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Abstract

Hyperspectral imaging (HSI) has emerged as a transformative technology in imaging, characterized by
its ability to capture a wide spectrum of light, including wavelengths beyond the visible range. This
approach significantly differs from traditional imaging methods such as RGB imaging, which uses three
color channels, and multispectral imaging, which captures several discrete spectral bands. Through this
approach, HSI offers detailed spectral signatures for each pixel, facilitating a more nuanced analysis of
the imaged subjects. This capability is particularly beneficial in applications like agricultural practices,
where it can detect changes in physiological and structural characteristics of crops. Moreover, the
ability of HSI to monitor these changes over time is advantageous for observing how subjects respond
to different environmental conditions or treatments.

However, the high-dimensional nature of hyperspectral data presents challenges in data processing and
feature extraction. Traditional machine learning algorithms often struggle to handle such complexity.
This is where 3D Convolutional Neural Networks (CNNs) become valuable. Unlike 1D-CNNs, which
extract features from spectral dimensions, and 2D-CNNs, which focus on spatial dimensions, 3D CNNs
have the capability to process data across both spectral and spatial dimensions. This makes them
adept at extracting complex features from hyperspectral data. In this thesis, we explored the potency
of HSI combined with 3D-CNN in agriculture domain where plant health and vitality are paramount.
To evaluate this, we subjected lettuce plants to varying stress levels to assess the performance of this
method in classifying the stressed lettuce at the early stages of growth into their respective stress-level
groups.

For this study, we created a dataset comprising 88 hyperspectral image samples of stressed lettuce.
Utilizing Bayesian optimization, we developed 350 distinct 3D-CNN models to assess the method.
The top-performing model achieved a 75.00% test accuracy. Additionally, we addressed the challenge
of generating valid 3D-CNN models in the Keras Tuner library through meticulous hyperparameter
configuration. Our investigation also extends to the role of individual channels and channel groups
within the color and near-infrared spectrum in predicting results for each stress-level group. We observed
that the red and green spectra have a higher influence on the prediction results. Furthermore, we
conducted a comprehensive review of 3D-CNN-based classification techniques for diseased and defective
crops using non-UAV-based hyperspectral images.



Keywords: Hyperspectral imaging, 3D, convolutional neural network, Bayesian optimization, Keras
Tuner, spectrum, channel importance, lettuce, stress detection.
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Chapter 1

Introduction1

Plant health and productivity are crucial determinants of yield outcomes in agriculture. They serve as
cornerstones for food security worldwide. Various stressors can compromise these factors and lead to
decreased yield and quality of agricultural products. One of the culprits behind reduced plant health
is nutrient deficiency. Such deficiency can weaken plants and make them more susceptible to diseases
[2], thereby jeopardizing both the quantity and quality of agricultural produce. All plants, irrespective
of the growth medium, require a specific set of nutrients to flourish. In soil-based cultivation, plants
source these nutrients from both the natural composition of the soil and added fertilizers. For those
venturing into hydroponics or other soil-less cultivation techniques, premixed nutrient solutions often
serve as the primary nutrient source. The nutrient needs of plants can be broadly categorized into
macronutrients and micronutrients. Macronutrients like nitrogen, potassium, phosphorus, calcium,
sulfur, and magnesium are required in larger quantities. These elements form the foundation for various
physiological processes that drive plant growth. On the other hand, micronutrients such as boron,
copper, iron, manganese, molybdenum, and zinc are needed in trace amounts, but their role is no less
significant [3].

The origin of nutrient deficiencies often lies in the inadequate nutrient content of the growing medium
or solution. Still, environmental factors can further exacerbate the situation. Unfavorable conditions,
such as extreme pH levels [4] (either too acidic or alkaline) or imbalanced moisture (either dryness or

waterlogging), can impede the plant’s ability to absorb these essential nutrients [5]. If these deficiencies
remain unaddressed, they can severely hamper a plant’s natural processes, including flowering and
fruiting, ultimately leading to compromised yields. Given the profound implications of nutrient

1The content of the introduction was adapted from [1], which was published on September 14, 2023, in the Elsevier’s
Smart Agricultural Technology journal.
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deficiencies, it is imperative for growers to recognize, understand, and address them timely. This ensures
optimal plant health and maximizes agricultural productivity.

To counteract these challenges and ensure the best possible yields, the agricultural sector has experienced
a transformative shift with the introduction of advanced sensing technologies [4]. These technologies are
revolutionizing traditional farming practices where manual inspections of crops and soil is often reliant
on subjective judgment. Traditional methods are inherently inconsistent, labor-intensive, and limited
in their ability to detect underlying issues. Furthermore, many crops and their afflictions can look
visually similar and it poses challenges for differentiation based solely on external appearance. That is
where sensing technologies like hyperspectral imaging (HSI) bridges the gap by enabling producers to
not only inspect and sort their crops with unprecedented precision but also monitor the health and
productivity of their lands through real-time processing of images [6, 7]. At the core of HSI’s utility is
its capacity to tap into the spectrum, to capture the intricate range of light wavelengths that objects
either reflect or emit. Unlike traditional imaging, which captures light in three broad bands (red, green,

and blue), HSI divides the spectrum into numerous narrow bands. By doing so, it detects the spectral
signature – an object’s unique pattern of light reflection or emission across various wavelengths. This
granular approach to capturing spectral signatures provides a deep insight into an object’s composition.
In the context of agriculture, this means not only identifying a plant but also understanding its health,
maturity, and even its water or nutrient content [8].

HSI, also referred to as imaging spectrometry, combines two distinct technologies, imaging and spec-
troscopy, to provide spatial and spectral information, simultaneously. The imaging technique is used for
capturing spatial data information from objects is realized using a digital camera whereas spectroscopy
provides intensity values for a continuous spectrum of wavelengths. A hyperspectral camera combines
both concepts in the same system. Spectral information can provide rich information about biochemical
and biophysical attributes of the agricultural crops. This is due to the higher spectral resolution of
hyperspectral sensors compared to multispectral [9] and RGB (red, green, and blue) ones. Therefore,
this feature leads to better discrimination of objects of similar colors, higher accuracy in complex
classifications, ability to predict chemical composition, and provide information about the interior of an
object [8].

However, the interpretation of spectral data can be complex, especially when analyzing and comparing
multiple samples over extended periods. One approach to simplify spectral analysis is the usage of
spectral indices. Spectral indices are mathematical expressions that combine several spectral bands
into a single value, providing an easier representation of the data. For example, the normalized
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difference vegetation index (NDVI) computes the ratio between near-infrared (NIR) and red (R) bands
of hyperspectral channels as follows:

NDVI = NIR − R
NIR + R . (1.1)

With the help of spectral indices, we can effectively identify trends and changes in the data without
requiring an in-depth comprehension of the underlying scientific principles governing spectral data,
thus enabling a simpler data analysis, enhancement of features, standardization, comparability, and
calibration of data.

In the agricultural industry two common spectral indices are the already mentioned NDVI and the
green chlorophyll index (GCI). The former is used to monitor vegetation growth and health, while the
latter quantifies the amount of chlorophyll in plants. Further indices have been defined, usually in
the context of remote sensing, to support research for example on agriculture, soil, vegetation, water
and forestry. A comprehensive database of spectral indices that is searchable by application area and
hyperspectral sensor is provided in [10]. Nevertheless, the applicability of this approach hinges on the
availability and development of a pertinent spectral index aligned with the intended application.

From a data-perspective, a hyperspectral image is a stack of images, known as hyperspectral cube
or data cube. Each image of this cube represents the response of the imager to one of the distinct
hyperspectral channels [11]. This is illustrated in Figure 1.1. It shows a 3D data cube P with dimensions
M × N × λ, where M and N represent the axes of spatial information and λ represents the spectral
dimension [12]. In the hyperspectral cube, each pixel, given by its spatial coordinates, is a vector of
length λ that indicates the reflected radiation of a specific part of the object.

This is where the potency of artificial intelligence (AI) comes into play. Leveraging AI offers a
transformative approach to analyzing HSI data. AI allows machines to emulate human cognitive
functions such as problem-solving, pattern recognition, and decision-making. Machine learning, a subset
of AI, is a research area devoted to developing algorithms that can extract valuable insights from
data without explicitly identifying these patterns a priori. These insights empower the algorithms to
continually adapt and make informed predictions or classifications. Advances in both hardware and
software components of machine vision systems have enabled machine learning algorithms to process data
more rapidly, delivering dependable outcomes in a shorter time frame. This approach has been widely
used in assessing the quality of agricultural products [13]. A plethora of machine learning methodologies,

including but not limited to decision trees [14], Näıve Bayes [15], k-means clustering [16], support vector

machines [17], random forests [18], and k-Nearest neighbors [19] have been prolifically applied across

various agricultural domains [13]. However, the performance of these traditional machine learning
algorithms heavily depends on manual feature engineering and this lack of adaptability to automatically
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Figure 1.1: The hyperspectral cube (adapted from [12] with modification). It is a three-dimensional array where
each pixel represents a spectrum containing a range of wavelengths. This spectrum can act as a fingerprint and
provides information about biophysical and biochemical characteristics of the imaged object.

extract data features reduces their efficacy. In contrast, convolutional neural networks (CNNs) as a

deep learning approach [20], which itself is a branch of AI, have the inherent capability to automate
feature extraction. That means they can learn and identify important features from data without
manual intervention. This ability is a significant leap from traditional machine learning techniques.
Moreover, deep learning approaches have been shown to achieve higher classification accuracies in image
classification tasks and are particularly suited to handle the high-dimensionality of HSI data. While
CNNs have achieved commendable success in handling 2D data, their adaptation to 3D data within the
agricultural realm remains widely unexplored. Pioneering into this underexplored avenue, this thesis
aims to delve deep into the prospects of 3D-CNNs in pinpointing plant stress through the lens of HSI
technology.

1.1 Problem Statement

Ensuring optimal growth of plants requires a meticulous balance of mineral nutrients. Among these,
nitrogen stands out as a pivotal element, significantly enhancing both the volume and quality of crop
yields. From a biological perspective, nitrogen doesn’t merely influence the overt growth patterns
of plants; it profoundly impacts their intrinsic metabolic processes as well [21]. Nitrogen deficiency
can hinder plant growth and lead to reduced vitality. As the deficiency progresses, older leaves may
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turn yellow, a phenomenon termed chlorosis, which can further develop into necrosis, characterized
by browning leaf edges. In advanced stages, plants may lose leaves altogether, coupled with increased
stiffness in both roots and leaves [22]. These symptoms can visually change the appearance of the plant
at later stages of growth. However, recognizing nitrogen deficiency during the early growth phases is
challenging as the plant’s leaf almost does not show apparent changes which are noticeable by human
eyes. Hence, making timely interventions is crucial as it can prevent huge crop losses in large-scale
agricultural settings.

In our study, we used lettuce as a case study. However, the techniques and methods we developed
are applicable over a broad range of plants, including staple crops that play an important role in food
security. To illustrate this, Figure 1.2 displays three samples of Buttercrunch lettuce, each subjected to
different nitrogen stress levels from July 15, 2022, to August 14, 2022. These samples were planted
on July 5, 2022, in a growth chamber at The University of Winnipeg under technician supervision.
However, each sample grown with distinct nitrogen fertilizer solutions: containing no ammonium nitrate

(N-), half the standard dose of ammonium nitrate (N+1/2), and the full standard dose of ammonium

nitrate (N+). At first glance, as of July 18, distinguishing between the three nitrogen groups (N-, N+1/2,

and N+) presents a challenge. Differentiating N+1/2 from N+ becomes even more intricate by July 21.

Historically, researchers have used tissue analysis [23] as a valuable instrument for informed fertilizer
management. This technique assesses nitrogen content and discerns the nutrient requirements of
plants. Such assessments were contingent on invasive methodologies, involving the exhaustive sampling
of plant parts such as leaves, branches, and even requiring the uprooting of entire plants in certain
scenarios. This approach was not only cumbersome and labor-intensive but also carried significant
environmental and safety concerns due to the use of hazardous chemicals like those involved in
the Kjeldahl method. Furthermore, employing elemental analyzers incurred considerable expense.
However, recent advancements in spectroscopic methodologies [24] have heralded a paradigm shift in

this arena. Modern techniques, leveraging the capabilities of HSI in tandem with visible and/or NIR
spectroscopy, present a swift, non-invasive alternative. This innovation has been pivotal, particularly for
the quantitative assessment of variables such as soil N, plant N, and fertilizer nitrogen concentrations,
ushering in a more streamlined and environmentally considerate era of agricultural research. Despite the
emergence of shifting towards utilizing HSI in this domain, researchers have not yet significantly used
and assessed deep learning approaches to assess plants’ nutrients. This study delves into the potential
of HSI across a wide spectral range (400–1000 nm), paired with 3D-CNNs, to detect nitrogen deficiency
challenge in lettuce.
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July 18               July 21                July 25                 July 28                   Aug 1               Aug 5                 Aug 8                   Aug 11                Aug 14  

N-

N+1/2

N+

Figure 1.2: Growth stages of three lettuce samples subjected to nitrogen stress experiment. The rows, in
sequence, depict distinct nutrient conditions: nitrogen-free (N-), half-nitrogen (N+1/2), and full-nitrogen (N+).

1.2 Proposed Approach

To address the challenge of early detection of nitrogen deficiencies in Buttercrunch lettuce, our research
employed a targeted approach, integrating HSI with 3D-CNN design and analysis. This research
leverages the capabilities of 3D-CNNs to interpret complex data structures, enabling a more nuanced
understanding of the spectral and spatial characteristics inherent in HSI data. Our research pivots
around three main objectives:

• To address a gap in the current literature, we curated a hyperspectral dataset that meticulously
captures the development of non-hydroponically planted Buttercrunch lettuce under varying
nitrogen stress conditions throughout its growth phase.

• Early growth stage differentiation: Our objective is to explore the potential of 3D-CNNs in
identifying early-stage nitrogen-stressed lettuce by classifying the lettuces into three distinct

groups (N-, N+1/2, and N+). Our goal is to introduce automation into the complex classification
challenge.

• Spectral band identification: Tapping into the wealth of data provided by HSI, our goal is to
discern which spectral bands, or combinations thereof, are crucial for classifying nitrogen-stressed
lettuce.

Considering the absence of datasets for non-hydroponic, nitrogen-stressed lettuce, we curated a unique
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collection of hyperspectral images. This experiment unfolded in the growth chambers of The University
of Winnipeg. Supervised by a technician, we cultivated 15 Buttercrunch lettuce samples for each

nitrogen-stressed category, namely N-, N+1/2, and N+. Given our keen interest in early, subtle signs of
N deficiency, our analysis was circumscribed to observations on July 18 and 21. At these initial growth
stages, discerning visual differences is notoriously tricky. Imaging was executed using the SPECIM
FX10 hyperspectral camera in a darkened room, followed by rigorous preprocessing to calibrate the
captured data. We utilized the Bayesian optimization technique to strategically search for the optimal

3D-CNN model configuration tailored for classifying the nitrogen stress status (N-, N+1/2, and N+) in
lettuce. From a high-level perspective, Bayesian optimization involves a highly intelligent trial-and-error
process to find the optimal model configuration, where each “trial” is chosen very thoughtfully to learn
as much as possible, thus reducing the number of trials needed to find the best solution. Additionally,
we aimed to pinpoint specific spectral bands pivotal for classification, potentially paving the way for
cost-efficient multispectral cameras tailored to these critical bands.

1.3 Thesis Contribution

A comprehensive review was performed to bridge the existing knowledge gap by:

• Undertaking a review of 3D-CNN-based architectures tailored for classification of hyperspectral
images of diseased and defective crops.

• Elaborating on the intricate deep learning pipeline, encompassing data preprocessing, band
and feature selection, and visualization of 3D-CNN model’s outcomes for the classification of
hyperspectral images of diseased and defective crops.

• Discussions on untouched research avenues, intricacies, and the prospective challenges posed when
integrating 3D-CNNs with HSI data, thereby setting the stage for future explorations in the
domain.

The survey results were published in the following article:

“A comprehensive review of 3D convolutional neural network-based classification techniques of diseased
and defective crops using non-UAV-based hyperspectral images.” Smart Agricultural Technology 5
(published on September 14, 2023) [1]

The main contributions of this thesis are as follows:
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• A novel labelled dataset of hyperspectral images of nitrogen-stressed Buttercrunch lettuce consisting
of three classes: a) nitrogen-free (N-): These plants did not receive any ammonium nitrate, b)

Half-nitrogen (N+1/2): These plants received 50% of predetermined standard amount of ammonium

nitrate, and c) Full-nitrogen (N+): These plants received 100% of the predetermined standard
amount of ammonium nitrate. In total the dataset contains 404 hyperspectral images consisting

of 135, 134, and 135 hyperspectral images per N-, N+1/2, and N+ class, respectively.

• Generated 350 3D-CNN models utilizing Bayesian optimization technique, with the top-performing
model achieving 75.00% accuracy on test dataset, which focused on the early stages of nitrogen
stress treatment in lettuce observed on July 18 and July 21.

• Determined the significance of individual and collective spectral bands – spanning violet, blue,
green, yellow, orange, red, and NIR within the 400 – 1000 nm wavelength range – in prediction of
target class within the test dataset.

• Addressing the challenge of valid model generation by the Keras Tuner library through meticulous
configuration of hyperparameters specific to our 3D-CNN model. These hyperparameters are
crucial as they dictate the learning process of the model.

1.4 Thesis Layout

Chapter 2 emphasizes the critical role of the micro-ingredient “N” in optimizing crop yields. This chapter
presents a comprehensive review of both conventional methods and cutting-edge research techniques for
detecting and determining the presence of “N” in lettuce. Transitioning to Chapter 3, we demonstrate
the deep learning pipeline for HSI data classification using 3D-CNN models. In this regard, we delve
deep into architecture of CNNs and elaborate on its main building blocks, training and performance
evaluation. Then, we provide a comprehensive review of 3D-CNNs-based models utilized in classifying
non-UAV-based hyperspectral images of crops with diseases and defects. Also, complete HSI data
preprocessing steps, band and feature selection, and visualization of HSI classification decisions are
provided. We culminate the chapter by shedding light on the existing research gaps and constraints
involved in employing 3D-CNN for the categorization of HSI data. Chapter 4 provides a detailed
overview of the material and methodologies involved in creating the HSI dataset for nitrogen-stressed
lettuce. It outlines the preprocessing pipeline for hyperspectral data and illustrates the process of
designing 3D-CNN models using Bayesian optimization, along with the resultant findings. This chapter
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also explores the channel importance in classification result through an ablation study. At last, Chapter
5 concludes the research and proposes directions for future works.
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Chapter 2

Background and Related Works

2.1 Significance of Nitrogen in Plant Growth

Nitrogen is a crucial element for plants, vital for their growth, development, and reproduction. Although
it is abundant in the environment, plants often face nitrogen deficiency due to its indirect availability.
Comprising 3-4% of a healthy plant’s above-ground part, nitrogen is higher in concentration than most
nutrients. It is foundational in amino acids, which make up proteins, and is vital for plant tissues, cell
membranes, and chlorophyll production. Nitrogen is also part of the DNA, influencing genetic traits
in crops. It enhances various physiological processes, like giving plants a darker green hue, boosting
root growth, and stimulating crop yield. Nitrogen elevates photosynthesis rates, seed productivity,
and quality. Furthermore, in horticultural plants, it increases fruit yield and pulp content. It not
only promotes the absorption of other essential nutrients but also bolsters plants’ resilience against
environmental stresses. However, factors like soil moisture, aeration, and salt content can impact N’s
efficiency in plants [25]. Considering the numerous functions nitrogen undertakes and its potential to
optimize plant health and productivity, this fact drives us to inspect available methods to recognize and
address nitrogen deficiency.

2.2 Overview of Techniques to Monitor and Detect Nitrogen Defi-
ciency in Lettuce

In the historical context of agricultural research, the determination of nitrogen in plants was traditionally
achieved through techniques such as Kjeldahl [26] digestion and Dumas combustion [27]. While

effective, these methodologies were notably destructive and time-intensive [28]. With the surge of
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technological advancements, a transition from these conventional methods was observed, and the
agricultural community began embracing optical methods. These modern techniques encompass the use
of tools such as spectroradiometers [29], reflectometers [30], satellite sensor imagery [31, 32], and digital

cameras [33, 34, 35, 36]. They are primed to measure a myriad of properties ranging from crop canopy
reflectance and leaf transmittance to the nuances of chlorophyll fluorescence, thereby estimating the N
content in plants [37]. In the following, we delve into application of these advanced techniques.

Emerging from this technological shift were two prominent types of sensors. Passive sensors, like the
FieldSpec spectroradiometer [38], operate by detecting the naturally reflected or emitted radiation from
the plants. These sensors do not emit any radiation of their own. On the other hand, active sensors,
exemplified by GreenSeeker and Crop Circle [39, 40], emit their own radiation or light source and
then measure the reflected radiation from the plant surface. Empirical research showed a compelling
correlation between the optical parameters gauged by these sensors and the nitrogen status in plants. This
opened doors to non-invasive and, consequently, non-destructive testing alternatives [41]. Nevertheless,
while these strides forward presented new avenues, they were not without challenges. Issues such as
chlorophyll saturation, the capricious nature of atmospheric interference, and the high instrumentational
costs proved to be significant hurdles [42].

