
On Temporal Bipartite Graphs

and Their Application in Disease

Spread Prediction

by

 Ruilin Su

A thesis submitted to the Faculty of Graduate Studies in partial ful-
fillment of the requirements for the Master of Science degree.

Department of Applied Computer Science

Master of Science in Applied Computer Science and Society

The University of Winnipeg

Winnipeg, Manitoba, Canada

April 2024

Copyright © 2024 Ruilin Su

 1

ABSTRACT

The original temporal bipartite graph is flawed in the context of disease

spreading models as it does not account for concepts such as virus incu-

bation and recovery periods. In this thesis, a new graph structure, referred

to as the improved temporal bipartite graph is introduced with these two

concepts incorporated to enhance accuracy in predicting disease spread-

ing. To facilitate arbitrary reachability queries, another concept, the

transmission graph, is introduced. It is derived from a temporal bipartite

graph based on a series of reachability query evaluation. We distinguish

between two types: single-path transmission graph and multi-path trans-

mission graph. Based on them, four algorithms are proposed for evaluat-

ing reachability queries on a temporal bipartite graph, with a label-based

technique used to achieve high efficiency. Both single-path transmission

graphs and multi-path transmission graphs are in fact a kind of extension

of the reachability query evaluation. By establishing indexes over them,

the reachability query evaluation for disease spreading prediction can be

very efficiently conducted.

Keywords: Temporal Bipartite Graph, Disease Spreading Model, Reach-

ability Queries.

 2

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to Dr. Yangjun Chen for his

invaluable guidance as my thesis advisor. Dr. Chen not only served as my

mentor throughout this research but also taught the Advanced Data Struc-

ture and Algorithms course, which played a significant role in shaping

this study. His guidance and insights are very helpful to me for the com-

pletion of this work.

I would also like to extend my appreciation to the other professors who

taught me various aspects of computer science during my graduate stud-

ies, namely Dr. Sheela Ramanna, Dr. Christopher Henry, and Dr. Simon

Liao. Their expertise and teachings have broadened my knowledge and

enriched my academic journey.

A special note of thanks goes to my parents for their unwavering support

and for providing me with the means to pursue my education abroad.

Their sacrifices and encouragement have been instrumental in my aca-

demic achievements.

Lastly, I want to express my deepest gratitude to my wife for her unwa-

vering support, understanding, and companionship throughout this aca-

demic endeavor. Her presence has been a constant source of motivation

and strength.

I am truly grateful to all these individuals and their help for my academic

and personal growth.

 3

CONTENTS

1 Introduction 6

2 Preliminary 9

2.1 Temporal Bipartite Graph 9

2.2 Transmission Graph 14

2.3 Problem Statement 18

3 Solution Overview 19

3.1 Breadth-First-Search-Based Algorithm (BF) 20

3.2 Time-Labeling Method (TL) 26

3.3 Dynamic Adjacency Arrays (DAA) 31

3.4 Depth-First Strategy (DF) 39

3.5 Single-Path Transmission Graph 42

3.6 Multi-Path Transmission Graph 47

4 Experimental Result 59

4.1 Testing Datasets 59

4.2 Transmission Prediction Efficiency(Algorithms 1-4) 54

4.3 Transmission Prediction Comparison 62

4.4 Transmission Graph Generation Testing(Algorithms 1.1

and 2.1) 66

4.5 Reachability Answering in Transmission Graph Testing 67

5 Conclusion 70

 4

LIST OF FIGURES

Figure 1 A people-location network for simulating disease outbreaks 6

Figure 2 A temporal bipartite graph modeled from figure 1 9

Figure 3 Earliest-arrival path 11

Figure 4 Transmission model of a disease 12

Figure 5 Structure of vertices and edges 13

Figure 6 Changed transmission model 15

Figure 7 An example of single-path transmission graph, generated

from the model in figure 6 16

Figure 8 Other possible single-path transmission graphs generated

from the model in figure 6 16

Figure 9 An example of multi-path transmission graph generated

from the model in figure 6 17

Figure 10 Structure of a single-path transmission graph or a multi-

path transmission graph 18

Figure 11 One round of the loop of Algorithm 1(Example) 24

Figure 12 An example of the worst case of algorithm 1 25

Figure 13 An example of Algorithm 2 29

Figure 14 A worst case for Algorithm 2 31

Figure 15 The temporal bipartite graph and adjacency arrays gener-

ated from Table 1 34

Figure 16 An example of Algorithm 3 37

Figure 17 A worst case for Algorithm 3 39

Figure 18 An example procedure of Depth-First Strategy 42

 5

Figure 19 A worst case example of Depth-First Strategy 43

Figure 20 An example of generating a single-path transmission

graph 47

Figure 21 Top-Down and Bottom-Up Searching 48

Figure 22 String and array buffers 50

Figure 23 An example of generating a multi-path transmission graph 53

Figure 24 Answering reachability by indexes 54

Figure 25 Example of intervals and Reversed topological order 56

Figure 26 Naming of test datasets 60

 6

1 INTRODUCTION

Bipartite graphs are used to model relationships between two different

types of entities. Some examples include the people-location network [2],

author-paper network [3, 5], and user-item network [4]. When edges in a

bipartite graph are assigned timestamps, it becomes a Temporal Bipartite

Graph [6]. As shown in Figure 1, it is a people-location network derived

from the article [2], where each edge is associated with two timestamps,

representing an individual's arrival and departure times at a location.

Figure 1 A people-location network for simulating disease outbreaks

This model simulates the movement of people between various locations

in the real world, making it highly suitable for tracking disease spread

during outbreaks [2]. This model records when individuals simultaneous-

ly visit the same location, and it is precisely during such simultaneous

visits that disease transmission may occur. For instance, the carrier Jony

visits the supermarket between 15 and 16, while Eric visits there between

14 and 17, then Eric may be transmitted. Another significant application

scenario for Temporal Bipartite Graphs is in tracking cell metabolism

pathways [1, 7, 8, 9].

 7

The primary challenge in utilizing Temporal Bipartite Graphs to track and

predict disease spread lies in performing reachability queries on these

graphs, which is more complex than traditional bipartite graphs due to the

consideration of timestamps on edges. Xiaoshuang Chen et al. first im-

plemented reachability queries on Temporal Bipartite Graphs [1], and

they also explored how to use these graphs to track and predict disease

spread. However, we observed that real-world infections typically have

an incubation period, during which infected individuals generally cannot

transmit the disease to others [10]. Furthermore, diseases can be cured,

and recovered individuals lose their ability to transmit the disease. Con-

sequently, it becomes evident that individuals in the infectious state can

only transmit the disease to others after a certain incubation period, or in

other words, they are reachable by other individuals during this time. This

aspect was not considered in Xiaoshuang Chen's research.

Therefore, we introduced two timestamps for human vertices to represent

the time of infection and the time of recovery. With this improvement, the

accuracy of tracking and prediction will be enhanced.

Regarding the collection of an individual's arrival and departure times at

a location, some countries have provided solutions. For instance, in Chi-

na, individuals are required to scan a QR code for registration when visit-

ing public places during the outbreak of COVID-19 [11]. As for the incu-

bation period of the pathogen and the time it takes to be cleared from the

human body, these can be referenced from research findings specific to

the corresponding disease [10].

To accelerate the performance of random reachability queries, we intro-

duced the concept of a Transmission Graph. Initially, a comprehensive

reachability query is conducted on the original Temporal Bipartite Graph,

and based on each query result, the Transmission Graph is gradually gen-

erated while also excluding the vertices representing locations. This ap-

proach makes it appear as if the Transmission Graph is a simplification of

 8

the original Temporal Bipartite Graph, and it provides a clear representa-

tion of the transmission chains. Reachability queries can be directly per-

formed on the Transmission Graph, which is faster than conducting

reachability queries directly on the original Temporal Bipartite Graph.

In Chapter 2, we will provide a detailed introduction to the improved

Temporal Bipartite Graph and the Transmission Graph. Chapter 3 will

delve into comprehensive descriptions of the reachability query algo-

rithms and the algorithms for generating the Transmission Graph. The

algorithm results and performance will be presented and discussed in

Chapter 4.

 9

2 PRELIMINARY

Temporal Bipartite Graph

The temporal bipartite graph G(V, E) is described as an undirected graph,

with its vertices V(G) divided into two groups: V(G) = U(G) ∪ L(G).

U(G) resides on the upper layer, while L(G) resides on the lower layer. In

G(V, E), we have

𝑈(𝐺) ∩ 𝐿(𝐺) = ∅, and 𝑈(𝐺) ∪ 𝐿(𝐺) = 𝑉(𝐺) (1)

 𝐸(𝐺) ⊆ 𝑈(𝐺) × 𝐿(𝐺) (2)

where E(G) denotes the set of temporal edges of the form (𝑢 , 𝑣, 𝑡𝑠 , 𝑡𝑒) or

(𝑣 , 𝑢, 𝑡𝑠 , 𝑡𝑒), representing an edge connecting two vertices u and v re-

spectively from the two different layers in a time span 𝑡𝑠 ~ 𝑡𝑒.

Figure 2 A temporal bipartite graph modeled from figure 1

As an example, consider the graph G(V, E) shown in Figure 2. This is a

typical temporal bipartite graph with U(G) = {u1, u2, u3, u4}and L(G) =

 10

{v1, v2, v3, v4, v5}. Each edge connecting a vertex from U(G) to a vertex

from L(G) is referred to as a temporal edge. For example, the left most

edge from 𝑢1 to 𝑣1 is labeled with a time span 6 - 7, and represented by

(𝑢1, 𝑣1, 6, 7).

By a wedge, we mean a path consisting of three vertices u, v, w, and two

connecting temporal edges (𝑢, 𝑣, 𝑡𝑠1, 𝑡𝑒1), (𝑣 , 𝑤, 𝑡𝑠2, 𝑡𝑒2). In Figure 2, a

path starting from 𝑢1, going along (𝑢1, 𝑣1, 6, 7) and reaching 𝑣1, then go-

ing along (𝑣1, 𝑢2, 9, 10) and reaching 𝑢2 is a wedge, denoted as 𝑊 =

((𝑢1, 𝑣1, 6, 7), (𝑣1, 𝑢2, 9, 10)). Next, by a time-overlapping wedge, we

mean two connected temporal edges with overlapped time spans. For ex-

ample, the edge ((𝑢2, 𝑣3, 15, 16), (𝑣3, 𝑢3, 14, 17)) shown in Figure 2 is a

time-overlapping wedge, and ((𝑢3, 𝑣4, 17, 19), (𝑣4, 𝑢4, 17, 18)) is anoth-

er. Assume that 𝑢2 is a virus carrier. Then, a series of time-overlapping

wedges will cause a spread of disease: 𝑢3 will be infected by 𝑢2 in loca-

tion 𝑣3, and 𝑢4 will be infected by 𝑢3 in 𝑣4.

By a time-respecting path we mean a series of consecutive time-
overlapping wedges 𝑃 = (𝑊1, 𝑊2, . . . , 𝑊𝑛) such that the very ending

time of 𝑊𝑖 is not later than the beginning time of 𝑊𝑖+1 (i = 1, …, n - 1).

For instance, the three red wedges in Figure 2 make up a time-respecting

path.

The time-respecting path is used to track the disease transmission, based

on which the following two notations are defined:

𝑢 ↝I 𝑣 - denotes a single-pair reachability, representing that u can reach v

via a time-respecting path W within a time span I, where u and v are two

vertices on a same layer in G; and

𝑢 ↝I {𝑢1, 𝑢2, . . . , 𝑢𝑘} - denotes a single-source reachability, representing

that u can reach 𝑢1, 𝑢2, . . . , 𝑢𝑘 via some time-respecting paths within I,

where u and all 𝑢1, 𝑢2, . . . , 𝑢𝑘 are on a same layer in G.

 11

For example, 𝑢2 ↝(14,19) 𝑢4 in Figure 3 is a single-pair reachability while

𝑢2 ↝(14,19) {𝑢3, 𝑢4} is a single-source reachability.

In addition, an earliest-arrival path is a time-respecting path from u to v,

(on a same layer in G), which has the earliest ending time among all time-
respecting paths.

For example, in Figure 2, the path from 𝑢2 to 𝑢4: 𝑃 = (𝑊1, 𝑊2) is an

earliest-arrival path, where 𝑊1 = ((𝑢2, 𝑣3, 15, 16), (𝑣3, 𝑢3, 14, 17))and

𝑊2 = ((u3, v4, 17, 19), (v4, u4, 17, 18)).

Figure 3 is similar to Figure 2, but added with a new edge from 𝑢2 to 𝑣5

with time span 9-11, in which another earliest-arrival path from 𝑢2 to 𝑢4

can be found: P = (W1), where W1 = ((u2, v5, 9, 11), (v5, u4, 10, 11)).

Figure 3 Earliest-arrival path

All the above concepts were first introduced in [1]. However, using such

a temporal bipartite graph for monitoring a disease spread, such as

COVID-19, can be problematic and very inaccurate since two important

factors are not taken into consideration. First, a newly infected carrier

becomes capable of transmitting the disease to others only when an incu-

bation period has passed. Secondly, carriers can eventually recover and

lose their ability to transmit the disease, or become non-infected them-

selves. For these reasons, we have also assigned two timestamps to U(G),

which are used to indicate the infection time 𝑡𝑠 and recovery time 𝑡𝑒 of

 12

the vertex. An upper-layer vertex is represented in the following format:

𝑢 = (𝑡𝑠 , 𝑡𝑒 , 𝐸(𝑢)) where E(u) denotes the set of edges associated with u.

