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Abstract
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Securing Intrusion Detection Systems in IoT Networks Against Adversarial Learning:

A Moving Target Defense Approach based on Reinforcement Learning

by Arnold Brendan Osei

Investigating the use of moving target defense (MTD) mechanisms in IoT networks is ongo-

ing research, with unfathomable potential to equip IoT devices and networks with the ability

to fend off cyber attacks despite the computational deficiencies many IoT ecosystems typ-

ically have. The AI community has extensively studied adversarial threats and attacks on

machine learning-based systems, emphasizing the need to address the potential compromise

of anomaly-based intrusion detection systems (IDS) through adversarial attacks. Another

concept that has gained significant attention in the networking community is Game Theory.

Protecting any given network is almost a never-ending battle between the attacker and de-

fender, and hence a natural game of competitors can be modelled based on one’s parametric

specifications to gain more insight into how attackers might interact with one’s system. The

goal of this thesis is to propose a comprehensive, experimentally verifiable game-theoretic

model of MTD in IoT networks to secure the IDS against adversarial attacks. Once a game

with state transitions based on given actions can be modelled, reinforcement learning is used

to develop policies based on various episodes (rounds) of the game, ultimately optimizing

network decisions to minimize successful attacks on machine learning-based IDS. The state-

of-the-art ToN-IoT dataset was investigated for MTD feasibility to implement the feature-

based MTD approach. The overall performance of the proposed MTD-based IDS was com-

pared to a conventional IDS by analyzing the accuracy curve of the MTD-based IDS and the
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conventional IDS for varying attacker success rates and resource demands. Our approach has

proven effective in securing the IDS against adversarial learning.
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Chapter 1

Introduction

1.1 Motivation and Objectives

With the advent of exponentially growing technological mechanisms that have expanded

communication bandwidths and made it possible for seamlessly ultra-fast inter-connectivity

of inestimable nodes, there has been a global consensus to proactively evolve the internet

to include not just human-to-human interactions through devices, but also device-to-human

and device-to-device interactions, where these devices have “consciences” of their own and

exist as independent entities in networks - Hence the global outburst of Internet of Things

(IoT). A major concern about IoT systems however is security and privacy, which become all

the more difficult to implement in these devices that are mostly embedded and have limited

computational resources to run firewalls and advanced security algorithms. To be able to

prevent IoT systems from being attacked, there ought to be more rigorous mechanisms that

go beyond a typical firewall’s inspection of headers of packets based on assigned rules, and

rather try to extensively examine payloads of packets for potential anomalies – intrusion

detection systems (IDS).

Intrusion detection systems (IDS’s) can either be signature-based or anomaly-based.

Signature-based IDS seemed to have been the natural way to go in the past, as known at-

tacks were studied and their features examined and implemented as signatures on the IDS,

so that their traffic could easily be identified by the IDS based on the known characteristics.

However, cyber attackers device new ways of orchestrating attacks every now and then that

are usually cunningly evasive, and could render signature-based detection defunct. This is

why there have been growing interests and active research in anomaly-based intrusion detec-

tion systems; and with the onset of advanced machine learning techniques and algorithms,
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this proves to be the ultimate way to stop all forms of attacks (whether known or unknown),

with the ultimate goal of being able to accurately distinguish normal traffic from malicious

traffic, however difficult.

The goal of this thesis is to proactively protect an anomaly-based IDS from potential

adversarial learning attacks using a novel Moving Target Defense (MTD) approach. Network

traffic can be distilled into network datasets for the sake of analysis and training of anomaly-

based IDS. As part of this research, the ToN-IoT dataset was rigorously studied and explored

in diverse ways to ascertain if it can be used to achieve the objectives as stipulated. As would

be determined later in this thesis, all theoretical ideas and corresponding experiments have

been inspired by analyzing the ToN-IoT dataset.

This thesis focuses on establishing a theoretic model for an MTD-enabled IDS to prevent

against adversarial threats. An adversarial attack is a kind of an attack that stealthily injects

or places an input to a machine learning (ML) model that is purposely designed to cause a

model to make a mistake in its predictions despite resembling a valid input when observed.

There are three ways of looking at adversarial attacks: In white box adversarial attacks, the

adversary completely knows the network. This would also imply a complete knowledge on

the training and testing datasets of a given IDS, what ML model and miscellaneous tech-

niques are employed by the IDS, among other things. In gray box adversarial attacks, the

adversary (attacker) only has partial knowledge of the network. Lastly, black box adversarial

attacks require that the adversary (attacker) has no knowledge of the network, and launches

the attack blindly and arbitrarily.

1.2 Problem Definition

Conventional IDSs used as gateways in IoT networks are as susceptible to attacks as the

nodes within these networks. Little attention has been placed on this, but the damage caused

by a cyber attack that compromises an IDS could be far more detrimental than that caused by

compromising nodes within the network, since the IDS’s mission is to protect the network.

Although researchers using MTD have made important strides within the community, little

attention has been placed on implementing a proactive approach like MTD on IoT gateways

involving IDS components.

This thesis attempts to address that by proposing an IDS architecture that lends itself
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naturally for the implementation of MTD, by leveraging the power of game theory and rein-

forcement learning.

1.3 Summary of Contributions

The contributions of this thesis are as follows:

• A novel MTD model based on decentralization and learning diversification to protect

the IDS against adversarial threats.

• A reinforcement learning solution to autonomously optimize MTD deployment within

the network.

• An extensive experimental validation of our proposed threat prevention solution using

the state-of-the-art, real-world ToN-IoT dataset.

1.4 Thesis Layout

This thesis is structured as follows:

• Chapter 2 provides background information on the areas explored in this research.

• Chapter 3 provides a literature review on all related works to this thesis.

• Chapter 4 provides a detailed outline of the proposed MTD model and solution.

• Chapter 5 provides rigorous analysis of the ToN-IoT dataset, and investigates its via-

bility for MTD implementation.

• Chapter 6 describes the experiments and results by evaluating the performance of the

proposed solution compared to the conventional IDS in IoT networks.

• Chapter 7 highlights the limitations and conclusions to be drawn from the outcomes of

this research, and outlines the promising future works that this research opens the door

to.
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Chapter 2

Background Information

2.1 Security Threats in IoT Networks

Internet of Things (IoT) has become an intrinsic technology in various automated industries

and large-scale smart city and government services including wearable health devices and

autonomous transportation Makhdoom et al., 2018. IoT involves sensors that transmit data to

the cloud and control the decisions of cyber-physical processes. According to recent statistics

IHS, 2018, there are currently over 26 billion active IoT connected devices worldwide.

Computer networks in general are usually looked at in a systematic manner, through lay-

ers. This layer partitioning approach facilitates comprehensive and standard network design

layouts and analysis. To understand the threats posed to IoT networks, it is important to un-

derstand generic IoT network layers, as usually, threats launched on IoT networks could be

identified in the context of the specific layer their design and use-case is based off. IoT con-

sists of four main layers: the physical layer that includes IoT sensors and actuators; the net-

work layer (edge-cloud communications) responsible for transferring the data from devices

for processing in upper layers; the processing layer that leverages the cloud environment to

perform computational tasks; and the application layer delivered via end-user devices. All

layers are subject to security threats including Denial of Service (DoS) attacks Giraldo et al.,

2018; Rubio, Alcaraz, and Lopez, 2017.

Jamming is an IoT security threat that compromises the perception layer of an IoT net-

work. The attacker craftily jams media access channels of IoT nodes, thereby creating prob-

lems for legitimate node connectivity within the network Zaman et al., 2021. Jamming threats

can be done in various forms: injecting continuous random wave forms into the channel

would constitute a constant jammer; listening to activity within the channel before injecting
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noise signals in the channel constitutes a reactive jammer threat; whereas a strategic jammer

would consist of a more intelligent optimal approach for injecting jamming signals within a

given IoT channel Gwon et al., 2013.

MAC address spoofing is an attack within the perception layer of an IoT network. The de-

liberate attempt to change the MAC address of a given IoT node to cause identity problems in

node-to-node communications and node-to-gateway communication is MAC spoofing. Ban-

der et al Alotaibi and Elleithy, 2016 developed a novel passive technique that detects MAC

address spoofing in wireless sensor nodes based on a mainstream machine learning classifi-

cation algorithm, namely the random forest ensemble method.

Attacks that target how IoT nodes conserve energy and resources, for example by tweak-

ing the sleep time of certain wireless sensor nodes so that they expend more resources than

needed, are among the most adverse perception layer security threats for IoT networks. Hei

et al Hei et al., 2010 conducted analysis on resource depletion attacks in the perception layer

by using a simulation tool known as a software radio in implantable medical devices (IMDs).

It was proven that an arbitrary attacker posed a serious threat on the life of patients just by

reducing the battery span of an IMD .

The network layer is the prime focus as far as the architecture for node-to-node commu-

nication and node-to-server/gateway communication is concerned. It also involves numerous

protocols like IPv4 and IPv6 that could be easily exploited. Consequently, it is liable to all

forms of attacks including distibuted DoS (DDoS), DoS, spoofing attacks, eavesdropping,

and man-in-the-middle attacks.

IoT devices and networks are known to be increasingly vulnerable to security attacks on

data integrity and service availability. Security threats constitute a major obstacle against the

achievement of reliable IoT systems. Indeed, current security vulnerabilities in IoT devices

have led to several cases of DoS attacks Antonakakis et al., 2017. The attacks launched on the

processing layer such as data corruption attacks (e.g., data inconsistency, unauthorized ac-

cess), malware, and DDoS attacks could also affect the cloud server and delivered services.

With increased connectivity, IoT devices can become compromised and used as zombies.

Hackers can control these devices remotely and utilize them for illegal purposes and carry

out large-scale DDoS attacks, e.g., via a Control & Command (C&C) server Şendroiu and

Diaconescu, 2018.
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2.2 Intrusion Detection Systems in IoT

Intrusion detection systems can be either host-based (HIDS) or network-based (NIDS). The

host-based IDSs are attached to the devices/nodes themselves to shield them from attacks,

whereas the network-based IDS monitor the entire IoT network’s traffic Santos, Rabadao,

and Gonçalves, 2018. As most IoT devices are deficient in computational and memory re-

sources, most IoT networks rely on network-based IDSs to provide security for the collective

nodes within the network Elrawy, Awad, and Hamed, 2018. Hence moving forward in this

thesis, the mention of intrusion detection systems refers to network-based intrusion detection

systems (NIDS). On the other hand, IDSs can either be signature-based or anomaly-based.

Signature-based IDSs seemed to have been the natural way to go in the past, as known attacks

were studied and their features examined and implemented as signatures on IDSs so that their

traffic could easily be identified based on the known characteristics. However, cyber attack-

ers device new ways of orchestrating attacks every now and then that are usually cunningly

evasive, and could render signature-based detection defunct. This is why there have been

growing interests and active research in anomaly-based intrusion detection systems; and with

the onset of advanced machine learning techniques and algorithms, this proves to be the ulti-

mate way to stop all forms of attacks (whether known or unknown), with the ultimate goal of

being able to accurately distinguish normal traffic from malicious traffic, however difficult.