In response to these challenges, and ever pushing the boundaries of innovation, recent trends have shifted
focus towards harnessing the power of digital imaging. By leveraging commercial cameras combined
with intricate image processing systems, researchers developed a cost-effective paradigm to discern crop
N status. This method involved a detailed analysis of various health parameters intrinsic to plants
[38, 43, 44, 45]. This epoch of research accentuated the immense potential of HSI to unearth deeper
insights into plant health and the multifaceted conditions governing growth.

HSI, at its core, leverages the seemingly simple yet intricate concept of capturing how plant leaves
differentially absorb and reflect light across a spectrum of wavelengths. This phenomenon results in
what can be described as a spectral fingerprint, a unique signature that embodies specific wavebands.
This signature is not static; it evolves, dictated by a variety of factors including the overall health of the
plant, its hydration levels, and its nutrient uptake. Diving into effects of varying nitrogen concentrations
on the growth of different lettuce cultivars using hydroponic tubs and the Nutrient Film Technique
system, a study made use of HSI’s capabilities to chronicle these spectral shifts [46]. The research
was further enhanced by the inclusion of sophisticated regression models, namely the first derivative
reflectance, partial least squares regression/principal component analysis (PLSR [47, 48]/PCA [49]),
and variable importance in projection scores. These models were not just auxiliary tools; they deepened
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the insight, enabling precise estimations and analytical interpretations of the nutrient dynamics within
the lettuce cultivars. The HSI data from the 400-575 nm wavebands accurately matched laboratory
measurements, offering a non-invasive method to understand plant nutrient interactions.

Moreover, in another study Reference [50] by these researchers, four lettuce cultivars (Rex, Flandria,

Flandria, and Black Seeded Simpson) were grown hydroponically under varying nitrogen concentrations.
The study identified significant spectral bandwidths within range 400–1000 nm using a SPECIM FX10
camera to determine the nutrient content of the different cultivars of lettuce. By employing PLSR and
PCA techniques, the spectral ranges 506.33–601.11 nm and 634.76–701.13 nm shown to be significant in
non-invasively estimating nutrient levels in lettuce.

Building on the potential of HSI, Reference [51] took a more focused approach towards understanding
nitrogen dynamics in crops. Lettuces were grown in three distinct soilless nitrogen solutions. Upon
reaching the rosette stage, 84 lettuce leaves from each nitrogen level were analyzed using HSI. The data,
collected from specific regions of these leaves, was processed using standard normal variate correction
and further refined using PCA. The analysis proceeded with the application of the extreme learning
machine (ELM) algorithm [52] which showed notable efficiency in speed and accuracy. The ELM model

achieved a 100% accuracy rate which highlights the benefits of integrating conventional methods with
modern technology in agriculture. This dovetails with the earlier study, reiterating the transformative
role of HSI in the agricultural landscape.

In another experiment on Lactuca sativa lettuce [53], researchers sought to optimize precision fertigation–
the targeted application of water and nutrients. To achieve this, they employed a combination of the
Plantarray system, an advanced phenotyping platform that monitors and analyzes plant performance
in real-time, and HSI. Their goal was to identify early signs of nitrogen and water deficiencies in
plants before these deficiencies could adversely impact growth. From the hyperspectral data, three
crucial vegetation indices were derived: the red-edge chlorophyll index (RECI) [54], the photochemical

reflectance index (PRI) [55], and the water index (WI) [56]. Each of these indices illuminated specific
facets of plant health. For instance, RECI was particularly effective in pinpointing nitrogen deficiencies,
while the WI was adept at identifying instances of water stress. Meanwhile, PRI provided real-time
insights into the plant’s transpiration rates. Through this comprehensive approach, combining both the
analytical capabilities of the Plantarray system and the detailed insights from HSI, the researchers were
better positioned to enhance crop yield management. By identifying plant needs early on, interventions
could be made proactively, ensuring healthier growth and optimized yields.

Diving deeper into the spectral analysis of lettuce, Reference [57] integrated spectral analysis techniques
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with chemometrics to estimate the nutrient content (N, phosphorous, and potassium) of aquaponically
grown lettuce. By employing methods such as PCA, genetic algorithms, and sequential forward selection,
critical wavelengths or spectral bands sensitive to these nutrients were identified. Notably, in the visible
spectrum, specific bands like blue (475 nm), green (530 nm), red (668 nm), and the red edge (717 nm)
showed significant variance based on nutrient concentration. Higher nutrient levels led to increased
chlorophyll and photosynthesis activity, which influenced the absorption and reflection properties at
these bands. In the NIR range (720 nm to 1300 nm), a positive correlation was observed, with higher
nutrient content resulting in increased reflection. These selected spectral bands were then used as inputs
for models like PLSR, back-propagation neural network (BPNN) [58], and random forest (RF) [59].
Among these, BPNN and RF demonstrated particularly high predictive accuracies, suggesting that
specific spectral bands combined with machine learning can provide an effective non-invasive tool for
monitoring nutrient content in plants.

While the advancements in using HSI, coupled with traditional machine learning techniques, have
marked significant progress in detecting nitrogen deficiencies in lettuce and other crops, the next frontier
in this research is deeply entrenched in leveraging cutting-edge computational models. Recent studies
have shown the potential of employing deep learning techniques. Amidst them CNNs (refer to Chapter

3) excel in processing patterns within images, and over time, they have emerged as the dominant force
in tasks like image classification, object detection, and segmentation. However, when it comes to the
volumetric data of HSI, 3D-CNNs (discussed in Chapter 3) offer the capability to capture spatial and
spectral patterns in data, making them particularly suited to analyze hyperspectral data cubes. While
the mentioned works have laid the foundation in using HSI for plant health diagnostics, integrating
3D-CNNs may offer a more holistic and nuanced understanding of the spectral data. The aim is not
just to build upon the accuracy and efficiency achieved by earlier models but also to tap into the deeper,
perhaps latent, patterns in the hyperspectral data that can offer more granular insights into plant health
and the intricate dynamics of nutrient interactions. In doing so, this research seeks to contribute to the
ongoing efforts in precision agriculture, possibly offering a fresh perspective on diagnostic and detection
tools.
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Chapter 3

Deep Learning Pipeline for HSI data
Classification using 3D Convolutional
Neural Networks 1

A deep learning pipeline for HSI classification is a multi-stage process that transforms raw data into a
predictive model capable of making informed decisions or predictions. Such a pipeline typically consists
of several stages, including data preprocessing, band and feature selection, model design, model training,
testing, and evaluation (see Figure 3.1). Before we delve into the intricacies of each stage, we first
provide a succinct overview of these components to establish a foundational understanding that will
support the detailed discussion to follow.

Data preprocessing is the initial step where raw HSI data undergoes various enhancements to improve
quality. Techniques such as noise removal and radiometric calibration are employed to ensure the
reliability of the data. Noise removal helps in clearing out any irrelevant or extraneous information from
the images, while radiometric calibration transforms the camera’s abstract digital outputs into precise
measurements of true radiation intensity or reflectance across each pixel and spectral channel. Dimension
reduction techniques are also applied to distill the vast amount of data into its most informative aspects.
The subsequent stage of feature extraction transforms preprocessed data into a new set of features
designed to be more discriminative for the task at hand. Concurrently, band selection strategies are
employed to identify and retain the most relevant spectral bands for classification purposes.

The model design stage involves carefully planning and structuring a series of layers to process and
interpret image data efficiently and accurately. This includes deciding on the number and types of layers,

1The contents of Sections 3.1.2, 3.1.6, and 3.2 to 3.6 were adapted from [1], which was published on September 14,
2023, in the Elsevier’s Smart Agricultural Technology journal.
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their arrangement, and how they interact to extract meaningful patterns and features from the images.
The goal is to create a model that can effectively learn from data and make accurate predictions or
classifications based on visual inputs. Training the model is an iterative process of fine-tuning internal
parameters to minimize classification errors. Upon completion of training, the model undergoes testing
and evaluation to validate its predictive performance on unseen data, ensuring it has successfully learned
the underlying patterns and relationships within the HSI dataset. In this respect, in Section 3.1, we
delve deep into the structure of CNNs, particularly 3D-CNN as the focus of this research study, and
their most important concepts. Following the typical data pipeline associated with CNNs, Sections
3.2 to 3.5 review network architecture design, data preprocessing, band and feature selection, and
visualization of HSI classification decisions. This provides a convenient overview of its individual steps
for plant classification problems using 3D-CNNs. Finally, Section 3.6 highlights the research gaps and
limitations associated with the application of 3D-CNNs for HSI data classification.

3.1 Insights into Convolutional Neural Network Architecture

3.1.1 Artificial Neural Networks (ANNs)

Computer vision algorithms serve as interpretation tools. Their purpose is to analyze the input image
received from the sensing device, extract features and patterns to recognize objects. To accomplish this,
researchers drew inspiration from the workings of the human brain to guide and inform their research
and algorithm development. This endeavor led to the emergence of artificial neural networks (ANNs).
ANNs are composed of layers of neurons that perform calculations and generate predictions based on
inputs. These networks consist of an input layer, zero or more hidden layers, and an output layer. The
number of layers in the network characterize the depth of the network [60].

The term deep neural network traditionally referred to networks with more than one hidden layer.
However, it is more commonly used now to describe networks with a considerable number of layers.
Conversely, a shallow network denotes a network with relatively few layers. It is important to note
that terms like many and few are subjective and not precisely defined. Additionally, there is no
universally agreed-upon threshold for the depth that differentiates shallow networks from deep networks.
Nonetheless, most researchers agree that a network is typically considered deep if its depth is greater
than 2 [61].

Figure 3.2 shows a type of ANN which is called multi-layer perceptron (MLP). It consists of the input
layer, three hidden or fully connected layers, and the output layer. Each node represents an artificial
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Figure 3.1: Typical deep learning pipeline for HSI data classification. First, the discriminative features and
bands are extracted from preprocessed HSI dataset of crop. Then, the dataset is split to training, validation,
and testing sets. The training dataset is used to train the 3D-CNN model, the validation dataset is employed to
assess the model’s performance and fine tune its parameters, and the testing dataset serves to evaluate the final
performance and generalization ability of the trained 3D-CNN model on unseen data.

neuron which is explained in Section 3.1.1.1. Hidden layers, positioned between the input and output
layers, consist of stacked neurons where each neuron connects to every neuron in the subsequent layer.
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These layers are referred to as hidden because we have limited visibility and control over the information
flowing through them. The input is fed into the input layer, and the resulting output is observed at
the output layer. Each edge represents a connection between nodes in different layers. It is assigned
a weight, denoting the significance of its influence on the final output prediction. The output layer
is where we obtain the model’s answer or prediction. The nature of the output layer depends on the
specific setup of the neural network. For regression problems, which involve predicting a continuous
output value, the final output may be a real-valued number. On the other hand, for classification
problems, where the aim is to predict the category or label of an input, the output typically consists of
a set of probabilities, with each probability corresponding to a different class or category [62].

Figure 3.2: An artificial neural network comprised of neurons connected with edges.

3.1.1.1 Artificial Neuron

The artificial neuron or perceptron is the fundamental component of a neural network. Figure 3.3
illustrates the components and functions of the perceptron in detail. ANNs are limited to accepting
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1D vectors with dimensions (1, n) as input. The result is that images must be transformed to a single
1D vector when using ANNs. This process, known as image flattening, results in the loss of spatial
and spatiospectral features in 2D and 3D images, respectively. Therefore, the input vector, denoted
by N , represents the feature vector containing inputs (n1, n2, n3, ..., nm). Each input is assigned a

weight value (w1, w2, w3, ..., wm) to indicate its relative importance in distinguishing between different

input data points. Within the neuron, two calculations take place: 1) the weighted sum, where the

inputs are multiplied by their corresponding weights, summed together and a bias (b as shown in

Figure 3.3) is added, and 2) the activation function [62]. The weighted sum function, also known
as linear combination, produces a straight line which passes through the origin in coordinate system.
The activation function takes the weighted sum of inputs as input and produces the output of the
neuron. By introducing nonlinear characteristics, activation functions enable the network to extract
and identify intricate relationships between input and output variables, facilitating the recognition of
complex patterns and associations. The bias is an additional parameter that adjusts the output along
with the weighted sum of the input to the neuron. It allows the activation function to better map the
input to the output. This ability of an ANN to approximate any function has resulted in it being called
an universal function approximator. A comprehensive review of activation functions in deep learning
is provided in [63]. In practice, the rectified linear unit (ReLU), Leaky ReLU and Parametric ReLU

activation functions [64] are the most common ones used by researchers due to their simplicity and

performance. For example, ReLU leads to a tradeoff between the accuracy (see Section 3.1.5) and

training (see Section 3.1.3) time. As shown in Figure 3.2, the flow of information starts from the input
layer, passes through the hidden layers, and ultimately reaches the output layer. This progression occurs
by applying two consecutive functions in each neuron: the weighted sum and the activation function.
Such process is called feedforward. In essence, the forward pass entails performing calculations across
the layers to generate a prediction.

18



Weighted Sum Activation Function

Output

Input

1

Figure 3.3: Perceptron diagram. Input vectors are passed to the neuron, with weights assigned to represent
importance. Weighted sum and activation functions are performed to generate the output.

3.1.2 Convolutional Neural Network (CNN)

A CNN is a type of ANN which is comprised of a series of layers each consisting of several neurons. As
shown in Figure 3.4, each layer is the input for the next layer in the network. Key building blocks of
a CNN are convolution layers, detector layers [65], and pooling layers, which are explained in detail
in Sections 3.1.2.1, 3.1.2.2, and 3.1.2.3, respectively. For a brief overview, a convolution layer uses
convolutional kernels (a.k.a. a filter or kernel) to extract features from the 2D input data while preserving
the spatial relationship within the 2D input data. However, when processing 3D input data, it can also
capture crucial spectral features, whereas, ANNs transform the input data into 1D vectors regardless of
its original structure. These convolutional kernels are a set of learnable weights arranged in matrix
or tensor format based on the input data’s shape. We will delve deeper into the convolution layer in
subsequent sections. A detector layer [66] applies a non-linear function like ReLU to learn non-linear
representations. Pooling layers make features invariant by reducing the dimensionality of data. Finally,
we will also discuss the fully connected layer. Positioned towards the end of the network, these layers
transform the extracted features by the convolutional layers into a form suitable for classification or
regression. In these layers, neurons connect to every neuron from the previous layer, encapsulating the
global information from the feature maps. This will be expanded upon in Section 3.1.2.4.
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Figure 3.4: A basic conceptual CNN architecture. A CNN consists of multiple layers, including convolution,
detector, and pooling layers, where each layer serves as the input for the subsequent layer, enabling the extraction
of features, learning of non-linear representations, and dimensionality reduction in the network.
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3.1.2.1 Convolutional Layer

The convolution layer is a cornerstone of a CNN, playing a key role in extracting and learning features
from input data. Central to this layer is the concept of convolutional filters. These filters traverse
the input systematically, performing specific mathematical or convolution operations to detect salient
patterns, whether they be edges, textures, or more abstract shapes. To demystify the convolution
process, consider two interacting functions. The first function represents our input data, while the
second embodies the convolutional filter. Their interaction, through convolution, yields a transformed
representation often termed as a feature or activation map.

Delving deeper, the convolutional layer’s workings can be visualized effectively on 2D input data, as
depicted in Figure 3.5. Here, the convolutional filter scans the input in a sliding window fashion.
Each specific region of the input it covers, termed the “receptive field”, undergoes an element-wise
multiplication with the filter. The aggregated results from these multiplications determine individual
values in the resultant feature map. It is crucial to note that in the realm of CNNs, when dealing with
2D inputs, both neurons and weights align in a matrix structure. Furthermore, the depth or complexity
of the succeeding layers in the network is contingent on the number of filters employed within each
convolutional layer. Each unique filter crafts its own feature map, encapsulating different aspects or
features of the input [62].

Moving from 2D to a more complex dimensionality, Figure 3.6 shows 3D convolution using 3D filter
over 3D input (such as a hypercube). A 3D filter can be considered as a stack of 2D filters which forms

a cubic shape. To compute 3D convolution, the corresponded receptive fields (for the purpose of the

explanation consider the ones in blue) 1 to 3, are convolved with 3D filter, 1 to 3, that means all 27
values from input data are multiplied by 27 associated values from 3D filter and after adding them all
up, a single value generated (shown in blue in output). By sliding the 3D filter in spatial and spectral
dimensions, all values of feature maps can be calculated.
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Figure 3.5: Convolution operation. The image shows sliding convolutional filter over an input image to generate
a feature map.
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Figure 3.6: Convolution operation using 3D filter over 3D input (such as a hypercube).
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In order to enhance the number of neurons within these hidden layers, one can increase the number of
kernels utilized in the convolutional layers. Each convolutional filter serves as an individual neuron. For
instance, in Figure 3.5 a 3×3 filter is used in a convolutional layer, it implies that there are 9 neurons
within that layer. By adding two more 3×3 filter, there would be 3 filters which increases the total
number of neurons in the convolutional layer to 27. Therefore, by augmenting the number of filters in
a convolutional layer, one effectively increases the number of neurons, which enables the network to
recognize more intricate patterns. In general, filters in CNNs have a 2D and 3D shape for 2D and 3D
convolution, respectively. It is generally not recommended to use large filter size since it can potentially
lead to the loss of essential input data details and are computationally heavy [62].

In order to control the size of the feature map, three parameters need to be determined [62]. The first
parameter is the depth, which corresponds to the number of filters used for the convolution operation.
The second parameter is the stride, which determines the number of pixels or voxels the filter moves over
the input. For example, stride (1, 1) means the filters move one cell at a time in 2D convolution over

2D input, while stride (1, 1, 1) means the filters move one voxel at a time along the spatial and spectral
dimension in 3D convolution over 3D input. Using a larger stride will produce smaller feature maps
due to the reduced number of overlapping positions of the filters. The third parameter is zero-padding,
which involves adding zeros around the border of the input along the spatial and spectral (if the input

is 3D data) dimensions. This allows the filters to be applied to the bordering elements of the input data.
It is primarily employed to maintain the spatial and spectral dimensions of the input, ensuring that the
dimensions of both the input and output remain the same. When zero-padding is used, it is referred to
as wide convolution. On the other hand, not using zero-padding would result in narrow convolution,
where the filters are not applied to the bordering elements. Preserving dimension size is particularly
crucial when constructing deeper networks, as it prevents the height, width, and depth (if the input

data is 3D) from progressively diminishing as we delve into subsequent layers. Figure 3.7 shows a 2D

convolution operation over an input data with padding and stride equal to (1, 1). As it is shown the
output image has the same size as input image.

3.1.2.2 Detector Layer

Within CNNs, the convolutional layer primarily produces feature maps that are linear transformations
of its input data. To equip the network with the capability to model non-linear data relationships,
non-linearities must be introduced. This is achieved using the detector layer.

Activation functions, integral to the detector layer, introduce the required non-linearity. They are
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Figure 3.7: Convolution operation. The image shows sliding convolutional filter of size 3×3 over an input image
with padding = 1 and stride = 1 to generate a feature map.

applied element-wise to each value of the convolutional output. A list of activation functions can
be found in [67]. Applying these activation functions to 2D or 3D convolutional outputs retains the
non-linearity throughout the output volume. For clarity, the ReLU is one of the most popular activation
functions and is especially prevalent in CNNs due to its computational efficiency and its efficacy in
mitigating the vanishing gradient problem (discussed in 3.1.4.1.3). Mathematically, ReLU is defined as

f(x) = max(0, x) =
{

x if x > 0
0 otherwise.

(3.1)

This means that any negative value in the convolutional output is set to zero, while positive values
remain unchanged. By introducing this non-linearity, ReLU ensures that the network can learn more
complex representations, especially when stacked in deep architectures.

For a 2D convolution output O2D[i, j], where i and j represents spatial values, the application of ReLU
would be

O2D,ReLU [i, j] = max(0, O2D[i, j]). (3.2)

Similarly, for a 3D convolution output O3D[i, j, k], where i, j represents spatial values and j represents
spectral value, the ReLU activation can be applied as

O3D,ReLU [i, j, k] = max(0, O3D[i, j, k]). (3.3)
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In essence, ReLU’s simple yet powerful operation aids in the propagation of positive values while
nullifying negative ones, promoting a more dynamic range of learned features in the network.

3.1.2.3 Pooling Layer

The addition of convolutional layers in a network increases the depth of the output layer, resulting in a
greater number of parameters that need to be optimized (see Section 3.1.3.2 for more details about

optimization). This increase in network complexity impacts the computational operations involved in
the learning process. To address this, pooling layers are employed to reduce network size by decreasing
the number of parameters passed to the subsequent layer. Pooling achieves this by applying statistical
functions, such as maximum or average, to resize the input and minimize parameter count. The purpose
of pooling layers is to downsample the feature maps generated by the convolutional layers, effectively
reducing computational complexity. It is common practice to incorporate pooling layers after every one
or two convolutional layers in a CNN architecture [62]. Two main types of pooling, max pooling and
global average pooling, exist. Max pooling selects the maximum pixel value within sliding windows,
while global average pooling calculates the average values of all pixels in the feature map. Figure 3.8
depicts the max and average pooling operation.