Figure 4 is a modification of the transmission model shown in Figure 3,

by which both incubation and recovery are considered. Assuming that 𝑢2

is carrying the virus from the time 0, but recovered from the disease and

loses the ability to infect others from the time 72, that is 𝑢2 =

 (0, 72, 𝐸(𝑢2)). Hence, although there is a time-overlapping wedge W =

((𝑢1, 𝑣1, 80, 82), (𝑣1, 𝑢2, 80, 82)), connecting u1 and u2, 𝑢1 will not be

infected as 𝑢2 is already cured from the time 72.

On the other hand, 𝑢2 transmits the disease to 𝑢3 at 𝑣3 in the time interval

14 - 17, but 𝑢3 becomes infectious only after the time 63. Therefore, 𝑢4

is, rather than at 𝑣4 in 17 - 19, infected at 𝑣5 in 65 - 67.

Clearly, our refined approach greatly increases the accuracy of tracking

carriers when compared to the original method [1].

Figure 4 Transmission model of a disease

In our implementation of the above method using C++ language, a class

named "Graph" is defined to accommodate all the temporal bipartite

graphs. This Graph class has various attributes, such as the sizes of the

upper and lower layers, the incubation period, and recovery time. The

vertices are stored in a list, but divided into two distinct parts: the upper

layer vertices occupy positions from 0 to the size of the upper layer minus

 13

one while the lower layer vertices are stored from the location size of the

upper layer to the size of the lower layer minus one. In addition, the ver-

tices from different layers are further partitioned into separate groups.

Figure 5 Structure of vertices and edges

Figure 5 provides an overview of the vertex and edge structure. Here,

"Upper Vertex" and "Lower Vertex" are two subclasses of the "Vertex"

class. The "Upper Vertex" subclass encompasses various attributes to rep-

resent its infection status and period, whereas the "Lower Vertex" sub-

class does not since it is only used to represent different locations. Both

"Upper Vertex" and "Lower Vertex" subclasses possess an index denoting

their position in the list and an adjacency list to store pointers to edges.

The edges of upper vertices maintain information about the index of low-

er vertices, arrival time, and departure time while the edges of lower ver-

tices store details about the index of upper vertices, arrival time, and de-

parture time.

 14

Transmission Graph

A transmission graph is derived from a temporal bipartite graph, which

serves to show the relationship of infection within a disease transmission

scenario, offering a simplified representation of disease infection. In con-

trast to the original temporal bipartite graph, the transmission graph ex-

cludes all lower-layer vertices and is structured as a directed graph,

providing a clear depiction of which vertex infects. In our implementa-

tion, a transmission graph is stored in a separate file so that the monitor-

ing of disease outbreaks can be done by searching this separate file alone,

rather than searching the original temporal bipartite graph every time.

This clearly has a better performance.

Two kinds of transmission graphs are introduced in our study: single-path

transmission graph and multi-path transmission graph.

Definition 1 (multi-path transmission graph) Let G(V, E) be a temporary

bipartite graph with bipartite V = U L. The multi-path transmission

graph G of G is an induced graph from G by changing each wedge W =

(𝑢, 𝑣, 𝑡𝑠1, 𝑡𝑒1), (𝑣 , 𝑤, 𝑡𝑠2, 𝑡𝑒2) to an edge (u, v, ts, te), where [ts, te] =

[𝑡𝑠1, 𝑡𝑒1] [𝑡𝑠2, 𝑡𝑒2].

The multi-path transmission graph stores all possibilities of transmis-

sions.

Definition 2 (single-path transmission graph) Let G be an induced graph

from a temporary bipartite graph G. A single-path transmission graph of

G is a forest created by a depth first search of G, with L(G) being re-

moved. Searched paths are time-respecting and earliest-arrival paths.

Intuitively, a single-path transmission graph is like a set of multi-way

trees, in which the in-degree of each vertex is 0 or 1, and there is no limit

to the out-degree.

 15

In transmission graphs, all paths are time-respecting and earliest-arrival

paths. Therefore, we have the following lemma.

Lemma 1 All successors S(P) of a predecessor P are single-source

reachable from this predecessor. That is, 𝑃 ↝[𝑡𝑠𝑃,𝑡𝑒𝑆] {𝑆(𝑃)}, where 𝑡𝑠𝑃 is

the earliest starting time of edges associated with P, and 𝑡𝑒𝑆 is the latest

ending time of edges associated with S(P).

Figure 4 is further changed, in order to clearly explain what a transmis-

sion graph can be derived, as illustrated in Figure 6, in which 𝑢0 and 𝑢5

are added. 𝑢0 and 𝑢2 are initially set as carriers, and their carrying time

spans are (24, 96) and (0, 84), respectively. 𝑢1 is infected by 𝑢0 at 𝑣1 in

the time span 80 - 82, even though another carrier 𝑢2 also visited 𝑣1 in

the time span 81 -82. 𝑢0 arrived and contacted with 𝑢1 earlier than 𝑢2.

Hence 𝑢2 has lower possibility to transmit the disease to 𝑢1. 𝑢2 transmits

the disease to 𝑢3, and then both 𝑢4 and 𝑢5 can be infected by 𝑢2 or 𝑢3

since all of them (𝑢2, 𝑢3, 𝑢4, 𝑢5) have visited 𝑣5 in the time span 65 - 67.

Therefore, there are 2 possibilities of infection. This shows the difference

between single-path transmission graphs and multi-path transmission

graphs.

Figure 6 Changed transmission model

As mentioned above, a single-path transmission graph is like a set of

multi-way trees, as illustrated in Figure 7 and 8, in which we show three

possible single-path transmission graphs generated from figure 6. They

 16

clearly show how the disease is spreading, where the carrying time span

is displayed within the circle representing each vertex. In addition, the

time span on edges show the direction and disease spreading time. From

the figures, we can see that 𝑢4 and 𝑢5 can be infected by both 𝑢2 or 𝑢3.

Hence, there are 3 possible single-path transmission graphs.

Figure 7 An example of single-path transmission graph, generated from
the model in figure 6

Figure 8 Other possible single-path transmission graphs generated from
the model in figure 6

 17

 All the possible spreading paths can be stored in one multi-path trans-

mission graph, as shown in Figure 9. However, a multi-path transmission

graph is more complicated than a single-path transmission graph. Thus,

more time are needed to evaluate a reachability query. Note that although

𝑢2 arrives 𝑣1 later than 𝑢0, 𝑢0 is more likely to spread the disease to 𝑢1

than to 𝑢2 in our solution. It is because our algorithm (for generating mul-

ti-path transmission graphs) considers all carriers accessing a certain lo-

cation in an overlapping time span as the sources of infection. Hence 𝑢2

is connected with 𝑢1 in Figure 9 while for single-path transmission graph

generation only the carrier that has the earliest contact time will be con-

sidered the source of infection, unless this carrier cannot be determined

(when all carriers arrive at the same time).

Figure 9 An example of multi-path transmission graph generated from the
model in figure 6

 18

In our implementation, the adjacency list representation method is used to

represent both single-path transmission graphs and multi-path transmis-

sion graphs, as shown in Figure 10. They have the same structure as regu-

lar graphs.

Figure 10 Structure of a single-path transmission graph or a multi-path
transmission graph

Problem Statement

Given a temporal bipartite graph G(V = (U, L), E), we will search all

reachable pairs that can be listed in U(G), update the carrying time spans

and status of all new carrier, repeat this procedure until there is no status

change of any carrier, and eventually generate a single-path transmission

graph and a multi-path transmission graph. Then, answer any reachability

query, by which we ask whether a vertex v is reachable from another ver-

tex u through a path in a transmission graph.

In the following, we will first discuss several algorithms for answering

reachability queries and updating the status and time spans of carriers.

Then, the algorithm for generating transmission graphs. The experiment

results will be shown and discussed in Chapter 5.

 19

3 SOLUTION OVERVIEW

In this chapter, algorithms of predicting disease spread and generating

transmission graphs are introduced, the table below paraphrases some

variants in the pseudo code of proposed algorithms.

Table 1 Definitions of some variables in the pseudo code

Variable Name Definition

flag A boolean flag, used to detect

whether any value is changed or

not in one iteration.

UpperG/LowerG 𝑈(𝐺) 𝑜𝑟 𝐿(𝐺), the set of all upper-
layer vertices or lower-layer verti-

ces.

isPositive The infection status of an upper-
layer vertex, the values can be

NEGATIVE, POSITIVE, INCU-

BATING and IMMUNE.

edges The set of edges associated with a

vertex.

VisitTime Two timestamps 𝑡𝑠 , 𝑡𝑒 of an edge

E = (𝑢 , 𝑣, 𝑡𝑠 , 𝑡𝑒) , denoting the

arrival time and departure time.

CarryTime Two timestamps 𝑡𝑠 , 𝑡𝑒 of an upper-
layer vertex 𝑢 = (𝑡𝑠 , 𝑡𝑒 , 𝐸(𝑢)), de-

noting the infection time and re-

 20

covery time.

CurrentTime The recorded time when the "isPos-

itive" of an upper-layer vertex is

changed, used to update "isPosi-

tive" in some algorithms below.

WaitTime The incubation time of the patho-

gen.

 21

Breadth-First-Search-Based Algorithm (BF)

The Breadth-First-Search-Based algorithm is a naive method to search all

reachable pairs, called Algorithm 1, by which all the single-source

reachability of every positive upper-layer vertex is searched.

 This algorithm works as follows.

It starts from the first "POSITIVE" or "INCUBATING" vertex on the
upper layer. Then, for all lower-layer nodes incident on this vertex, all the
other upper-layer nodes reachable from them through an edge will be ex-
plored (see lines 3 - 4). These two upper-layer vertices and one lower-
layer vertex form a wedge (see lines 5 - 13). If edges of these wedges are
time-overlapping and the status of the other vertex is "NEGATIVE" (see
lines 14 - 15), changes the status of this vertex to "INCUBATING" and
updates the carrying time span (see lines 16 -26). Here, the carrying start-
ing time is the earliest contact time plus incubation time, and the ending
time is the starting time plus the recovery time). In a next step, we will
search a next "POSITIVE" or "INCUBATING" vertex, and repeat the
above procedure until no "POSITIVE" vertex can be found (see lines 3 -
4).

The current time will be recorded, which is the time of changing the sta-

tus of the last non-carrier vertex in one iteration (see line 16).

In the last step of this iteration, the states of all vertices based on the cur-

rent time will be updated. If the current time falls into the carrying time

span of a vertex, the state of this vertex is set to "POSITIVE". If the cur-

rent time is after the ending time, the state of the vertex is set to

"IMMUNE" (see lines 34 - 36). Repeat the whole process, until there is

no state changing of any vertex (see line 1).

 22

ALGORITHM 1: NAIVE BFS-BASED ALGORITHM

Input: All upper vertices UpperG and all lower vertices LowerG in
a temporal bipartite graph G

1 while flag
2 flag ← false
3 foreach v in UpperG do //UpperG - U(G)
4 if v.isPositive is not NEGATIVE or IMMUNE then
5 foreach e in v.edges do //v.edges - all edges incident to v
6 if v.CarryTime is overlapped with e.VisitTime then
7 //v.CarryTime - [𝒗. 𝒕𝒔, 𝒗. 𝒕𝒆]
8 //e.VisitTime - [𝐭𝐬, 𝐭𝐞] of the edge e [v, lv, 𝐭𝐬, 𝐭𝐞]
9 LowerVertex lv ← GetVertexById(e.id)
10 //GetVertexById(e.id) - a function to the vertex
11 //corresponding to the id. Here the id is stored in the edge e
12 foreach le in lv.edges do
13 UpperVertex uv ← GetVertexById(le.id)
14 if e.VisitTime is overlapped with le.VisitTime
15 && uv.isPositive is NEGATIVE then
16 CurrentTime ← e.VisitTime(𝑡𝑒)
17 //When it is bigger than CurrentTime, set
18 // it to the ending time of e
19 uv.CarryTime ← VisitTime + WaitTime
20 //VisitTime is picked from 4 times in
21 //e.VisitTime and le.VisitTime, which is the
22 //possible earliest contact time
23 //WaitTime is IncubationTime and RecoveryTime
24 //Here, add 𝒕𝒔 with IncubationTime as 𝒖𝒗. 𝒕𝒔,
25 //then add 𝒖𝒗. 𝒕𝒔 with RecoveryTime as 𝒖𝒗. 𝒕𝒆
26 uv.isPositive ← INCUBATING
27 flag ← true
28 end if
29 end foreach

 23

30 end if
31 end foreach
32 end if
33 end foreach
34 foreach v in UpperG do
35 Set v.isPositive based on CurrentTime and v.CarryTime
36 end foreach
37 end while

isPositive: NEGATIVE/POSITIVE/INCUBATING/IMMUNE

 24

Figure 11 One round of the loop of Algorithm 1(Example)

Figure 11 shows a toy example demonstrating the core procedure of Al-

gorithm 1, in which there are two time-overlapping wedges between 𝑢2

and 𝑢3: W1 = ((𝑢2, 𝑣3, 15, 16), (𝑣3, 𝑢3, 14, 17)) and W2 =

((𝑢2, 𝑣4, 1, 3), (𝑣4, 𝑢3, 1, 3)). Clearly, W1 is later than W2. If there are sev-

eral possible carrying time spans for one vertex, the earliest one will be

determined.

