
OPEN ACCESS | Research Article

Fusarium head blight detection, spikelet estimation, and
severity assessment in wheat using 3D convolutional
neural networks
Oumaima Hamila a, Christopher J. Henry a,b, Oscar I. Molina c, Christopher P. Bidinostia,d, and Maria
Antonia Henriquez c

aDepartment of Applied Computer Science, The University of Winnipeg, Winnipeg, MB, Canada; bDepartment of Computer Science,
The University of Manitoba, Winnipeg, MB, Canada; cMorden Research and Development Centre, Agriculture and Agri-Food Canada,
Morden, MB, Canada; dDepartment of Physics, The University of Winnipeg, Winnipeg, MB, Canada

Corresponding authors: Christopher J. Henry (email: christopher.henry@umanitoba.ca); Maria Antonia Henriquez (email:
mariaantonia.henriquez@agr.gc.ca)

Abstract
Fusarium head blight (FHB) is one of the most significant diseases affecting wheat and other small-grain cereals worldwide.

Developing FHB-resistant cultivars is critical but requires field and greenhouse disease assessment, which are typically labori-
ous and time consuming. In this work, we developed automated applications based on three-dimensional (3D) convolutional
neural networks (CNNs) that detect FHB symptoms expressed in wheat, estimate the total number of spikelets versus the total
number of infected spikelets on a wheat head, and subsequently calculate FHB severity index. Such tools are an important
step toward the creation of automated and efficient phenotyping methods. The data used to generate the results are 3D point
clouds consisting of four colour channels——red, green, blue (RGB), and near-infrared (NIR)——collected using a multispectral 3D
scanner. Our 3D CNN models for FHB detection achieved 100% accuracy. The influence of the multispectral information on per-
formance was evaluated; the results showed the dominance of the RGB channels over both the NIR (720 nm peak wavelength)
and the NIR plus RGB channels combined. Our best 3D CNN models for estimation of total and infected number of spikelets
achieved mean absolute errors (MAEs) of 1.13 and 1.56, respectively. Our best 3D CNN models for FHB severity estimation
achieved 8.6 MAE. A linear regression analysis between the visual FHB severity assessment and the FHB severity predicted by
our 3D CNN showed a significant correlation.

Key words: fusarium head blight (FHB), wheat, FHB severity detection, 3D convolutional neural network (3D CNN), multispec-
tral point cloud, assessment

1. Introduction
Fusarium head blight (FHB) is a devastating fungal disease

caused by a variety of species within the Fusarium genus that
affect cereal crops like wheat, barely, and oats (Ghimire et al.
2020; Khan et al. 2020; Chin et al. 2023). The fungus infects
the spikes1 during the flowering stage (Sakuma et al. 2019),
causing premature grain shrivelling and bleaching, leading
to a significant loss in yield quality and quantity. Moreover,
trichothecene mycotoxins may accumulate in the infected
kernels, which can cause acute toxicity to both humans and
animals (Ferrigo et al. 2016). Disease management strategies
such as crop rotation, tillage, variety selection, and fungi-
cide use help reduce the impact of FHB. Developing wheat

1 A wheat head (also known as a spike) consists of a number of
spikelets, and a spikelet consists of florets that could develop into
1–3 grains.

cultivars with resistance to FHB is a high priority (Dhariwal
et al. 2020), but still relies on time-consuming, subjective hu-
man assessment. This is further compounded by the fact that
FHB is notoriously difficult to screen effectively in a field sit-
uation because FHB resistance is under the control of a few
major genes that work in concert with an unknown number
of minor genes (Anderson et al. 2001; Buerstmayr and Buer-
stmayr 2015). In addition, numerous factors can influence
disease development in the grain, including cultural prac-
tices, spike morphology, canopy density, plant height, rain-
fall, relative humidity, temperature, and host plant genetic
resistance (Buerstmayr et al. 2020). The considerable role of
environmental factors coupled with the quantitative nature
of the genetics for resistance creates serious challenges for
phenotyping, which make it both highly time- and resource-
intensive (Anderson 2007). To effectively evaluate breeding
materials, screening must be done in replicated nurseries in

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 1

https://orcid.org/0000-0003-4223-1598
https://orcid.org/0000-0002-2624-1502
https://orcid.org/0009-0005-4318-4721
https://orcid.org/0000-0001-9774-7925
mailto:christopher.henry@umanitoba.ca
mailto:mariaantonia.henriquez@agr.gc.ca
http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

2 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

multiple environments, because even with inoculated fusar-
ium screening nurseries, susceptible lines can elude fusarium
infection.

The aforementioned issues necessitate the creation of au-
tomated tools that can replace the arduous tasks of visually
identifying and characterizing FHB symptoms for thousands
of wheat plants in a growth chamber or test plot. Advances
in imaging technology and remote sensing (Teke et al. 2013;
Lu et al. 2020)allow the acquisition of large datasets of plant
and crop images (Lu and Young 2020) that can be analyzed
via machine learning (ML) techniques (Jordan and Mitchell
2015). ML is quickly becoming an important part of agri-
cultural and plant science research (Harfouche et al. 2023),
with a wide variety of applications (Ferentinos 2018; Liu et al.
2020; Singh et al. 2020). Several groups have begun explor-
ing the detection of FHB in wheat via ML, primarily using
red, green, blue (RGB) images (Qiu et al. 2019; Zhang et al.
2019, 2022; Gu et al. 2021; Gao et al. 2022a, 2022b; Mao et al.
2023) but also with hyperspectral images (Barbedo et al. 2015;
Huang et al. 2020). These are still early days, however, and
given the challenges and limitations associated with each ap-
proach (including data quality, a reliance on augmented data,
and significant preprocessing), this remains an open prob-
lem with much yet to explore. For example, to the best of
our knowledge, there are currently no studies in the liter-
ature that automate the counting of spikelets or the deter-
mination of FHB severity in wheat using three-dimensional
(3D) data such as point clouds (PCs). The use of 3D data
is growing in popularity (Vázquez-Arellano et al. 2016), ow-
ing to the increased amount of information such as object
shape and volume (Ma et al. 2003) available for ML models to
make decisions. In particular, PCs, which are collections of
points in 3D space along with associated colour information
(e.g., measured RGB values), can provide much more detailed
representations of an object’s edges, surfaces, and textures
than standard two-dimensional (2D) images. The use of PCs
in ML and deep learning applications is established (Charles
et al. 2017; Klokov and Lempitsky 2017; Li et al. 2018; Shi
et al. 2019) but still not as broadly practiced as it could be
due mostly to data scarcity and the added effort in utilizing
3D data.

We address both these challenges in this study, creating a
bespoke labelled dataset of wheat PCs and developing effi-
cient models for data preprocessing and FHB detection and
characterization. The publicly available dataset (called the
University of Winnipeg–Morden Research and Development
Centre 3D WHEAT Dataset or UW-MRDC 3D WHEAT Dataset
for short (Hamila et al. 2023a)) was acquired with a commer-
cial multispectral scanner (Phenospex PlantEye F500), which
produces a PC with RGB and near-infrared (NIR) intensities
at each point. The dataset consists of two separate collec-
tions (called Dataset I and Dataset II); both comprising water-
controlled (WC) (i.e., healthy) and FHB-infected PCs of wheat,
but each used for different applications as discussed further
in the following section. In regard to algorithm development,
the main contributions of this work include (i) graphics pro-
cessing unit (GPU)-enabled preprocessing to shift, scale, and
reorder the PC data; (ii) a 3D CNN model for FHB detection;
and (iii) two different approaches to determine FHB sever-

ity in a wheat head using 3D CNN models that either count
spikelets (total versus infected) or perform a direct estima-
tion.

2. Materials and methods

2.1. Methodology overview
The overall procedure that was designed and developed to

conduct this study is shown in Fig. 1. It consists of three ma-
jor systems: dataset creation, data preprocessing, and model
creation for FHB detection and severity estimation in wheat
using 3D CNNs. The dataset creation process consists of the
three steps depicted in Fig. 1: data preparation (A); data
acquisition (B); and data naming and labelling (C). The re-
sulting dataset, called UW-MRDC 3D WHEAT (Hamila et al.
2023a), consists of two separate collections (Dataset I and
Dataset II) that are used for different parts of this study.
Following dataset creation is data preprocessing (D), during
which data samples that are multispectral PCs were trans-
formed into multispectral 3D images, whose representation
is compatible with CNNs. Finally, following data preprocess-
ing is model creation, in which 3D CNNs were developed
and trained to automate the tasks of FHB detection (E); to-
tal number of spikelets estimation (F); total number of in-
fected spikelets estimation (G); and severity assessment in
wheat (H). For the development of the (E) and (F) applica-
tions, Dataset I was used, whereas Dataset II was used for (G)
and (H).

The order in which the 3D CNN models are applied is de-
picted in Fig. 2. The pipeline begins with the 3D CNN for FHB
detection, which predicts whether the input PC sample repre-
sents diseased or healthy wheat. If the sample is healthy, the
input will be processed by the 3D CNN for the total number of
spikelets estimation. Otherwise, the sample will be processed
either through Method 1 or Method 2. In Method 1, the sam-
ple will be processed by both the 3D CNN for total number
of spikelets estimation and the 3D CNN for total number of
infected spikelets estimation; then, the FHB severity percent-
age will be the ratio of these two estimations. Whereas in
Method 2, the sample will be directly processed through the
3D CNN for FHB assessment, which will directly estimate the
FHB severity percentage of the sample.

Two methods for severity assessment were created due to
our incremental ML model development process. At the on-
set, it was not certain that an ML regression model could
directly produce a severity assessment with low mean abso-
lute error (MAE). As a result, the first experiment was to de-
termine whether a model could reasonably count the num-
ber of spikelets on a wheat head. Once successful, the next
logical step was to determine whether a model could be de-
veloped to count only the number of infected spikelets. To-
gether, the output of these two models was used to produce
a severity assessment. This success led us to investigate next
whether a model could then produce a severity assessment
directly, thereby skipping the counting models all together.
For completeness, we have presented the results of all these
approaches.

