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ABSTRACT

Automatic text summarization is a difficult task, which involves a good understand-

ing of an input text to produce fluent, brief and vast summary. The usage of text

summarization models can vary from legal document summarization to news sum-

marization. The model should be able to understand where important information

is located to produce a good summary. However, infrequently used or rare words

might limit model’s understanding of an input text, as the model might ignore such

words or put less attention on them. Another issue is that the model accepts only a

limited amount of tokens (words) of an input text, which might contain redundant

information or not including important information as it is located further in the

text. To address the problem of rare words, we have proposed a modification to the

attention mechanism of the transformer model with pointer-generator layer, where

attention mechanism receives frequency information for each word, which helps to

boost rare words. Additionally, our proposed supervised learning model uses the hy-

brid approach incorporating both extractive and abstractive elements, to include more

important information for the abstractive model in a news summarization task. We

have designed experiments involving a combination of six different hybrid models with

varying input text sizes (measured as tokens) to test our proposed model. Four well-

known datasets specific to news articles were used in this work: CNN/DM, XSum,

Gigaword and DUC 2004 Task 1. Our results were compared using the well-known

ROUGE metric. Our best model achieved R-1 score of 38.22, R-2 score of 15.07 and

R-L score of 35.79, outperforming three existing models by several ROUGE points.

Keywords: Abstractive Summarization, Extractive Summarization, Natural Lan-

guage Processing, Pointer-generator, Transformer, Rare Words, Text Summarization.
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Chapter 1

Introduction

The amount of textual data generated on the Internet in recent years has been enor-

mous and is only growing [2]. Automatic text summarization helps to reduce textual

information into a convenient summary, that is easier to understand. The summary,

that is generated, should be as informative as possible, at the same time being flu-

ent, brief and vast [3]. Text summarization can be used in a variety of applications,

such as a search engine to provide a direct answer to a query [4], biomedical literature

summarizations to provide an easier way to read evidence [5], legal document summa-

rization [6] or a headline generation [7]. Another application is news summarization,

which helps to expedite the understanding of an article for a human [8].

Automatic text summarization can be based on different aspects [8], such as input

size (single-document, multi-document or multi-media (input information is gathered

from several sources, such as text, image and/or video [9])), summarization algo-

rithm (supervised, unsupervised or semi-supervised), summarization approach (ex-

tractive, abstractive or hybrid), summary type (headline, sentence-level, highlights

or full summary) and others. Text summarization models can be separated into two

main groups: extractive [10, 11] and abstractive [12, 13]. An extractive method gen-

erates summaries using sentences from the input text. In contrast, in an abstractive

approach, the text is generated using an external vocabulary of words, which might

include words that are not present in the original input. The combination of extrac-

tive and abstractive approaches is called a hybrid approach. This approach intends

to overcome the weaknesses of the extractive and abstractive approach [14, 15, 16].

Early machine learning models were focused only on the extractive approach.

In the past, abstractive methods used only recurrent neural networks (RNN) [17]

or long short-term memory (LSTM) [18] networks to generate a summary, which
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performed poorly on long text, as these networks are not good in handling long text.

Encoder-decoder model [19] and attention mechanism [20, 21] helped to overcome

this problem. The attention mechanism uses all the intermediate states to generate

the prediction, even if words are located far from each other. Google [1] introduced a

transformer model that eliminated recurrent aspects and relied only on an attention

mechanism. Transformer outperforms sequence-to-sequence model [22], which uses

an input sequence and output sequence with RNN or LSTM inside it. With the

help of pre-trained encoders [23, 24, 25, 26] the current state-of-the-art results have

outperformed other models.

1.1 Problem Definition

The critical problem for Natural Language Processing (NLP) tasks is to correctly

represent words. One such representation technique is called a bag-of-words (BOW),

where each sample is encoded using the vocabulary of words that are used in the

text corpus, which is encoded using a binary coding of zeros and ones [27]. However,

such an approach does not provide a meaningful information about a sentence, as,

for example, the same word in a different context will be represented exactly the

same, even if it has a different meaning (i.e., “put money in the bank” and “the bank

of a river”). Word embedding solves this issue by encoding words in a fixed-length

vector [28] and using surrounding words to define this vector. However, the problem

occurs when the word is not present in a vocabulary, as it’s usage is infrequent or it is

completely new word. Such words are called out-of-vocabulary (OOV) words, which

are encoded with the same vector.

The OOV problem is one of the most important problems in text summarization,

as it affect the performance of a model [29]. The input text or the summary might

contain OOV words, which leads to reduction of the amount of information that the

model can process [30]. Some techniques to deal with OOV problem are pointer-

generator model (where the model can “point” to the input text to copy the word)

[31] or usage of dual encoder (where the first encoder encodes the text regularly, and

the second encoder encodes the importance of words [32]).

A similar but somewhat different problem is a rare words problem, where the

words are not new, but appear less frequently in the training dataset; therefore, it

leads to a problems in training the vector representation of such words, which worsen

the general performance of the model [33]. OOV words are encoded using exactly the
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same vector, meaning they do not differ between each other if the word is used less or

more frequently. To the best of our knowledge, there has been done a limited work

regarding usage of rare words in text summarization problem [34, 35], as most of the

research have been focused on the OOV problem.

Another problem is what information is provided to the model. The deep learning

model has a fixed input size; therefore, only a limited amount of the input text tokens

can be used. Some papers [12, 31, 23, 26] take the first N tokens as input text, which

we consider as not optimal. Important information might be located further in the

text if it is too long for the deep learning model. Including the first N tokens might

lead to the inclusion of irrelevant information, and instead, more amount of important

information could be provided.

1.2 Proposed Approach

In this thesis, we focus on the problem of rare words, meaning words that are infre-

quently used in the dataset. Our proposed model puts more attention on rare words

and less attention on frequently used words. Our intuition is that boosting atten-

tion for rarely used words might provide additional information to the model, which

might help to improve the performance and generate better summaries. We do not

use pre-trained embedding encoders or knowledge transfer (like BERT [23], BART

[25] or PEGASUS [26], which are used to achieve current state-of-the-art results), as

knowledge transfer might be biased against rare words. The objective of this research

is to experimentally test whether boosting rare words improves the summarization

task by selecting and/or modifying appropriate transformed-based architecture with

pointer-generator layer.

Our proposed supervised learning approach is to use the hybrid model (shown in

Fig. 1.1) where the summary generated from an extractive approach will be used

as input to the abstractive model training. The reason for applying the extractive

approach prior to model training is to remove redundant information from the input.

In Fig. 1.1, there are two additional steps shown (dataset preprocessing and the

model testing). The model testing is done using an annotated (labelled) summary.

Our proposed model uses a transformer model with a pointer-generator layer [31]

as an abstractive approach. Similar model has been implemented in [36]; however,

authors did not achieve high results. The pointer-generator layer decides whether to

copy a word from the input text or generate a new word. We test the performance of
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the this model to show that it can outperform the sequence-to-sequence model with

the pointer-generator layer.

Our proposed approach can be used in situations, when the text domain is dif-

ferent than the one the model was trained on (i.e., testing on a different dataset,

which has shorter summaries). Frequency information can help to concentrate on

rare words, which might contain important information. Our hybrid model helps to

extract important parts of the text, before the model generates a summary, which

might be helpful, when the input text is very long and important information might

be located further in the text.

We use four well-known datasets: CNN/DM [12], XSum [37], Gigaword [38] and

DUC 2004 Task 1 [39]. These datasets are based on news articles, and are used to

generate a summary from the article. The Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) [40] score is used as a metric to evaluate the model’s perfor-

mance with the most commonly used variations are ROUGE-1 (R-1), ROUGE-2 (R-2)

and ROUGE-L (R-L) scores.

Figure 1.1: General pipeline
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1.3 Contributions

The contribution of this thesis are as follows:

� We have proposed a modification to the attention mechanism of the transformer

model with a pointer-generator layer. This modification adds frequency infor-

mation about words in an effort to boost the attention of rarely used words.

� We have implemented a hybrid approach, which uses extractive and abstractive

elements and showed that it outperforms models which use only an abstractive

approach.

� We have demonstrated that our proposed model with frequency information,

trained on CNN/DM and XSum datasets can perform better when tested on

the DUC 2004 Task 1 dataset.

� We present case-studies of summarization experiments to test the transformer

model with a pointer-generator layer as well as our proposed model with two

different input text sizes (measured as tokens). Our best model achieved R-1

score of 38.22, R-2 score of 15.07 and R-L score of 35.79, outperforming other

models by several ROUGE points.

1.4 Thesis Layout

The rest of this thesis is organized as follows:

Chapter 2 describes the background information for the proposed transformer-based

model, as well as performance evaluation algorithms and hyper parameters.

Chapter 3 provides an overview of research related to the three main text summa-

rization approaches: extractive, abstractive and hybrid.

Chapter 4 explains four different datasets that have been used and preprocessing

steps.

Chapter 5 describes experiments that have been performed and analyzes the results.

Chapter 6 concludes the thesis and suggests improvements for future work.
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Chapter 2

Preliminaries

This chapter discusses the background of machine learning, the transformer mod-

els and later proposed models and the model implemented in this thesis. Imple-

mented model has the following novelty: transformer model with pointer-generator

layer (which we refer to as M1) has been implemented; frequency information is given

to the encoder output attention (which we refer to as M2); the model contains both

extractive and abstractive approaches, where extractive method takes first k sentences

from the input text, and then adds other sentences, depending on a score they get

(M1-x or M2-x, where x is a number of tokens used).

In this thesis, we use supervised machine learning, where “input text” is the input

and “annotated summary” is the label. “Annotated summary” refers to the summary

that is taken from the dataset and generated by human (label), when “generated

summary” refers to the summary, that is generated by a model.

2.1 Background

2.1.1 Artificial Intelligence

In the recent decades artificial intelligence (AI) became very popular, which is used

in our everyday lives [41]. AI can be seen in Google Translate, our phones or laptops.

AI can cover various topics and problems, and it can be summarized as a technique

that tries to imitate humans behavior using special techniques. People usually think

about the AI as a self-aware computer that performs different tasks, however, AI

models are created to do a specific task even if it is small. The difference between

an AI algorithm and a simple code, is that the AI algorithm can adapt to certain
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situations and behave appropriately. But, if the task that one tries to solve requires

self-correction or a learning process, the subbranch of an AI is used called “machine

learning”.

Machine learning (ML) is a subbranch of AI algorithms that are “trained” to find

patterns in vast amounts of data in order to make predictions, enabling machines to

learn and to complete tasks without any explicit programming. Statistical approach

and self-learning are used to achieve high results. ML has a few terms that are used

in all problems:

� Training is a process that tries to find a pattern, which most accurately rep-

resents or distinguish between given classes in the dataset.

� Model is a result of an ML training procedure, which is used for prediction.

The accuracy of the model depends on how good the model is trained.

� Testing is a process of testing a given model. The accuracy of the model is

checked using this procedure.

� Dataset is a set of data that is used during training and testing.

Deep learning (DL) is considered as a sub branch of ML which relies on neural net-

work architecture. DL input information from the dataset and by feeding it through

the artificial neural network structure uses pre-defined class information to generate

outputs. Artificial neural networks (ANN) have been inspired by how neurons in

human brain are structured. The nervous system is the main part of a human body,

which consists of neurons connected with to each other with synapse. Synapse is like

a pathway that the signal travels from one neuron to another. We, as humans, have

5 senses, which are smell, hearing, touch, sight and taste. They are the input for

our nervous system, which are encoded into electrical signals and later fed into the

neuron structure, which at the end produce our reaction (result). An ANN works in a

similar way, which input the data, passes it through hidden layers (neurons between

input and output) and produces output. The best property of ANN is that the user

should not specify which feature or pattern the model should look for to correctly

predict the result: the model does it all by itself. Each cell in the neural network

is connected with weights and biases. The weight control the signal between two

neurons, while biases allow the activation function to be shifted by adding a specified

constant. Learning procedure is a process of an ANN model to set weights in such a

way that the model produces the most accurate output.
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Deep learning and ANN models work the following way: the dataset is divided

into training, validation (development) and testing sets (often the training consists

of 80% of original size, where validation and testing have around similar size). The

training dataset is then fed to the model, where the neural network analyzes given

information and depending on how accurately the model labels the data the model’s

weight would be tuned so that the next iteration would produce higher results. Then

this process is repeated, until the whole dataset has been input to the model. This

is called an “epoch”. After each epoch, the validation dataset is fed to the model to

see whether the model overfits. Overfitting is a model’s behavior, where the model

gives accurate results for the training dataset, but not the testing dataset. Overfitting

leads the model to memorize the training dataset, so that when a a new data instance

is input, the model performs poorly. Underfitting is a different problem, where the

model cannot generalize neither training not testing dataset. Therefore, the training

dataset should be big enough, so that the model wouldn’t memories it. After the

model is trained, it is tested on the testing dataset. It is important that the testing

dataset is never used during the training procedure, as it might affect how actually

accurate the model is.

Bias-variance trade-off is a process of finding a good balance between overfitting

and underfitting. Bias is the difference between an average prediction of a model

and the actual correct values, when the variance is a variability of model predictions.

When variance is high, the model pays a lot of attention to the data (overfitting),

and when the bias is high, it means that the accuracy is too low (underfitting). The

ideal situation is to have both variance and bias as low as possible.

Before models can be explained, a few fundamental aspects should be described.

A simple ANN structure is shown in Fig. 2.1, where all elements are described below.

Figure 2.1: A sample of an ANN network with activation and loss functions.
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2.1.2 Input data

In this thesis, we are using text as an input/output (input text/annotated summary),

which cannot be fed into the model directly and, therefore, should be encoded into

a numerical/vector representation. Text is combined into the dataset that is called

corpus. For this corpus a vocabulary is created, which contains a set of unique words

and its index number. This vocabulary is used to encode the text into the vector

representation and if the word is not located in the vocabulary, it is designated as

out-of-vocabulary (OOV). One of the most common approaches to encode text is

to use bag-of-words (BoW) approach, which encodes a word as a zero vector of the

length of vocabulary and only a single element of a vector has a value of 1, which

gives the location of the word present in the vocabulary. In contrast, in this thesis,

we are using an an embedding for a encoding the text.

Embedding

Word embedding is the approach of providing more useful information about the

word and not only its location in the dictionary. Embedding is a process which maps

words into a vector space, so that later vector representation of these words kept

the relationship between these words. Word2vec [42] was one of the first and most

popular embedding technique, which used neighbor words to determine the vector

representation of a word. However, in our case, the embedding is trained using

attention mechanism, which will be described later.

To each sentence the beginning-of-sentence <BOS> and end-of-sentence <EOS>

tokens are added to signify to the model the beginning and the end of a sentence.

Then, this sentence is padded to a specific length and encoded using the vocabulary.

2.1.3 Activation function

Activation function is an important part of an ANN, which is used to calculate

weighted sum of its input and then decides whether the neuron should fire or not

and how much. This activate function introduced non-linearity to the ANN model.

There exist different activation functions and a few are described below.

Sigmoid function (often called the squashing function) is an S-shaped curve,

which adds non-linearity to the model (Eqn. 2.1). It squashes the numbers between

0 and 1, even if they are either very large or very small.
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Sigmoid =
1

1 + e−x
(2.1)

Softmax function (Eqn. 2.2) is used for computing probability distribution. Its

output is between 0 and 1, and the sum of the probabilities is equal to 1.

Softmax =
exp(xi)∑
j exp(xj)

(2.2)

2.1.4 Loss Function

The loss function is used in deep learning to determine how close the generated values

are to true values and generates the error. In our case, we use Kullback-Leibler

divergence loss function [43] (Eqn. 2.3) with label smoothing. The label smoothing

[44] is used to increase the robustness of a model, as it penalizes overconfident outputs.

KL(P ||Q) =
∑
i

P (i)log(
P (i)

Q(i)
), (2.3)

where P and Q are probabilities of each word in the vocabulary. The intuition behind
it is that there will be a significant divergence if the probabilities are not close.

Backpropagation

Backpropagation is a method of tuning weights of a neural network model using

the error that was obtained from the loss function. Backpropagation calculates the

gradient for each weight, which are later changed using the optimization algorithm.

2.1.5 Optimization Algorithm

Optimization algorithms are used to calculates and updates values of a model’s

weights, where learning rate is used to signify the model whether it is moving in

the right or wrong direction and to control how much the weights can be changed.

The learning rate can be imagined as a step on a slope, where the lower the learn-

ing rate is, the slower the model traverse through the graph. The gradient descent

optimization is used to find the local minimum on the graph, which minimizes the
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general error. In our research, we use Adaptive Gradient Algorithm (AdaGrad) opti-

mizer [45] (shown in Eqn. 2.4). There is another optimization function that we tested

our models on, which is called Adaptive Moment Estimation (Adam) optimizer [46]

(Eqn. 2.5-2.9). Each loss function has a learning rate, which determines how much

the model should change its parameters based on the error from the loss function.

