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Abstract

A growing global population and recent changes in climate make it increasingly necessary to incorporate

recent advances in machine learning and robotics into agricultural practices. Plant detection is the

problem of localizing and classifying all the plants within a given scene. Recent state-of-the-art object

detection algorithms show promising results in detecting multiple objects and have great potential for

outdoor plant detection. They require, however, a massive annotated plant dataset. It takes a great deal

of time and expertise to manually annotate a plant dataset on such a large scale. We propose automating

the plant annotation process in this thesis. Synthetic plant image datasets are generated in an outdoor

setting by augmenting indoor images of plants that were captured and annotated automatically using a

robotic camera system. We examine two different approaches: using image processing techniques to place

plants on a soil background and using a generative adversarial model to generate fully synthetic outdoor

datasets. We train two different plant detection algorithms on the synthetic datasets and evaluate the

results on a manually-annotated outdoor dataset. Our best-performing dataset shows promising results

for adoption in larger-scale automatic outdoor plant dataset annotation.
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Chapter 1

Introduction

With the earth’s population rising at unprecedented levels [1], the need for more food supply, including

agricultural products, is increasing. These changes have created a need for more sustainable methods in

agriculture practices. With recent technological advances, specifically crewless vehicles [2] and artificial

intelligence [3], new opportunities are available to incorporate these novel tools into a solution for a

greater population. Precision agriculture [4] is defined as using recent technological advances to address

agriculture’s challenges and modernizing farming practices to make them more efficient and sustainable.

Plant monitoring is one of the challenges faced in farming. For example, one obvious use of plant

monitoring is weed removal. As crops grow in an agricultural field, inevitably, weeds grow among them.

The growth of weeds hampers the growth of crops, as they have to compete for resources such as water,

sunlight and other resources. Therefore, eliminating weeds is of utmost importance for a more efficient

yield. Using herbicides to remove weeds can cause contamination of vital resources [5] such as water and

fertile soil. One essential solution is to use robots and autonomous vehicles equipped with an embedded

plant detection system to localize and detect plants. If the robot can localize them, then the task of

removal can be achieved, for example, by lasers or mechanical means (rather than harmful herbicides).

Object detection is the problem of finding and classifying all of the instances of objects found within an

image. Recent advances in machine learning, specifically convolutional neural networks, provide robust

and powerful object detection models [6] that can also be employed for plant detection.

The main bottleneck in enabling such solutions is the requirement for massive annotated datasets to

train the plant detection system. As long as such data are not readily available and difficult to obtain,

such techniques may ultimately remain restricted to a limited range of case studies. Review studies [7],

as well as works focusing on specific applications such as weed detection [8] highlight the difficulty in

finding good-quality ground-truth datasets for plant detection. A wide range of differences in growing

1



2 CHAPTER 1. INTRODUCTION

conditions and physical dissimilarities between plants, even those belonging to the same genotype,

further complicate the generation and collection of clearly labelled plant data. As the model will have

to operate within an outdoor agricultural field, weather conditions such as rain, haze, wind, extreme

temperatures, sun visibility, clouds and insects feeding on the plants introduce changes to the data that

make it even more challenging to generate. Moreover, even after obtaining the data, we need experts

educated in recognition of different crops to annotate the data and specify the exact position of each

plant within each image. Involving human specialists to annotate massive datasets is labour intensive

and an expensive task. All of these reasons highlight the dire need for scalable and cost-effective methods

for generating massive labelled datasets of plants.

The purpose of this thesis is to examine a novel pipeline (see Figure 1.1) for generating synthetic outdoor

data using indoor data captured in controlled environments and put its effectiveness to the test by

evaluating its ability to be used for training object detection models.

Figure 1.1: Flowchart of processes used in this thesis. The process begins by generating synthetic outdoor data
from real indoor image data. This synthetic data is used to train an outdoor object detection method. Finally,
we evaluate the trained model on real outdoor data to test the effectiveness of synthetic data.

We use the indoor data generated by EAGL-I [9] (see e.g. Figure 4.1) in a greenhouse setting as one of

the inputs to our pipeline. We train object detection models with two available synthetic datasets, named

Synthetic 1 and Synthetic 2. A Composite dataset is also created with placing plants on soil background.

This is called the Composite dataset throughout the thesis. Synthetic 1 dataset is created with adversarial

generative models. Finally, we create another synthetic dataset, Synthetic 2, by fine-tuning the Synthetic

1 dataset and addressing its shortcomings. We also annotate a small subset of the outdoor dataset.

We call this the Validation outdoor dataset. We use this dataset to evaluate the effectiveness of the
synthetic dataset in training the object detection model.
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1.1 Problem Definition

This thesis aims to solve the problem of finding all instances of plants in an outdoor setting given an

image or frame from a video containing multiple instances of plants. We are specifically interested in

seeing the coordinates of the plant within the image. In addition, we want to classify the type of plant.

A massive dataset of plants in an outdoor setting is required to use object detection models.

The process of creating an annotated outdoor dataset of plants is time-consuming and expensive. In order

to harness the power of machine learning for agricultural applications and utilize it in vast commercial

capacities, we need robust, cost-effective, and minimally human-involved methods that generate annotated

datasets. Additionally, methods must be scalable and adaptable to different conditions, such as those

encountered in other geographical locations and within their particular environments.

Accordingly, we want to generate datasets that will be used in the training of object detection models to

detect plants outdoors.

1.2 Contribution

This thesis provides the following major contributions:

1. Generating synthetic datasets with generative adversarial models.

2. Utilizing three synthetic datasets to train two state-of-the-art object detection models and evaluat-

ing their performance on outdoor data without explicitly utilizing outdoor data during training.

3. Annotating a small outdoor dataset used for evaluation.



Chapter 2

Methodology

In this chapter, the theoretical foundations for field plant identification are introduced. Machine

learning is the process of using statistical methods to enable computers to learn without being explicitly

programmed [10]. Neural network-based models are a type of machine learning algorithms. An overview

of neural networks is provided, followed by the introduction of a specific type of neural network,

convolutional neural networks [11]. We then conceptualize how employing several layers of neural

networks yields more powerful machine learning models [12]. Finally, we describe in detail how our field

plant identification classifier is an extension of these concepts.

2.0.1 Single computational neuron

Neural networks consist of computational units called neurons. Inspired by the neurons in the brain,

every single neuron can have n inputs with each input xi associated with a respective weight wi. Each

neuron performs a weighted sum followed by the addition of a bias b. This results in a scalar that is the

linear product of the weight and input vectors as well as the bias term. An activation function φ is a

mathematical function applied after the summation step to get the output. This mathematical function

is non-linear with respect to its input. This gives the network the ability beyond scaling (multiplication)

and shifting (summation) to capture more complex patterns. Let X be the n-dimensional input vector

and W the n×m weight matrix where m is the number of neurons. Output, O(X), can be expressed

mathematically

O(X) = φ(
(
W TX + b

)
). (2.1)

Figure 2.1 shows the architecture of a single neuron [13]. We next look at some common activation

function choices.

4



5

Figure 2.1: Architecture of a single neuron in a neural network, where j denotes the j-th neuron [13].

2.0.2 Activation functions

In this section, we introduce three commonly used nonlinear functions for neural networks [12] applied

to obtain output vector, see Eq. 2.1.

Sigmoid: Mathematically, the sigmoid function is defined as

y = σ(x) =
1

1 + e−x
. (2.2)

It takes real values as its input and outputs a number between 0 to 1. Therefore this function is used

when we want to predict the probability of a sample belonging to a class.

Hyperbolic Tangent: The hyperbolic tangent function is defined as

y = 2σ(2x)− 1. (2.3)

It takes real values as its input and outputs a number between -1 and 1.

RELU: The mathematical form of the RELU function is
y = max(0, x). (2.4)

This function maps negative inputs to zero, therefore this decreases the ability of function to model

negative outputs.
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2.0.3 Multi-layer perceptron (MLP)

A neural network layer is a group of single neurons stacked together. A multi-layer perceptron (MLP) is

a group of layers stacked together. Early work started in the 1940s with biologically inspired models

such as perceptron and multi-layer perceptron [14]. It learns a function f(·) : Rn → Ro after training on

a dataset, here n denotes the number of dimensions for input and o is the number of dimensions for

output and R is the set of real numbers. Supplied the set of inputs (features) X = x1, x2, . . . , xn and a

target y, it can learn a non-linear function approximation for classification. There may be one or more

layers between the input and the output layer, called hidden layers. The general schema of a one hidden

layer MLP with scalar output is shown in Figure 2.2.

Figure 2.2: One hidden layer MLP, consisting of the input (feature) layer, followed by another layer (hidden)
and output layer with the function f applied to the output [15].

Assuming a set of training examples (x1, y1) , (x2, y2) , . . . , (xn, yn) where xi ∈ Rn and yi ∈ {0, 1}, a one

hidden layer one hidden neuron MLP learns the function f(x) = W T
2 g

(
W T

1 x+ b1
)
+ b2 where W1 ∈ Rm

and W2, b1, b2 ∈ R are parameters that will be learned by the model. W1,W2 show the weights of the

input layer and hidden layer accordingly; and b1, b2 denote the bias added to the hidden layer and the

output layer, respectively. g(·) : R → R is the activation function.
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For binary classification, f(x) is transformed through the sigmoid function to get output values bound

between zero and one. A threshold θ would assign samples of outputs equal or larger than θ to the

positive class, and otherwise to the negative class.