3.1.2.4 Fully Connected Layer

After applying convolutional and pooling layers to extract features from images, these features needed
to be classified. For classification purposes, a fully connected layer or dense layer is utilized. To feed
the output features into the fully connected layer for classification, the features are flattened into a
vector with dimensions of (1, n). For example, if the features have dimensions of (x, y, z), the flattened

vector will be (1, x×y×z) (see Figure 3.9). One or more fully connected layers can be incorporated,
with each layer containing one or more neurons.

3.1.3 Training and Performance Evaluation of CNNs

3.1.3.1 Error Function

This function provides a numerical insight into the disparity between the anticipated outcome and
the prediction made by the neural network. A high value denotes greater disparity, and a lower value
indicates accuracy. This discrepancy helps assess the network’s effectiveness and guides potential
refinements [62].
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Figure 3.8: Pooling layer. The image shows operation of max and average pooling with window size of (2×2×2)
over a data cube. Values in blue color from input are distribution of integer numbers from 1 to 8 without
repetition.

The selection of an apt error function is crucial, setting the stage for the ensuing optimization challenge
(detailed further in Section 3.1.3.2). In this context, optimization aims to tweak the network’s weights
to minimize the error function. With a clear error function, optimization algorithms can be employed
to their utmost efficacy. From an optimization standpoint, the mission is to pinpoint the optimal
parameters that minimize the error. Recognizing this deviation is paramount for adjustments during
iterative training. Several techniques exist to streamline this error minimization. A salient point is that
errors are consistently treated as positive values [62]. This ensures individual prediction errors don’t
offset one another during average error computation. Given the emphasis on classification within the
research, understanding the mechanisms for evaluating predictions in binary and multiclass settings is
crucial.

In binary classification tasks, we aim to distinguish between two distinct classes. These two classes
are typically represented by the target variables, which can take on one of two possible values. For
simplicity, we can represent these two classes using the values 0 and 1.
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Figure 3.9: Fully connected layer. The image shows flattening the output feature of size (x, y, z) into dimension
of (1, x×y×z) and then fed to a fully connected layer of size 32, as the problem is a binary classification, sigmoid
function is used.

The Sigmoid function is especially useful in this context. This function has the property of converting any
real-valued input number into a value between 0 and 1, making it perfect for representing probabilities.
Let P be the output of the Sigmoid function, representing the predicted probability that a given instance
belongs to class 1. Given this definition, the predicted probability that the same instance belongs
to class 0 is 1 − P . In binary classification tasks, Y denotes the actual class label of each instance,
where Y = 1 if the instance actually belongs to class 1 (positive class), and Y = 0 if it belongs to

class 0 (negative class). The Binary Cross-Entropy loss, sometimes referred to as log loss, quantifies
the difference between the predicted probabilities and the actual class labels. The formula for Binary
Cross-Entropy loss is

Binary Cross-Entropy Loss(Y, P ) = −Y log(P ) − (1 − Y ) log(1 − P ) =
{

− log(1 − P ) if Y = 0,

− log(P ) if Y = 1.
(3.4)

For classification problems involving more than two classes, the Softmax function is commonly used to
transform the output of a neural network into probabilities that sum up to 1 across all classes. Given
an output vector z = [z1, z2, z3] from the neural network, which corresponds to the classes A, B, and C,
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the Softmax function returns a normalized probability distribution:

Softmax(z)i = ezi∑3
j=1 ezj

, (3.5)

Yielding probabilities are as follows:
P (A) = ez1

ez1 + ez2 + ez3
, (3.6)

P (B) = ez2

ez1 + ez2 + ez3
, (3.7)

P (C) = ez3

ez1 + ez2 + ez3
. (3.8)

When it comes to measuring the model’s performance, we can use the Multiclass Cross-Entropy loss.
The Multiclass Cross-Entropy loss is an extension of the binary version, aiming to capture the divergence
between true labels and the predicted probabilities. Given a true label vector Y = [Y1, Y2, Y3] and

predicted probabilities P = [P (A), P (B), P (C)], the loss becomes

Multiclass Cross-Entropy Loss(Y, P ) = −
3∑

i=1
Yi log(Pi). (3.9)

3.1.3.2 Error Minimization via Optimization

Optimization lies at the heart of training neural networks. It is through optimization algorithms [62]
that we iteratively refine certain configurable parameters, known as “hyperparameters”, such as weight
initialization and learning rates. The ultimate goal is to minimize errors and enhance model accuracy.
In this context, when we talk about optimizing the error function in neural networks, it primarily means
fine-tuning the weights and biases to achieve a set of optimal values that yield the least error.

One might wonder: Why not just evaluate all possible combinations of weights and biases. While this
brute-force strategy might be plausible for simpler networks with fewer inputs and neurons, it is a
daunting, if not impossible task for larger, more complex networks. Even with the might of today’s
fastest supercomputers, comprehensively examining every conceivable combination is impractical in
terms of time and computational resources.

This brings us to a more pragmatic and efficient solution: gradient descent. It is a central optimization
method for neural networks. Gradient descent, along with its variants like batch, stochastic, and
mini-batch methods, refines the model by iteratively adjusting its parameters based on the error. We
will discuss these optimization methods in more detail in the subsequent sections.
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3.1.3.2.1 Batch Gradient Descent

Batch gradient descent (also known as vanilla gradient descent) is an optimization algorithm commonly

used in training neural networks. The gradient (also derivative), which indicates the slope or rate of
change of an error function curve, plays a central role in this algorithm. The goal of gradient descent is
to iteratively update the weights to minimize the error by descending the slope of the error curve. To
understand how gradient descent works, we can visualize the error function in a 3D graph depicted in
Figure 3.10 (a). Starting from an initial weight point (shown in star), we take steps down the curve
by determining the direction and size of each step. The direction is determined by calculating the
derivative of the error function, representing the steepest descent. By examining the surroundings, we
choose the direction that leads to the deepest descent. The step size, also known as the learning rate,
determines the magnitude of each step. It is a crucial hyperparameter in neural network training. A
larger learning rate accelerates learning but may result in overshooting the minimum error and causing
oscillation. Conversely, a smaller learning rate ensures a more precise descent but prolongs the training
process. To combine direction and step size, we multiply the derivative (direction) by the learning rate

(step size). This yields the change in weight for each step. Adding a minus sign ensures we move in the
opposite direction of the slope to descend the error mountain. Since, the new weights can be corrected
as follows:

WNext = WP revious − α
dE

dW
,

where α is the learning rate and dE
dW is the derivative term of the error function with respect to weight.

In practice, choosing an appropriate learning rate involves careful tuning. Very large or very small
values can lead to ineffective training. By initializing with a reasonable learning rate, such as 0.1 or
0.01, and observing the network’s performance, we can further fine-tune the learning rate to achieve
optimal results.

While batch gradient descent is a powerful algorithm for minimizing error, it has two significant
drawbacks. Firstly, not all cost functions exhibit a simple bowl-like shape. Some may have irregular
terrain with holes and ridges, making it challenging to reach the global minimum error. If the algorithm
starts at a local minimum, it will converge to that point instead of finding the overall lowest error value.
Secondly, batch gradient descent computes gradients using the entire training set at each step. The
training set consists of labeled data that the algorithm uses to learn and adjust its parameters. Using
the entire training set means that every single data point from this set contributes to the calculation
of the gradient at each step. This becomes computationally expensive and slow when dealing with
large datasets. To address these issues, an alternative approach called stochastic gradient descent is
commonly used.
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Figure 3.10: (a) Minimize the error by starting from a random initial starting weight. Move toward a direction
which produces minimum error value and that is where the goal weight is located. (b) Complex error function
curve with multiple local minimums [62].

3.1.3.2.2 Stochastic Gradient Descent

In stochastic gradient descent, the algorithm randomly selects individual data points and performs
gradient descent on each point separately. This approach allows for exploring multiple starting points
and considering local minima, leading to the identification of the global minimum as the minimum
value across all local minima. Stochastic gradient descent differs from batch gradient descent, where
gradients are computed over the entire training set. In batch gradient descent, the descent path appears
smooth and straight, while in stochastic gradient descent, the path towards the global minimum may
exhibit zigzag patterns due to its stochastic nature. Stochastic gradient descent’s focus on improving
the fit for a single training example results in faster progress, but without the guarantee of a downward
step with each iteration. Although stochastic gradient descent may bounce around the region close
to the global minimum, this is generally acceptable in practice, as proximity to the global minimum
suffices for most applications. Overall, stochastic gradient descent typically outperforms batch gradient
descent in terms of speed and performance [62].
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3.1.3.2.3 Mini-batch Gradient Descent

Mini-batch gradient descent offers a compromise between batch gradient descent and stochastic gradient
descent [62]. Unlike batch gradient descent, which updates weights using the entire dataset, and
stochastic gradient descent, which updates weights based on a single data point, mini-batch gradient
descent strikes a balance by utilizing mini-batches. This approach allows for more frequent weight
updates than batch gradient descent, resulting in faster convergence. Additionally, mini-batch gradient
descent leverages vectorized operations, which enhance computational efficiency and provide performance
gains over stochastic gradient descent. Figure 3.11 shows the convergence behaviour of optimization
methods discussed in this Section.

Figure 3.11: Convergence behaviour of batch gradient descent, stochastic gradient descent, and mini-batch
gradient descent [68].

There have been numerous variations and enhancements to the gradient descent algorithm over the
years, with ongoing research in this area. Some of the common algorithms include Adam [69], RMSprop,

Adagrad, Momentum, and Nesterov accelerated gradient [70].

3.1.3.3 Backpropagation: The Learning Mechanism

Backpropagation serves as the foundation for neural network learning. The training process typically
involves three steps: feedforward, error calculation, and weight update using a gradient descent
optimization algorithm. Backpropagation specifically refers to the backward pass, where derivatives
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of the error with respect to each weight are propagated from the output layer to the input layer to
adjust the weights. This iterative process continues until the minimum error is reached. When dealing
with a network with multiple layers and weights, the chain rule of calculus is employed to compute the
derivatives of the total error with respect to each weight [62]. Figure 3.12 shows an example of a neural
network with two inputs denoted by x1 and x2, one hidden layer with two neurons shown in h1 and h2,
and one output layer that is p̂i and is the predicted probability. Sigmoid is also used as an activation
function in this example. The equations that describe the network in Figure 3.12 are defined as

z1
(1) = w11

(1)x1 + w21
(1)x2 + b1

(1), (3.10)

z2
(1) = w12

(1)x1 + w22
(1)x2 + b2

(1), (3.11)

h1 = σ(z1
(1)), (3.12)

h2 = σ(z2
(1)), (3.13)

z(2) = w1
(2)h1 + w2

(2)h2 + b(2), and (3.14)

p̂i = σ(z(2)). (3.15)

Here, z in the notation indicates the input of hidden layer neurons before application of Sigmoid
activation function, the superscript shows the layer number, so (1) indicates the hidden layer and (2)

denotes the output layer. The subscript shows where the weight’s source and destination neuron (node)

are. For example, w12
(1) means the weight associated with the connection from input x1 to h2 neuron

in hidden layer.

 

b1
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Figure 3.12: The architecture of a simple neural network during backpropagation. The network consists of an
input layer with two neurons x1 and x2, a hidden layer with two neurons h1 and h2, and an output layer with a
single neuron p̂i. Bias units are added to the input and hidden layers. The weights w and biases b are adjusted
during backpropagation to minimize the error in the output p̂i.

The error function considered for this example is as follows,
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Error Function (E) = 1
2 |p̂ − y|2 =

n∑
i=1

1
2 |p̂i − yi|2 =

n∑
i=1

Ei, (3.16)

where p̂ stands for predicted output for all training examples and y is the true output for all training
examples. The goal is finding the effect of each terms, weighs and biases, and finding the direction where
the error function decreases the fastest. In order to optimize these terms, gradients of all terms need to
be calculated. In essence, the computed gradient in a layer is propagated backward. The gradient of

error function (E) to w1
(2) is calculated as follows:

∂E

∂w1(2) =
n∑

i=1

∂Ei

∂w1(2) . (3.17)

To compute the Equation 3.17, as w1
(2) in Equation 3.14 changes, z(2) gets affected and in the same way

changes of z(2) affect p̂i in Equation 3.15, and finally alteration of p̂i affects error function in Equation
3.16. Using the chain rule, the Equation 3.18 shows the series of gradients that need to be computed
and multiplied for final result:

n∑
i=1

∂Ei

∂w1(2) = ∂z(2)

∂w1(2) · ∂p̂i

∂z(2) · ∂Ei

∂p̂i
. (3.18)

3.1.4 Challenges in Model Training: Overfitting and Underfitting

CNNs can face performance degradation due to overfitting or underfitting. Overfitting is when a model
adapts too closely to the training data, almost memorizing it, without truly grasping the underlying
patterns. This results in poor performance on unseen data. Conversely, underfitting happens when a
model is overly simplistic, failing to capture the complexity of the training data [62].

3.1.4.1 Mitigating Training Challenges

Various techniques have been developed to counteract overfitting, ensuring models are both accurate
and generalizable. Sections 3.1.4.1.1 to 3.1.4.1.3 provides the common techniques.

3.1.4.1.1 Dropout

One of the strategic techniques devised to combat overfitting is the utilization of dropout layers. Dropout
operates by randomly disabling a predefined proportion of neurons in a network layer during both
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forward and backward propagation passes. This proportion, termed the dropout rate, is a tunable
hyperparameter set during network design. By introducing this randomness, dropout ensures that
no individual neuron or a set of neurons singularly dictate the network’s behavior. This randomness
pushes the network towards a more democratized decision-making process, wherein every neuron equally
contributes to the final outcome.

A consistent reliance on specific neurons or features can instigate a phenomenon called neuron co-
dependency, where certain neurons become overly specialized. Such specialization is a precursor to
overfitting. Dropout counters this by instilling a sense of uncertainty; any neuron can be “dropped”
or deactivated during training. Consequently, the network is coaxed into distributing the “knowledge”
more uniformly across its neurons, thereby mitigating overfitting. Interestingly, this behavior draws
parallels with ensemble learning [62]. In ensemble methods, multiple weaker models (classifiers) are
trained independently, and their combined outputs often result in a more robust and generalized model.
Dropout can be conceptualized similarly: by randomly deactivating neurons, multiple “sub-networks”
are trained within the main network. The collective behavior of these sub-networks equips the model
with better generalization capabilities.

Within the architecture of CNNs, dropout layers are predominantly placed between the fully connected
layers, especially post the flattening of convolutional features. This strategic placement particularly
addresses overfitting tendencies inherent to the dense, fully connected layers of CNNs. While the efficacy
of dropout in convolutional and pooling layers is recognized, its optimal placement and impact in these
layers remain active topics of research.

3.1.4.1.2 L1 and L2 Regularization

Regularization offers a mathematical approach to prevent overfitting by introducing certain constraints.
Both L1 (Lasso) and L2 (Ridge or Weight Decay) regularization techniques add penalty terms to
the model’s loss function based on the magnitude of the model’s weights. L2 regularization works by
penalizing the error function through the addition of a regularization term. This term reduces the
weight values of neurons, making them smaller and closer to zero, which simplifies the model. The
regularization term is calculated using the regularization parameter δ, the number of instances (m),

and the weight values (w) [62]. The formula is as follows:
Error Functionnew = Error Functionold + δ

2m

∑
||w||2. (3.19)

By incorporating the regularization term into the error function, the weights are updated during the
backpropagation process in a way that leads to smaller weights. This reduction in weights promotes
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a simpler neural network with fewer neurons. However, L2 regularization does not make the weights
exactly zero; it only decreases their impact.

In L1 regularization, a regularization term equal to absolute value of the weights is added to error
function as follows:

Error Functionnew = Error Functionold + δ

2m

∑
||w||. (3.20)

L1 regularization encourages the weights to be 0, leading to a more sparse network with more 0
values. Therefore, some of the neurons outputs are not considered for computation. In contrast to
L2 regularization, that L2 norm penalizes the larger weights more severely and results in less sparse
weights. Both L1 and L2 regularization have a parameter δ which must be fine-tuned and plays an
important role in regularization effect. A penalty that is excessively strong may result in underfitting,
while one that is too weak could lead the model to overfit the training data.

3.1.4.1.3 Batch Normalization

To understand how batch normalization functions, it is imperative to first grasp the concepts of
normalization and its distinction from standardization. During normalization, data is transformed
to lie within a range of 0 to 1. In contrast, standardization adjusts data to have a mean of 0 and a
variance of 1. The need for normalization arises when instances of a dataset each span different ranges,
complicating the neural network’s task of learning optimal weight values. In such scenarios, the weights
could vary drastically from one another, which is not ideal for learning.

One significant challenge in training deep neural networks is the issue of vanishing and exploding
gradients. As the gradient of the loss function is back-propagated through the network, layers far from
the output can sometimes receive gradients that are too small (vanishing) or too large (exploding).
This hampers the effective training of the network. The vanishing gradient problem can slow down
learning or make it come to a complete halt, as weight updates become negligibly small. Conversely,
the exploding gradient problem can cause weight updates to be exceedingly large, leading to network
instability. Suitable weight initialization techniques and appropriate activation functions can provide
initial remedies; however, these challenges might still manifest later during training.

In this context, batch normalization emerges as a solution, specifically designed to address the problem
of covariate shift. Covariate shift refers to the change in the input distribution to a learning algorithm,
which can hamper its ability to generalize. When training deep networks, internal layers can experience
a shift in their input distributions as the weights of the preceding layers change, a phenomenon termed
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internal covariate shift. This dynamic variability in input distributions across layers and training epochs
makes the network training process less stable and requires lower learning rates and careful weight
initialization.

Batch normalization, by normalizing activations of each layer, aims to mitigate this internal covariate
shift, thereby improving training efficiency. Rather than limiting normalization to the input layer, batch
normalization normalizes the output of every layer. This ensures consistent means and variances for
inputs across layers. By applying this normalization immediately before each layer’s activation function,
the technique allows the network to determine optimal scales and means for its inputs.

The process first ensures data has a mean of 0 and variance of 1. Following this standardization, it
introduces scaling and offset parameters with the following formula:

z(i) = γx̂(i) + β, (3.21)

where x̂(i) represents post-standardization values, γ is the scaling parameter, β denotes the offset, and

z(i) is the value after applying both scaling and offset. Both γ and β are learnable parameters, adjusted
during training.

The application of batch normalization accelerates convergence during training and enhances network
robustness. By mitigating the effects of covariate shift, it paves the way for subsequent layers to
process more consistent and stable data distributions. This normalization within the network not only
bolsters performance but also expedites the network’s convergence. Moreover, by maintaining consistent
activations, batch normalization can sometimes reduce the need for other regularization techniques.
This can potentially decrease a network’s tendency to overfit and sometimes diminishing the need for
other regularization techniques.

3.1.5 Evaluation Metrics

The evaluation of machine learning algorithms is a crucial aspect of any project. While a model may
demonstrate satisfactory performance when assessed using a specific metric, its performance may be
inadequate when evaluated using alternative metrics. One commonly employed metric is classification
accuracy, which is defined in Equation 3.22 as the ratio of correct predictions to the total number of
samples. This is defined as

Accuracy = Correct predictions
Total number of samples = TP + TN

TP + FN + FP + TN
. (3.22)
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The terms in Equation 3.22 are fundamental to understanding the performance of classification algo-
rithms:

• TP (true positive): This is when the model accurately predicts a positive class as positive.

• TN (true negative): This occurs when the model accurately predicts a negative class as negative.

• FP (false positive): This happens when the model mistakenly predicts a negative class as positive.

• FN (false negative): This is an instance where the model fails to identify a positive class,
incorrectly labeling it as negative.

However, relying solely on accuracy is insufficient for providing a comprehensive evaluation of a model’s
performance. In the following, some common types of evaluation metrics are explained.

3.1.5.1 Precision and Recall

Precision measures the accuracy of positive predictions made by the model. It answers the question:
out of all the instances predicted as positive, how many were actually true positives. In other words,
precision quantifies the model’s ability to avoid false positives. Whereas, recall, also known as sensitivity,
measures the model’s ability to correctly identify positive instances. It answers the question: out of all
the actual positive instances, how many were correctly identified by the model. Recall helps assess the
model’s ability to avoid false negatives. In order to compute these metrics, a confusion matrix is needed
(see Figure 3.13). It summarizes the predictions made by the model on a test dataset and compares
them to the actual ground truth labels. A confusion matrix is typically represented as a square matrix,
with rows representing the true classes and columns representing the predicted classes. Precision and
recall formulas are shown below. These two metrics provide complementary information about the
performance of a model. In this term F-score can mitigate this issue as described next.

Precision = TP

TP + FP
(3.23)

Recall = TP

TP + FN
(3.24)
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Figure 3.13: Confusion matrix depicting the classification outcomes of a predictive model. The matrix is divided
into four quadrants, with TP and TN representing accurate predictions for the positive and negative classes,
respectively. FP indicate instances incorrectly classified as positive, while FN represent positive instances that
were incorrectly classified as negative. This matrix serves for assessing the model’s predictive performance and
diagnosing areas for improvement.