Naturally, when this thesis talks about IDS, it is referring to anomaly-based IDS as these are

the future for detecting zero-day and unknown attacks. It is expected that state-of-the-art IoT

networks implement anomaly-based IDS, and any signature-based functionalities may be in-

cluded as add-ons. The accuracy of anomaly-based IDS’s hinges on some questions: What

is the most appropriate ML model to use? What data sets and classification features should

be used to train and test this model?

Assuming that the most ideal machine learning model is chosen, the accuracy of an

anomaly-based IDS would greatly depend on what kind of data sets are used to train the

model it uses, hence the motivation for the analysis of the various datasets out there in the

literature leading up to the adoption of the ToN-IoT dataset for this projec Alsoufi et al.,

2021.
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2.3 Anomaly Detection Datasets

Current research to come up with optimal datasets for IoT intrusion detection systems has

been somewhat lacking. Currently available data sets are, in one way or another, derivatives

of the benchmark NSL-KDD dataset, which has become more or less the standard for generic

training of anomaly-based network IDS. This dataset itself is a revised version of the KDD-

CUP’99 data set (prepared by Stolfo et al., 2000), which was also inspired by data records

obtained from the 1998 DARPA program at the MIT Lincoln Labs. The authors in Tavallaee

et al., 2009 proposed the NSL-KDD dataset as the ultimate successor of the KDDCUP’99

(hereby shortened to “KDD’99”) by meticulously analyzing the KDD’99 dataset for possible

flaws.

The authors in Hindy et al., 2020 came up with an IoT-specific dataset that was generated by

simulating MQTT-based traffic. Their experiment was conducted by attempting to simulate

an MQTT machine-to-machine network architecture of 12 sensors, a broker, a camera, and

an attacker. Also, five scenarios of data records were recorded: Normal operation, aggres-

sive scan, UDP scan, Sparta SSH brute-force attack, and MQTT brute-force attack. Three

abstraction levels of features are also employed in the composition of this dataset (after ex-

traction from raw pcap files): packet features, unidirectional flow features and bidirectional

flow features. The highlight of this dataset is perhaps that although it is IoT-specific, the traf-

fic was synthetically generated and may not be reflective of real-world scenarios. It seems

to share most of the loopholes expressed in the aforementioned datasets, and confidence in

this dataset is yet to be fully ascertained by the IoT security community. From the above

mentioned, it can be clearly seen that the research extent around the development of compre-

hensive datasets for IoT anomaly-based intrusion detection systems is still in its infancy.

2.4 Adversarial Learning Threats to IDS

An adversarial learning attack is a kind of attack that stealthily injects or places an input to

a machine learning model, purposely designed to cause a model to make a mistake in its

predictions despite resembling a valid input when observed. There are typically three ways

of looking at adversarial attacks: White box adversarial attacks - This is when the adver-

sary completely knows the network. That would also imply a complete knowledge on the

training and testing datasets of a given IDS, what ML model and miscellaneous techniques
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are employed by the IDS, etc. In Gray box adversarial attacks the adversary (attacker) only

has partial knowledge of the network. Finally, in black box adversarial attacks the adversary

(attacker has no knowledge of the network and launches the attack blindly and arbitrarily.

The approaches to executing an adversarial learning attack can be grouped into reactive

and proactive approaches:

• Reactive Approach: Involves carrying out patches on a given network, based on the

kind of adversarial attacks experienced. This could be likened to adapting the IDS as

a sort of signature-based IDS. This approach could be done in an iterative manner to

enhance the robustness of the IDS.

• Proactive Approach: Involves altering the underlying architecture or learning proce-

dure of the IDS by, for example, adding more layers, training in real time the IDS with

adversarial attack samples, or increasing the sensitivity of loss/activation functions .

The loss function is given by:

f(x+ δ) = f(x), Where δ is the input injected by the adversary to cause perturbation

and impact prediction accuracy of the IDS.

Fast Gradient Sign Method (FGSM) is a kind of adversarial learning attack that uses the

concept of gradient descent in neural networks, which is in turn an iterative optimization

process to minimize the adversarial error during an attempt to compromise a given deep

learning model Huang et al., 2017. This results in data points that look indistinguishable

from the original ones but results in serious misclassification when passed through a deep

learning model. Adversarial training too could be used, where the IDS is trained with some

adversarial examples so as to make it better immune to adversarial attacks. The Barrage of

Natural Transforms (BaRT) randomly sets up the classifier to be vulnerable to a number of

transforms, based on the criteria which the classifier/ML model uses in its prediction. Some

transforms could be: Noise injection, FFT perturbation and Color precision reduction (in

the case of image classifications) Mahmood et al., 2021. In a jacobian based saliency attack

(JSMA), by analyzing the jacobian matrix of outputs with respect to inputs, one is able to

deduce how the output probabilities behave given a slight modification of an input feature. In

Ayub et al., 2020, JSMA was used against a multilayer perceptron (MLP) model by using the

CIDS and TRAbID datasets for network traffic classification. All these adversarial threats
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can render the IoT network highly vulnerable to compromise by subverting the performance

of the IDS.
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Chapter 3

Literature Review

3.1 Moving Target Defense (MTD)

3.1.1 MTD in IoT Systems

A standard traditional network could be set up to have the best security mechanisms imple-

mented, with state-of-the-art firewalls, IDS, cryptographic techniques, etc. The simple fact

is if some arbitrary attacker has an interest in breaking through the system, and has ade-

quate resources at his/her disposal, with enough time, any static network arrangement can

be breached and compromised. Perhaps there could be an argument made that even if the

attacker is successful at an attack launch, these vulnerabilities could be patched to further

reduce the attack surface available for any prospective attacks. However, how further down

can an attack surface be shrunk? How about zero-day vulnerabilities that have not yet been

detected, talk less of being patched? Also, these standard traditional ways of dealing with

compromised systems are highly reactive. It means the damage would have been caused be-

fore counteraction is initiated, and there are negative impacts on network operations due to

constant patches. It is also easier to create backdoors in traditional systems if system parame-

ters are unchanging/static. Furthermore, resource-constrained devices and networks like IoT

systems may not be able to add complex security set-ups and hence are most vulnerable to

attacks. These and perhaps many more have been motivating factors for shifting the focus

from traditional, static networks to more dynamic set-ups based on the Moving Target De-

fense paradigm (MTD).

MTD is a cyber-defence paradigm that proposes to proactively make systems and net-

works dynamic, so as to make it even more difficult for an attacker to be successful with

exploits. With MTDs, there is a full-on acknowledgement that systems are always going to
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be vulnerable regardless of how many times attack surfaces are shrunk, because there is an

unfair asymmetrical advantage that attackers have on static systems over time, hence recon-

naissance activities of the attacker on a static network would render the attacker in a favorable

position to be successful with an attack Navas et al., 2020.

As can be seen in figure 3.1, MTD research is typically focused on the nodes, and is

oblivious to the gateways through which all traffic converge and diverge. The gateway being

referred to in this case is the intrusion detection system (IDS). In principle, no matter how

safe we make IoT nodes by virtue of proactive approaches such as MTD, if gateways in-

cluding the IDS are vulnerable to compromise, the entire network has a fundamental security

loophole that can be exploited.

To counteract this asymmetrical advantage that an attacker has over a traditional network,

MTD proposes the movement of system parameters at certain periods so that the state of the

network at T0 is different from the state of the network at some arbitrary period T0 + δt,

thereby making it difficult for the attacker to do any proper reconnaissance and launch a suc-

cessful attack. The goal in this case of MTD is not to reactively reduce the attack surface

with traditional countermeasures like patches, but rather to proactively keep moving the at-

tack surface to make it seemingly impossible or very difficult to be successful with an attack,

as can be seen from figure 3.1. MTDs have to do with movements, so one key design step

to take in setting up an MTD-based network is to know what to move, how to move it, and

when to move it, as can seen from figure 3.2.

With regards to what parameters to move/change, this could be data (changing data

formats, etc), software, network (changing IP addresses, port numbers, etc), platform (OS

changes, firmware changes), runtime environment (RAM address space changes, etc), or

perhaps even hardware (routine changes in enterprise switch brands, etc). With regards to

how to move, the moving parameter (MP) can be made to move from one state to another

via shuffling (randomization) or perhaps using some predefined optimization algorithm, etc.

With regards to when to move (the trigger to initiate the move), this could be done based on

a specific time or event, or a hybrid combination of both. Because of the uncertainty created

by changing configurations on the network, it is possible to quantitatively attempt to describe

the degree of uncertainty of a given network with say a chosen moving parameter (MP) by

evaluating the number of states the MP is capable of taking on, and the probability that it

takes on a certain state. This can be modeled using Shannon’s entropy.
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For a uniform probability distribution, Shannon’s entropy will directly depend on the

number of states available for a given MP Zhuang, DeLoach, and Ou, 2014. This theoretical

inclination further buttresses the point that: Instead of reducing the attack surface, MTDs

rather enlarge the “exploration surface” domain for attackers, and then moves the attack sur-

face as a sub-domain with the exploration domain. Thereby making it difficult for attackers to

orchestrate attacks. That said, there is always going to be an element of qualitative measure-

ment when MTD is concerned. This is because even though more states of an MP translate

to higher uncertainty and hence greater difficulty for the attacker, it could be much more

difficult and costlier to have many states, depending on the moving parameter in question.

For example, it is easier to have multiple states of IP addresses compared to say multiple

firmware. This also means for an attacker, it may be easier to break through say 254 different

states of a node’s IP address than 5 different states of a node’s firmware. Hence there ought

to be some qualitative representation of weighing the cost of states of a given MP, for both

the attacker and the defender.

In a given network environment, a typical use-case could be random re-assignment of

IP addresses and port numbers. This can thwart the reconnaissance activities of the attacker.

For example, using scanning tools like nmap will yield different results for each scan and

will therefore not be useful knowledge to the attacker. Another use-case could be constant

changing of communication protocols between nodes and gateway. For example in IoT net-

works, nodes could communicate to the gateway using protocols like WiFi, Bluetooth, Zig-

bee, etc. Constantly changing communication protocol would make it difficult for an attacker

to launch an attack as each protocol is completely different from the other, with no correla-

tion whatsoever. The moving target defense strategy is a relatively new area of research

that is gaining momentum, especially for low-resource networks like IoT networks Mercado-

Velázquez, Escamilla-Ambrosio, and Ortiz-Rodriguez, 2021.

The authors in Jia, Sun, and Stavrou, 2013 implement a moving target defense model:

MOTAG, that invlolves shuffling proxies of which clients ought to connect to access sys-

tem resources: The prime objective of their strategy is to dissociate insider attackers from

true clients. This is done by categorizing the proxies to which clients are connected to as

either serving proxies or shuffling proxies during a DDoS attack. The serving proxies con-

tain clients that do not experience any attack impacts, while the shuffling proxies are for the

clients’ experiencing attacks. The idea is to keep shuffling (randomly re-distributing) clients
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among the shuffling proxies for each iterative shuffle process, and adding proxies that do not

experience attacks to the “serving proxies” group. This is continuously done until such a

time as the clients responsible for the insider attacks are completely isolated. There is also

an optimization goal to maximize the number of clients free from attacks after each itera-

tive shuffle, using optimization techniques, and making sure there are enough shuffle proxies

available to isolate insider attacks as fast as possible.

