentation, we retained all the green pixels in the
image and marked the rest of the pixels as black (see
Supplementary Material for examples of segmented images).
Finally, we ended up with images where only the leaf was present.
Next, we used the pre-trained models on the segmented images
to calculate the accuracy.

From Table 2, we can see that the 3-Conv-ResNet has higher
classification accuracy than other models for both Weedling and
Plant Village dataset, which implies that the models are more
focused on the leaf features than the background features. Also,
the low accuracy of the ResNet-50 model indicates background
features may more influence it than the 3-Conv-ResNet model.
Comparing the accuracy of Epoch (1) to the accuracy of Epoch
(Best), we can see that as the training progresses, the models tend
to focus more on the leaf features than the background features.
However, the results of such experiments can be limited by the
quality of the segmented images.

4. CONCLUSION

In this article, we explained the overfitting in a CNN model
for plant phenotyping by visualizing the intermediate layers’
learning. We used guided backpropagation to visualize the
learning of the intermediate layer of different CNN models. We
used four different models on three different plant classification
datasets. We proposed a novel SSIM cut based analysis to
measure the similarity among the features learned in the
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TABLE 2 | Performances of ResNet-50 model with different block for various

datasets with segmented images.

Epoch (best) Epoch (1)

Training

dataset (%)

Testing

dataset (%)

Training

dataset (%)

Testing

dataset (%)

Weedling

ResNet-50 58.87 53.61 14.01 11.99

ResNet-50-10% 41.95 35.49 28.43 25.60

2-Conv-ResNet 33.56 24.74 29.39 25.88

2-Conv-ResNet-10% 27.61 18.66 27.82 17.26

3-Conv-ResNet 65.50 66.64 14.08 12.08

4-Conv-ResNet 30.77 23.38 13.97 11.97

Plant village

ResNet-50 28.00 23.68 10.60 10.50

ResNet-50-10% 31.45 27.80 10.08 11.54

2-Conv-ResNet 40.78 34.71 28.66 25.35

2-Conv-ResNet-10% 24.03 23.37 28.66 25.35

3-Conv-ResNet 61.72 62.94 30.94 26.52

4-Conv-ResNet 43.90 38.09 21.48 20.56

Bold values represent the highest classification accuracy.

intermediate layers of a CNN. Our experiments showed that the
features extracted by a model depend on its capacity. Our SSIM
cut curve revealed that in a more complex model, the shallow
layers learn more diverse features as compared to the deeper
layers and that a more distinct transition between these regimes
is noticeable for overfit models. The SSIM cut curve method can
help detect a potential overfit condition or inform a practitioner
that a shallower model may be more appropriate for training
with a particular dataset. We also showed the usage of the SSIM
cut curve in selecting the model depth. It can help reduce a
model’s training time and resource as we can predict the required
model depth at the beginning of training. We believe our study
contributes to a better understanding of the behavior of overfit
CNNmodels and provides new directions for creating metrics to
detect and avoid model overfitting in plant phenotyping tasks.

Future works may further examine various facets of our SSIM
cut curve based analysis. In our SSIM cut curve analysis, the
elbow point may not always correspond to a sharp elbow or
be identified unambiguously in practice, which is a commonly
known limitation of elbow heuristics (Ketchen and Shook, 1996).

We envision running a user study involving deep learning
experts, where one can show the output of different models
by hiding the model’s label and recording their opinions to
see whether a domain expert can detect an overfit model by
only observing the GBP visualization of the intermediate layers.
Due to the residual connection in the ResNet models, it might
be possible to avoid overfitting and influence the similarity
of the GBP visualizations of various layers. Hence it would
be interesting to investigate the contribution of the residual
connections in an overfit model’s performance.
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