θt+1,i = θt,i −
η√

Gt,ii + ϵ
· gt,i, (2.4)

where for each time step t for every parameter θi the initial step (learning rate) η is
changed using

√
Gt,ii + ϵ, where Gt,ii is a diagonal matrix each element in a diagonal

ii is a sum of the squares of the gradients of θi up to the time t and ϵ is a smoothing
element which avoids a division by 0. gt,i is a gradient of objective function.

mt = β1mt−1 + (1− β1)gt (2.5)

υt = β2υt−1 + (1− β2)gt (2.6)

m̂t =
mt

1− βt
1

(2.7)

υ̂t =
υt

1− βt
2

(2.8)

θt+1 = θt −
η√

υ̂t + ϵ
· m̂t, (2.9)

where β1 and β2 are predefined (author proposed using β1 = 0.9, β2 = 0.999 and
ϵ = 10−8. mt and υt represent the first and second moments of the gradients (the
mean and the uncentered variance, receptively). To overcome the bias towards zero,
the author suggested using m̂t and υ̂t.

2.1.6 Dropout

We use a dropout [47], which is a technique that drops a specific number of neurons

and their connections with a specified probability (in our case 20% is used). Dropout

is helpful as the model learns to rely on more than just a group of specific neurons,

which helps to address the problem of overfitting the model.

2.1.7 ROUGE Score

To evaluate the model’s performance, the Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) [40] score is used as a benchmark based on the well-known recall
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measure. It calculates the degree of overlap between the annotated and generated

summaries using the number of N-grams (recall). N-gram takes N number of words

as a sequence and uses it as a single entity. ROUGE has several scores, but only

three are used the most: ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L (R-L).

ROUGE-N measures how many numbers of N-gram words in the annotated summary

appear in the generated summary. R-1 uses 1-gram words, R-2 uses 2-gram words

and R-L uses Longest Common Subsequence. So, for instance, if we have a text

“My dog jumped over the long fence”, the 1-gram (unigram), 2-gram and 3-gram

will have the structures, as shown in Table 2.1. ROUGE-L is based on the Longest

Common Subsequence (LCS), which calculates the longest sequence of words which

two summaries share. In an example from Table 2.1, if we would have the second

sentence as “Dog is over the fence”, then the longest common subsequence would be

“dog over the fence”, as in LCS the words can be not next to each other, however,

they should be in order.

N-gram
1-gram (Unigram) [“My”, “dog”, “jumped”, “over”, “the”, “fence”]
2-gram (Bigram) [“My dog”, “dog jumped”, “jumped over”, “over

the”, “the fence”]
3-gram (Trigram) [“My dog jumped”, “dog jumped over”, “jumped

over the”, “over the fence”]

Table 2.1: Sample of N-grams

However, to test text summarization models, F1 score of ROUGE-N is calculated,

which includes both recall and precision measures. ROUGEF1 score is calculated

using recall and precision, where recall calculates the number of N-grams found in

both texts and divided by the number of N-grams in the second text (shown in Eqn.

2.10), and precision calculates almost the same, but the number of N-grams found

in both texts is divided by the number of N-grams in the first text (shown in Eqn.

2.11). For instance, R-1 recall of the annotated sentence “My dog jumped over the

long fence” and the generated summary “The dog jumped” would be 3/3 = 100%.

R-1 precision would be 3/7 = 43%. To calculate ROUGEF1 score, we use this formula

given in Eqn. 2.12.
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recall =
count(N -gramtext1 ∩N -gramtext2)

count(N -gramtext2)
(2.10)

precision =
count(N -gramtext1 ∩N -gramtext2)

count(N -gramtext1)
(2.11)

ROUGEF1 = 2 ∗ precision ∗ recall
precision+ recall

(2.12)

2.2 Transformer

Transformer model [1] is used for text summarization and it does not contain any se-

quential elements like RNN or LSTM, that are used in Sequence-to-sequence (Seq2Seq)

model [22] (see Appendix A.3). Transformer is not based on a Seq2Seq model, how-

ever, it uses an encoder-decoder structure as well. The paper that implemented the

transformer model argued that even though the Seq2Seq model with attention tries

to solve the problem of the usage of sequential elements, it still uses the fundamental

concept of a sequential algorithm. Therefore, transformer solely relies on the attention

mechanism using a simple feed forward neural network for training.

2.2.1 Transformer Model

The transformer model [1] is shown in Fig. 2.2. The encoder encodes the input

text and passes this information to the decoder, which combines it with an encoded

annotated summary to output the probabilities of each word from the vocabulary

being generated. The decoder is auto-regressive, meaning that it generates the next

word by giving the previously generated sequence. The next sections describe each

item of the transformer.

2.2.2 Input/Output Information

The information about the input data has been discussed in section 2.1.2, however, a

more detailed description is needed. In Table 2.2, we give an illustration of a normal

and encoded text used in this thesis. In this thesis, a vocabulary of 50,000 words

was created, where words are sorted in decreasing order, depending on the number

of times they occur in the whole dataset. The vocabulary has information about the

word and its index. Throughout this chapter, a specific example of an input text and
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Figure 2.2: Transformer architecture. The drawing was based on a figure from [1].
“Output (shifted right)” is a part of annotated summary during training or a part of
generated summary during testing, which is shifted right because <BOS> symbol is
at the beginning. The decoder output is passed through the linear function (which
is a simple feed forward neural network by connecting the input to the output) and
later the softmax function generates probabilities.

an annotated summary is used, which is shown in Table 2.2. All values are created

manually and not using the actual model. The idea behind it is to show the flow of

data inside the transformer. Appendix A.1 shows an actual example and values for

input/output and hidden layers.

From Fig. 2.2 the “Input” inside the transformer is shown as an encoded text of

an “Input text” from Table 2.2, when the “Output (shifted right)” is an encoded text

of an “Annotated summary” during the training process. An annotated summary is

shifted right because the annotated summary uses <BOS> and <EOS> to signify

the beginning and end of a sentence, so for generation of a word i only the context

from 0 to i-1 is used. A detailed explanation of how encoding is done is described in

section 4.2.2.
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Text version Input text Annotated summary
Text Last summer I have vis-

ited such cities as New
York , Philadelphia ,
Boston and Washington
and it was great

<BOS> My trip to
America was great
<EOS>

Encoded text [ 70, 595, 29, 28, 1641,
162, 1698, 26, 62, 256, 6,
0, 6, 1693, 9, 600, 6, 20,
14, 298 ]

[ 2, 84, 916, 7, 575 14,
298, 3 ]

Table 2.2: A sample of input text and annotated summary in normal and encoded
format. Encoded text is a text that was created using the vocabulary, where each
word is replaced with word’s index in the vocabulary. 0 means OOV word. <BOS>
and <EOS> are used to signify the beginning and end of a sentence.

2.2.3 Input/Output Embedding

Input/Output embedding is a process of converting encoded text to a vector repre-

sentation. The embedding is a vector of floating point values, which are trainable

parameters. In the beginning, those values are randomly generated, and as the model

trains on data, the model makes changes to the embedding. In the thesis, the em-

bedding of 256 is used, however, in the following example, only an embedding of 4 is

used (Table 2.3).

Text version Input text Annotated summary
Encoded text [ 70, 595, 29, 28, 1641,

162, 1698, 26, 62, 256, 6,
0, 6, 1693, 9, 600, 6, 20,
14, 298 ]

[2, 84, 916, 7, 575 14, 298,
3]

Embedded text [ [0.1, 1.3, -0.2, 4.3],
[0.5, 0.1, 0.2, 0.8],
...,
[-0.4, -1.2, 0.7, 0.2] ]

[ [-0.1, 0.2, 0.4, 1.3],
[2.3, 1.5, 0.7, 1.1],
...,
[-1.4, -1.5, 1.7, -1.2] ]

Table 2.3: A sample of encoded and embedded text, where floating values are ran-
domly generated.
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2.2.4 Positional Encoding

The transformer model does not use any sequential elements, which keeps track of

whether the word appears before or after each other, therefore, the information about

the position of a word is lost. Positional encoding is used to encode the position of

the word using sin and cos functions of different frequencies Eqn. 2.13-2.14 [1], where

i is the vector dimension and pos is the position. The intuition behind this approach

is that by adding positional encoding to the embedding vector shifts the embedding

according to its location in the text and the model can distinguish whether the word

is used before or after another word.

PEpos,2i = sin(pos/100002i/dmodel) (2.13)

PEpos,2i+1 = cos(pos/100002i/dmodel) (2.14)

Text version Input text Annotated summary
Embedded text [ [0.1, 1.3, -0.2, 4.3],

[0.5, 0.1, 0.2, 0.8],
...,
[-0.4, -1.2, 0.7, 0.2] ]

[ [-0.1, 0.2, 0.4, 1.3],
[2.3, 1.5, 0.7, 1.1],
...,
[-1.4, -1.5, 1.7, -1.2] ]

Embedded text with
positional encoding

[ [0.4, 1.5, -0.1, 4.2],
[0.5, 0.2, 0.5, 0.7],
...,
[-0.9, -1.4, 0.6, 0.3] ]

[ [0.1, 0.4, 0.4, 1.2],
[2.4, 1.5, 0.6, 1.0],
...,
[-1.8, -1.7, 1.5, -1.1] ]

Table 2.4: A sample of embedded text and embedded text with positional encoding.

2.2.5 Attention

The main part of the transformer model is an attention mechanism, which the trans-

former relies on. Attention [20] was designed to overcome the problem of long depen-

dencies. It is used for the model to identify how much attention should be placed on

other words in the context given the input word and the decoder hidden layer. The

attention distribution is calculated using a specific score function, which calculates

the relevance of an input token to the target context. This score can be calculated

using either dot-product attention or multi-layer perceptron [20], however, in this
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thesis only dot-product attention is used, which calculates the dot-product between

two vectors (Eqn. 2.15). Then the attention weights are calculated using the softmax

function. These attention weights are later used to change the input or the embedding

representation of words in the self-attention layer.

Dot-product = aaa ∗ bbb =
n∑

i=1

aaaibbbi (2.15)

where a and b are two vectors.

2.2.6 Self-attention

In self-attention, tokens interact with each other to understand the context where

each word is used, and later this information (or attention) is used to change the

word embedding. Fig. 2.3 shows a sample of self-attention inside the encoder based

on the example from Table 2.2. To calculate the weighted attention, the model uses

the following equation Eqn. 2.16. The keys (K) are a group of vectors, where each

key has an associate value (V). In the previous example, it would be an embedding

of an input text. The query (Q) is a vector and contains information that we want to

find. In the previous example, it is the embedding representation of each word. The

key with the largest dot product with Q (as shown in Eqn. 2.15) will be selected, and

softmax will map the key to the exponential function and divide by the sum of the

exponential, which will create a distribution, that is used later to change the values

V. To avoid small gradient, the paper [1] divides the dot product of Q and K by dk,

where dk is a dimension of K.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.16)

From our example, this self-attention is used for an input text. Firstly the at-

tention is calculated (Fig. 2.4) using softmax of dot-product between Q and K (the

attention), where Q, K (and V) are embedded text with positional encoding from

Table 2.5. Later, this information is used to multiply by V, which changes the initial

embedding of each word.
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Figure 2.3: A sample of a self-attention mechanism inside the encoder. Q, K and V
represents queries, keys and values respectively (word embedding as a vector).

Figure 2.4: A sample of a softmax attention distribution for input text. Each value
represents how much attention each word puts on another word.

Text version Input text (V)
Embedded text with
positional encoding

[ [0.4, 1.5, -0.1, 4.2],
[0.5, 0.2, 0.5, 0.7],
...,
[-0.9, -1.4, 0.6, 0.3] ]

Embedded text with
positional encoding
after attention

[ [0.3, 1.1, -0.1, 3.5],
[0.1, 0.1, 0.5, 0.3],
...,
[-0.5, -0.7, 0.4, 0.1] ]

Table 2.5: A sample of embedded text with positional encoding and the same em-
bedding but after multiplied by attention.
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2.2.7 Masking

The decoder contains a self-attention mechanism as well in the transformer model.

However, the decoder’s self-attention should not be able to focus on information that

is located further in the text, therefore, masking is used. Masking ensures that the

next word i is generated using the information from the annotated summary up until

the position less than i. At each step i only a context from 0 to i − 1 is used and

no further context. An example in Fig. 2.5 is used to demonstrate that for the word

“have” only the previous context was used, and all other information is not (white).

Fig. 2.6 shows an example of masking. The mask contains “True” or “False” values,

depending on whether the word should be used or not. All padded symbols are masked

with “False”. It can be seen that for each row, a part of an annotated summary is

chosen. For instance, for position “2” the “<BOS> My trip” part is chosen.

Figure 2.5: A sample of a self-attention mechanism inside the decoder with masking.
Q, K and V represent queries, keys and values respectively, which are vectors and
represent word embedding. The white circle and white rectangle represent that this
information is not used.

From our example, this self-attention is used for an annotated summary. Firstly

the attention is calculated (Fig. 2.7) using softmax of dot-product between Q and

K (the attention), where Q, K (and V) are embedded text with positional encoding

from Table 2.6. Later, this information is used to multiply by V, which changes the

initial embedding of each word.
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Figure 2.6: Masking of an annotated summary. The yellow colour means “True”,
when dark colour means “False”. <BOS> is the “beginning of sentence” symbol
(more is explained in section 4.2.2)

Figure 2.7: A sample of a softmax attention distribution for annotated summary.
Each value represents how much attention each word puts on another word.

Text version Input text (V)
Embedded text with
positional encoding

[ [0.1, 0.4, 0.4, 1.2],
[2.4, 1.5, 0.6, 1.0],
...,
[-1.8, -1.7, 1.5, -1.1] ]

Embedded text with
positional encoding
after attention

[ [0.1, 0.3, 0.1, 0.4],
[1.2, 0.9, 0.3, 0.5],
...,
[-0.4, -0.6, 1.1, -0.5] ]

Table 2.6: A sample of embedded text with positional encoding and the same em-
bedding but after multiplied by attention.
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2.2.8 Multi-Head Attention

Self-attention is calculated using multi-head attention [1], which is a function that

maps Q and a set of K-V pairs to output in vector representation. It allows the model

to focus on different positions and gives multiple representation subspaces.

Figure 2.8: Multi-Head Attention. The drawing was based on a picture from [1].
V represents input information which might be important for generating the next
word, K represents indexing of how those values can be accessed, and Q represents
information which the model tries to find. “h” in Multi-Head Attention represents
the number of attention layers which run simultaneously.

2.2.9 Residual Connection and Layer Normalization

Residual connection [48] is used after each multi-head attention and a feed forward

neural network layer in the transformer model. A residual connection is used as a skip

connection, where the input is added to the output (Fig. 2.9). The residual connection

allows the gradient to flow through the network, and without it, a large part of the

training signal (i.e., the original state) might be lost during backpropagation.

Figure 2.9: Residual connection



22

The layer normalization is used for convergence stability and quality. The nor-

malization layer is placed after the residual network, and the whole equation looks as

the following LayerNorm(x+Sublayer(x)), where x is the input, LayerNorm is the

normalization layer and Sublayer is a specified sub-layer (like self-attention or feed

forward network).

2.2.10 Feed Forward Neural Network

A feed forward neural network is an ANN where the connections do not form a loop,

where all information only passes forward (Fig. 2.10).

Figure 2.10: Feed Forward Neural Network

2.2.11 Encoder and Decoder

The encoder consists of a self-attention and a feed forward layer, where the residual

connection is applied for each layer. The encoder and decoder are stacked in a group of

Nx (paper [1] suggests Nx = 6), which is shown in Fig. 2.11. Stacking is used because

using a single encoder/decoder architecture is not enough to capture the complexity

of the language. The input of an encoder is passed through the self-attention layer,

which allows it to look at all words, and then it is passed through a feed forward

layer. At each step, the output is normalized and added to its sub-layer. Each sub-

layer employs residual connection, which is followed by layer normalization. The

embedding and the model size have the same value to boost the residual calculations.

Then this information is passed to the decoder. In addition to self-attention and feed

forward layers, the decoder has a third intermediate layer, which helps it focus on

important input information. It performs multi-head attention over the previously

generate summary (during testing) or a part of the annotated summary. The encoder

changes the embedding of all words depending on the context each word is used in.
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At the same time, the decoder scans the part of the annotated summary using masked

multi-head attention and using the encoder’s hidden layer generates the probability

distribution of the next word being generated.

Figure 2.11: Stacked encoder

How Transformer Works

In the beginning, the vocabulary of used words is created, which contains information

about a word and its index, which encodes the sentence. In each sample, an encoder

receives an input text with a specific length (for instance, 400 tokens). The decoder

receives as an input a part of the summary that has already been generated (or a part

of an annotated summary). Then, the model process it using an attention mechanism

and outputs probabilities of generating each word in the vocabulary. Then this process

is repeated M number of times (where M is the maximum number of words the model

can generate) or until the <EOS> symbol is generated. During training, it is possible

to combine this process, as it is already known the future context. So masking is used

to hide future context and an array of masked annotated summary is fed, where for

each position i only the context from 0 to i− 1 is used.

