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Abstract — Passwords have been an integral part of our lives 

from the dawn of the internet and keeping them secure has been 

of paramount importance. Each attempt to secure our digital 

lives has been met with increased complexity and scope in 

attacks to compromise security measures. This paper explores a 

novel methodology to calculate password salts by using the 

password itself and multiple texts to generate lookup values into 

a text corpus that is then used to calculate salt values 

dynamically and on the fly. The proposed method allows an 

authentication system to use salts for password storage without 

storing the salts in a database where they might be 

compromised. 
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I. INTRODUCTION  

The word password has been made a part of our common 
parlance over the past 20 years due to the proliferation of the 
internet. The concept of a password is very simple at its core; 
a word or phrase that only an individual knows and which 
grants the individual access to an online resource. If used 
properly, passwords can be a very powerful tool for restricting 
access, making sure that only authorized people can access 
specific information. Passwords have been around for a very 
long time, millennia in fact. One of the first recorded uses of 
passwords or watchwords as they were referred to back in 
those periods was by the Roman military in 322 BC. Since 
then, they have been used throughout history from the 
prohibition era where people used passwords to get into 
speakeasys to World War II where information would be 
encrypted by a password to keep state and military secrets 
from falling into the wrong hands. It wasn’t until the 1960s 
that passwords were used in the way that we think of them 
today. That form of usage started in 1960 when passwords 
were used to provide access to a computer called the 
Compatible Time Sharing System (CTSS) [1]. 

By the 1970s, the method in which passwords were being 
stored was changing. In 1974, Robert Morris invented what is 
known as hashing [2] or the one-way conversion of a string 
into a unique string of fixed length. Hashing is unique in that; 
each string produces a unique hash for all practical intents and 
purposes. Thus, each password has one hash, and the 
password cannot be reverse-engineered from that hash. In 
primitive password authentication systems passwords were 
hashed and then stored in the database. When a password was 

entered the password was hashed and then compared with the 
stored value. If the two hashes matched it meant that the 
password that was provided was correct and the user was 
authenticated. This ensured that if the database was 
compromised only the hashes would be leaked. Since the 
hashes were one way an attacker would not be able to get the 
password from the hashes.   

Since the 1970s, the use of passwords and the way they are 
stored have changed to mitigate different types of password 
attacks. One such approach involves the use of password salts 
where both the passwords and the salt are stored separately 
from each other. This approach is susceptible to latency in 
password access and ensues latent security risk which may 
emerge from a breach of both the password database and the 
salt database. In this paper, we present an improved approach 
for maintaining passwords in authentication systems. Our 
approach embraces the benefits of using the salting method for 
password management but presents an alternative method of 
addressing these limitations. 

The paper is structured as follows. In section II, we discuss 
some of the related works and attack methods that are often 
used to expose passwords, highlighting how each of these 
approaches has led to the current state of password 
management methods. Section III discusses the main 
contribution of this paper – an alternative method for 
generating password salts. Section IV describes our 
experimentation and the results of the proposed approach. In 
section V, we give the conclusion and highlight some future 
related to this research. 

II. BACKGROUND AND RELATED WORKS 

This section provides an overview of the different methods 
that are often used in attempts to compromise a password. We 
discuss the impact of each of these methods based on the 
amount of time and computational resources it takes on 
average to break or compromise a password by using such a 
method and describe how password management techniques 
have improved to address these attack methods. 

A. Brute Force Attacks  

The brute force attack method is the simplest method of 
password cracking. In practice, it involves the specification of 
conditions that a password should satisfy and an automated 
generation of all possible passwords that satisfy the condition 
[3]. The brute force attack method is very time-consuming and 
resource-intensive due to the need to try all the possible sets 
of generated passwords. The method is often defeated by 
timeout counters built into most websites and authentication 
systems. Fig. 1 represents the limitation of the brute force 
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approach; as the character count of a password that needs to 
be cracked increases the time needed to break the password 
increases exponentially.  