For searching single-source reachability, the time complexity is dominat-

ed by performing the main for-loop in line 5 - 23. Since the algorithm

will traverse all wedges formed for this vertex, in the worst case, this ver-

tex reaches all lower-layer vertices in one step, each of which in turn

reaches all the other upper-layer vertices. The time complexity depends

on the number of edges incident on this vertex and all its reachable lower-
layer vertices. Thus, the time complexity of the main for-loop in Algo-

rithm 1 is bounded by O(|𝐸(𝑈)| ∑ |𝐸(𝐿𝑖)
|𝐸(𝑈)|
𝑖=1 |), where E(U) is the

number of edges incident on all the positive upper-layer vertices, and L is

the set of the positive upper-layer vertices.

 25

Figure 12 An example of the worst case of algorithm 1

 26

For the time complexity of Algorithm 1, it can be more complicated. The

iteration count of the while loop starting from Line 1 depends upon the

number of new carriers in each iteration. In the worst case, given a set of

upper-layer vertices 𝑈(𝐺) = (𝑢1, 𝑢2, . . . , 𝑢𝑛), the initial positive vertex

is the last vertex, and un only infected 𝑢𝑛−1 in this iteration, each vertex

will only infect its previous one vertex, such that only one vertex turns

positive in one iteration. In this case, it requires n plus one iterations to

end the loop. Thus the time complexity of Algorithm 1 is

𝑂(𝑈(𝐺) ∑ 𝐸(𝑈𝑖)
𝑈(𝐺)
𝑖=1

∑ 𝐸(𝐿𝑗)
𝐸(𝑈𝑖)
𝑗=1).

Figure 12 illustrates one worst case of Algorithm 1. To simplify this ex-

ample, the recovery time is set to 12 and the incubation time is set to 10,

and there are some green edges, which mean this edge is not time-
overlapping with other edges. Because the algorithm starts from front to

back, in this example, when the previous vertex turns positive, its previ-

ous vertices will not be scanned again in this iteration. Hence, it requires

5 iterations to end the loop. If the algorithm starts from back to front, it

only needs 2 iterations to end the loop.

Time-Labeling Method (TL)

Algorithm 2 is for the Time-Labeling (TL), which is used to gather all

positive visitors’ time spans and merge overlapping time spans.

Similar to Algorithm 1, this algorithm traverses all those edges (u, v)

starting from each vertex u initially labeled "POSITIVE" (or

"INCUBATING", as long as it has a carrying time span), and stores the

indexes (in order to generate transmission graphs) and time spans of these

edges into a time span list associated with v, called a visit record (see

lines 4 – 8 and lines 31 - 39). Note that only the time spans overlapped

with the carrying time spans will be stored. (Remark: Starting from low-

er-layer vertices is also feasible but it may consume more time since edg-

 27

es from "NEGATIVE" vertices are also traversed.) Then, all overlapping

visit records will be merged in order to increase the performance, but it

may decrease accuracy as the indexes will be also merged (see line 9 and

lines 41 - 44).

After storing and merging all visit record, the algorithm starts searching

from the first upper-layer vertex to the last one. For any vertex encoun-

tered, if it is "NEGATIVE" and one of the time spans of its edges is over-

lapped with the stored time spans of the corresponding vertex, then sets it

to be "INCUBATING" and update its carrying time span (see lines 11 -
24). Also, the current time will be recorded (the current time will only be

modified if and only if the old current time is later than the new current

time). If there is a change of the status of an upper-layer vertex in one

iteration, then continue to a next iteration.

 In addition, a "NEGATIVE" vertex can visit several lower-layer vertices

and have several overlapped time spans. However, possessing multiple

carrying time span makes no sense in a short term (it can be useful for a

very long time span, such as a data set containing 1-year data). In this

case, the carrying time span is calculated based upon the earliest-arrival

path.

 28

ALGORITHM 2: TIME-LABELING

Input: All upper vertices UpperG and all lower vertices LowerG in
a temporal bipartite graph G

1 while flag
2 flag ← false
3 clear all timespans //Clear Visit Records of LowerG - L(G)
4 foreach v in UpperG do
5 if v.isPositive is not NEGATIVE or IMMUNE then
6 setVisitRecord(v)
7 end if
8 end foreach
9 mergeTimespan(foreach LowerVertex lv in LowerG)
10 foreach v in UpperG do
11 if v is NEGATIVE then
12 foreach e in v.edges
13 LowerVertex lv ← GetVertexById(e.id)
14 foreach timespan in lv.TimeSpan
15 if e.VisitTime is overlapped with lv.TimeSpan
16 CurrentTime ← e.VisitTime(𝑡𝑒)
17 //Set CurrentTime if VisitTime is bigger than CurrentTime
18 uv.CarryTime ← VisitTime + WaitTime
19 uv.isPositive ← INCUBATING
20 flag ← true
21 end if
22 end foreach
23 end foreach
24 end if
25 end foreach
26 foreach v in UpperG do
27 Set v.isPositive based on CurrentTime and v.CarryTime
28 end foreach
29 end while
30

 29

31 procedure setVisitRecord(UpperVertex v)
32 foreach e in v.edges
33 if v.CarryTime is overlapped with e.VisitTime then
34 (𝑡𝑠 , 𝑡𝑒) ← e.VisitTime
35 LowerVertex lv ← GetVertexById(e.id)
36 lv.TimeSpan ← (𝑣. 𝑖𝑛𝑑𝑒𝑥, 𝑡𝑠 , 𝑡𝑒)
37 end if
38 end foreach
39 end procedure
40
41 procedure mergeTimespan(LowerVertex lv)
42 Merge all overlapping visit record,
43 //such as [𝒖𝟏,1,3],[𝒖𝟐,2,6] to [[𝒖𝟏, 𝒖𝟐],1,6]
44 end procedure

Figure 13 An example of Algorithm 2

 30

As illustrated in Figure 13, unlike Algorithm 1, Algorithm 2 firstly

scans all edges starting from "POSITIVE" or "INCUBATING" vertices:

𝑢0 and 𝑢2, and then adds the time spans which are overlapped with their

corresponding carrying time spans of the edges to their respective end

vertices: 𝑣1 and 𝑣2 for 𝑢0, and 𝑣1, 𝑣2, 𝑣3 and 𝑣4 for 𝑢2. So [𝑢0, 80, 82]

and [𝑢0, 24, 26] will be added to 𝑣1 and 𝑣2 while [𝑢2, 78, 80], [𝑢2, 13,

14], [𝑢2, 15, 16] and [𝑢2, 1,3] added to 𝑣1, 𝑣2, 𝑣3 and 𝑣4. Note that since

there are overlapping visit records [𝑢1, 78, 80] and [𝑢2, 80, 82] for 𝑣1,

these two visit records will be merged to form a combined visit record:

<[𝑢1, 𝑢2], 78, 82> although it is not necessary. However, the merging can

increase the performance by sacrificing accuracy.

After adding and merging all time spans for v1, the algorithm will scan all

other vertices 𝑢1, 𝑢3 and 𝑢4, as illustrated in Figure 13. If the time span

of an edge is overlapped with a visit record of a lower-layer vertex, then

update the status and carrying time span of the end vertex (at the upper-
layer) of the corresponding edge. One of the edges out of "NEGATIVE"

vertex 𝑢1 is with the time span 80 - 82, and its end vertex has a time span

78-82. So, the status and carrying time span of 𝑢1 are set to be

"INCUBATING" and 90 – 102, respectively. For 𝑢3, there are two time-
overlapping edges out of it, and the earlier one is selected. So, the status

and carrying time span of 𝑢3 are set to be "INCUBATING" and 11 – 23,

respectively. 𝑢4 does not have time-overlapping edges out of it. There-

fore, its status is not changed. In the next iteration, the time spans of 𝑢1

and 𝑢3 will be added to the end vertices of the corresponding edges.

For adding time spans, the algorithm will scan all edges out of any

"POSITIVE" or "INCUBATING" vertices in each iteration. In most cas-

es, all edges out of each upper-layer vertices will have to be scanned

eventually. So, the time complexity of this part is bounded by

O(U(G)∑ 𝐸(𝑈𝑖)
𝑈(𝐺)
𝑖=1) on average.

 31

For status-updating, the algorithm will scan all edges out of any

"NEGATIVE" vertices. Then, for the corresponding lower-layer vertex of

each of such edges, its visit records will be scanned to compare with the

time span of the corresponding edge. Hence, the time complexity of this

part is bounded by O(U(G)∑ 𝐸(𝑈𝑖)
𝑈(𝐺)
𝑖=1

∑ 𝐼(𝐸𝑈𝑖
)

𝐸(𝑈𝑖)
𝑗=1), where I is the visit

records associated with the lower-layer vertices. I can be equal to U(G)

on average. Therefore, the time complexity is bounded by

O(𝑈(𝐺)2 ∑ 𝐸(𝑈𝑖)
𝑈(𝐺)
𝑖=1).

From the above analysis, we can see that the time complexity of Algo-

rithm 2 is O(𝑈(𝐺)2 ∑ 𝐸(𝑈𝑖)
𝑈(𝐺)
𝑖=1 + 𝑈(𝐺) ∑ 𝐸(𝑈𝑖)

𝑈(𝐺)
𝑖=1) =

O(𝑈(𝐺)2 ∑ 𝐸(𝑈𝑖)
𝑈(𝐺)
𝑖=1).

Figure 14 A worst case for Algorithm 2

 32

Similar to Algorithm 1, the count of iterations is restricted by the number

of status-changed vertices in each iteration. Figure 14 shows this exam-

ple, in each iteration, only a time span of one upper-layer is added to a

lower-layer vertex. In the step of updating statuses, the pointer traverses

through the upper-layer rather than the lower-layer. Hence, all edges

starting from upper-layer vertices will be scanned, which is time-
consuming.

Dynamic Adjacency Arrays (DAA)

For a normal graph, an adjacency matrix or a collection of adjacency lists

is used to represent the graph. In general, Arrays or matrices are more

flexible than linked-lists, but require more space. Dynamic adjacency ar-

rays (DAA for short) combines their respective advantages. They not only

keep the flexibility of arrays, but also have a lower memory usage. When

using a language like C++, which provides encapsulated dynamic arrays

such as std::vector, it is easy and convenient to implement this mecha-

nism.

In our method, the DAA is used to store a temporal bipartite graph and

will be scanned. So, in the following algorithm, it will be first created

when loading the temporal bipartite graph is required. (See Algorithm 3-

1.)

 33

ALGORITHM 3-1: CREATING ADJACENCY ARRAYS

Input: A file f describing the temporal bipartite graph

1 File f ← open_file(f)
2 upper_size, lower_size ← read_line(f)
3 Graph g ← initialize(upper_size, lower_size)
4 while(edge ← read_line(f))
5 (𝑖𝑑𝑥𝑢, 𝑖𝑑𝑥𝑙 , 𝑡𝑠 , 𝑡𝑒) ← edge //Time span, indexes of upper

6 //and lower vertices
7 store vertices and edges to Graph g
8 g[𝑖𝑑𝑥𝑢].adj.add(𝑖𝑑𝑥𝑙 , 𝑡𝑠 , 𝑡𝑒)
9 sort all adj by idx //Sort in ascending order
10 end while

Algorithm 3-1 is the brief description of loading a temporal bipartite

graph from a file, which is stored as a set of edges. In the file, the first

line is the upper-layer and lower-layer sizes. (See Table 1 for illustration.)

After the temporal bipartite graph is initialized, each upper-layer vertex

will be assigned a dynamic array of the form (𝑖𝑑𝑥𝑙 , 𝑡𝑠 , 𝑡𝑒), stored as a

structure. Edges in the file are stored in the form of (𝑖𝑑𝑥𝑢, 𝑖𝑑𝑥𝑙 , 𝑡𝑠 , 𝑡𝑒).

After an edge is read, 𝑖𝑑𝑥𝑙 , 𝑡𝑠 ,𝑡𝑒 from this edge will be assigned to the

dynamic array associated with vertex 𝑖𝑑𝑥𝑢.

All the dynamic arrays for edges will be sorted in ascending order of

𝑖𝑑𝑥𝑙. In this way, the comparison of elements from two adjacency arrays

can be efficiently performed.

Table 2 A file storing a temporal bipartite graph

5 4
0(24,96) 1 80 82
0(24,96) 2 24 26
1 1 80 82

 34

1 2 11 12
2(0,84) 1 78 80
2(0,84) 2 13 14
2(0,84) 3 15 16
2(0,84) 4 1 3
3 3 14 17
3 4 1 3
4 4 17 18

Figure 15 The temporal bipartite graph and adjacency arrays generated
from Table 1

Table 2 is an example file storing a temporal bipartite graph, in which 5

upper-layer vertices with a dynamic array and 4 lower-layer vertices are

initialized and assigned to a list of 9 entries. While creating linked-lists

and their end vertices, the information of edges will also be added into

the dynamic adjacency arrays. As illustrated in Figure 15, associated with

the upper-layer vertices, are their respective adjacency arrays, storing in-

dexes of end vertices (of edges), starting times and ending times.