3.1.5.2 F1-Score

The F1-Score is a metric that combines precision and recall into a single measure. It is commonly
referred to as the harmonic mean of the two metrics, which is more suitable for ratios like precision and
recall compared to the traditional arithmetic mean. The Equation 3.25 for calculating the F1-Score
balances the importance of precision and recall by requiring both to have higher values for the F1-Score
to increase. Therefore, it ensures that very low values in either precision or recall will result in a lower
overall score.

F1-Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.25)

3.1.6 Comparative Analysis of 1D, 2D, and 3D Convolutional Operations in Hy-
perspectral Data Processing

In processing hyperspectral data, convolutional operations play a pivotal role in feature extraction
and data classification. As illustrated in Figure 3.14, the convolutional operations differ based on
the dimensionality of the kernel used: 1D (spectral), 2D (spatial), and 3D (spatial-spectral). The
given figure provides a schematic representation of the movement directions of these kernels within a
volumetric dataset, commonly referred to as a hypercube.

• 1D-CNN (Spectral Convolution): This approach employs a 1D kernel that navigates solely
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across the spectral dimension (Z-direction) of the hypercube. While it predominantly extracts
spectral features, it misses the spatial interdependencies inherent in adjacent areas of the hypercube.

• 2D-CNN (Spatial Convolution): In contrast to the 1D-CNN, the 2D-CNN uses a 2D kernel,

sliding across the spatial dimensions (X and Y directions) of the hypercube. This method captures
spatial patterns and relationships but neglects the informative spectral features residing in the
depth (Z-direction) of the hypercube.

• 3D-CNN (Spatial-Spectral Convolution): The 3D-CNN offers a comprehensive approach

that uses a 3D kernel, traversing both spatial (X and Y directions) and spectral (Z-direction)
dimensions of the hypercube. Such convolution amalgamates the spatial patterns and relationships
with the rich spectral information embedded in the depth of the hypercube.

Traditional classification methods based on 1D-CNN and 2D-CNN exhibit inherent limitations in
hyperspectral data processing. This is attributed to the intertwined nature of spatial and spectral
features in hyperspectral data. Sole reliance on one feature type can yield subpar classification results.
The 1D-CNN, being spectral feature-centric, might overlook spatial correlations, while the 2D-CNN,
emphasizing spatial features, might bypass spectral intricacies. However, a 3D-CNN can extract
spatial-spectral features from the volumetric data. This is due to its ability to incorporate the spectral
dimension in addition to the spatial dimensions, which enables it to model and learn more complex
spatial-spectral representations. On the flipside, a straightforward generalization of l × l kernels to
their 3-dimensional versions increases the number of operations that must be performed to apply a
kernel by a factor of l. Not only the application of these kernels is computationally more costly, but
also their training becomes more challenging, as the kernel has more parameters. Taking no other

model-changes into account (as, for example in [71]) we would have to shorten kernel-sides by 3√
l2 to

keep computational complexity at roughly the same level.

3.2 Overview of 3D-CNNs-based Models Used in HSI Classification
of Diseased and Defective Crops

The objective of neural network architecture design is to create a model that can effectively learn from
the input data and generalize well to new, unseen data. In order to achieve this for HSI classification, a
network architecture must be developed that can capture the complex spectral and spatial information
present in the data. As an integral aspect of designing a neural network, the decision of the number of

39



 

 

 

 

 

 

 

 

 

 

 

3D Kernel 

2D Kernel 

X 

Y 

Z Y 

X 

Z 

1D Kernel 

a) 

b) 

c) 

Figure 3.14: Movement direction of convolution process using 1D, 2D, and 3D kernels in hypercube. A schematic
overview of movement directions for (a) 1D, (b) 2D, and (c) 3D convolutions in CNNs over a hypercube is
depicted. The X and Y directions denote the movement of the kernel across the spatial dimensions, while the Z
direction showcases the movement across the spectral dimension.

layers to use is a crucial one. While the inclusion of more layers in a network has been shown [72, 73] to
improve performance, it can simultaneously present several challenges. A notable challenge arises from
the potential occurrence of vanishing or exploding gradients [74], where the gradient signal becomes

too small or too large as it backpropagates through the layers during training (see also Subsection

3.2.2.1). Such a phenomenon makes it difficult for the network to learn and adjust its weights effectively.
Moreover, as the number of layers and parameters increases, the risk of overfitting rises, which is
characterized by the network’s ability to perform exceptionally well on the training data, but not
generalize well on unseen data. Consequently, the network may become computationally expensive
to train and use due to its high processing power and memory requirements. Additionally, gradient
computation time increases, thereby impeding the training’s efficiency. Hence, careful consideration

40



of these challenges and trade-offs is imperative to designing a network that balances complexity and
performance.

This section provides a comprehensive review of the architectural frameworks of 3D-CNN-based models
that have been employed for detecting and classifying diseases in agricultural crops through non-UAV-
based HSI. This includes charcoal rot in soybeans [75], mold in peanuts and strawberries [76, 77],

bacterial leaf blight (BLB) in rice [78], grapevine vein-clearing virus (GVCV) in grapevines [79], and

potato late blight (PLB) in potatoes [80]. We further explore the architecture of 3D-CNN-based models

for identifying specific defects in crops, such as decay in blueberries [71], bruise and brown spots in

fruits [81, 82], heat stress in rice [83], as well as black, fermented, shell, and broken coffee defects in

beans [7].

To categorize these models, we differentiate between hybrid and non-hybrid structures. A model is
deemed hybrid if it incorporates modules that enhance feature extraction and overall performance or
melds 2D-CNN elements within a 3D-CNN framework. Subsequently, we detail these 3D-CNN models’
application in classifying both diseased and defected crops using HSI data, with a summarization
provided in Tables 3.1 and 3.2 at the end of this Section.

3.2.1 Non-hybrid Architectures

Reference [75] presented a 3D-CNN model to classify healthy and diseased crop. This model consists of
two convolution layers with max pooling layers, and two fully connected layers, trained using the Adam
optimizer. To prevent overfitting, dropout mechanisms were used after the first max pooling and first
fully connected layer. A Weighted Binary Cross Entropy (WBCE) function of the form

LW BCE(y, ŷ) = −[β · y log(ŷ) + (1 − y) log(1 − ŷ)] (3.26)

was implemented to address imbalanced training data. Here y and ŷ represent binary variables for
whether the ground truth and predicted result belong to a given class, respectively. Using the coefficient
β the WBCE loss function assigns higher weights to the minority class, for example, the false negatives
rate decreases if β is set higher than 1, while setting it smaller than 1 reduces the false positive rate.

Although the above technique can classify and detect diseased crop, detection of asymptomatic diseased
crops at early stage and differentiating it from the healthy crops can be more challenging. In this respect,
Reference [77] developed a 3D-CNN model that improves classification accuracy of the asymptomatic
diseased crop without modification and preprocessing of input HSI data. The model consists of four
3D convolution layers in which the first and fourth layers each are followed by a 3D max pooling layer
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and a batch normalization. The rest of the convolution layers are only followed by batch normalization.
The output of the last 3D convolution layer is passed through a global average pooling and two dense
layers. In Reference [77] the results were improved further by preprocessing the input HSI data which
went through spectral differentiation, vertical expansion, and smoothing.

Automating the classification procedure of HSI data using software can effectively mitigate the time-
consuming process of implementing a deep learning pipeline. In this respect, Reference [83] developed an
open-source software that classifies seeds at pixel level using 3D-CNN. Though at first it was developed
for a specific crop (rice), the test experiments over other seeds are promising. This software utilizes
a 3D-CNN that consists of two 3D convolution layers, with two and four 3D convolution kernels for
the first and second layers, respectively. The output is then flattened via one fully connected layer
and classification is performed using a softmax function. However, this software as part of its feature
extraction process does not consider the global feature relationship which can improve its ability to
recognize and classify seeds accurately.

Reference [79] implemented a 3D-CNN for classification of a small size dataset. The feature extraction

part is implemented based on AlexNet [84] and constitutes 5 convolutional layers followed by a flattening
layer. The input layer takes an input of size 512×512×203, where 203 stands for number of bands. The
first two convolutional layers are followed by a max pooling layer and a batch normalization. After
that each convolutional layer is followed by a max pooling layer and after the last max pooling layer
batch normalization and flattenings is applied before feeding the result into a RF or SVM for binary
classification (healthy or diseased crop).

3.2.2 Hybrid Networks

3.2.2.1 3D-CNN Architectures Based on ResNet

To address the challenges of vanishing or exploding gradients [71] proposed to leverage residual
convolutional blocks within a 3D deep ResNet architecture. This approach reduces the number of
channels through the use of identity residual blocks and a convolutional residual blocks. The identity
residual block maintains the same input and output dimensions, while the convolutional residual
block changes the number of channels. The use of a l×l×l convolution kernel as the shortcut in the
convolutional residual block reduces the number of parameters and computational complexity.

To further improve efficiency, Reference [71] adopts a bottleneck structure that reduces the number of
required convolution operations. Each convolutional layer is followed by a batch normalization layer to
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prevent vanishing gradient and enhance convergence rate. The network uses Exponential Linear Unit
(ELU) as the non-linear activation function, which addresses the problem of dying neurons in ReLU.

In order to identify the appropriate hyperparameters, the authors employed a Tree-structured Parzen
Estimator (TPE) as an optimization algorithm. The TPE utilizes a probabilistic model to approximate
the distribution of the objective function and guides the search for optimal hyperparameters. For
the classification, a 7×7×1 global pooling layer and a fully connected are utilized. This model halves
the number of parameters and improves the computational time up to 10%. Moreover, the study of
Reference [81] over performance of well-known architectures in detection of defective crop demonstrates
that residual connections achieve higher accuracy, while training faster despite having more parameters.

3.2.2.2 Hypernet-PRMF Network

Reference [76] presented a feature pre-extraction and a multi-feature fusion block to extract peanut
characteristics from hyperspectral data. The feature pre-extraction includes constructing a Peanut
Recognition Index (PRI) based on two informative bands to distinguish healthy, moldy, and damaged
peanuts.

The multi-feature fusion block is a technique used in image segmentation to fully extract spatial and
spectral features from HSI data. This technique involves using multiple types of convolution kernels
including 2D convolution for common texture features, separable convolution for increased feature
diversity, depthwise convolution for band feature extraction, and 3D convolution for spectral change
information. The convolutions are concatenated after normalization and activation functions to enhance
diversity and improve recognition accuracy.

Moreover, the authors employed feature pre-extraction and multi-feature fusion block techniques in their
proposed peanut recognition model, called Hypernet-PRMF network. This model works at both peanut-
and pixel-level recognition. The model consists of four parts: feature pre-extraction, down-sampling,
up-sampling, and prediction. The feature pre-extraction part enhances the differentiation between
different peanut features. The down-sampling part reduces the size of the image while increasing the
number of convolution kernels, whereas the up-sampling part reconstructs the image while reducing the
number of convolution kernels. The prediction works based on the softmax function and the class of
maximum predicted probability is chosen as the final recognition result. The model achieves pixel-wise
recognition accuracy with the use of the watershed segmentation algorithm. This technique has the
potential to be employed for detection of other crops like sorghum.
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3.2.2.3 Spectral Dilated Convolution 3D-CNN

Reference [78] proposed a spectral dilated convolution (SDC)-3D-CNN model to detect crop’s asymp-
tomatic diseases at an early stage. This model consists of SDC modules along with residual blocks that
prevent the gradient vanishing problem. SDC extends the idea of dilated convolution which expands
the receptive field of convolution kernels without augmenting the model’s parameterization. Receptive
field is the portion of the input space needed to create a filter at any convolutional layer. The 3D-SDC
extends the receptive field of convolutional kernels to the spectral dimension. It works based on the
principle of applying a filter to an input with intermittent intervals, which are dictated by the spectral
dilation rate.

The network was tested with top 50, 100, 150, and 200 significant wavelengths extracted by RF and
Principal Components (PCs) of the same ranking by PCA along with different spectral dilation rate to
detect healthy, asymptomatic, and symptomatic crop. The experiment result shows higher detection
performance of the network using the top 50 important features extracted by RF at a dilation rate of 5.

3.2.2.4 Merged 2D- and 3D-CNN Architectures

Reference [7] developed a 2D-3D-CNN for real-time crop defect detection. This network is the detection

module of a real-time coffee-bean defect inspection algorithm (RT-CBDIA). The network consists of a
2D-CNN and a 3D-CNN, the former one is responsible to extract spatial features and the latter one
is accountable for extraction of spectral features. Combining these two networks can boost feature
extraction by providing robust and discriminative spectral-spatial features.

The 3D-CNN is comprised of two convolution blocks with the same structure as in the 2D-CNN except
that 3D convolutions and pooling layers are used. The two networks run simultaneously and their last
pooling layers will be merged and fed to the a fully connected layer and then a dropout layer to avoid
overfitting. Finally, a softmax layer determines each crop health status.

Likewise, Reference [80] fully extracted spatial-spectral features by merging 2D- and 3D-CNN architec-

tures using AttentionBlock [85] and Squeeze-and-Excitation (SE)-ResNet [86]. To accomplish this, the
model first creates a neighborhood block of size 11×11×10 around a center pixel from the input image.
Then, 2D convolution operations are used to extract spatial correlation features from the neighborhood
block, and 3D convolution operations are used to capture spectral correlation features. The model uses
four 2D convolutional layers and four 3D convolutional layers to capture feature maps of various spatial
and spectral dimensions. By using different sizes of convolution kernels and downsampling steps, varied
types of information can be captured.
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Finally, the extracted feature maps are fused together to create a final set of feature maps that contain
valuable and pertinent information required for effective classification. Herein, AttentionBlock and
SE-ResNet play important role, as outlined immediately below.

An AttentionBlock is used to highlight important information in the fused spectral space feature map.
It works by considering the similarity between each pixel in the feature map and weighting the relevant
pixels with higher importance. This is achieved through a series of 2D convolutions with a kernel
size of 1×1 to transform each pixel into an λ-dimensional vector, where λ represents the number of
feature channels in the input tensor. The similarity between any two pixels is then calculated using the
dot-product of their transformed vectors, and the results are weighted using a softmax function.

The output of an AttentionBlock is a feature map that emphasizes the relevant information while
suppressing irrelevant information. This process allows AttentionBlocks to focus on the relevance
between pixels in the entire feature map, rather than just the spatial range of the convolution kernel
size used in traditional convolution and pooling operations. This results in better classification results
with little computational complexity.

In order to enhance the representational power of CNNs, SE modules as a type of attention mechanism
can adaptively recalibrate the feature maps. It does so by capturing channel-wise feature dependencies
through a squeeze operation, followed by an excitation operation that learns how to weight the importance
of each feature map. This mechanism allows the model to pay more attention to salient channel features
and disregards the less significant ones. By integrating AttentionBlocks and SE-ResNet, the network of
Reference [80] can better generalize in classification and achieve higher accuracy.

Moreover, in the context of detection of two similar crop diseases that are indistinguishable to the naked
eyes, a recent study by Reference [82] developed a new network called Y-Net. The Y-Net model takes
in 10×10×203 hyperspectral data cubes as input and it consists of a channel attention mechanism, a
band selection module with auxiliary classifier, a 3D-2D-CNN architecture, and a classification module.

A CNN architecture is employed to conduct the band selection, where 1×1 1D convolutions are assembled
to modify the parameters of the convolutional kernel in the early phase of the network training. The
magnitude of the weight of the convolution kernel is indicative of the relevance of the band, with
greater absolute weight values signifying more distinctive bands. The use of group convolution helps in
preventing any hindrance from nearby bands, while the ReLU activation function is adopted for fast
network convergence without the problem of saturation. The output of this step will be given to an
auxiliary classifier that enables early-stage weight updating in the band selection block. The auxiliary
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classifier module updates the loss function of the Y-Net model:

L(y, ŷ) = (1 − θ) · LFinal Classifier(y, ŷ) + θ · LAuxiliary Classifier(y, ŷ) + β ·
n∑

j=1
Wj , (3.27)

where y is the ground truth label, ŷ is the predicted label, and θ and β are hyperparameters that control
the trade-off between the two losses and the sparsity of the band selection module, respectively. Wj is

the weight of the jth band in the band selection module and n is the number of total bands. The loss
is a combination of the cross entropy losses of the final classifier and the auxiliary classifier and the
sum of the weights of the band selection module. The purpose of this combination is to control the
classification accuracy while updating the weights of the band selection layer. The adjustment factor
θ gradually decreases as the number of training iterations increases. The presence of this adjustment
factor enables the Y-Net model to update the weights in the band selection module in the early stages
of training and gradually shift towards training the final classifier to learn a more accurate classification
model. Additionally, the auxiliary classifier helps to constrain the weight sparsity of the band selection
module, ensuring that the score of unimportant features is close to zero. The results of Reference [82]
show that by removing nonessential and nondiscriminative bands the accuracy of the Y-Net model
increases and reduces the model size and the number of parameters. Moreover, since the band selection
module is integrated into an overall architecture, the training time does not significantly increase.
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Table 3.1: Non-hybrid 3D-CNN-based architectures for detection of diseased and defected hyperspectral images
of crop.

CNN Model Information Reference

3D-CNN-based

Dataset: 111 hyperspectral images of soybean
Type of Disease: Charcoal rot
Imaging Device: Pika XC hyperspectral line imaging
scanner
Spectral range: 400–1000 nm
GPU: NVIDIA Tesla P40

[75]

3D-CNN based
on AlexNet

Dataset: 40 hyperspectral images of Grapevine groups
Type of disease: GVCV
Imaging Device: SPECIM IQ
Spectral range: 400–1000 nm
GPU: -

[79]

HyperSeed

Dataset: 200 rice seeds (274,641 pixels)
Type of defect: Heat stress
Imaging Device:Micro-Hyperspec Imaging Sensors,
Extended VNIR version
Spectral range: 600-1700 nm
GPU: -

[83]

3D-CNN-based

Dataset: Above 200 strawberry leaves (3,110 ROIs)
Type of disease: Gray mold
Imaging Device: Corning microHSI
Spectral range: 400–1000nm
GPU: NVIDIA RTX3090 X (24 GB memory)

[77]
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Table 3.2: Hybrid 3D-CNN-based architectures for detection of diseased and defected hyperspectral images of
crop.

CNN Model Information Reference

Hypernet-PRMF

Dataset: 16 hyperspectral images of peanut
Type of disease: Mold
Imaging Device: SOC710E portable hyperspectral
imager
Spectral range: 400–1000 nm
GPU: NVIDIA Tesla P100 GPU (12G)

[76]

Deep ResNet
3D-CNN

Dataset: 16,346 hyperspectral images of blueberry
Type of defect: Distinguishing decayed and sound
blueberries
Imaging Device: -
Spectral range: 400–1000nm
GPU: -

[71]

SDC-3DCNN

Dataset: Rice leaves (Number of taken samples are
not determined.)
Type of disease: BLB
Imaging Device: Raptor EM285
Spectral range: 378.28–1033.05 nm
GPU: NVIDIA GeForce RTX 2080Ti GPU and the
AMD Ryzen 5-1600 Six-Core processor @ 3.20 GHZ
CPUs

[78]

2D-3D-CNN
(Defect detection

module of
RT-CBDIA)

Dataset: 1026 coffee beans
Type of defect: Black, insect-damaged, and shell
Imaging Device: Imec XIMEA snapshot sensor
Spectral range: 660-980 nm
GPU: GPU of GEFORCE GTX1660 Ti and a RAM
of 16 GB

[7]

ResNet

Dataset: 210 lemons
Type of defect: Bruise
Imaging Device: It was not determined, however
was provisioned by Noor Imen Tajhiz Co..
Spectral range: 400-1100 nm
GPU: Trained on Google Colab

[81]

PLB-2D-3D-A

Dataset: 15,360 potato leaves
Type of disease: PLB
Imaging Device: Specim IQ
Spectral range: 400–1000 nm
GPU: NVIDIA Tesla V100

[80]

Y-Net

Dataset: 200 diseased corn leaves (extracted 6,264
regions)
Type of disease: Brown spot and anthracnose
Imaging Device : An HSI system provided by Head
Wall
Spectral range: 400–1000 nm
GPU: RTX 3090 24 Gb

[82]
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3.3 Preprocessing of HSI Data

Data preprocessing is a critical step in hyperspectral data analysis, aimed at optimizing the quality
and quantity of the data. This step enhances the suitability of the data for downstream tasks such as
classification and feature extraction. Preprocessing techniques include patch extraction, radiometric
correction and calibration, smoothing, dimension reduction, and background removal. Data augmen-
tation also falls under preprocessing and has the goal of increasing the volume of training data. We
demonstrate each technique based on research works conducted in domain of agriculture as follows.

3.3.1 Patch Extraction

Patch extraction is a technique that involves dividing an image into smaller images or patches. In
the context of HSI, patch extraction has significant advantages for efficient and targeted analysis of
specific regions of interest within an image. By extracting image patches that contain pixels with similar
properties, researchers can focus their analysis on areas of the image that are most relevant to diseased
or defective areas.