The main objective of the MOTAG architecture is to protect system assets (application

server in this case) from attacks, especially DDoS and flooding attacks. It does this by intro-

ducing an intermediate layer made up of proxies, to diffuse and/or absorb attack traffic, and

hence shield the application server (asset to be protected). The main idea is to provide a first

layer of security to the intermediate layer (which is the point of contact with clients), so that

even if an attacker is successful in compromising a proxy, it has another layer of security that

governs communication between proxies and the server.

The authors in Wang and Wu, 2016 introduce a novel moving target defense against

network reconnaissance. They call this MTD-based software-defined technique the Sniffer

Reflector. This MTD architecture is basically set up to prevent successful network probing

by the attacker by providing forged responses to network scans. The attacker gets feedback

for each network scan conducted, however the scans targeting the main network are reflected

on to a shadow network, which simulates scan replies that are sent back to the attacker. The

attacker hence assumes these are legitimate responses from the targeted network, while these

have been obfuscated by a shadow network that mimics the original network, thereby render-

ing the attacker’s reconnaissance invalid.

The authors in Giraldo, El Hariri, and Parvania, 2022 propose a novel MTD framework

employing IoT-enabled data replication to replicate sensory and control signals in cyber-

physical systems. This framework combines two layers of uncertainty, hence reducing the

arbitrary attacker’s ability to learn about the IoT network over time. It also reduces the impact

of false data injection attacks on a given system model.

3.1.2 Game Theory for MTD

Game Theory has been largely used to evaluate situations where individuals and organiza-

tions can have conflicting objectives. A game may be defined as a strategic interaction be-

tween two or more entities, where the entities involved act in such a manner as to maximize
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FIGURE 3.1: Overview of the MTD process applied to IoT networks.

FIGURE 3.2: Overview of the MTD process applied to IoT networks.

their wins and minimize their losses ( whether cooperatively or competitively) Von Neumann

and Morgenstern, 2007. The Central decision makers in any given game that either work

cooperatively or against each other to maximize their profits and minimize their losses are

known as players, while the series of moves that each player in the game can make, where

each action has direct consequences on the utilities of players are termed as actions. Pay-

offs or Utilities are the quantifiable motivations that players get for executing corresponding

actions. They serve to motivate/ de-motivate a player from playing a given action/actions.

If a game involves only two players (competitors), then it is called a two-person game. If

more than two players are involved, then the game is referred to as n-person game. For a

two-player game, if the reward obtained from the utility function of one player is equal in
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magnitude but opposite in sign to the utility value obtained by the other player such that the

sum of their utility values equal zero, the game is termed as a zero-sum game Maschler, Za-

mir, and Solan, 2020.

An MTD system typically requires continuous adaptations of system configurations to be

able to effectively hinder attacks. This is expected to cause some overhead on the resources of

a given system. On the other hand, limiting adaptations in a bid to reduce the overhead could

also make it much easier for attackers to successfully execute attacks. Therefore, determining

the right time to make adaptations, with the objective of minimizing long-term costs, high-

lights one of the keen problems in MTD - The MTD timing problem. The authors in Wang,

Li, and Chen, 2016 propose a model to deal with the timing problem by coming up with an

intelligent and optimal way to make adaptations (smart and optimized adaptations), which

would naturally also include a trade-off between reducing system resource overhead and in-

creasing the resilience of the system to attacks. This was done using an MTD framework that

comprises of: defender system, adaptation cost analysis block, attacked cost analysis block,

distribution fitting block, and adaptation analysis engine block. The defender system is sup-

posed to make economical and optimized adaptations based on a loopback communication

with the adaptation analysis engine block. Before this happens, the system feeds various

information parameters to the other blocks, which in turn do some computational analysis,

and then all the data gets aggregated at the adaptation analysis engine block, which makes

sense of the data and guides the defender system to make an adaptation. The adaptation cost

analysis block computes the adaptation cost resulting in the movement from one configura-

tion state to another. The attack cost analysis block computes the cost incurred by the system

after a successful attack. The distribution fitting block computes the distribution pattern and

intervals of historical attacks on the system.

The authors in Osei et al., 2022 proposed a game-theoretic MTD model to address the

MTD timing problem. In their model, they investigated two DDoS attacks: ICMP flooding

and SYN Spoofing attacks. They theoretically calculated the time taken for an arbitrary

attacker to successfully launch either of these attacks, provided certain parameters like the

byte size and number of requests for a TCP connections table were given. Based on these

calculations they formulated a game where the defending system had four options: To shuffle

IoT nodes at a time t less than the time taken to successfully launch an ICMP flooding attack
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(which took less time to launch than the SYN spoofing attack); To shuffle at a time t in

between these two attack success times; To shuffle nodes at a time greater than the SYN

spoofing attack time; and then to shuffle nodes at t = ∞. The attacker on the other hand

has two actions: To either launch an ICMP flooding attack or a SYN spoofing attack. Each

player’s utilities depended on what action was being taken, the number of shuffled nodes, the

number of compromised nodes, and the total number of nodes within the network. The game

was played between both players until Nash equilibrium (the equilibrium point of optimality

of either parties, where either player’s move was independent of the other). The utilities

of each player was plotted for purely random moves (blind adaptations), and then for smart

adaptations (moves that were made based on the probabilities reached at Nash Equilibrium).

They were able to prove that their game-theoretic model provided some guided framework

to ensure that the defending system moved at on optimal time to yield the most rewards and

shield the network against attacks.

3.2 Defense Against Adversarial Attacks

One of the ways to defend against adversarial attacks is to train the IDS with some adversarial

examples during the training phase Xu et al., 2020. This can sometimes lead to label leakage

and over-fitting as the adversarial examples generated during the training phase may not be

present during the predictive/testing phase. The authors in Zhang and Wang, 2019 came up

with a novel model for adversarial training that involves feature scattering in a given latent

space. They generate the feature-scattering adversarial examples in an unsupervised manner

as a deliberate attempt to address possible label leakage. They analyse their proposed model

and test it on various datasets to prove its efficacy. Fast gradient sign method (FGSM) is

one of the most common adversarial learning attacks in the literature and is mostly used in

image misclassification. To defend against this kind of attack, gradient masking (that natu-

rally transforms a threat model from a white/gray box into a black box) is used to mask the

model’s output with respect to its input Lee, Bae, and Yoon, 2020.

The authors in Zantedeschi, Nicolae, and Rawat, 2017 conducted experiments on two

standards datasets: the MNIST and the CIFAR10. They generated adversarial examples using

adversarial attacks such as the fast gradient sign method (after a preliminary step of adding

gaussian noise), the jacobian saliency map method, the deepfool method with 100 iterations,
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and the L2 method from Carlini and Wagner (C& W) Carlini and Wagner, 2017. They further

compare the effectiveness of adversarial defense methods such as feature squeezing (FS), la-

bel smoothing (LS), adversarial training (adversarial methods crafted using the FGSM attack

method), and gaussian data augmentation (generating ten noisy samples for each original

one, and a standard deviation of 0.3 for MNIST and 0.05 for CIFAR10).

A novel GAN-based adversarial defense method called Cowboy was proposed by San-

thanam and Grnarova, 2018. This approach both detects and defends against adversarial

attacks by using both the descriminator and generator of a typical GAN trained on the same

dataset. They analyze the performance of this proposed approach using the MNIST and

CIFAR-10 datasets that already exist in the literature. The method is inspired by hypoth-

esizing that adversarial samples ought to exist out of the data pipeline understudied by a

generative adversarial network.

3.3 Reinforcement Learning for Cyber Defense

Reinforcement learning is a machine learning concept in which the agent learns about its en-

vironment by trial-and-error. The agent undertakes a sequence of actions that yield responses

or feedback signals from the environment in the form of rewards or punishments. Ultimately,

the agent learns over time based on the actions that were taken and the rewards/punishments

that were obtained over time. The environment the agent plays in evolves over time based

on the actions of the agent. The environment state transitions can be seen as stochastic se-

quences or Markov decision processes Li, 2017. Each termination point of reinforcement

learning setup points to the end of an episode, and so the whole premise of reinforcement

learning could be seen through the lens of a stochastic game being played by the agent,

where the game terminates in various ways (multiple episodes), and the agent’s ultimate task

is to find an optimal policy that yields the most rewards, after experiencing several episodes

of the game Ding et al., 2018.

The authors in Feng and Xu, 2017 developed an optimal online defense strategy for

cyber-physical systems given an arbitrary attack. The problem was formulated as a zero-sum

game of two players, and the game-theoretic neural network structure was proposed to learn

the optimal defense strategy online. To enhance the proposed scheme in real time, a deep

reinforcement learning algorithm was formulated to facilitate the fine-tuning of the neural
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network. Their simulation results revealed that using deep reinforcement learning did not

only defend the cyber-physical system from zero-day attacks, but it also learned to optimize

the defense policy in an accurate and timely manner.
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Chapter 4

Proposed Security Solution

4.1 IDS ARCHITECTURE - Aggregation and Decentralization

The IDS architecture depicted in figure 4.1 is proposed based on the analysis of the ToN–IoT

network dataset. The 45 features of the ToN-IoT dataset were reduced to 15 prime features

after conducting PCA analysis and the dimensionality reduction technique of selecting the

features that contribute the most variance in the dataset. Features with minuscule variance

contributions were eliminated. The typical IDS is split into five decentralized IDS compo-

nents. Each IDS component is trained with a unique combination of three prominent features,

and every combination is different for each IDS component. For each instance of traffic that

goes through the IDS architecture, it is transmitted in parallel to all IDS components to be

classified as either normal or malicious traffic, based on three feature combinations that each

IDS component was trained with. The classification outcome is then aggregated and a com-

mon classification result is chosen by virtue of a simple majority rule, as demonstrated in

figure 4.2. Features are subsequently reshuffled during the trigger of the next shuffle itera-

tion, which is dependent on the action taken by the agent (the defending network), as seen in

figure 4.4 . It is important to state that when looking at the IDS architecture holistically as a

blackbox, it is viewed as one IDS and not many IDSs. However, when it comes to its mode

of operation, those IDS components come into play. The majority-rule prediction expression

is given by:

Σi
x=1

Ypredx
n
≥ 50% (4.1)

where i is the total number of IDS components.
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FIGURE 4.1: Diagram showing IDS architecture.

FIGURE 4.2: Diagram showing the decentralization-aggregation principle.