If the problem is defined by more than two classes, f(x) would become a vector with length equal to

number of classes. Furthermore, in place of the logistic function, the softmax function would be used as

in
softmax(z)i =

exp (zi)∑k
l=1 exp (zl)

. (2.5)

In Equation 2.5, zi denotes the ith element of the input to softmax, corresponding to class i, and k is

the number of classes. The resulting vector contains the probabilities of sample x belonging to each

class. The output is then set as the class with the highest probability.

Loss function

In order to quantify the network’s ability to approximate the mapping of training data input to output,

we define a loss function. For each sample, we want to measure the difference between the predicted

output xi (observed probability vector) and the actual value (ground truth), yi. The function that

measures this difference for each sample is called the loss function. If the predicted value is near the

value of the ground truth, we want the loss to be small, whereas, when the predicted output is far

from the ground truth, the loss should be big. The loss function sums or averages all the losses of the

collection of samples. If the function is differentiable, we can use its partial derivatives with respect to

its inputs i.e gradients, as a measure to adjust the parameters of the network such as weights and biases.

Two of the most commonly used loss functions are, mean square error (MSE) and cross-entropy (CE)

[12].

For D inputs, the MSE sums the square of difference between the output of network xi and the actual

value (ground truth) yi from the training data. The mathematical form of the MSE is

MSE(xi, yi) =

D∑
i=1

(xi − yi)
2. (2.6)

The mathematical form of cross-enthropy is

CE = −
D∑
i=1

yi log(xi). (2.7)
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2.0.4 Gradient descent

As discussed in the last section, we want to adjust the parameters of the MLP. We defined a loss function

that measures the difference between the prediction and ground truth. We want to optimize this function.

Gradient descent [16] is an iterative optimization algorithm that finds the local minimum of the function

at each step by taking steps in the opposite direction of the derivative of the function at the given

step. Assume the cost function J , which depend on a vector of variables W = (w0, w1, .., wn). Gradient

descent starts at the initial point W 0 = (w0
0, w

0
1, .., w

0
n), and at step i+1 changes these value of variable

j according to the formula in Eq. 2.8, where α is the rate of the step.

wi+1
j = wi

j − α
∂J

∂wj
. (2.8)

Backpropagation

Let N be an MLP, consisting of k layers L⃗ = (l0, l1, ..., lk), with each layer having k input X =

(x0, x1, ..., xk), k+1 weights W = (w0, w1, ..., wk), and the activation of A⃗ = (a0, a1, ..., ak).

For each layer li we compute its output as

ai = f(wixi + bi), (2.9)

where f is the activation function and bi is the bias term. In this MLP, the input of the layer li is output

of li−1. After computing the output of the last layer, we compute the loss function C and we get the

loss of the layer k

σk =
∂C

∂ak
f

′
(wixi + bi), (2.10)

where σk is the loss of the layer k and f
′ is the derivative of activation function with respect to its input

(wixi + bi) .

The error for the backward layer li is calculated as

σi = (wT
i+1σi+1) · f

′
(wixi + bi), (2.11)

In one forward pass the MLP computes the output of each layer consecutively. In order to optimize the

loss function C, it uses the error computed in each layer, going backward and updates the values of the

paramers as in Eq. 2.8.
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2.1 Deep learning, computer vision and object detection

In a neural network, there can be varying numbers of layers between the input and output layer. As the

number of layers increases, the distance between input and output increases or gets deeper. This class of

neural networks is called deep neural networks. Deep learning is one of the areas of machine learning,

consisting of neural networks with a high number of layers [12]. A notable model in visual problems,

convolutional neural networks (CNNs), were introduced to classify handwritten digits [11]. The modern

era of deep learning picked up the pace in 2012 with the advent of more complex architectures [17].

In recent years, deep learning has been very successful in computer vision, especially on tasks such as

image classification, object detection and image segmentation [18]. This progress has been made mainly

due to improvement in computational power and availability of annotated datasets [19]. We next look

at some fundamental concepts commonly used in computer vision models.

2.1.1 Convolutional neural network

A convolutional neural network (CNN) is a modified MLP that is commonly used to process images.

CNN outperforms MLPs in this area, despite the fact that MLPs can also classify images. Whereas

MLP input is a vector, CNN input is a tensor. Therefore the spatial relation of input is preserved. In a

CNN, the connections are sparse compared to MLP, this results in more efficient computations.

A CNN is composed of consecutive layers. In each layer, there can be multiple filters. Each filter is a set

of kernels stacked together. These layers are called convolutional layers. A kernel can be thought of as a

matrix with the weights as its parameters. Each filter is applied consecutively to local regions of input.

This process can be thought of as convolving the input with the filter, hence the name convolutional.

Figure 2.3 shows an illustrative example of a 2D convolution. This results in a filtered output. All

the filtered outputs are stacked together, a bias term is added, and an activation function is applied

to obtain a feature map. The weight of kernels and the bias term are learnable parameters that will

be learned as the weight and bias parameters in MLP. The final layer is a layer composed of several

neurons, with each neuron connected to all the activations in the previous layer. This layer is called a

fully connected layer.
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Figure 2.3: An example of 2D Convolution [12]. The filter slides through the input to obtain the output.
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Max-pooling

Having too many features can make computing expensive as the number of parameters increases. To

prevent that, a filter is applied to the feature map, and the maximum value extracted over the region to

which the filter is applied. Max-pooling also extracts the most dominant feature, by discarding the less

important features [20].

Pooling aims to achieve spatial invariance by reducing the resolution of the feature maps. Each pooled

feature map is associated with one feature map of the previous layer. Their units combine the input

from a small n× n patch of units, as indicated in Figure 2.4. This pooling window can be of arbitrary

size, and windows can be overlapping.

Figure 2.4: 2 by 2 Max-pooling operation, reducing a 4 by 4 feature map to a 2 by 2 feature map [21].

Batch normalization

Batch Normalization (BN) is one of the normalization methods for neural networks, namely, the process

of normalizing the input of each layer, by shifting the mean to zero and variance to one [22]. Often inputs

to neural networks are normalized to either the range of [0, 1] or [-1, 1] or to mean=0 and variance=1

(a.k.a. Whitening). This helps with speeding up the learning by making the convergence faster, therefore

reducing the training times [22].

During training, a batch normalization layer does the following [23]:

1. Calculate the mean, Eq. 2.12 and variance, Eq. 2.13 of the layers’ input (xi).

µB =
1

m

m∑
i=1

xi. (2.12)
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σ2
B =

1

m

m∑
i=1

(xi − µB)
2 . (2.13)

2. Normalize the layer inputs using the previously calculated batch statistics Eq. 2.14. Here ϵ is added

to prevent division by zero.

xi =
xi − µB√
σ2
B + ϵ

. (2.14)

3. Scale and shift to obtain the output of the layer.

yi = γxi + β. (2.15)

Notice that in Eq. 2.15 γ and β are learned during training along with the original parameters of the

network.

2.1.2 Object detection: problem definition

The problem of object detection can be summarized as finding and classifying a variable number of

objects in a given image. Note that the variable number of objects in different images distinguishes this

problem from classification. That is, unlike classification, object detection model output can have a

different length for each sample, as the true number of objects varies across images.

In the 1960s Roberts [24] identified the need to match two-dimensional features generated from images

with the three-dimensional representations of objects. Later works explored the practical difficulties for

reliable and consistent matching, specifically with increasing scene complexity, illumination variability,

and as time, cost, and sensor noise effects became more evident [25].

2.1.3 Metrics commonly used in computer vision and object detection

There are numerous metrics evaluating object detection model’s performance. Below, we define those

that have been used in this thesis. We use survey [26] as our reference.

Intersection Over Union (IOU)

Object detection is the process of locating and classifying instances of an object. For example, in an

agriculture field, finding the plants, and their coordinates and classifying them (weed or crops). The

intersection over union (IOU) metric is used to compare the predicted bounding box to the ground
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truth bounding box. IOU is defined as the overlap area between the predicted bounding box Bp and

ground truth bounding box Bgt over their union, which is depicted in Figure 2.5. The value varies from

0, the case where the predicted box does not overlap with the predicted box, to 1 where they overlap

completely. Formally, the IOU is defined as

IOU(Bgt, Bp) =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
. (2.16)

Figure 2.5: Intersection Over Union [27]. Diagram depicting intersection over union. The figure on the right
contains a graphical representation of the overlapping area and union of two bounding boxes.

Precision and recall

If we have G ground truth instances of objects in a dataset, and an object detector model predicts N

instances, of which S are correct, we can measure how many of the detections are relevant and how

many of the ground truth instances have been detected correctly. In order to calculate the precision and

recall, each bounding box detection is classified as one of the following items.

• True Positive (TP): A correct detection of the ground truth bounding box.

• False Positive (FP): An incorrect detection, detection of non-existing ground truth, detection of

ground truth in the wrong coordinates

• False Negative (FN): An undetected ground truth instance

Precision is defined as the percentage of correct positive detections, and is given by

Pr =

∑S
n=1 TPn∑S

n=1 TPn +
∑N−S

n=1 FPn

(2.17)

Recall is the percentage of all positive detections across all ground truth instances and is defined as
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Rc =

∑S
n=1 TPn∑S

n=1 TPn +
∑G−S

n=1 FNn

(2.18)

Average precision (AP)

When an object detection model predicts an instance of an object, it outputs a bounding box, a class

and confidence. The confidence measures how confident the model is about the corresponding prediction.