To give a concrete example, Reference [75] utilized patch extraction to analyze hyperspectral images of
soybean crops. In their study, they extracted spatial patches of size 64×64×240 from an original image
of size 500×1600×240, where the first two dimensions define the spatial resolution of the image and
240 denotes the number of spectral bands. By analyzing the properties of pixels within these patches,
they were able to extract features that were more representative of the target disease which ultimately
improved the accuracy and efficiency of their analysis. Furthermore, patch extraction helps to expand
the number of images when there is a lack of data. It also reduces computational time, as processing
hyperspectral images of large sizes can be computationally demanding [80, 82].

3.3.2 Data Augmentation

Imbalanced and scarce data is a common problem in many machine learning applications and HSI is no
exception. Imbalanced data, a special case of data scarcity, refers to the situation where the number of
samples in each class or category of the data is not evenly distributed. This can lead to a bias towards
the overrepresented classes in the analysis results, which is particularly problematic if the minority class
is of interest.

To address imbalanced HSI data, one common approach is resampling [79], which involves either
oversampling the minority class or undersampling the majority class to balance the class distribution.
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Resampling can be done randomly or using more advanced techniques such as Synthetic Minority
Oversampling Technique (SMOTE) [87] or Adaptive Synthetic (ADASYN) sampling [88]. Other

widespread data augmentation approaches include transformation techniques such as mirroring [76],

rotation [7, 76], horizontal and vertical flipping [7, 81], and color jittering [81]. Along with above-

mentioned methods, patch extraction (Section 3.3.1) can also be used to address imbalance HSI
dataset.

3.3.3 Radiometric Calibration and Correction

Radiometric calibration is an essential step in the accurate operation of hyperspectral cameras. It aims
to establish a quantitative relationship between the response of the camera sensor (the radiation sensor)

and the actual reflectance (radiation level) of an object in a given environment. The calibration process
involves assigning a “true” value for either radiation intensity or reflectance to the digital numbers
given by the camera that represent recorded outputs for each pixel and spectral channel. To that end,
calibrated reflectance standards are utilized, which usually consist of a matte Lambertian reflecting
surface to ensure that reflected light is uniform in all directions [89].

The calibration process is then performed as follows: After selecting a radiation source that emits
a known type and amount of radiation, the detector is placed in close proximity to the source to
measure the radiation. Next, using calibration factors provided by the manufacturer or based on known
mathematical formulas (see, for example, [80]) for the particular detector, the expected response of
the detector is determined. The measured response of the detector is then aligned with the expected
response based on the known radiation level using calibration factors. This calibration process should
be repeated periodically with different radiation sources to ensure the continued accuracy and reliability
of the detector’s measurements.

Even with calibration performed, hyperspectral cameras are susceptible to radiometric errors that can
arise from a variety of sources, including sensor drift, electronic interference, light source, and data
transmission and recording issues. For example, one of the common radiometric errors which relates to
the camera’s sensor is stripping. Each sensor consists of multiple individual detectors that sometimes
do not function properly due to being out of calibration. Consider a push broom (along-track) camera
where its sensor has multiple detectors aligned in a row. When one of them is calibrated slightly
different from the adjacent detector the striping effect can occur. In this case, lines predominantly
consisting of varying shades of dark and bright pixels formed. Radiometric correction can register and
rectify incorrect pixel brightness. To achieve this, a series of procedures are employed including noise
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correction, de-striping, line-dropout correction [90], and black and white image correction [7, 78, 82, 83].

Figure 3.15(b) shows the calibrated hyperspectral image of lettuce using the following computation,

Calibrated HSI Data = Raw HSI Data − Dark Ref
White Ref − Dark Ref , (3.28)

where, Raw HSI Data is the image taken by the hyperspectral camera without modification, Dark Ref
is the image captured by closing the camera’s lens, and the White Ref is the imaged white reference
with even and maximum reflectance across the spectral range.

Figure 3.15: Black and white calibration of HSI data. (a) The hyperspectral image of lettuce rendered before
black and white image correction; (b) The image shows the rendered hyperspectral image after black and white
image correction using the Equation 3.28.

3.3.4 Smoothing

Smoothing, also known as filtering, is a technique in HSI to improve the quality of the data by reducing
noise and artifacts and enhancing the signal-to-noise ratio of the data. This technique in HSI can be
broadly classified into two categories: spatial smoothing and spectral smoothing.

Spatial smoothing techniques selectively smooth out certain features in an image by applying filters that
amplify or attenuate certain spatial frequencies [90]. Common spatial smoothing techniques include

Gaussian filtering, mean filtering [91], median filtering, bilateral filtering [92], and anisotropic diffusion

filtering [93].

Spectral smoothing techniques operate on the spectral domain of an HSI image by smoothing the
intensity values of neighboring spectral bands. As in spatial smoothing the goal is to remove noise [94],
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reduce artifacts, and enhance features in the image. Common spectral smoothing techniques include
moving average filtering [94], Savitzky-Golay (SG) filtering [95], Fourier filtering, wavelet filtering,

and PCA. For example, [78] eliminated the random noise that was present in the spectral data of the

different region of interests (ROIs) using SG filtering. The filtering process makes it easier to identify
the true signal of the sample and remove interference caused by size and structure differences between
the ROIs. Similarly, [77] and [82] used a SG filter to smooth out the spectral data and reduce the effect
of noise.

As Reference [94] points out, care must be taken when applying smoothing techniques. The subjective
selection of smoothing filters in hyperspectral remote sensing studies can negatively impact the statistical
properties of the spectral data, which can, in turn, affect subsequent analyses. To preserve the statistical
properties of the HSI data, the selection of smoothing filters should be done through a comparative
t-test method that identifies the filter with the least statistical disturbances. By using this approach, it
is possible to mitigate the negative effects of smoothing filters and ensure the reliability of subsequent
analyses based on statistical class models.

3.3.5 Dimension Reduction

The large number of spectral bands within hyperspectral data often makes it challenging to process and
analyze HSI data. Dimensionality reduction techniques retain relevant information, while allowing the
model to work on smaller hypercubes downstream. These techniques are split into linear and non-linear
ones.

3.3.5.1 Linear Techniques

Linear dimension reduction in HSI refers to a set of statistical and machine learning techniques that aim
to find a lower-dimensional linear manifold in the high-dimensional space that captures the essential
spectral information of the data [96]. By embedding the data into this lower-dimensional linear space,
the dimensionality of the data is reduced while preserving as much of the spectral information as
possible. PCA and Random Forest (RF) are two examples of this technique, and demonstrations of

both can be seen in [78].

The process of PCA involves first zero-centering the input spectral matrix (i.e., the matrix of the spectral

bands) and computing its covariance matrix. Next, the eigenvectors and eigenvalues of the covariance
matrix are calculated, and the eigenvalues are sorted in descending order. The top k eigenvalues are
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then selected and the corresponding eigenvectors space computed. The k-dimensional data is obtained
by projecting the original spectral matrix into the new space using the selected eigenvectors.

On the other hand, an RF evaluates the importance of each wavelength by randomly replacing it and
measuring its effect on the accuracy of the thus trained CNN model. To accomplish this, the RF builds
many decision trees, and each tree is trained on a different subset of the data. The algorithm calculates
the importance score for each wavelength by measuring the change in the prediction error rate before
and after randomly replacing the wavelength in the out-of-bag data. The wavelength with the highest
importance score is selected, and this process is repeated until the desired number of wavelengths
is achieved. The dimensionality of the hyperspectral data is thus reduced, while retaining the most
important information for accurate predictions.

Further linear algorithms for dimension reduction of HSI data are described in [97] and encompass

Independent Component Analysis (ICA) and PCA-based algorithms like Incremental PCA (IPCA),

Sparse PCA (SPCA), and Randomized PCA (RPCA).

3.3.5.2 Non-linear Techniques

Non-linear techniques can handle data with complex and non-linear structures. Reference [98] classified

these techniques into Kernel-based and manifold learning [98]. Kernel-based techniques, like Kernel

PCA (KPCA), use non-linear mappings to transform data into higher-dimensional feature spaces first
on which linear techniques can be applied. Manifold learning algorithms, on the other hand, aim to
directly discover the intrinsic non-linear structure of data. See [96] for well-known manifold learning

techniques, including Isometric Feature Mapping (Isomap), Locally Linear Embedding (LLE), Local

Tangent Space Alignment (LTSA), Diffusion Maps, Sammon’s Mapping (SM), and Locality Preserving

Projections (LPP).

3.3.6 Background Removal

The data captured in hyperspectral images contains both foreground, called the ROI, and background
objects. In scenarios where the target object does not cover the entire scanning area the signals from
background objects can interfere with the data analysis, i.e., the background can contain noise that needs
to be filtered out [95]. This is especially true when dealing with images that exhibit color gradients. By
masking the background from the data, researchers can focus on the spectral signature of the ROI. This
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leads to improved target detection in classification task. It also reduces the computational complexity
of subsequent processing steps including the training 3D-CNN models [80].

There are various traditional techniques to extract he ROI from the hyperspectral image. These
techniques can be classified into several categories based on their underlying principles and are discussed
separately below.

3.3.6.1 Spectral Similarity-based Methods

These methods work based on the similarity between the spectra of the pixels within an image. Examples
of such methods include Spectral Angle Mapper (SAM) [99] and Spectral Information Divergence (SID)

[100]. SAM computes the spectral angle
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between the target reference spectrum R and each pixel spectrum T for all spectral bands λ in the
hyperspectral image. This results in a similarity measure that is insensitive to illumination variations
[101]. On the other hand, SID works based on the concept of information theory (entropy). It compares
the spectral information content of each pixel to a reference spectral information content. In general,
SAM is better suited for well-defined spectral variations and low background noise, while SID is more
robust to complex background noise and illumination variations.

3.3.6.2 Statistical-based Methods

These methods leverage statistical techniques to identify ROIs that share similar spectral properties
and produce a set of uncorrelated components capturing different aspects of spectral variability within
the image. For example, Minimum Noise Fraction (MNF) [102] is specifically designed to reduce the
impact of noise in the data by separating the noise and signal components of the HSI data. This makes
it particularly useful for operating on noisy HSI data but at the expense of more computational time.
Another technique, ICA (see Section 3.3.5.1), aims to separate the mixed signals into their independent
components, providing a more flexible approach to identify subtle spectral differences between ROIs.
Finally, PCA [7] decomposes the original HSI data into orthogonal components that represent the
directions of maximum variance in the data. In general, PCA is computationally more efficient than ICA
and MNF, as it involves a simpler mathematical transformation that uses standard matrix operations.
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3.3.6.3 Spatial-based Methods

These methods exploit the spatial correlation present in the image to differentiate between pixels within
and outside the ROI. Typically, these methods apply morphological operations or spatial filtering
techniques to extract features such as edges or texture, which are then used to segment the image
into ROIs. The Morphological Attribute Profile (MAP) [103] and the Spatial-Spectral Endmember

Extraction (SSEE) algorithm [104] are examples of spatial-based methods that use mathematical
morphology and spatial filtering, respectively.

SSEE first identifies the endmembers, or pure spectral signatures, present in the HSI data, and then
uses a spatial clustering algorithm to group adjacent pixels with similar spectral properties into ROIs.
On the other hand, MAP applies a series of morphological opening and closing operations to the image
to identify connected regions of pixels with similar morphological attributes, such as size and shape.
These connected regions can then be used as ROIs. These methods are computationally efficient and
can be useful in scenarios where spectral information alone is not sufficient for accurate ROI extraction,
such as in cases of low spectral contrast or high noise levels.

3.3.6.4 Hybrid Methods

These methods combine techniques to improve the accuracy and efficiency of the ROI extraction
process. One approach can be combining statistical-based techniques such as PCA, ICA, or MNF with
spatial-based techniques such as MAP or SSEE. For example, by combining MAP and PCA we can
exploit both the spatial and spectral information [105] in the HSI data for ROI extraction. These hybrid
methods can be effective in cases where neither spatial nor spectral methods alone are sufficient for
accurate ROI extraction.

3.3.6.5 Machine Learning-based Methods

Machine learning algorithms can also be used to extract the ROI. This process involves training a
model using labeled data to identify and extract regions with specific spectral characteristics. Once
trained, the model can be used to predict the presence of those characteristics in unlabeled data and
extract ROIs. This procedure is computationally efficient and allows for the extraction of subtle and
complex patterns that may not be easily identifiable through traditional methods. Some instances of
such techniques are Support Vector Machines (SVM) [106], RF [107], and CNN [108, 109].
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3.3.6.6 Software-assisted Manual Annotation

Manual definition of the ROI can be assisted by software specifically built to handle HSI data. Amongst
these are for example ENVI [110] and Spectronon [111] as commercial products, as well as the MATLAB

Hyperspectral toolbox. Examples for open-source and free software are SeaDAS [112], the Orfeo ToolBox

[113], and RSGISLib [114]. These packages provide HSI data analysis for a wide range of tasks discussed

before. An example of software-assisted annotation is the work of Reference [115] in which the authors
generated an ROI using ENVI by manually selecting the tissues or areas of interest in the false color
images of HSI data.

Researchers can utilize such software in addition to the above discussed algorithms. For example,
Reference [83] developed an open-source software which is specifically designed for analyzing HSI data
of seeds. It is able to remove the background of the HSI data and produces a binary mask using a
user-defined minimum and maximum intensity threshold along with a component-searching algorithm.
The results are an accurate segmentation of the seeds even when they overlap.

3.4 Band and Feature Selection

The selection of spectral bands in HSI is another crucial preprocessing step for classification tasks.
It entails the identification of a subset of the most discriminative spectral bands from all available
bands. This process is instrumental in reducing data dimensionality by eliminating redundant bands,
thereby significantly reducing the computational overheads of downsteam tasks. Furthermore, the
careful selection of spectral bands can also reduce the effects of noise in the data. In general, based on
the survey of Reference [116], band selection mechanisms can be categorized into six groups as follows

(another classification of methods is presented in [117]).

3.4.1 Ranking-based selection

Ranking-based band selection methods evaluate the significance of each spectral band based on a
predetermined criterion and choose the most important bands in a sorted order. These methods can be
categorized into two types: supervised and unsupervised. In supervised ranking-based methods, labeled
training samples are utilized to determine the importance of each spectral band, while in unsupervised
ranking-based methods, statistical properties of the data are used for the same purpose.

One example of such method is spectral differentiation. Reference [80] employed first and second order
differentiation to decrease the computational complexity of HSI data containing 204 bands. The first
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derivative can effectively pinpoint areas in the spectrum where the rate of change is highest. This
indicates the presence of sharp spectral features such as absorption or emission lines. Moreover, it
allows for the selection of bands that capture these features and thus, provide critical information for
classification or detection tasks. The second derivative is useful for identifying regions of the spectrum
where the rate of change of the first derivative is highest, signifying the presence of spectral curvature.
The selection of bands that capture the shape of the spectral signature, based on this information, can
enhance the differentiating power in classification or detection tasks. Likewise, Reference [77] achieved
an increase in accuracy using spectral differentiation and expansion of the input in the vertical direction
of the raw data. This technique was applied in addition to SG smoothing (see Section 3.3.4) to further
improve data quality.

3.4.2 Searching-based Selection

Searching-based band selection methods involve the creation of a criterion function such as Euclidean
distance and Bhattacharyya distance [118] to evaluate the performance of each spectral band based on
a specified optimization objective. The first step involves creating an initial subset of bands, followed
by an assessment of the criterion function for the subset. The next step is applying a searching strategy
to identify the best subset of bands that maximizes the criterion function, and evaluating the selected
subset based on data classification performance. This iterative process continues until the desired level
of performance is reached. Searching-based methods largely depend on the quality of the criterion
function and the optimization strategy employed. Incremental searching [119, 120], updated searching

[121, 122], and eliminating searching [123] are among the commonly utilized strategies.

3.4.3 Clustering-based Selection

Clustering-based methods for hyperspectral band selection group bands into clusters and select represen-
tative bands from each cluster to create a final subset. These algorithms can be unsupervised [124, 125],

supervised [126] or semisupervised [127, 128]. The selection of representative bands is typically per-
formed using information measurements, such as mutual information or Kullback–Leibler divergence.
Commonly used clustering techniques are K-means, affinity propagation, and graph clustering. K-means
selects the best cluster centers that minimize the sum of distances to a set of putative center candidates.
Affinity propagation selects exemplars by considering the correlation or similarity among bands and the
discriminative capability of each band.
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3.4.4 Sparsity-based Selection

Sparsity-based techniques for band selection rely on sparse representation or regression to identify
representative bands. The most common of these methods are discussed separately below.

3.4.4.1 Sparse Nonnegative Matrix Factorization-based Methods

These methods [129] break down the hypercube into a set of building blocks, which are both nonnegative
and sparsely encoded. This promotes a feature extraction process that combines these building blocks to
create a parts-based representation of the original data. The goal of this method is to identify the most
informative bands of the HSI data matrix by optimizing an objective function that includes sparsity
constraints.

3.4.4.2 Sparse Representation-based Methods

Sparse representation-based methods [130, 131] use pre-defined or learned dictionaries to select in-
formative bands of the HSI data matrix based on their sparse coefficients. These methods rank the
bands according to the frequency of their occurrence in the sparse coefficient histograms. In some cases,
sparse representation-based methods can also be designed to solve multiple tasks simultaneously, and
an immune clonal strategy can be used to search for the best combinations of informative bands.

3.4.4.3 Sparse Regression-based Methods

Sparse regression-based techniques [132, 133] transform the band selection problem into a regression
problem and estimate the most representative bands by solving a sparse regression problem. These
methods can also include sparsity constraints to encourage the selection of only the most informative
bands for the regression model.

3.4.5 Embedding-learning-based Selection

Embedding-learning based methods aim to learn a low-dimensional representation of the spectral data,
also known as an embedding, that captures the most salient features of the data. There are several types
of embedding learning-based methods that can be used for band selection, including autoencoders [134],

Deep Neural Networks (DNN) [135], and CNNs [136]. Autoencoders learn a compact representation of
the input data by training a neural network to encode the input into a lower-dimensional space and
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then decode it back into the original space. DNN, on the other hand, consists of multiple layers of
interconnected neurons. This architecture enables the network to learn complex patterns and features
in a hierarchical manner, empowering it to extract high-level representations from the input data.
Meanwhile, CNNs can learn spatially invariant features from image data.

These techniques aim to learn a set of parameters that minimize an objective function that measures
the model’s performance on a particular task, such as classification or target detection. Band selection
is integrated into the optimization process by constraining the learning algorithm to focus on a subset
of the available bands, or by assigning weights to each band that reflect its relevance to the task
at hand. The resulting model can then be utilized to predict the class label of new samples or to
detect the presence of specific targets in the image. For example, Reference [7] employed a DNN based
binary classification to identify the foreground and background regions of the HSI data. Subsequently,
connected component labeling algorithms and edge contours were used to isolate the ROI from the
image for further analysis.

Moreover, Reference [82] implemented a CNN-based band selection module that works based on a group

convolution technique, which involves applying a 1×1 one-dimensional convolution (equivalent to a

scalar multiplication) to each band of the input hyperspectral image independently. This technique
helps to overcome the problem of mutual interference between different channels. The weights of the
convolutional kernel are updated in the early stage of the network training using a loss function and an
auxiliary classifier. The weights represent the importance of each band, with a higher absolute value of
weight indicating greater importance of the corresponding band.

3.4.6 Hybrid-scheme-based Selection

Hybrid-scheme based methods involve combining multiple band selection techniques to select the most
appropriate bands. A popular combination is clustering and ranking [137, 138], where clustering is used
to group bands and ranking is used to select the most important bands within each cluster. Other
hybrid methods combine clustering with searching or combine ranking with searching to further optimize
band selection.

3.5 Visualization Techniques for HSI Classification Decisions

Visualization techniques can be employed to observe the contribution of pixels in the classification
decision. These techniques allow us to identify the pixel locations associated with the most important
spectral bands that play a crucial role in the final classification results.
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Saliency maps [139] are one of the essential and traditional visualization tools to identify the most

sensitive regions (crucial pixels) in an image with respect to a model’s predictions. This technique works
by computing the gradient of the output class score with respect to the input image. This gradient
represents how much each pixel in the input image contributes to the final classification decision. Next,
the absolute values of these gradients are summed across the channels to obtain a saliency map, which
highlights the most salient regions of the input image for the predicted class.

For example, Reference [75] discovered that saliency maps can help to locate the most sensitive pixel
locations in infected crop images, which are often the severely infected areas. Conversely, both healthy
and infected crop images had saliency map gradients that were primarily focused around the mid-region
of the crop stem, highlighting the stem’s importance in crop classification. Moreover, [78] observed
that the significant wavelengths extracted by RF from raw HSI data overlaps the saliency-sensitive
wavelengths. More importantly, saliency maps can determine significant wavelengths for classification
which are not extracted by RF.

Another visual explanation technique for CNN decision is the Gradient-weighted Class Activation
Mapping (Grad-CAM) [140]. It was introduced as an improvement over CAM [141]. CAM involves
modifying a pre-existing CNN model by replacing the final FC layer with a global average pooling layer,
which retains essential channel information while reducing the spatial dimensions. This modification
enables the utilization of feature maps from the preceding layer. By applying learned weights to these
feature maps through global average pooling, CAM generates a map that highlights the crucial regions
associated with the predicted category. However, CAM provides a coarse localization of the important
regions within an image. It highlights the regions that contribute most to the predicted class, but
it does not provide precise boundaries of those regions. To address this limitation, Grad-CAM was
introduced as an extension to CAM.