 

B. Dictionary Attacks 

Dictionary attacks exploit the fact that humans are 
creatures of habit. Assuming every individual always chooses 
passwords that are randomized and long, then passwords 
would be impervious to brute-force attacks. Unfortunately, 
most individuals do not operate this way. People tend to 
choose words and phrases that are in our common parlance 
and vocabulary as their passwords [4]. This set of words can 
be considered as a dictionary. A malicious attacker can go 
through such a dictionary and try each password to see if it is 
a fit for each person. This attack vector is somewhat mitigated 
by the fact that most, if not all modern authentication systems 
have timeouts and lockouts built into them, which means that 
an attacker will be denied access to the account if they exceed 
a certain number of attempts. This is where an attacker can 
employ a variation of the dictionary attack. This method is 
called password spraying. Password spraying works by trying 
the same password on multiple different accounts [5] over a 
certain amount of time, thereby circumventing the restriction 
on the number of attempts that one individual can make for a 
given account. 

Another interesting approach to compromising passwords 
is to combine brute force attacks with dictionary attacks. It is 
not uncommon to see passwords such as ‘password1’ and 
‘qwerty123’, in practice. These patterns can be generated by 
the hybrid attack. This hybrid attack can be remarkably 
effective in coming up with variations of passwords that are 
typically hard to guess or too hard to generate using the brute 
force method. This method can be extended once more to 
generate rule-based attacks [6]. The rule-based attack is a 
heuristic password attack algorithm that generates a password 
by applying various transformation rules (e.g., insertion, 
deletion and reordering) to transform strings in a password 
dictionary. The main drawback of the rule-based attack is the 
fact that the substitution and transformations take up 
significant computational resources, and this slows down the 
process of cracking the password. This approach is also 
known as a mangled dictionary attack.  

As password selection rules became more complex and 
storing large words became easier, the phonetic dictionary 
attack has gained popularity. This involves words in the 
English language that sound similar to each other, for 
example, words such as ‘Night’ and ‘Knight’. Dictionaries can 

be built using these substitutions. Another dictionary-based 
attack that we consider and evaluate in our experiments is the 
Markov chain attack [7], which is based on some of the 

statistical intricacies of the English language.  For instance, 
one could say that the letter i often follows the letter e, and use 
this as a way to make it easier to guess passwords. These 
varying optimizations make dictionary-based attacks far more 
effective than brute-force attacks. Fig. 2 compares the time 
that it takes for each of the words that we tested to be cracked 
using the respective algorithms. We see that for short words 
the brute force algorithm is faster, as there are very few letter 
combinations but as shown in Fig. 1, the time taken grows 
exponentially, the five-letter word ‘pepsi’ took 8200 seconds 
to crack. Fig. 2 shows only up to 1000 seconds to preserve 
scale. 

C. Rainbow Table Attacks 

Rainbow table attacks involve the concept of a hash. A 
hash is a mathematical function that takes in a string or a 
message and converts it into a unique fixed-length string. No 
two strings have the same hash for all practical intents and 
purposes. Collisions are possible in certain instances, but these 
are very rare. This property of a hashing function is leveraged 
in password management systems. Most secure systems do 
not store end-user passwords on their databases to prevent the 
possibility of the databases getting compromised and 
revealing passwords to a potential attacker. Most 
authentication systems hash a password at the time of creation 
and then store the hash, thus the system does not have to store 
the password itself, thereby increasing its security since 
hashes cannot be reverse-engineered even in the event of a 
compromised database access. This opens up the attack vector 

 
 

Fig. 1:  Time taken by brute force method  

 
 

        Fig. 2:  Time taken by brute force compared to dictionary attacks 

 
Fig. 3: Time taken for brute force attacks compared to dictionary attacks 

and Rainbow table attack 



for the rainbow table attack. Due to the declining price of 
computation power, it is now financially viable to create 
hashes of multiple words, thus the process of finding the 
password from a leaked hash has been reduced to performing 
a join and then checking the results [8]. Multiple rainbow 
tables are available on the internet that are gigabytes in size 
which can be used for this purpose. For instance, the 
loweralpha#1-10 is 179 GB [9]. If the hash of a password that 
is a common word is leaked then it would be relatively simple 
to find the password with that information. 

To thwart such an attack, the concept of salt was 
introduced. The salt is a string that is appended to a password 
before it is hashed so that the hash is not found in a rainbow 
table. The salt is a random string that is pre-computed and 
stored in a database along with the password hash.  