Therefore we can redefine precision and recall for each confidence τ , considering only predictions with

confidence higher or equal to the τ as a valid prediction.

Formally, if the model predicts that the sample s belongs to class c and the ground truth label of s is gt,

then the prediction is true positive as a function of threshold τ if

TP (τ) = (pr(s ∈ c) ⩾ τ) ∧ (gt = c). (2.19)

Similarly, prediction is false positive if

FP (τ) = (pr(s ∈ c) ⩾ τ) ∧ (gt ̸= c). (2.20)

Also, prediction is false negative if

FN(τ) = (pr(s ∈ c) < (τ)) ∧ (gt = c). (2.21)

Precision as a function of τ can be defined as

Pr(τ) =

∑S
n=1 TPn(τ)∑S

n=1 TPn(τ) +
∑N−S

n=1 FPn(τ)
. (2.22)

Recall as a function of τ can be defined as

Rc(τ) =

∑S
n=1 TPn(τ)∑S

n=1 TPn(τ) +
∑G−S

n=1 FNn(τ)
(2.23)

As we increase the confidence, true positives and false positive decreases. On the other hand, false

negative increases as confidence increases. Therefore recall is a decreasing function of confidence. Since

both true positives and false negatives change with confidence, nothing can be said about the relationship

between confidence and precision. This results in zig-zag behaviour as confidence varies.

An ideal object detector has high precision and recall regardless of confidence. This means even when

the confidence is increased, the recall and precision values remains high. In order to measure how the

precision and recall values change with confidence, the metric average precision (AP) is defined as the

area under the precision-recall curve.

In order to compute AP , K different confidence values τ(k) are ordered,
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τ(k), k = 1, 2, ...,K such that τ(i) > τ(j) for i > j.

Since recall has a one-to-one relationship with τ , the continuous Pr×Rc curve is sampled at (Pr(τ(k), Rc(τ(k))

points indexed by k.

Now, an ordered set of reference recall values Rr(n) are defined such that

Rr(n), n = 1, 2, ..., N such that Rr(m) < Rr(n) for m > n.

AP is computed using the two ordered sets of the above. Since the (Pr(τ(k), Rc(τ(k)) points are

discrete, we need to interpolate these points before computing the area under the curve. The function

Printerp(R), as in Eq. 2.24 is used where R is a real value in the interval [0, 1].

Pri(R) = max
k|Rc(τ(k))≥R

{Pr(τ(k))} . (2.24)

The area under the Pr×Rc curve, AP , is calculated by a Reiman integral of Pri(R) using the K recall

values as sampling points as in Eq. 2.25.

AP =

K∑
k=0

(Rr(k)−Rr(k + 1))Pri(Rr(k)). (2.25)

To compute the integral in Eq. 2.25, there are two approaches, N -Point Interpolation and All-Point

Interpolation.

N-Point Interpolation

In this method, recall reference values are equally spaced in the interval [0, 1]

Rr(n) =
N − n

N − 1
, n=1,2,..., N .

Therefore, the AP will be calculated as in 2.26.

AP =
1

N

N∑
n=1

Pri(Rr(n)) (2.26)

All-Point Interpolation

In this method, all the K values are used in computation of the Eq. 2.25 with their corresponding recall

values. Confidence for points k = 0 and k = K + 1 is set to τ(0) = 0 and τ(K + 1) = 1 with their

corresponding recall values being set to Rc(τ(0)) = 1 and Rc(τ(K + 1)) = 0.
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Mean Average Precision

AP is obtained individually for each class. In order to have a sense of the performance of an object

detection model across all the classes, AP is averaged over all the classes as in 2.27.

mAP =
1

C

C∑
i=1

APi. (2.27)

APi is the value of AP for the i− th class and C is the total number of classes in the dataset.

2.1.4 Object detection through YOLO

With the publication of “You Only Look Once: Unified, Real-Time Object Detection” (YOLO) in 2016

[28], YOLO made its debut in the object detection area. YOLO aimed to unify all phases of object

detection such as bounding box detection and classification. It outputs vectors for each object that it

encounters in the input after passing through the network. In contrast to iteratively classifying different

regions on an image, the YOLO computes all the features of the image and makes predictions for all

objects at once. In YOLO, the image (see Figure 2.6) is divided into a grid of size S × S (7 × 7 by

default). When the center of an object falls within a grid cell, the grid cell is responsible for detecting

that object. Every cell in the grid has B bounding boxes with confidence scores indicating the likelihood

of the presence of an object in the box. The confidence score is defined as in 2.28.

confidence = P (object)× IOUgt
p (2.28)

In Eq. 2.28, P (object) is the probability of the presence of an object and IOU is the intersection over

the union of the predicted bounding box and the ground truth bounding box. Each bounding box

has parameters (x, y, w, h). (x, y) that are the center coordinates of the bounding box relative to its

corresponding grid cell. W and h are the width and height of the box. When multiple bounding boxes

are predicted for the same object, YOLO measures the IOU of each box with the box with the highest

score, and discards boxes having IOUs greater than a certain threshold.

When YOLO was first introduced, it was evaluated on the Pascal VOC dataset [29], which has 20 classes

of objects (i.e.C = 20). The grid size is 7 (S = 7) and 2 bounding boxes per grid cell (B = 2). Each grid

cell will have one output vector, each output vector has parameters of the box and the probability of the

object belonging to each class in the box, therefore the dimension of the vector would be (B × 5 + 20).

The grid is illustrated in Figure 2.6 with more details.
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Figure 2.6: Dividing input into S × S grid, predicting B bounding boxes for each cell and confidence and C
class probabilities for each box. We keep only the boxes that have the IOU and confidence beyond a certain
threshold and discard the rest [28].

YOLO has 24 convolutional layers followed by 2 fully connected layers. The task of convolutional layers

is to extract features from the image and the fully connected layers predict output parameters. The first

20 convolutional layers are used for feature extraction and the last 4 convolutional layers are responsible

for finding objects. The output of the final convolutional layer is a tensor with shape (7, 7, 1024). Using

2 fully connected layers as a form of linear regression, it outputs 7×7×30 parameters. Figure 2.7 depicts

the architecture of YOLO.

For training, YOLO uses the sum-squared as the loss function, as it is easy to optimize. The function

objective is to optimize spatial parameters of the bounding box, (x, y, w, h), C objectness (presence of

an object in the bounding box) and class probabilities p(c). The loss function is defined as in eq. 2.29.
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Figure 2.7: Overview of YOLO architecture [28]. It consists of 24 convolutional layers followed by 2 fully
connected layers.

λcoord

S2∑
i=0

B∑
j=0

1
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ij [(xi − x̂i)

2 + (yi − ŷi)
2]

+ λcoord
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ij [(

√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2]

+

S2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)

2 + λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (Ci − Ĉi)

2

+
S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))
2.

(2.29)

In Eq. 2.29, 1obji indicates whether there is an object present in grid cell i. It is set to 1 when there is an

object. 1objij indicates that the bounding box j within grid cell i is responsible for detecting the object.

To ensure more weight is given to cells with object and localization parameters, λcoord and λnoobject are

used and set to 5 and 0.5, respectively. x̂i, ŷi, ŵi, ĥi, Ĉi, p̂i(c) denote the parameters predicted by the

network.



2.1. DEEP LEARNING, COMPUTER VISION AND OBJECT DETECTION 19

YOLO Version 2

One of the shortcomings of YOLO was that it made more localization errors compared to its competitors.

Furthermore, YOLO had a smaller recall. To overcome these shortcomings YOLO Version 2 (YOLOV2)

[30] was introduced in 2017.

Batch normalization was used in YOLOV2 to boost the speed of learning and stabilize the parameters

learned. For more discussion on batch normalization see Section 2.1.1.

Another idea used in YOLOV2 is increasing the resolution. In YOLOV1, the feature extraction network

was trained in 244 × 244 and then the resolution was increased to 448 × 448 for the detection task.
In YOLOV2, in the feature extraction phase, the network is trained 10 more epochs on the higher

resolution, therefore the network filters are better adjusted to the higher resolution after which they are

passed to the detection phase.

Finally, the idea of prior boxes (anchor box) was introduced in YOLOV2. They are a set of pre-determined

bounding boxes. The authors propose that finding a set of good prior bounding boxes will improve the

accuracy of the bounding boxes parameters prediction while improving the speed. Therefore, in the

preprocessing step, finding a set of anchor boxes with relevant numbers was suggested by running the

K-means algorithm [31] on the training dataset bounding boxes dimensions. The authors run an analysis

of the number of clusters (the number of bounding boxes) versus average IOU (between the training

dataset bounding boxes and pre-determined bounding boxes) and suggest that 5 clusters provide a good

trade-off. Figure 2.8 shows the results of this experiment.