Grad-CAM enhances the CAM approach by incorporating gradient information. Similar to CAM,
Grad-CAM also utilizes a global average pooling layer after the last convolutional layer to obtain
importance scores for each channel in the feature maps. However, instead of learning separate linear
models for each class, Grad-CAM calculates the gradients of the predicted class score with respect
to the feature maps. These gradients are used to weigh the feature maps and enables Grad-CAM to
identify more intricate features that play a significant role in the classification decision.

In addition, there are further statistical techniques that help in analyzing the importance of individual
features (spectral bands) of HSI data in a classification. Light Gradient Boosting Machine (LightGBM)

[83, 142] is one of such methods that uses decision trees in calculating feature importance. It builds
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decision trees in a leaf-wise manner, meaning that the algorithm grows the tree by adding new leaves
one at a time which is computationally faster compared to level-wise approach by selecting the best
split based on the maximum reduction in loss function for all leaves in the tree. Therefore, LightGBM
calculates the importance of each feature by evaluating how much it contributes to the reduction in
loss function across all trees. The feature importance score is calculated by summing up the number
of times a feature is used to split the data across all trees, weighted by the improvement in accuracy
achieved by each split. Features that are used more frequently and result in larger improvements in
accuracy are assigned higher importance scores.

3.6 Discussion and Conclusion

In Section 3.2, we conducted a comprehensive review of 3D-CNN-based models applied in the domain
of agriculture using non-UAV-based HSI data. Our analysis delved into diseased and defective crops,
focusing on the structures and efficiencies of the models, the quantity of datasets utilized, and the
necessary preprocessing steps (see Section 3.3). The review indicates the advantages of 3D-CNNs in
capturing spatial-spectral information within hyperspectral data, enabling them to outperform 1D- and
2D-CNN in hyperspectral image classification. With the aim of assisting computer vision experts and
agriculture-domain researchers in tackling HSI classification tasks for crops experiencing stress, this
comprehensive review provides valuable insights and guidance.

In general, HSI holds great potential for detecting subtle changes in crop growth and development,
making it a promising technique for diagnosing crop diseases and defects. Despite this potential,
our study indicates that there is still limited research conducted that use 3D-CNNs in this context.
Furthermore, the studies that are performed are often very application-specific and it is unknown how
well the performed methods and models generalize to a broader range of applications. We identify three
major challenges that must be overcome to achieve a broader adoption of HSI in general and the usage
of 3D-CNN for HSI classification problems: limited availability of hyperspectral data, computational
complexity of 3D-CNN models, and the costs of HSI hardware. In the following we address each of
these challenges in more detail and offer ideas on how to overcome or avoid them.

Limited availability of varied hyperspectral data on diseased and defective crops presents a significant
challenge for researchers, farmers, and stakeholders in the agriculture industry who rely on data to
make informed decisions. The lack of data in this area of the research hampers efforts to understand
the extent of the problem and develop effective solutions. It makes it difficult to track the progress
and success of any initiatives aimed at improving crop health and reducing the prevalence of disease
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and defects. To address this issue, there is a need for increased investment in data collection and data
sharing, as it has been done in the past, for example, for RGB-data (e.g., [143, 144]). Large-scale HSI
data collection and publicly available datasets will allow research groups to develop the next generation
of models, even if they have no access to the otherwise required hardware and plant material. Even
with small datasets there are also techniques to models beyond the specific application case they had
been trained on. In recent years, transfer learning and active learning techniques have been increasingly
used together to tackle the challenges posed by limited data. By leveraging knowledge from pre-existing
models, transfer learning can enhance the accuracy of models trained on limited HSI data. On the other
hand, active learning involves selecting and annotating informative samples to improve the effectiveness
of models trained on small HSI datasets. By combining the two techniques, transfer learning and active
learning can address the bottleneck of limited HSI data and enable the development of robust 3D-CNN
models capable of accurately classifying HSI data.

The computational complexity of 3D-CNN models is a barrier for their deployment in the field, for
example, in edge computing devices or even as part of an embedded system in UAVs or agricultural
equipment. Real-time diagnosis could significantly enable farmers to quickly detect and respond to
disease outbreaks, which can help to prevent the spread of disease and reduce crop losses. This requires,
however, researchers to explore ways to optimize their models for speed and efficiency, particularly their
memory-footprint. This can be achieved through advancing the capabilities of single board computers,
particularly their GPU and AI accelerators, on the one side, as well as developing lightweight models on
the other side, for example, by reduction of used bands or grouping of bands into indices. Identifying
the spectral bands that are most informative for detecting a varied range of diseases and defects would
play an important role in reducing the model’s training computational time, decreasing the number of
parameters, achieving higher accuracy and generating a more lightweight model.

Despite the valuable insights hyperspectral imaging provides regarding the condition and health of crops,
deploying this technology is relatively costly compared to RGB and multispectral imaging technologies.
The higher expense is primarily attributed to the increased processing power required to analyze the
HSI data and the extensive range of spectrum offered by hyperspectral cameras.

One approach to consider for cost reduction is the limitation of the number of bands in hyperspectral
cameras, as not all spectral bands may be equally crucial for disease and defect detection. Therefore,
instead of having an imaging device that supports full range of wavelengths from the visible to the infrared
spectrum, we can deploy imaging systems that work with essential wavelengths rather than hundreds
of spectral bands. In this respect, some companies already provide the facility to design customized
multispectral systems, which work with bands that had been identified to be the most discriminative
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(see [145] for a 3D-CNN model training advantage of this approach). Therefore, developing methods
for identifying the most informative spectral bands would also be cost beneficial. Furthermore, by
leveraging Machine Learning as a Service (MLaaS) platforms [146], the need for required infrastructure
to process HSI data using 3D-CNN can be eliminated. Additionally, leading MLaaS providers can
integrate pre-built 3D-CNN models into their offerings for training HSI data, thereby reducing the time
and effort required for model development, especially for individuals in the agriculture domain who may
have limited machine learning expertise.

In summary, the application of 3D-CNNs with hyperspectral data for disease and defective crop detection
is a promising research area with several open research questions. Collecting and sharing HSI data on
scale, identifying informative spectral bands, developing transfer and active learning techniques, and
implementing light-weight architectures are some of the key research areas that can be considered for
future work. The advancement of this research will lead to more accurate and efficient disease and
defective crop detection, which can have significant impacts on the agricultural industry.
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Chapter 4

Experimental Framework and Results

This chapter is organized as follows: In Section 4.1, we detail the planting materials, the growing
conditions, and the methods used for applying nitrogen stress. Section 4.2 provides an in-depth look
at the hyperspectral camera’s features, along with the setup necessary for data acquisition, including
defining aspect ratio and focal length. The preprocessing steps to prepare the data for neural network
analysis are outlined in Section 4.3. Section 4.4 offers an overview of the hyperparameters we optimized
in the design of the 3D-CNN model and outlines our rationale for choosing Bayesian optimization over
other techniques. In Section 4.5, we delve into the specifics of the model designs and discuss the results
obtained. Finally, Section 4.6 analyzes the importance of different channels across the visible and NIR
spectrum.

4.1 Planting Materials and Procedure

In this study, Buttercrunch lettuce was used for nitrogen stress experiment. The lettuce seeds were
produced by A. E. McKenzie Co. ULC. On July 5, 2022, 45 pots of lettuce were prepared by sowing
3 seeds of lettuce in each pot containing coconut coir. Coconut coir is a growing medium and soil
improver, a 100% natural and renewable soil amendment harvested from coconut husks to help plants
develop stronger root systems and improve nutrient and moisture retention in the soil. Moreover, coir
works as a soil conditioner and is naturally disease and weed free. It also improves the flow of moisture.
By planting few seeds (3 seeds) in each pot, it was assured that there would be at least one lettuce
seed that could germinate. A few days after sowing the seeds, only one was kept in each pot. All the
planting procedures and experiments occurred in a growth chamber at The University of Winnipeg
under temperature of 21 ℃ with 16 hours of light and 8 hours of darkness. The average humidity for
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the course of experiment was 50%. The lighting sources were series of LED grow lights (HEDERA

APEX) with 6 individually adjustable color channels. In this study, 15 lettuces are grown per group of

N-, N+1/2, and N+. The watering took place every other day under the supervision of a greenhouse
technician. The application of nitrogen stress treatment started on July 15, 2022, by adding 50 ml of
fertilizer solution to each pot and continued till August 12, 2022, with 7-day intervals. The fertilizer
ingredients were provided in Table 4.1 for each sub-experiment.

Table 4.1: Ingredients of solutions used for applying nitrogen stress.
Ingredients No Nitrogen (mg/L) 1/2 Nitrates (mg/L) Nitrates (mg/L)
Ammonium Nitrate None 825 1650
Boric Acid 6.2 6.2 6.2
Calcium Chloride, Anhydrous 332.2 332.2 332.2
Cobalt Chlorid·6H2O 0.025 0.025 0.025
Cupric Sulfate·5H2O 0.025 0.025 0.025
Na2EDTA·2H2O 37.26 37.26 37.26
Ferrous Sulfate·7H2O 27.8 27.8 27.8
Magnesium Sulfate, Anhydrous 180.7 180.7 180.7
Manganese Sulfate·H2O 16.9 16.9 16.9
Molybdic Acid (Sodium Salt)·2H2O 0.25 0.25 0.25
Potassium Iodide 0.83 0.83 0.83
Potassium Phosphate, Monobasic 170 170 170
Zinc Sulfate·7H2O 8.6 8.6 8.6

4.2 Data Acquisition

To generate the hyperspectral dataset of lettuces under nitrogen stress, a SPECIM FX10 hyperspectral
imager was used to perform the hyperspectral imaging. The FX10 camera series is built around the
monochrome complementary metal oxide semiconductor (CMOS) image sensor [147] that provides

spatial resolution of 1024 pixels at a wide range of spectral sensitivity (400 to 1000 nm). It is aimed
at standard applications in industrial and laboratory image processing. The SPECIM FX10 collects
hyperspectral data through single fore optics. It works in a push-broom mode, which means the sensor
captures one line of the scene at a time when considering a standard 2D image. Each line corresponds
to a narrow strip of the target area. This camera captures the X dimension in each frame, while the Y

dimension is formed by moving the target (see Figure 4.1). To achieve square pixels in both the X and
Y dimensions, adjusting the speed of the target and the camera’s frame rate is necessary. Additionally,
the aspect ratio can be manipulated by imaging geometric shapes, such as squares or circles, and then
controlling the final shape’s appearance in the captured image. We used the camera’s round lid, as
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suggested by the manufacturer, as the target to configure the speed and frame rate. This approach
provides precise control over the image’s spatial characteristics. The exposure time, frames per second
(FPS), and scan speed are set according to the manufacturer’s manual. Figure 4.1 shows images of
the camera’s black lid under different configurations of FPS and scan speed, using a fixed exposure
time. These images demonstrate how varying these parameters can influence the characteristics of the
captured hyperspectral data.
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Figure 4.1: Defining the aspect ratio. Round lid shape was captured under different configurations of FPS and
scan speed using fixed exposure time. The camera captures the X dimension in each frame and forms the Y
dimension by moving the target, allowing for the adjustment of target movement speed and frame rate to attain
square pixels in both dimensions.

To define the focal length, we created a cardboard stair-shaped structure with three levels, as depicted
in Figure 4.2. Focal length is the distance between a camera’s sensor and the optical center of its lens.
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A longer focal length narrows the perspective and brings subjects closer, often blurring the background,
while a shorter focal length enhances the perspective and typically yields a clearer, more focused image.
To balance between a blurred background and image clarity, we aligned the top of the plant with level 1
and adjusted the focal length to achieve optimal clarity at both levels 1 and 2.

 

Level 1 

Level 2 

Level 3 

Figure 4.2: Optimizing focal length using a stair-shaped structure: aligning the plant with level 1 for balanced
background blur and image clarity at levels 1 and 2.

The strategy used to produce a collection of HSI data was to image the plants in short intervals. In this
study, on average the imaging was performed almost every 3 days (on July 18, July 21, July 25, July 28,

August 1, August 5, August 8, August 11, and August 14). Each pot of lettuce is located on a tray table

(see Figure 4.3) and the camera is perpendicular to the tray table surface. We made sure to only water
the plants after they were imaged to maintain consistent imaging conditions. To minimize surrounding
light effects, we kept the lights off during the imaging process. The illuminators are placed 45 degree
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angle lighting based on provided assembly instruction by the manufacturer. In total 404 hyperspectral
images were collected for post experiment duration consisting of 135, 134, and 135 hyperspectral images

per N-, N+1/2, and N+ class, respectively. Figure 4.4 displays images of lettuce under standard nitrogen
treatment across blue, green, and red bands, along with the corresponding spectrum for a selected pixel
on both the soil and the leaf, within the 400 to 1000 nm range.

Figure 4.3: SPECIM FX10 camera. The Specim FX10 hyperspectral camera operates in the 400 to 1000
nm range and features a spatial resolution of 1024 pixels and a spectral resolution of 5.5 nm, functioning in
push-broom mode.
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Band 46: 516.29 nm Band 96: 650.29 nm Band 27: 465.98 nm 

(a) 

RGB image of a lettuce under 
standard amount of nitrogen. 

(b) 

Figure 4.4: a) Images of a lettuce plant under a standard amount of nitrogen treatment across blue, green, and
red bands. b)The image displays lettuce under standard nitrogen treatment and the corresponding spectrum for
a randomly selected pixel on both soil and leaf, ranging from 400 to 1000 nm.
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Moreover, Figure 4.5 displays the RGB image of the same plant across all bands within the blue, green,
and red ranges, where each single image per band is averaged across the corresponding band.

 

 

 

Figure 4.5: RGB visualization of lettuce plant: averaged images across blue (450-495 nm), green (495-570 nm),
and red (620-750 nm) bands.

4.3 Data Preprocessing

Data preprocessing is a critical step in hyperspectral data analysis, aimed at optimizing the quality
of the data. This step enhances the suitability of the data for downstream tasks such as classification
and feature extraction. In Sections 4.3.1 and 4.3.2, the preprocessing steps are demonstrated. Our
focus on detecting early and subtle indications of Nitrogen deficiency led us to concentrate our analysis
specifically on observations made on July 18 and 21. In this regard we have to note that, during these
early stages of growth, identifying visual differences presents a well-known challenge. Figure 4.6 depicts
the summary of the preprocessing conducted in this research. As the aim of this research is inspecting
all the 224 spectral bands, we did not perform the feature and band selection steps explained in Section
3.4.

4.3.1 Black and White Calibration

The imaged hyperspectral data is raw uncorrected data, it can be inspected as images, but the spectra
do not look as real NIR spectra until the reflectance or absorbance values are calculated [148]. In order
to view images with colors close to what is observed, it is necessary to calibrate them with a black
reference (automatic shutter closing) and white reference (with the white reference positioned on the
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Start

Read “.raw” data

Convert “.raw” data to 3D array

Crop hyperspectral images to have
spatial size of (height=210, width=200)

Calibrate the data using black and
white calibration (Equation 3.28)

Replace negative voxel values
with average of sum of neigh-
bour voxels with values ≥ 0

Stop

Figure 4.6: This flowchart shows the preprocessing steps of HSI lettuce dataset.

tray table) through the procedure [149] discussed in Section 3.3.3. Figure 4.7 shows the black and white
references used to calibrate each hyperspectral image.
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(a) 

(b) (c) 

Figure 4.7: Black and white calibration. (a) shows the SPECIM FX10’s shutter. (b) and (c) show the white
reference.
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After the calibration process, certain voxel values may be negative. These negative values are not
meaningful in the context of reflectance data since reflectance typically varies between 0 and 1,
corresponding to 0% to 100% reflectance. To address this issue, each negative voxel value is adjusted
based on its neighboring voxel values. Specifically, any voxel with a negative value, denoted by vxyz,
is replaced with the average of its immediate non-negative neighbors in the 3D space. For a voxel
located at position (x, y, z) in a 3D space, its immediate neighbors are voxels at positions (x + 1, y, z),

(x − 1, y, z), (x, y + 1, z), (x, y − 1, z), (x, y, z + 1), and (x, y, z − 1).

Given this configuration, the corrected value for the voxel, v′
xyz, can be computed as:

v′
xyz =

{ 1
N

∑x+1
i=x−1

∑y+1
j=y−1

∑z+1
k=z−1 vijk if vxyz < 0 and vijk ≥ 0

vxyz otherwise.
(4.1)

Here, x, y, and z represent the spatial coordinates of a voxel in the 3D space, and N is the number of
non-negative neighboring voxels around vxyz.

This method ensures that negative voxel values are adjusted in a way that is consistent with their local
surroundings in the 3D space. An illustrative depiction of this voxel adjustment process can be seen in
Figure 4.8, where the negative voxels are shown in white and their neighboring voxels in different colors.

4.3.2 Data Normalization

Normalization seeks to adjust data such that each input, in this case a voxel in 3D data, adheres to a
consistent range. In this study we used min-max normalization. It adjusts the scale of the data but
maintains the relative distances between values. This means that while the scale of the data changes, the
proportional differences between any two values remain the same. For instance, if one voxel’s value was
twice as large as another before normalization, this relationship will still hold true after normalization.
This is important because it ensures that the inherent structure and relationships within the data are
not distorted during the scaling process.

Let’s consider a 3D dataset V containing voxels vijk where i, j, and k are spatial indices spanning
the width, height, and depth of the voxel, respectively. To implement min-max normalization, we first
determine the minimum (minV ) and maximum (maxV ) values in the dataset. Each voxel value is then
transformed using the following formula:

zijk = vijk − minV

maxV − minV
.
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Figure 4.8: Neighbour voxels.

This formula rescales every voxel value to lie within the [0, 1] range, mapping the minimum value of the
dataset to 0 and the maximum value to 1. It preserves the relationships among the original data values
and it ensures: 1) each voxel’s value is scaled to the [0, 1] range which promotes uniformity, 2) all voxel
values now span a consistent range, mitigating the disproportionate impact of higher magnitude values.

4.4 Hyperparameter Optimization for 3D-CNN Architectures

Several hyperparameters need to be define to design the architecture of a CNN. Hyperparameters
values determine the structure and behavior of the training process. Unlike the internal parameters
(often referred to simply as “parameters”) of a model, which are learned from data during the training
process, hyperparameters are not directly learned through the training process. Table 4.2 provides list
of hyperparameters we considered within this research and the details are as follows:

• Number of convolutional layers dictates the depth of the CNN and thus its capacity to learn
hierarchical features from the input data. Deciding on the optimal number involves a balance
between the model’s capacity and its computational efficiency, as well as considerations about
overfitting and training stability.

• Number of filters in a 3D convolutional layer dictates how many distinct spatial-spectral features
the layer can learn from its input volume. Setting this hyperparameter involves considering both
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Table 4.2: List of hyperparameters.
Category Hyperparameter
Convolutional layer Number of convolutional layers

Number of filters
Filter size
Stride size

Pooling layer Pooling size
Stride size

Dense layer Number of dense layers
Number of neurons (units)

Dropout layer Dropout rate
General hyperparameters Batch size

Number of Epochs
Learning rate

the representational capacity desired and the computational costs associated with the increased
complexity of 3D data.

• Filter size in 3D convolutional layers determines the spatial and depth extent to which the network
processes the input volume at each layer. Properly tuning this hyperparameter is crucial for the
balance between capturing relevant features and managing computational complexity.

• Convolution stride size determines the step size at which the kernel is applied to the input data.
The stride affects the size of the output feature map. A larger stride will produce a smaller output
dimension, as the kernel covers the input space more quickly and skips more voxels. Conversely, a
smaller stride will produce a larger output dimension, as the kernel moves more slowly across the
input.

• Pooling layer size in 3D convolution determines the volume’s extent over which pooling, like
max-pooling or average pooling, occurs.

• Pooling stride size determines how far the pooling window moves after each operation. The stride
in pooling layers significantly affects the size of the output. A larger stride results in a more
aggressive downsampling, producing a smaller output feature map.

• Number of fully connected layers affects the model’s capacity to learn and represent data patterns
effectively in order to make the final predictions. The complexity of the problem can guide the
number of fully connected layers. More complex problems might benefit from more layers to
capture high-level abstractions. While, this can lead to overfitting with smaller datasets.
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• Number of neurons determines dense layer’s capacity to learn complex data patterns and represen-
tations. More neurons enhance the layer’s feature recognition ability but may lead to overfitting
and higher computational demands.

• Dropout rate controls the percentage of neurons randomly deactivated during training. It serves
as a regularization technique to prevent overfitting by reducing the reliance on specific neurons
which promotes better generalization of the model.

• Batch size determines how many samples are processed in parallel in one iteration before updating
the weights of the neural network. It affects resource requirements of the training process and
speed. The acceptable range for the batch size is between 1 (using each instance individually) and
the size of the full training dataset.

• Learning rate determines the trajectory and convergence of the optimization process. While a
correct setting of this hyperparameter can lead to rapid and stable convergence, an ill-suited
choice can result in slow training or even divergence.