An example of how the actual input/output and hidden layer look like are shown

in Appendix A.1.
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2.3 Proposed Model

In this section, the proposed model is described. It consists of several elements, such

as a transformer with a pointer-generator layer, attention with frequency information

and an extractive approach.

2.3.1 Transformer with Pointer-generator Layer

Proposed model as an M1 model shown in Fig. 2.12 has a transformer backbone. Ad-

ditionally, we add a pointer-generator layer from [31], which decides whether to copy

or generate a word. Original pointer-generator model [31] uses Seq2Seq attentional

model. So we make adjustment to fit this layer to the transformer model, by using a

multi-head attention and dot product attention to calculate the context vector. The

pointer-generator layer does not have any sequential elements.

Additional temporary vocabulary is created to handle OOV words, where all OOV

words from the input text in a given batch are present. Indexing in this vocabulary

starts from the last index inside the original vocabulary. The input text and the

annotated summary are encoded using both vocabularies. This vocabulary is created

so that the model would know which word it should copy if the model decides to copy

rather than generate a new word.

Pointer-generator layer is inserted as the last layer in a transformer model. It uses

a context vector (h), which uses information about the input text and the hidden

state of the decoder. To get the context vector, we use another multi-head attention

layer, where K and V are the output of an encoder, and the Q is an output of the

normalization layer inside the decoder. Later, the context vector’s attention is used to

decide whether the word should be copied and multiplied by 1− pgen and the output

of the model (s) is used with the context vector to decide whether the word should

be generated and it is multiplied by pgen. pgen contains probabilities of generating

word vs copying it. pgen is calculated the following way (Eqn. 2.17 [31]): the context

vector, the hidden layer of the decoder and the decoder input (x) after the positional

encoding (embedding of summarized text after positional encoding) are concatenated

together and input into the sigmoid function.

pgen = σ(wT
h∗h+ wT

s s+ wT
x x+ bptr), (2.17)

where wT represents the weight matrix that is used inside hidden layers and bptr is a
bias.
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Figure 2.12: Transformer with pointer-generator layer (highlighted in green). The
drawing was based on a picture from [1]. x represents the decoder input after posi-
tional encoding, s is the output of a decoder and h is a context vector. The decoder
generates the probability of a word being generated, when the context vector has
the attention distribution across the input text. Using the parameter pgen (which
is defined later) the model can regulate how much both distributions affect the final
distribution. Attention from context vector a and probability of a word being gener-
ated Pvocab(w) are used to calculate the final distribution.

Later, to calculate the final distribution P (w), the following formula is used Eqn.

2.18 [31], where Pvocab(w) is a probability distribution over all words. Probabilities

of a word being generated are multiplied by pgen, and the attention distribution is

multiplied by 1− pgen and those two distributions are added to each other to form a

final distribution of the next word. The attention distribution a represents the copy

mechanism which contains the attention for all words in the input text, so if the word

is in OOV or belongs to OOV, the first part (which is multiplied by pgen) will be

closer to zero. The attention for this OOV word, which appears in the second part,

will be added to the final distribution, which leads to “copying” the word with the

highest attention. On the contrary, if the word does not appear in the input text,
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then the 1− pgen will be closer to zero, and the decoder prediction of the next word

being generated will be used. However, when the summary contains an unknown

word (OOV token is used), which cannot be encoded with a vocabulary or being

encoded, the model will learn to generate also an OOV token.

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ai (2.18)

where ai represents the copy mechanism which contains the attention for a word i in
the input text.

2.3.2 Attention with Frequency Information

The self-attention mechanism inside the encoder focuses on important information to

change the input text embedding and shows how much attention the model should

put on the input words. However, the model does not have information on the

importance of a word and learns it throughout the training phase. Therefore, we

propose an approach of adding information as a frequency score about the frequency

of a given word. Frequency score is passed to the multi-head attention inside the

encoders self-attention mechanism through the linear neural network, multiplying it

with the attention values (Eqn. 2.19). Our idea is that by boosting the attention of

rarely used words (which are considered to be the most important words) and limiting

the model’s attention to frequently used words, it can help the model to put higher

attention on uncommon words, which might contain some important information.

For instance, if the word is rarely used, then the attention for this word will be much

higher than for commonly used words, like “the” or “an”.

attnfreq = attn ∗W T
sfreq

sfreq(k), (2.19)

where W T
sfreq

represents the weight matrix that is used inside hidden layers. sfreq is
the frequency information about the word in the position k.

To calculate the frequency score (importance of a word) the self-attention of the

encoder layer is multiplied by the score of a word, which is obtained by the inverse

logarithm of how many times the word appears in the dataset (given in Eqn. 2.20).

For most numbers, its inverse is lower than 1, therefore, the model will decrease

attention for almost all words and only boost a few. To boost values for more words,
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we shift all scores to a mean value of 1. This approach will decrease attention to the

most commonly used words, while it will increase for rare words.

wordfreq =
1

log(occ)
+ shift, (2.20)

where “occ” is the number of occurrences of a specific word in the training dataset
and “shift” is calculated in a way so that all variables mean value is 1.

Scores of all words are predefined; therefore, it is saved into a dictionary before

training (Table 2.7 shows what a predefined dictionary looks like). If the word does not

appear in this dictionary (unknown word), the maximum score value will be assigned,

as it might contain some important information (for instance, a name/surname or a

city, which is rarely used). The final model that is used as an M2 model is shown in

Fig. 2.14.

Word Number of occurrences Score
the 11,896,156 0.792
mid-flight 170 0.926
million-a-year-deal 1 2.17

Table 2.7: Dictionary of frequencies and scores for each word. The word “the” is used
more often (11,896,156 times) in the CNN/DM dataset; therefore, its score is lower
than the word “million-a-year-deal”, which is used only once in the dataset.

Figure 2.13: Multi-Head Attention with frequency information. The drawing was
based on a picture from [1]. Added frequency information for each word (highlighted
in green). Additional parameter of words frequency score is passed.
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Figure 2.14: Transformer with pointer-generator layer and added frequency score
inside the encoder self-attention mechanism (highlighted in green).

2.3.3 Extractive Approach for Rare Information

Extractive summarization copies parts of the text from the input text (such as sen-

tences, phrases or words) and combines it to generate a summary. This approach does

not generate any new words or information. Even though such an approach might

not rephrase what is in the input text, sometimes, it might produce better and more

grammatically correct summaries than an abstractive one. Extractive summarization

works the following way: firstly, it creates an intermediate representation of an input

text, which finds important parts in the text. Secondly, each sentence/phrase is as-

signed a score, representing the importance level. Finally, sentences which have the

highest scores are selected and combined to generate a summary.

There exist two types of how to extract an intermediate representation of a text:

topic representation and indicator representation. Topic representation focuses on

topics in the text, and the importance can be found, for example, by the number of

topics discussed in the text. Indicator representation transforms each sentence into
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a list of features, which determines its importance, such as sentence length, sentence

position, whether the sentence contains a particular word or a phrase, and others.

Using these sets of features, the importance of sentences is determined using two

approaches: graph methods and machine learning methods.

For the extractive approach, several techniques can be used, such as sentence

tokenization, word tokenization, part-of-speech tagging, lemmatization, stemming,

stop words removal (such as “a” or “the”), regular expression (regex), and others.

Proposed Approach with Indicator Representation

The algorithm for an extractive approach is described in Alg. 1, and the pipeline is

shown in Fig. 2.15. To tokenize sentences (separate the text into individual sentences)

predefined function from the nltk library1 is used (line 3). Stop words are removed

(line 4), as they are a distraction when selecting the most important information.

Usually, the first few sentences contain the most important information, and it is

useful to take the first k sentences (line 5). For instance, we take the first ten sentences

when the limit of an input text is 400 tokens). We use N-gram approach, which takes

N number of words as a sequence and uses it as a single entity. In our approach, we

extract the level of importance by using the indicator representation of 3-gram scores

of phrases in each sentence (3-gram performed better than 2 or 4-gram models), which

are later used to select important sentences (line 7).

Figure 2.15: Extractive approach pipeline

N-gram frequency scoring works the following way: the predefined dictionary of

N-gram words from a training dataset is extracted, where we count how many times

each N-gram is used in the entire dataset. Then, the inverse logarithm of a frequency

is calculated, using the same formula as frequency information of words given in Eqn.

2.20, however, the shifting is not used, as there it does not change the importance

information (N-grams, which are mentioned only once, are dropped and not included,

due to the problem of calculating the inverse logarithm of 1). Table 2.8 gives sample

dictionary of 3-gram words with the number of times they occur and their scores. In

1https://www.nltk.org/

https://www.nltk.org/


30

Algorithm 1: An algorithm for an extractive approach

Input : dataset, // Preprocessed dataset
first k, // Take first k sentences (first k is in 5, 10)
N // number of tokens to be extracted (N is in 200, 400)

Output: out dataset: Dataset, which contains important information
1 for input text in dataset do
2 important sentences← [ ];
3 tokenized sents← nltk.sent tokenize(input text);
4 tokenized sents← remove stopwords(input text)
5 important sentences← FirstKSents(first k);
6 for sent in tokenized sents do
7 scores← ComputeScoreForSentence(3 gram);

// Using Eqn. 2.20. Each sentence gets a mean value of a

3-gram group

8 important sentences← SelectImportantSents(N, scores);
// Select important sentences in addition to the first k

sentences

9 AddProcessedText(out dataset, important sentences);
// Important sentences are added to the output dataset
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the end, each sentence is scored based on the N-gram scores, where each sentence’s

mean score is calculated. Unknown N-grams are assigned a maximum score, as this

phrase has not been seen before; therefore, we assume that it might contain some

important information. We have tried to use different values for the N-gram approach,

and the 3-grams approach showed the best results.

3-gram Number of occurrences Score
(’wales’, ’british’, ’irish’) 45 0.605
(’british’, ’irish’, ’lions’) 504 0.370
(’irish’, ’lions’, ’fly-half’) 6 1.285

Table 2.8: Dictionary of 3-gram frequencies and scores. The score information for
(’irish’, ’lions’, ’fly-half’) is higher than for the other 3-grams because it is used less
often in the given dataset. Later, for each score, the mean value of all scores is added
to shift them to the right so that the mean would be close to 1.

2.3.4 Greedy Algorithm and Beam Search

The model outputs a probability distribution over each word in the vocabulary. The

next step is to use an algorithm which picks the word that should be selected next.

The two most popular algorithms are greedy algorithm2 and beam search [49]. The

greedy algorithm chooses the optimal choice at each stage, while the beam search ex-

plores the graph of nodes, by looking at nodes, which produce the highest probability.

The greedy algorithm takes a word with the highest probability at a given step

without considering any previous steps (shown in Fig. 2.16). This algorithm is fast,

but not very accurate.

On the other hand, beam search keeps track of k most likely outputs. The most

common values for k are between 5 and 10. At each step, k candidates decide to

choose the next output word, probabilities are multiplied, and k candidates with the

highest probability are chosen for the next step. As multiplying probabilities leads to

small numbers, the natural logarithm of probabilities is used to keep large numbers.

An example of how a beam search works are shown in Fig. 2.17.

It is possible to modify the beam search using different approaches. For instance,

the study [50] suggested using the patience factor, which controls how many finished

2https://xlinux.nist.gov/dads//HTML/greedyalgo.html

https://xlinux.nist.gov/dads//HTML/greedyalgo.html
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Figure 2.16: Greedy algorithm example

Remark 2.3.1. In the case from Fig. 2.16, the vocabulary size is 4, where a proba-
bility is generated for each word at a specific step. Greedy algorithm selects the best
choice at every step and does not consider other possibilities. In this case, the follow-
ing probabilities would be selected: [0.50, 0.47, 0.35, 0.45].

sentences have been found. Code modification is simple, as only one line needs to

be changed. Another paper [51] introduced several modifications, such as length

penalty and coverage penalty, which are implemented inside beam search instead of

a transformer model. Their results show that the length penalty improves results

significantly (at least 1 ROUGE point), and coverage implementation has a slight

effect. In our version of a beam decoder, we use the same length control algorithm as

in [52]. Some papers suggested different algorithms to control the length (for instance,

the paper [53] used decoder hidden state and context vector to generate the context

length vector); however, the beam search length control function is much easier to

implement.
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Figure 2.17: Beam search example (k=2)

Remark 2.3.2. In the case from Fig. 2.17, the vocabulary size is the same as in Fig.
2.16. The beam search algorithm considers two candidates at every step. The higher
the general probabilities each word gives, the more likely a beam search algorithm will
select it. It can be seen that, unlike the greedy algorithm, beam search selected a
different path, which generates a higher probability overall. It does not explore the
upper branch after the step 3, because the algorithm found the best probabilities in the
bottom branch. In this case, the following probabilities would be selected: [0.40, 0.90,
0.30, 0.60]. We can see that even though the first probability is smaller than the list
that the greedy algorithm chose, the overall list of probabilities is higher; therefore,
the sentence generated using beam search would be more similar to the annotated
summary.
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Chapter 3

Related Work

There are two types of automatic text summarization approaches: extractive [10, 11]

and abstractive [12, 13]. An extractive method generates summaries using sentences

from the input text. In contrast, in an abstractive approach, the text is generated

using an external vocabulary of words, which might include words that are not present

in the original input. The combination of extractive and abstractive approaches is

called a hybrid approach. The intent of this approach is to overcome the weaknesses

of the extractive and abstractive approach [14, 15, 16].

3.1 Extractive Approach

Most of the early text summarization research focused on extractive approaches

[54, 55, 56]. The general idea of an extractive approach is to get an intermediate

representation of words/sentences and sort them by the level of importance. Some of

the early text summarization techniques are commonly used in extractive approach

models. For instance, TF-IDF (term frequency-inverse document frequency) [57, 58]

is based on frequency, whereas TextRank (PageRank) [59] is based on graphs. A node

(vertex) represents sentences and the edges represent relationships between sentences.

The number of edges (connections) determine the importance of a node (vertex). In

the PageRank algorithm, the nodes are also weighted so that each node can add a

different level of importance. The similarity between two sentences is determined by

the amount of overlap of content (e.g., number of common words). This approach

computes a score of each sentence’s importance and the top scoring sentences are

combined to generate a summary. In [60], genetic algorithms (solve an optimization
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problem based on a natural selection) are used to generate a summary, such as fitness

function (affects whether the candidate makes it to the next generation), crossover

(combining the best traits of parents into children) or mutation (to encourage further

diversity). The authors used weights ranging between 0 and 1 as a genetic algorithm’s

population, where each weight corresponds to a word or a symbol in the vocabulary.

In [61], the authors discussed various graph-based models, such as pagerank, hits,

closeness, betweenness and degree measures.

A discussion of the trade-off between compression and retention, meaning includ-

ing as much important information as possible without generating too much text was

presented in [62]. The authors proposed using several features, such as semantic simi-

larity, z-score, and unique tokens capturing and combining it with the TF-IDF model

to get the most accurate result.

In [10], the authors proposed using feature extraction and enhancement to generate

the summary using an extractive approach with deep learning. For each sentence, a

score has been calculated and based on these scores, a group of sentences has been

selected as a generated summary. Another paper [11] tested the use of a convolutional

neural network (CNN) [63] with pre-trained word vectors to improve the performance

of the model.

The main drawback of an extractive approach is that a summary is generated

by combining sentences/phrases from the input text. Although it might include

important information and achieve high performance, the trained model itself does

not create generated summary; instead, it is copied from the input text.

3.2 Abstractive Approach

In recent years, with the help of Natural Language Processing (NLP), abstractive

text summarization has become more popular. Encoders and decoders with attention

mechanism are most commonly used. An encoder and decoder structure was first

proposed in [19], and later, an attention mechanism was included [20, 21]. The

attention mechanism uses all the intermediate states to generate the prediction, even

if words are located far between each other. So instead of using only the final hidden

vector, the model with attention can focus on the most important aspects.

Facebook [13] released its version of the abstractive summarization technique,

where sentence-level summarization was used. They created a local attention-based

model, which generates each word of the generated summary depending on the input
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text. Unfortunately, the model has problems with analyzing previous unseen, rare

words, and it might miss important information. Another paper by Facebook [64]

targeted a problem of irrelevant information, and they used conditional RNN, which

makes the decoder focus on appropriate input words.

Most frequently a variation of sequence-to-sequence and transformer are used,

which are described below.

3.2.1 Sequence-to-sequence Models

The study [12] used a sequence-to-sequence encoder-decoder-based model, where in

addition to the word, a few extra parameters have been used, such as part-of-speech

tag, named-entity recognition tag, TF-IDF. They have overcome unseen words prob-

lem by using a pointer-generator approach, where the model decides whether it should

copy or generate a new word.