Figure 2.8: Analysis of the number of clusters vs IOU on the COCO and VOC 2007 dataset. Boxes on the right
side are the dimensions of anchor boxes for k = 5 for both of the datasets. [30].
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YOLO Version 3

YOLO Version 3 (YOLOV3) was introduced in 2018 [32]. The previous version of YOLOV3, YOLOV2,

had shortcomings in detecting small objects and speed. In this version, the architecture was tweaked

to overcome these shortcomings. In previous versions of architecture, more convolutional layers have

been added, and as a general rule, more layers mean better performance, especially in feature extraction

[32]. In YOLOV2 the image was downsampled as it was passed to forward layers, therefore fine-grained

features were lost, which were detrimental to the detection of small objects. Residual networks (ResNet)

[33] introduced skip connections (connecting an activation by skipping layers and connecting it directly

to input of one of the next layers) to help the activation functions remain functional in deeper layers,

which helps with remedying this problem.

YOLOV3 combined the feature extractor of YOLOV2 and ResNet [33] to obtain a better feature extractor

named Darknet-53. The network is built with the structure of 1× 1 layers followed by 3× 3 convolution

layers, with residual block plus a skip connection. See Figure 2.9 for more details about Darknet-53.

Figure 2.9: Detailed schematic of Darknet-53 architecture [32]. This is a combination of YOLOV2 and ResNet
architectures.

YOLOV3 predicts an objectness score (score for presence of an object in the bounding box) for each
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bounding box using logistic regression. This score is 1 if the anchor box has the greatest overlap with

the ground truth compared to any other anchor box.

In previous versions of YOLO, after training the feature extractor, the parameters for detection were

determined in the last layers. However, YOLOV3 makes detections at 3 different scales. The features

from the last 3 residual blocks were used for 3 different scale detectors. YOLOV3 makes predictions at 3

scales in layers 82nd, 94th, and 106th, by strides of 32, 16, and 8, respectively as in Fig. 2.10.

Figure 2.10: YOLOV3 Architecture [34]. YOLOV3 makes detections at 3 different scales.

The first detection is made by the 82nd layer. For ease of interpretation, the input image with a

resolution of 416× 416 is passed through the first 81 layers. At layer 82, it is downsampled by the stride

of 32 × 32 and the resultant feature map would be of size 13 × 13 grid cell. In previous versions of

YOLO, detection of small object had an adverse effect on the performance. At each detection layer, the

detection is done by applying 1×1 detection kernels on feature maps. This is done again at further layers

resulting in 26× 26 and 52× 52 feature maps. This helps to remedy the problem of detecting smaller

objects as a bigger feature map is more suitable for detection. The overall architecture of YOLOV3 is

depicted in Figure 2.10.
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2.1.5 YOLO Version 4

YOLO Version 4 (YOLOV4) [35] provides a more robust model by integrating the latest innovations

in computer vision, particularly in data augmentation, into the previous versions. Object detectors

consist of two parts, the backbone and the head. Typically, the backbone is pre-trained on a larger

dataset of image classification and extracts features to obtain a feature map. The head is tasked with

the prediction of objects and bounding box parameters. The neck, which aggregates feature maps from

different stages of the network, is another feature introduced in YOLOV4. Figure 2.11 shows these two

parts.

Figure 2.11: Overview of Object Detection Architectures Concepts [35]. Object detectors consist of two parts,
the backbone and the head. The head consists of a dense prediction part and sparse prediction part.

Various architectures were considered for the backbone of the YOLOV4 as feature extractors. Cross
stage partial (CSP) Darknet53 [36] was found to be optimal. CSP Darknet53 is inspired by DenseNet

[37] architecture. The main concept behind DenseNet is to connect each layer to its previous layer.

This would help with the learning in deep layers from earlier layers, propagating gradients and features

through the whole network. The architecture has two main building blocks: dense blocks and transition

layers. A dense block consists of fully connected layers where the input of each layer is the concatenation

of the output of its previous layers. Transition layers are used to downsample the feature maps. See

Figure 2.12 for a pictorial description of these two layers.

CSP (Cross Stage Partial) [36] works the same way as DenseNet, except that instead of using the full-size

input feature map as the base layer, the input will be divided into two parts. As usual, a portion of the

data will be forwarded through the dense block and another portion will be sent straight to the next

dense layer.

CSP Darknet53 integrates these ideas with Darknet-53 architecture in YOLOV3, with residual blocks

being replaced by dense blocks. As a result, CSP Darknet53 preserves features through propagation,
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Figure 2.12: Dense blocks and transition layers interconnection [37]. A dense block consists of fully connected
layers where the input of each layer is the concatenation of the output of its previous layers. Transition layers are
used to downsample the feature maps.

encourages the reuse of features, and shrinks the number of parameters.

Additionally, the paper collects training methods that it classifies as "bag of freebies" (BoF) and "bags

of specials" (BoS). BoFs are training methods that influence only training strategies or training costs.

BoS, on the other hand, is a training strategy that increases inference cost by a small amount but also

provides potential increases in model performance. Mosaics data augmentation and Self-adversarial

training are among the novel methods found to be effective in YOLOV4.

In mosaics data augmentation, 4 different images are combined with certain weights. Thus, the model can

identify objects on a smaller scale. Mixing images with different contexts also gives the model detection

adaptability in different settings. See Figure 2.13 for an illustration of mosaic data augmentation.

Figure 2.13: Mosaics of images [35]. They are created by combining 4 images together with specific weights.

The Self-Adversarial Training technique [38] utilizes a two-stage forward-backward process to augment
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data. Instead of altering the network weights, the neural network alters the original image in the 1st

stage. Therefore, the neural network creates the illusion that there is no desired object on the image by

executing an adversarial attack on itself by altering the original image. In the 2nd stage, the neural

network is trained to detect an object on this modified image in the normal way.

YOLO Version 5

Glenn Jocher and his team 1 published a new version of the YOLO family, called YOLO Version 5

(YOLOV5) [39], one month after YOLOV4. The YOLO models were developed on a custom framework

called Darknet by Alexey Bochkovsky, which is largely written in C. Glenn Jocher is a researcher and

CEO of Ultralystics LLC. Using a Python language framework called PyTorch, Ultralystic converts

previous versions of YOLO into one of the most popular frameworks in deep learning.

From a theoretical point of view, there is not much difference between YOLOV5 and YOLOV4, also the

author of YOLO5 did not publish any paper. However, they provide a code repository, implementing

the model in PyTorch. PyTorch is widely used among the computer vision community, so it gives more

flexibility for deployment. The codebase provides 5 different models (YOLOV5 nano or YOLOV5n,

YOLOV5 small or YOLOV5s, YOLOV5 medium or YOLOV5m, YOLOV5 large or YOLOV5l and

YOLOv5 extra large or YOLOV5x) with different numbers of parameters, which can be used according

to the problem size, computational budget and performance desired.

2.1.6 R-CNN

R-CNN stands for region proposal-based convolutional neural networks. It was first introduced by Ross

Girshick et. al. [40]. R-CNN consists of three modules. The task of the first module is to create region

proposals. These are regions in the image where the network proposes an object presence, irrespective of

its class. In R-CNN, a selective search algorithm has been chosen to find the proposals.

It starts by segmenting the image into every minuscule object or object part and then grouping the

segments based on their similarities. The similarity is measured as the linear combinations of colour

similarity, texture similarity, size similarity and shape similarity.

The next module is feature extraction. In the output of the last module, the region of proposal is warped

into a tight bounding box. Since AlexNet [41] is used as the feature extractor, the input size must be

1https://github.com/ultralytics/yolov5
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Figure 2.14: R-CNN Architecture workflow on a single image [40]. At the first stage, it extracts region proposals,
then extracts features.

227× 227. After passing the image through the feature extractor, a 4096− dimensional feature vector

is obtained for each region of proposal. Figure 2.14 shows the architecture of R-CNN.

In the final module, an SVM algorithm [42] is used to score each feature vector map. An SVM classifier

is trained for each class present in the dataset and after running the feature map on the SVM, scores

above a certain threshold are counted as positive examples.

Fast R-CNN

The process of finding 2000 regions for each image, generating a feature network for each region, and

running SVM algorithm for detecting each object involves a vast amount of computation. In a situation

where there is little sharing of computations R-CNN will be highly computationally expensive.

Gerschik [43] modified R-CNN by passing the entire image through CNN, instead of passing each region,

to obtain the feature network. A spatial pyramid pooling network (SPPnets) was proposed for obtaining

a feature map of the image, therefore increasing the amount of shared computation. After a feature map

is obtained for the entire image, for each object proposal, a fixed-length feature vector is obtained using

the region of interest pooling layer. Feature vectors are fed into a series of fully connected layers. Finally,

the output is branched into two layers, one layer is used for detecting the class and the other layer is

used for estimating the parameters of the bounding box. Figure 2.15 shows the overall architecture of

fast R-CNN.
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Figure 2.15: Fast R-CNN Architecture [43]. R-CNN was modified by passing the entire image through a CNN,
instead of passing each region, to obtain the feature network.

Faster R-CNN

Although Fast R-CNN had improvements compared to its predecessor, it was still slow. The main

bottleneck was using a selective search for region proposals. Faster-RCNN [44] unifies the region proposal

network into the CNN architecture.

After passing the input image through a classifier, a feature map is obtained. The feature map is then

passed through the region proposal network (RPN). A set of anchor boxes with different sizes and aspect

ratios are already predefined. The RPN task is to determine two scores for each anchor box at each

spatial place on the feature map, whether there’s an object present and to estimate the bounding box of

the object present. After, a Fast R-CNN is trained on the proposed regions to complete object detection.