 35

In a next step, the computation will be based upon such adjacency arrays,

as depicted in Algorithm 3. Like Algorithm 1 and 2, Algorithm 3 still

needs a loop and flag to iterate until there is no update on any upper-layer

vertex occurs. In this process, the upper-layer vertices will be scanned

one by one. If a "POSITIVE" or "INCUBATING" upper-layer vertex is

encountered, then the lower-layer indexes in its adjacency arrays will be

compared with the lower-layer indexes in the adjacency arrays of the oth-

er upper-layer vertices. In lines 8 - 19 of Algorithm 3, such index-
comparison is conducted. Two indexes from two arrays will be compared

to see if they are equivalent. We scan both arrays, starting from their re-

spective first index. In this process, the pointer to the smaller index will

move forward until the indexes are equivalent. In addition, if the carrying

time span of a "POSITIVE" vertex is not overlapped with the time span

of another vertex to which the "POSITIVE" vertex’s pointer points, the

pointer of "POSITIVE" vertex’s array will move forward. When indexes

are equivalent, their time spans will be compared. If the time spans are

overlapped, update the status and the carrying time span of the target up-

per-layer vertex, as well as the current time. The principle of updating the

status and carrying time span is same as Algorithm 1 and 2. Then, move

to the next index or next vertex to start a new comparison. When all com-

parisons are done, updating statuses of all the upper-layer vertices based

on their carrying time spans and the current time. If there is any update on

an upper-layer vertex, start a new iteration until there is no update is

needed.

 36

ALGORITHM 3: DYNAMIC ADJACENCY ARRAYS

Input: All upper vertices UpperG in a temporal bipartite graph G

1 while flag
2 flag ← false
3 foreach 𝑣𝑖 in UpperG do
4 if 𝑣𝑖 . isPositive is POSITIVE or INCUBATING then
5 foreach 𝑣𝑗 && 𝑣𝑗 ! = 𝑣𝑖 in UpperG do
6 if vj.isPositive is NEGATIVE or INCUBATING then
7 i, j ← 0
8 while i < 𝑣𝑖.adj.size && j < 𝑣𝑗.adj.size
9 if 𝑣𝑖.adj[i].(𝑡𝑠 , 𝑡𝑒) is not overlapped with 𝑣𝑖.CarryTime or
10 𝑣𝑖.adj[i] < 𝑣𝑗.adj[j] then
11 i++
12 else if 𝑣𝑖.adj[i] > 𝑣𝑗.adj[j] then
13 j++
14 else if 𝑣𝑖.adj[i].(𝑡𝑠 , 𝑡𝑒)
15 is overlapped with 𝑣𝑗.adj[j].(𝑡𝑠 , 𝑡𝑒) then
16 CurrentTime ← 𝑡𝑒 //if 𝒕𝒆 is bigger than CurrentTime
17 𝑣𝑗.isPositive ← INCUBATING
18 𝑣𝑗.CarryTime ← 𝑡𝑠 + WaitTime
19 flag ← true
20 end if
21 end while
22 end if
23 end foreach
24 end if
25 end foreach
26 foreach v in UpperG do
27 Set v.isPositive based on CurrentTime and v.CarryTime
28 end foreach
29 end while

 37

1.
Figure 16 An example of Algorithm 3

 38

Figure 16 shows an iteration of Algorithm 3. At first, [1, 80, 82] of 𝑢0

will compare with elements of 𝑢1’s adjacency arrays. Since the first index

of 𝑢1 is also 1 and the time spans are overlapped, the status and carrying

time span will be updated. Next, since 𝑢1 is incubating and has carrying

time span, its adjacency array will be compared with some others′. 𝑢0

and 𝑢2 have the same indexes and overlapping time spans. However, be-

cause they both are positive, their status will not be changed. Then, the

arrays of 𝑢2 will be compared. For the first entry, 𝑢0 and 𝑢1 have the

overlapping time spans, but it will not change their status. For the third

entry, 𝑢0’s time span is overlapped with the first entry of 𝑢3. So, 𝑢3 turns

to incubating and its carrying time span is set to be [25, 37]. However,

after the forth entry of 𝑢2 and the second entry of 𝑢3 have been com-

pared, there will be a new carrying time span [11, 23], which is earlier

than the old one. Thus, eventually, the carrying time span of u3 is set to

be [11, 23].

Because each edge incident to a positive or an incubating vertex needs to

be compared with edges incident to all the other vertices, the time com-

plexity of Algorithm 3 is bounded by O(∑ E(Ui)
Ui
i=0

∑ E(Ui)
Ui
i=0).

It is still hard to deal with the worst case illustrated in Figure 17. Like

Algorithm 1 and 2, the number of iterations in Algorithm 3 depends on

the number of status-changing vertices in an iteration.

 39

Figure 17 A worst case for Algorithm 3

Depth-First Strategy (DF)

Depth-First Strategy (DF) is also a brute-forcing and naive strategy. It is

simple, but not so efficient.

Mainly, it contains two components: one is a recursive process to search

the whole graph (Algorithm 4), and the other is responsible for passing

all initially-positive vertices to the recursive function (Algorithm 4-1).

 40

ALGORITHM 4: DEPTH-FIRST RECURSION PART

Input: An upper-layer vertex v

1 foreach e in v.edges do
2 if e.VisitTime is overlapped with v.CarryTime then
3 LowerVertex lv ← GetVertexById(e.id)
4 foreach le in lv.edges do
5 UpperVertex uv ← GetVertexById(le.id)
6 if e.VisitTime is overlapped with le.VisitTime then
7 CarryingStartTime ← the larger one between
8 le.VisitStartTime and e.VisitStartTime + IncubationTime
9 end if
10 if uv.isPositive is NEGATIVE or uv.CarryingStartingTime
11 is bigger than CarryingStartTime then

12 uv.CarryingStartTime ← CarryingStartTime
13 uv.CarryingEndTime ← CarryingStartTime + RecoveryTime
14 Algorithm4(uv)
15 end if
16 end if
17 end foreach
18 end if
19 end foreach

ALGORITHM 4-1: DEPTH-FIRST MAIN PART

Input: All upper-layer vertices in a temporal bipartite graph

1 foreach POSITIVE upper-layer vertex v do
2 Algorithm4(v)
3 end foreach
4 foreach upper-layer vertex v do
5 Set v.isPositive based on latest ending time and v.CarryTime
6 end foreach

 41

The input of Algorithm 4-1 is set of initial positive upper-layer vertices.

In Algorithm 4, for the set of edges associated with the passed vertices, if

there is an edge whose visiting time span is overlapped with the positive

time span of any input vertex, the corresponding lower-layer vertex will

be found based on the ID stored in that edge (see lines 1-3). Then, the

edges associated with this lower-layer vertex are traversed, forming

wedges with the edge that store the ID of this lower-layer vertex (see line

4). Next, for each edge, the corresponding upper-layer vertex will be

found based on the ID stored in that edge (see line 5). If the visiting time

spans of two edges within the wedge overlap, the status of the corre-

sponding upper-layer vertex will be checked, and the carrying starting

time is computed (see lines 6 - 8). If the upper-layer vertex is

"NEGATIVE" or the carrying starting time is earlier than the upper-layer

vertex's carrying starting time, the carrying starting time of the upper-
layer vertex is modified to the computed time, and the carrying ending

time is calculated based on the average recovery time (see lines 9 - 11).

Simultaneously, a new round of recursion is initiated with the upper-layer

vertex as the parameter (see line 12). The termination condition for recur-

sion is reached when no more infected vertices are founded, and the set of

edges associated with the initial input (positive) vertex has been fully

traversed (see line 1).

 42

Figure 18 An example procedure of Depth-First Strategy

In Figure 18, the numbers associated with vertices (numbers put in a

small circle) represent the current recursion level; and the numbers next

to the edges indicate the order in which the edges are being examined.

Furthermore, a red-colored edge indicates that the status or infection time

of the end vertex has been modified while a yellow-colored edge signifies

that there is no modification. When the status or infection time of the end

vertex is changed, the corresponding vertex in this Figure turns yellow,

and this vertex is used as a parameter in a next recursive call. In the next

recursion round, this vertex will be changed to red.

 43

Figure 19 A worst case example of Depth-First Strategy

Assuming that each upper-layer vertex connects to every lower-layer ver-

tex. The number of edges that incident to an upper-layer vertex equals to

the number of lower-layer vertices, while the number of edges that inci-

dent to a lower-layer vertex equals to the number of upper-layer vertices.

Since all upper-layer vertices’ status is changed only once, the time com-

plexity is bounded by O(U(G)2L(G)).

Figure 19 illustrated a worst case. In this case, the infection time of the

vertex 𝑢1 is changed more than one time. Every time its infection time is

changed, all edges incident to it will be checked.

Finally, we notice that all those worst cases respectively illustrated in

Figure 12, 14 and 17 can be easily dealt with Algorithm 4 as its iteration

number is not restricted by the number of status-changing vertices.

 44

Single-Path Transmission Graph

Generation of Single-Path Transmission Graph

A single-path transmission graph is generated when searching reachabil-

ity. So, the code for generating it needs to be inserted into several parts of

Algorithm 1 (see Algorithm 1-1).

Each time loading a temporal bipartite graph from a file, there are possi-

bly some positive vertices. Normally, the number of such positive verti-

ces is not predictable (since initially not all upper-layer vertices will be

infected).

Positive upper-layer vertices will firstly be initialized (see line 1).

 45

ALGORITHM 1-1: GENERATION OF SINGLE-PATH TRANSMISSION

GRAPH

Input: All upper vertices UpperG and all lower vertices LowerG in
a temporal bipartite graph G
Output: Single-Path Transmission Graph

7 initialize some vertices of SPTG based on initially-positive upper-
 layer vertices, set the upper-layer index and carrying time
8 //Root nodes
9 while flag
10 flag ← false
11 foreach v in UpperG do
12 if v.isPositive is not NEGATIVE or IMMUNE then
13 foreach e in v.edges do
14 if v.CarryTime is overlapped with e.VisitTime then
15 LowerVertex lv ← GetVertexById(e.id)
16 foreach le in lv.edges do
17 UpperVertex uv ← GetVertexById(le.id)
18 if e.VisitTime is overlapped with le.VisitTime
19 && uv.isPositive is NEGATIVE then
20 Set flag, uv and current time (Lines 12-19 in Algorithm 1)
21 if GetVertexByIdx(uv.idx) not exists then
22 father node ← GetVertexByIdx(v.idx)
23 initialize SPTG vertex, set its index uv.idx, father
 node v.idx, set edge storing transmission time and index
 of this vertex, add the edge to father node
24 else
25 father node ← GetVertexByIdx(v.idx)
26 SPGV ← GetVertexByIdx(uv.idx)
27 set index of SPGV, father node v.idx, set edge storing
 transmission time and index of this vertex, add the edge
 to father node
28 push SPGV to the single-path transmission graph list
29 end if

 46

30 end foreach
31 end if
32 end foreach
33 end if
34 end foreach
35 foreach v in UpperG do
36 Set v.isPositive based on CurrentTime and v.CarryTime
37 end foreach
38 end while
39 return Single-Path Transmission Graph
The if-statement in the algorithm is the core part of generating single-path

transmission graph (see lines 14 - 19). The algorithm will first acquire the

positive or incubating vertex’s index from the initial file. Then, it will

check if the new "POSITIVE" vertex exists. If not, it will be initialized,

its carrying time span will be set and an edge linking from old positive

vertex to new positive vertex will be created. If exists, rather than initial-

izes it, the algorithm will first find it by its index and then perform the

same operations over it.

 47

Figure 20 An example of generating a single-path transmission graph
Figure 20 illustrates how a single-path transmission graph is created by

Algorithm 1-1. At first, 𝑢0 transmits the disease to 𝑢1 in the time span 80

– 82. So, new vertices 𝑢0 and 𝑢2 are initialized in the single-path trans-

mission graph with an edge directed from 𝑢0 to 𝑢2, storing where and

when the vertices contacted, Then, 𝑣1 and with 80 - 82 is created. Next,

𝑢2, 𝑢3 with an edge going from 𝑢2 to 𝑢3 will be created. Because there is

an earlier time span, the time span stored in the edge will also be changed

to the earlier one. Note that not all upper-layer vertices will be created in

the single-path transmission graph since some of them may not be infect-

ed. For example, 𝑢4 is neither positive nor infected in this example.

 48

Reachability Answering

In general, there are two simple approaches to answer reachability que-

ries: top-down and bottom-up.

Figure 21 Top-Down and Bottom-Up Searching
The top-down is a naive method to answer the reachability. Given two

vertices, 𝑢𝑖 and 𝑢𝑗, this method initiates a depth-first search from 𝑢𝑖, ex-

ploring all its successor nodes until it reaches 𝑢𝑗, and returning True if 𝑢𝑗

is found, and False otherwise.

On the other hand, the bottom-up is an optimized approach that makes

use of the characteristic of single-path transmission graphs, where each

node has an in-degree of 1 at maximum. Similarly, given two vertices 𝑢𝑖

and 𝑢𝑗, it begins the search from 𝑢𝑗 and progressively moves upwards

until it encounters 𝑢𝑖, returning True if 𝑢𝑖 is found and False otherwise. In

comparison to the top-down approach, the bottom-up typically reduces

 49

the number of search operations in most cases, achieving a better theoret-

ical performance.

In Figure 21, we compare these two methods, in which the dashed arrows

represent the search paths while the number beside the dashed arrows

represent the order of the searching. As shown in the figure, to answer the

reachability between 𝑢1 and 𝑢3, the bottom-up reduces the number of

search operations.

The bottom-up method can be further improved by associating an array

(or a string) with each vertex to represent the unique path from a root ver-

tex to the vertex.

Given two vertices, 𝑢𝑖 and 𝑢𝑗, where 𝑢𝑗 is a descendant of 𝑢𝑖, associated

with an array [j, …, 1]. Search the array or the string, if i is found in the

array or 𝑢𝑖 is found in the string, true will be returned. The time complex-

ity of searching the array or the string is bounded by O(log 𝑁), where N

is the number of vertices.

In addition, using the array or the string to answer a reachability query

has another advantage that the transmission path can easily be displayed

to the user. However, this algorithm needs to assemble a string to display,

which can be time-consuming.