4.2 Threat Model

As is the case with most ML-based systems, anomaly-based IDSs are prone to adversarial

attacks. The kind of adversarial attacks that the attacker is able to launch depends on the

information that she is privy to about the system. The model proposed in this thesis assumes

that: 1) the attacker has knowledge of the entire feature space that the IDS architecture uses to

train and test traffic (data sets), 2) the attacker has knowledge of the IDS architecture includ-

ing its decentralization-aggregation approach, and finally 3) she is cognisant of the splitting

number of prominent features among the IDS components (which is three for this IDS ar-

chitecture) figure 4.3. The only information that the attacker is oblivious to is the feature

shuffling mechanism the IDS uses for the dissemination of features among IDS components.

Specifically, the attacker is unaware of the exact feature combination per IDS component

at any given time. Consequently if this is figured out by the attacker, he is able to inject
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FIGURE 4.3: Diagram showing the attacker’s action space.

FIGURE 4.4: Diagram showing the defender’s action space.

adversarial examples into that IDS component, and the IDS component is deemed to be com-

promised.

Based on the information about the system which are available to the attacker, the threat

model adopted for this research is the graybox adversarial attack model. It is important to

note that if the attacker had knowledge of the feature shuffling mechanism, his information

about the entire system would be complete and hence this would have been a whitebox attack

model. Therefore, on the spectrum of graybox attack scenarios, this is the worst-case sce-

nario from the defender’s perspective. This is particularly important because in assuming that

the attacker has enough knowledge to compromise a given network, we are able to address

most of the loopholes within a network for worst-case eventualities which rarely happen, but

are very possible.

Typically, with unrestricted access to the feature space of the network traffic of the IDS
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architecture, the two categories of adversarial injection attacks that could be launched are:

Data poisoning and evasion attacks. The former is implemented during the training phase of

the IDS (hence the name data poisoning), while the latter is usually executed in the testing

phase of the IDS (real-time traffic transmission). There has been significant progress in pro-

tecting systems against data poisoning attacks and so we will only focus on evasion attacks

due to their potential stealth. Also, this reduces the complexity of our model as we do not

have to examine attacks during the training phase. Nonetheless, the model can always be

scaled up to accommodate all types of attack scenarios in the future if it is formulated prop-

erly and systematically.

An evasion attack will typically involve manipulating a given instance of traffic so that

it is misclassified by the IDS. Ideally, because the attacker has knowledge of what features

the IDS uses for classification, this attack should be easy to execute over time. The shuffling

of unique combination of features among IDS components however makes it difficult for the

attacker to know what combination of features are used for a given IDS component at a given

time t, which is in essence the objective for having this MTD-inspired architecture - to make

information gathered over time by the attacker unworthy of being used.

The way the attacker is able to successfully launch an evasion attack is to constantly

probe the network until she figures what combination of features are being used by the IDS

components. The defending system’s goal is to keep the feature shuffling process going on

for as long as possible, bearing in mind the effect this has on the quality of service, system

resources, and general performance of the IDS - hence the concept of a game of features.

Arguably the most important aspect of coming up with a working generic MTD model is

the formulation of a theoretical framework to serve as a foundation for future works. This will

provide further insight into the workability of the proposed solution, and ways to improve on

it. To allow both the defender and the omnipotent attacker (representing innumerable attack-

ers) to play the game of features provides insights on how long the game can go on before

the entire IDS system is eventually compromised. This is the goal of MTD in any case: to

stretch the time t that an attacker requires to compromise a network as practically as possible

(that is, bearing in mind the cost involved) Evans and Hamkins, 2013.
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4.3 Our MTD approach based on the Stochastic Game

4.3.1 Characteristics of Proposed Model

The characteristics of the proposed model can be described as follows:

• As depicted in figure 4.5, this is a dynamic game: The 5 IDS components consist of a

state. They take on binary values: "1" to indicate that the IDS has been compromised,

and "0" to indicate that the IDS component has not been compromised yet.

• This a semi-perfect information game: This is because the attacker is aware of when

there is a change in state within the system. As compromising just one IDS component

is not sufficient to launch an evasion attack (by virtue of the majority rule principle), the

attacker is able to tell that his attack was impactful when his payload goes through un-

detected (False negatives increase significantly because at a completely compromised

state, the IDS is ineffective at detecting malicious traffic). After the termination of an

episode due to the game being over, the IDS architecture is triggered to change the

state by the "shuffle" action, and the attacker knows this because the false negatives

would have tremendously dropped after retraining. The defender on the other hand is

aware of the possible move of the attacker by virtue of the fact that there is a significant

disparity in the relative detection rate (True positive rate) among the IDS components.

As each player has some idea of the possible move of the other, the game is not being

referred to as an imperfect game. It is not a perfect information game as well because

neither knows for certain the exact move of the other (only by inference) - Hence this

is a semi-perfect information game Roy et al., 2010.

• This is a semi-complete information game: In complete information games the players

are fully aware of the strategies and pay-offs of each other. In this game neither player

has full knowledge of the other’s strategies and pay-offs. The defender is able to deduce

(have a fair idea) of what the attacker’s expected pay-offs are based on the number of

compromised nodes that resulted in the triggering of an adaptation. The attacker on the

other hand is able to have a fair idea of the strategies employed by the defender based

on say the number of times a particular state recurs.

• This is a stochastic game, Alpcan and Basar, 2006: One of the fundamental properties

of this dynamic game model is its formulation as a stochastic process using Markov
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FIGURE 4.5: Diagram showing dynamic game scenario.

chains. Each state represents the condition of the IDS component as being either com-

promised or not, and the transition from one state to another, or choosing to remain in

the same state can be influenced by a number of factors: one or more IDS components

within a conglomerate being supposedly compromised (By inferring from the relative

detection rate, αr), the defender just trying to maximize their rewards, etc. Naturally,

the number of valid actions heavily depend on the operational goals of the game, for

example, allowing only feature combinations that result in a certain accuracy percent-

age of the overall IDS. This stochastic game is formulated so that it is possible to move

from one valid state to any other valid state - Hence it satisfies the irreducible property.

It is also formulated so that it is possible to return to a state after transitioning from

it - Hence it satisfies the recurrent property of Markov chains. Based on satisfying

these two properties, there ought to exist at least one stationary probability π when

multiplied by the transition matrix P of the game that results in π.

4.3.2 Moving Parameters

Diversification:

The feature space diversification of the theoretic model highlights the different possible fea-

ture combinations of the IDS components. For i components of a given IDS architecture,

each component is represented by a bit. Hence i components would be denoted by i bits.

Assuming 5 IDS components (which is the exact amount used in the set up of the test bed),

the IDS architecture is represented by [00000] bits. The flip of a bit from 0 to 1, denotes the

compromise of an IDS component. The termination of an episode is triggered when more

than half the IDS components (i/2) have 1 as their bit values. It is important to re-emphasize

that the objective is to create as much uncertainty in the system as possible, so as to make it

difficult for an arbitrary attacker to successfully launch an attack over time.

Let X = i/2:
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The diversification of the architecture itself would be the sum of combinations of all

possible bits that can take the bit value 0 before termination at X = i/2. This is bounded by:

iCi +
i Ci−1 +

i Ci−2 +
i Ci−3 +

i Ci−4 + ...+i Ci−X ,

where:

iCX =
n!

X!(i−X)!
(4.2)

the diversification of feature combination (the moving parameter itself), is given by:

nCf The total diversification of the system is thus given by the product of the two expressions:

(iCi +
i Ci−1 +

i Ci−2 +
i Ci−3 + ...+i Ci−X)× nCf

Entropy:

Entropy is a measure of the randomness or uncertainty within the system. The correlation

between entropy and uncertainty implies that the greater the entropy within the system, the

higher the uncertainty and difficulty for the attacker to successfully gather reconnaissance

and launch an attack Zhuang, DeLoach, and Ou, 2014. The entropy H(X) is given by:

H(x) = −
∑
x∈X

p(x)log(p(x)) (4.3)

Based on the diversification expressions outlined, the maximum probability the theory

stipulates for which the IDS architecture will not be compromised is given the by:
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The 1
2 probability of the IDS components represents a uniform probability of a bit either

being 0 or 1. The 1
n probability of the feature set represents a uniform probability of training

a given IDS component from an n feature space.

The entropy then is given as:

H(x) = −
x∑
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)
(4.4)
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Based on the aforementioned expressions, we are able to ascertain the diversification and,

subsequently, the entropy of our model. Our testbed is comprised of 5 IDS components(i =

5), the maximum number of zero bits permissible X is i/2 = 5/2 = 2.5 ≈ 3. The number

of feature combinations f is 3, and n is the total number of prominent features to describe

the data set and is equal to 10. Hence the diversity of our system is expressed by:

(5C5 +
5 C4 +

5 C3)× 10C3 = (1 + 5 + 10)× 120 = 16× 120 = 1920

To calculate the entropy, we define the probabilities as follows:

P1 =

(
5C5
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)5(1

2

)0

×10 C3

(
1

10

)3
)

P2 =

(
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)1

×10 C3
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1
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)3
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(
5C3

(
1

2

)3(1

2

)2

×10 C3

(
1

10

)3
)

Then, the entropy H(X) is given by:

H(X) = −P1 log2(P1)− P2 log2(P2)− P3 log2(P3)

= −
(

1

32, 000

)
log2

(
1

32, 000

)
−
(

1

1, 600

)
log2

(
1

1, 600

)
−
(

1

2, 500

)
log2

(
1

2, 500

)
≈ 0.1887 + 0.3752 + 0.4644

≈ 1.0283 bits

The value above measures the entropy of our system, which provides theoretical insight

on the level of uncertainty of our system. Any other system based on our model can measure

the level of uncertainty of their system in comparison to another system employing the same

model.

Based on these theoretic expressions, three things can be deduced:

• The measure of uncertainty can be increased by increasing the features space n from

which IDS components can be trained.

• The measure of uncertainty can be increased by reducing the number of feature combi-

nations f that each IDS component is trained with, given a feature-space pool n. This
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obviously would have an impact on the accuracy of each IDS component because the

less features one trains an IDS with, the less information it has to properly classify a

given data instance.

• The measure of uncertainty can be increased by increasing the number of IDS compo-

nents i in a given IDS architecture.

To further prove this assertion, assuming there exists another experimental testbed that

employs our model but having the following parametric differences: i = 7, n = 20, f = 3.

The termination point i/2 = 7/2 ≈ 4. The diversity is given by:

(7C7 +
7 C6 +

7 C5 +
7 C4)× 20C3 = 64× 1140 = 7290

Calculating the total probabilities of each term:

Probability1 =
7 C7

(
1

2

)7(1

2

)0

×20 C3

(
1

20

)3

Probability2 =
7 C6

(
1

2

)6(1

2

)1

×20 C3

(
1

20

)3

Probability3 =
7 C5

(
1

2

)5(1

2

)2
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(
1

20

)3

Probability4 =
7 C4

(
1
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(
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)3

The probabilities are given by:

Probability1 =
1

27
× 20!

3!× (20− 3)!
×
(

1

20

)3

Probability2 =
1

27
× 7!

6!× 1!
× 20!

3!× (20− 3)!
×
(

1

20

)3

Probability3 =
1

27
× 7!

5!× 2!
× 20!