III. MAIN CONTRIBUTIONS 

In most authentication systems, we have a situation where 
the passwords and the salts are stored separately from each 
other. However, given multiple password leaks that have 
occurred in the past, we know that databases can be breached. 
Thus, it is not out of the realm of possibility to surmise that a 
breach could affect both the password database and the salt 
database. This represents, in our opinion, a latent security risk 
that has so far gone unnoticed. A determined attacker could 
put together the password and the hash and gain access to a 
system. In addition to this, since the hashes are stored in 
databases, they are susceptible to latency. In industries such as 
e-commerce or online shopping, a delay may cause a buyer to 
abandon the transaction. The database access delays for most 
cloud providers are in hundreds of milliseconds. For instance, 
Snap Inc. uses Google Cloud Platform to process its databases 
and their instance of KeyDB had an access time of  49-133ms 
[10]. The same trend holds for Amazon and its customer 
elasticache. In the case of Amazon’s AWS, their access times 
were in the range of 100ms. These time frames were 
significantly shortened by implementing the databases in 
special servers built by the cloud provider. Thus a solution that 
removes the need for cloud databases would need to employ 
resources that are cost-competitive with cloud storage 
solutions. 

Our proposed approach for handling salts relies on the use 
of computations rather than database accesses. Computation 
in the cloud is roughly as cheap as storage for small 
workloads, such as single-row retrieval. Small computations 
can be even more cheaply executed by using spare elastic 
capacity, such as the service offered by Amazon called EC2. 
Thus, a computational way to calculate salts in a fast manner 
would be more secure and not a burden financially. To 
accomplish this, the proposed algorithm needs to accomplish 
two main objectives: 1) the algorithm must be fast and 2) it 
must be dependable for the salt to work. An algorithm that 
produces different salts each time the algorithm is run won’t 
be useful in personal or enterprise scenarios. 

One way that this can be achieved is by utilizing the power 
of randomness. Most random number generators are in fact 
pseudorandom generators, meaning that the numbers aren’t 
truly random but just seem so. Thus, any algorithm that 
requires randomness must find a source of truly random 
numbers. In the history of computing, this has led to some very 
creative solutions. For example, Cloudflare [11], the company 
that provides DNS and DDoS protection, uses lava lamps and 
harnesses the random motion of the lava particles to generate 

truly random numbers. To accomplish this without using lava 
lamps or any other hardware, one can turn to precomputed 
random number tables. For our experiments in this paper, the 
tables from random.org were used but for an enterprise 
implementation, random numbers collected or generated by 
the developers themselves would be a more secure option. 

Another method of achieving randomness is to use a text 
block or file from which one can pull strings and numbers to 
generate the salt. These three items, i) the hash ii) the random 
number file, and iii) the text file, provide us with a secure way 
to generate salt phrases. The security comes from the fact that 
three separate items need to be compromised for the salts to 
be calculated. This is not considering the algorithms that are 
required to calculate the salt. In section IV we show that the 
salt that is derived depends on the specific algorithm and 
mappings that are used. Thus, if the hashing algorithm is kept 
secret, as most companies and entities do, then this can be 
considered as an additional level of security.  This multilevel 
approach to security allows for greater overall security. Since 
the files involved are all relatively small in size, they can be 
held in memory and thus be accessed by a parallelized 
program providing password-salting services to a large 
number of people with very low latencies that are theoretically 
orders of magnitude faster than finding values from database 
accesses. The experiments in this paper were conducted in 
Python and we expect that the results would be even better if 
the experiment were done in a statically typed language such 
as C++. 

An improvement that could be done to speed up the 
processing time for salts is to employ vectorization. Due to the 
emergence of artificial intelligence (AI), consumer hardware 
such as GPUs have been optimized for AI calculations and 
these calculations often take the form of matrixes. A 
conversion of the input documents into matrixes or tokenizing 
them and then running the algorithm on a suitable GPU or AI 
accelerator would yield significant speed increases [12]. But 
with the high demand for GPUs and AI accelerators, running 
this algorithm on an AI-focused card could result in expenses 
that are not required and may negate the cost advantage that 
our dynamic calculation of password salts has over the 
traditional method. 