2.1.7 Feature Pyramid Networks

Lin et. al. introduced feature pyramid networks for object detection in 2017 [45]. Feature pyramids are

used for detecting objects at different scales. Feature pyramid network (FPN) is a topdown architecture

with lateral connections to construct high-level semantic feature maps at multiple scales. This architecture

resulted in significant improvement as a generic feature extractor in several applications, including on

the Common Objects In Context (COCO) detection benchmark. Figure 2.16 shows the architecture of

Feature Pyramid Networks.
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Figure 2.16: Architecture of Feature Pyramid Networks. The dotted lines shows the process of merging feature
maps, after upsampling the smaller feature map and reducing the size of bigger feature map by applying a
convolution filter.

2.1.8 Generative Adversarial Networks

Goodfellow et. al. [46] introduced generative adversarial networks (GANs) in 2014. There are two

components to a GAN, a generator and a discriminator. The generator generates “fake” samples to

mimic data from the real dataset, and the discriminator distinguishes between the samples from the

dataset and those from the generator. In an adversarial learning model, these two networks are trained

together so that the generator improves its ability to generate samples and the discriminator improves

its ability to differentiate between real and fake samples.

This can be formulated as optimization problem

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))]. (2.30)

In Eq. 2.30, z is a random vector sampled from a prior distribution p(z). Ez∼pz(z) denotes the expected

value (EV ) of z over the distribution pz(z). z is fed into the generator, G, with the task of mapping the

input to the other domain. The discriminator, D is tasked with differentiating between the real sample

and the generated sample by G.

When the input of the discriminator is real-world data, the objective of the discriminator is to maximize

logD(x), outputting 1. Whereas when the input of the discriminator is noise, the objective is to maximize

the function (1− logD(G(z))), output 0. See Figure 2.17 for the general workflow of a GAN.
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Figure 2.17: General workflow of GAN [47]. It consists of two parts, generator which generates fake samples
and discriminator which differentiates between the real and fake sample.

Contrastive unpaired translation (CUT)

One of the most important applications of GANs is translating from the domain of one image to another,

such as translating images of zebras to horses. Creating paired datasets that map every sample to

another one is expensive, therefore using unpaired datasets is more reasonable in practice. Contrastive

unpaired translations aim to translate one image from a domain to another domain while preserving the

desired contents.

The problem is defined as translating input images from domain A to images in domain B. Domain A

can be considered as the X, set of images of domain A and Y is the set of images of domain B. The

generator is divided into two parts, the Gencode, and Gdecode. The encoder learns to capture domain

invariant features, such as the body of a horse, grass and sky while the decoder learns domain-specific

features, such as stripes of the zebra.

Samples of patches of the input image feature stack are compared to patches of the feature stack of the

generator, emphasizing that the corresponding patch pair are similar while the other pairs of the patch

are considered negative. With this in mind, υ, υ+ and υ− are defined as patches stacked as vectors.

υ is the patch sample from the output of the generator, υ+ is the corresponding patch and υ− is the

negative patches.

L layers from the Gencode are chosen, the feature maps of these layers are passed through a multi-layer

perceptron Hl, producing a stack of features {zl}L =
{
Hl(G

l
encode(x))

}
L
, where Gl

encode represents the

output of the l − th chosen layer. Layers are indexed,l ∈ {1, 2, ..., L}, and denote s ∈ {1, 2, ..., Sl} where
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Sl is the number of spatial locations in each layer. Corresponding feature is zsl ∈ R while the other

features are z
S\s
l ∈ R(Sl−1)×Cl where Cl is number of channels at layer l. Similarlly, the output image is

encoded as {ẑl}L =
{
Hl(G

l
encode(G(x)))

}
L

The final patch loss is defined as in Eq. 2.31.

ςPatchNCE(G,H,X) = Ex∼X

L∑
l=1

Sl∑
s=1

l(ẑsl , z
s
l , z

S\s
l ). (2.31)

In 2.31, zsl and ẑsl are the positive examples while z
S\s
l is considered to be the negative example and X

is the input image.

The same idea can be used when using other images from the dataset as negative examples defining an

external loss Eq. 2.32.

ςexternal(G,H,X) = Ex∼X,z̃∼Z−

L∑
l=1

Sl∑
s=1

l(ẑsl , z
s
l , z̃l). (2.32)

The final loss function would be as in Eq. 2.33.

ςGAN (G,D,X, Y ) + λXςPatchNCE(G,H,X) + λY ςPatchNCE(G,H, Y ). (2.33)



Chapter 3

Plant detection literature review

This chapter reviews the literature and state of work done in plant detection and plant data augmentation

using generative adversarial networks. Although, as far as we are aware, there has not been any work

done in the area of augmenting and transforming indoor images of plants, more specifically, to create a

dataset that can be used for object detection purposes. Here, we review the works done in the area of

plant data augmentation for purposes such as disease detection, classification and leaf counting. This

section provides evidence of the effectiveness of generative adversarial networks in data transformation

for agriculture.

Zhu et al. [48] utilized conditional deep convolutional GAN (cDCGAN) [49] to augment a small set of

orchid seedlings images to determine the seedling’s vigour rating. The original dataset was partitioned

into a dataset with 100 and 200 images. They added 700 and 600 synthetic images to the first and second

datasets, respectively, which resulted in both datasets having 800 images. Training ResNet models on

non-augmented datasets of sizes 100 and 200 images, the resultant models achieved accuracies of 0.625

and 0.855. After augmentation and training on new ResNet [33] models led to improved accuracies of

0.945 and 0.955.

Ubbens et al. [50] developed 1000 synthetic images of plants for a leaf counting model. Synthetic plant

images were generated using an L-system-based plant simulator module. There are 285 real images in this

dataset, which were split into 120 and 165 images, in the Ara2012-Canon and Ara2013-Canon subsets,

respectively. These images differ in leaf count, lighting, camera zoom, and other parameters. Comparing

the augmented training dataset with the 2013-Canon dataset, training a CNN on the additional 1000

synthetic images resulted in approximately 0.27 less mean absolute count error. Moreover, CNN’s trained

totally on synthetic data generalized better than those trained on the Ara2012 dataset and tested on

the Ara2013-Canon dataset (and vice versa).
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Giuffrida et al. [1] designed a GAN that generates synthetic images of the plant to augment a leaf

counting dataset. Using the computer vision problems in plant phenotyping (CVPPP) 2017 LCC dataset,

the GAN is trained on Arabidopsis plant images from the A1, A2, and A4 subsets . A leaf-counting

model was trained on a subset of the A4 dataset (464 images) and an additional 57 images created by

GANs. They evaluated the models on the A4 test set. The model trained on the non-augmented dataset

had an average difference in the counting of 0.147, an average absolute difference in the counting of 0.942,

and a mean square error of 1.865, and an R2 value of 0.947. Based on the same evaluation metrics, the

model trained with the additional images obtained scores of 0.186, 0.891, 1.595, and 0.955, respectively.

Zhu et al. [51] utilized a Conditional GAN to synthesize 500 additional images of plants from the A4

subset of the CVPPP 2017 LSC dataset with 624 images. The Mask RCNN model was trained to count

the number of plant leaves. Using the 500 additional synthetic images produced by the GAN improved

the metric error by 16.67

Madsen et al. [52] used GAN to generate a synthetic dataset of seedling species from the segmented

Plant Seedlings Dataset (sPSD). They used the synthetic dataset to pre-train a ResNet-101 model for

classification purposes. After 175 training epochs, the classification accuracy of the model converged to

0.9 when trained on real images from the PSD. Pretraining on synthetic images (10000 per class) and

fine-tuning on real images led to 0.9 classification accuracy after only 75 iterations.

Miao et al. [53] generated synthetic maize images for the purpose of leaf counting. 4633 real maize

images were gathered and annotated. An additional 3655 images were generated using the maize module

for Plant Factory Explorer. In comparison to models trained on a similar number of real images, the

group found that CNN networks trained on synthetic images received poorer R2 and root mean square

errors. However, combining real datasets with synthetic images often resulted in an improvement of

both metrics.

Kuznichov et al. [54] developed an algorithm to generate synthetic plant images by placing segmented

leaves on an image background to create new plants. They obtained segmented leaf images using

arabidopsis and tobacco images from the A1, A2, A3, and A4 subsets of the CVPPP 2017 LCC dataset.

To perform the leaf-counting task, a Mask-R-CNN model pre-trained on the COCO dataset is trained

on synthetic images and evaluated on the A1, A2, A3, A4, and A5 datasets. Except for the A1 dataset,

which met the state-of-the-art standards, other datasets, performance metric surpassed the reported

metric in the CVPPP Leaf Counting challenge at the time authors wrote the paper.

Abbas et al. [55] generated synthetic tomato leaf images for disease detection by using GAN. The group

used images from the PlantVillage which consists of 16012 total images. They generated 4000 additional
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synthetic tomato leaf images. The classification accuracy of the DenseNet model for 5-, 7-, and 10-class

classification experiments on the test set was 0.9816, 0.9508, and 0.9434, respectively. Test accuracy

improved to 0.9951, 0.9865, and 0.9711 for 5-, 7-, and 10-class classifications when synthetic images were

added the training process.