3!× (20− 3)!
×
(

1

20

)3

Probability4 =
1

27
× 7!

4!× 3!
× 20!

3!× (20− 3)!
×
(

1

20

)3
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Hence the entropy H(X) is given by:

H(X) = −(Probability1 × log2(Probability1))

− (Probability2 × log2(Probability2))

− (Probability3 × log2(Probability3))

− (Probability4 × log2(Probability4))

Finally, we get the approximate value of the entropy:

H(X) ≈ 2.83169 bits

It can be seen from these two performance metrics that increasing the parametric values

increases the uncertainty in the system and could make one system better than the other as far

as evading the attacker is concerned. It should however be stressed that it is preferred to use

entropy as the ultimate performance measure of uncertainty because it provides a tighter and

systematic way of looking at which parameters actually matter when it comes to increasing

the uncertainty within the defending system Navas et al., 2020. For example it can be clearly

seen that the number of IDS components i is the most important metric in any test bed that

employs this model. Consequently increasing the number of IDS components would greatly

increase the uncertainty and hence make it even more difficult for the attacker.

Having said that, it is important to also state that there is an inverse relation between

parameters that increase the uncertainty in the system, and the computational and memory

resources required to implement them. It is hereby portended that, for example, increasing

the number of IDS components within the network i would require even more computational

resources within the system to implement.

4.3.3 Game-theoretic Model of MTD Solution

For an IoT network with an MTD system defined by ⟨S⃗, O⃗, P⃗ ⟩, the operational Objectives

can be expressed in terms of the accuracy of IDS, reduced latency, MTD overhead, and other

factors. The security objectives can be expressed in terms of the number of recurring states in

the model, minimum number of compromised IDS components to trigger a move, and value
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of relative detection in a given move trigger (intricately linked to the number of compromised

IDS).

The MTD model can adopt a strict policy to ensure that the accuracy of the MTD-based

system always exceeds a certain threshold (for example, a ≥ 0.98). Also, every valid state in

the model is subject to the defined objectives (security and operational) and the pre-defined

policies of the game. This can be expressed as: ∀S⃗v ∈ S⃗ subject to O⃗ and P⃗ .

This game is modelled as a Markov chain as follows:

• P (Xn+1 = S1|Xn = S0, Xn−1 = S2...Xn−2 = S4) = P (Xn+1 = S1|Xn = S0)

This fundamental Markov property implies that for this model, the probability of tran-

sitioning from Xn to Xn+1 only depends on the probability distribution of the system

as at Xn.

• There exists a transition matrix P (|Sv|× |Sv|) with (rows,columns)→ (i, j), such that

Σ
|Sv |
x=1i = 1. This implies that the sum of all outward probabilities (row vectors) from

a given state is one.

• For an arbitrary number of transitions (moves) nt, there exists an initial probability

distribution vector π0 at the state of zero transition, such that P (X0) ∈ π0, ∀P (X0).

• There exists at least one stationary probability distribution π in the game such that:

π × P = π, as nt → ∞. π × P = π → v⃗ × A = λ× v⃗, implying that the stationary

probability π is an eigenvector whose eigenvalue λ is always one. More about the

implications of this to be discussed later in the thesis.

• The stationary probability distribution π is related to the initial probability distribution

π0 of the system by: π0 × Pn = π, as nt →∞.

Consider a stochastic game model with an attacker and a defender. The model includes

the following components:

• States: Let Sv be the set of all possible states in the game.

• Actions:

– Attacker: Let AA be the set of all possible actions available to the attacker.

– Defender: Let AD be the set of all possible actions available to the defender.
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• Transition probabilities: Let P (s′|s, aA, aD) represent the transition probability from

state s to state s′ given the actions of the attacker (aA) and defender (aD). This captures

the stochastic nature of the game, where the next state depends on the current state and

the actions taken.

• Payoff functions:

– Attacker: Let RA(s, aA, aD) represent the payoff received by the attacker when

in state s and taking action aA, given the defender’s action aD.

– Defender: Let RD(s, aA, aD) represent the payoff received by the defender when

in state s and taking action aD, given the attacker’s action aA.

• Strategies:

– Attacker: Let πA(s) be the attacker’s strategy, which determines the action aA to

be taken in state s.

– Defender: Let πD(s) be the defender’s strategy, which determines the action aD

to be taken in state s.

• Value functions:

– Attacker: Let VA(s) represent the expected cumulative payoff for the attacker

starting from state s, considering the attacker’s strategy πA and the defender’s

strategy πD.

– Defender: Let VD(s) represent the expected cumulative payoff for the defender

starting from state s, considering the attacker’s strategy πA and the defender’s

strategy πD.

The stochastic game model equation can be expressed as follows:

VA(s) = max
πA(s)

[
min
πD(s)

{
RA(s, aA, aD) +

∑
s′

P (s′|s, aA, aD) · VA(s
′)

}]
(4.5)

VD(s) = min
πA(s)

[
max
πD(s)

{
RD(s, aA, aD) +

∑
s′

P (s′|s, aA, aD) · VD(s
′)

}]
(4.6)

In equations 4.5 and 4.6, we take the maximum over the attacker’s strategy and the mini-

mum over the defender’s strategy to capture the adversarial nature of the game EO, Alese,
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and Ogundele, 2013. The value functions are recursively defined, considering the expected

cumulative payoffs and the transition probabilities.

This research proposes an MTD-enabled system inspired by game theory as an optimally

elegant way for thorough scientific analysis in order to come up with reproducible solutions.

Any game theoretic model can be further expanded to include reinforcement learning as a

potential solution. This is because this machine learning paradigm is based on the trial-and-

error approach, and so an agent and its environment can be modeled as playing repetitive

games of trial-and-error until an optimal solution is found. If we are able to model our IDS

architecture so that a given state provides information about how many IDS components have

been compromised or not, and the transition to the next state is dependent on the attacker’s

success rate in compromising IDS components, assuming a perpetual attacker (an attacker

constantly probing), and also that the transition to the next state is dependent on the defending

system’s choice of action (whether to stay in a state or shuffle), then the perpetual attacker’s

impact can be incorporated as part of the environment that the defending system (agent) has

to learn from. A reward function can be modelled to reflect the state-to-state transitions (as

seen in algorithm 1, and the defending system itself would be the agent in this reinforcement

learning setup.

The majority rule criteria for the IDS architecture to maintain high classification accuracy

implies that if more than half of the IDS components are compromised, then the game is

over for the defender, and hence the termination of an episode. Hence, there would exist

different ways that a game/episode could terminate, and hence reinforcement learning is used

to ascertain the most optimal policy for the defender based on the testbed, as well sub-optimal

strategies that could approach the optimal strategy. The next section explains the details of

the proposed MTD model. Naturally, as with any MTD system, it is important to be clear

about the questions: What is being moved? When is it being moved? And how is it being

moved?

4.3.4 MTD Characteristics in Our IDS Model

What to move?

This is a game of features and the defender is trying to create as much uncertainty about which

features a given IDS component is using at any given point in time. Each IDS component
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is trained with a combination of n features. n for this testbed was chosen to be 3 based

on the analysis performed on the ToN-IoT dataset (which is the standard dataset that this

research uses for all experiments). It was found that for an IDS component to be trained

on a combination of prominent features that have enough variance for decent classification

of traffic instances, they ought to be trained with at least three features. Training of the

IDS is done online when a shuffle is triggered. The training is done in the background and

hence consumes the system’s resources. The IDS components need to collaborate with each

other in other to classify a given traffic instance. Therefore, they ought to be trained with

the same instances for maximum results. The only difference is that each IDS component’s

classifier interprets a given traffic instance based on the feature combination assigned to it,

but the traffic instances must be the same for all. This could be described as different ways

of looking at the same thing, and then we aggregate all perspectives to get the full picture as

to whether a traffic instance is malicious or benign - The majority rule criterion. Hence, for

a given system being attacked, there is one entity being moved around: Features. The shuffle

of features among IDS components makes a given feature combination a moving parameter.

When to move?

If each IDS component has a true positive rate α (one of the parameters from Table 4.1,

which is from here on referred to as the detection rate) Liu, Comaniciu, and Man, 2006, and

if the attacker is assumed to have unlimited resources (hence a representation of any arbitrary

number of attackers) and is constantly bombarding IDS components with data instances that

have different combination of features with the aim of finding out what combination of fea-

tures is being used for a given IDS component, then it is expected that the detection rate of

IDS components would be relatively high. If one or more IDS components within the ar-

chitecture start to record detection rates that are relatively lower than other components, this

implies that it may have been compromised and the attacker has been able to evade detection.

When half or more IDS components have been deduced to be compromised, this triggers the

conglomerate (IDS architecture containing IDS components) to shuffle features and re-train

IDS components - This process is deemed as the last move before the end of an episode. It is

important to note that when an IDS component is deemed compromised and flips from 0 to 1,

this also changes the state of the conglomerate (architecture) and so is technically considered

a move in its own right. The only difference is that this kind of transition/move caused by the
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environment itself (as the attacker’s malicious activities have been incorporated into the en-

vironment as a key element) holds little relevance to the actual purpose of adopting an MTD

model in the first place - Which is to move the attack surface of a given IDS architecture so

that it is difficult over time for an attacker to successfully complete an attack.

The relevant state transitions would be the transitions triggered by the agent itself (the

defending system). This is the main reason reinforcement learning was incorporated into the

model: The agent’s decision to trigger a shuffle or not would either result in an episodic game

ending quickly or going on for as long as possible. An episode would go on as long as pos-

sible provided the agent chooses to shuffle before at least half of the IDS components within

the conglomerate are compromised. However, choosing to shuffle continuously results in

computational and memory costs on the IDS architecture because to shuffle and reshuffle

implies training and retraining IDS components with different feature combinations itera-

tively for every given shuffle trigger move. Ultimately, the agent would want to learn about

the environment over time, through trial and error, for a given number of episodes and total

corresponding rewards yielded based on the actions that were taken, and to find the clos-

est optimal policy or sub-optimal policy (as this is subject to the number of episodes it has

experienced), so as to determine when to initiate a move.

How to move?

A huge discrepancy in detection rates αr (see table 4.1) where for example one or more

IDS components start to record very low detection rates (True positives), and consequently

high true negatives, is taken to imply that the attacker has been successful in deciphering

the feature combination used for the IDS component/s and hence is evading detection. The

threshold for uniform detection rates among IDS components within a conglomerate ought

to be determined based on the specific system and network.

The IDS architecture/conglomerate is retrained online in the background, which has sig-

nificant computational and memory implications (costs), and features are reshuffled among

IDS components. Each IDS component is assigned a combination of features that could be

constrained by the total accuracy criterion set. For example, if it is desired that after train-

ing and testing, the accuracy obtained from aggregating the results of each IDS component

should not be less than 97% , then this obviously restricts the number of combinations that
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are possible - These would be referred to as valid combinations. After reshuffling and train-

ing is complete, the conglomerate’s current IDS components are replaced in real time with

the newly trained set.