 50

Figure 22 String and array buffers

In Figure 22, we show the arrays (or strings) associated with vertices.

When answering the reachability from 𝑢1 to 𝑢3, for example, the algo-

rithm matches "u1 →" or 1 in the string or in the array.

Multi-Path Transmission Graph

Generation of Multi-Path Transmission Graph

Algorithm 2 can be slightly improved by using a multi-path transmission

graph (see Algorithm 2-1).

Similar to Algorithm 1-1, those initial positive upper-layer vertices will

be the root vertices of the multi-path transmission graph (see lines 5 - 8).

If a negative upper-layer vertex reaches a lower-layer vertex within any

 51

time span of its visit records, a multi-path transmission graph vertex will

be created. This vertex carries the carrying time span and index of its

original upper-layer vertex, and its possible parent pointers. Its possible

parents can be found in the visit records of the lower-layer vertex (see

line 16 - 20). A data structure storing the pointer of this new vertex will

be inserted into the children list of parents if the new vertex does not exist

in the children list (see lines 21 - 27). The created vertex will be stored in

a list storing all multi-path transmission graph vertices.

 Next, following the second if-statement (see line 29), if the upper-layer

vertex is not negative, but its carrying time can be updated to an earlier

carrying time (which means the multi-path transmission graph vertex has

been already created), then this multi-path transmission vertex will be

founded by its index. The same operations (see lines 20 - 27) will be con-

ducted on this vertex.

 52

ALGORITHM 2-1: GENERATION OF MULTI-PATH TRANSMISSION

GRAPH

Input: All upper vertices UpperG and all lower vertices LowerG in
a temporal bipartite graph G
Output: Multi-Path Transmission Graph

1 while flag
2 flag ← false
3 clear all timespans
4 foreach v in UpperG do
5 if v.isPositive is not NEGATIVE or IMMUNE and it is the first

iteration then
6 setTimespan(v)
7 initialize MPTG vertex(v.CarryTime, v.index)
8 push MPTG vertex to the Multi-Path Transmission Graph List
9 else if v.isPositive is not NEGATIVE or IMMUNE
10 setVisitRecord(v)
11 end if
12 end foreach
13 (Lines 9-15 in Algorithm 2)
14 CurrentTime ← e.VisitTime(𝑡𝑒)
15 CarryTime ← VisitTime + WaitTime
16 if v is NEGATIVE then
17 v.isPositive ← INCUBATING
18 v.CarryTime ← CarryTime
19 MPTGV ← initialize MPTG vertex(v.CarryTime, v.index)
20 insert parent indexes into MPTGV.parents from lv.TimeSpan
21 foreach parent in MPGTV.parents
22 if MPTGV not exists in children of parent then
23 Node ← initialize a Node(MPTGV_pointer)
24 Node.nextNode ← parent.nextNode
25 parent.nextNode ← Node
26 end if

 53

27 end foreach
28 push MPTG vertex to the Multi-Path Transmission Graph List
29 else if v.CarryTime is earlier than CarryTime then
30 v.isPositive ← INCUBATING
31 v.CarryTime ← CarryTime
32 MPTGV ← findMPTGVertexById(v.index)
33 (Lines 19-27 Algorithm 2-1)
34 Continued from previous page

35 (Lines 21-29 in Algorithm 2)
36 return Multi-Path Transmission Graph

Figure 23 An example of generating a multi-path transmission graph

Figure 23 shows an example of the basic process to generate a multi-path

transmission graph by using Algorithm 2-1. Two initial positive vertices

𝑢0 and 𝑢2, are the root vertices of the multi-path transmission graph.

Since they are positive and reach 𝑣1 and 𝑣3 respectively, their visit time

spans are added into the visit records of the two lower-layer vertices.

 54

Then, 𝑢1 and 𝑢3 reach these lower-layer vertices, marked as incubating

and created in the multi-path transmission graph as the child vertex of 𝑢0

and 𝑢2 respectively, where 𝑢1 is the child vertex of both 𝑢0 and 𝑢2, as the

visit record of v1 has been merged.

In the next iteration, 𝑢1 and 𝑢3 as the new positive vertices, reach 𝑣5 and

a merged visit record of 𝑣5 is created. 𝑢4 and 𝑢5 reaches 𝑣5 within the

time span of the visit record, and they therefore are created as both the

child vertices of 𝑢1 and 𝑢3 in the multi-path transmission graph.

Figure 24 Answering reachability by indexes

Other than the top-down and the bottom-up techniques, which have the

same principle as in single-path transmission graphs, adjacency arrays

storing indexes of vertices can be created to speed up the searching of

reachability. Given a vertex and an adjacency array with the length equal

to the number of vertices, each index in the array represents the index of a

 55

vertex. In the array, "0" indicates that the corresponding vertex cannot be

reached from the original vertex, while "1" indicates that it can. These

arrays can also be compressed to arrays directly storing indexes. The ar-

rays next to the vertices in Figure 24 are an example of such arrays.

However, creating these arrays requires first searching all possible reach-

able pairs, which can be very time-consuming. When generating a multi-
path transmission graph, the compressed arrays can be created. In addi-

tion, in Algorithm 2-1, the parents’ indexes are inserted into a parent in-

dex list of each end vertex other than root vertices (see line 20). Every

time a vertex in a multi-path transmission graph is created, all predeces-

sors are found through the parent index list, the parent index lists of par-

ents, et cetera. The index of the vertex is added into the adjacency arrays

of all predecessors.

However, this indexing technique cannot show the transmission path of a

pair.

A transmission path can be shown only by using traversal methods like

the top-down or the bottom-up. They have the same performance since

the in-degree of a vertex can be larger than 1. Also, it is possible that

there is more than 1 transmission path, and therefore a graph traversal can

be extremely time-consuming.

3.8 Evaluation of Reachability Queries Based on

Indexes

A more efficient method for querying reachability is based on an indexing

technique discussed in [12, 13]. For this method, we will first perform a

depth-first traversal for the graph, generating a pre-order rank for each

vertex. Then, assign a semi open closed interval [i, j) to each vertex. See

Figure 25 for illustration, in which each vertex v is associated with a pair

of two values: its pre-order rank i, denoted as p(v); and its interval [i, x),

 56

denoted as interv(v), where x is equal to d + 1 and d is the largest rank

among all the vertices in G[v].

For example, vertex U4’s pre-order rank p(U4) is 2 while its interval in-

terv(U4) is [2, 4). It is because the largest rank among all the vertices in

G[U4] is 3 and 3 + 1 = 4. For the same reason, U6’s pre-order rank is 3

while its interval is [3, 4). In the same way, you can check all the other

vertices.

Figure 25 Example of intervals and Reversed topological order

 57

Then, for each vertex v, we will create an interval sequence s(v) = [a1, b1)

… [ak, bk) for some k with the following property.

Let u v be a vertex in G. u is a descendant of v if and only if there exists
an integer j (1 j k) such that p(u) ∈ [aj, bj).

To create such an interval sequence for each vertex, we will first find a

topological order for G, in which for any (u, v) ∈ Ε u appears before v.

For example, for G shown in Figure 25, one of its topological sequences
is shown below.

Then, along its reversed topological order, for each vertex v, we will

merge the interval sequences of all its children with interv(v) as follows.

Let v1, ..., vl be the child vertices of v. We will merge s(v1), …, s(vl) with

interv(v) in turn. The result is stored in L. Initially, L = interv(v).

Let L = [a1, b1) … [ak, bk) be the result after s(v1), …, s(vi) have been
merged with interv(v). The merging of L with s(vi+1) will be done as be-
low.

Let s(vi+1) = [c1, d1) … [cr, dr). We will scan both of L and s(vi+1) from left
to right.

Let [ai, bi) (from L) and [cj, dj) (from s(vi+1)) be the interval currently en-
countered. The following checkings will be conducted:

- If cj > ai, we go to the index next to [ai, bi) and compare it with [cj,
dj) in a next step.

- If ai > cj, insert [cj, dj) just before [ai, bi). Go to the index next to
[cj, dj) and compare it with [ai, bi) in a next step.

- If ai = cj, we will compare bi and dj. If bi > dj, nothing will be
done. If dj > bi, replace bi with dj. In both cases, we will go to the
indexes next to [ai, bi) and [cj, dj), respectively.

U6 U0 U2 U1 U3 U4 U5

 58

As an example, consider the graph shown in Figure 25 again. Applying
the above process to the vertices of the graph along a reversed topological
order, we will create all the interval sequences for them as shown in the
third column in Table 3.

Table 3. Merging the intervals

Vertex Child Nodes Intervals to be merged Merged In-
tervals

U6 [3,4) [3,4)
U5 [4,5) [4,5)
U4 U6 [2,4)[3,4) [2,4)
U3 U4 U5 [6,7)[2,4)[4,5) [2,5)[6,7)
U1 U4 U5 [1,5)[2,4)[4,5) [1,5)
U2 U1 U3 [5,7)[1,5)[2,5)[6,7) [1,7)
U0 U1 [0,5)[1,5) [0,5)

This method can be further improved by shortening each interval se-

quence associated with a vertex as follows:

Let [a1, b1) … [ak, bk) be a sequence associated with a certain vertex. For
any two consecutive intervals: [ai, bi) and [ai+1, bi+1) (1 ≤ i k - 1) if bi =
ai+1, we can replace them by a single interval [ai, bi+1) without impacting
the correctness of reachability checking.

In this way, both querying time and space overhead can be greatly re-
duced, as illustrated by the fourth column for Table 3. From this, we can
see that the whole space requirement for storing interval sequences is re-
duced by half.

 59

4 EXPERIMENTAL RESULT

This chapter introduces the testing datasets and methods, and illustrates

and analyze the experimental results of the proposed algorithms. Pro-

grams are implemented with C++, compiled by Microsoft Visual Studio

2019 with cl.exe being used. All the programs run on a Microsoft Win-

dows 10 machine with 32 GB of memory and a 2.3 GHz 16-core proces-

sor.

Testing Datasets

Given the sizes of upper-level and lower-level vertices, as well as a max-

imum time value, the test datasets are generated according to the follow-

ing rules:

1) Each upper-layer vertex is randomly connected to a certain number of

lower-level vertices, determined by a provided maximum time value;

2) Within the visiting time span of the first edge for each vertex, the base-

line starting time is set to 15, with a random offset in the range of [-14,

10]. The ending time is created by randomly adding 1, 2, or 3 to the cor-

responding starting time. Subsequently, for each incident edge, the base-

line starting time is incremented by 50 until the baseline starting time ex-

ceeds the provided maximum time value. Then, no more edges will fur-

ther be generated for that upper-layer vertex.

Multiple test datasets have been generated based on different input val-

ues, and, as depicted in Figure 25, they are named according to the fol-

lowing format: Upper-layer Size - Lower-layer Size (total number of

edges). The running time of predicting transmission (Algorithms 1-4), of

generating a transmission graph (Algorithm 1.1 and 2.1), as well as of

answering reachability queries are all tested. In particular, the prediction

results are compared with those yielded by the existing method.

 60

For all the tests, the incubation time is set to 72, while the recovery time

is set to 168.

Figure 26 Naming of test datasets

Transmission Prediction Efficiency (Algorithms 1-4)

This section conducts performance testing on the transmission prediction

algorithms. All the datasets are shown in Figure 26. Over some of them,

all the four algorithms discussed in the previous sections (named BF, TL,

DAA and DF, respectively) are executed. Their execution time is respec-

tively demonstrated in Tables 4 to 7.

Table 4. Computation time (in milliseconds) of Algorithms 1-4

Edge\Algorithm BF TL DAA DF

600 0 0 0 0
3000 1 1 7 0
15000 28 4 38 22
75000 1681 60 568 6027
375000 189605 1284 13999 929597

 61

In Table 4, the first column is the number of edges, the numbers of upper-
layer vertices are respectively 100, 500, 2500, 12500 and 62500 while the
numbers of lower-layer vertices are all 10.

Table 5. Computation time (in milliseconds) of Algorithms 1-4
Edge\Algorithm BF TL DAA DF
600 0 1 1 0
3000 0 3 41 0
15000 8 3 101 4
75000 577 26 798 902
375000 29205 251 17710 116508

In Table 5, the numbers of upper-layer vertices remain unchanged while
the numbers of lower-layer vertices are all 30.

Table 6. Computation time (in milliseconds) of Algorithms 1-4
Edge\Algorithm BF TL DAA DF
600 1 1 1 0
3000 1 1 1 0
15000 2 4 183 1
75000 173 22 1182 121
375000 13230 190 21237 29436

In Table 6, the numbers of upper-layer vertices remain unchanged while
the numbers of lower-layer vertices are all 50.

Table 7. Computation time (in milliseconds) of Algorithms 1-4
Edge\Algorithm BF TL DAA DF
600 0 1 2 1
3000 1 1 45 0
15000 11 4 174 7
75000 604 40 1701 477
375000 97001 249 36898 96709

 62

In Table 7, the numbers of upper-layer vertices are respectively 150, 750,

3750, 18750 and 93750 while the numbers of lower-layer vertices are all

30.

From Tables 4 – 7, we can see that overall TL has the best performance,

significantly outperforming all the other algorithms. Both BF and DF per-

form poorly. In general, as the number of edges increases, the execution

time of each algorithm increases.

Comparing Tables 4, 5, and 6, it can also be observed that BF, TL, and

DF have shorter execution time as the number of lower-layer vertices in-

creases. This is quite opposite to DAA.