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 3

Fig. 1. Methodology overview of this study that consists of three major components: (i) dataset creation (A, B, and C), (ii)
data preprocessing with CUDA (D), and (iii) creation of detection and estimation three-dimensional (3D) convolutional neural
network (CNN) models (E, F, G, and H). These methods were created to achieve fusarium head blight (FHB) detection (E), spikelet
estimation (F and G), and severity assessment (H) in wheat using 3D CNN models and multispectral point cloud (PC) data. RGB,
red, green, blue; NIR, near-infrared; WC, water controlled.

Fig. 2. Pipeline overview of the three-dimensional convolutional neural network models for fusarium head blight (FHB) detec-
tion and severity estimation.

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

4 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

Fig. 3. Overview of the content and specifications of the University of Winnipeg–Morden Research and Development Centre
3D WHEAT Dataset (UW-MRDC 3D WHEAT dataset) consisting of Dataset I and II. Dataset I consists of two collections of point
cloud (PC) data: wheat spikes (A) and wheat heads (B), and Dataset II consists of one collection of PC data: wheat spikes (C). The
tables give the number of water-controlled (WC) and fusarium head blight (FHB) PCs at each DPI or range of DPIs (far right),
with the total number given in the boxes below. RGB, red, green, blue; NIR, near-infrared; DPI, days post-inoculation.

2.2. UW-MRDC 3D WHEAT dataset creation

2.2.1. Dataset overview

Figure 3 illustrates the content of the UW-MRDC 3D
WHEAT dataset broken into the two collections Dataset I and
Dataset II. The main difference between the two collections is
the methods used during the data preparation phase, which
is described in detail in Section 2.2.2. Dataset I is further di-
vided into images of wheat spikes versus wheat heads, as
shown in Fig. 3, for the purpose of different applications as
described below.

Dataset I (A) represents wheat spikes. It was created to
achieve the task of FHB detection in wheat. The dataset was
acquired by scanning 72 wheat plants, of which 14 were in-
oculated and 58 were kept WC, at three different growth
stages. All 72 plants were captured at 7, 14, and 21 days post-
inoculation (DPI), representing the growth stages of 7 days af-
ter Zadoks 65 (7 days after anthesis), Zadoks 73 (early milk),
and Zadoks 83 (early dough) (Zadoks et al. 1974), respectively.
Plants were scanned on different dates to capture the devel-
opment of disease symptoms over time. Early FHB symptoms
were recorded when at least one wheat spikelet turned yel-
low or pinkish and became distinguishable from the other
green spikelets, and, as time went by, the disease kept devel-

oping and more spikelets got infected in a wheat head. The
final Dataset I for wheat spikes consists of 216 labelled PCs,
where each PC is labelled either FHB or WC.

Dataset I (B) represents wheat heads. It was created to
achieve the task of estimating the total number of spikelets;
therefore, the scans were focused only on the wheat spikes
(also called wheat heads). The data were acquired by cutting
the wheat stems of the 72 wheat plants at 21 DPI and then
scanning the remaining heads. Thus, the dataset consists of
72 PCs, each labelled by a positive integer in the range [7, 22].

Dataset II (C) for wheat spikes was created to achieve the
tasks of estimating the total number of infected spikelets
and the FHB severity. Therefore, only FHB-diseased wheat
with visible symptoms was captured at different DPIs rang-
ing from 4 to 18 DPI, as shown in Table (C) in Fig. 3. The final
dataset consists of 96 PCs, each of which is labelled with two
positive integer values, the first of which indicates the total
number of spikelets and ranges between [13, 21] and the sec-
ond of which reflects the number of infected spikelets in a
wheat head and ranges between [2, 15].

2.2.2. Sample preparation

FHB Dataset I and Dataset II were created by delivering
a macroconidia suspension into bilateral florets of a wheat

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 5

spike and counting the number of spikelets blighted after a
determined time under controlled-environment conditions.
Furthermore, a large number of Fg isolates were used as dis-
cussed below. This type of trial is very labour demanding,
time consuming, and non-trivial to run.

The plant material used for Dataset I included the Canada
Western Red Spring wheat cultivar 5602HR and CDC Teal.
The 5602HR cultivar is moderately resistant to FHB, and CDC
Teal is susceptible. The plant material used for Dataset II in-
cluded only the wheat cultivar 5602HR. Planting and inocula-
tion methods are identical to those described by Nilsen et al.
(2020). A 3-acetyldeoxynivalenol (3-ADON) producing isolate
of Fg (Henriquez Spring Wheat (HSW)-15-39), obtained from
the HSW collection of Fusarium isolates, was used for Dataset
I. For Dataset II, ten 3-ADON and nine 15-ADON producing
isolates of Fg were used in this study. All isolates from the
HSW culture collection are available upon request under a
material transfer agreement.

Seeds were sown in 3.5 in. pots with a mixture of 50% Sun-
shine soilless #5 mix (manufactured by Sun Gro Horticulture)
and 50% soil, plus 6 g of slow-release Osmocote 14-14-14 fer-
tilizer (manufactured by the Scotts Company). Plants were
grown in controlled-environment cabinets with 16 h of light
at 22 ◦C and 8 h of darkness at 15 ◦C. The bilateral florets of
a spikelet positioned at the fifth spikelet in the upper part
of a spike were inoculated at 50% anthesis with a 10 μL of Fg
macroconidia suspension (5 × 104 macroconidia/mL), which
was performed between the lemma and palea using a micro-
pipette. Control plants were treated with sterile water. Inoc-
ulated plants were covered with a plastic bag for 48 h to pro-
mote infection. FHB severity was calculated by counting the
number of spikelets showing disease symptoms within each
spike at 7, 14, and 21 DPI.

2.2.3. Data acquisition and preprocessing

All the wheat plants in this work were scanned using the
Phenospex PlantEye F500 multispectral scanner, which pro-
vides 3D representations of plants via PCs. A wheat plant
container is placed beneath the PlantEye, which, once acti-
vated, begins scanning laterally and emitting multispectral
light beams onto the plant. The reflections of those beams are
acquired to form a 3D representation of the wheat plant that
include intensities of the four different colour bands (RGB
and NIR). Multispectral information and 3D representation
are then combined into a single PC. The spectral range of the
PlantEye scanner is ∼450–750 nm with peak wavelengths for
its four LEDs (blue, green, red, and NIR) at 460, 545, 635, and
720 nm, respectively.

The structure of the data output from the Phenospex is
not immediately compatible for use with 3D CNNs. Prepro-
cessing is required to shift, scale, and reorder the data first.
The details of these steps——along with the strategies we em-
ployed for their efficient execution on a GPU——are given in
Appendix A. A brief description of the pertinent components
of the CUDA parallel computing platform is also included
there.

2.3. Model development
This section presents the approach to develop all the mod-

els that were used to generate the reported results. In each
case, the development process followed the same approach.
As a result, we discuss each component of the model de-
velopment process below and highlight individual differ-
ences where necessary. Specifically, four types of models were
created to automate the following tasks: detection of FHB
(DFHB), estimation of the total number of spikelets (ETNS),
estimation of the total number of infected spikelets (ETNIS),
and FHB severity assessment (FHBSA). Notice that the models
for ETNS and ETNIS are used to calculate a severity percent-
age, while the last model (FHBSA) outputs this value directly.
All of these models were developed to accept 3D PCs, trans-
formed into 3D images (see Section 2.2.3 and Appendix A),
as input. Here, the focus is on developing automated solu-
tions for FHB detection and severity estimation, but the over-
all methodology can be generalized to other classification
and regression problems. A nice primer on the use of ar-
tificial intelligence for plant digital phonemics is given by
Harfouche et al. (2023). Finally, the following subsections de-
tail the methods that were used for the development of the
four reported models.

2.3.1. Monitored grid search

In our study, 3D CNNs were developed from scratch, as op-
posed to starting from off-the-shelf models such as Resnet (He
et al. 2016) or DenseNet (Huang et al. 2017). A grid search
over the number of layers and the number of neurons per
layer was conducted. The objective of the grid search was
to find the optimal 3D CNN architecture that produces the
highest accuracy on the task at hand. The layers employed
to build the models were 3D convolution layers, 3D max
pooling layers, and densely-connected (or dense) layers, and
the search space (denoted by curled braces) used to deter-
mine the optimal number of layers and neurons was the
following:

� {3,4,5,6}: Search space of the number of 3D convolution and
3D max pooling layers. The last layer of 3D convolution be-
fore the densely-connected layers is not followed by a 3D
max pooling layer.

� {1,2,3,4,5,6}: Search space of the number of densely-
connected layers.

� {128,64,32,16,8}: Search space of the number of neurons
per layer. The last densely-connected layer always has one
neuron.

However, with these sets of variables, the number of possi-
ble combinations is 380 835 000 networks, which is too large
to search exhaustively. Thus, a monitored grid search was em-
ployed as an alternative to training only a small number of
3D CNN models. The monitored grid search worked by ran-
domly generating a batch of 20 networks at a time, such that
a 5-fold cross-validation (CV) (Refaeilzadeh et al. 2009) was

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

6 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

performed on each network in the batch, and then the top
three networks that achieved the highest average CV accu-
racy out of the 20 networks were retrained on the training
set and evaluated on the test set.

2.3.2. Datasets characteristics

Three different dataset versions were used to train the CNN
networks presented here. The datasets were obtained by con-
verting PCs into 3D images using different resolution factors
for each task. Specifically, DFHB used a resolution factor of
R = 1 and the remaining tasks used R = 1.5. Moreover, the
datasets differed by their voxel information, which are de-
fined as follows:

� The 3D wheat-plant images in RGB (3DWP_RGB): In this
dataset, the voxels of the 3D images contained RGB colour
information (three channels).