Fig. 4 provides an overview of our proposed algorithm. 
The algorithm uses a random.txt file and a corpus of text as 
sources of randomness. The text file filled with random 
numbers was obtained from random.org, a website that 
publishes random numbers to be used in services like 
cryptography. Hypothetically, if one was unconvinced of the 
randomness of the information provided by a random number 
provider, it would be relatively easy to use random 
atmospheric noise [13] to generate create random number as 
does Random.org. The same goes for the corpus of random 
text that the block diagram refers to. For our experiments, we 
used the full works of Shakespeare in text form as our corpus 
of text. While not truly random, as the letters are in semi-
predictable phrases due to word structure, this concern is 
obviated by the large size of the text used, as the probability 
of the random subset of the text that is selected being 
accurately guessed is close to zero. 

At the start of the Algorithm 1, we hash the password using 
the CRC64 algorithm. The CRC64 algorithm is chosen 
because the hash produced is completely numeric. 
Alternatively, we could use other hashing algorithms and then 
convert the resulting alphanumeric hash into a number, but 



this conversion process would add an overhead to the process. 
Once the hash is calculated we designate the first and second 
digits as start and end values the third digit is used as the 
multiplier which will be used later in the algorithm.  

Using the start and end values, we splice the hash value; 
we refer to this as the kernel.  The kernel is now multiplied by 
the multiplier that we previously obtained. Using the original 
hash value, we calculate a stopping value. The kernel and 
stopping values are then used as splicing values to extract 
some text from the text corpus. The selected text is then 
hashed to get a value that can be used as a salt.  

Multiple aspects of the above algorithm fall within the 
control of the password management system owner or 
designer. This includes the random numbers used, the text 
corpus used, and the order and manner in which the 
calculations are done. The calculations used in Algorithm 1 
are arbitrary and used to illustrate the feasibility of the method. 
Modifying the bits that are used to calculate the starting and 
stopping values or using a range of numbers to calculate these 
values would make the method more secure and point to a 
larger section of the text corpus for hashing. Also, using a 
wider range of values for start and end would make the 
algorithm more resilient as this would cover more of the text 
corpus, thus making the final selection of the hash even more 
randomized. The above algorithm explains the bare concepts 
of our method. 

IV. EXPERIMENTS & RESULTS 

Our experiments were conducted on a computer with 24 
Gigabytes of RAM, with an Intel i5-9300H running Windows 

19045.3693 and Python 3.9.14 in a stock Anaconda container.  
The experiments focus on examining how the proposed 
algorithm would work in the real world and evaluating its 
performance. We considered some of the known passwords 

that people were using to protect their information. 
Information security companies such as Nord publish 
passwords used by people each year for each region. Table 1 
shows the 10 most popular passwords. 

The experiments were conducted on a limited dictionary, 
obtained from the internet that measures about 14 gigabytes in 
size. While that may seem like a large dataset of passwords, 
truly comprehensive password datasets are usually in the 
hundreds of gigabytes. Despite this, the limited datasets had 

TABLE I.  POPULAR PASSWORDS 

S/No Password 

1 123456 

2 admin 

3 12345678 

4 123456789 

5 1234 

6 12345 

7 password 

8 123 

9 Aa123456 

10 1234567890 

 

 
 

   Fig. 4:  Block Diagram of the algorithm  

 



access to all the passwords in Table 1 and found them within 
a reasonable timeframe. Fig. 5 plots the password against the 
time that it took to crack them. This experiment illustrates the 
requirement of having strong passwords that are long and 
unpredictable. Malicious attackers have more complicated 
dictionaries and hardware that could crack said passwords 
even faster. 

Having established that cracking popular passwords is a 
trivial affair with a low barrier to entry we examined how fast 
our newly proposed new salting algorithm is in comparison to 
the traditional method of randomly generating a salt. 

Fig. 6 compares the time that it takes to calculate the salt 
in the traditional way which is when you randomly generate 
64 random characters. From Fig. 6 we can see that the 
traditional salt generation method comes in at 0.1 seconds 
while the new salt generation method is at 0.12 seconds. In 
other words, the old method is faster by a factor of 10. 
However, it is important to note that there is one operation in 
the traditional method creates a bottleneck that takes up a 
significant amount of time. In the traditional method, the salt 
is only calculated once and then stored in a database. Thus, the 
actual time consumption in this regard is in the database 
access time or the database latency, which our approach 
avoids.  