The authors [31] created a pointer-generator model based on a sequence-to-sequence

attentional model (similar to the study [12]), which can copy words from the original

text (pointer) while being able to generate new words (generator). Such a model helps

to improve the problem of dealing with unseen words and identifying important infor-

mation. Attention is used to produce a context vector; however, the encoder-decoder

backbone uses a single-layer bidirectional LSTM. Additionally, they have used a tech-

nique from the paper [65] by creating a coverage vector that tracks which information

has already been included in the generated summary to avoid duplication. The model

has been trained on the CNN/DM dataset and achieved a R-1 score of 39.53, a R-2

score of 37.28 and a R-L score of 36.38.

Another paper [66] used the pointer-generator model introduced in [31] to make

the model generate more abstract words. They created an OOV penalty, which

would control and improve the number of novel words in the generated summary.

Even though they did not achieve higher results than the model from the paper [31],

they stated that their model could generate more abstract text.

3.2.2 Transformer Models

Google [1] introduced a transformer that eliminated recurrent aspects of a model and

relied only on an attention mechanism. Instead, they have used an encoder-decoder

structure, where the encoder generates a hidden vector and inputs it to the decoder

with already generated sequences.
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In another paper by Google, [67] authors worked with a problem of the long input

text, and they introduced a decoder-only architecture, which can adjust to very long

sentences, much longer than the typical encoder-decoder model can handle. They have

used Wikipedia articles as the input text, and the model tries to generate the first

section of the Wikipedia article. They used a multi-documentation summarization

and worked with a large dataset. Authors have mentioned that the extraction method

in the first stage could be improved, as it affects the performance significantly. The

study [68] addresses the issue of generating important information by creating the

convolutional gated unit, which helps to focus on the primary information and filter

the secondary. For instance, in the sentence “Starbucks, which entered Chinese market

early, is a brand appealing to young people of petit bourgeoisie... A Tall Americano

sells about 12RMB in the United States, but 21RMB in China, which means it is

75% more expensive.”, the model could identify that the primary information is the

price and secondary information is the country, which helped to generate a summary

that includes price information. Additionally, they removed the duplicate words by

calculating the degree of repetition, which led to generating more relevant summary.

They used the Chinese1 dataset [69] and Gigaword and achieved a R-1 score of 36.3,

a R-2 score of 18.0 and a R-L score of 33.8.

The authors [36] combine transformer with the pointer-generator layer, as the

original pointer-generator paper [31] used the sequence-to-sequence base model. They

have used the embedded input for the decoder layer, the output of the decoder layer

(as a replacement of the RNN hidden layer from pointer-generator paper [31]) and the

encoder output to calculate the pgen. The context vector has been calculated as an

average across the source dimension from the encoder output, weighted by the source

attention distribution. However, they did not achieve high results on the CNN/DM

dataset, with a R-1 score of 22.10, a R-2 score of 4.03 and a R-l score of 14.66. Adding

a coverage mechanism did not improve the result significantly (the results were almost

the same). Subsequently, they added N-gram blocking, implemented inside a beam

search which prevents a model from generating words if they appeared in previous N-

gram of words. Nevertheless, even by adding this layer to a beam search, the highest

result they could achieve were a R-1 score of 25.31, a R-2 score of 4.16 and a R-L

score of 15.99.

Another paper [70] used the same technique of combining transformer and pointer-

generator, but they used it on a task where the input text and annotated summary

1http://icrc.hitsz.edu.cn/Article/show/139.html
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had a different vocabulary. The general architecture looks similar to one from the

paper [36]. However, the context vector has been calculated as a sum of encoder

output weighted by multi-head attention weights (given in Eqn. 3.1).

ct =
∑
i

atihi (3.1)

3.3 Hybrid Models

The authors in [14] proposed a hybrid of extractive-abstractive architecture, in addi-

tion to which they have used reinforcement learning (RL) to combine two architectures

and to eliminate the redundancy problem in the generated summary. Reinforcement

learning is a method of training where the machine (the agent) tries to make a se-

quence of decisions and gets either a reward for the correct ones or a penalty for

the incorrect decisions. The authors suggested using two agents: one for extractive

and another one for abstractive approaches. First, the extractor agent selects im-

portant sentences, and then the abstractor agent rephrases the sentences in parallel.

In addition, they have implemented parallel decoding, which speeds up the inference

mechanism (10x-20x) and training convergence (4x). They achieved a R-1 score of

40.88 and a R-2 score of 17.80.

Usage of Generative Adversarial Network (GAN) [15] for summarization has also

been tested in [71]. The generator is an agent of RL and generates the summary, and

the discriminator attempts to distinguish a generated summary from an annotated

summary. The model has been trained on the CNN/DM dataset and achieved a R-1

score of 39.92.

Another study [16] used the “Condense-then-Select” model, which firstly uses an

abstractive model with Sentence Bidirectional Encoder Representations from Trans-

formers (SBERT) [72] to generate the summary and then inputs it to extractive model

to get the most important sentences. The authors achieved a R-1 score of 42.71 and

a R-2 score of 19.59.

3.4 Pre-trained Models

Most pre-trained models use a transformer as their base model. Pre-trained BERT

(Bidirectional Encoder Representations from Transformers) [23] was used in [73] with

a randomly initialized transformer for decoder. The BERT-based model achieved the
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highest result on the CNN/DM dataset of a R-1 score of 43.85, a R-2 score of 20.34

and a R-L score of 39.90. Another paper [24] used a pre-trained transformer and then

fine-tuned it for a summarization task. A single network has been used to encode the

input text and generate the summary. The authors mentioned that only 1% of the

training dataset (around 3000 examples) was needed to achieve a R-2 score of 13.10

on the CNN/DM dataset. However, their model did not achieve very high results of

a model with a pre-trained encoder having a R-1 score of 39.65, a R-2 score of 17.74

and a R-L score of 36.85.

A few other techniques used masking to achieve high ROUGE score. For instance,

BART (Bidirectional and Auto-Regressive Transformers) model [25] uses noise to cor-

rupt the input text, and the model tries to reconstruct this input text. Several tech-

niques have been used to test the model’s performance, from shuffling the input text

to masking the tokens. Their autoregressive decoder can be fine-tuned for summariza-

tion tasks. In subsequent paper [26], the authors created a PEGASUS (Pre-training

with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence)

model, which masked/removed important sentences from the input text and placed

them as an annotated summary. This model achieves high ROUGE score on six dif-

ferent datasets and generates summaries comparable to a state-of-the-art model. On

the CNN/DM dataset, this model has achieved a R-1 score of 44.17, a R-2 score of

21.47 and a R-L score of 41.11. Additionally, their model could achieve high results

on an unseen dataset with only 1000 examples.

More recently,the authors in [74] presented a model called ProphetNet, which

predicts n tokens instead of one in a sequence-to-sequence model. In the paper, the

authors discuss, that autoregressive language modelling focuses on the latest token

instead of a group of tokens; therefore, it needs to grasp the general meaning of the

structure. The N-gram model helps to prevent the model from overfitting on a strong

local connection, which might appear in the language. They used the CNN/DM and

the Gigaword datasets and achieved a R-1 score of 42.61, a R-2 score of 19.83 and

a R-L score of 39.67 using a 3-gram model on a CNN/DM test set. Another paper,

published by Microsoft research team [75], has presented a novel sequence-to-sequence

fine-tuning toolkit (s2s-ft), which uses transformers for conditional generation tasks.

They have implemented three s2s-ft models: casual fine-tuning, masked fine-tuning,

and pseudo-masked fine-tuning. These models mask target tokens and learn to recover

them. The paper has achieved a R-1 score of 44.79, a R-2 score of 21.98 and a R-L

score of 41.93 on the CNN/DM dataset.
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Another research work [76] introduced a pre-trained model for multi-document

text summarization, which outperforms BART and PEGASUS. The input from mul-

tiple files is concatenated together, and a Longformer-Encoder-Decoder (LED) model

[77] is used to process it, as a standard encoder-decoder model fails to generate mean-

ingful summaries for long input texts.

To overcome a problem of rare words, authors in [78] proposed using attentive

mimicking. They stated that BERT struggles to handle words which are not frequent.

Therefore, they implemented a one-token approximation, which led to a higher score.

The paper [79] argued that knowledge transfer (pre-training a model on a specific

dataset so that the model would have initialized connection in a network for further

training) plays less of a role in pre-trained models than it was considered. They

created a nonsense dataset randomly generated and pre-trained the model on this

dataset, which performed as well as other models where knowledge transfer was used.

They suggest that the model performs better because of optimized model initialization

rather than an actual knowledge transfer.

Evaluation Metrics

The ROUGE metric is used in this thesis (which was described in section 2.1.7),

however, there exist other evaluation algorithms that are used in text summarization:

BLEU (Bilingual Evaluation Understudy) [80] and METEOR (Metric for Evaluation

of Translation with Explicit Ordering) [81]. BLEU score is based on precision, mean-

ing how many words in the generated summary appear in the annotated summary.

The whole BLEU score equation can be seen in Eqn. 3.2-3.3, which produces a num-

ber between 0 and 1, where the higher the score, the closer generated summary to

the annotated summary. BLEU, unlike ROUGE, produces a single number, as it uses

the geometric average of N-gram precisions up to the length of N.

BP =

{
1, if c > r.

e1−r/c, if c ≤ r.
(3.2)

BLEU = BP ∗ exp(
N∑

n−1

ωn log pn), (3.3)

where c is the length of the generated summary and r is the length of the annotated
summary. A brevity penalty (BP ) is used to compensate for the high-precision hy-
pothesis. ωn is positive weights, which sum up to 1.
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As can be seen, BLEU is based only on precision and does not take recall directly

into account. The paper [81] highlighted a few other problems of a BLEU algorithm,

such as using geometric averaging or usage of high order N-gram. METEOR algorithm

addresses these weaknesses of a BLEU score, and the equation for METEOR can be

seen in Eqn. 3.4-3.6.

Fmean =
10PR

R + 9P
(3.4)

Penalty = 0.5 ∗ ( #chunks

#unigrams matched
)3 (3.5)

METEOR = Fmean ∗ (1− Penalty) (3.6)

Remark 3.4.1. Fmean is calculated using a harmonic-mean [82], which places most
of the weight on the recall. METEOR algorithm considers the number of the longest
chunk of N-gram (#chunks) of unigrams in the generated summary that are mapped
to the ones in the annotated summary (#unigrams matched) so that having the
lowest number of chunks.

BLEU and METEOR scores are the most popular algorithm for machine trans-

lation, and the ROUGE score is the most popular algorithm to evaluate text sum-

marization models; therefore, all performance evaluation is done using the ROUGE

score in this thesis.
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Chapter 4

Dataset Preparation

In this thesis, we have used the following four datasets for text summarization:

CNN/DM, XSum, Gigaword and DUC 2004 Task 1 (Task 1 in DUC 2004 dataset

refers to very short single-document summarizations). Most experiments have been

done on the CNN/DM dataset because it contains the longest summary, and the an-

notated summary contains extractive and abstractive elements, where both methods

could be tested. It is most commonly used as a standard text summarization dataset,

so it is possible to compare our model with other models.

4.1 Dataset Overview

In Table 4.1 the number of samples from each dataset used in training, validation and

testing is shown. The number of samples in each dataset are shown. These datasets

have the same structure: index, input text, and annotated summary.

Dataset Training Validation Testing
CNN/DM 286,817 13,368 11,487
XSum 204,045 11,332 11,334
Gigaword 3,803,957 189,651 1,951
DUC 2004 Task 1 None None 500

Table 4.1: The number of samples in each dataset. The DUC 2004 Task 1 dataset
has only a testing dataset; therefore, for training and validation DUC 2004 Task 1
dataset it is “None”
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In Fig. 4.1 a few samples of the CNN/DM dataset are shown (text is already

preprocessed). If we expand the first sample, we can see which phrases in an annotated

summary are copied from the input text (as shown in Table 4.2). It can be observed

that almost half of the text, which is present in the annotated summary, is located

in the first few sentences of the input text.

Figure 4.1: Sample CNN/DM text fragment samples, where column 1 is the index
number, column 2 is the input text, column 3 is annotated summary for each text
fragment.

Input text Annotated summary

editor ’s note : in our behind the scenes series
, cnn correspondents share their experiences in
covering news and analyze the stories behind the
events . here , soledad o’brien takes users inside a
jail where many of the inmates are mentally ill .
an inmate housed on the forgotten floor , where

many mentally ill inmates are housed in miami
before trial . miami , florida the ninth floor of the
miami-dade pretrial detention facility is dubbed
the forgotten floor . here , inmates with the most
severe mental illnesses are incarcerated until they
are ready to appear in court . most often , they
face drug charges or charges of assaulting an officer
charges that judge steven leifman says are usually

avoidable felonies . he says the arrests of...

mentally ill inmates in

miami are housed
on the forgotten floor

judge steven leifman says
most are there as a result
of avoidable felonies
while cnn tours facility
, patient shouts : i am
the son of the president
leifman says the system is
unjust and he is fighting
for change .

Table 4.2: Expanded fragment (sample) index 0 from Fig. 4.1 from the CNN/DM
dataset with highlighted phrases, which are used in input text and its summary.
Highlighted text indicates common terms between input text and summary.
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4.1.1 Datasets

CNN/DM

The author in [83, 31] created a new English-language dataset called the CNN/Daily

Mail dataset (CNN/DM). It is the most popular dataset for text summarization task

and is usually used as a benchmark.

There are several ways of collecting this dataset. First one is to manually collect

it from CNN1 and DM2 websites using the published script3. The second one is

to download the collected CNN/DM dataset4. In this research, we have manually

collected it, combined and later compared it to the already collected dataset.

The CNN/DM dataset consists of 3 files: training, validation and testing. The

training dataset contains 286,817 samples, validation contains 13,368 samples, and

testing contains 11,487 samples (as given in Table 4.1). Each sample has an input arti-

cle (input text) and a human-generated summary (annotated summary). Journalists

at CNN and Daily Mail created the original articles.

The input text contains, on average, 30 sentences and 724 tokens, whereas the

annotated summary has, on average, 4 sentences and 52 tokens (as shown in Fig.

4.2). In the study [31], the authors used 400 first tokens as input and 100 tokens as

output. Therefore, on average, the model will be given 16 sentences as an input text

with 382 tokens, and the annotated summary, on average, contains 4 sentences and

52 tokens (as shown in Fig. 4.3). We can see that the annotated summary does not

change a lot when input text is reduced significantly, and most samples have lost half

of the information in the extractive process.

XSum

The Extreme Summarization (XSum) [37] is a highly abstract dataset, which was

designed to answer the question “What is the article about?”. It does not contain

useless or redundant information and rarely has long extracted phrases from the input

text. It was collected using the British Broadcasting Corporation (BBC) articles.

This dataset has to be manually collected using GitHub code5. After collecting the

1https://www.cnn.com
2https://www.dailymail.co.uk
3https://github.com/deepmind/rc-data
4https://huggingface.co/datasets/cnn_dailymail
5https://github.com/EdinburghNLP/XSum

https://www.cnn.com
https://www.dailymail.co.uk
https://github.com/deepmind/rc-data
https://huggingface.co/datasets/cnn_dailymail
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(a) � of tokens in the input text (b) � of tokens in the annotated summary

(c) � of sentences in the input text (d) � of sentences in the annotated summary

Figure 4.2: CNN/DM dataset information showing the distribution of tokens in the
input text and annotated summary.
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(a) � of tokens in the input text (b) � of tokens in the annotated summary

(c) � of sentences in the input text (d) � of sentences in the annotated summary

Figure 4.3: CNN/DM dataset information (max 400 tokens) showing the distribution
of tokens in the input text and annotated summary.
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dataset, it has to be divided using a file, which contains information about which

articles belong to training/validation/testing datasets using the following script 6.

The training dataset has 204,045 samples, validation has 11,332 samples, and

testing has 11,334 samples, as given in Table 4.1.

The input text, on average, contains 436 tokens; however, compared to the CNN/DM

dataset, it has some samples with over 15,000 tokens. As the purpose of this dataset

is to generate as condensed summary as possible and focus on the most important

information, the annotated summary contains only 9 tokens on average, as shown in

Fig. 4.4. The average annotated summary length is one sentence when the input text

size is about 17 sentences. Only 6 samples in the dataset have an average annotated

summary length of two sentences.

(a) � of tokens in the input text (b) � of tokens in the annotated summary

(c) � of sentences in the input text (d) � of sentences in the annotated summary

Figure 4.4: XSum dataset information showing the distribution of tokens in the input
text and annotated summary.

6https://github.com/EdinburghNLP/XSum/blob/master/XSum-Dataset/XSum-TRAINING-
DEV-TEST-SPLIT-90-5-5.json



48

GIGAWORD

The Annotated English Gigaword dataset is based on the Gigaword corpus [38]. This

dataset contains the headline of each article as a summary text and the first sentence

as an input text. It can be downloaded from the following website7. The training

dataset contains around 3,803,957 samples, validation 189,651 samples and testing

1,951 samples, as shown in Table 4.1.