Tian et al. [56] use an improved version of YOLOV3 to increase the accuracy of detection of growing

apples in orchard during different growth stages. They propose to change the architecture by using

DensNet instead of the original transfer layers to enhance feature propagation. The input layer image

size is doubled to increase the feature extraction phase.

Jun et al. [57] optimized YOLOV3 model to improve the detection of location and category of disease in

tomato crops. They used a self-made dataset of tomato crops with 12 common diseases and a dataset

size of 150K. They modify YOLOV3 by adding feature fusion that increases the number of feature maps,

adding two additional residual connections. The improved version outperforms all the other settings by

two percent in accuracy.

Tian et al. [58] use YOLOV3 in conjunction with CycleGAN to enhance the detection of apple lesion.

First, they augment their dataset with traditional augmentation methods and generative adversarial

methods to create synthetic images of apple lesions. They propose using DenseNet for better feature

propagation at different scales. They improve the reported performance metric compared to the

second-best performing model, which is the original YOLOV3.



Chapter 4

Outdoor plant identification, datasets and
experimental settings

For localization and classification of plants in an outdoor setting, such as an outdoor agriculture field, we

need models that are trained on datasets with similar features and distributions. This chapter provides

detailed explanations of the construction of datasets that were explored for this purpose.

First, natural datasets (i.e. real-world datasets) are introduced. Natural datasets are collected with

imaging devices and cameras, capturing samples of real-life data in diverse settings such as a growth

chamber and outdoor agriculture field. The outdoor data is not annotated, and annotating it is labour-

intensive and expensive therefore, it cannot be used to train a supervised model. On the other hand;

indoor data lacks visual similarities such as soil background, shade and folds and changes in texture

that are present in an outdoor setting. In this chapter, we apply different data augmentation techniques

(image processing techniques and generative adversarial networks) to natural data to create synthetic

outdoor data that is annotated and visually similar to outdoor data. We also annotate a small subset

of outdoor data to evaluate the performance of the models trained on different datasets. We use the

indoor dataset which is an annotated dataset of plants in a green house setting. We use this dataset

since the process of generation and annotation of it is fully automatic. We also use the outdoor dataset,

this dataset is not annotated. We use this dataset since our aim is to have a detection model in an
outdoor setting. As for synthetic datasets, we use a composite dataset created through image processing

techniques and synthetic datasets generated with generative adversarial algorithms.
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4.1 Indoor dataset

This thesis is built on the indoor laboratory dataset from the TerraByte group 1 at the University of

Winnipeg. The dataset contains more than 1.2 million labeled images of 14 different kinds of crops

and weeds common in Canadian prairies and in the US [59]. This dataset includes images of plants

from a variety of angles and capturing different stages of their growth in a greenhouse setting with high

resolution.

EAGL-I [9], an automated system consisting of cameras mounted on a gantry moving autonomously,

was used to collect and automatically label the data in a greenhouse setting. During various stages of

plant growth, this robotic system can capture and label images with high resolution, capturing a wide

range of visual details about a plant. Figure 4.1 shows the EAGL-I system operating in the chamber

growth. This dataset contains master images, containing multiple plants in one single shot with a blue

background shown in Figure 4.2a. As the coordinates of the plants are already known to the system,

cropped images of single plants are easily obtained as depicted in Figure 4.2b and accurate labels can be

attached to the image.

Figure 4.1: EAGL-I mounted on the gantry. The figure on the right shows the system working in the chamber.

1https://terrabyte.acs.uwinnipeg.ca/
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(a) Master Image. (b) Single plant image.

Figure 4.2: The indoor dataset contains master images with multiple plants together and single plant images
cropped from the master images.

This thesis focuses on soybeans and canola images. We have images of soybeans and canola during

different stages of growth in both outdoor and indoor habitats. We can leverage this to apply data

augmentation techniques to the indoor images of these plants and later on the outdoor data and evaluate

the performance of the object detection models trained on the generated synthetic data.
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4.2 Outdoor dataset

We use the outdoor dataset collected by the TerraByte group. A tractor-mounted camera was used to

collect outdoor data. As the camera passes through the field, it records a video. Afterward, the image

dataset is created by sampling frames from the videos. The dataset contains images of canola, soybean,

wheat, oat, and fava bean. The field was divided into distinct parts, and only one crop is cultivated in

each part. Every few days, data is collected to keep track of each plant’s growth. The tractor usually

travels one full circuit of the field as part of the collection process. There are multiple instances of each

of the crops in most of the images with possible weeds growing among them. Figure 4.3 shows examples

of outdoor dataset. We don’t know the exact coordinates and number of instances of each crop within

each image.

(a) Soybean outdoor image.

(b) Canola outdoor Image

Figure 4.3: Samples of outdoor data. The figure on top is the soybean in outdoor setting and on the bottom is
the canola in outdoor setting.
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Within the scope of this thesis, we used the data collected on June 9 and June 13 of the year 2020. The

ability to detect crops when they are at this stage is critical since the plants and weeds are competing

for the resources necessary for their growth.

4.3 Validation outdoor dataset

An annotated dataset matching the outdoor data condition was necessary in order to measure the

performance of each model, as the purpose of training is to have a model that can localize and classify

plants available in the outdoor data.

We chose a subset of the outdoor dataset and annotated it. Images captured from June 13 that were not

used elsewhere in this thesis were used to form the outdoor validation dataset. Images of canola and

soybean taken on June 13 were sampled with a sample rate of 50 (choosing 1 image out of every 50

image). This resulted in 130 canola images and 158 soybean outdoor images. Images were annotated by

hand using Roboflow [60], , which is an online platform used to annotate datasets. We chose canola and

soybean since they are very similar in appearance and it would be harder for the model to differentiate

between them. After annotation, we had in total 1103 instances of canola and 672 instances of soybeans.

This introduced an imbalance between two different classes. We rebalanced the dataset by omitting

some of the samples. This resulted in 710 instances of canola and 672 instances of soybean. Table 4.1

summarizes the properties of indoor, outdoor and validation outdoor dataset.

Natural Datasets

Name Size Classes Annotated

Indoor 1.2
mil-
lion

14 Classes Yes

Outdoor 500k Canola, Soybean, Fava
bean, Oat, Wheat

No

Validation
outdoor

238 Canola and Soybean No

Table 4.1: Natural datasets properties.
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4.4 Composite dataset

It is extremely costly and time-consuming to obtain annotated images of outdoor plants, as discussed

earlier. The outdoor data background is soil as in Figure 4.3. The first step to augment the indoor

images, with the aim of making them similar to outdoor data, is to replace the blue background with a

soil background. Single indoor images can be placed onto a soil background to create a dataset that

better mimics outdoor conditions. For this purpose, we gather 20 soil images. In addition, we sampled

177 images of single plants consisting of soybean and canola (129 soybeans and 49 canola). Since all of

the outdoor dataset images are taken from a top-down angle, we select only s with the top-down angle.

Blue backgrounds are used for all indoor data, including single plant images. The strong contrast of the

blue background makes thresholding a highly effective tool for identifying plants [9]. As a result, we

can create a new dataset by manipulating the plants in a different setting. We name images that are

generated by this method the Composite data.

The first step is to convert a single indoor image from RGB space to CIELAB (Commission Internationale

de l´Eclairag laboratoire) color space. The blue background can be removed in this space by setting a

threshold, which results in keyed-out plants. Figure 4.4 shows picture of a single indoor canola and its

corresponding mask that can be used to remove the blue background [61].

In the next step, to better match the color of plants in outdoor data, single plant images are color

corrected. Specifically, this is done by calculating the weighted average of the pixels in a specific channel,

where the weights correspond to pixel values in the masked image. Each image is randomly scaled, then

padded to match the background size. Figure 4.5 shows samples of composite dataset. Figures 4.7 and

4.6 depict the flowchart and process of generation of this dataset.
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Figure 4.4: Single indoor image of canola and its corresponding mask.

Figure 4.5: Samples of the Composite dataset. Separating leaves from blue background and placing them on
soil background.



40CHAPTER 4. OUTDOOR PLANT IDENTIFICATION, DATASETS AND EXPERIMENTAL SETTINGS

Figure 4.6: Flowchart of composite data generation. Obtaining masked image and single plant image and
placing them on soil background.



4.5. SYNTHETIC 1 DATASET 41

Figure 4.7: Composite dataset generation. Placing single plant images randomly on a soil background.

4.5 Synthetic 1 dataset

Although the composite dataset is one step closer to generating an annotated dataset of outdoor

conditions, it still has shortcomings, mainly that it doesn’t capture how outdoor conditions affect the

plants. Plants growing outdoors are susceptible to direct sunlight, as well as weather conditions like

wind and rain. This can cause features such as leaf deconstruction, tears, or color changes. Figure 4.8

illustrates an example of the non-monotonicity of the color, tears on leaves, folds and shades of the

soybean in outdoor setting versus indoor setting.

(a) Soybean indoor (b) Soybean outdoor

Figure 4.8: Soybean in indoor setting versus outdoor setting.

In this case, a dataset that captures these characteristics better is needed. To generate this dataset, we
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need a model that translates single composite images into single outdoor images. Generative adverserial

networks have shown success in domain translation [62].
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Contrastive unpaired translation (CUT) [63] (see Section 2.1.8), a GAN network that can translate

images from one domain to another domain is used for this purpose. This model is trained to translate

single composite images to single outdoor images. Figure 4.9 shows the overall workflow of Synthetic 1

dataset.