• Number of Epochs determines how many iterations the network goes through during training.
Increasing the number of epochs allows the model to learn more features from the training data
[62]. To determine whether the network requires more or fewer training epochs, it is important to
monitor the training and validation error values. Validation error provides an unbiased estimate
of the test error, reflecting how accurately the model is expected to perform on unseen data.
The general principle is to continue training as long as the error value is decreasing. However,
it is essential to be cautious and observe the behavior of the errors over time. If the validation
error starts to oscillate or increase while the training error is still improving, it suggests that the
network is overfitting the training data and failing to generalize well to unseen validation data.
To address this issue, a technique called early stopping can be employed. Early stopping involves
stopping the training just before overfitting occurs. By monitoring the training and validation
errors and stopping the training when the validation error starts to increase, the model can be
prevented from memorizing the training data and achieve better generalization. By using early
stopping, there is less need to be concerned about setting the exact number of training epochs. A
higher number of epochs can be chosen, and the early stopping algorithm will automatically stop
the training when there is no improvement in the error.

Determining the right combination of hyperparameters that maximizes model performance is a critical
process in machine learning, as it directly leads to achieving optimal results for any given model. Such a
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vital step is known as hyperparameter optimization. It is essential to strike a harmonious balance with
hyperparameters to ensure the network adeptly captures the data’s features. An undersized network
might not capture the data’s intricacies, leading to underfitting. Conversely, an oversized network could
risk overfitting by merely memorizing the training set. The dataset’s intricacy dictates the optimal
network size, usually ascertained through rigorous trials and performance evaluations. Several common
optimization algorithms [150] aid in this pursuit.

The most straightforward approach is the Grid Search, often described as a brute-force method. In Grid
Search, one defines a set of possible values for each hyperparameter, and the algorithm evaluates the
model performance for each combination in a Cartesian product of these sets. The primary advantage
of Grid Search is its thoroughness; every possible combination is evaluated. However, this can become
computationally infeasible when dealing with a high-dimensional hyperparameter space. Mathematically,
for n hyperparameters each having m possible values, Grid Search evaluates the model mn times.

To mitigate the computational cost of Grid Search, Random Search was introduced. Instead of
exhaustively evaluating all combinations, Random Search samples points in the hyperparameter space
randomly. This approach is both more efficient and has a probability of finding optimal or near-optimal
solutions without evaluating the entire space. For hyperparameters in a continuous domain, Random
Search samples values uniformly from a predefined range. While Grid and Random Searches are easy to
implement and understand, they operate with no prior knowledge of the function’s behavior—meaning
they don’t consider how the performance of a model changes as different hyperparameters are used.
They simply try various hyperparameter combinations and observe the results.

Moving beyond these methods, Bayesian optimization emerges as an informative strategy, providing
a more systematic way of navigating the hyperparameter space. It learns from previous evaluations
to make intelligent decisions about where in the hyperparameter space to evaluate next. At the heart
of Bayesian optimization is the modeling of the unknown objective function, which typically measures
the performance of a machine learning model for a particular set of hyperparameters. In Bayesian
optimization, the aim is to find the input values to the objective function that either maximizes or
minimizes its output. However, instead of exhaustively trying every possible input (like in Grid Search)

or randomly trying inputs (like in Random Search), Bayesian optimization uses a probabilistic model to
predict which inputs are likely to be optimal.

Initially, an assumption is made about a prior distribution, reflecting the initial beliefs about the
behavior of the objective function before observing any data. This statistical model assigns probabilities
to various potential outcomes or values of the function. During the optimization process, the objective
function is evaluated at specific points to gather data. Each evaluation produces a pair: the chosen
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input, typically a set of hyperparameters, and the corresponding output, indicating the performance of
a machine learning model configured with those hyperparameters. After collecting some data, initial
assumptions about the objective function are updated. This updated set of beliefs is depicted by the
posterior distribution. Utilizing Bayes’ theorem (see Apendix A), this distribution is a combination
of our prior assumptions and the data we’ve observed. The posterior distribution provides a refined
understanding of the function’s behavior, offering both an estimated value at each point and the
uncertainty associated with that estimate. The posterior distribution is often termed a “surrogate”.
It provides an efficient way to estimate the function’s value at any given point and, importantly, our
degree of confidence in that estimate.

A key strength of Bayesian optimization is its ability to quantify uncertainty. In parts of the input space
that are less explored, the surrogate model exhibits increased uncertainty. This aspect is crucial, guiding
the exploration strategy. An area exhibiting both high uncertainty and potential high performance is
considered for exploration.

Another key elements to the Bayesian optimization process is the acquisition function. It is responsible
for selecting the next sampling point and balancing the surrogate’s performance estimate and the
uncertainty involved. Its main goal is to find the right balance between exploration (sampling in areas of

uncertainty) and exploitation (sampling in areas where high performance is expected). By maintaining
this balance, the acquisition function steers the optimization process efficiently towards the optimum of
the objective function.

There are various Hyperparameter Optimization libraries which develop Bayesian optimization methods
including Bayesian Optimization library [151], GPyOpt [152], RayTune [153], Optuna [154], HyperOpt

[155]. In this research, we chose to use Keras Tuner library [156] to pick the optimal set of hyperparam-

eters to design the 3D-CNN model. It allows the user to optimize integer values (such as the number

of neurons in a dense layer and the size of convolutional filters), continuous values (like learning rate

and dropout rate), discrete choices (such as the type of optimizer), binary choices (such as whether

or not to include a specific layer), and fixed hyperparameters. Keras Tuner requires Python 3.6+ and

TensorFlow 2.0+. In this study we used the Python programming language (version 3.8.10) and its

open-source neural network library Keras (version 2.13.0, as integrated within TensorFlow) [157] to
implement the model and analysis.
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4.5 3D-CNN Model Design and Results

At this point, we have a good insight into the architecture of a CNN and role of hyperparameters in
producing a trained CNN model. Our focus in this research is performing 3-class classification over
hyperspectral images of nitrogen-stressed lettuce, where we classified input lettuce data into one of the

three distinct classes: N-, N+1/2, N+. Figure 4.9 shows the design order of layers we considered for our

3D-CNN model. Given the limited size of our dataset, which includes 30 samples for N-, 28 samples1

for N+1/2, and 30 samples for N+, we opted for a conservative approach in designing the 3D-CNN
architecture. From a neural network design perspective, a high number of layers could potentially
lead to overfitting due to the model’s complexity relative to the modest amount of training data.
Consequently, the hyperparameter ranges have been chosen to limit the network’s depth and capacity,
thereby mitigating the risk of overfitting and improving generalization to new data. In this term, we
consider a maximum of 2 and 4 layers for convolutional and dense blocks, respectively. However, there
are limitations with Keras Tuner library in hyperparameter configuration due to generation of invalid
models. This library is not able to skip all invalid models during tuning process. The generation of an
invalid model typically occurs when the hyperparameters selected by the tuner result in a configuration
that are not compatible with the input data’s shape or with the constraints of the neural network layers.
For example, if a combination of kernel size and stride results in a convolutional or pooling layer output
that has a negative dimension size, the model will be invalid. In addition, in optimization problems,
resource allocation and consumption are major issues in configuring the search space of neural networks,
specially 3D-CNNs, for HSI data. This led us to limit the range of hyperparameters to prevent resource
exhaustion during the training process. Hence, we meticulously configured the range of hyperparameters
based on the size of the dataset, as well as computational resources. This step was initially performed
through trial and error to understand the limitation of the model for setting the hyperparameters and
restriction of the GPU resources. In this research, we utilized NVIDIA QUADRO RTX 8000 with 48
GB RAM.

Tables 4.3 and 4.4 show the range of hyperparameters selected for designing 3D-CNN model based on
inclusion of 1 and 2 convolutional blocks, respectively. For ease of reference in our future discussions,
we will designate the 3D-CNN model with a single convolutional block as Design 1 and the model with
two convolutional blocks as Design 2. This nomenclature will be used consistently throughout our
documentation to differentiate between the two model architectures. Along with the hyperparameters
provided in the given tables, the batch size was determined manually based on expensive computation

1We lost the HSI data pertaining to one pot of lettuce imaged on July 18, hence, we did not include the HSI data
corresponding to this pot of lettuce in the dataset including July 18 and July 21.
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Figure 4.9: Foundation of 3D-CNN model design considered in this experiment.

and resource availability. The number of epochs is set through the early stopping process discussed in
Table 4.4. This prevents overfitting by halting the training process when the model’s performance on a
validation set ceases to improve, thus optimizing generalization to new data and saving computational
resources.

Table 4.3: Range of hyperparameters for 3D-CNN model with one convolutional block.
Category Hyperparameter Range

Number of filters (2, 32), step=2
Convolutional layer 1 Kernel size (2, 7)

Stride (1, kernel size in each
dimension)

Pooling layer 1 Pooling size = Pooling stride size (2, 5)
Dense layer Number of dense layers (1,4)

Number of neurons (units) (64, 512), step=32
Dropout layer Dropout rate (0, 0.5), step=0.1

Batch size 3
General hyperparameters Number of Epochs 200 along with Early Stopping

(patience= 30)
Learning rate (1e-4, 1e-2), sampling=log

To find nearly optimal set of hyperparameters, we followed the procedure provided in Flowchart 4.10.
First, we partitioned the dataset into two subsets: 76 samples were allocated for model development,
and 12 samples were designated for model evaluation as the test set. The splitting process is stratified
by both the date of image acquisition and the target class label. This ensures that for each date in the
dataset, and for each label, a proportional representation is maintained in both sets. Then, we utilized
7-fold stratified cross validation to perform model development through Keras Tuner. We set the Keras
Tuner to generate 25 valid models per fold for Design 1 and Design 2. 175 models were generated per
design. Subsequently, we selected the best performing model per fold for each design. This yields 7
different models for Designs 1 and 2. In the next stage, each model was retrained over 7 folds for 200
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Table 4.4: Range of hyperparameters for 3D-CNN model with two convolutional blocks.
Category Hyperparameter Range

Number of filters (2, 32), step=2
Convolutional layer 1 Kernel size (1, 7)

Stride (2, 5)
Pooling layer 1 Pooling size = Pooling stride size (2, 5)

Number of filters (2,32), step=2
Convolutional layer 2 Kernel size (1, 5)

Stride (1,3)
Pooling layer 2 Pooling size = Pooling stride size (2, 5)

Dense layer Number of dense layers (1, 4)
Number of neurons (units) (64,512), step= 32

Dropout layer Dropout rate (0, 0.5), step= 0.1
Batch size 3

General hyperparameters Number of Epochs 200 along with Early Stopping
(patience= 30)

Learning rate (1e-4, 1e-2), sampling= log

epochs (with early stopping equals to 30 epochs) per design. The summary of hyperparameters and the
corresponded neural network architecture for each of the 7 models per design is provided in Appendix
B. Then we used the top two models with highest average accuracies per Design to evaluate the test set.
We finally select the model with higher test accuracy as the best performing model per design. If two
models per design give the same accuracies, we keep both models for further process.

In Design 1, based on an average accuracy of 7 models, Model 5 and Model 7 received the highest
results. Table 4.5 shows the test accuracies per fold for Models 5 and 7. As is reported, folds 3 and 4 of
Model 5 gained the highest test accuracy. Figures 4.11 and 4.12 show the evaluation results over 12
test samples which were not exposed to models during training and validation process. Model 5 (Fold

3) and Model 5 (Fold 4) were able to correctly classify 9 images out of 12 provided test samples. The
confusion matrices are given in Figure 4.14.

In the same procedure within Design 2, based on an average accuracy of 7 models, Model 3 and Model
5 received the highest results. Table 4.6 shows the test accuracies per fold for Models 3 and 5. As is
reported, fold 2 of Model 5 gained the highest test accuracy. Figure 4.13 shows the evaluation results
over the same 12 test samples that were used in Design 1. The model was able to correctly classify 8
images out of 12 provided test samples. The confusion matrix is given in Figure 4.15.
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7 fold and report the average vali-
dation accuracy per model design
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highest average validation accuracies
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one(s) with the highest test accuracy

End

Figure 4.10: Flowchart of the model development and evaluation process.

Table 4.5: Test accuracies per fold of Models 5 and 7 of Design 1.
Fold Number Model 5: Test Accuracy Model 7: Test Accuracy

1 66.67% 66.67%
2 50.00% 66.67%
3 75.00% 50.00%
4 75.00% 66.67%
5 58.33% 66.67%
6 58.33% 66.67%
7 50.00% 66.67%
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Table 4.6: Test accuracies per fold of Models 3 and 5 of Design 2.
Fold Number Model 3: Test Accuracy Model 5: Test Accuracy

1 33.33% 58.33%
2 33.33% 66.67%
3 58.33% 50.00%
4 50.00% 50.00%
5 58.33 50.00%
6 33.33% 50.00%
7 50.00% 41.67%
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Figure 4.11: Design 1: Model 5 (Fold 3) prediction result over test set. Blue color shows correct prediction and
red color indicates wrong prediction.
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Figure 4.12: Design 1: Model 5 (Fold 4) prediction result over test set. Blue color shows correct prediction and
red color indicates wrong prediction.
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Figure 4.13: Design 2’s prediction result over test set. Blue color shows correct prediction and red color indicates
wrong prediction.
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(a) Confusion matrix for Model 5 (Fold 3). (b) Confusion matrix for Model 5 (Fold 4).

Figure 4.14: Confusion Matrices for Design 1’s best model.

Figure 4.15: Confusion Matrix for Design 2’s best model.
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4.5.1 Discussion

Our empirical results show the superiority of Design 1 with 1 convolutional block over Design 2 with 2
convolutional blocks on HSI data classification. The best model in Designs 1 and 2 achieved 75.00%
and 66.67% test accuracy, respectively. Considering the relative small size of the HSI dataset, the lower
accuracy of Design 2 can be related to the complexity of its model with 2 convolutional blocks and
4 dense layers whereas Design 1 has 1 convolutional block and 1 dense layer which makes it a simple
model. Simpler models are less prone to overfitting, and in cases where the data may not be sufficient
to train complex models effectively, simplicity can lead to better generalization.

While Design 2 has more convolutional blocks, it is possible that the additional complexity did not
necessarily lead to better feature extraction. If the hyperspectral data did not benefit from the deeper
convolutional layers, it might explain why Design 1, with its simpler architecture, performed better. In
conclusion, it is not uncommon for simpler models to outperform more complex ones, especially when
dealing with limited data or when the data does not require deep hierarchical feature extraction.

4.6 Exploring Channel Importance in Classification Result using
Ablation Study

HSI captures intricate details across the electromagnetic spectrum that the data is characterized by its
high dimensionality. The 400–1000 nm range, which encompasses the visible to NIR regions, provides
detailed spectral information. Given the data’s richness, assessing the significance of each spectral
channel becomes an imperative aspect of effective data utilization.

The rationale for evaluating channel importance is multifold. The vastness of hyperspectral data,
attributed to its numerous spectral bands, can introduce computational challenges. Redundant or
less informative channels might unnecessarily complicate the models. By identifying the most salient
channels, one can streamline data which makes computations more manageable and efficient. This
understanding can further enhance the accuracy and reliability of classification models since distinct
bands harbor specific information. Recognizing which channels are more discriminative for a particular
task can refine the models. Moreover, understanding the pivotal channels can also elucidate the spectral
properties that play a role in differentiating between output classes.

From a practical standpoint, this evaluation has several implications. In the real-world sensor devel-
opment process, capturing the entire spectrum can be resource-intensive. If accurate classification
primarily relies on specific channels, then sensor design can focus on these channels, resulting in economic
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efficiency. Additionally, leveraging all channels might lead to the risk of overfitting, especially if some
channels present redundant or correlated information. Models that prioritize essential channels are
typically more sturdy and demonstrates improved performance on new, unseen data. Furthermore, for
scenarios demanding real-time data processing or those with limited computational capacities, a model
that emphasizes the essential channels can provide quicker and more reliable outputs.

In our research, we explored the importance of individual channels and various channel groupings in
classification results specific to our model through an ablation study. In this exploration, we replaced
part of the input data with zero value to see how the affect on the prediction results per target class.
For this experiment, we selected Model 5 (Fold 3), which, along with its counterpart Model 5 (Fold 4) in

Design 1, showcased the highest test accuracy (75.00%). The focus is on assessing channel importance

across target classes (N-, N+1/2, and N+) within our test dataset.

Our test dataset was evenly distributed across these three nitrogen treatment classes. For each target
class we computed the individual channel importance using test images corresponded to that class. The
computation procedure is as follows. Each time we zeroed one channel and then computed the difference
between prediction probabilities of the original test images and the test images with the zeroed channel.
The difference in predictions represents the contribution of the channel to the model’s prediction. The
importance score for the channel is computed as the mean absolute difference in predictions, which
quantifies how much the removal of that channel affects the model’s output. This process is repeated
for all channels and resulted in importance scores, where higher scores indicate channels that have a
more significant impact on the model’s predictions. Figures 4.16 to 4.18 show the corresponded results
for each nitrogen treatment class, thereby providing insights into which channels are most influential in
our model’s performance.

Observations show that there is a general increase in importance scores moving from the violet to the
red channels, peaking in the red channel range. This could suggest that the red channels are more
informative for the model’s predictions across all channels per class. After reaching the peak in the red
channels, there is a sharp decline as it moves into the NIR range. We can see the variability within
each range, indicating that not all channels within a given color and NIR range are equally important.
In another experiment, we zeroed all channels within each color (including violet, blue, green, yellow,

orange, and red) and NIR spectrum and computed the importance score for a group of channels for each
target class using its corresponded test images. Figure 4.19 shows the importance scores for each group
of bands per class. The collective channels show importance of red and green spectra in directing the
prediction results for each class. The result is consistent with findings in Chapter 2. It can be observed
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Figure 4.16: Individual channel importance for N- class across the test dataset using Model 5 (Fold 3).

from the results that red spectrum has higher importance in prediction results of N- and N+1/2 classes.

In addition, N+1/2 class achieved higher importance score among all target classes in NIR range.
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Figure 4.17: Individual channel importance for N+1/2 class across the test dataset using Model 5 (Fold 3).

Figure 4.18: Individual channel importance for N+ class across the test dataset using Model 5 (Fold 3).
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Figure 4.19: Importance scores of group of bands per nitrogen stress treatment.
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Chapter 5

Conclusion and Future Works

This thesis primarily explores the capabilities of 3D-CNN models in classifying hyperspectral images of
nitrogen-stressed lettuce at early stages of growth. To this end, we examined 350 different 3D-CNN
models using Bayesian optimization, considering the relatively small size of our dataset, which totals 88
samples. The results show the superiority of a simpler architecture, consisting of one convolutional and
dense block, in classification of unseen images by achieving 75.00% test accuracy. Although the desired
result is to correctly classify all unseen images, achieving this requires a richer dataset with more samples

per target class (N-, N+1/2, and N+) for the early stages of growth. With a richer dataset, the model
is likely to generalize better to unseen images by extracting the most significant patterns. Moreover,
a larger dataset paves the way to better quantifying the power of complex 3D-CNN architecture by
extracting more complex patterns which help to better differentiate between target classes.

Additionally, the importance scores for the color and NIR spectrum reveal the significant role of the red
and green spectra in prediction outcomes. However, there is still ambiguity whether NIR range has the
same potency as visible range in prediction results. We can further validate this effect by enriching the
dataset with more samples per target class, as mentioned earlier, and quantifying the results across a
larger test dataset.

Furthermore, it is interesting to consider the possibility that the model may be subtly using leaf shape
as one of the features in its classification process, particularly given the uniformity in size among the
majority of leaves in our dataset. This observation is not intended to undermine the model’s performance
but rather to highlight an area for potential exploration. This aspect can be examined using the saliency
map technique mentioned in Section 3.5.

Building upon our findings, we recommend the following for future endeavors:
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• CNNs are data-hungry algorithms that thrive on large datasets to improve their predictive
accuracy and generalization capabilities. By extending the nitrogen-stressed dataset to include a
broader range of samples, it is possible to conduct a more thorough assessment of the 3D CNN’s
performance. This expansion not only tests the model’s robustness but also refines its efficiency
in classifying samples accurately.

• We aim to broaden our research to encompass a wider range of nutrient deficiencies beyond nitrogen.
The complexity of this challenge is exemplified by the symptom of leaf yellowing, commonly
associated with nitrogen deficiency but also indicative of other deficiencies like magnesium, sulfur,
or manganese. Leveraging the detailed spectral data from HSI and the sophisticated feature
extraction of 3D-CNNs, our goal is to develop a model capable of distinguishing these subtle
variances.

• While our model achieved a test accuracy of 75.00%, indicating room for improvement, it highlights
an opportunity in the context of the high costs associated with HSI technology. Our research
identified the importance scores for each individual band and groups of bands that impact the
prediction of nitrogen deficiency. By focusing on these bands, it is feasible to develop targeted
multispectral cameras that offer a more affordable solution. This approach may retain a level of
precision in deficiency detection while substantially reducing overall costs.

• While 3D-CNN demonstrates impressive performance in image classification, our literature review
in Section 3.2 indicates that combined 2D- and 3D-CNN architectures also yield robust results.
Given this evidence, we propose further exploration and development of hybrid architectures,
merging the strengths of both 2D and 3D convolutions, to potentially harness richer feature
representations and optimize classification performance in HSI applications.