The average number of tokens for an input text sample is 31, and for an annotated

summary is 8 (as shown in Fig. 4.5). We have not shown the distribution of the

number of tokens or sentences for the Gigaword dataset, since only 0.2% of the entire

dataset has more than 1 sentence in the annotated summary. In addition, only 1.3%

of the input text samples use more than the first sentence as the input text.

(a) � of tokens in the input text (b) � of tokens in the annotated summary

Figure 4.5: Gigaword dataset information showing the distribution of tokens in the
input text and annotated summary.

DUC 2004 Task 1

The DUC 2004 (Document Understanding Conference) Task 1 dataset [39] is used

for testing purposes and contains 500 samples. It can be obtained from the following

website8. This dataset contains a short summary of less than or equal to 75 bytes.

It has a structure similar to the Gigaword dataset, which contains an average of 36

tokens for input test and 11 tokens for annotated summary (shown in Fig. 4.6).

This dataset is meant for testing purposes only for models that are trained on other

benchmark datasets and comparative work.

Task 1 of the DUC 2004 dataset is used for testing, even though the DUC 2004

dataset has 1-5 tasks: task 1 refers to very short single-document summarizations,

7https://deepai.org/dataset/gigaword
8https://duc.nist.gov/duc2004/
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task 2 has multi-document summarizations, task 3 includes very short cross-lingual

single-document summarizations, task 4 refers to short cross-lingual multi-document

summarizations, and task 5 refers to question-focused summarization.

(a) � of tokens in the input text (b) � of tokens in the annotated summary

Figure 4.6: The DUC 2004 Task 1 dataset information showing the distribution of
tokens in the input test and annotated summary.

4.2 Processing for Text Summarization

In this section, we discuss three principal tasks associated with preparing raw text for

the learning summaries: preprocessing, batching and marking important sentences.

4.2.1 Preprocessing

Various methods exist for text preprocessing: removing stop words, lemmatization,

stemming, to name a few. However, only a limited number of preprocessing techniques

could be applied for a text summarization task, as the model should generate readable

text, and some techniques can make it impossible. For instance, if stop words are

removed, then the model will not be able to generate meaningful summary without

such words (for instance, “soon, i will go home.” will become “soon, go home.”).

Therefore, initial research about text preprocessing techniques has been performed to

identify which algorithms could be applied for a text summarization task, which are

described in this section. For text preprocessing, we have used nltk library9. For all

datasets, the same preprocessing techniques have been applied, and the pipeline can

be seen in Fig. 4.7.

9https://www.nltk.org/

https://www.nltk.org/
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Figure 4.7: Text preprocessing pipeline

Algorithm 2 shows the steps used in the preprocessing of raw text. Firstly, extra

symbols (which might be included in HTML text) are removed, like “-lrb-” (line

2). Secondly, the input text and annotated summary can be in lowercase (line 4),

as it does not change the meaning of the sentence. The next step is to separate “

‘s” in the word (e.g., “amy’s”) and remove all Unicode characters (line 7). We use

ASCII (American Standard Code for Information Interchange) characters only and

not Unicode characters, as the used datasets contain standard English characters, and

there is no need to use other characters. Then we can separate the sentence into words

(line 5), but it cannot be done by separating words by space, as it will add punctuation

to the word: “soon, i will go home.” will become [“soon,”, “i”, “will”, “go”, “home.”].

We also cannot simply remove the punctuation, as it is crucial to understanding the

end of a sentence, since it will be important in the extractive approach. Additionally,

in such words as “u.s.a.” we cannot separate into three different sentences because it

contains a dot. Therefore, we separate words using regular expressions (regex) pattern

(it was taken from the online NLTK Book, Chapter 3.710), which was derived from

keeping words together, like “u.s.a.” or “poster-print”. Next, words and punctuation

are concatenated to recreate a sentence, where each item is separated by space (“soon

, i will go home .”).

And finally, we expand contractions (line 6), for example, “don’t” will be “do not”

or “i’ll” will be “i will”. A hard-coded dictionary was used, as all contractions could

be written down. This preprocessed text is used before the text is inputted to the

model or before the extractive approach. We use the nltk function sent tokenize to

separate sentences from each other.

Remark 4.2.1. One can use contractions library11. However, their use will result in

incorrect contractions. E.g., “u.s.a” will be changed to “you.s.a”.

After preprocessing, the vocabulary is created, where each unique word is assigned

a number in increasing order. Then, each sentence is encoded using the vocabulary,

and the array is sent to the model.

10https://www.nltk.org/book/ch03.html#nltk-s-regular-expression-tokenizer
11https://pypi.org/project/contractions/

https://pypi.org/project/contractions/
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Algorithm 2: An algorithm for dataset preprocessing

Input : dataset: Dataset that should be preprocessed
Output: processed dataset: Processed dataset

1 for input text in dataset do
2 input text← RemoveExtraSymbols(input text);
3 input text← input text.lower();
4 input text← RemoveUnicode(input text);
5 input text← SeparatePunctuation(input text);
6 processed text← ExpandContr(input text);
7 AddProcessedText(processed dataset, processed text);

// Add processed sentences to the output dataset
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Another idea that could have been used is to remove punctuation completely (ex-

cept end-of-sentence punctuation) and later create an algorithm to insert punctuation

back to the processed annotated summary in the appropriate places. The punctuation

could be removed, as a significant percentage of input text and annotated summary

contain commas, semicolons or other punctuation, which do not give any extra infor-

mation. However, creating an algorithm to make a sentence with correct punctuation

is not a focus of this thesis; therefore, we have omitted this idea.

4.2.2 Dataset Batching

There exist several ways how to input the dataset into the model, such as using li-

braries like torchtext12 library from PyTorch13 or creating a batching class. However,

using a library might limit the ability to process the dataset; therefore, a separate

batching class has been created. This class gets the information about the location

for training/validation/testing datasets and, using the python “yield” command, pro-

vides a processed dataset in a batch consisting of Y samples. We are using fixed length

for input text and annotated summary.

Table 4.3 gives the number of tokens for the input text, annotated summary and

maximum generated summary depending on the dataset. During training, a model

generates the same number of tokens as presented in “annotated summary” from Ta-

ble 4.3; however, during testing, a model generates “maximum generated summary”

different number of tokens, which is shown in the same table. The “maximum gener-

ated summary” has longer length, as later it will be compared to the full annotated

summary (not cropped one); therefore, we generate a bit longer summary to get

higher ROUGE score. However, in most cases the model will generated EOS (end of

sentence) token before hitting this limit.

The vocabulary used in the dataset and the frequency information as scores for

each word are saved as dictionaries. Using the torchtext library, we can generate a

dictionary of used words, depending on how frequently they are used in the dataset.

Later, this dictionary is used as a vocabulary in the abstractive model.

12https://pytorch.org/text/
13https://pytorch.org

https://pytorch.org
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Dataset Input text Annotated
summary

Maximum
generated
summary

CNN/DM 400/200 100 120
XSum 400/200 20 30
Gigaword 50 18 25
DUC 2004 Task 1 - 18 25

Table 4.3: The number of tokens for input text, annotated summary and maximum
generated summary for different datasets.

Remark 4.2.2. For the input text (CNN/DM and the XSum datasets) we have tested

400 and 200 tokens. For the DUC 2004 Task 1 dataset, the length of the input

text depends on the dataset the model has been trained on, as the DUC 2004 Task 1

dataset has only a test dataset. The CNN/DM and XSum datasets has long annotated

summaries; therefore, we take a larger number of tokens. The Gigaword and the DUC

2004 Task 1 datasets have smaller length (both around 20).

Depending on where it is used, the batching class also returns changed annotated

summaries. Table 4.4 contains information about variables/symbols that are used

in the batching class. For instance, “trg inp” variable is used as an input to the

model, and it contains “<unk>” tokens for OOV (out of vocabulary) words, BOS

(beginning of sentence) and EOS (end of sentence) symbols. “trg ext” variable is

used in a loss function, and it contains information about all words, even if they are

OOV. “trg full” variable contains the full annotated summary as a text, which is

used later to calculate a ROUGE score. Input texts and annotated summaries are

padded with a special “<pad>” symbol, which is ignored during the loss function.

The input text is encoded using src and src ext variables.

The summarization works in a way that for a given input text and a part of a

summary that has been generated so far, the next word is predicted; therefore, for

each sample, we need to run the model several times, where each time we append

a newly generated word. However, as the trained model receives information from

the annotated summary, we can speed up the process by creating a matrix of MxM ,

where M is a maximum length of a annotated summary (Table 4.3) and each row

adds a new word starting from BOS symbol. Using the following approach, the model

can generate a matrix with a size of M , which contains information about the next

generated word for a specific summary that is given.
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Variable/Symbol Definition
src Variable containing the input text. The text is either padded

with<pad> or cut when the length exceeds the maximum length
for the input text.

src ext Variable containing the input text that includes extended dictionary
of OOV words. The text is either padded with<pad> or cut when
the length exceeds the maximum length for the input text. It is
used inside pointer-generator layer, and the word is copied from this
variable, if the model produces OOV word.

src freq Variable containing the frequency scores for the input text, which is
used during encoder attention.

trg inp Variable containing the annotated summary that includes extended
dictionary of OOV words. This variable is input to the model and
contains such symbols as <s> and </s>. The text is either padded
with <pad> or cut when the length exceeds the maximum length
for the summary.

trg ext Variable containing the annotated summary that includes extended
dictionary of OOV words. This variable is similar to trg inp, but
does not include <s> symbol (even though it includes </s> symbol
to signify the end of the sentence), and is used in the loss function.

trg full Variable containing the full annotated summary that is not padded
nor cut. This summary is used during testing.

trg mask Variable containing the masking information for the annotated sum-
mary.

<unk> Unknown token. Used to encode words that do not appear in the
dictionary.

<pad> Padding token. Used to pad the text up to a specific length.
<s> BOS token. Used to indicate the beginning of a sentence.
</s> EOS token. Used to indicate the end of a sentence.

Table 4.4: Variables and symbols definitions that are used in the batching class.
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Annotated summaries mainly consists of words, which also appear in the input

text. However, some words in annotated summaries are not used in the input text

vocabulary, which worsens the results and leads to the generation of “<unk>” token.

As an illustrative example, we use the annotated summary from Table 4.2. Each

word is encoded with a specific number, which is extracted from the vocabulary.

Words in the vocabulary are sorted depending on how frequently it is used. Addi-

tionally, 4 symbols are included at the beginning of the vocabulary: <unk>, <pad>,

<s> and </s>. <unk> is used to generate unknown words, <pad> is used at the

end of text to pad until it hits the token limit, <s> and </s>. <unk> are used

to identify a sentence’s start and end. Fig. 4.8 shows the text’s encoding procedure,

which is later input to the model.

Figure 4.8: Step-by-step text’s encoding procedure

We can see from Table 4.5 how words are encoded. For instance, <s> is encoded

with “2” and “mentally” is encoded with 4907. Additionally, “leifman” was not

found in the vocabulary and was encoded with “0”.

Annotated summary Encoded annotated summary
<s> mentally ill inmates in mi-
ami are housed on the forgotten
floor judge steven leifman says
most are there as a result of avoid-
able felonies while cnn tours facil-
ity , patient shouts : i am the son
of the president leifman says the
system is unjust and he is fighting
for change . </s>

[ 2, 4907, 2051, 3908, 11, 2373, 32, 8272, 17, 5,
4863, 1205, 424, 2092, 0 , 98, 116, 32, 60, 26,
8, 718, 10, 18967, 20238, 99, 199, 5416, 2150, 6,
1542, 12236, 23, 29, 127, 5, 259, 10, 5, 152, 0 ,
98, 5, 404, 13, 16734, 9, 19, 13, 921, 15, 418, 4,
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Table 4.5: Annotated summary and its encoded version, which the model receives.
The annotated summary is padded with a <pad> symbol up to the maximum sum-
mary length (in this case a hundred), which later is encoded with a number “1”.
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4.3 Important Sentences

The extractive approach is used in this research to derive the most important sen-

tences from the input text. We are using an approach similar to TF-IDF, which

uses the frequency information of different words to identify the importance of the

sentence. Our extractive algorithm has been described in section 2.3.3. Some papers

are taking the first N tokens as input text [12, 31, 23, 26]. We do not consider it an

optimal approach, as information might be located in the middle or at the end of the

text.

For example, Table 4.6 shows the input text and its annotated summary, where

words used in the annotated summary are highlighted in the input text. Suppose we

output the number of occurrences for each sentence of each word in the annotated

summary on the input text. In that case, we can see that the most important infor-

mation is present in the middle of the input text and not at the beginning (shown in

Fig. 4.9). Here one can see that sentence number 6 contains the highest number of

words which appear in the annotated summary, meaning that this sentence might be

important for a summary generation.

Figure 4.9: Number of occurrence of a text from the annotated summary in the input
text depending on sentence’s position

Another example is that sometimes important information is located at the end

of the input text (Table 4.7). Word distribution graph is shown in Fig. 4.10. This

figure shows the problem of other papers [12, 31, 23, 26], which uses only the first
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Input text Annotated summary
five americans who were monitored for three weeks
at an omaha nebraska hospital after being exposed
to ebola in west africa have been released a nebraska
medicine spokesman said in an email wednesday . one
of the five had a heart-related issue on saturday and
has been discharged but has not left the area taylor wil-
son wrote . the others have already gone home . they
were exposed to ebola in sierra leone in march but
none developed the deadly virus . they are clinicians
for partners in health a boston-based aid group . they
all had contact with a colleague who was diagnosed
with the disease and is being treated at the national
institutes of health in bethesda maryland . as of
monday that health care worker is in fair condition
. the centers for disease control and prevention in
atlanta has said the last of 17 patients who were be-
ing monitored are expected to be released by thursday
. more than 10 000 people have died in a west african
epidemic of ebola that dates to december 2013 accord-
ing to the world health organization . almost all the
deaths have been in guinea liberia and sierra leone
. ebola is spread by direct contact with the bodily
fluids of an infected person .

americans were exposed
to the ebola virus while
in sierra leone in march
. another person was di-
agnosed with the disease
and taken to hospital in
maryland . national in-
stitutes of health says the
patient is in fair condition
after weeks of treatment

Table 4.6: Highlighted words (shown in bold-face) in input text, which are also used
in an annotated summary

N tokens of an input text for an abstractive model. In most cases, the first few

sentences contain the most important information, which can be used to generate a

summary. However, in the following example, important information is located at

the very end of the article, and it would not be included in the model. The paper

which implemented the pointer-generator approach [31] mentioned that they tried to

use a smaller number of tokens; however, it did not lead to higher ROUGE score. It

is probably due to the fact that they were cutting off important information, which

was located further in the text.

Not all of our datasets could be used in the extractive approach. For instance, the

Gigaword and the DUC 2004 Task 1 datasets contain only one sentence in the input

text; therefore, such an approach is not used with these datasets.
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Input text Annotated summary
... bottom line : online journalists , operating out-
side restraints mainstream media , become vulnera-
ble targets governments independent actors . restric-
tive rule law , journalists vulnerable anger offi-
cialdom . rule law weak , vulnerable attacks killers
seldom , ever , answer rule law .

going online become path
least resistance want
make heard . restrictive
rule law , journalists
vulnerable anger official-
dom . china malaysia ,
journalists bloggers jailed
– even killed

Table 4.7: Highlighted words in the input text, which are also used in the annotated
summary (sentences number 39 and 40)

Figure 4.10: Number of occurrence of a text from the annotated summary in the
input text depending on sentence’s position (another example)
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Chapter 5

Experiments

In this chapter, we discuss the experiments and results that have been achieved and

compare models with each other.

5.1 Tracing of the Algorithm

After the input text has been processed by the extractive approach (section 2.3.3), the

input text and annotated summary are used to generate a summary using transformer

model (shown in Fig. 2.12 and explained in section 2.3.1). The dataset is provided

with batches, which are explained in section 4.2.2.

Alg. 3 shows the training code for the transformer model (all variables are ex-

plained in Table 4.4). The model uses the encoder (line 3) which gets encoded input

text (an example of an encoded text is shown in Table 4.5) and frequency information

about words in the input text (each word is encoded with a score, which are explained

in section 2.3.2). The encoder calculates the attention of an input text (section 2.2.8)

and passes this information to the decoder. The decoder then uses this information

and a part of annotated summary with mask (explained in section 2.2.7) to calculate

st, xt and ht (line 4 and 5), which are explained in details in section 2.3.1. Then,

the pointer-generator layer generates the probability distribution for a word from the

vocabulary being generated or copied from the input text in line 6. At the very end,

the loss function (Eqn. 2.3) is used to calculate the total loss for a batch in line 7.