Figure 4.9: Synthetic 1 dataset generation. Top row: Figure depicting CUT GAN training process, where the
input is both composite images and hand-cropped outdoor images. This process created the Synthetic 1 model.
Bottom Row: using the Synthetic 1 model to translate from the composite domain to the outdoor domain.

For this purpose, 64 single composite images, constructed from single indoor images are gathered with

64 single plant images from the outdoor dataset. This is done for four different crops: soybean, canola,

wheat and oats which results in 512 images in total. Single plant images from the outdoor dataset are

cropped manually, hence the limited size of the outdoor single plant images. The generator is trained on

this dataset using CUT [63] to translate images from domain A (single composite images) to domain B

(single outdoor images).

Once we have a generator model capable of translating images from composite to outdoor setting, we

can use multiple composite images to create new augmented images. Since the position of each plant

within the composite image is already known, we can crop the single plants, feed it to the trained GAN,

which outputs the corresponding translated plant into outdoor setting and place the translated image

into the cropped position. We consider the dataset generated in this way as our Synthetic 1 dataset.

Figure 4.10 shows samples of Synthetic 1 dataset.
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Figure 4.10: Samples of the Synthetic 1 dataset. They are generated by translating the Composite dataset
samples to outdoor, using the CUT GAN.

4.6 Synthetic 2 dataset

The Synthetic 1 dataset has some improvements in capturing the outdoor features compared to the

composite dataset. In some cases though it fails to properly translate the indoor single plant images and

makes them look jittery and distorted as shown in Figure 4.11.

Figure 4.11: Synthetic 1 canola with clear signs of distortion around the leaves.

To improve the generator, first we increased the number of single plant images of outdoor data. Since

cropping plants by hand is an arduous task, a plant detection model was trained with the task of

detecting plants (identifying plant versus non-plants). The YoloV5 model from Section 2 was used as the



4.6. SYNTHETIC 2 DATASET 45

plant detection model. The training data for this model was the Synthetic 1 dataset. For this purpose,

a fully synthetic dataset of soybean and canola with 80k images was created.

In the next part, the trained object detection model was fed outdoor images of canola and soybean

captured on June 11. Since the outdoor annotated dataset, used for evaluation, is created of images

taken on June 13, we chose the date June 11. Plants on this date are at the same stage of growth (2

days difference) yet they are captured in a different day, therefore they are not the same data as the

evaluation data but they are similar enough to capture the features we need for training. Detected

plants were automatically cropped given the predicted bounding boxes that were detected by the object

detection model.

Some of the cropped images did not fully contain the plants such as Figure 4.12c, had multiple instances

of plants in them as in Figure 4.12b, had low resolution or they were weed (not canola or soybean).

These images were removed as they hindered the GAN model training. After that we obtained 5000

single outdoor images of canola and 4000 single outdoor images of soybean, which is a 10-fold increase in

the amount of data available compared to the Synthetic 1 dataset. We used the same generative network

architecture as the Synthetic 1, the CUT model. We trained a separate GAN network for each crop (one

model for the soybean and another separate model for canola) as opposed to Synthetic 1 training one

network for all the four different crops at the same time. This gives the network the ability to learn

features inherent to one specific crop and adapt to features that are unique to each species.

(a) An outdoor image.
(b) Cropped image con-
tains multiple plants

(c) Cropped image containing only
parts of the plant

Figure 4.12: Samples of cropped images that were removed. The first image from the left is the main image
and the right images were cropped from the main image by the plant detection model.

Using these generative models, we translate the composite images into outdoor settings. As the new

models are improved after learning new features from their previous generation (due to having access to

a larger pool of training data as a result of the first generation of data they produced), we call them

Synthetic 2 dataset. Figure 4.13 shows an example where synthetic 1 fails to translate the composite
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image of canola and successful translation of the same image by synthetic 2 model, preserving the edges

of the leaves, while adding folds and shades. Figure shows the overall process of Synthetic 2 dataset.

Table 4.2 shows some properties of synthetic datasets.

(a) Canola (Synthetic 1) (b) Canola (composite) (c) Canola (Synthetic 2)

Figure 4.13: Single outdoor canola in different synthetic datasets. The canola in the Synthetic 2 dataset is the
most realistic among them.

Figure 4.14: [
Samples of Synthetic 2 dataset.]Samples of Synthetic 2 dataset. Placing single plant images generated

by GAN on the soil background.
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Figure 4.15: Synthetic 2 dataset generation. The top row shows the process of obtaining more cropped outdoor
plant images by training a plant detection model using the Synthetic 1 dataset. Middle row shows that after
discarding the low quality cropped plant images, a CUT GAN model is trained. The bottom row shows the
process of using the Synthetic 2 model to obtain the Synthetic 2 dataset.
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Synthetic Datasets

Name Dataset
size

Built from

Composite 80k 20 soil backgrounds and
80k indoor single plant
images

Synthetic 1 80k Composite dataset (512)
and single plant outdoor
images (512)

Synthetic 2 80k Composite dataset (9k)
and single outdoor im-
ages (9k)

Table 4.2: The Composite dataset was produced by using 20 soil backgrounds and indoor single plant images.
This dataset was used to train a CUT GAN (called Synthetic 1 model) to produce the Synthetic 1 dataset.
The Synthetic 1 dataset was created using 512 different images from the Composite dataset and 512 outdoor
single plant images as input to the Synthetic 1 model. The Synthetic 1 dataset was used to train another CUT
GAN model (called Synthetic 2 model). The Synthetic 2 dataset was created using 9k different images from the
Composite dataset, and 9k outdoor single plant images as input to the Synthetic 2 model.



Chapter 5

Improved field plant classification using
synthetic plant image generation

In this chapter we discuss the experiments we have conducted. In the last chapter, we developed

synthetic datasets, attempting to capture the features of outdoor image through annotated synthetic

data. Our main goal is to have models that can classify and localize plants in an outdoor setting. In

order to assess the usability of synthetic data, we train different object detection models using only

synthetic data and evaluate the performance of the trained model on the annotated outdoor data. Since

during the training process, none of the outdoor datasets are used, these experiments are a rigorous

method to measure how well the synthetic data distribution matches the outdoor data distribution. We

experiment with different models and dataset combinations and compare the final results.

We set up our experiments in two settings. The first setting is plant detection. We call these experiments

binary problems (plant versus not plant). The model is trained to find all the plants in the image but

does not classify plant types. The other setting is when the model is responsible to detect plants and

their types. We name these experiments the multiclass problems.

We examine two different object detection models, YOLOV5 and Faster-RCNN to assess the general

ability of synthetic data in training across different algorithms. Detailed descriptions of these algorithms

are given in Section 2.1.3. In our evaluation, we mainly consider the metrics maAP.5 and mAP.5 : .95.

Detailed descriptions of these metrics are given in Chapter 2. These metrics gives us good insight

regarding the performance of each setting as they are dependent on both the precision and recall over a

variety of IOU threshholds. The problem of localizing an object is highly dependent on the threshold

value of IOU of predicted bounding box and groudtruth bounding box. The acceptable threshhold

can vary according to the application and desired performance. mAP.5 provides a good insight into

the performance when this threshold is set to 0.5, while mAP.5 : .95 is the average value over a set of
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varying thresholds (0.5− 0.95). Finding the optimal value for practical agriculture applications should

be studied in a survey which is out of the scope of this thesis.

5.0.1 Experiments settings

All of the experiments in this thesis were run on a Linux Machine, with 4 NVIDIA-Quadro RTX 8000

Graphical Processing Units and an Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz CPU cores. For

experiments concerning the YoloV5 model, the PyTorch framework version 1.10.1 was used and for

experiments concerning the Faster-RCNN PyTorch [64] version, 1.10.0 were used.

5.0.2 YOLOV5 train technical setting

YOLOV5 provides 5 different models at different scales, ( YOLOV5n, YOLOV5s, YOLOV5m, YOLOV5l

and YOLOVx). As their names suggest, they have different numbers of parameters. Models with a

higher number of parameters have a better ability at capturing features, especially for complex datasets

with multiple numbers of objects, therefore these model have more accurate and better performance at

detection. On the other hand, more parameters mean more time needed for training and slower inference

speed. Figure 5.1 depicts this trade-off for different models, where the x-axis, GPU speed, shows the

average inference time per image on the COCO val 2017 dataset on a V100 GPU vs COCO AP Val

which denotes mAP@0.5:0.95 on the COCO val 2017 dataset.

Figure 5.1: Different YOLOV5 models performance and speed trade off [39]. As the number of parameters of a
model increases, the average inference speed increases.
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Table 5.1 shows the number of parameters for each model. Since all of our experiments have fewer than

4 classes and the variability of the data is limited, we only use the model YOLOV5n as it has a lower

number of parameters and is more suitable for less complex problems.

Model Number of parame-
ters

YOLOV5n 1.9M

YOLOV5s 7.2M

YOLOV5m 21.2M

YOLOV5l 46.5M

YOLOV5x 86.7M

Table 5.1: Number of parameters of different YOLOV5 models.

Images in both training and validation steps are resized to 640 pixels on the longest side and the other

size is resized by keeping the original aspect ratio of the image.

For all the training purposes, we always start the training with pre-trained weights instead of randomly

initializing parameters. This helps us with accelerating the speed of training. All of the models are

pre-trained for 300 epochs on the COCO dataset.