The reward function of the agent depends on the number of compromised components

ic, the number of shuffled components is = i− ic, and the total number of IDS components

within a given architecture i. It also depends on the action taken (whether "shuffle" or "stay"),

and if the action is taken at a time when the number of compromised IDS components ic is

below or above the threshold i/2.

4.4 Reinforcement Learning Structure for Solving the MTD Tim-

ing Problem

Based on this model, the Defender has two (2) actions: Stay or Shuffle. The "Stay" action

indicates a decision by the defender to remain in the same state based on pre-defined ob-

jectives of the model. For example: Reward threshold, number of compromised IDSs, etc.

The "Shuffle" action indicates a decision by the defender to change state. This also means

the "Shuffle" action would involve different feature combinations and how that affects met-

rics like the overall performance of the IDS architecture. Algorithm 3 shows what transpires

within an ensuing game when the agent takes an action.

For the attacker’s actions, the model is set up so that the attacker constantly attempts to

launch a successful evasion attack. This would naturally consist of sub-actions of feature

combinations. It is important to note that the attacker’s action set can be expanded (e.g.,

TABLE 4.1: Parameters and notations used in the game-theoretic model.

Parameter definition Notation
Number of IDS components in the IoT network i
True positive rate of an IDS component α
Relative detection rate of IDS components within a conglomerate r

Stationary probability distribution of stochastic game π
Transition Matrix P
Number of states in system S
Number of valid states Sv

Initial probability distribution of stochastic game π0
Compromised IDS components per state ic
Number of shuffled IDS components per state is
Number of prominent features fp
Number of redundant features fr
Total number of features in feature space n
Accuracy policy of system a
All actions available to attacker AA

All actions available to defender AD

A given action of the attacker aA
A given action of the defender aD
Attacker’s given strategy πA(s)
Defender’s given strategy πD(S)
Number of unique features per IDS component f
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"Don’t Evade" or "Evade only when a certain attacker reward threshold is reached"). For the

sake of simplicity of the model, the attacker’s action is to constantly attempt to evade, and is

incorporated into the environment the agent (defender) has to learn.

Given an arbitrary pool of prominent features to shuffle from fp, if each IDS component

was shuffled with f features, then the number of combinations possible for each IDS com-

ponent from the pool is given by: fpCf . To represent each IDS components’ combination by

using bits, we obtain log2(
fpCf ) bits. Hence assuming 8 prominent features to shuffle from,

taking 3 features at a time to train on IDS components, then 8C3 = 56. With 56 combinations

per IDS component, each IDS component can be represented with: log2 56 bits.

This relation indicates that each IDS component’s feature combination is represented as

an x-bit binary number, which is extremely important in the implementation phase, where

it is much easier and more convenient to put an abstraction on feature combinations with

binary representations. Hence, an evasion attack is deemed successful if for any arbitrary

log2(
fCfsplit)-bit feature combination of each IDS component, the attacker’s feature combi-

nation matches.

The transition matrix P is the mathematical representation of the environment in which

the defender operates. Based on the initial goals stipulated for the game, P can vary across

different experimental trials. To obtain P , the concept of reinforcement learning is used,

where the defender blindly initiates moves and gets rewards and tries to maximize rewards

based on trial and error. It is important to indicate that the evasion attacks being launched

by the attacker is deemed to be part of the environmental space in the eyes of the defender.

Hence, from the defender’s perspective, we only have one agent performing reinforcement

learning. The probability of moving from one state to another given a certain action is given

as:

T̂ (s, a, s′) =
∗times(s, a, s′)

∗times(s, a)
(4.7)

Having obtained the transition Matrix P (T̂ (s, a, s′)) of the game, a reinforcement learn-

ing solution can be formulated. Given a policy function π(s), which indicates a set of "action-

paths" to follow as a function of the present state s, V π(s) is the expected utility at a given

state and U(R, γ) is the sum of discounted rewards (where γ is the discount factor and is

equal to 1 if the reward function is not affected by the circumstances of the future). Figure
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FIGURE 4.6: A diagrammatic representation of the stochastic game equation.

4.6 gives a pictorial appreciation of the aforementioned RL solution Brunton and Kutz, 2022:

Q(s, a) = E[R(s, a, s′) + γV π(s′)] (4.8)

Q(s, a) =
∑
s′

T̂ (s, a, s′)[R(s, a, s′) + γV π(s′)] (4.9)

V π(s) = maxaQ(s, a) (4.10)

V π(s) = maxa
∑
s′

T̂ (s, a, s′)[R(s, a, s′) + γV π(s′)] (4.11)

π(s, a) = argmaxaQ(s, a) (4.12)
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Algorithm 1: Algorithm showing reward function of the agent
Input : ic, i

Output: reward

Function compute_reward():

reward← i - i_c;

if agent_action == 1 and i_c ≤ i/2 then

cost← a * i_c;

return (reward - cost);

end

else if agent_action == 1 and i_c > i/2 then

cost← b * i_c;

return (reward - cost);

end

else if agent_action == 0 and i_c ≤ i/2 then

cost← c * i_c;

return (reward - cost);

end

else if agent_action == 0 and i_c > i/2 then

cost← d * i_c;

return (reward - cost);

end

The RL problem will be solved by recurrence. Qπ(s, a) is referred to as the q value

at a chance node and is purely abstract. It is only relevant to help explain the intricacies

of the equation above (that can seem counter-intuitive at first glance). It is the quality of a

state action-pair. Essentially, the optimal value at any state s would be the Q-value that is

maximized over a set of actions. The optimal policy π(s, a) in this case is the state-action

combinational subset that maximizes the quality function (Q-value), as seen in algorithm 4.

The bell’s optimality equations 4.9 and 4.11 are feasible solutions only when there is

a working model for the environment, that is, generating a transition matrix based on the

probability distribution of state transitions. In reality, this is often not the case. As in any real-

world scenario of how humans learn, understanding how to go about a task requires learning

exclusively by trial and error. This is where model-free reinforcement learning solutions



40 Chapter 4. Proposed Security Solution

come in handy.

The first model-free reinforcement learning technique to be considered is the Monte-

Carlo technique: ∑
R =

n∑
i=1

γirk (4.13)

Basically this method evaluates the cumulative rewards over various episodes (state-actions)

after termination.

Qnew(si, ai) = Qold(si, ai) +
1

n
(
∑

R−Qold(si, ai), ∀i ∈ [1...n] (4.14)

The Monte Carlo method updates the previous Q-value of a given state based on posi-

tive average differences between old Q-values and the cumulative reward of a given episode.

Taken the average assumes that for any chosen optimal or sub-optimal policy, the net gain

in rewards from every state involved in the policy until termination is equal, but this is prac-

tically not the case. This eliminates bias, but it is quite inefficient in how it extracts the

optimal policy. In principle with enough iterations, the value at any state using the Monte

Carlo approach should always converge to the optimal.

The next reinforcement learning technique to be considered is Q − learning. Unlike

Monte-Carlo, this technique has information about which state-action in any given policy

yields the most rewards. At each iterative step, there is a re-evaluation of the value of a state

(or the quality of a state-action pair Q) until termination.

Qnew(si, ai) = Qold(si, ai)+α]ri+γmaxaQ(sk+1, a)−Qold(si, ai)],∀i ∈ [1...n] (4.15)

Essentially Q-learning is an off-policy reinforcement learning technique. This implies

that the quality of the next state-action pair is explorative, and will capture even sub-optimal

Q-values in an attempt to find the optimal policy, which is the argmax that maximizes the

Q-value for the next state. Its off-policy quality makes it possible to keep track of all (or

almost all) episodes that lead to termination (from optimal policies to sub-optimal policies to

below optimal policies), there is a complete perspective of learning about the environment.

Depending on one’s preference for exploration, there is a tunable parameter ϵ to add some

randomness in exploring sub-optimal policies.

State–action–reward–state–action (SARSA) is very similar to Q-learning, except that this
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technique is on-policy, and each next state-action pair has to be optimal or else there would

be a constant degradation of the Q-value of a given state-action pair.

Qnew(si, ai) = Qold(si, ai) + α]ri + γQ(sk+1, ak+1)−Qold(si, ai)],∀i ∈ [1...n] (4.16)

Depending on one’s preference and testbed setup, one could adopt any of the reinforce-

ment learning solutions discussed above to carry out experiments on our MTD model. The

reinforcement learning solution used for this project is Q-learning (with a temporal differ-

ence learning of 0, TD(0)), as outlined in the aforementioned Q-learning equation 4.15, and

the Q-learning algorithm in algorithm 2).

Algorithm 2 shows how the MTD model was implemented using Q-learning as the wrap-

ping framework. The Q-table is updated iteratively, and the agent’s choice of action gains

optimality over time.
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Algorithm 2: Algorithm for reinforcement learning framework (Q learning) of
MTD model

Input : state space, action space, q table, alpha, gamma, epsilon, num-episodes,
max-steps-per-episode, iteration-count

Output: old-state, new-state, agent-action, reward, accuracy
state_space← 32;
action_space← 2;
q_table← np.zeros(state_space, action_space);
α← 0.5;
γ ← 0.9;
ϵ← 0.1;
num_episodes← 100;
max_steps_per_episode← 2500;
iteration_count← {};
i← 0;
for episode to num_episodes do

observation_action_pair ← [];
observation_action_observation← [];
Game.reset(restart = True);
state← binary_to_decimal(old_state) −1;
for step to max_steps_per_episode do

if random.uniform() < ϵ then
agent_action← agent_action_space.sample();

end
else

agent_action← argmax(q_table[state]);
end
observation, agent_action← Game.step
(Game.agent_action_space.sample());
pair ← old_state, agent_action;
observation_action_pair.append(pair);
triplet← old_state, agent_action, new_state, reward, acc.;
observation_action_observation.append(triplet);
state← binary_to_decimal(observation) −1;
next_state← binary_to_decimal(new_state) −1;
td_error ← reward+ γ · (np.max(q_table[next_state])−
q_table[state][agent_action]);
q_table[state][agent_action]←
q_table[state][agent_action] + α · td_error;
state← next_state;
if Game.done1 then

iteration_count[i+ 1]← observation_action_observation;
i← i+ 1;
break;

end
end

end
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Algorithm 3: Step Function - Algorithm that shows the method initiated when the

agent triggers an action
Input : 0("Stay"), 1("Shuffle")

Output: old_state, agent_action, new_state, reward

Function step(agent_action):

if agent_action == 1 then

old_state← new_state;

reset();

end

else if agent_action == 0 then

old_state← state_new; self.attack_info← [];

for i 0 to i do

attack_probability← random.uniform();

if attack_probability ≤ new_state[i] == 0 then

adversarial_attack(i);

old_state[i]← 1;

i_c + 1;

end

end

else

print("Agent Action Error, please indicate either a shuffle - 1, or stay - 0");

end

reward← compute_reward();

if i_c ≥ i/2 then

done← True;

end

return old_state, agent_action, new_state, reward

end
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Algorithm 4: Algorithm showing the optimal MTD process after learning
Input : None

Output: None

observation_action_pair← [];

observation_action_observation← [];

total_reward← 0

iteration_count_optimal← {};

reset(restart=True);

state← binary_to_decimal(old_state);

for step 0 to max_episode_step do

action← argmax(q_table_new[state]);

old_state, agent_action, new_state, reward← Game.step(action);

pair← observation, agent_action;

observation_action_pair.append(pair);

triplet← old_state, agent_action, new_state, reward;

observation_action_observation.append(triplet);

state← binary_to_decimal(observation);

next_state← binary_to_decimal(observation_new);

total_reward += reward;

if Game.done1 then

iteration_count_optimal[i+1]← observation_action_observation;

break;

end

end

print("Total reward");
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Chapter 5

Implementation using the ToN-IoT

Dataset

5.1 Dataset Background

Most of the IoT datasets for intrusion detection are derivatives of benchmark network security

datasets like the KDDCUP’99 and the NSL–KDD Tavallaee et al., 2009, which both have

their data records synthetically generated, and hence may not be reflective of real-world

scenarios. These datasets also limit their scope to a handful of attack scenarios. This is

why this thesis will adopt the ToN-IoT dataset. This is a relatively recent dataset that was

generated between 2020 and 2021 by Booij et al., 2021 (A group of Australian researchers

from the IoT Lab of the UNSW Canberra Cyber), and is based on a realistic IoT test bed.