For an illustration, please see Appendix A.1.
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Algorithm 3: An algorithm for a transformer model

Input : epochs, // Number of epochs
batches // Dataset batches

1 for epoch in epochs do
2 for batch in batches do
3 encoded← encoder(batch.src, batch.src freq);
4 st, xt,mh attn decoder ←

decoder(encoded, batch.trg inp, batch.trg mask);
5 ht ← contextV ector(encoded,mh attn decoder);
6 gen sum prob← pointer generator(st, xt, ht, encoded);

// gen sum prob contains final probabilities of which word

should be generated next

7 loss← calculateLoss(gen sum probabilities, batch.trg ext);
// using Kullback-Leibler divergence loss function
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5.2 Model Information

In this section, two primary models (M1 and M2) and parameters used in this thesis

are discussed. Fig. 5.1 gives an overview of the combinations.

5.2.1 Models

We call the transformer model with a pointer-generator layer as M1 (described in

section 2.3.1, Eqn. 2.18). Model M2 is the transformer model with a pointer-generator

layer with frequency information added as an additional parameter to the attention

mechanism (described in in section 2.3.2, Eqn. 2.20). Finally, to test the efficacy of

the extractive approach, models M1 and M2 have been tested with an input text size

consisting of 200 tokens (e.g., M1-200, M2-200) and 400 tokens (e.g., M1-400, M2-

400) resulting in a total of 6 models (shown in Fig. 5.1). The goal of using different

token sizes was to test if the extractive approach helps improve the performance of

the models as well as observe the effects of changes to the input text size.

Figure 5.1: Overview of a data flow for different models. “200” and “400” in the
extractive approach are the number of tokens used as input text for the abstractive
model. The flow of M1/M2 and M1-x/M2-x represents the data flow that is used by
specified model.
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5.2.2 Model Parameters

We chose the dimension of our model (and embedding size) as 256 with an inner

layer dimensionality of 1024. AdaGrad optimizer [45] is used (Eqn. 2.4). 8 layers and

8 heads for the encoder-decoder structure have been used. We have used a 3-gram

model for the extractive approach. For 400 tokens, we take the first ten sentences,

and for 200 tokens, we take the first five sentences, as the input text is shorter. All

parameters have been chosen based on models trained on a partial dataset containing

around 10,000 samples. Depending on the dataset, different number of tokens is taken

for the annotated summary, which is described in section 4.2.2 Table 4.3. During

testing, the model generates a summary until it hit EOS symbol or a limit (maximum

generated summary from Table 4.3).

5.2.3 Performance Measure

A ROUGE score is used (Eqn. 2.12) to test the model’s performance, which was

described in detail in section 2.1.7. We use F1 score of ROUGE-1 (R-1), ROUGE-

2 (R-2) and ROUGE-L (R-L) scores to test the performance, as these scores are

standard performance measurements and used as a benchmark. We use a beam size

of 4.

5.3 Experimental Setup

Two different machine configurations were used for our experiments. One machine

had one 8 GB GPU RTX 2080 and Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz,

and another one four 12 GB GPUs TITAN X and Intel(R) Core(TM) i7-5930K CPU

@ 3.50GHz. All models have been trained on 5 epochs, which usually takes around

a day to train. The best models on the CNN/DM dataset have been trained on 30

epochs to compare results with the models from other papers [12, 31, 36].

5.4 Analysis of Results

We analyze results depending on the dataset, since each dataset has a different length

of input text and annotated summary, and the annotated summary itself has been

created using different methods (for instance, in the CNN/DM dataset, the annotated
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summary was created by a human expert and consisted of several sentences, whereas

in the Gigaword dataset the annotated summary is a one-sentence headline of an

article). However, to compare models trained on a different dataset, we use the DUC

2004 Task 1 dataset to test our models.

We also include two examples from each dataset and shows the results in terms of

the 6 different model configurations. Each generated summary has a heatmap matrix,

which highlights the attention placed on a word inside the decoder between the input

text and the generated summary.

5.4.1 Discussion of Parameters

As was mentioned in section 2.3.3, we have tested removing stop words; however,

the results became much worse than without them. Removing punctuation helped;

however, the generated summary becomes unreadable, as commas and other symbols

are essential for text understanding.

Experiments showed that an embedding size of 512 or 128 does not change the

results significantly. Optimization function that is used in [31] and transformer model

[1] that is used is different: in [31] AdaGrad optimizer is used (Eqn. 2.4) with fixed

learning rate of value 0.15, when in [1] Adam optimizer is used (Eqn. 2.5-2.9), where

label smoothing and warm-up learning rate are used. Our experiments showed that

AdaGrad performs better, even though the difference is insignificant. We have also

tested the number of layers and heads in the encoder-decoder structure, and 8 layers

and 8 heads showed better results, even though other values did not change results

significantly. A dropout of 0.2 was used.

The extractive model has been tested with 1-gram, 2-gram, 3-gram and 4-gram,

and 3-gram model showed the best result. Changing beam size did not change results

significantly; therefore, we have used beam size 4.

We use 400 tokens for an input text to test models trained on the CNN/DM and

the XSum datasets. Our initial experiments showed that increasing or decreasing the

number of tokens worsens the results, which was also mentioned in [31]. Therefore, as

an experiment, we tested 200 tokens for the input text, as having fewer tokens might

speed up the training process. For 400 tokens, we use the vocabulary size of 50,000

words (similar to the size used in the paper [31]), and for 200 tokens, we use 25,000

words, as the dataset contains fewer words.

ROUGE scoring is not perfect and does not provide good information on whether
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a generated summary is good. For example, suppose we take the first three sentences

as a generated summary. In that case, a R-1 score is around 41 and a R-2 score is

approximately 18, which is much better than, for example, in the pointer-generator

model and can be compared to the models with pre-trained embedding. However,

we cannot say that such summaries provide any meaningful information, as it does

not generate anything new, and the generated summary does not depend on what is

mentioned in the input text or what information contains at the middle of the end of

the input text.

Our main experiments are trained and tested on a full dataset and have been

trained either for 5 or 30 epochs. Experiments on 5 epochs are done to show how

the model differ from each other, and only a few models, which are crucial for under-

standing the results, have been trained for 30 epochs. It is comparable to 33 epochs

which were done in [31].

5.4.2 Models Trained on the CNN/DM Dataset

The results for all models trained on the CNN/DM dataset are shown in Table 5.1. We

have performed some tests which can be divided into 2 phases: test the performance

of a transformer + pointer-generator layer (M1) and the same model but with the

addition of information about the frequency of each word (M2). As we can see, the

M2 model performs better than the M1 model in R-1 and R-L scores; however, the

R-2 score is larger for the M1 model. Nevertheless, the difference between R-1 and

R-L of both models is small, so one can conclude that both models perform similarly

on these scores.

Model R-1 R-2 R-L
M1 35.56 12.90 33.08
M2 35.59 12.51 33.22
M1-200 35.36 12.65 32.82
M2-200 35.09 11.98 32.62
M1-400 36.29 13.24 33.90
M2-400 35.83 13.09 33.48

Table 5.1: Results of different models, which were trained and tested on the CNN/DM
dataset. Best results are shown in bold-face.

But, when we test the same model with an extractive approach layer, we can see

that the performance suffers significantly for the model with frequency information
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with no gain in performance. Comparing models trained with 200 vs 400 tokens

(M1-200, M2-200, M1-400 and M2-400), we can observe that 400 tokens performed

much better, even better than models without an extractive approach. It can be seen

that the extractive approach helped to improve the performance of models, where

ROUGE scores shown an increase from 35.56 to 36.29 (M1-200).

Test Cases

In this subsection, we provide examples of what the model generates. It is essential

to mention that a ROUGE score shows average similarity of how the model performs,

meaning that the model, which performed better overall, will not always generate

good summaries.

We have omitted the discussion of results from models M1-200 and M2-200 since

their results are lower compared to the other models. Fig. 5.2 shows the number of

words from the annotated summary which appear in the input text. We can see that

the extractive approach with 200 tokens has much less information. The extractive

approach with 400 tokens adds more information, which improves the overall result.

For instance, sentence number 12 (missing in the text without an extractive approach)

contains ten words, which also appears in the annotated summary. The total number

of words from the annotated summary present in the input text of a dataset without an

extractive approach, with extractive (400 tokens), and with extractive (200 tokens)

are 94, 102, and 51, respectively. By including more important information, the

model can generate better summaries. However, too much information makes the

model bigger and harder to train and worsens the overall results.

We have selected 3 best performing models on the CNN/DM dataset: M1, M1-400

and M2-400 (see Table 5.1) to illustrate the strengths and weakness of each model.

Each model was executed several times with identical input text.

Case 1

The input text and the annotated summary used as the first case are shown in Table

5.2. We have chosen a short input text in order to analyse the results of three models.

However, this discussion can be applied to any fragment (sample) in the dataset.
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(a) Without extractive approach (b) With extractive approach (400 tokens)

(c) With extractive approach (200 tokens)

Figure 5.2: Summarization statistics from the annotated summary, which appear in
input text from the CNN/DM dataset.



67

Input text Annotated summary
justin timberlake and jessica biel , wel-
come to parenthood . the celebrity cou-
ple announced the arrival of their son ,
silas randall timberlake , in statements
to people . silas was the middle name
of timberlake ’s maternal grandfather bill
bomar , who died in 2012 , while randall
is the musician ’s own middle name , as
well as his father ’s first , people reports
. the couple announced the pregnancy in
january , with an instagram post . it is
the first baby for both .

timberlake and biel welcome son silas
randall timberlake . the couple an-
nounced the pregnancy in january .

Table 5.2: Cases 1: a fragment of input text and annotated summary from the
CNN/DM dataset

Generated summaries of each of three models are presented in Table 5.3. The

model was trained only on 5 epochs, so most of the generated summary is not struc-

turally similar to the annotated summary but mostly contains similar important

information. We can see that the M1 model generated mostly random words as a

generated summary, where the meaning of a sentence is hard to understand; how-

ever, those words are being used in the annotated summary, so the ROUGE score is

relatively high. Some words are repeated.

The M1-400 model produced a much better result, and we can understand what

the input text was about. In addition, it copies more sentences and understands

which parts of the input text are important to include, even though it doubles the

last sentence.

The M2-400 model produced worse results than the previous model, even though

it still slightly understandable what the input text was about. It copied less text,

and we can see it included such a word as “maternal”, which is rarely used in the

CNN/DM dataset vocabulary and was not generated by other models. In general,

most of the sentences that have been tested with this model contained more specific

information from the input text, especially if it is rarely used. Additionally, sometimes

it uses synonyms (like, “poland’s opposition” becomes “polish opposition”); however,

other models can generate synonyms from time to time as well.
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Generated summary
(M1)

Generated summary
(M1-400)

Generated summary
(M2-400)

announced name , while
, while . what children
an died in to randall is
the pregnancy in january
, with son an instagram
post it is with son the

justin timberlake was the
middle name of timberlake
’s grandfather bill . the
couple announced the ar-
rival of their son , silas
in 2012 . the couple an-
nounced the pregnancy in
january . the couple an-
nounced the pregnancy in
january .

silas randall was the mid-
dle name of timberlake ’s
maternal grandfather bill
bomar . randall timber-
lake and jessica biel wel-
come to parenthood . the
couple ’s first baby . ran-
dall bomar . the couple ’s
first baby for both . peo-
ple reports .

Table 5.3: Case 1: generated summary of different models

ROUGE scores for all models are shown in Table 5.4. This ROUGE score is for

the generated summary from Table 5.3 that each model generated. All generated

summaries achieved high ROUGE scores, with the M1-400 model being the best.

Model R-1 R-2 R-L
M1 42 15 36
M1-400 53 29 53
M2-400 41 22 41

Table 5.4: Case 1: ROUGE score for different models from Table 5.3

The heatmap of attention on input text and annotated summary is shown in Fig.

5.3. If the square is lighter, the attention is higher. For very small or no attention,

the square is dark. Each column represents candidate words with high attention to

be used to generate a target word. The heatmap makes it possible to visualize the

distribution of words with varying attention values for each model. For instance, for

the M1 model the attention was often assigned only to a single word rather than

a group of words. M1-400 model redistributes this attention throughout the whole

input text, but sometimes, it has very strong attention when it decides to copy some

words/phrases (bottom right part of Fig. 5.3b). On the M2-400 model heatmap, the

attention is distributed around all words of an input text, with some high attention

on specific words. The distribution occurs because the model boosts the attention of

rarely used words and lowers the attention of commonly used words; therefore, we

can see more attention on a group of words rather than on a single word.
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(a) M1 (b) M1-400

(c) M2-400

Figure 5.3: Case 1: attention distribution between the input text and generated
summary from the CNN/DM dataset for different models.
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Case 2

The input text and the annotated summary of the second case are shown in Table

5.5.

Input text Annotated summary
the build-up for the blockbuster fight be-
tween floyd mayweather and manny pac-
quiao in las vegas on may 2 steps up a
gear on tuesday night when the ameri-
can holds an open workout for the media
. the session will be streamed live across
the world and you can watch it here from
12am uk 7pm edt .

floyd mayweather holds an open media
workout from 12am uk 7pm edt . the
american takes on manny pacquiao in las
vegas on may 2 . mayweather ’s training
is being streamed live across the world .

Table 5.5: Cases 2: a fragment of input text and annotated summary from CNN/DM
dataset

Generated summaries of each of three models are presented in Table 5.6. We can

see that the M1 model, as in the previous case, produced repeated words (like “7pm”

or “from 12 am”) and the general meaning of a generated summary is hard to under-

stand, even though it includes information about the time of the event. M1-400 model

generated a summary, which explained what was happening and where; however, a

few key details are missing (like that it is “streamed live across the world”). M2-400

model, even though it repeated the same information several times, it gives informa-

tion about what will happen and that it will be “streamed live”. Unfortunately, this

model does not include information about the time or the date the event.

ROUGE scores of these generated summaries are shown in Table 5.7. As in the

previous case, the M1-400 model scored the highest ROUGE score.

We can also plot the heatmap of attention on the input text and generated sum-

mary (Fig. 5.4). We can see that M1-400 and M2-400 models copied parts of the

input text (diagonal line, where attention is the highest), and M2-400 distributed its

attention more among different words.
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Generated summary
(M1)

Generated summary
(M1-400)

Generated summary
(M2-400)

american gone 12am uk
7pm ’s build-up the that
like her in for from 12am
uk 7pm ’s from 12am the .
workout in for the block-
buster a from 12am uk
7pm i people more the

floyd mayweather and
manny pacquiao will meet
in las vegas on may 2 .
the american holds a open
workout for the media .

the fight between floyd
mayweather and manny
pacquiao is set to be
streamed on the media
. the session will be
held live across the world
. the media . the ses-
sion will be streamed live
across the world and will
be streamed on the media
.

Table 5.6: Case 2: generated summary of different models

Model R-1 R-2 R-L
M1 35 10 35
M1-400 62 30 58
M2-400 50 25 50

Table 5.7: Case 2: ROUGE score for different models from Table 5.6
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(a) M1 (b) M1-400

(c) M2-400

Figure 5.4: Case 2: attention distribution between the input text and generated
summary from the CNN/DM dataset for different models.
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5.4.3 Models Trained on the XSum Dataset

The process used to train and test the 6 models on the XSum dataset was identical

to the training method used on the CNN/DM dataset since both datasets share a

similar structure (i.e., long input text and short annotated summary, even though the

CNN/DM dataset has longer annotated summaries). The results are shown in Table

5.8. The M1 model showed better results in R-1 and R-L, but in R-2, both models

have similar results. As in the model, which was trained on the CNN/DM dataset,

adding an extractive layer helped the model to achieve higher ROUGE score in both

cases. However, we can see more clearly, that models without frequency information

outperformed other models by almost one point score in R-1 and R-L.

Model R-1 R-2 R-L
M1 28.26 8.95 25.25
M2 27.73 9.13 24.92
M1-200 25.07 7.35 22.30
M2-200 24.09 7.02 21.73
M1-400 27.76 8.92 24.67
M2-400 26.61 8.49 23.83

Table 5.8: Results of different models, which were trained and tested on the XSum
dataset. Best results are shown in bold-face.

Test Cases

In this subsection, we provide some examples of what models generate. We will first

describe how the generated text appears after applying the extractive approach. The

XSum dataset uses extreme summarization, meaning that the annotated summaries

will contain only essential information. The summarization tries to answer the ques-

tion “What is the article about?”. Because of this, the annotated summary contains

fewer copied phrases or words from the input text and more rephrased sentences.

Therefore, adding an extractive approach showed worse results. It is possible to show

why it is the case by plotting the number of words from the annotated summary in

the input text (Fig. 5.5). We can see that the number of words in the input text

is much lower. This is because the default dataset contains more words from the

annotated summary (in total, an unprocessed dataset, a dataset with an extractive

approach with 400 tokens, and a model with an extractive approach with 200 tokens

used 18, 11 and 16 words, respectively). It is not the case for all samples from the
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(a) Without extractive approach (b) With extractive approach (400 tokens)

(c) With extractive approach (200 tokens)

Figure 5.5: Summarization statistics from the annotated summary, which appear in
the input text from the XSum dataset.

dataset; however, it shows that the extractive approach plays a less significant role

in the XSum dataset, as the annotated summary is shorter, and the sentences are

rephrased.