� The 3D wheat-plant images in NIR (3DWP_NIR): In this
dataset, the voxels of the 3D images contained NIR colour
information (one channel).

� The 3D wheat-plant images in RGB + NIR (3DWP_RGB_NIR):
In this dataset, the voxels of the 3D images contained the
RGB + NIR colour information (four channels).

3D images within the datasets had different sizes, such
that the width, height, and depth values corresponding to
the 3D images dimensions were within [25, 237], [85, 378],
and [14, 384], respectively. Since CNNs require input sam-
ples of a fixed size, resizing all the 3D images within the
datasets to the same size was required. The easiest option
was to resize every 3D image to the maximum size, which
corresponded to 237 × 378 × 384 voxels (vx). However, this
method raised the volume of the data tremendously, such
that each resized 3D image contained 34 401 024 vx. Train-
ing the models on big volume data consumes too much time
and resources. Thus, a smaller fixed size was determined
such that, any batch of resized 3D images could fit in the
GPU memory along with any of the aforementioned model
parameters.

For DFHB, it was important to keep as many relevant voxels
as possible when resizing since the real height of a scanned
wheat plant is an important feature for the model. Therefore,
a fixed size was determined by fixing the height to 300 and
by calculating the width and depth via the average aspect ra-
tios of the images in the datasets. As a result, the data sam-
ples were all rescaled to a fixed size equal to 75 × 300 × 95
vx while maintaining their respective original aspect ratios.
This means that a 3D image was rescaled to the highest pos-
sible size that preserved the initial height–width proportion,
preserved the height–depth proportion, and was contained
within the 75 × 300 × 95 vx envelope. The rescaled images
were then zero-padded to 75 × 300 × 95 vx. Similarly, the im-
ages were scaled to 161 × 51 × 93 for ETNS and 227 × 70 ×
111 for ETNIS and FHBSA.

2.3.3. Labels

The labels for DFHB were binary values indicating the
presence or absence of FHB; the labels for ETNS were in-
tegers that varied between 7 and 22, indicating the to-
tal number of spikelets; the labels for ETNIS were inte-
gers between 2 and 15, giving the total number of in-
fected spikelets; and the labels for FHBSA were real values
ranging from 0.923 (92.3%) to 0.111 (11.1%) that were the
FHB severity assessments.

2.3.4. 5-fold cross validation

Prior to training the 20 models, the data samples were di-
vided into training and test sets. For DFHB and ETNS, 90% of
the data were assigned to the training set with the remainder
placed into the test set. For tasks ETNIS and FHBSA, an 80/20
split was used. For all experiments, we ensured that the train-
ing set and the test set had the same class distribution with
respect to FHB and WC classes. Next, the training samples
were further split into five folds that had the same class dis-
tribution as the training set to perform CV, such that each
fold consisted of 20% of the training data. Then, 5-fold CV
was applied by training the models on four training folds and
validating them on the validation fold. The top three model
architectures that achieved the highest average CV accuracy
were retrained on the entire training set and evaluated on
the test set, where “average CV accuracy” refers to the aver-
age accuracy value achieved by the network trained on each
fold of the five CV folds.

2.3.5. Model architectures

The architectures of each of the 20 DFHB and five ETNS
models that were constructed by the monitored grid search
are presented in Tables 1 and 2, respectively. For ETNIS
and FHBSA, a hundred 3D CNN models were trained in to-
tal, and, due to this large number of tested models, only
the architectures of the top three models will be discussed.
These are depicted in Tables 3 and 4 for ETNIS and FHBSA,
respectively.

The number of convolutional neurons refers to the num-
ber of neurons per 3D convolutional layer and the number
of fully-connected neurons refers to the number of neurons
per fully-connected layer. Even though the architectures of
the models were randomly generated through the monitored
grid search, only architectures with a descending order of
the number of neurons per both convolution layers and fully
connected layers were considered valid candidate models.
In other words, given a layer l with a number of neurons
equal to nl, the number of neurons nl + 1 in the subsequent
layer l + 1 had to be less than or equal to the number of
neurons in layer l, i.e., nl + 1 ≤ nl. The choice of decreasing
the number of neurons throughout the layers created lighter
models with a relatively small and condensed number of pa-
rameters. Every 3D convolutional layer was followed by a
3D max pooling layer except for the last 3D convolutional
layer.

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 7

Table 1. Overall architectures of the 20 three-dimensional
convolutional neural network models created from the
monitored grid search for the detection of fusarium head
blight-disease symptoms in wheat.

Model

Number of
convolutional

neurons

Number of
fully-connected

neurons

1 16,8,8 128,64,8,8

2 64,64,64,32,8 128,32,8

3 32,32,8,8 128,64,32

4 64,64,16 128,128,32

5 32,16,16,8 32,16

6 64,64,64,16 16

7 64,16,16,16 32,64,16

8 32,32,32,32,16 128,64,32,16

9 32,32,32,16,16 64,32,16,8

10 32,32,32,8,8 64,32,16

11 32,32,32,32,16 128,64

12 16,8,8,32,64 32

13 64,64,8,8,8 32,16

14 64,32,8 128,32,16,8

15 64,64,32 128,16,8

16 64,16,8,8 16,8

17 32,32,32,16 128

18 32,32 8,8,8

19 32,32,16,16,8 32

20 64,32,32 128

Note: “Number of convolutional neurons” is the number of neurons per con-
volutional layer, and “Number of fully-connected neurons” is the number of
neurons per fully-connected layer.

Table 2. Overall architectures of the five three-
dimensional convolutional neural network models
generated by the monitored grid search for the estimation
of the total number of spikelets.

Model

Number of
convolutional

neurons

Number of
fully-connected

neurons

1 32,16 128,64,8

2 32,32,8 128,16

3 32,16,16,16 64,8

4 32,16,8,8,8 32,32,16

5 32,32,32,32 128

Note: “Number of convolutional neurons” is the number of neurons per con-
volutional layer, and “Number of fully-connected neurons” is the number of
neurons per fully-connected layer.

For DFHB, the activation function in all the layers was the
rectified linear unit (ReLU) (Nair and Hinton 2010), except for
the output layer, where the activation was a sigmoid func-
tion. By default, the last fully-connected layer had one neu-
ron since the networks were solving a detection problem.
For ETNS, the only difference was the use of a ReLU activa-
tion function in all the networks’ output layers. For ETNIS
and FHBSA, every 3D convolutional layer is followed by a 3D
max pooling layer except for the last 3D convolutional layer,
and the last fully-connected layer has one neuron. For ETNIS,
as shown by Table 3, Models 1 and 2 have identical 3D CNN

Table 3. Overall architectures of the top three three-
dimensional convolutional neural network models gener-
ated by the monitored grid search for the estimation of the
number of infected spikelets.

Model

Number of
convolutional

neurons

Number of
fully-connected

neurons Optimizer

1 32,32,32,16 32,8 Adam

2 32,32,32,16 32,8 RMSprop

3 64,32,32,32 32 Adam

Note: “Number of convolutional neurons” is the number of neurons per con-
volutional layer, and “Number of fully-connected neurons” is the number of
neurons per fully-connected layer.

Table 4. Overall architectures of the top three three-
dimensional convolutional neural network models gener-
ated by the monitored grid search for the estimation of the
fusarium head blight severity of infected wheat.

Model

Number of
convolutional

neurons

Number of
fully-connected

neurons

1 32,32,32,16 64,32,8

2 32,32,32,32 64,32,8

3 32,32,32,32 32

Note: “Number of convolutional neurons” is the number of neurons per con-
volutional layer, and “Number of fully-connected neurons” is the number of
neurons per fully-connected layer.

architectures, with the optimizer being the only distinction,
such that Model 1 used an Adam optimizer whereas Model
2 used a root mean square propagation (RMSProp) optimizer
(Dauphin et al. 2015).

For DFHB, the top three 3D CNN models with the highest
average CV accuracy on the 3DWP_RGB dataset were Models
8, 10, and 11. However, Models 8, 9, and 11 and Models 3,
5, and 9 were the top three models that achieved the high-
est average CV accuracy on the 3DWP_RGB_NIR dataset and
the 3DWP_NIR dataset, respectively. With respect to ETNS,
Model 5 was the best-performing model, since it achieved the
best average CV MAE. For ETNIS, Model 1 achieved the best
average MAE among the top three best-performing models.
Its architecture consisted of four blocks, each consisting of
a 3D convolutional layer and a 3D max pooling layer, where
the kernel size of each convolutional layer was equal to (3
× 3 × 3). Following the convolutional layers was a flatten-
ing layer, followed by three densely connected layers where
the number of neurons per dense layer was equal to 32, 8,
and 1, respectively. The activation function in all the layers
was a ReLU function. For FHBSA, Model 1 achieved the best
average MAE among the top three best-performing models.
Its architecture consisted of four blocks, each consisting of
a 3D convolutional layer and a 3D max pooling layer, where
the number of neurons in each convolutional layer was 32
except for the last layer, where the number of neurons was
equal to 16, and the kernel size in all the convolutional layers
was equal to (3 × 3 × 3). Following the convolutional layers
was a flattening layer, followed by four densely connected lay-
ers where the number of neurons per dense layer was equal
to 64, 32, 8, and 1, respectively. The activation function in all

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

8 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

the layers was the ReLU function except for the output layer,
where it used the sigmoid activation.