The ToN-IoT dataset is the data specimen for all experimental analyses conducted under

this thesis. The dataset repository contains 23 separated csv files, each containing approxi-

mately one million (1,000,000) instances. The concatenation of all these into one single csv

file for potability and convenience resulted in one composite dataset of 23 million instances

(23,000,000) and forty-five (45) attributes. For simplicity, this was sampled to a much smaller

dataset of just over a million instances, that still contained a uniform distribution of the vari-

ous types of data instances and their classification types.

The authors in Booij et al., 2021 highlighted the intricacies of generating the network-

layer ToN-IoT dataset. As stated before, this dataset consists of forty-five (45) attributes,

which includes a classification attribute that has ten (10) different values: normal, scan-

ning, DoS, injection, DDoS, password, xss, backdoor, ransomware, and MITM (man in the

middle). These are essentially categorized as normal and malicious traffic using the label



46 Chapter 5. Implementation using the ToN-IoT Dataset

attribute. The authors in Booij et al., 2021 examine the ToN-IoT dataset by conducting the

Pearson correlation coefficient (PCC) technique on the attributes to ascertain which attributes

have the strongest correlation, and then analyzing the information gain on each attribute, sub-

ject to the classification attribute. They further conducted cross-validation of the ToN-IoT

dataset with another IoT dataset developed from a realistic testbed called the Aposemat IoT-

23 on three different supervised classification models: Gradient Boosting Machine, Random

Forest, and Multilayer Perceptron (which is a class of feedforward Neural Network).

5.2 Experimental Analysis on the ToN-IoT Dataset

5.2.1 A Theoretical Framework for Investigating the ToN-IoT Dataset

The ToN-IoT dataset was investigated to ascertain if it can be used to train an anomaly-based

intrusion detection system of a network which will have its parameters like IP addresses and

port numbers continuously moving. To be able to do this, it was required that attributes con-

taining IP addresses and port numbers were tinkered with so as to find out which of these

attributes, if shuffled, will yield as close to the accuracy obtained from using the default

dataset as possible. This is to help draw the conclusion that if the dataset was used to train

an intrusion detection system whose network had dynamically changing IP configurations,

the intrusion detection system will still be able to distinguish normal traffic from malicious

traffic.

However, the ToN-IoT dataset has forty-five (45) attributes, which will make it compu-

tationally tasking to run multiple iterative trials of various mutations of the original dataset

to ascertain if shuffling of the IP and/or port attribute values will render the dataset usable or

unusable to train any anomaly-based IDS that is on a moving target network, hence the need

for feature reduction.

Feature reduction using PCA: For the ToN – IoT dataset with n number of instances

and m number of attributes, this results in a m × n data matrix X , with vectors x⃗i ∈ Rm.

We compute the covariance S of matrix X , where S ∈ R(m ×m) as follows

S =
1

n

n∑
i=1

(x⃗i − x̄) (x⃗i − x̄)T (5.1)
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where x̄ ∈ Rm is the mean of each row instance in X defined by:

x̄ = 1
n

∑n
i=1 x⃗i

To extract principal components, the Singular vector decomposition of S is employed:

S = Uγ V T (5.2)

where U ∈ Rn×n , γ ∈ Rn×m , V ∈ Rm×m. The vector V = [u1, u2, . . . , um], where

ui ∈ Rm denotes a principal component’s direction.

We need to project the ToN-IoT dataset, denoted by the matrix X into a new matrix Y

(where Y ∈ Rk×m); this is achieved by multiplying by a matrix P T as follows:

Y = P TX Where P = [u1, u2, . . . , uk] , k ≤ m

Let the ToN-IoT dataset be denoted by matrix X , with n number of instances and k

number of attributes, where k < m after applying PCA. X is split according to n
θ , where θ

is the number of splits of the total instances n:

X =
∑θ

i=1Xi

Taking an arbitrary feature β ∈ m, we have:

For Xi ∈ X , β ∈ x⃗i of Xi is encoded differently to denote a shuffle: Xi = X ′
i. Therefore,

we have:

X = X ′, X ′ =
θ∑

i=1

X ′
i

5.2.2 Algorithm Design and Implementation

As mentioned earlier, to reduce the computational burden, the ToN-IoT dataset was sampled

to a dataset of approximately a million instances that are of a uniform distribution of the

original composite dataset. Next, we perform feature reduction using the principal compo-

nent analysis (PCA) technique and check for features that contributed the most variance to

the dataset, as seen in figure 5.1. After the features were selected, the computational burden

of tinkering with the positions of attribute values (moving/shuffling IP and/or port numbers)

was done with much better ease. This was implemented using algorithm 5.

Assuming satisfactory accuracy could not be obtained, it would be concluded that the

ToN-IoT dataset cannot be used to train an MTD-based intrusion detection system (IDS) on

a network. If satisfactory accuracy is obtained, the attributes which had their values shuffled

would be highlighted as potential parameters to move on a network whose IDS was trained
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on the ToN-IoT dataset. The conclusion then to be drawn if this was the case is that assum-

ing an IoT network could be set up that has an anomaly-based IDS which was trained on

the ToN-IoT dataset, it should be possible to dynamically re-configure network parameters

like IP addresses to make it hard for the attacker to understand what is going on in the net-

work, while at the same time not affecting too much the accuracy of the IDS in being able to

distinguish normal traffic from malicious traffic.

The Machine Learning algorithm on which the IDS is to be set up is the Random Forest

(RF) Classifier. Hence, the RF supervised classification model (with 10 decision trees) was

used for the experiments carried out with the ToN-IoT dataset. Firstly, the original dataset is

trained and tested, and the accuracy is measured. Then, the selected feature as the moving

parameter is shuffled, and the model trained with the original dataset is tested on this newly

modified dataset. The accuracy is also measured. Next, the model is trained and tested on

the dataset, but this time with the selected attribute completely removed. The accuracy is

measured and compared with the accuracy of the original dataset. Based on the results, the

analysis is conducted, and the conclusions drawn.
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Algorithm 5: algorithm showing MTD-feasibility experiments on the ToN-IoT

dataset
Input : Dataset with features

Output: Accuracy results

Function Preprocessing:

// Apply PCA for feature reduction

Apply PCA (Principal Component Analysis) to the dataset;

// Select prominent features using variance

techniques

Compute the variance of each feature;

Select features with high variance as prominent features;

// Return the reduced feature set

return Reduced feature set;

Function TrainTestWithX:

// Split dataset into training and testing sets

Split the dataset into 80% training set and 20% testing set;

// Train Random Forest Model with 80% training set

Train a Random Forest Model using 80% of the dataset;

// Test the model with 20% testing set and record

accuracy

Test the model using the remaining 20% of the dataset and record the accuracy;

// Return the accuracy

return Accuracy;

Function TrainTestWithX’:

// Split dataset into training and testing sets

Split the dataset into 80% training set and 20% testing set;

// Train Random Forest Model with 80% training set

Train a Random Forest Model using 80% of the dataset;

// Test the model with 20% of X’ and record accuracy

Test the model using 20% of X’ and record the accuracy;

// Return the accuracy

return Accuracy;
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Algorithm 5: algorithm showing MTD-feasibility experiments on the ToN-IoT

dataset

AnalyzeOutcomes // Compare accuracy of X and X’

Compare the accuracy of X and X’;

// Draw conclusion on attribute shuffling

Analyze the outcomes and draw conclusions on whether attribute shuffling

maintains the accuracy integrity of the intrusion detection system;

RemoveBeta // Remove β in Xi of X

// Split X’ into training and testing sets

Split X’ into 80% training set and 20% testing set;

// Train Random Forest Model with 80% training set

Train a Random Forest Model using 80% of X’;

// Test the model with 20% testing set and record

accuracy

Test the model using the remaining 20% of X’ and record the accuracy;

// Return the accuracy

return Accuracy;

// Main code

Preprocessing;

AccuracyX← TrainTestWithX;

AccuracyX’← TrainTestWithX’;

AnalyzeOutcomes;

AccuracyX’RemovedBeta← RemoveBeta;

Metric Number of Instances
True Negatives 118708
False Positives 0
False Negatives 3
True Positives 180179

TABLE 5.1: Table shows the confusion matrix based on the accuracy of
0.998.
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FIGURE 5.1: The diagram shows a plot of the variance that each attribute con-
tributes to the dataset after PCA analysis. It can seen that just about 15 attributes are

sufficient to describe the entire dataset.

FIGURE 5.2: Results of trained and tested RF model with the original dataset (ac-
curacy of 0.998).
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FIGURE 5.3: Results of the trained RF model with the original dataset, tested with
the modified dataset with shuffled attribute (accuracy of 0.3116).

Metric Number of Instances
True Negatives 86811
False Positives 31897
False Negatives 132141
True Positives 48041

TABLE 5.2: Table shows the confusion matrix based on the accuracy of
0.3116.

FIGURE 5.4: Results of the trained and tested RF model with the modified dataset
with removed attribute (IP). Accuracy of 0.997.
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Metric Number of Instances
True Negatives 118719
False Positives 1
False Negatives 4
True Positives 180166

TABLE 5.3: Table shows the confusion matrix based on the accuracy of
0.997.

FIGURE 5.5: Results of the trained and tested RF model with the modified dataset
with two removed attributes (both source IP and source ports). Accuracy of 0.995.

Metric Number of Instances
True Negatives 118886
False Positives 86
False Negatives 106
True Positives 179812

TABLE 5.4: Table shows the confusion matrix based on the accuracy of
0.995.



54 Chapter 5. Implementation using the ToN-IoT Dataset

5.2.3 Comments Drawn from the Experimental Analysis of the ToN-IoT Dataset:

Following the invetsigation of the dataset for the feasibility of deploying our proposed MTD

approach, the below comments are drawn:

• The prediction accuracy of the IDS when trained on ToN-IoT dataset is very good in

the scenario where the original dataset was used without shuffling attributes (non-MTD

scenario), as seen in figure 5.2 and table 5.1.