Case 1

The input text and the annotated summary of the first case are shown in Table 5.9.

Input text Annotated summary
connor williams , 17 , and conor tiley , 18
, both from aberbargoed , died in a crash
on new road , tir-y-berth , hengoed , on
3 january . the teenager was arrested on
suspicion of causing death by dangerous
driving . gwent police confirmed no fur-
ther action would be taken .

no charge over connor williams and conor
tiley crash deaths

Table 5.9: Cases 1: a fragment of input text and annotated summary from the XSum
dataset
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All models were able to generate summaries that were understandable (shown in

Table 5.10), even though they did not include information that “no one was charged”,

which is present in the annotated summary. M2-400 model uses some rare words, like

“bailed” or “aberbargoed”. Even though all three models generated good summary,

we can see that the M1 model generated the summary closest to the input text, even

though the M1-400 model has the highest ROUGE score (Table 5.11).

Generated summary
(M1)

Generated summary
(M1-400)

Generated summary
(M2-400)

teenager arrested over
double fatal crash in
aberbargoed

connor williams : teenager
arrested over fatal bike
crash

two people bailed after fa-
tal crash in aberbargoed

Table 5.10: Case 1: generated summary of different models

Model R-1 R-2 R-L
M1 22 0 22
M1-400 42 12 32
M2-400 11 0 11

Table 5.11: Case 1: ROUGE score for different models from Table 5.10

This example which shows that the ROUGE score is not a good indicator of the

model performance in terms of summarizing the essence of the input text.

After plotting a heatmap (shown in Appendix A.2.1, Fig. A.1), we can see that

attention in all models is distributed among all words in the input text, and models

do not place high attention on specific words. This is due to the fact, as it was said

previously 4.1.1, that the XSum dataset is extremely abstractive, and the words in

the annotated summary might be rephrased, meaning the model cannot rely only on

a single word or a group of words (to copy them).

Case 2

The input text and the annotated summary of the second case are shown in Table

5.12.
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Input text Annotated summary
the 72-year-old , formerly of eliza street
close , belfast faced 12 counts of child sex
abuse . he was accused of abusing a 15-
year-old girl between 2009 and 2010 . he
denied all the charges . the 12-member
jury had spent more than six hours
deliberating before being discharged on
wednesday . the judge thanked the 10
women and two men for their time . the
trial at belfast crown court started on 28
may .

francis mcpeake trial : jury discharged in
sex abuse case

Table 5.12: Cases 2: a fragment of input text and annotated summary from the XSum
dataset

Generated summary is shown in Table 5.13. None of the models generated correct

summary, even though the meaning is different. M1-400 model wrongly assigned

the age to the person (82 and not 72). M2-400 model wrongly used 15 years in the

generated summary. Even though the ROUGE score for the M1 model is high (Table

5.14), the generated summary has a different meaning than in the input text.

Generated summary
(M1)

Generated summary
(M1-400)

Generated summary
(M2-400)

belfast sex abuse trial :
former man appears in
court

belfast child sex abuser ,
82 , denies child sex of-
fences

belfast sex abuse trial ad-
journed for 15 years for sex
.

Table 5.13: Case 2: generated summary of different models

After plotting a heatmap (shown in Appendix A.2.2, Fig. A.2), we can see that

all models’ attention is distributed among all words in the input text, similarly to the

previous cases.

Model R-1 R-2 R-L
M1 50 22 30
M1-400 11 0 11
M2-400 32 11 21

Table 5.14: Case 2: ROUGE score for different models from Table 5.13
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5.4.4 Models Trained on the Gigaword Dataset

The Gigaword dataset is different from the previous two datasets. From the results

shown in Table 5.15, we can see that there are no extractive approach results, as the

input text has only a few sentences, with an average of 31 tokens used in the input

text. Hence, the extractive approach is not applicable.

The results show that frequency information does not help for this dataset either.

The difference between two models is much more significant than for models which

were trained on other datasets, where the difference is more than 1.5 ROUGE points.

Model R-1 R-2 R-L
M1 33.09 15.64 31.14
M2 32.31 14.68 30.49

Table 5.15: Results of different models, which were trained and tested on the Giga-
word dataset. Best results are shown in bold-face.

Case 1

The input text and the annotated summary for the first case are shown in Table 5.16.

Input text Annotated summary
polling stations closed at gmt local time
friday on the first day of czech legislative
elections shadowed by allegations sur-
rounding social democrat prime minister
jiri paroubek .

polling stations close on first day of czech
legislative elections

Table 5.16: Cases 1: a fragment of input text and annotated summary from the
Gigaword dataset

The summaries, that are generated by models, are shown in Table 5.17). The

M1 model included more information and is more similar to the annotated summary,

even though both generated summaries are similar. We can see that the generated

summary is short and more understandable compared to models trained on the pre-

vious datasets. This is because the Gigaword dataset has short input text and short

annotated summary, so the model can easily generate important information using
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a short text. ROUGE scores are shown in Table 5.18. Even though two generated

summaries are similar, M1 model has a much higher score, which shows again that a

ROUGE score is not the best metric to decide whether the model is good or not.

Generated summary (M1) Generated summary (M2)
polling stations close in czech legisla-
tive elections

polls close in czech republic

Table 5.17: Case 1: generated summary of different models

Model R-1 R-2 R-L
M1 71 53 71
M2 27 0 27

Table 5.18: Case 1: ROUGE score for different models from Table 5.17

After plotting a heatmap (shown in Appendix A.2.3, Fig. A.3), we can see that

both models put high attention on some words to generate a target word (meaning,

it was mostly copying) and rarely used other words. This is because annotated

summaries in the Gigaword dataset mostly contain the exact words/phrases present

in the input text.

Case 2

The input text and the annotated summary of the second case are shown in Table

5.19.

Input text Annotated summary
a young syrian woman who was arrested
last year on terrorism charges at the air-
port here had a map of us military facili-
ties in turkey , a canadian security official
said thursday .

canada investigates syrian woman with
alleged ties to pkk

Table 5.19: Cases 2: a fragment of input text and annotated summary from the
Gigaword dataset
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Generated summaries are presented in Table 5.20). The M2 model generated a

better summary, and it is logically correct. The summary generated by the M1 model

is logically wrong (the woman is arrested in Canada, not in the USA). ROUGE score

is shown in Table 5.21.

Generated summary (M1) Generated summary (M2)
syrian woman arrested at us airport in
turkey

syrian woman arrested in canada on
terror charges

Table 5.20: Case 2: generated summary of different models

Model R-1 R-2 R-L
M1 24 13 24
M2 35 13 24

Table 5.21: Case 2: ROUGE score for different models from Table 5.20

The heatmap of models is shown in Appendix A.2.4, Fig. A.4. Similarly to the

previous example, both models put high attention on specific words, and the M1

model copied the last few words.

5.4.5 Analysis of results

We begin with the discussion in terms of the effect of adding information about

frequency to the attention mechansim. on the performance of the models. In general,

the results are worse in most experiments with a few exceptions for the models trained

on the CNN/DM and the XSum datasets. However, frequency information helps to

distribute attention throughout several words rather than relying on a single word or

copying words. It only helps sometimes, as, in the CNN/DM dataset, many phrases

are copied from the input text. Adding frequency information also helps to generate

words from the input text, which are rarely used. However, it only helps sometimes,

as it forces the model to generate more information, which might worsen the result.

To compare the performance of the 6 models, we have trained them on the 3

datasets (CNN/DM, XSum, Gigaword) and tested with the DUC 2004 Task 1 dataset

which we will discuss in the following section.
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Model R-1 R-2 R-L
M1 CNN/DM 19.64 4.36 18.75
M2 CNN/DM 20.86 4.50 18.82
M1-200 CNN/DM 21.13 5.03 19.18
M2-200 CNN/DM 21.19 5.15 19.27
M1-400 CNN/DM 20.92 4.81 18.90
M2-400 CNN/DM 21.59 5.17 19.46
M1 XSum 12.97 2.21 11.76
M2 XSum 12.07 2.22 11.16
M1-200 XSum 10.59 1.64 9.98
M2-200 XSum 14.45 2.62 13.27
M1-400 XSum 13.46 1.86 12.24
M2-400 XSum 14.67 2.63 13.83
M1 Gigaword 26.35 9.23 24.50
M2 Gigaword 26.24 8.89 24.40

Table 5.22: Results of different models, which were tested on the DUC 2004 Task 1
dataset. Best results are shown in bold-face.

Models Tested on the DUC 2004 Task 1 Dataset

In Table 5.22, we can observe that the model trained on the Gigaword dataset per-

formed the best. It is because the DUC 2004 Task 1 dataset has short input text and

short annotated summary, with only 36 and 11 tokens on average, respectively. Both

the CNN/DM and the XSum datasets have, on average, around 400 tokens for an in-

put text, meaning that for models, which were trained on these datasets, most of the

tokens will have a padding symbol. These models were trained to gather information

from different parts in the text, and when the text is short, we can see that models,

which were trained on these datasets, performed poorly.

Models, which were trained on the CNN/DM dataset and used frequency informa-

tion, always show better results than those without frequency information. Another

interesting remark is that having only 200 tokens in an input text with an extractive

approach shows better results in both models, compared to the default ones. The M1-

400 model shows slightly worse results than the M1-200 model. The M2-400 model

trained on the CNN/DM dataset showed the best ROUGE score (R-1 score of 21.59,

R-2 score of 5.12 and R-L score of 19.46). For the model without frequency informa-

tion, the M1-200 model is better (R-1 score of 21.13, R-2 score of 5.03 and R-L score

of 19.18). It might be connected to the fact that the CNN/DM dataset has longer

input text and longer annotated summary when the DUC 2004 Task 1 dataset is
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shorter; therefore, models trained on a shorter input text (like the Gigaword dataset)

show better results.

Models trained on the XSum dataset with frequency information are almost always

better, except for the M1 model. Having 200 tokens worsens the results for the M1

model, and shows improvement for the M2-400 model. The M1-400 model shows

worse results for R-2 (R-2 score of 1.86). In contrast, having frequency information

boosts the results of the M2-200 and M2-400 models compared to the one without

this information, where the M2-400 model has the highest overall score (R-1 score of

14.67, R-2 score of 2.63 and R-L score of 13.89).

The M1 and M2 models trained on the Gigaword dataset have a difference in

ROUGE score of 0.1-0.3 points, with the M1 model having the highest score (R-1 score

of 26.35, R-2 score of 9.23 and R-L score of 24.50). It is a significant improvement for

the M2 model, tested on the Gigaword dataset, where the difference was 1-2 points.

The reason why the Gigaword dataset performs much better than models trained

on any other datasets is that the Gigaword dataset has short input text and short

annotated summary (the number of tokens for the input text and the annotated

summary is similar to the DUC 2004 Task 1 dataset) whereas the XSum and the

CNN/DM datasets have much longer input text. Even though the XSum dataset

has a shorter annotated summary compared to the one in the CNN/DM dataset, it

showed worse results, which might be connected to the fact that the XSum dataset

is extremely abstractive, meaning that the annotated summary contains changed

phrases, compare to the one in the input text. The model trained on the CNN/DM

dataset learned to copy phrases or words; therefore, there is a higher chance of scoring

a higher ROUGE score on the DUC 2004 Task 1 dataset, which might contain copied

information.

Test Cases

Table 5.23 shows three samples from the DUC 2004 Task 1 dataset, which were

used for testing. Table 5.24 showed generated summary from each of three models.

M2-400 model (trained on the CNN/DM dataset), M2-400 model (trained on the

XSum dataset) and M1 model (trained on the Gigaword dataset) were for chosen for

discussion since they had the best ROUGE score.
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Input text Annotated summary
cambodian leader hun sen on friday rejected opposition
parties demands for talks outside the country , accusing
them of trying to internationalize the political crisis .

cambodian government
rejects opposition ’s call
for talks abroad

cambodia ’s bickering political parties broke a three-month
deadlock friday and agreed to a coalition government
leaving strongman hun sen as sole prime minister , king
norodom sihanouk announced .

cambodian king an-
nounces coalition gov-
ernment with hun sen as
sole premier

pope john paul ii appealed for aid wednesday for the cen-
tral american countries stricken by hurricane mitch and
said he feels close to the thousands who are suffering .

pope calls for aid to cen-
tral america where hurri-
cane mitch killed 9,000

Table 5.23: Three samples from the DUC 2004 Task 1 dataset

M2-400 CNN/DM M2-400 XSum M1 Gigaword
opposition leaders rejected talks over ’
demands for talks outside of the oppo-
sition parties rejected the opposition .
hun sen , on friday rejected the

nigeria elections :
voting under way for
cambodian opposi-
tion

cambodian leader re-
jects opposition de-
mands for talks

cambodia ’s strongman hun sen hun
sen as sole prime minister . strongman
hun sen hun sen will be sole prime min-
ister . king norodom

cambodia profile me-
dia

cambodian parties
agree to coalition
government leaving
strongman hun sen
as sole pm

pope john paul ii says he feels close to
the thousands who are suffering . pope
john ii appealed for aid wednesday for
the central

hurricane paul ii : aid
arrives in pictures

pope urges aid for
central america hur-
ricane mitch

Table 5.24: Generation of summary from best models, which were tested on fragments
of the DUC 2004 Task 1 dataset

We can see that the M2-400 CNN/DM model always generated the longest sum-

mary, as it was trained to generate longer text. The M2-400 XSum model performs

poorly and cannot generate a meaningful summary containing important informa-

tion. As we mentioned before, this is because models trained on the XSum dataset

are learned to generate extremely abstractive summaries using long input text, and

when a short input text is given, it fails to generate meaningful summaries.

The M1 Gigaword model showed the best performance. It can generate similar

summaries to the annotated summaries (for instance, 3rd generated summary is very

similar to the annotated summary), and it can include important information from
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the input text. As discussed before, the Gigaword model was trained on a short

input texts and short annotated summaries, and the DUC 2004 Task 1 dataset also

has similar length for both texts.

ROUGE score for each fragment (example) is shown in Table 5.25. We can con-

clude that a ROUGE score of the model strongly depends on the dataset it was

trained on. Moreover, models trained on separate datasets generate differently struc-

tured summaries and focus on different information. The Gigaword dataset has a

similar structure to the DUC 2004 Task 1 dataset, which is why the model trained

on the Gigaword dataset performed so well on the latter one. The model, which is

trained on the XSum dataset, generated a summary, which is highly abstractive, and

it copies less information from the input text compared to the models trained on the

CNN/DM dataset.

Adding an extractive approach helps to increase a ROUGE score of the model,

which was trained on the CNN/DM and even XSum dataset. In addition to that,

adding frequency score inside the self-attention of an encoder helped to achieve higher

results; however, if the model is tested on the same dataset, adding frequency infor-

mation fails to outperform the M1 model, even though it generates more interesting

summaries, which might contain additional information.

Model R-1 R-2 R-L
M2-400 CNN/DM (example 1) 30 7 30
M2-400 CNN/DM (example 2) 42 24 42
M2-400 CNN/DM (example 3) 30 6 30
M2-400 XSum (example 1) 32 0 21
M2-400 XSum (example 2) 0 0 0
M2-400 XSum (example 3) 18 0 9
M1 Gigawords (example 1) 64 27 59
M1 Gigawords (example 2) 58 36 58
M1 Gigawords (example 3) 64 20 55

Table 5.25: ROUGE score for different models from Table 5.24
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5.5 Comparative Analysis: Benchmark Models

The current state-of-the-art models use a pre-trained encoder and can achieve higher

accuracy (more than 44 for R-1). However, since we are not using pre-trained em-

bedding, we have selected three models as our benchmark [12, 31, 36]. The model

words-lvt2k-temp-att (Nallapati et al. [12]) and pointer-generator (See et al. [31])

are based on Seq2Seq backbone with pointer-generator layer. The model from Trans-

former + Pointer-Generator + N-Gram Blocking (2-gram) (Deaton et al. [36]) tried

to combine transformer [1] with the pointer-generator layer from [31].

The results are shown in Table 5.26. Both models (M1-400 and M2-400 models)

have been trained for 30 epochs. We can see that both of our models showed better

results in R-1 and R-L scores compared to other papers and slightly lower on R-2

than the model from [31]. We could achieve similar results to the model from [31] on

R-1 and R-L scores while the model is being trained only for 5 epochs (Table 5.1).

Even though adding frequency information lowered a ROUGE score, the results are

still compatible.