2.3.6. Model training

For DFHB model training, the RMSProp optimization algo-
rithm was used to update each network’s parameters, with
a learning rate equal to 5E−4, and binary cross entropy
(Mannor et al. 2005) was used as the loss function. Each model
was trained for 100 epochs and a batch size equal to 5 was
used. Even though a common practice is to set the batch size
as a power of 2, we trained our models in a memory-bound
environment that only allows us to choose a maximum batch
size of 5. The closest power of 2 is 4. Moreover, when we
trained our model with a batch size of 4, it led to a noisy
training, which made the model fail to converge. As a result,
we chose the maximum batch size possible, which made the
training more stable and enabled us to achieve the results
reported in this paper. The choice of the batch size for each
model was set based on the maximum batch size possible,
which was not necessarily a power of 2. Moreover, the train-
ing duration was roughly 30 min for all models in this work.
To implement the 3D CNN models, we used the Python pro-
gramming language and its open-source neural network li-
brary Keras (Chollet et al. 2015). We conducted the experi-
ments using an NVIDIA Tesla P100 GPU with 12 GB of GPU
memory.

For ETNS, the model architectures that achieved the best
average CV MAE were trained on the full training set and
tested on the test set. Table 5 shows the training parameters
(depth, optimizer, regularizer, epochs, and batch size) corre-
sponding to the best-performing models. Moreover, the opti-
mizer, regularizer, epochs, and batch size also represent the
training parameters for all the models. Starting with the 3D
CNN, a batch size equal to 24 was used. The Adam optimiza-
tion algorithm was used to update the network parameters
with a learning rate equal to 1E−3, and MSE was used as the
loss function. The 3D CNN was trained for 200 epochs.

For training each of the hundred ETNIS and FHBSA models,
a batch size equal to 4 was used because there was not enough
memory on the GPU to store a bigger batch. The RMSProp and
the Adam optimization algorithms were used to update the
network’s parameters. For ETNIS, learning rates 1E−4, 5E−4,
and 1E−3 were used during training, while a learning rate
equal to 5E−4 was used for FHBSA. In both cases, MSE was
used as a loss function, and each model was trained for 100
epochs.

2.3.7. Predefined model adaptation

Two approaches were followed to create regression mod-
els for the estimation of the total number of spikelets. In the
first approach, 3D CNN networks were created from scratch
through a monitored grid search using the approach re-
ported in the previous section (this approach is labelled ETNS
model development). In the second approach, three well-
known CNN architectures were adapted for use with 3D data
to solve the regression problem. These three networks were

deep residual learning (ResNet) (He et al. 2016) in two vari-
ations (ResNet v1 and ResNet v2 (Hamila 2022)) and densely
connected convolutional networks (DenseNet) (Huang et al.
2017; Hamila 2022). Taking this approach, 3D ResNet v1, 3D
ResNet v2, and 3D DenseNet models were created. 3D ResNet
v1 and 3D ResNet v2 were created by transforming every 2D
convolutional layer and 2D average pooling layer into a 3D
convolutional layer and a 3D average pooling layer, respec-
tively. Moreover, the activation function of all the output lay-
ers was changed from a sigmoid function to a ReLU function.
Similarly, a 3D DenseNet was created by changing every 2D
convolutional layer and 2D average pooling layer in DenseNet
into a 3D convolutional layer and a 3D average pooling layer,
respectively. Furthermore, the activation function of the out-
put layer was changed from a sigmoid function to a ReLU
function. In total, three 3D ResNet v1, three 3D ResNet v2,
and two 3D DenseNet were created.

Next, we selected the best version of each of the above pre-
defined adapted models as follows: Beginning with 3D ResNet
v1, each of the three networks consisted of one, two, or three
residual blocks, respectively, with depths equal to 8, 14, and
20 layers (Hamila 2022). The best-performing model in the 5-
fold CV for 3D RestNet v1 models was an architecture with a
depth equal to 20 layers. Similarly, the next models investi-
gated were two 3D ResNet v2 models, such that each network
consists of one and two residual blocks, respectively, and
their depths are equal to 11 and 20 layers (Hamila 2022). Here,
the best-performing model in the 5-fold CV was an architec-
ture with a depth equal to 11 layers. Finally, two 3D DenseNet
networks were created, each having a four-layer dense block
and a five-layer dense block with depth values equal to 23 and
29 layers, respectively. Per each model, each dense layer was
preceded by a bottleneck layer, and each dense or bottleneck
layer was followed by a dropout layer with a dropout rate
equal to 0.2 (Hamila 2022). The best-performing 3D DenseNet
model in the 5-fold CV was one with a depth equal to 23 lay-
ers.

To train both 3D ResNet v1 and v2 models, an Adam opti-
mizer was employed with a learning rate equal to 1E−3. Both
models employed L2 regularizer with a regularization factor
equal to 1E−4 and MSE as the loss function. 3D ResNet v1 and
3D ResNet v2 used a batch size equal to 12 and 6, respectively.
Both models were trained for 200 epochs. Finally, to train 3D
DenseNet, an Adam optimizer was employed with a learn-
ing rate equal to 1E−3 and a dropout regularizer was used.
The model was trained for 200 epochs with a batch size equal
to 4.

2.4. FHB Disease assessment and statistical
analysis

FHB visual assessment was carried out at 7, 14, and 21 DPI.
However, FHB severity data collected by visual observation
at 14 DPI for 19 Fg isolates were analyzed using SAS Studio
software version 3.8 (SAS Institute Inc., Cary, NC). A gener-
alized linear mixed model with a beta distribution function
was fitted to the data using PROC GLIMMIX with the LOGIT
link function and BETA distribution (SAS, 2014). The isolates
were treated as a fixed factor and replicated as a random fac-

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 9

Table 5. The training parameters of the best-performing architecture per model in the esti-
mation of the total number of spikelets.

Model Depth Optimizer Regularizer Epochs Batch size

3D CNN 10 Adam None 200 24

ResNet v1 20 Adam l2 200 12

DenseNet 23 Adam Dropout 200 4

ResNet v2 11 Adam l2 200 6

Note: CNN, convolutional neural network.

tor. When a factor effect was significant, as indicated by a sig-
nificant F test (p ≤ 0.05), differences between the respective
means were determined using the least significant difference
test (p ≤ 0.05). Regression analysis was used to determine the
relationship between the 3D CNN model for severity estima-
tion and severity collected by visual observation from 7 to 21
DPI.

3. Results

3.1. Point cloud to 3D image conversion
To visualize a few 3D images produced by the CUDA conver-

sion model using various resolution factors, 2D projections
were performed on 3D images representing a wheat plant.
Figure 4 shows three 2D projections of a wheat plant obtained
with different resolution factors R. Figures 4A–4C depict im-
ages obtained from R values equal to 2, 1, and 0.5, respec-
tively. The resolution of the images differs depending on the
value of R, such that in Fig. 4C where R = 0.5, the image has a
low resolution due to the diminishing of the real dimensions
by half during the conversion, whereas in Fig. 4B where R = 1,
a higher resolution with more details and sharp edges can be
observed due to the conservation of the real dimensions dur-
ing the conversion. Figure 4A, where R = 2, shows a slightly
better quality than Fig. 4B, such that its contours and details
are more distinct.

3.2. Detection of fusarium head blight
Table 6 shows the detection performance metrics of the

top three 3D CNN models over the three versions of datasets.
Models 8, 10, and 11 achieved the highest average CV val-
ues among the batch of 20 models on the 3DWP_RGB dataset
(characterized by RGB 3D images) by achieving 88.4%, 87.4%,
and 86.8% average CV accuracy, respectively. These three
models were retrained and evaluated over the test set, and
achieved 100%, 91.3%, and 91.3% test accuracy, respectively.
Models 11, 8, and 9 are the top three models among the 20
models that attained the highest average CV accuracies on
the 3DWP_RGB_NIR dataset (characterized by RGB + NIR 3D
images) and achieved 87.4%, 86.8%, and 85.8% average CV ac-
curacy, respectively. These three models were retrained and
tested on the dataset’s test set, and despite Model 11 hav-
ing the highest mean CV accuracy, it did not beat Model 8 in
test accuracy. In fact, Model 8 achieved 95.7% test accuracy,
followed by Models 11 and 9 that achieved 91.3% and 87.0%

accuracy, respectively. Finally, Models 3, 5, and 9 achieved
the highest average CV accuracies on the 3DWP_NIR dataset
(characterized by NIR 3D images) by attaining 84.2%, 83.7%,
and also 83.7% average CV accuracy, respectively. Despite the
fact that Model 9 achieved the lowest mean CV accuracy
among the top three models, it obtained the highest test ac-
curacy of 87.0%, followed by Models 5 and 3 that achieved
82.6% and 78.3%, respectively.

3.3. Estimation of the total number of spikelets
Table 6 shows the results corresponding to the best-

performing models (3D CNN, 3D ResNet v1, 3D ResNet v2,
and 3D DenseNet) in the regression problem on Dataset I of
wheat heads. The table shows the performance metrics of the
models, which are the average CV MAE, the test MAE, and the
average prediction time per sample in milliseconds. Both the
3D CNN and ResNet v2 achieved the best test MAE of 1.13.
However, the 3D CNN outperformed the 3D ResNet v2 in the
prediction time per sample with 14 ms versus 112 ms for the
3D RestNet v2. Moreover, even though 3D ResNet v1 obtained
the best average CV MAE of 0.91, it failed to obtain it on the
test set with an MAE of 1.23. However, 3D ResNet v1 pro-
duced the second-best prediction time of 62 ms per sample.
Although 3D DenseNet was ranked last in terms of average
CV MAE in the group of models by obtaining a 1.28 average
CV MAE, it succeeded in achieving a 1.19 MAE on the test set,
which is ranked third. 3D DenseNet also achieved an average
prediction time per sample of 140 ms.

3.4. Estimation of the total number of infected
spikelets

Table 6 shows the results corresponding to the best-
performing 3D CNN models in the regression application,
corresponding to the ETNIS on the Dataset II. Among the hun-
dred models that were tested, only three achieved the lowest
MAE, which are depicted as Models 1, 2, and 3 in the table.
Model 1 achieved the best result of 1.56 MAE, meaning that
the predicted total number of infected spikelets in a wheat
head is, on average, equal to the true label with a tolerance
of 1.56. Models 2 and 3 achieved the second- and third-lowest
MAEs among the hundred models, which are equal to 1.57
and 1.63, respectively.