All of the training is done using stochastic gradient descent (SGD) as the optimizer, with a learning rate

of 0.01.

5.0.3 Faster R-CNN technical settings

All of the experiments with Faster R-CNN architecture have been conducted in the Detectron2 [65]

library. Detectron2 is a library with implementations of R-CNN family architectures. Models are

provided with different configurations of backbones, pre-trained networks and learning schedules. We ran

all of our experiments using a Resnet with a feature pyramid network (FPN) as the backbone followed

by a fully connected layer as the head. The model is already pre-trained with ImageNet. We use the

docker container provided by the detectron library.
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5.1 Binary Problem

The first step in measuring the effectiveness of synthetic data is to use it for the task of training a

plant detection model with the task of locating all occurrences of existing plants, irrespective of their

kind or variety. In order to avoid introducing any bias in our evaluation, we only use synthetic data

to train and validate the models. Later, once the model is trained, we will use the annotated outdoor

dataset to evaluate the performance. We use the composite dataset, Synthetic 1 and Synthetic 2 datasets

to train models YOLOV5n and Faster R-CNN. We train all of our models with a batch size of 512.
Training is done within 40 epochs. Table 5.2 shows the results for plant detection using the YOLOV5

and Faster-RCNN models.

For the metric mAP.5, YOLOV5 trained on Synthetic 1 is performing the best with 0.48. After that

YOLOV5 trained on composite comes in the second place with a value of 0.45.

When inspecting metric mAP.5 : .95, FasterRCNN trained on composite shows the best performance

with the value of 0.23 followed by YOLOV5 trained on synthetic 1 and composite coming second and

third with values of 0.21 and 0.20 respectively.
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(a) Confusion matrix for the Composite dataset evaluation. (b) Confusion matrix for the Synthetic 1 dataset evaluation.

(c) Confusion matrix for the Synthetic 2 dataset evaluation.

Figure 5.2: Confusion matrix for the binary problem. The top row are the confusion matrices for the Composite
and Synthetic 1 datasets. The bottom row is the confusion matrix for the Synthetic 2 dataset.

Figure 5.2a shows the confusion matrix for the YOLOV5 trained on the composite. 730 instances of

plants have been correctly identified. From Figures 5.3b and 5.3c we can see that these numbers are 720

and 405 for Synthetic 1 and Synthetic 2 datasets, respectively. The Synthetic 2 dataset performence in

binary class problem is poor compared to other datasets with 998 instances of plant being missidentifed

as background.

In overall, we can see that YOLOV5 trained on both the Synthetic 1 dataset and Composite performs

better compared to other settings. It should be noted that the images in the outdoor annotated dataset,

used for evaluation, have been annotated by a non-expert, therefore there is the possibility of mislabelled

data, introducing unwanted noise to the data. There are also instances of weeds growing among the
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Dataset mAP 0.5
(YOLOV5)

mAP@.5:.95
(YOLOV5)

mAP 0.5
(Faster-
RCNN)

mAP@.5:.95
(Faster-
RCNN)

Composite 0.45 0.20 0.45 0.23

Synthetic 1 0.48 0.21 0.13 0.06

Synthetic 2 0.33 0.10 0.29 0.13

Table 5.2: Binary problem evaluation results.

crops in this dataset. These weeds introduce some noise especially in the binary class problem where we

aim to detect all kinds of plants present.

5.2 Multiclass

We trained both the YOLOV5 and Faster-RCNN models on each synthetic dataset. The training subset

size for all of the datasets was 60k. At the end of training the model, we validated the updated model

on a 10K subset of data. Metrics maAP0.5 and mAP.5 : .95 for each validation were tracked, and we

ensured training was stopped only after these metrics had reached a stable value.

Based on Table 5.3, the YOLOV5 model trained on the Synthetic 2 dataset performs better than all

the other settings for both mAP0.5 and mAP@.5 : .95 metrics. The improvement for mAP.5 is 0.44

compared to 0.25, the second-best performing dataset, which is a significant leap over the Synthetic

1. Tables 5.4 and 5.5 show the results for each individual class. Observing individual classes, we see

an improvement of 0.41 from 0.19 for canola. We also see an improvement of 0.46 from 0.30 for the

soybean class.

We continue seeing this trend for mAP@.5 : .95, with an improvement of 0.17 from 0.11 when averaged

over all classes, with 0.16 from 0.07 for canola and 0.17 from 0.14 when comparing Synthetic 2 to

Synthetic 1.

Table 5.3 shows the results for Faster-RCNN. Composite and Synthetic 2 show similar results in metric

mAP0.5 and composite is performing slightly better in metric mAP0.5:.95. We can still see that Synthetic

2 performance is very close to the best performing dataset.

The confusion matrix for the Composite dataset can be seen in the Figure 5.3a. It can be seen that a

large number of canola instances, 442, have been detected as soybean. The plant instances trained on
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Dataset mAP 0.5
(YOLOV5)

mAP@.5:.95
(YOLOV5)

mAP 0.5
(Faster-
RCNN)

mAP@.5:.95
(Faster-
RCNN)

Composite 0.19 0.08 0.31 0.16

Synthetic 1 0.25 0.11 0.18 0.08

Synthetic 2 0.44 0.17 0.31 0.13

Table 5.3: Evaluation results for the multiclass problem.

Dataset mAP 0.5 mAP@.5:.95

Composite 0.17 0.08

Synthetic 1 0.19 0.07

Synthetic 2 0.41 0.16

Table 5.4: Evaluation results of YOLOV5 trained on synthetic datasets and evaluated on annotated outdoor
dataset for canola.

the composite dataset are highly likely to be detected as soybeans. Also, only 30 instances of canola

have been correctly detected.

As illustrated in Figure 5.3b, these problems have been somewhat remedied in the Synthetic 1 dataset.

The number of canola instances misidentified as soybean has decreased to 262 and the number of canola

instances correctly detected has increased to 106.

These numbers are improved in the Synthetic 2 regime, as evident from Figure 5.3c. The number

of canola instances misidentified as soybean has decreased to 14 and the number of canola instances

correctly detected has increased to 324.

Dataset mAP 0.5 mAP@.5:.95

Composite 0.21 0.08

Synthetic 1 0.30 0.14

Synthetic 2 0.46 0.17

Table 5.5: Evaluation results of YOLOV5 trained on synthetic datasets and evaluated on annotated outdoor
dataset for soybean.
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(a) Confusion matrix for the Composite dataset evaluation. (b) Confusion matrix for the Synthetic 1 dataset evaluation.

(c) Confusion matrix for the Synthetic 2 dataset evaluation.

Figure 5.3: Confusion matrix for the binary problem. The top row are the confusion matrices for the Composite
and Synthetic 1 datasets. The bottom row is the confusion matrix for the Synthetic 2 dataset.

In summary, we observe that Synthetic 2 datasets perform well, particularly when coupled with YOLOV5

models in multiclass problems. The results are in line with what we expected since we trained separate

generative models for each class. Additionally, we have increased the input images of generative models

in Synthetic 2 data, which has helped to create more realistic outdoor images.



Chapter 6

Conclusion

The main goal of this thesis was to study the feasibility of using synthetic datasets to train object

detection models for the purpose of plant detection in an outdoor setting. We chose two object detection

models, YOLOV5 and Faster-RCNN. We defined two problem settings. Binary class problem (plant

detection) and multi-class problem (soybean and canola detection). We trained the object detection

models on two available datasets, the composite dataset and the Synthetic 1 dataset. We also developed

another dataset, Synthetic 2 dataset that boosts predictive performance of plant identification models.

We found promising results in our experiment. In binary setting, Faster-RCNN trained on composite

dataset results in mAP.5 of 0.45 and mAP.5:.95 of 0.23. In the multiclass setting, YOLOV5 trained

on the Synthetic 2 dataset resulted in mAP.5 of 0.44 and mAP.5:.95 of 0.17. Considering the scale of

our experiment, these results show great potential for further refinement and expansion of the dataset

created by the generative adversarial networks.

6.1 Future work

This thesis provides great results, however, they were conducted in a limited setting. In order to obtain

a more conclusive result, experiments involving datasets with more classes of plants are necessary. It

would be potentially useful to increase the number of soil background images, the number of plants

during different stages of growth, and the number of outdoor single plant images for the GAN network.

The size of the evaluation outdoor dataset is extremely small (235 images). Another direction that must

be pursued in future is creating a bigger outdoor dataset. One possible approach for creating a bigger

annotated outdoor dataset is to use the binary model on the unlabeled outdoor dataset and run the
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detected plant through a classifier that has been trained to classify plants into their specific class. If this

method is pursued, there should be a detailed study on the accuracy and error rate of this method.

Another direction that is of utmost importance is to study the system in a practical setting. As mentioned

in this thesis, the problem of object detection is highly dependent on the threshold of IOU of ground

truth and predicted bounding box and the confidence score. In order to deploy this system to practical

uses, the acceptable threshold should be carefully studied.

Finally, with recent advances in active learning, employing this concept for generating more datasets

should also be considered. Active learning [66] approaches will find the types of samples that accelerate

the learning performance and therefore can lead to having synthetic datasets resulting in a more robust

plant detection system. It will also give us more insight into what kind of samples are better for the

task of training.
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