In addition, the dataset shown in Table 6 has 1.5 times the number of up-

per-level vertices in the dataset shown in Table 4. But they have the same

number of edges. This implies that in the dataset of Table 6, upper-layer

vertices are connected to fewer lower-layer vertices than Table 4. By

comparing these two tables, we can see that BF and DAA both need

longer execution time as the number of upper-level vertices increases

while DF behaves oppositely. However, TL's execution time remains un-

changed.

In order to further verify the performance of TL, we created a large test

set. This test set has 900000 upper-layer vertices, 60000 lower-layer ver-

tices and 4500000 edges. The execution time is 3196ms.

In summary, TL demonstrates the best performance.

Transmission Prediction Comparison

In this section, we compare the transmission prediction results between

our strategy and the existing method [1]. The existing strategy, as com-

pared to ours, does not take virus incubation and recovery times into con-

sideration. It simply searches for the reachability of all pairs of upper-
layer vertices in a brute-force manner. In the context of disease spread

 63

modeling, this approach assumes that as soon as a person comes into con-

tact with any carrier, they will immediately become a carrier and remain

infectious forever. This is obviously not so reasonable.

The test dataset used in this section consists of 500 upper-layer vertices,

30 lower-layer vertices, and 3000 edges. In this test, the BF algorithm is

executed on the test dataset to compute infection time for two scenarios:

one is our strategy with virus incubation and recovery times considered,

and the other is the existing method, by which virus incubation and re-

covery time are not taken into account.

In Chart 1, we show the infection time by our strategy. In Chart 2, the

infection time by the existing method is demonstrated, by which both the

incubation and recovery time are set to 0.

Both of these charts contain three subplots, with the numbers of initial

carriers set at 1, 3, and 5, resulting in different spreading scales. By these

subplots, it can be observed that the difference in the number of initial

carriers indeed leads to varying infection scales, i.e., more initial carriers

ultimately result in more infected individuals. Besides, comparing the six

blue curves labeled "New" in both charts, we can see a similar pattern,

generally showing a peak in the middle with lower values on either side.

In other words, the addition of carriers reaches its peak after some time

and gradually declines.

Now, let us examine the red bars labeled "Total" in each subplot. In the

first subplot of Chart 1, with only 1 initial carrier, it indicates that ulti-

mately there are slightly more than 30 individuals becoming carriers. In

contrast, in the first subplot of Chart 2 under the same conditions, there

are nearly 400 individuals becoming carriers.

Finally, comparing the third subplots of both charts, where there are 5

initial carriers, we can see that by our strategy only slightly more than

200 individuals become carriers. In contrast, the existing strategy algo-

 64

rithm results in all individuals becoming carriers. No useful information

is delivered.

Chart 1. Transmission prediction by employing Algorithm 2

0

10

20

30

40

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Day
8

Day
9

Day
10

Day
11

Day
12

Day
13

Day
14

Day
15

Day
16

Day
17

New strategy
500 people, 1 initially-positive

Total Cured New

0

50

100

150

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Day
8

Day
9

Day
10

Day
11

Day
12

Day
13

Day
14

Day
15

Day
16

Day
17

New strategy
500 people, 3 initially-positive

Total Cured New

0

100

200

300

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Day
8

Day
9

Day
10

Day
11

Day
12

Day
13

Day
14

Day
15

Day
16

Day
17

New strategy
500 people, 5 initially-positive

Total Cured New

 65

Chart 2. Transmission prediction by employing the old strategy

0

100

200

300

400

500

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

Old strategy
500 people, 1 initially-positive

Total New

0

100

200

300

400

500

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

Old strategy
500 people, 3 initially-positive

Total New

0

100

200

300

400

500

600

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

Old strategy
500 people, 5 initially-positive

Total New

 66

Transmission Graph Generation Testing (Algorithms

1.1 and 2.1)

In this section, the time for generating Transmission Graphs (Single-Path

Transmission Graph SPTG and Multi-Path Transmission Graph MPTG)

is tested, as shown in Table 7. They are the running time of Algorithm 1.1

(BF) and Algorithm 2.1 (TL). The dataset used for this test is the same as

for Table 5.

Table 8. Generation time (in milliseconds) of Algorithms 1.1 and 2.1

Edge\Algorithm SPTG(BF) MPTG(TL)
600 0 0
3000 0 0
15000 3 10
75000 483 914
375000 13570 30200

In Table 8, the numbers of upper-layer vertices are respectively 100, 500,

2500, 12500 and 62500 while the numbers of lower-layer vertices are all

50.

Observing Table 8, it can be seen that for generating an MPTG approxi-

mately twice as much time as for generating an SPTG is taken, despite

the results in Section 4.2 suggesting that the TL algorithm for predicting

transmission is much faster than the BF algorithm for predicting trans-

mission. This discrepancy is due to more edges in the MPTG than the

SPTG.

It is also noted that when the total number of edges is less than 15,000,

both types of Transmission Graphs can be generated very quickly. How-

ever, even though not much additional time for generating a large SPTG

is incurred (from 13230 ms to 13570 ms), much more time is required for

generating a large MPTG (from 190 ms to 30200 ms). This can be ob-

 67

served by comparing the data in the BF and TL columns from Table 6 in

Section 4.2

Reachability Answering in Transmission Graph Testing

This section shows the performance testing for evaluating reachability

queries on both Single-Path Transmission Graphs and Multi-Path Trans-

mission Graphs. Due to the time-consuming nature of performing all pos-

sible reachability queries on a Transmission Graph, this test is done only

on part of vertex pairs.

Table 9. Reachability answering time (in milliseconds) of different strat-
egies

Pair\Strategy Top-
Down

Bottom-
Up

Bottom-
Up-Path

String-
Buffer

Array-
Buffer

100000 512 514 591 605 522
200000 1026 1030 1698 1212 1640
300000 1540 1526 3306 1807 2739
400000 2118 2065 5382 2519 3846
500000 2582 2674 7984 3015 5096
600000 3079 3073 11125 3615 6081
700000 3619 3595 15411 4230 7190

In Table 9, we show the time for evaluating reachability of upper-layer-
vertex-pairs in a single-path transmission graph, the first column is the

number of pairs.

Table 9 presents the test results for reachability queries on Single-Path

Transmission Graphs. From this table, it can be seen that there is only a

little difference in execution time between the top-down and bottom-up

algorithms, with the bottom-up a little bit better. This is somewhat unex-

pected since the bottom-up is theoretically much better than its counter-

part.

 68

The "Bottom-Up-Path" column illustrates the additional time taken by the

bottom-up algorithm to display the transmission path. It shows that gen-

erating a path string consumes a significant amount of time. On the other

hand, the string-buffer algorithm, although slightly slower than the bot-

tom-up, is significantly faster than the bottom-up-path when it comes to

displaying transmission paths.

Unexpectedly, the "Array-Buffer" algorithm is slower than the other algo-

rithms, suggesting that this approach may not be as successful.

Table 10. Answering time (in milliseconds) of different strategies

Pair\Strategy Top-Down Indexing Index-Merging
100000 500 940 140
200000 1928 1971 292
300000 3244 2747 427
400000 4757 3815 606
500000 6016 4672 732
600000 7523 5838 824
700000 8784 6627 982

In Table 10, we show the time for evaluating reachability of upper-layer-
vertex-pairs in a multi-path transmission graph by using indexes, in

which the first column is the number of tested pairs.

From this, it can be seen that the indexing algorithm is generally faster

than the top-down algorithm and the index-merging method is over-

whelmingly faster than the other 2 algorithms.

However, when examining a bunch of 100,000 pairs of vertices with few-

er reachable pairs, the top-down algorithm works better. One possible

reason for this could be that there are fewer edges, but more pairs of ver-

tices with smaller depth differences are selected. In this case, the execu-

tion time of the top-down algorithm is expected to be positively correlat-

ed with the depth difference between two vertices. In general, the index-

 69

ing algorithm's execution time tends to be more consistent across differ-

ent pairs of vertices.

Table 11. Comparison numbers of 2 strategies
Pair\Strategy Indexing Index-Merging
100000 5886672 907241
200000 11772811 1808868
300000 17659800 2712877
400000 24600881 3652890
500000 30233151 4547949
600000 36277074 5456668
700000 42324663 6360781

In Table 11, we show the comparison numbers of indexing and index-
merging algorithms. Comparing with Table 10, we can see that both the

answering time and comparison numbers of indexing are around 6 - 7

times of their index-merging counterparts. In addition, the sizes of index-

es of indexing and index-merging are respectively 79.8MB and 72.2MB.

Index-merging can compress the size of indexes.

The index-merging method has obviously the best performance among

the 3 algorithms. A possible reason for this could be that multi-path

transmission graphs are relatively simple, and for most vertices the num-

ber of intervals in the corresponding sequences is much smaller than the

sequences for the indexing method.

 70

5 CONCLUSION

In this thesis, we have examined the structure of temporal bipartite

graphs, as well as transmission graphs, along with the associated reacha-

bility query problems. As an enhancement to the original temporal bipar-

tite graph [1], we introduced a new disease spreading model, by which

the incubation time and recovery time are considered to predict disease

spreading more accurately.

For disease spread prediction, which involves specialized reachability

queries across an entire temporal bipartite graph, we have designed sev-

eral algorithms. Especially, a label-based algorithm is developed, based

on a kind of time-labeling, by which high efficiency can be achieved.

In general, we distinguish between two kinds of transmission graphs: one

is single-path transmission graphs and the other is multi-path transmis-

sion graphs. The key difference between them is whether a vertex can be

infected by multiple predecessor vertices, leading to multiple infection

paths. Both single-path and multi-path transmission graphs are created

based on reachability query results. But the multi-path transmission

graphs are better suited for generation using Time-Labeling. Both types

of transmission graphs can be created efficiently.

We have also compared disease spread prediction results between the

methods based on the original temporal bipartite graph and those based

on the improved temporal bipartite graph. The test results on various sets

of random datasets indicate that the methods based on the original tem-

poral bipartite graph tend to label a large part of vertices or even all verti-

ces as infected, whereas the methods based on the improved temporal

bipartite graph label fewer vertices as infected. In this way, the accuracy

is improved.

 71

Finally, a new method to evaluate reachability queries on transmission

graphs is designed based on Index-Merging, which significantly improves

performance compared to the brute-force algorithms.

 72

6 FUTURE WORK

For future prospects, we believe that the time-labeling algorithm may be

suitable for GPU acceleration. As an example, see Figure 13. There are 5

upper-layer vertices in the graph. So, we can create 5 threads with each

scanning edges starting from corresponding upper-layer vertices so that

visiting records can be added to each corresponding end vertices simulta-

neously. Then, create another 4 threads for the 4 lower-layer vertices in

order to check if there is any negative upper-layer vertex access during

time spans of visiting records.

Additionally, the proposed dynamic adjacency arrays and depth-first al-

gorithms can also be used to create single-path transmission graphs.

Furthermore, we can try to store transmission graphs into a file or a data-

base so that we do not need to regenerate transmission graphs each time.

To enhance flexibility, we are considering a new algorithm that would

enable the updating of the original transmission graph by reading in da-

tasets from another time periods. For example, if a transmission graph

based on data from January has been created, then reading in a dataset

from February would extend the original transmission graph.

In the future work, further improvements to the time-labeling algorithm

and extensions of dynamic adjacency arrays, as well as depth-first algo-

rithms will be further explored.

 73

REFERENCES

[1] Chen, Xiaoshuang, et al. "Efficiently answering reachability and path

queries on temporal bipartite graphs." Proceedings of the VLDB Endow-

ment (2021).

[2] Eubank, Stephen, et al. "Modelling disease outbreaks in realistic ur-

ban social networks." Nature 429.6988 (2004): 180-184.

[3] Goldstein, Michel L., Steven A. Morris, and Gary G. Yen. "Group-
based Yule model for bipartite author-paper networks." Physical Review

E 71.2 (2005): 026108.

[4] Xu, Jinliang, et al. "Latent interest and topic mining on user-item bi-

partite networks." 2016 IEEE international conference on services com-

puting (SCC). IEEE, 2016.

[5] Tong, Hanghang, et al. "Proximity tracking on time-evolving bipartite

graphs." Proceedings of the 2008 SIAM International Conference on Data

Mining. Society for Industrial and Applied Mathematics, 2008.

[6] Zeng, An, et al. "Trend prediction in temporal bipartite networks: the

case of Movielens, Netflix, and Digg." Advances in Complex Sys-

tems 16.04n05 (2013): 1350024.

[7] Kasukawa, Takeya, et al. "Human blood metabolite timetable indi-

cates internal body time." Proceedings of the National Academy of Sci-

ences 109.37 (2012): 15036-15041.

[8] O’Connor, Clare M., Jill U. Adams, and Jennifer Fairman. "Essentials

of cell biology." Cambridge, MA: NPG Education 1 (2010): 54.

[9] Smart, Ashley G., Luis AN Amaral, and Julio M. Ottino. "Cascading

failure and robustness in metabolic networks." Proceedings of the Na-

tional Academy of Sciences 105.36 (2008): 13223-13228.

 74

[9] Wei, Yongyue, et al. "Comprehensive estimation for the length and

dispersion of COVID-19 incubation period: a systematic review and me-

ta-analysis." Infection 50.4 (2022): 803-813.

[11] Tyson, Ann Scott. "Why China’s COVID-tracking QR codes raise

surveillance concerns." The Christian Science Monitor, December 6,

2022. https://www.csmonitor.com/World/Asia-Pacific/2022/1206/Why-
China-s-COVID-tracking-QR-codes-raise-surveillance-concerns.