3.5. Fusarium head blight severity assessment
The results for the top-performing 3D CNN models in the

regression application, which correspond to the estimation

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

10 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

Fig. 4. Two-dimensional projections of a three-dimensional image converted with different resolution factors R using the CUDA
kernel.

Table 6. Evaluation metrics of the top three-dimensional convolutional neural network (CNN) models per dataset and by
application.

Application Dataset Model Avg CV acc Test acc % Avg CV MAE Test MAE Inference time

FHB detection 3DWP_RGB Model 8 88.4 100 —— —— ——

Model 10 87.4 91.3 —— —— ——

Model 11 86.8 91.3 —— —— ——

3DWP_RGB_NIR Model 11 87.4 91.3 —— —— ——

Model 8 86.8 95.7 —— —— ——

Model 9 85.8 87.0 —— —— ——

3DWP_NIR Model 3 84.2 78.3 —— —— ——

Model 5 83.7 82.6 —— —— ——

Model 9 83.7 87.0 —— —— ——

Total No. of spikelets
estimation

Dataset I (heads) 3D CNN —— —— 1.26 1.13 14

ResNet v1 —— —— 0.91 1.23 62

DenseNet —— —— 1.28 1.19 140

ResNet v2 —— —— 1.05 1.13 l 42

No. of infected spikelets
estimation

Dataset II Model 1 —— —— 2.06 1.56 ——

Model 2 —— —— 2.09 1.57 ——

Model 3 —— —— 3.05 1.63 ——

Severity estimation Dataset II Model 1 —— —— 12.4 8.6 ——

Model 2 —— —— 12.6 8.8 ——

Model 3 —— —— 12.9 9.0 ——

Note: Average cross-validation (CV) accuracy percentage (AVG CV acc %), Test accuracy percentage (Test acc %), and Average CV MAE (Avg CV MAE). FHB, fusarium head
blight; RGB, red, green, blue; NIR, near-infrared; MAE, mean absolute error.

of FHB severity on Dataset II, are shown in Table 6. Only three
of the 100 models that were tested, identified in the table as
Models 1, 2, and 3, had the lowest MAE. Model 1 achieved the
best result of 8.6 MAE, meaning that the predicted FHB sever-
ity of a wheat plant is, on average, equal to the true label with
a tolerance of 8.6%. The FHB severity value varies from 0% (i.e.,
all the spikelets are healthy) to 100% (i.e., all the spikelets
are infected). Models 2 and 3 achieved the second- and third-

lowest MAEs among the hundred models, which are equal to
8.8 and 9.0, respectively.

3.6. Visual FHB severity assessment versus
automated assessment via 3D CNN

We performed visual assessments of the Fg infection at 7,
14, and 21 DPI using a set of 19 different Fg showing that

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 11

Fig. 5. Visual fusarium head blight (FHB) disease assessment of the CWRS wheat cultivar 5602HR inoculated with Fg isolates
at 14 days post inoculation. Means followed by a common letter are not statistically different at the 0.05% level of significance
according to Fisher’s unprotected LSD. HSW, Henriquez Spring Wheat.

all strains are pathogenic and a wide range of aggressiveness
levels was observed. At 14 DPI, there were significant differ-
ences among the Fg isolates inoculated into the wheat culti-
var 5602HR (Fig. 5). The FHB severity mean ranges from 5.6%
to 71.3%. Randomly selected wheat heads, both inoculated
with the 19 different Fg isolates and not inoculated, were used
for linear regression. There was a significant relationship (R2

= 0.94, P = 0.0001) between the visual disease assessment and
the data obtained with the 3D CNN model (Fig. 6).

4. Discussion

4.1. Detection of Fusarium head blight
To date, the highest accuracy achieved in the DFHB was

98% (Liu et al. 2020) and was attained using hyperspectral
2D imagery and a pixel-wise classification. Our method for
wheat FHB detection surpassed state-of-the-art methods in
terms of accuracy using 3D multispectral PCs, and our best
model achieved 100% accuracy. Krishnaswamy Rangarajan
et al. (2022) also achieved 100% accuracy in the detection
of wheat FHB. However, they used hyperspectral data in the
visible range (400–750 nm), which they converted to image
data to train detection models. Moreover, we explored the
impact of multispectral information on the detection perfor-
mance of the models. Our experiments suggested that the
RGB colour model is superior to NIR of the Phenospex (i.e.,
720 nm) and RGB and NIR combined. In fact, adding NIR in-
formation to RGB reduced the accuracy of the wheat FHB
detection from 100% to 95.7%, which is a peculiar finding

since, in general, adding more information to the data has
the tendency to enrich it and give more information that
should positively impact the performance of the CNN. How-
ever, in our case, NIR information (i.e., 720 nm) is observed
to have a negative influence on the learning performance of
the classifiers from 3D images of wheat. Using data consist-
ing of only NIR information resulted in the lowest accuracy
of 87.0% on the task of FHB detection in 3D images of wheat.
These findings may be explained by the fact that correlations
between FHB severity and spectral indices linked to water, ni-
trogen, and cellulose occur around spectral bands 1150 nm
and from 1400 to 1550 nm (Vincke et al. 2023). As reported
in Section 2.2.3, the spectral range of the PlantEye scanner is
∼450–750 nm. As a result, the important non-visible light in-
formation occurs outside of the spectral range of our equip-
ment, and so the model must use the differences in visual
light information to make decisions on the presence or ab-
sence of FHB.

A crucial phenotypic feature that can be used to eval-
uate the severity of FHB is the number of spikelets on a
wheat head. However, developing an efficient phenotyping
tool to automate the estimation of this number is challeng-
ing. Alkhudaydi and De La lglesia (2022) developed several
models for counting wheat spikelets from infield images and
concluded that the task is very difficult given the high com-
plexity of the image acquisition context, such as varying
background, severe occlusion, and density. While Liu et al.
(2017) used images of grains spread on a solid colour board to
develop an application for fast rice and wheat gain counting.

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

12 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

Fig. 6. Linear regression analysis between visual fusarium head blight (FHB) disease assessment (FHB severity %) and three-
dimensional convolutional neural networks (CNNs). Randomly selected inoculated and non-inoculated wheat heads from 4 to
21 days post-inoculation were included in the analysis (n = 112). The black solid line represents the fit line, the blue shaded
area represents the 95% confidence interval, and the dotted lines represent the prediction interval.

Their method achieved an error ratio for counting of less than
2%. Another study (Fernandez-Gallego et al. 2018) attempted
to estimate wheat ear density under field conditions by using
images of wheat plots at different growth stages. Their algo-
rithm has a success rate between the predicted counting and
the manual counting of 90%. In our model, we used 3D data
and developed a 3D CNN model to estimate the number of
spikelets on a wheat spike using PC data (i.e., the spikelets
were not separated from the spike). The error value obtained
by our 3D CNN regression model is 1.13, meaning that the
difference between the predicted label and the true label,
which was estimated manually, is on average equal to 1.13.
Even though the MAE is not negligible, it is sufficient for auto-
mated assessment, and it is still much better than the rough
estimation that is manually performed by humans.

The second crucial phenotypic feature that is essential to
assessing FHB severity is estimating the number of infected
spikelets on a wheat head. However, most of the studies de-
veloped methods to directly estimate the percentage of FHB
severity. For example, Delwiche et al. (2019) used hyperspec-
tral images containing individual kernels to estimate the per-
centage of fusarium-damaged kernels. Also, Gao et al. (2022b)
used the automatic tandem dual NlendMask deep learning
framework to segment wheat spikes and diseased areas for
rapid disease severity detection from images of wheat spikes.

Their method achieved 85% precision. Similarly, Gao et al.
(2022a) attempted to improve the accuracy of FHB severity
estimation in wheat using an augmented dataset and trans-
fer learning to develop a CNN for the automatic recognition
of FHB. Their model achieved 98% accuracy. Despite the fair
results of these works, they either used 2D data, augmented
data samples, or heavy preprocessing. Our model for the auto-
matic ETNIS on a wheat head achieved an MAE of 1.56. The re-
sults are still within an acceptable error range, and the auto-
mated tool can still be considered an efficient and time-saving
replacement for the manual and subjective calculation of the
total number of infected spikelets. Furthermore, our results
obtained from the 3D CNNs for the direct and automated esti-
mation of the FHB severity in wheat are very promising. Our
best-performing model achieved an 8.6 MAE on Dataset II.
These results can serve as an efficient replacement for man-
ual estimations.

The linear regression results of R2 = 0.94 and P = 0.0001
show the important correlation between the FHB severity
determined by 3D CNN and the actual FHB severity deter-
mined by visual observation. This implies that, even at very
early stages of the infection, automated assessment of dis-
ease severity in wheat is a successful method for identifying
the severity of FHB in wheat. Phenotyping hundreds of wheat
lines for FHB resistance in the growth cabinet, greenhouse, or

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 13

field is often a burdensome, time-consuming, and expensive
process. New techniques like that proposed in this research
could overcome these challenges. Moreover, this technology
can be implemented and applied in different areas that fo-
cus on the management of FHB, such as plant breeding pro-
grams, precision crop protection, or the evaluation of fungi-
cidal compounds. For future work, we intend to enlarge our
dataset by scanning more wheat samples and use it to im-
prove the performance of our detection and estimation mod-
els. Moreover, we intend to explore the unobvious symptoms
of wheat FHB by acquiring more data samples that have non-
visible FHB symptoms.