A challenge with database latency in online password 
authentication systems lies in the fact that many of the systems 
are hosted in one of the three major cloud providers – Amazon 
Web Services, Microsoft Azure, or Google Cloud Platform. 
The cloud providers and many of the companies that host their 
services in the cloud do not publish their statistics and there is 
very little research into database access times in the cloud. 
Even if this data was available, the different tiers of service 
often provided by cloud providers would have to be taken into 
consideration since higher tiers of hardware perform better 
and with lower latencies than other tiers. Database access 
times are also highly dependent on the hardware that is used 
in the data centers and how they are connected. 

We chose to gauge the performance of the cloud databases 
through an alternative approach. Cloud providers usually put 
out press releases when they acquire a major new partner to 
their platform. In many cases, they provide data on how well 
their client is performing in their new data center. Although 

these press releases are for new cutting-edge and expensive 
databases that may probably not be used for storing password 
salts, they do often provide performance numbers for how the 
same workload performs on older hardware that might be 
running databases that store password salts. The purpose of 
this is to gain a high-level ballpark figure for database access 
times so that we can contextualize the performance of the new 
salt algorithm.  A quote from Amazon Web Services’ press 
release advertising their client, Near, stated that “After 
migrating to ElastiCache, Near saw close to four times faster 
read and write performance on its user profile and ID 
management services – reducing latency from 15 milliseconds 
to 4 milliseconds post migration.” [14]. From this, we see that 
15 milliseconds is what the database was performing before 
and now on the new and more expensive system, that is 
elasticache, which is used for mission-critical applications, it 
is down to 4 ms. We see a similar trend for the Google Cloud 
Platform. When Google Cloud Platform moved their client 
Snap onto their KeyDB system, the press release showed the 
database latency between the Google Cloud US Central 
Region 1 and the AWS US Region East data centers. 
According to their press release, “KeyDB, hosted in Google 
Cloud, caches frequently requested data to avoid repetitive 
cross-cloud calls and minimize latency. Before implementing 
KeyDB, the average P99 latency between Google Cloud us-
central1 region and AWS us-east-1 region was between 49-
133ms.” [10]. 

This shows that there is a wide range between the access 
times of the databases and that it can fluctuate and vary a lot. 
If the variation in access times is significantly large, it can 
degrade the user experience to the point that the user might 
opt for a competing service. Our dynamic salt calculation 
method eliminates the need for database access. In addition, it 
is capable of using preexisting infrastructure to perform the 
calculations. 

In Fig. 7, we factor in the database latency to evaluate how 
our dynamic salt calculation approach performs relative to 
using the traditional method on a cloud database. 

V. CONCLUSION AND FUTURE WORK 

From Section IV and Fig. 7, we can conclude that the 
dynamic salt calculation methodology is faster than 
traditional approaches with database latency. The dynamic 
salt calculation approach allows us to have the low latency 
available on a fast database without the cost associated with 
it. In addition, it provides an added layer of security. This is 
due to the fact that we no longer have to store the salt values 
in a database and track the associations between the 

 

  Fig. 5: Time taken to crack passwords using the dictionary attack 

                                                               

 

 

                                                               

      Fig. 6: Time taken to calculate salt with the respective methods 

 

 



passwords and the salts. For the traditional method, even if 
the passwords and salts are encrypted, there is a non-zero 
chance it can get leaked as evidenced by the multiple 
password breaches that happen every year.  

In terms of future work, an improvement that can be made 
to this algorithm is in the way in which the pointers to the 
random.txt file and the text corpus are calculated. As proof of 
concept, we chose single digits to calculate variables start and 
end. Choosing a range of values to generate the start and end 
values would make it even more difficult for any sort of 
attack to succeed. A range of values between 0 and 10000 
would be enough to provide enough obfuscation for security 
purposes. We also intend to test the proposed algorithm on 
cloud databases in order to evaluate its performance relative 
to the traditional approach more efficiently in a cloud 
environment.   

However, based on our experiments, we can conclude that 
the proposed method for dynamic calculation of password 
salts for improved resiliency against password cracking 
algorithms is a fast and efficient way of calculating password 
salts to prevent password attacks. 
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