[12] Wang, Haixun, et al. "Dual labeling: Answering graph reachability

queries in constant time." 22nd International Conference on Data Engi-

neering (ICDE'06). IEEE, 2006.

[13] Y. Chen, and Y.B. Chen. and Y. Zhang, Evaluation of Reachability
Queries Based on Recursive DAG Decomposition, IEEE Transactions on
Knowledge and Data Engineering (TKDE), Vol. 35, No. 8, Aug. 2023,
pp. 7935 - 7952.

https://www.csmonitor.com/World/Asia-Pacific/2022/1206/Why-China-s-COVID-tracking-QR-codes-raise-surveillance-concerns
https://www.csmonitor.com/World/Asia-Pacific/2022/1206/Why-China-s-COVID-tracking-QR-codes-raise-surveillance-concerns
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf

 75

APPENDIX

SOURCE CODES

Appendix A provides source codes of generating single-path transmission

graph (Algorithm 1.1) and codes of generating multi-path transmission

graph (Algorithm 2.1) and codes of Algorithm 3. Refer to Snippet 1, 2, 3.

Snippet 1 C++ implementation of Algorithm 1.1
1. SinglePathGraph* Graph::Naive()
2. {
3. bool flag = false;
4. SinglePathGraph* spg = new SinglePathGraph();
5. for (int i = 0; i < upperSize; i++)
6. {
7. UpperVertex* v = (UpperVertex*)vertices[i];
8. if (v->isPositive == 1)
9. {
10. int t = getEarliestPositiveTime(v);
11. //Get earliest Ts of initially

positive V

12. if (t != -1)//initialize vertex of SPTG
13. {
14. v->positiveStartTime = t;
15. v->positiveEndTime = t + recoveryTime;
16. SPGVertex* spgv = new SPGVertex();
17.
18. spgv->idx = v->number;
19. spgv->next = NULL;
20. spgv->path = "->";
21. spgv->path.append(to_string(spgv->idx));
22. spgv->path.append("->");
23. spgv->path1.push_back(spgv->idx);
24. spgv->father = NULL;
25. spgv->positiveStartTime = t;
26. spgv->positiveEndTime = t + recoveryTime;
27. spg->heads.push_back(spgv);
28. }
29. }
30. }
31. do

 76

32. {
33. flag = false;
34. int currentTime = -1;
35. for (int i = 0; i < upperSize; i++)
36. {
37. UpperVertex* v = (UpperVertex*)vertices[i];
38. if (v->isPositive == 1 || v->isPositive == 3)
39. {//Find positive and incubating
40. EdgeNode* e = v->firstEdge;
41. while (e != NULL)
42. {
43. if (isTimeOverlapping(v-

>positiveStartTime, v->positiveEndTime, e->startTime, e-
>endTime))

44. {//Find associating L
45. LowerVertex* lv = (LowerVer-

tex*)vertices[e->vertexIdx];
46. EdgeNode* le = lv->firstEdge;
47. while (le != NULL)
48. {//Find associating U
49. UpperVertex* uv = (UpperVer-

tex*)vertices[le->vertexIdx];
50. if (isTimeOverlapping(e-

>startTime, e->endTime, le->startTime, le->endTime) &&
uv->isPositive == 0)

51. {//If overlapping, calculate
carrying time span

52. int positiveStartTime =
(le->startTime > e->startTime ? le->startTime : e-
>startTime) + incubationTime;

53. int positiveEndTime =
positiveStartTime + recoveryTime;

54. if (positiveStartTime <
uv->positiveStartTime || uv->positiveStartTime == -1)
{//If there is an earlier carrying time span, update it

55. currentTime = e-
>endTime > currentTime ? e->endTime : currentTime;

56. uv->isPositive = 3;
57. uv->positiveStartTime

= positiveStartTime;
58. uv->positiveEndTime =

positiveEndTime;
59. flag = true;
60. if (spg-

 77

>findVertexById(uv->number) == NULL)
61. {//If vertex of SPTG

does not exist, initialize it with carrying time span and
location.

62. SPGVertex*
spgvpre = spg->findVertexById(v->number);

63. SPGVertex*
spgvnew = new SPGVertex();

64. SPGNode* spgn =
new SPGNode();

65. int id = uv-
>number;

66. spgvnew->idx =
id;

67. spgvnew->next =
NULL;

68. spgvnew->path =
spgvpre->path;

69. spgvnew-
>path.append(to_string(id));

70. spgvnew-
>path.append("->");

71. spgvnew->path1 =
spgvpre->path1;

72. spgvnew-
>path1.push_back(id);

73. spgvnew->father =
spgvpre;

74. spgn-
>transmissionTime = positiveStartTime - incubationTime;

75. spgn->spgv =
spgvnew;

76. spgn->next =
spgvpre->next;

77.
78. spgvpre->next =

spgn;
79.
80. spg-

>vertices.push_back(spgvnew);
81. }
82. else {//If exists,

find it and update it
83. int id = uv-

>number;

 78

84. SPGVertex*
spgvpre = spg->findVertexById(id);

85. SPGVertex*
spgvnew = spg->findVertexById(v->number);

86. SPGNode* spgn =
new SPGNode();

87. spgvnew->idx =
id;

88. spgvnew->next =
NULL;

89. spgvnew->path =
spgvpre->path;

90. spgvnew-
>path.append(to_string(id));

91. spgvnew-
>path.append("->");

92. spgvnew->path1 =
spgvpre->path1;

93. spgvnew-
>path1.push_back(id);

94. spgvnew->father =
spgvpre;

95. spgn-
>transmissionTime = positiveStartTime - incubationTime;

96. spgn->spgv =
spgvnew;

97. spgn->next =
spgvpre->next;

98. spgvpre->next =
spgn;

99. }
100. }
101. }
102. le = le->next;
103. }
104. }
105. e = e->next;
106. }
107. }
108. }
109. if (currentTime == -1)
110. {//Update isPositive based on CurrentTime
111. currentTime = latestEndTime;
112. }

 79

113. cout << "By the time " << currentTime << ", the
situation is:" << endl;

114. for (int i = 0; i < upperSize; i++)
115. {
116. UpperVertex* v = (UpperVertex*)vertices[i];
117. if (v->positiveEndTime > currentTime && v-

>positiveStartTime > currentTime - incubationTime && v-
>isPositive != 1)

118. {
119. v->isPositive = 3;
120. }
121. else if (v->positiveEndTime <= currentTime

&& v->isPositive != 0)
122. {
123. v->isPositive = 2;
124. }
125. else if (v->positiveEndTime > currentTime)
126. {
127. v->isPositive = 1;
128. }
129. switch (v->isPositive)
130. {
131. case 0:
132. cout << "Individual " << v-

>getNumber() << ": is negative" << endl;
133. break;
134. case 1:
135. cout << "Individual " << v-

>getNumber() << ": is positive" << ", will recover from "
<< v->positiveEndTime << endl;

136. break;
137. case 2:
138. cout << "Individual " << v-

>getNumber() << ": has been immune, recovered from " <<
v->positiveEndTime << endl;

139. break;
140. case 3:
141. cout << "Individual " << v-

>getNumber() << ": is in incubation period, will be posi-
tive at " << v->positiveStartTime << " and recover at "
<< v->positiveEndTime << endl;

142. break;
143. }
144. }

 80

145. } while (flag);
146. int num1 = 0, num2 = 0, num3 = 0, num4 = 0;
147. for (int i = 0; i < upperSize; i++)
148. {//Calculate numbers of U with different status
149. UpperVertex* v = (UpperVertex*)vertices[i];
150. switch (v->isPositive)
151. {
152. case 0:
153. num1++;
154. break;
155. case 1:
156. num2++;
157. break;
158. case 2:
159. num3++;
160. break;
161. case 3:
162. num4++;
163. break;
164. }
165. }
166. cout << "Number of negative:" << num1 << endl;
167. cout << "Number of positive:" << num2 << endl;
168. cout << "Number of immune:" << num3 << endl;
169. cout << "Number of incubating:" << num4 << endl;
170. return spg;
171. }

Snippet 2: C++ implementation of Algorithm 2.1

1. MultiPathGraph* Graph::algorithm2_1(int upperSize)
2. {
3. bool flag = false;
4. MultiPathGraph* mpg = new MultiPathGraph();
5. mpg->upperSize = upperSize;
6. do
7. {
8. clearRiskyTimespan();
9. for (int i = 0; i < upperSize; i++)
10. {//Find initially positive U
11. UpperVertex* v = (UpperVertex*)vertices[i];
12. if (v->isDisabled == false && (v->isPositive ==

1 || v->isPositive == 3))
13. {

 81

14. if (!flag)
15. {
16. int t = getEarliestPositiveTime(v);
17. if (t != -1)
18. {
19.
20. v->positiveStartTime = t;
21. v->positiveEndTime = t + recovery-

Time;
22. //Add visit record and initialize

vertex of MPTG
23. setRiskyTimespan_1(v);
24. MPGVertex* mpgv = new MPGVertex();
25. mpgv->idx = v->number;
26. mpgv->positiveStartTime = t;
27. mpgv->positiveEndTime = t + re-

coveryTime;
28. mpgv->next = NULL;
29. mpg->vertices.push_back(mpgv);
30. cout << "Carrier" << v->number << ":

positiveStart:" << v->positiveStartTime << "positiveEnd: "
<< v->positiveEndTime << endl;

31.
32. }
33. }
34. else
35. {
36. setRiskyTimespan_1(v);
37. cout << "Carrier" << v->number << ":

positiveStart:" << v->positiveStartTime << "positiveEnd: "
<< v->positiveEndTime << endl;

38. }
39. v->isDisabled = true;
40. }
41. }
42. flag = false;
43. int currentTime = -1;
44. for (int i = 0; i < upperSize; i++)
45. {
46. UpperVertex* v = (UpperVertex*)vertices[i];
47. if (v->isPositive == 0 || v->isPositive == 3)
48. {//Find negative and incubating U
49. EdgeNode* e = v->firstEdge;
50. while (e != NULL)

 82

51. {//Find associating L
52. LowerVertex* lv = (LowerVer-

tex*)vertices[e->vertexIdx];
53. for (int j = 0; j < lv-

>riskyTime.size(); j++)
54. {
55. if (isTimeOverlapping(lv-

>riskyTime[j][1], lv->riskyTime[j][2], e->startTime, e-
>endTime))

56. {//If overlapped with visit record
57. currentTime = e->endTime > cur-

rentTime ? e->endTime : currentTime;
58. int positiveStartTime = (lv-

>riskyTime[j][1] > e->startTime ? lv->riskyTime[j][2] : e-
>startTime) + incubationTime;

59. if (v->positiveStartTime == -1)
60. {//Calculate carrying time span

and if MPTG vertex does not exists, initialize it.
61. v->positiveStartTime = posi-

tiveStartTime;
62. v->positiveEndTime = posi-

tiveStartTime + recoveryTime;
63. v->isPositive = 3;
64. flag = true;
65. MPGVertex* mpgv = new

MPGVertex();
66. mpgv->father.insert(lv-

>riskyTime[j][0]);
67. mpgv->idx = v->number;
68. mpgv->positiveStartTime =

positiveStartTime;
69. mpgv->positiveEndTime = v-

>positiveEndTime;
70. mpg-

>insertReachableIntoFathers(mpgv, v->number);
71.
72. for (auto father : mpgv-

>father)
73. {//Update indexing
74. auto fatherN = mpg-

>findVertexById(father);
75. if (checkSingle(fatherN,

mpgv->idx)) {
76. MPGNode* mpgn = new

MPGNode();

 83

77. mpgn->next = fa-
therN->next;

78. mpgn->vertex = mpgv;
79. fatherN->next =

mpgn;
80. }
81. }
82. mpg-

>vertices.push_back(mpgv);
83. }
84. else if(v->positiveStartTime >

positiveStartTime && v->number != lv->riskyTime[j][0])
85. {//If exists, update it
86. v->positiveStartTime = posi-

tiveStartTime;
87. v->positiveEndTime = posi-

tiveStartTime + recoveryTime;
88. v->isPositive = 3;
89. MPGVertex* mpgv = mpg-

>findVertexById(v->number);
90. if (mpgv != NULL)
91. {
92. mpgv->father.insert(lv-

>riskyTime[j][0]);
93. mpgv->positiveStartTime

= positiveStartTime;
94. mpgv->positiveEndTime =

v->positiveEndTime;
95. mpg-

>insertReachableIntoFathers(mpgv, v->number);
96. for (auto father :

mpgv->father)
97. {
98. auto fatherN = mpg-

>findVertexById(father);
99. if (checkSin-

gle(fatherN, mpgv->idx)) {
100. MPGNode* mpgn

= new MPGNode();
101. mpgn->next =

fatherN->next;
102. mpgn->vertex =

mpgv;
103. fatherN->next

= mpgn;

 84

104. }
105. }
106. flag = true;
107. }
108. }
109. }
110. }
111. e = e->next;
112. }
113. }
114. }
115. if (currentTime == -1)
116. {
117. currentTime = latestEndTime;
118. }
119. cout << "By the time " << currentTime << ", the

situation is:" << endl;
120. for (int i = 0; i < upperSize; i++)
121. {
122. UpperVertex* v = (UpperVertex*)vertices[i];
123. if (v->positiveEndTime > currentTime && v-

>positiveStartTime > currentTime - incubationTime && v-
>isPositive != 1)

124. {
125. v->isPositive = 3;
126. }
127. else if (v->positiveEndTime <= currentTime &&

v->isPositive != 0)
128. {
129. v->isPositive = 2;
130. }
131. else if (v->positiveEndTime > currentTime)
132. {
133. v->isPositive = 1;
134. }
135. switch (v->isPositive)
136. {
137. case 0:
138. cout << "Individual " << v-