Finally, a discussion regarding the complexities of using
deep learning models in comparison to human agents is help-
ful in further motivating this work. FHB visual assessment
by human agents is a time-consuming, expensive, and error
prone process. Manual assessment of FHB severity requires
the training of personnel by an experienced specialist dur-
ing several days. In fact, assessing FHB severity in the field
requires several people to perform the rating as there is a
very short time window to finish the disease rating when
heads are still green. Using a rating scale from 0% to 100%
tends to produce inconsistent values due to human subjec-
tivity, tendency to overestimate/underestimate the severity,
or bias (Shi et al. 2023). On the other hand, assessing FHB
severity under controlled environmental conditions requires
that individual raters identify and count the total number of
infected spikelets and the total number of spikelets on the
same wheat spike per inoculated plant. This counting pro-
cess takes several weeks to complete. In contrast, creating
ML models can take many months to achieve results suffi-
cient for automated analysis. As reported here, this includes
time-consuming data collection, labelling, and processing,
as well as ML model development. However, once com-
pleted, ML models produce consistent results——with known
misclassification rates or severity estimation errors——at a
rate significantly faster than humans performing this same
task.

Acknowledgements
We thank Otto Gruenke and Debbie Miranda for their tech-
nical support in maintaining plants and preparing inocula-
tions. We thank Dr. Ezzat Ibrahim for establishing the Dr.
Ezzat A. Ibrahim GPU Educational Lab at the University of
Winnipeg, which provided the computing resources needed
for this work.

An un-refereed preliminary version of this article was
posted on the arXiv preprint server (Hamila et al. 2023b).

Article information

History dates
Received: 2 September 2023
Accepted: 30 January 2024
Accepted manuscript online: 26 February 2024
Version of record online: 10 April 2024

Copyright
© 2024 Authors O. Hamila, C. Henry, and C.P. Bidinosti / His
Majesty the King in Right of Canada, as represented by the
Minister of Agriculture and Agri-Food. This work is licensed
under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original
author(s) and source are credited.

Data availability
The original contributions presented in this study were pro-
duced using a public dataset created by the authors (Hamila
et al. 2023a). The dataset is available at https://borealisdata.c
a/dataset.xhtml?persistentId=doi:10.5683/SP3/QJWBEM.

Author information

Author ORCIDs
Oumaima Hamila https://orcid.org/0000-0003-4223-1598
Christopher J. Henry https://orcid.org/0000-0002-2624-1502
Oscar I. Molina https://orcid.org/0009-0005-4318-4721
Maria Antonia Henriquez https://orcid.org/
0000-0001-9774-7925

Author contributions
Conceptualization: OH, CJH, MAH
Data curation: CJH
Formal analysis: OH, CJH, OIM, MAH
Funding acquisition: CJH, CPB
Investigation: OH, CJH, MAH
Methodology: OH
Project administration: CJH, CPB
Resources: CJH, CPB, MAH
Software: OH
Supervision: CJH, CPB, MAH
Validation: OH, CJH, MAH
Visualization: OH, OIM
Writing – original draft: OH, CJH
Writing – review & editing: OH, CJH, OIM, CPB, MAH

Competing interests
The authors declare there are no competing interests.

Funding information
This research was funded by Mitacs (Accelerate IT25876),
Western Economic Diversification Canada (Project No.
15453), and Agriculture and Agri-Food Canada.

References
Alkhudaydi, T., and De Lalglesia, B. 2022. Counting spikelets from infield

wheat crop images using fully convolutional networks. Neural Com-
put. Appl. 34(20): 17539–17560. doi:10.1007/s00521-022-07392-1.

Anderson, J.A. 2007. Marker-assisted selection for fusarium head blight
resistance in wheat. Int. J. Food Microbiol. 119(1–2): 51–53.

Anderson, J.A., Stack, R., Liu, S., Waldron, B., Fjeld, A., Coyne, C., et al.
2001. DNA markers for fusarium head blight resistance qtls in two
wheat populations. Theor. Appl. Genet. 102: 1164–1168.

http://dx.doi.org/10.1139/cjps-2023-0127
http://creativecommons.org/licenses/by/4.0/deed.en_GB
https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/QJWBEM
https://orcid.org/0000-0003-4223-1598
https://orcid.org/0000-0002-2624-1502
https://orcid.org/0009-0005-4318-4721
https://orcid.org/0000-0001-9774-7925
http://dx.doi.org/10.1007/s00521-022-07392-1

Canadian Science Publishing

14 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

Barbedo, J.G., Tibola, C.S., and Fernandes, J.M. 2015. Detecting fusarium
head blight in wheat kernels using hyperspectral imaging. Biosyst.
Eng. 131: 65–76. doi:10.1016/j.biosystemseng.2015.01.003.

Buerstmayr, M., and Buerstmayr, H. 2015. Comparative mapping of quan-
titative trait loci for fusarium head blight resistance and anther re-
tention in the winter wheat population capo × arina. Theor. Appl.
Genet. 128: 1519–1530.

Buerstmayr, M., Steiner, B., and Buerstmayr, H. 2020. Breeding for fusar-
ium head blight resistance in wheat–progress and challenges. Plant
Breed. 139(3): 429–454.

Charles, R., Su, H., Kaichun, M., and Guibas, L.J. 2017. Point-
net: deep learning on point sets for 3D classification and
segmentation. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE Computer
Society, Los Alamitos, CA, USA. pp. 77–85. doi:10.1109/CVPR.2017.16.

Chin, T., Pleskach, K., Tittlemier, S.A., Henriquez, M.A., Bamforth, J.,
Withana Gamage, N., et al. 2023. A status update on fusarium head
blight on western Canadian wheat. Can. J. Plant Pathol. 1–13.

Chollet, F. 2015. Keras. Available from https://keras.io [accessed 26 March
2024].

Dauphin, Y.N., Vries, H.D., and Bengio, Y. 2015. Equilibrated adaptive
learning rates for non-convex optimization. In Proceedings of the
28th International Conference on Neural Information Processing Sys-
tems. Vol. 1. MIT Press, Cambridge, MA, USA, NIPS’15. pp. 1504–1512.

Delwiche, S., Rodriguez, I.T., Rausch, S., and Graybosch, R. 2019. Estimat-
ing percentages of fusarium-damaged kernels in hard wheat by near-
infrared hyperspectral imaging. J. Cereal Sci. 87: 18–24. doi:10.1016/
j.jcs.2019.02.008.

Dhariwal, R., Henriquez, M.A., Hiebert, C., McCartney, C.A., and Rand-
hawa, H.S. 2020. Mapping of major fusarium head blight resistance
from canadian wheat cv. AAC Tenacious. Int. J. Mol. Sci. 21(12).
doi:10.3390/ijms21124497.

Ferentinos, K.P. 2018. Deep learning models for plant disease detection
and diagnosis. Comput. Electron. Agr. 145: 311–318. doi:10.1016/j.
compag.2018.01.009.

Fernandez-Gallego, J.A., Kefauver, S.C., Gutiérrez, N.A., Nieto-Taladriz,
M.T., and Araus, J.L. 2018. Wheat ear counting in-field conditions:
high throughput and low-cost approach using rgb images. Plant
Methods, 14.

Ferrigo, D., Raiola, A., and Causin, R. 2016. Fusarium toxins in cereals:
occurrence, legislation, factors promoting the appearance and their
management. Molecules, 21: 627. doi:10.3390/molecules21050627.

Gao, C., Gong, Z., Ji, X., Dang, M., He, Q., Sun, H., and Guo, W. 2022a. Es-
timation of fusarium head blight severity based on transfer learning.
Agronomy, 12(8).

Gao, Y., Wang, H., Li, M., and Su, W.H. 2022b. Automatic tandem dual
blendmask networks for severity assessment of wheat fusarium head
blight. Agriculture, 12(9).

Ghimire, B., Sapkota, S., Bahri, B.A., Martinez-Espinoza, A.D., Buck, J.W.,
and Mergoum, M. 2020. Fusarium head blight and rust diseases in
soft red winter wheat in the southeast united states: state of the art,
challenges and future perspective for breeding. Front. Plant Sci. 11.
doi:10.3389/fpls.2020.01080.

Gu, C., Wang, D., Zhang, H., Zhang, J., Zhang, D., and Liang, D. 2021. Fu-
sion of deep convolution and shallow features to recognize the sever-
ity of wheat fusarium head blight. Front. Plant Sci. 11. doi:10.3389/
fpls.2020.599886.

Hamila, O. 2022. 3D convolutional neural networks for solving complex
digital agriculture and medical imaging problems. MSc thesis, Uni-
versity of Winnipeg. doi:10.36939/ir.202206021141.

Hamila, O., Henry, C.J., Molina, O.I., Bidinosti, C.P., and Henriquez, M.A.
2023a. UW-MRDC 3D WHEAT. Borealisdoi:10.5683/SP3/QJWBEM.

Hamila, O., Henry, C.J., Molina, O.I., Bidinosti, C.P., and Henriquez,
M.A. 2023b. Fusarium head blight detection, spikelet estimation,
and severity assessment in wheat using 3D convolutional neural net-
works. arXivdoi:10.48550/arXiv.2303.05634.

Harfouche, A.L., Nakhle, F., Harfouche, A.H., Sardella, O.G., Dart, E., and
Jacobson, D. 2023. A primer on artificial intelligence in plant digital
phenomics: embarking on the data to insights journey. Trends Plant
Sci. 28(2): 154–184. doi:10.1016/j.tplants.2022.08.021.

He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 770–778. doi:10.1109/CVPR.2016.90.

Huang, G., Liu, Z., Maaten, L.V.D., and Weinberger, K.Q. 2017. Densely
connected convolutional networks. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE Computer Society,
Los Alamitos, CA, USA. pp. 2261–2269. doi:10.1109/CVPR.2017.243.

Huang, L., Li, T., Ding, C., Zhao, J., Zhang, D., and Yang, G. 2020. Diagnosis
of the severity of fusarium head blight of wheat ears on the basis of
image and spectral feature fusion. Sensors, 20(10).