• It is not prudent to train the IDS with a parameter/attribute whose values will be chang-

ing (by moving or shuffling), as seen in figure 5.3 and table 5.2.

• The IDS can be trained without the changing/moving attribute and still achieve a high

degree of accuracy due to the fact that the attribute has a very low variance after PCA

analysis of the dataset (as seen in figure 5.4 and table 5.3). This is the inspiration for

the decentralization and aggregation approach of the IDS based on feature splitting that

characterizes the proposed MTD model of the project.

• Both attributes (Src-Ip and Src-Port) can be removed with a high degree of accuracy

achieved. Again, due to the fact that they have a very low variance after PCA analysis

of the dataset (as can be seen in figure 5.5 and table 5.4).
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Chapter 6

Experiments and Results

6.1 Testbed Setup and Simulations

The anomaly-based IDS relies primarily on a machine learning classifier that operates using

a machine learning model. For this project, we set a random forest classifier consisting of ten

decision trees as our primary ML model for the IDS. The random forest is a meta estimator

that understudies and fits a given dataset into two or more decision trees, and uses the average

classification of each decision tree for a more accurate and robust classification.

The MTD-based testbed consists of 5 different random forest classifiers (known as the

IDS components in the proposed architecture), each containing 10 decision-tree estimators.

After feature selection was conducted on the ToN-IoT dataset using PCA, the chosen features

were recorded in a mutable list (called the pool of features). During the training phase of the

IDS components, each was randomly trained on three unique combinations of features from

the feature pool.

To compromise a given IDS component, we use the CleverHans library for our adversarial

learning attack. The CleverHans library is an open source python library for conducting

adversarial attacks on machine learning models. Adversarial examples were generated by

feeding the test traffic through the cleverhans.torch.attack.noise class, which generated the

adversarial examples for the ToN-IoT test data samples by injecting adversarial noise that led

to misclassification of data instances.

Python is the main programming language used in the experimental phase. From the python

repository, the Scikit-Learn library was used in the implementation of the random forest

classifier model. The Pandas library was used for reading the ToN-IoT dataset as a data

frame into the working environment, and then for the various manipulations of the data frame
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(dataset) that have already been discussed. The Numpy library was used for handling data

fragments as arrays, tinkering with them, and re-writing them back on to the data frame

(dataset) for further analysis. Jupyter Notebook is the working environment in which all

python code was ran and set up.

Th machine used has the following specifications:

• Processor: Intel64 Family 6 Model 165 Stepping 2; GenuineIntel

• Processor Speed: ∼2496 MHz

• Total Physical Memory: 7,968 MB

• Available Physical Memory: 1,708 MB

• Virtual Memory (Max Size): 16,160 MB

• Virtual Memory (Available): 5,309 MB

• Virtual Memory (In Use): 10,851 MB

The OpenAI gym library was used to provide the baseline environment for implemen-

tation of the reinforcement learning algorithm that proactively tried to optimize the agent’s

(MTD-based IDS) actions.

The experimentation steps can be summarized as follows:

• Set up and train two separate IDSs: A conventional IDS and the MTD-based IDS, each

using the random forest ML model as the classifier, using the ToN-IoT dataset as the

traffic specimen.

• Measure and record the accuracy test traffic going through the conventional IDS. Using

the cleverhans adversarial framework, inject adversarial noise into the test traffic and

measure the accuracy drop, then do this for increasing odds of success of the attack

launch (i.e., 0.5, 0.6, 0.8, 1).

• Measure and record CPU and memory usage on the conventional IDS during the ad-

versarial attack.

• Set up the reinforcement learning environmental space that inhabits the MTD nature

of the MTD-based IDS. Incorporate the incessant adversarial attacks as part of the the

IDS agent’s environment.



6.1. Testbed Setup and Simulations 57

• For each adversarial attack attempt on the MTD-based IDS, the RL algorithm learns

the corresponding reward obtained progressively over time and influences in real time

what action the agent takes over the course of a number of episodic runs. The odds

of the attacker are increased accordingly from 50% to 100%. The accuracy at each

of these odds is recorded, as well as the CPU and memory usage amidst adversarial

attacks and MTD deployment.

• The results of implementing a conventional IDS and an MTD-based IDS are compared

and contrasted, and conclusions are drawn.

FIGURE 6.1: The figure above shows the first 10 episodic games played by the
MTD-based IDS agent, and the corresponding reward and accuracy obtained for each

step.

As seen in figure 6.1, the simulation testbed for the MTD-based IDS is set up so that

the IDS agent (defending system) goes through various scenarios of which an episode could

terminate, and the associated reward is obtained after an episodic termination. The attacker’s

incessant adversarial attacks are incorporated as part of the environment and the testbed

also records in real time how the overall accuracy of the MTD-based IDS is doing for each

episodic step.

Resetting to a new episode or triggering the "action" results in the retraining of the 5

IDS components (indexed 0− 4). Figure 6.2 provides a microscopic view into what goes on

within an episodic step: The combination of features used to train a specific IDS component,
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FIGURE 6.2: The figure provides a microscopic view into the first 8 episodic steps
(indexed by their accuracies), which entails the feature combinations each 5 IDS
components were trained with, their individual accuracies, and if they were attacked

or not.

what each IDS component’s accuracy is after training, and the combined IDS accuracy after

training (with or without an adversarial attack).

6.2 Results and Evaluation

One of the biggest concerns of having an MTD-based system is coming up with a systematic

scheme to know when to initiate an adaptation in an optimized or quazi-optimized manner.

For this project, reinforcement learning was used to provide optimization and help the agent

learn in real time what actions to take and when to take them to maximize profits and mini-

mize cost. Figure 6.3 shows the cummulative reward of the MTD-based defending agent over

250 episodes. The results clearly show the agent’s reward was increasing over the number

episodes, which is a strong indication that learning was taking place.

Figure 6.4 shows the overall accuracy comparison of the conventional IDS and MTD-

based IDS for various success rates of the attacker. The various success rates of the attacker

were simulated using the python library Numpy’s uniform probability distribution (using the

same seed value for both the conventional and MTD-based IDS for objectivity and neutral-

ity), and changing the odds incrementally. For example, as can be seen from the figure, at
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FIGURE 6.3: Graph showing the cumulative reward of the defending system (agent)
during the learning process (for 250 episodes).

50 % odds of success, the attacker has an equal chance of success and failure for both the

conventional and MTD-based IDS. In this case, there was no trigger for an adversarial at-

tack, hence the reason the conventional IDS has an accuracy of close to 100 %. Neither was

attacked at this success rate, however the slight drop in the accuracy of the MTD-based IDS

is because of the implementation of MTD (the decentralization and aggregation MTD archi-

tecture). As the attacker’s success keeps increasing however, it can be seen that the accuracy

degrades significantly for conventional IDS, whereas the MTD-based IDS degrades much

less comparatively.

In figure 6.5, we show the CPU usage of the MTD-based IDS in comparison to the con-

ventional IDS for different success rates of the attacker. As can be deduced, the constraints on

CPU resources increase for every increase in the adversarial attack success rate. This is more

so for the MTD-based IDS because it requires shuffling of features and re-training of IDS

components to mitigate attacks. It was observed that the biggest contributing factor to the

high CPU usage in the MTD-based IDS is the re-training of IDS components. The conven-

tional IDS still incurs more CPU usage because of the increase in the number of successful

adversarial probing by the attacker.
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FIGURE 6.4: Graph showing the variation in accuracy for both IDS architectures,
for varying success rates of the attacker.
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FIGURE 6.5: Graph showing the CPU usage of both the MTD-based IDS and con-
ventional IDS for varying success rates of the attacker.
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FIGURE 6.6: Graph showing the memory usage of both the MTD-based IDS and
conventional IDS for varying success rates of the attacker.

Memory usage also went up for the MTD-based IDS for different attacker’s success rates,

as seen in Figure 6.6. This was not surprising, given the complexity of the MTD architecture

that was implemented. The memory usage cost incurred by the conventional IDS as a result

of more frequent adversarial activity pales in comparison to the cost incurred by the MTD-

based IDS for all instances, and justifiably so.

Figure 6.7 shows a positive correlation between the reward accrued and the overall accu-

racy of the MTD-based IDS. This also informs us that the MTD-enabled IDS agent was truly

learning to optimize and maximize its overall accuracy. It must be clarified though that the

system’s inherent costs were not incorporated into the reward function of the agent during the

reinforcement learning phase (which is one of the limitations of the proposed model). The

agent’s reward was simply a function of the number of compromised IDS components and

number of shuffled IDS components, as ratios of the total number of IDS components within

the system.
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FIGURE 6.7: Graph showing the variation of the MTD-based IDS agent reward
with its accuracy during the episodic game.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion and Discussion

The accuracy of an IDS is paramount to its functionality and performance. An IDS that is

unable to accurately classify traffic within certain bounds of tolerance is deemed ineffective.

We were able to implement MTD on the gateway IDS within an IoT network by proposing

a stochastic game-theoretic model and then building on that to formulate the problem from

a single-agent reinforcement learning perspective. The attacker’s actions are incorporated

into the agent’s environment, and the goal is to optimize MTD adaptations. We were able to

simulate the attacker’s adversarial noise injection with the assumption of foreknowledge of

the ToN-IoT dataset (grey box adversarial threat model), and then to compare and contrast

this novel implementation with a conventional IDS under the same simulation conditions.

Some of the conclusions drawn are:

• The MTD model proposed for the IDS does provide a decent mitigation wall, and

cushions the IDS from the impact of an adversarial attack.

• Implementing the model comes with relatively greater costs in terms of resource con-

sumption, compared with a conventional IDS with no MTD involved.

• Game theory and reinforcement learning are two ground-breaking mechanisms that

can be used to address the MTD timing problem.

• The solution reached by the proposed model was certainly sub-optimal and could be

made better by incorporating the actual costs from MTD implementation in real time

during the learning process of the agent.
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7.2 Future Work

The impact of the findings in this research is indisputable and will undoubtedly contribute

significantly to the MTD literature. One of the drawbacks encountered was the fact that all

experiments were based on simulations, hence the need to replicate the experiments within

a real-world IoT environment for stronger validation. Also, the resource drainage from CPU

and memory usage were not infused into the reward function of the learning agent and may

have influenced the reason for the wide gaps in the curves shown. It is desired that with more

research and work on the model, the gaps between the MTD-based IDS and the conventional

IDS curves would become as narrow as possible.

It is also desired to expand this research further using a realistic test bed with an actual

network in real time for more accurate results. This research was wholistic and dove into

some of the most important topics currently within the broader research community: IoT

security, Moving Target Defense (MTD), Intrusion detection systems (IDS), game theory,

reinforcement learning, and adversarial attacks. The doors are open on all those research

fronts, and we invite the broader IoT research community to come on board with an inquisi-

tive scientific zeal.
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