• In this research study we examined how to design the structure of a neural network model
using optimization methods– particularly Bayesian optimization in this research- and background
knowledge regarding organization of layers. However, with the advancement of AI, researchers
are focusing on fully automating the process of finding the best-performing architectural design
(including complex architecture) without relying on expert knowledge. This is where the neural

architecture search (NAS) [158] comes into play. NAS operates in three main dimensions: search
space, search strategy, and performance estimation strategy which are discussed as below:

– Search Space: It defines the range of possible architectures that can be explored.

– Search Strategy: It involves how the search space is navigated. It is a balance between quickly
finding high-performance architectures and avoiding premature convergence to suboptimal
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solutions. Various strategies can be utilized including random search, Bayesian optimization,
evolutionary methods, reinforcement learning, and gradient-based methods.

– Performance Estimation Strategy: NAS aims to discover architectures with high performance
on unseen data. Performance estimation involves assessing the predicted performance of a
model, which can be computationally expensive. Recent research focuses on developing less
costly methods for this estimation.

In future, we consider to utilize NAS to generate high-performing neural network models to
perform the classification.
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Appendix A

Bayes’ Theorem

Bayes’ Theorem [159] is a fundamental concept in probability theory and statistics, named after the
Reverend Thomas Bayes. It provides a way to update our beliefs or probabilities in light of new evidence.
The theorem is especially powerful in situations where direct computation of a probability is complex
or infeasible. Bayes’ Theorem is expressed as:

P (H|E) = P (E|H) · P (H)
P (E) .

Where:

• P (H|E) is the posterior probability: the probability of the hypothesis H after observing evidence
E.

• P (E|H) is the likelihood: the probability of observing the evidence E given that the hypothesis
H is true.

• P (H) is the prior probability: the initial probability of the hypothesis H before observing the
evidence.

• P (E) is the marginal likelihood or evidence: the total probability of observing the evidence.
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Appendix B

Design 1 and 2: Models’
Hyperparameters and Their Associated
Neural Network Architectures

Tables B.1 to B.14 and Tables B.15 to B.28 show the 14 models with their corresponded hyperparameters
configurations and model summaries for Designs 1 and 2.

Table B.1: Design 1: Hyperparameters of Model 1
Parameter Value
Model ID 1

Kernel Size (4, 4, 7)
Stride Size (1, 2, 2)

Convolution Filters 8
Pool Size (5, 5, 5)

Number of Dense Layers 4
Units in Dense Layer 0 448

Dropout in Dense Layer 0 0.4
Units in Dense Layer 1 256

Dropout in Dense Layer 1 0.2
Units in Dense Layer 2 256

Dropout in Dense Layer 2 0.3
Units in Dense Layer 3 64

Dropout in Dense Layer 3 0.3
Learning Rate 1.26 × 10−6

Average Accuracy 67.27%
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Table B.2: Design 1: Neural Network Architecture for Model 1
Layer (type) Output Shape Param #
Conv3D (None, 197, 104, 109, 8) 904
MaxPooling3D (None, 39, 20, 21, 8) 0
Flatten (None, 131040) 0
Dense (None, 448) 58,706,368
Dropout (None, 448) 0
Dense (None, 256) 114,944
Dropout (None, 256) 0
Dense (None, 256) 65,792
Dropout (None, 256) 0
Dense (None, 64) 16,448
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 58,904,651 (224.70 MB)
Trainable params 58,904,651 (224.70 MB)
Non-trainable params 0 (0.00 Byte)

Table B.3: Design 1: Hyperparameters of Model 2
Parameter Value
Model ID 2

Kernel Size (4, 6, 2)
Stride Size (1, 1, 2)

Convolution Filters 2
Pool Size (2, 2, 2)

Number of Dense Layers 1
Units in Dense Layer 0 352

Dropout in Dense Layer 0 0.2
Learning Rate 1.21 × 10−4

Average Accuracy 65.71%

Table B.4: Design 1: Neural Network Architecture for Model 2
Layer (type) Output Shape Param #
Conv3D (None, 197, 205, 223, 2) 98
MaxPooling3D (None, 98, 102, 111, 2) 0
Flatten (None, 2219112) 0
Dense (None, 352) 781127776
Dropout (None, 352) 0
Dense (None, 3) 1059
Total params 781128933 (2.91 GB)
Trainable params 781128933 (2.91 GB)
Non-trainable params 0 (0.00 Byte)
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Table B.5: Design 1: Hyperparameters of Model 3
Parameter Value
Model ID 3

Kernel Size (5, 7, 7)
Stride Size (1, 2, 2)

Convolution Filters 8
Pool Size (4, 4, 4)

Number of Dense Layers 2
Units in Dense Layer 0 416

Dropout in Dense Layer 0 0.0
Units in Dense Layer 1 64

Dropout in Dense Layer 1 0.1
Learning Rate 1.97 × 10−4

Average Accuracy 68.31%

Table B.6: Design 1: Neural Network Architecture for Model 3
Layer (type) Output Shape Param #
Conv3D (None, 196, 102, 109, 8) 1968
MaxPooling3D (None, 49, 25, 27, 8) 0
Flatten (None, 264600) 0
Dense (None, 416) 110074016
Dropout (None, 416) 0
Dense (None, 64) 26688
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 110102867 (420.01 MB)
Trainable params 110102867 (420.01 MB)
Non-trainable params 0 (0.00 Byte)
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Table B.7: Design 1: Hyperparameters of Model 4
Parameter Value
Model ID 4

Kernel Size (5, 6, 6)
Stride Size (1, 1, 1)

Convolution Filters 10
Pool Size (3, 3, 3)

Number of Dense Layers 4
Units in Dense Layer 0 160

Dropout in Dense Layer 0 0.4
Units in Dense Layer 1 224

Dropout in Dense Layer 1 0.0
Units in Dense Layer 2 128

Dropout in Dense Layer 2 0.1
Units in Dense Layer 3 64

Dropout in Dense Layer 3 0.2
Learning Rate 4.42 × 10−4

Average Accuracy 71.17%

Table B.8: Design 1: Neural Network Architecture for Model 4
Layer (type) Output Shape Param #
Conv3D (None, 196, 205, 219, 10) 1810
MaxPooling3D (None, 65, 68, 73, 10) 0
Flatten (None, 3226600) 0
Dense (None, 160) 516256160
Dropout (None, 160) 0
Dense (None, 224) 36064
Dropout (None, 224) 0
Dense (None, 128) 28800
Dropout (None, 128) 0
Dense (None, 64) 8256
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 516331285 (1.92 GB)
Trainable params 516331285 (1.92 GB)
Non-trainable params 0 (0.00 Byte)
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Table B.9: Design 1: Hyperparameters of Model 5
Parameter Value
Model ID 5

Kernel Size (6, 2, 3)
Stride Size (1, 2, 2)

Convolution Filters 6
Pool Size (3, 3, 3)

Number of Dense Layers 1
Units in Dense Layer 0 320

Dropout in Dense Layer 0 0.3
Learning Rate 2.0 × 10−4

Average Accuracy 75.06%

Table B.10: Design 1: Neural Network Architecture for Model 5
Layer (type) Output Shape Param #
Conv3D (None, 195, 105, 111, 6) 222
MaxPooling3D (None, 65, 35, 37, 6) 0
Flatten (None, 505050) 0
Dense (None, 320) 161616320
Dropout (None, 320) 0
Dense (None, 3) 963
Total params 161617505 (616.52 MB)
Trainable params 161617505 (616.52 MB)
Non-trainable params 0 (0.00 Byte)

Table B.11: Design 1: Hyperparameters of Model 6
Parameter Value
Model ID 6

Kernel Size (7, 2, 3)
Stride Size (1, 2, 2)

Convolution Filters 10
Pool Size (3, 3, 3)

Number of Dense Layers 4
Units in Dense Layer 0 480

Dropout in Dense Layer 0 0.1
Units in Dense Layer 1 320

Dropout in Dense Layer 1 0.4
Units in Dense Layer 2 64

Dropout in Dense Layer 2 0.2
Units in Dense Layer 3 64

Dropout in Dense Layer 3 0.4
Learning Rate 4.48 × 10−4

Average Accuracy 65.84%
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Table B.12: Design 1: Neural Network Architecture for Model 6
Layer (type) Output Shape Param #
Conv3D (None, 194, 105, 111, 10) 430
MaxPooling3D (None, 64, 35, 37, 10) 0
Flatten (None, 828800) 0
Dense (None, 480) 397824480
Dropout (None, 480) 0
Dense (None, 320) 153920
Dropout (None, 320) 0
Dense (None, 64) 20544
Dropout (None, 64) 0
Dense (None, 64) 4160
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 398003729 (1.48 GB)
Trainable params 398003729 (1.48 GB)
Non-trainable params 0 (0.00 Byte)

Table B.13: Design 1: Hyperparameters of Model 7
Parameter Value
Model ID 7

Kernel Size (3, 3, 2)
Stride Size (1, 2, 1)

Convolution Filters 6
Pool Size (4, 4, 4)

Number of Dense Layers 4
Units in Dense Layer 0 192

Dropout in Dense Layer 0 0.2
Units in Dense Layer 1 64

Dropout in Dense Layer 1 0.3
Units in Dense Layer 2 64

Dropout in Dense Layer 2 0.1
Units in Dense Layer 3 64

Dropout in Dense Layer 3 0.0
Learning Rate 2.33 × 10−4

Average Accuracy 78.96%

102



Table B.14: Design 1: Neural Network Architecture for Model 7
Layer (type) Output Shape Param #
Conv3D (None, 198, 104, 223, 6) 114
MaxPooling3D (None, 49, 26, 55, 6) 0
Flatten (None, 420420) 0
Dense (None, 192) 80720832
Dropout (None, 192) 0
Dense (None, 64) 12352
Dropout (None, 64) 0
Dense (None, 64) 4160
Dropout (None, 64) 0
Dense (None, 64) 4160
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 80741813 (308.01 MB)
Trainable params 80741813 (308.01 MB)
Non-trainable params 0 (0.00 Byte)

Table B.15: Design 2: Hyperparameters of Model 1
Parameter Value
Model ID 1

Kernel Size (Layer 0) (4, 3, 5)
Stride Size (Layer 0) (1, 1, 1)

Convolution Filters (Layer 0) 26
Pool Size (Layer 0) (2, 2 , 2)

Kernel Size (Layer 1) (5, 1, 1)
Stride Size (Layer 1) (3, 1, 2)

Convolution Filters (Layer 1) 16
Pool Size (Layer 1) (3, 3, 3)

Dense Layers 3
Units in Dense Layer 0 352

Dropout in Dense Layer 0 0.4
Units in Dense Layer 1 96

Dropout in Dense Layer 1 0.1
Units in Dense Layer 2 416

Dropout in Dense Layer 2 0.3
Learning Rate 2.791 × 10−3

Average Accuracy 42.08%
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Table B.16: Design 2: Neural Network Architecture for Model 1
Layer Type Output Shape Param #
Conv3D (None, 197, 208, 220, 26) 1586
MaxPooling3D (None, 98, 104, 110, 26) 0
Conv3D (None, 32, 104, 55, 16) 2096
MaxPooling3D (None, 10, 34, 18, 16) 0
Flatten (None, 97920) 0
Dense (None, 352) 34468192
Dropout (None, 352) 0
Dense (None, 96) 33888
Dropout (None, 96) 0
Dense (None, 416) 40352
Dropout (None, 416) 0
Dense (None, 3) 1251
Total params 34547365 (131.79 MB)
Trainable params 34547365 (131.79 MB)
Non-trainable params 0 (0.00 Byte)

Table B.17: Design 2: Hyperparameters of Model 2
Parameter Value
Model ID 2

Kernel Size (Layer 0) (5, 7, 1)
Stride Size (Layer 0) (1, 1, 1)

Convolution Filters (Layer 0) 22
Pool Size (Layer 0) (5, 5, 5)

Kernel Size (Layer 1) (4, 2, 2)
Stride Size (Layer 1) (2, 2, 2)

Convolution Filters (Layer 1) 8
Pool Size (Layer 1) (4, 4, 4)

Dense Layers 1
Units in Dense Layer 0 64

Dropout in Dense Layer 0 0.1
Learning Rate 2.86 × 10−3

Average Accuracy 58.83%
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Table B.18: Design 2: Neural Network Architecture for Model 2
Layer (type) Output Shape Param #
Conv3D (None, 196, 204, 224, 22) 792
MaxPooling3D (None, 39, 40, 44, 22) 0
Conv3D (None, 18, 20, 22, 8) 2824
MaxPooling3D (None, 4, 5, 5, 8) 0
Flatten (None, 800) 0
Dense (None, 64) 51264
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 55075 (215.14 KB)
Trainable params 55075 (215.14 KB)
Non-trainable params 0 (0.00 Byte)

Table B.19: Design 2: Hyperparameters of Model 3
Parameter Value
Model ID 3

Kernel Size (Layer 0) (7, 3, 2)
Stride Size (Layer 0) (1, 1, 1)

Convolution Filters (Layer 0) 26
Pool Size (Layer 0) (4, 4, 4)

Kernel Size (Layer 1) (2, 3, 5)
Stride Size (Layer 1) (2, 2, 2)

Convolution Filters (Layer 1) 22
Pool Size (Layer 1) (3, 3, 3)

Dense Layers 3
Units in Dense Layer 0 352

Dropout in Dense Layer 0 0.4
Units in Dense Layer 1 64

Dropout in Dense Layer 1 0.0
Units in Dense Layer 2 64

Dropout in Dense Layer 2 0.0
Learning Rate 2.78 × 10−4

Average Accuracy 73.77%
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Table B.20: Design 2: Neural Network Architecture for Model 3
Layer Type Output Shape Param #
Conv3D (None, 194, 208, 223, 26) 1118
MaxPooling3D (None, 48, 52, 55, 26) 0
Conv3D (None, 24, 25, 26, 22) 17182
MaxPooling3D (None, 8, 8, 8, 22) 0
Flatten (None, 11264) 0
Dense (None, 352) 3965280
Dropout (None, 352) 0
Dense (None, 64) 22592
Dropout (None, 64) 0
Dense (None, 64) 4160
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 4010527 (15.30 MB)
Trainable params 4010527 (15.30 MB)
Non-trainable params 0 (0.00 Byte)

Table B.21: Design 2: Hyperparameters of Model 4
Parameter Value
Model ID 4

Kernel Size (Layer 0) (5, 7, 6)
Stride Size (Layer 0) (1, 1, 1)

Convolution Filters (Layer 0) 16
Pool Size (Layer 0) (5, 5, 5)

Kernel Size (Layer 1) (5, 3, 2)
Stride Size (Layer 1) (2, 3, 1)

Convolution Filters (Layer 1) 30
Pool Size (Layer 1) (4, 4, 4)

Dense Layers 3
Units in Dense Layer 0 160

Dropout in Dense Layer 0 0.1
Units in Dense Layer 1 96

Dropout in Dense Layer 1 0.3
Units in Dense Layer 2 448

Dropout in Dense Layer 2 0.4
Learning Rate 1.63 × 10−3

Average Accuracy 36.89%
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Table B.22: Design 2: Neural Network Architecture for Model 4
Layer (type) Output Shape Param #
Conv3D (None, 196, 204, 219, 16) 3376
MaxPooling3D (None, 39, 40, 43, 16) 0
Conv3D (None, 18, 13, 42, 30) 14430
MaxPooling3D (None, 4, 3, 10, 30) 0
Flatten (None, 3600) 0
Dense (None, 160) 576160
Dropout (None, 160) 0
Dense (None, 96) 15456
Dropout (None, 96) 0
Dense (None, 448) 43456
Dropout (None, 448) 0
Dense (None, 3) 1347
Total params 654225 (2.50 MB)
Trainable params 654225 (2.50 MB)
Non-trainable params 0 (0.00 Byte)

Table B.23: Design 2: Hyperparameters of Model 5
Parameter Value
Model ID 5

Kernel Size (Layer 0) (1, 5, 3)
Stride Size (Layer 0) (1, 1, 1)

Convolution Filters (Layer 0) 32
Pool Size (Layer 0) (3, 3, 3)

Kernel Size (Layer 1) (1, 2, 4)
Stride Size (Layer 1) (2, 2, 1)

Convolution Filters (Layer 1) 14
Pool Size (Layer 1) (3, 3, 3)

Dense Layers 4
Units in Dense Layer 0 160

Dropout in Dense Layer 0 0.1
Units in Dense Layer 1 96

Dropout in Dense Layer 1 0.4
Units in Dense Layer 2 352

Dropout in Dense Layer 2 0.4
Units in Dense Layer 3 128

Dropout in Dense Layer 3 0.3
Learning Rate 1.88 × 10−4

Average Accuracy 72.34%
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Table B.24: Design 2: Neural Network Architecture for Model 5
Layer (type) Output Shape Param #
Conv3D (None, 200, 206, 222, 32) 512
MaxPooling3D (None, 66, 68, 74, 32) 0
Conv3D (None, 33, 34, 71, 14) 3598
MaxPooling3D (None, 11, 11, 23, 14) 0
Flatten (None, 38962) 0
Dense (None, 160) 6234080
Dropout (None, 160) 0
Dense (None, 96) 15456
Dropout (None, 96) 0
Dense (None, 352) 34144
Dropout (None, 352) 0
Dense (None, 128) 45184
Dropout (None, 128) 0
Dense (None, 3) 387
Total params 6333361 (24.16 MB)
Trainable params 6333361 (24.16 MB)
Non-trainable params 0 (0.00 Byte)

Table B.25: Design 2: Hyperparameters of Model 6
Parameter Value
Model ID 6

Kernel Size (Layer 0) (6, 4, 4)
Stride Size (Layer 0) (1, 1, 1)

Convolution Filters (Layer 0) 16
Pool Size (Layer 0) (4, 4, 4)

Kernel Size (Layer 1) (2, 3, 2)
Stride Size (Layer 1) (2, 3, 2)

Convolution Filters (Layer 1) 16
Pool Size (Layer 1) (4, 4, 4)

Dense Layers 3
Units in Dense Layer 0 224

Dropout in Dense Layer 0 0.1
Units in Dense Layer 1 192

Dropout in Dense Layer 1 0.2
Units in Dense Layer 2 384

Dropout in Dense Layer 2 0.2
Learning Rate 2.15 × 10−3

Average Accuracy 39.48%
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Table B.26: Design 2: Neural Network Architecture for Model 6
Layer (type) Output Shape Param #
Conv3D (None, 195, 207, 221, 16) 1552
MaxPooling3D (None, 48, 51, 55, 16) 0
Conv3D (None, 24, 17, 27, 16) 3088
MaxPooling3D (None, 6, 4, 6, 16) 0
Flatten (None, 2304) 0
Dense (None, 224) 516320
Dropout (None, 224) 0
Dense (None, 192) 43200
Dropout (None, 192) 0
Dense (None, 384) 74112
Dropout (None, 384) 0
Dense (None, 3) 1155
Total params 639427 (2.44 MB)
Trainable params 639427 (2.44 MB)
Non-trainable params 0 (0.00 Byte)

Table B.27: Design 2: Hyperparameters of Model 7
Parameter Value
Model ID 7

Kernel Size (Layer 0) (4, 4, 6)
Stride Size (Layer 0) (1, 1, 1)

Convolution Filters (Layer 0) 2
Pool Size (Layer 0) (5, 5, 5)

Kernel Size (Layer 1) (1, 2, 4)
Stride Size (Layer 1) (2, 2, 3)

Convolution Filters (Layer 1) 12
Pool Size (Layer 1) (5, 5, 5)

Dense Layers 3
Units in Dense Layer 0 128

Dropout in Dense Layer 0 0.2
Units in Dense Layer 1 64

Dropout in Dense Layer 1 0.0
Units in Dense Layer 2 64

Dropout in Dense Layer 2 0.0
Learning Rate 5.73 × 10−4

Average Accuracy 68.70%
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Table B.28: Design 2: Neural Network Architecture for Model 7
Layer (type) Output Shape Param #
Conv3D (None, 197, 207, 219, 2) 194
MaxPooling3D (None, 39, 41, 43, 2) 0
Conv3D (None, 20, 20, 14, 12) 204
MaxPooling3D (None, 4, 4, 2, 12) 0
Flatten (None, 384) 0
Dense (None, 128) 49280
Dropout (None, 128) 0
Dense (None, 64) 8256
Dropout (None, 64) 0
Dense (None, 64) 4160
Dropout (None, 64) 0
Dense (None, 3) 195
Total params 62289 (243.32 KB)
Trainable params 62289 (243.32 KB)
Non-trainable params 0 (0.00 Byte)
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R. Guevara-González, G. Herrera-Ruiz, and I. Torres-Pacheco, “Nitrogen determination on tomato
(lycopersicon esculentum mill.) seedlings by color image analysis (rgb),” African Journal of
Biotechnology, vol. 9, no. 33, 2010.

[46] S. Eshkabilov, J. Stenger, E. N. Knutson, E. Küçüktopcu, H. Simsek, and C. W. Lee, “Hyperspec-
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