Jordan, M.I., and Mitchell, T.M. 2015. Machine learning: trends, per-
spectives, and prospects. Science, 349(6245): 255–260. doi:10.1126/
science.aaa8415.

Khan, M.K., Pandey, A., Athar, T., Choudhary, S., Deval, R., Gezgin, S.,
et al. 2020. Fusarium head blight in wheat: contemporary status and
molecular approaches. 3 Biotech, 10: 1–17.

Klokov, R., and Lempitsky, V. 2017. Escape from cells: deep kd-networks
for the recognition of 3D point cloud models. In Proceedings of the
IEEE International Conference on Computer Vision. pp. 863–872.

Krishnaswamy Rangarajan, A., Louise Whetton, R., and Mounem
Mouazen, A. 2022. Detection of fusarium head blight in wheat using
hyperspectral data and deep learning. Expert Syst. Appl. 208: 118240.
doi:10.1016/j.eswa.2022.118240.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B. 2018. PointCNN: con-
volution on x-transformed points. Adv. Neural Inf. Process. Syst. 31.

Liu, L., Dong, Y., Huang, W., Du, X., and Ma, H. 2020. Monitoring wheat
fusarium head blight using unmanned aerial vehicle hyperspectral
imagery. Remote Sens. 12: 3811. doi:10.3390/rs12223811.

Liu, T., Chen, W., Wang, Y., Wu, W., Sun, C., Ding, J., and Guo, W.
2017. Rice and wheat grain counting method and software develop-
ment based on android system. Comput. Electron. Agr. 141: 302–309.
doi:10.1016/j.compag.2017.08.011.

Lu, B., Dao, P.D., Liu, J., He, Y., and Shang, J. 2020. Recent advances of hy-
perspectral imaging technology and applications in agriculture. Re-
mote Sens. 12(16).

Lu, Y., and Young, S. 2020. A survey of public datasets for computer vision
tasks in precision agriculture. Comput. Electron. Agric. 178: 105760.
doi:10.1016/j.compag.2020.105760.

Ma, Y., Soatto, S., Kosecka, J., and Sastry, S.S. 2003. An invitation to 3-D
vision: from images to geometric models. Springer Verlag.

Mannor, S., Peleg, D., and Rubinstein, R. 2005. The cross entropy method
for classification. In Proceedings of the 22nd International Confer-
ence on Machine Learning. pp. 561–568.

Mao, R., Wang, Z., Li, F., Zhou, J., Chen, Y., and Hu, X. 2023. Gseyolox-
s: an improved lightweight network for identifying the sever-
ity of wheat fusarium head blight. Agronomy, 13(1). doi:10.3390/
agronomy13010242.

Nair, V., and Hinton, G.E. 2010. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Con-
ference on International Conference on Machine Learning. Omni-
press, Madison, WI, USA. pp. 807–814.

Nilsen, K.T., Walkowiak, S., Kumar, S.V., Molina, Ó.I., Randhawa, H.S.,
Dhariwal, R., et al. 2020. Histology and RNA sequencing provide in-
sights into fusarium head blight resistance in AAC Tenacious. Front.
Plant Sci. 11.

Nvidia Vingelmann, P., and Fitzek, F.H. 2020. Cuda, release: 10.2.89.
Qiu, R., Yang, C., Moghimi, A., Zhang, M., Steffenson, B.J., and Hirsch,

C.D. 2019. Detection of fusarium head blight in wheat using a deep
neural network and color imaging. Remote Sens. 11(22). doi:10.3390/
rs11222658.

Refaeilzadeh, P., Tang, L., and Liu, H. 2009. Cross-validation. In Encyclo-
pedia of database systems. Edited by L. Liu and M.T. Özsu. Springer,
US, Boston, MA. pp. 532–538. doi:10.1007/978-0-387-39940-9_565.

Sakuma, S., Golan, G., Guo, Z., Ogawa, T., Tagiri, A., Sugimoto, K., et al.
2019. Unleashing floret fertility in wheat through the mutation of a
homeobox gene. Proc. Natl. Acad. Sci. USA 116(11): 5182–5187. doi:10.
1073/pnas.1815465116.

Sharp, N., 2015. hapPLY API. Available from https://github.com/nmwshar
p/happly.

Shi, S., Wang, X., and Li, H. 2019. PointRCNN: 3D object proposal genera-
tion and detection from point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 770–
779.

Shi, T., Liu, Y., Zheng, X., Hu, K., Huang, H., Liu, H., and Huang, H. 2023.
Recent advances in plant disease severity assessment using convolu-
tional neural networks. Sci. Rep. 13(1): 2336.

http://dx.doi.org/10.1139/cjps-2023-0127
http://dx.doi.org/10.1016/j.biosystemseng.2015.01.003
http://dx.doi.org/10.1109/CVPR.2017.16
https://keras.io
http://dx.doi.org/10.1016/j.jcs.2019.02.008
http://dx.doi.org/10.3390/ijms21124497
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.3390/molecules21050627
http://dx.doi.org/10.3389/fpls.2020.01080
http://dx.doi.org/10.3389/fpls.2020.599886
http://dx.doi.org/10.36939/ir.202206021141
http://dx.doi.org/10.5683/SP3/QJWBEM
http://dx.doi.org/10.48550/arXiv.2303.05634
http://dx.doi.org/10.1016/j.tplants.2022.08.021
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1016/j.eswa.2022.118240
http://dx.doi.org/10.3390/rs12223811
http://dx.doi.org/10.1016/j.compag.2017.08.011
http://dx.doi.org/10.1016/j.compag.2020.105760
http://dx.doi.org/10.3390/agronomy13010242
http://dx.doi.org/10.3390/rs11222658
http://dx.doi.org/10.1007/978-0-387-39940-9_565
http://dx.doi.org/10.1073/pnas.1815465116
https://github.com/nmwsharp/happly

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 15

Singh, R., Srivastava, S., and Mishra, R. 2020. AI and iot based monitoring
system for increasing the yield in crop production. In 2020 Interna-
tional Conference on Electrical and Electronics Engineering (ICE3).
pp. 301–305. doi:10.1109/ICE348803.2020.9122894.

Teke, M., Deveci, H.S., Haliloğlu, O., Gürbüz, S.Z., and Sakarya, U. 2013.
A short survey of hyperspectral remote sensing applications in agri-
culture. In 2013 6th International Conference on Recent Advances
in Space Technologies (RAST). pp. 171–176. doi:10.1109/RAST.2013.
6581194.

Vázquez-Arellano, M., Griepentrog, H., Reiser, D., and Paraforos, D. 2016.
3-D imaging systems for agricultural applications——a review. Sensors,
16(5): 618. doi:10.3390/s16050618.

Vincke, D., Eylenbosch, D., Jacquemin, G., Chandelier, A., Pierna, J.A.F.,
Stevens, F., et al. 2023. Near infrared hyperspectral imaging method
to assess fusarium head blight infection on winter wheat ears. Mi-
crochem. J. 191: 108812.

Zadoks, J.C., Chang, T.T., and Konzak, C.F. 1974. A decimal code for the
growth stages of cereals. Weed Res. 14(6): 415–421.

Zhang, D., Wang, D., Gu, C., Jin, N., Zhao, H., Chen, G., et al. 2019. Us-
ing neural network to identify the severity of wheat fusarium head
blight in the field environment. Remote Sens. 11(20). doi:10.3390/
rs11202375.

Zhang, D.Y., Luo, H.S., Wang, D.Y., Zhou, X.G., Li, W.F., Gu, C.Y., et al. 2022.
Assessment of the levels of damage caused by fusarium head blight
in wheat using an improved yolov5 method. Comput. Electron. Agr.
198: 107086. doi:10.1016/j.compag.2022.107086.

Appendix A. Data preprocessing with
CUDA

The multispectral PCs generated from the PlantEye 3D
scanner are stored in a polygon file format known as PLY,
which is a file format designed specifically to save 3D models.
A PLY file contains tuples of flat polygons in addition to tuples
of colour information. Flat polygons and colour information
are described by a tuple of (x, y, z) coordinate values vary-
ing between negative and positive floating-points and a tuple
of (R, G, B, NIR) intensity values, where each value is stored
as an integer varying between [0, 255]. Moreover, the tuple
of point coordinates stored in a PLY file is unordered, such
that each point is independent and unrelated to the remain-
ing points within the file. The ensemble of points is useful to
reconstruct 3D models in space by placing each coordinate
in its specific spatial position. However, PLY representation
does not support complex operations such as convolutions
and matrix manipulations that require points within a data
signal to be correlated and organized such that a meaning-
ful change in space or time between points can be defined.
As a result, in this work, a C++ program that converts PLY
files into 3D images and that runs on GPUs was developed
to overcome the limitations of using CNNs on PLY files. The
CUDA (NVIDIA et al. 2020) parallel computing platform and
programming model was employed to develop the conver-
sion model.