>getNumber() << ": is negative" << endl;
139. break;
140. case 1:
141. cout << "Individual " << v-

>getNumber() << ": is positive" << ", will recover from "

 85

<< v->positiveEndTime << endl;
142. break;
143. case 2:
144. cout << "Individual " << v-

>getNumber() << ": has been immune, recovered from " << v-
>positiveEndTime << endl;

145. break;
146. case 3:
147. cout << "Individual " << v-

>getNumber() << ": is in incubation period, will be positive
at " << v->positiveStartTime << " and recover at " << v-
>positiveEndTime << endl;

148. break;
149. }
150. }
151. } while (flag);
152. int num1 = 0, num2 = 0, num3 = 0, num4 = 0;
153. for (int i = 0; i < upperSize; i++)
154. {
155. UpperVertex* v = (UpperVertex*)vertices[i];
156. switch (v->isPositive)
157. {
158. case 0:
159. num1++;
160. break;
161. case 1:
162. num2++;
163. break;
164. case 2:
165. num3++;
166. break;
167. case 3:
168. num4++;
169. break;
170. }
171. }
172. cout << "Number of negative:" << num1 << endl;
173. cout << "Number of positive:" << num2 << endl;
174. cout << "Number of immune:" << num3 << endl;
175. cout << "Number of incubating:" << num4 << endl;
176. mpg->initReachableVertex();//Initialize index-merging
177. return mpg;
178. }

 86

Snippet 3 C++ implementation of Algorithm 3
1. void Graph::Algo3()
2. {
3. bool flag = false;
4. for (int i = 0; i < upperSize; i++)
5. {
6. UpperVertex* v = (UpperVertex*)vertices[i];
7. if (v->isPositive == 1)
8. {
9. int t = getEarliestPositiveTime(v);
10. if (t != -1)
11. {//Find initially positive U to update recovery

time
12. v->positiveStartTime = t;
13. v->positiveEndTime = t + recoveryTime;
14. }
15. }
16. }
17. //STEP1
18. do
19. {
20. flag = false;
21. int currentTime = -1;
22. for (int i = 0; i < upperSize; i++)
23. {
24. UpperVertex* vi = (UpperVertex*)vertices[i];
25. if (vi->isPositive == 1 || vi -> isPositive ==

3)
26. {//Find positive and incubating U
27. for (int j = 0; j < upperSize; j++)
28. {
29. UpperVertex* vj = (UpperVer-

tex*)vertices[j];
30. if (j != i && vj->isPositive == 0)
31. {//Compare DAA of two vertices
32. int k1 = 0, k2 = 0;
33. auto arrI = vi->arr;
34. auto arrJ = vj->arr;
35. while (k1 < TwoHopI.size() && k2 <

TwoHopJ.size())
36. {
37. if (!isTimeOverlapping(arrI[k1]-

>startTime, arrI[k1]->endTime, vi->positiveStartTime, vi-
>positiveEndTime) || arrI[k1]->idx < arrJ[k2]->idx)

 87

38. {//If not overlapping, move
pointer

39. k1++;
40. }
41. else if (arrI[k1]->idx >

arrJ[k2]->idx)
42. {
43. k2++;
44. }
45. else
46. {
47. if (isTimeOverlap-

ping(arrI[k1]->startTime, arrI[k1]->endTime, arrJ[k2]-
>startTime, arrJ[k2]->endTime))

48. {//If overlapping, update
carrying time span

49. currentTime = arrI[k1]-
>endTime > currentTime ? arrI[k1]->endTime : currentTime;

50. vj->isPositive = 3;
51. vj->positiveStartTime =

(arrI[k1]->startTime < arrJ[k2]->startTime) ? TwoHopI[k1]-
>startTime : TwoHopJ[k2]->startTime;

52. vj->positiveStartTime =
vj->positiveStartTime + incubationTime;

53. vj->positiveEndTime =
vj->positiveStartTime + recoveryTime;

54. flag = true;
55. }
56. k1++;
57. k2++;
58. }
59. }
60. }
61. }
62. }
63. }
64. if (currentTime == -1)
65. {
66. currentTime = latestEndTime;
67. }
68. cout << "By the time " << currentTime << ", the sit-

uation is:" << endl;
69. for (int i = 0; i < upperSize; i++)
70. {
71. UpperVertex* v = (UpperVertex*)vertices[i];

 88

72. if (v->positiveEndTime > currentTime && v-
>positiveStartTime > currentTime - incubationTime && v-
>isPositive != 1)

73. {
74. v->isPositive = 3;
75. }
76. else if (v->positiveEndTime <= currentTime && v-

>isPositive != 0)
77. {
78. v->isPositive = 2;
79. }
80. else if (v->positiveEndTime > currentTime)
81. {
82. v->isPositive = 1;
83. }
84. switch (v->isPositive)
85. {
86. case 0:
87. cout << "Individual " << v->getNumber()

<< ": is negative" << endl;
88. break;
89. case 1:
90. cout << "Individual " << v->getNumber()

<< ": is positive" << ", will recover from " << v-
>positiveEndTime << endl;

91. break;
92. case 2:
93. cout << "Individual " << v->getNumber()

<< ": has been immune, recovered from " << v-
>positiveEndTime << endl;

94. break;
95. case 3:
96. cout << "Individual " << v->getNumber()

<< ": is in incubation period, will be positive at " << v-
>positiveStartTime << " and recover at " << v-
>positiveEndTime << endl;

97. break;
98. }
99. }
100. } while (flag);
101. int num1 = 0, num2 = 0, num3 = 0, num4 = 0;
102. for (int i = 0; i < upperSize; i++)
103. {
104. UpperVertex* v = (UpperVertex*)vertices[i];
105. switch (v->isPositive)

 89

106. {
107. case 0:
108. num1++;
109. break;
110. case 1:
111. num2++;
112. break;
113. case 2:
114. num3++;
115. break;
116. case 3:
117. num4++;
118. break;
119. }
120. }
121. cout << "Number of negative:" << num1 << endl;
122. cout << "Number of positive:" << num2 << endl;
123. cout << "Number of immune:" << num3 << endl;
124. cout << "Number of incubating:" << num4 << endl;
125. }

Snippet 3 C++ implementation of Algorithm 4
1. void Graph::depth_recursion(UpperVertex* v)
2. {
3. auto e = v->firstEdge;
4. while (e != NULL)
5. {//Find associating L
6. int st = e->startTime;
7. int et = e->endTime;
8. if (isTimeOverlapping(v->positiveStartTime, v-

>positiveEndTime, st, et))
9. {//If overlapped, find associating U
10. LowerVertex* lv = (LowerVertex*)vertices[e-

>vertexIdx];
11. auto le = lv->firstEdge;
12. while (le != NULL)
13. {
14. UpperVertex* uv = (UpperVertex*)vertices[le-

>vertexIdx];
15. if (isTimeOverlapping(st, et, le->startTime,

le->endTime))
16. {//If overlapped, update carrying time span
17. int positiveStartTime = (st < le-

>startTime ? le->startTime : st) + incubationTime;

 90

18. if (uv->positiveStartTime == -1 || uv-
>positiveStartTime > positiveStartTime)

19. {
20. uv->positiveStartTime = posi-

tiveStartTime;
21. uv->positiveEndTime = positiveStart-

Time + 168;
22. if (latestEndTime < uv-

>positiveEndTime)
23. {
24. latestEndTime = uv-

>positiveEndTime;
25. }
26. depth_recursion(uv);
27. }
28. }
29. le = le->next;
30. }
31. }
32. e = e->next;
33. }
34. }
35. void Graph::depth()
36. {
37. for (int i = 0; i < upperSize; i++)
38. {
39. UpperVertex* v = (UpperVertex*)vertices[i];
40. if (v->isPositive == 1)
41. {//Find initially positive U to update recovery time
42. int t = getEarliestPositiveTime(v);
43. if (t != -1)
44. {
45. v->positiveStartTime = t;
46. v->positiveEndTime = t + recoveryTime;
47. v->isInit = true;
48. }
49. }
50. }
51. for (int i = 0; i < upperSize; i++)
52. {//Find initially positive U to call recursion function
53. UpperVertex* v = (UpperVertex*)vertices[i];
54. if (v->isInit == true)
55. {
56. depth_recursion(v);

 91

57. }
58. }
59. for (int i = 0; i < upperSize; i++)
60. {
61. UpperVertex* v = (UpperVertex*)vertices[i];
62. if (v->positiveEndTime > latestEndTime && v-

>positiveStartTime > latestEndTime - incubationTime)
63. {
64. v->isPositive = 3;
65. }
66. else if (v->positiveEndTime <= latestEndTime && v-

>positiveEndTime != -1)
67. {
68. v->isPositive = 2;
69. }
70. else if (v->positiveEndTime > latestEndTime)
71. {
72. v->isPositive = 1;
73. }
74. }
75. int num1 = 0, num2 = 0, num3 = 0, num4 = 0;
76. for (int i = 0; i < upperSize; i++)
77. {
78. UpperVertex* v = (UpperVertex*)vertices[i];
79. switch (v->isPositive)
80. {
81. case 0:
82. num1++;
83. break;
84. case 1:
85. num2++;
86. break;
87. case 2:
88. num3++;
89. break;
90. case 3:
91. num4++;
92. break;
93. }
94. }
95. cout << "Number of negative:" << num1 << endl;
96. cout << "Number of positive:" << num2 << endl;
97. cout << "Number of immune:" << num3 << endl;
98. cout << "Number of incubating:" << num4 << endl;

 92

99. }

 93

REFERENCES

[10] Chen, Xiaoshuang, et al. "Efficiently answering reachability and

path queries on temporal bipartite graphs." Proceedings of the VLDB En-

dowment (2021).

[11] Eubank, Stephen, et al. "Modelling disease outbreaks in realistic

urban social networks." Nature 429.6988 (2004): 180-184.

[12] Goldstein, Michel L., Steven A. Morris, and Gary G. Yen.

"Group-based Yule model for bipartite author-paper networks." Physical

Review E 71.2 (2005): 026108.

[13] Xu, Jinliang, et al. "Latent interest and topic mining on user-
item bipartite networks." 2016 IEEE international conference on services

computing (SCC). IEEE, 2016.

[14] Tong, Hanghang, et al. "Proximity tracking on time-evolving

bipartite graphs." Proceedings of the 2008 SIAM International Confer-

ence on Data Mining. Society for Industrial and Applied Mathematics,

2008.

[15] Zeng, An, et al. "Trend prediction in temporal bipartite net-

works: the case of Movielens, Netflix, and Digg." Advances in Complex

Systems 16.04n05 (2013): 1350024.

[16] Kasukawa, Takeya, et al. "Human blood metabolite timetable

indicates internal body time." Proceedings of the National Academy of

Sciences 109.37 (2012): 15036-15041.

[17] O’Connor, Clare M., Jill U. Adams, and Jennifer Fairman. "Es-

sentials of cell biology." Cambridge, MA: NPG Education 1 (2010): 54.

[18] Smart, Ashley G., Luis AN Amaral, and Julio M. Ottino. "Cas-

cading failure and robustness in metabolic networks." Proceedings of the

National Academy of Sciences 105.36 (2008): 13223-13228.

 94

[9] Wei, Yongyue, et al. "Comprehensive estimation for the length and

dispersion of COVID-19 incubation period: a systematic review and me-

ta-analysis." Infection 50.4 (2022): 803-813.

[11] Tyson, Ann Scott. "Why China’s COVID-tracking QR codes raise

surveillance concerns." The Christian Science Monitor, December 6,

2022. https://www.csmonitor.com/World/Asia-Pacific/2022/1206/Why-
China-s-COVID-tracking-QR-codes-raise-surveillance-concerns.

[12] Wang, Haixun, et al. "Dual labeling: Answering graph reachability

queries in constant time." 22nd International Conference on Data Engi-

neering (ICDE'06). IEEE, 2006.

[13] Y. Chen, and Y.B. Chen. and Y. Zhang, Evaluation of Reachability
Queries Based on Recursive DAG Decomposition, IEEE Transactions on
Knowledge and Data Engineering (TKDE), Vol. 35, No. 8, Aug. 2023,
pp. 7935 - 7952.

https://www.csmonitor.com/World/Asia-Pacific/2022/1206/Why-China-s-COVID-tracking-QR-codes-raise-surveillance-concerns
https://www.csmonitor.com/World/Asia-Pacific/2022/1206/Why-China-s-COVID-tracking-QR-codes-raise-surveillance-concerns
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/TKDE3220191.pdf

	Abstract
	Acknowledgement
	Contents
	List of Figures
	1 Introduction
	2 Preliminary
	Temporal Bipartite Graph
	Transmission Graph
	Problem Statement

	3 Solution Overview
	Breadth-First-Search-Based Algorithm (BF)
	Time-Labeling Method (TL)
	Dynamic Adjacency Arrays (DAA)
	Depth-First Strategy (DF)
	Single-Path Transmission Graph
	Multi-Path Transmission Graph
	3.8 Evaluation of Reachability Queries Based on Indexes

	4 Experimental Result
	Testing Datasets
	Transmission Prediction Efficiency (Algorithms 1-4)
	Transmission Prediction Comparison
	Transmission Graph Generation Testing (Algorithms 1.1 and 2.1)
	Reachability Answering in Transmission Graph Testing

	5 Conclusion
	6 Future Work
	References
	Appendix
	Source Codes
	References