Model R-1 R-2 R-L
words-lvt2k-temp-att (Nallapati et al. [12]) 35.46 13.30 32.65
pointer-generator (See et al. [31]) 36.44 15.66 33.42
Transformer + Pointer-Generator + N-Gram
Blocking (2-gram) (Deaton et al. [36])

25.31 4.16 15.99

M1-400 38.22 15.07 35.79
M2-400 37.52 14.46 35.02

Table 5.26: Comparing our models to the models from other papers

These results show, that our model outperforms the benchmarked, which use

the pointer-generator model or pointer-generator with a transformer. Adding a pre-

trained encoder or coverage mechanism to our models could boost the results further.
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Chapter 6

Conclusion and Future Work

In this thesis, we have successfully implemented a hybrid model using extractive and

abstractive methods with a transformer and pointer-generator layer, which helped to

achieve a higher ROUGE score and boost rarely used words. In addition, we showed

that the extractive approach is essential to preprocess the input text, as important

information is located in different parts of the text, and there are better approaches

than taking the first N tokens.

We have used four datasets (CNN/DM, XSum, Gigaword and DUC 2004 Task 1)

for training and/or testing and compared models with each other. Adding frequency

information to the model only sometimes improves results; however, the model might

add extra information using less common words because the model distributes the

attention to different words rather than to a single word. M1-400 achieved a high

ROUGE score of R-1 score of 38.22, R-2 score of 15.07 and R-L score of 35.79 and

outperformed [31] model in R-1 and R-L score by at least 2 points, even though R-2

score is slightly lower. M2-400 model showed better results in almost all tests on the

DUC 2004 Task 1 dataset compared to either the M1 or the M1-400 models, which

is because the M2 model has additional information about the rarity of each word

which seemed helpful when tested on a different dataset that the model was trained

on. A heatmap matrix of attention for each case study has been shown so that the

distribution of attention can be visualized easily.

In future work, coverage mechanism [65] can be implemented, which tracks what

information has been included and eliminates repetitive words or phrases. In some

cases that have been shown (for instance, examples of a generated summary of models

that have been trained on the CNN/DM dataset) important information has been

repeated several times. In addition, a more robust evaluation technique should be
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tested. ROUGEF1 score is not the best evaluation technique. For instance, if a

synonym of a word is used, which does not change the meaning of a sentence, the

ROUGE score will be lowered, as in this case, it will not be counted towards the

N-gram metric.

Even though adding frequency information to the encoder’s attention improved

ROUGE score of models, which were tested on the DUC 2004 Task 1 dataset, in most

of cases that have been described in section 5.4 adding frequency information worsen

ROUGE score and the generated summary sometimes was including more information

then is needed. Changing how the frequency scoring is passed to the encoder could

be tested, as well as adding frequency scoring to a decoder part, which can help to

focus on important information that has been generated so far. This might help to

eliminate repetition of important information in the generated text, as the model

would be able to “notice” this information using the attention, which might lead to

lowering probability of generating particular words.

In addition, the method to compute the frequency can be changed, so that it is

based not only on how frequently the word appears in the input text.

Encoder-decoder network could be trained in parallel to speed up the process (as

it is done in [14]); however, it is not clear whether the speed time might increase

significantly in the model that has been described in this research.
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Appendix A

Appendix

A.1 Tracing of the Algorithm

In this section, some variables are shown with their values that are used during

training.

A.1.1 Annotated summary

Variables and a sample of its value that are used for the annotated text. All padded

symbols are masked with “False”; therefore, last list of arrays in trg mask has only

“False” at the end. trg inp and trg ext are almost identical. The difference is that

trg ext contains OOV words (highlighted in blue).

A.1.2 Input text

Variables and a sample of its value that are used for the input text. src and src ext

are almost identical. The difference is that src ext contains OOV words (highlighted

in blue).
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Variable Value
annotated
summary

legendary football coach and broadcaster john madden announces he is
retiring . the nfl has been my life for more than 40 years , it has been
my passion , he says . madden is best known to millions as an ebullient
football commentator .

trg inp [ 2, 5217, 467, 998, 9, 5710, 347, 16059, 9634, 19, 13, 7605, 4, 5, 2587,
33, 45, 84, 137, 15, 55, 72, 849, 81, 6, 20, 33, 45, 84, 3762, 6, 19, 98, 4,
16059, 13, 244, 306, 7, 1248, 26, 39, 0, 467, 8903, 4, 3, 1, 1, ..., 1]

trg ext [ 5217, 467, 998, 9, 5710, 347, 16059, 9634, 19, 13, 7605, 4, 5, 2587, 33,
45, 84, 137, 15, 55, 72, 849, 81, 6, 20, 33, 45, 84, 3762, 6, 19, 98, 4, 16059,
13, 244, 306, 7, 1248, 26, 39, 50000, 467, 8903, 4, 3, 1, 1, ..., 1]

trg mask [[ True, False, False, ..., False, False, False],
[ True, True, False, ..., False, False, False],
[ True, True, True, ..., False, False, False],
...,
[ True, True, True, ..., True, False, False],
[ True, True, True, ..., False, False, False],
[ True, True, True, ..., False, False, False]]

trg full legendary football coach and broadcaster john madden announces he is
retiring . the nfl has been my life for more than 40 years , it has been
my passion , he says . madden is best known to millions as an ebullient
football commentator .

Table A.1: Sample of a variable and its value for the annotated summary.
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Variable Value
input
text

new york legendary football coach and broadcaster john madden is re-
tiring , he announced thursday . john madden appears at the tv critics
association press tour in beverly hills , california , in 2008 . it is been
such a great ride ... the nfl has been my life for more than 40 years , it
has been my passion it still is , he said in a statement released by nbc
sports . madden , 73 , was a hall of fame coach for the oakland raiders ,
but is best known to millions as an ebullient football commentator . he
won 16 emmy awards for outstanding sports analyst/personality , nbc
said .

src [ 62, 256, 5217, 467, 998, 9, 5710, 347, 16059, 13, 7605, 6, 19, 648, 365,
4, 347, 16059, 1136, 25, 5, 588, 1930, 1255, 658, 931, 11, 6994, 3430, 6,
646, 6, 11, 785, 4, 20, 13, 45, 162, 8, 298, 2157, 279, 5, 2587, 33, 45, 84,
137, 15, 55, 72, 849, 81, 6, 20, 33, 45, 84, 3762, 20, 145, 13, 6, 19, 22, 11,
8, 311, 381, 30, 2627, 1108, 4, 16059, 6, 6344, 6, 14, 8, 1393, 10, 3095,
998, 15, 5, 7542, 11952, 6, 36, 13, 244, 306, 7, 1248, 26, 39, 0, 467, 8903,
4, 19, 471, 694, 11538, 2266, 15, 4246, 1108, 0, 6, 2627, 22, 4, 1, 1, ..., 1]

src ext [ 62, 256, 5217, 467, 998, 9, 5710, 347, 16059, 13, 7605, 6, 19, 648, 365,
4, 347, 16059, 1136, 25, 5, 588, 1930, 1255, 658, 931, 11, 6994, 3430, 6,
646, 6, 11, 785, 4, 20, 13, 45, 162, 8, 298, 2157, 279, 5, 2587, 33, 45, 84,
137, 15, 55, 72, 849, 81, 6, 20, 33, 45, 84, 3762, 20, 145, 13, 6, 19, 22, 11,
8, 311, 381, 30, 2627, 1108, 4, 16059, 6, 6344, 6, 14, 8, 1393, 10, 3095,
998, 15, 5, 7542, 11952, 6, 36, 13, 244, 306, 7, 1248, 26, 39, 50000, 467,
8903, 4, 19, 471, 694, 11538, 2266, 15, 4246, 1108, 50001, 6, 2627, 22, 4,
1, 1, ..., 1]

src freq [0.8087, 0.8195, 0.8524, 0.8233, 0.8295, 0.7958, 0.8543, 0.8213, 0.8844,
0.7992, 0.8613, 0.7931, 0.8007, 0.8259, 0.8216, 0.7922, 0.8213, 0.8844,
0.8308, 0.8021, 0.7923, 0.8251, 0.8369, 0.8319, 0.8260, 0.8290, 0.7962,
0.8593, 0.8450, 0.7931, 0.8259, 0.7931, 0.7962, 0.8273, 0.7922, 0.8009,
0.7992, 0.8056, 0.8162, 0.7957, 0.8204, 0.8384, 0.8200, 0.7923, 0.8407,
0.8035, 0.8056, 0.8108, 0.8148, 0.7998, 0.8080, 0.8101, 0.8281, 0.8104,
0.7931, 0.8009, 0.8035, 0.8056, 0.8108, 0.8464, 0.8009, 0.8153, 0.7992,
0.7931, 0.8007, 0.8018, 0.7962, 0.7957, 0.8207, 0.8220, 0.8030, 0.8410,
0.8306, 0.7922, 0.8844, 0.7931, 0.8568, 0.7931, 0.7996, 0.7957, 0.8329,
0.7958, 0.8434, 0.8295, 0.7998, 0.7923, 0.8610, 0.8739, 0.7931, 0.8039,
0.7992, 0.8189, 0.8205, 0.7952, 0.8318, 0.8022, 0.8047, 2.1736, 0.8233,
0.8652, 0.7922, 0.8007, 0.8234, 0.8264, 0.8728, 0.8390, 0.7998, 0.8485,
0.8306, 2.1736, 0.7931, 0.8410, 0.8018, 0.7922, 0.0000, 0.0000, ..., 0.0000]

oov words [’ebullient’, ’analyst/personality’]
oov words
(index)

[50000, 50001]

Table A.2: Sample of a variable and its value for the input text.
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A.1.3 Internal variables

Values of internal variables inside the model. Values are taken from Alg. 3. When

the attention is high, the model is more likely to use the word in generation of a

next word. The attention of padded symbol is 0. gen sum probab contains final

probabilities and has a shape of [100, 50004].

Variable Value
x [[-0.3389, -0.0000, -0.9329, ..., -0.1484, 0.1155, -0.0000],

[ 0.5721, 0.7474, 0.0000, ..., 2.1475, 1.4672, 0.2143],
...,
[-0.0000, -0.8321, -0.0551, ..., 1.2123, -0.1525, 1.2242],
[-1.0256, 0.1225, -0.9025, ..., 1.2123, -0.1524, 1.2242]]

s [[ 0.5114, -0.9785, 0.8487, ..., -0.5495, -1.4523, -0.8624],
[-1.5298, 1.4677, 0.8478, ..., 0.4266, -2.7031, -0.9309],
...,
[-0.5949, 1.7759, 2.0998, ..., 3.1443, 1.1263, 0.3926],
[-0.0422, 1.0565, 1.8157, ..., 3.1954, 2.0054, 0.6575]]

h [[ 0.4188, 0.2916, 0.5588, ..., -0.4898, 0.0350, -0.2848],
[-0.3276, 0.2012, -0.0741, ..., -0.6512, 0.1389, 0.7616],
...,
[-0.1768, -0.1500, 0.1356, ..., -0.3598, 0.0180, -0.2839],
[-0.0890, -0.1315, 0.2067, ..., -0.3371, 0.0448, -0.3437]]

Attention [[0.0616, 0.1194, 0.0735, ..., 0.0000, 0.0000, 0.0000],
[0.0344, 0.1880, 0.0431, ..., 0.0000, 0.0000, 0.0000],
...,
[0.0088, 0.0048, 0.0081, ..., 0.0000, 0.0000, 0.0000],
[0.0091, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]]

Attention
(+freq.)

[[0.0197, 0.0334, 0.0189, ..., 0.0000, 0.0000, 0.0000],
[0.0111, 0.0532, 0.0112, ..., 0.0000, 0.0000, 0.0000],
...,
[0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]]

gen sum
probab

[[1.314e-02, 5.600e-07, 2.160e-06, ..., 2.948e-03, 1.104e-02, 1.880e-03],
[7.5745e-03, 6.631e-07, 2.669e-06, ..., 4.856e-04, 0.000e+00, 5.227e-05],
...,
[1.093e-04, 7.920e-07, 2.704e-06, ..., 5.896e-05, 7.481e-05, 1.561e-05],
[2.516e-04, 6.634e-07, 2.250e-06, ..., 1.357e-04, 1.577e-04, 3.759e-05]]

Table A.3: Values of internal variables inside the model.
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A.2 Heatmap matrices

A.2.1 XSum Dataset. Case 1

The heatmap of attention on input text and annotated summary of a model trained

on the XSum dataset for case 1.

(a) M1 (b) M1-400 (c) M2-400

Figure A.1: Case 1: attention distribution between the input text and generated
summary from the XSum dataset for different models.



92

A.2.2 XSum Dataset. Case 2

The heatmap of attention on input text and annotated summary of a model trained

on the XSum dataset for case 2.

(a) M1 (b) M1-400 (c) M2-400

Figure A.2: Case 2: attention distribution between the input text and generated
summary from the XSum dataset for different models.
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A.2.3 Gigaword Dataset. Case 1

The heatmap of attention on input text and annotated summary of a model trained

on the Gigaword dataset for case 1.

(a) M1 (b) M2

Figure A.3: Case 1: attention distribution between the input text and generated
summary from the Gigaword dataset for different models.
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A.2.4 Gigaword Dataset. Case 2

The heatmap of attention on input text and annotated summary of a model trained

on the Gigaword dataset for case 2.

(a) M1 (b) M2

Figure A.4: Case 2: attention distribution between the input text and generated
summary from the Gigaword dataset for different models.
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A.3 RNN/LSTM/Seq2Seq

A.3.1 Recurrent Neural Network (RNN)

In human language, we have connections between words or phrases and without those

connections, it would be impossible to understand what the text is about. When

people talk, they use information that was used previously in the conversation to

understand the current information. A simple neural network cannot memorize in-

formation, however, recurrent neural network (RNN) [17] can. RNN is used in a

variety of tasks, such as machine translation, speech recognition or text summariza-

tion. Each RNN is connected to the other so that information from the previous

context can be forwarded further.

Figure A.5: Recurrent neural network (RNN), where xt represents an input word at
a given time step t and ht represents an output word at a given time step t.

However, in longer phrases, RNN can perform poorly, as the meaning of the word

should be passed through several iterations. A long short-term memory network

solves some problems of an RNN network.

A.3.2 Long Short-term Memory (LSTM)

Long short-term memory (LSTM) [18] network is similar to RNN, but it can memorize

longer dependencies. LSTM uses a series of gates (forget, input and output), that

control which information will be saved and which one will be forgotten (Fig. A.7).

The forget gate decides using a sigmoid function on the importance of each cell state

based on the hidden state and input data. The input gate (memory) decides what

information should be added to the network, given the input data and the previous

hidden state (using tanh and sigmoid function multiplication which is later added to

the hidden layer). The output gate uses information from the input data and previous

hidden state to decide a new hidden state of the model (sigmoid multiplied by tanh).
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Figure A.6: Long short-term memory (LSTM) network. σ is a sigmoid function when
tanh is a tanh function. xt represents the input data at the position t, ht represents
the output data at the position t and Ct represents the previous hidden layer at the
position t.

LSTM uses only the previous context of a given word. However, the meaning of

the word might not only depends on what was in the context before the current word

but in the future context as well.

A.3.3 Bi-LSTM

Bidirectional LSTM (Bi-LSTM) is used to attend the future context of a given word.

The input goes in two ways, so at any given point it is possible to get the context

information both from the past and the future information.

Figure A.7: Bidirectional LSTM (Bi-LSTM) network. xt represents the input data
at the position t, yt represents the output data at the position t.

A.3.4 Sequence-to-sequence (Seq2Seq) Model

One of the models that is used for the text summarization task is called the Sequence-

to-sequence model. Sequence-to-sequence (Seq2Seq) [22] is a model that takes an



97

input as a sequence and returns an output as a sequence. In text summarization,

the Seq2Seq model consists of an encoder-decoder structure. The encoder tries to

capture the context of an input text and outputs the hidden state vector, which is

passed to the decoder, which uses this information to produce the output. A sample

of an input text and annotated/generated summary are shown in Fig. A.8. Seq2Seq

model uses either Bi-LSTM or LSTM inside the encoder and a decoder.

Figure A.8: A sample (taken from Table 2.2) of how Seq2Seq model works. The
encoder (which consists of RNNs or LSTMs) takes the input text, while the decoder
(which also consists of RNNs or LSTMs) takes the annotated summary and outputs
generated summary.

The problem with such architecture is that the encoder should compress the entire

sentence into a small hidden vector and the meaning of words has to traverse through

the context in the encoder and then through the hidden layers of the decoder without

losing its meaning, which is hard to do if the sentence is long. Therefore, the attention

mechanism is used.

A.3.5 Seq2Seq with Attention

Seq2Seq with attention (Fig. A.9) during the decoding stage can look to the attention

distribution of an input text to decide which word should be generated next.
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Figure A.9: A sample (taken from Table 2.2) of how Seq2Seq model works. The
encoder (which consists of RNNs or LSTMs) takes the input text, while the decoder
(which also consists of RNNs or LSTMs) takes the annotated summary and outputs
generated summary.
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