A.1 Theory and implementation of point cloud
to 3D image conversion

Our proposed solution for converting PLY files into 3D im-
ages was based on linear interpolation, such that every point
coordinate in the tuple of points stored in a PLY file was con-
verted through linear interpolation into a new voxel coordi-
nate within the constructed 3D image. This interpolation was
necessary because the coordinates stored in a PLY file can be

either negative or positive floating points, while the coordi-
nates required by 3D CNNs have to be positive integers for
indexing. The conversion operations are repetitive and sepa-
rable, meaning that they can be applied independently to all
the point coordinates in the PLY file, which provided a perfect
opportunity to exploit GPU parallelism. Thus, the proposed
CUDA-based method applies the same linear operations si-
multaneously on all the points in a PLY file. The conversion
equations defining the linear interpolation along the x-, y-,
and z-axes are

xmatrix = ⌈
ax xPC + bx

⌉
ymatrix = ⌈

ay yPC + by
⌉

zmatrix = ⌈
az zPC + bz

⌉
(A1)

such that ax, ay, and az are, respectively, the function slope
corresponding to the x-, y-, and z-axes, and bx, by, and bz are,
respectively, their intercepts. xmatrix, ymatrix, and zmatrix are the
positions of the point along the width, height, and depth
of the output 3D image, corresponding, respectively, to the
transformation of x, y, and z values of a point coordinate in
the PLY file, noted, respectively, as xPC, yPC, and zPC. Moreover,
�x� defines the ceiling function of a real number x that is de-
fined as the smallest integer that is not smaller than x. The
function’s slopes and intercepts are calculated as

ax =
⌈

R (max1≤i≤N (xi) − min1≤i≤N (xi))
⌉

max1≤i≤N (xi) − min1≤i≤N (xi)
, bx = −ax min

1≤i≤N
(xi)

ay =
⌈

R (max1≤i≤N (yi) − min1≤i≤N (yi))
⌉

max1≤i≤N (yi) − min1≤i≤N (yi)
, by = −ay min

1≤i≤N
(yi)

az =
⌈

R (max1≤i≤N (zi) − min1≤i≤N (zi))
⌉

max1≤i≤N (zi) − min1≤i≤N (zi)
, bz = −az min

1≤i≤N
(zi)

(A2)

such that N is the total number of points in the tuple of point
coordinates in the PLY file, (xi, yi, zi) is the coordinate of the ith
point in the tuple, and R is the resolution factor that serves
to enlarge or reduce the resolution of the output 3D image.
Finally, for the linear transformation, only the spatial coor-
dinates (x, y, z) were used to estimate the new voxel coordi-
nates (xmatrix, ymatrix, zmatrix), while their corresponding colour
intensities (R, G, B, NIR) were reallocated in the new voxel co-
ordinates within the 3D image. The dimensions of the output
3D image are

width =
⌈

R
(

max
1≤i≤N

(xi) − min
1≤i≤N

(xi)
)⌉

height =
⌈

R
(

max
1≤i≤N

(yi) − min
1≤i≤N

(yi)
)⌉

depth =
⌈

R
(

max
1≤i≤N

(zi) − min
1≤i≤N

(zi)
)⌉

(A3)

such that width, height, and depth correspond to the range
of values along the x-, y-, and z-axes, respectively.

To implement eqs. A1–A3, a general C++ API called hap-
PLY (Sharp et al. 2015) was used to load PLY files. The API al-
lows the reading and writing of the properties of a PLY file,
such as the point coordinates and their corresponding colour

http://dx.doi.org/10.1139/cjps-2023-0127
http://dx.doi.org/10.1109/ICE348803.2020.9122894
http://dx.doi.org/10.1109/RAST.2013.6581194
http://dx.doi.org/10.3390/s16050618
http://dx.doi.org/10.3390/rs11202375
http://dx.doi.org/10.1016/j.compag.2022.107086

Canadian Science Publishing

16 Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127

Fig. A1. Diagram of CUDA implementation steps to convert a batch of PLY files into a batch of 3D images.

intensities, and loads them as two separate tuples of real val-
ues. Figure A1 shows the implementation steps followed in
the CUDA code to convert a batch of PLY files into a batch of
3D images. The code started by reading the properties of a
batch of PLY files. Processing the data in batches allows for
further optimization of parallel execution with CUDA, such
that the code processes all data points of n × PCs simultane-
ously, rather than only the data points of a single PC. Next, all
elements of the tuples of coordinates and tuples of colours of
the n × PCs were rearranged in a manner that ensures mem-
ory coalescing (see Section A.2 for more details), which en-
ables accessing consecutive memory locations within a single
I/O operation. Following that, the maximum and minimum
values of the coordinates needed to estimate the parameters
of the interpolation functions and the dimensions of the out-
put batch of 3D images were determined and used for calcula-
tions. Next, the memory space needed for the data that were
used during the kernel execution was allocated on the device
memory, and the data were copied from the host memory to
the device memory. Then, the conversion kernel, which is the
function executed on the GPUs, was launched to convert the
batch of PLY files into their corresponding 3D images. Finally,
the produced batch of 3D images was copied from the device
memory to the host memory.

A.2 Memory coalescing
With respect to the CUDA programming model, threads

within a thread block are organized into warps, where a
warp is a group of 32 consecutive threads assigned to exe-
cute the same set of operations. In practice, threads within a
warp access sequential memory locations for read and write
operations. This means that memory access operations can
be a major bottleneck for GPU applications if the data ac-
cessed by sequential threads in a warp are not sequentially
ordered in memory. Therefore, the solution is memory co-
alescing (NVIDIA et al. 2020), which is a technique used by
CUDA where global memory accesses of threads in a warp
are grouped together into one operation to minimize global
memory bandwidth. In fact, each time a global memory loca-
tion is accessed, a set of consecutive locations, including the
requested location, are also accessed. Thus, in order to reduce
the latency caused by data access operations, we made sure
that the data used by consecutive threads in a warp are stored
in consecutive memory locations.

The kernel that performs the data conversion operations
was programmed to estimate each value within the tuple of
point coordinates separately, which means that xmatrix, ymatrix,
and zmatrix are all estimated independently of one another.
Thus, threads within a block were designed such that each

Fig. A2. Data organization in a memory array for both coa-
lesced and non-coalesced patterns of data. (A) depicts the raw
storage of data in a memory array, and (B) depicts the storage
of the same data in memory in a coalesced manner.

block of threads was programmed to load and operate on ei-
ther the xPC, yPC, or zPC values to calculate either the xmatrix,
ymatrix, or zmatrix values, respectively. The kernel architecture
was designed to take advantage of memory coalescing during
data loading, so that one thread within a warp loads all con-
secutive xPC, yPC, or zPC values from memory into the cache,
allowing the remaining threads to load their corresponding
data directly from the cache and execute their operations
faster. Figure A2 shows the data organization in a memory
array for both coalesced and non-coalesced patterns. The il-
lustrated examples use only a few points per PC for the pur-
pose of demonstration only. Figure A2A depicts the raw stor-
age of data in a memory array in which point coordinates
corresponding to a batch of PLY files are arranged in such a
way that points corresponding to the first file are stored first,
followed by points corresponding to the second file, and so
on, and each point is stored by its (x, y, z) coordinates, where
each memory slot contains one coordinate value. The first
two point coordinates represent the first PLY file of the batch,
while the following points in the array correspond to the sec-
ond PLY file within the same batch. (x11, y11, z11) represents
the first point of the first PLY file within the batch, followed
by (x12, y12, z12), which represents the second point of the
first PLY file. Once all the points corresponding to the first PC
within the batch are stored, the points corresponding to the
second PC are added to the same array. In the example, (x21,
y21, z21) represents the first point of the second PLY file, and
so on. This kind of arrangement is not suitable for an opti-

http://dx.doi.org/10.1139/cjps-2023-0127

Canadian Science Publishing

Can. J. Plant Sci. 00: 1–17 (2024) | dx.doi.org/10.1139/cjps-2023-0127 17

mized CUDA kernel execution because the memory accesses
will be inefficient.

Thus, point coordinates in memory were rearranged to en-
sure that threads access coalesced data locations during ker-
nel execution. Figure A2B shows an array where all the x
values representing all the points from the PLY files in a
batch that were stored consecutively are placed in succes-
sive memory slots, followed by all the y values, and finally
all the z values. Not only were the tuple of point coordinates
rearranged to support data coalescing, but also the tuple of
colours. Colour intensities were loaded such that each (R, G,
B, NIR) tuple corresponding to the first point of the first PLY
file was the first element of the memory array, followed by
the second (R, G, B, NIR) tuple corresponding to the first PLY
file and so on. Thus, the tuples of colours were rearranged so
that all R values representing the points of the first PLY file
within a batch were put first in the memory array, followed
by all the R values of the second PLY file, and so on. Once the R
values were stored, G, B, and NIR values were then stored con-
secutively in the memory array according to the same mem-
ory coalescing principle.

A.3 Conversion kernel
The conversion kernel function was implemented to per-

form point coordinate transformations from their original
spatial placement within the PC to their new voxel positions
within the 3D dimensions of a 3D image. Each thread was de-
signed to calculate the linear interpolation of a single point,
which means that each thread executed the linear interpola-

tion functions defined in eq. A1 and related to the (x, y, z) val-
ues of a point’s coordinates. Firstly, the number of threads al-
located on the device memory was determined to be 1

3 of the
coordinates list, and those threads were each programmed
to execute three linear interpolations related to their desig-
nated (x, y, z) coordinates in order to determine the new voxel
coordinates within the output 3D image. Next, each thread
loaded the (R, G, B) colour intensities and placed the tuple of
colours in their corresponding voxel position within the out-
put 3D image. In fact, the interpolation functions defined in
eq. A1 convert floating-point coordinates into integer coor-
dinates (with the ceiling operation) that define the voxel po-
sitions within the constructed 3D image. Moreover, in some
cases, more than one real-valued point coordinate may get
converted into the exact same voxel coordinate. In that case,
the newer point would override the existing one, resulting in
a reduction in the total number of points defined in the 3D
image. Furthermore, the size of the constructed 3D image,
as defined in eq. A3, ensured that the object defined in the
PC was converted into a minimum bounding box, which was
the generated 3D image. Moreover, the voxel values that re-
mained empty after reassigning the colour tuples from their
positions in the PC to their new voxel positions within the
constructed 3D image, were set to zero. The conversion ker-
nel described in this section produced three-channel 3D im-
ages with each voxel value consisting of a tuple of (R, G,
B) colour intensities, while NIR intensity values were pro-
cessed through a second kernel to produce one-channel 3D
images.

http://dx.doi.org/10.1139/cjps-2023-0127

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 99
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 225
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 225
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

