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Abstract 

 
Today, Extensible Markup Language (XML) is becoming more and more 

popular for data representation and data exchange over the World Wide Web. 

So, more data files over the WWW will be represented in the XML format; 

and handling a large amount of XML documents becomes compelling. For 

the current search technology, we often have the experience that we can find 

many results when we search the Internet by issuing some key words, but 

most of them are useless or just not the one we want. So, for the next 

generation of the search engine, the main challenge is how to find what we 

exactly want. The main purpose of this thesis is to develop an algorithm for 

efficiently searching a pattern, called a twig pattern or tree pattern, to find 

all the matching documents. Unlike the traditional index methods that split a 

tree pattern query into several paths, and then stick the results together to 

provide the final answers, the twig pattern search uses tree structures as the 

master unit of queries to avoid expensive join operations. In our research, an 

efficient algorithm for the tree mapping problem in XML databases is 

proposed. Given a target tree T and a pattern tree Q, the algorithm can find 

all the embeddings of Q in T in O (|D||Q|) time, where D is the largest data 

stream associated with a node of Q. 
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Chapter 1 
 

Introduction  

XML stands for Extensible Markup Language. It is a series of rules for 

marking up documents in a form which can be understood by computer. The 

Specification is produced by W3C (World Wide Web Consortium).  XML 

not only describes the data itself, but also the semantics of the document. 

This enables users to organize information flexibly. That is the reason why it 

is used so widely in today's Internet. In order to give an intuitively 

impression, a sample of XML document is given below. 

< menu> 

<food> 

  <name>Belgian Waffles</name> 

  <img src=" Belgian Waffles.jpg" alt='by Raphael'> </img> 

<price>$5.95</price> 

<description>two of our famous Belgian Waffles </description> 

  <calories>650</calories> 

 </food> 

</ menu> 

Figure 1.1 A sample file in XML format 

In this sample, a menu record is represented in XML format. It basically 

contains three components: elements, contents, and attributes. An element is 

a component begins with a start-tag and ends with a matching end-tag, such 

as <menu> and </menu> in the above example. Content is a "raw" data that 
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represents the content of a document such as "Belgian Waffles". An attribute 

is a name/value pair that represents the additional properties of an element. 

For example, the element img has two attributes: src and alt, specified as 

follows 

<img src=" Belgian Waffles.jpg" alt='by Raphael'> </img>. 

Usually, an element can contain content and sub-elements, i.e. multiple 

elements which can be nested in some way. Therefore, any XML document 

can be represented as a tree-like structure, referred to as a document tree or 

an XML tree, in which all contents are mapped to the leaf nodes and all 

element tags are mapped to the internal nodes. For example, Figure 1.2 

shows the tree structure associated with the sample document shown in 

Figure 1.1.  

Belgian Waffles 

name img price description colories 

Belgian waffles src alt $5.95 two of our famous  

'by Raphael' Belgian waffles.jpg 

650 

food 

  

Figure 1.2 XML data structure shown as a tree 
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1.1 Document Type Definition (DTD) 

A DTD describes the structure of a class of XML documents by the element 

and attribute-list declarations. In an element declaration, the names of all its 

sub elements are given, such as menu containing food, and food containing 

name, img, price, description, and calories, which will be put in a pair of 

parentheses as shown in the above example. Attribute-list declarations name 

the possible set of attributes for each element, such as the #PCDATA 

followed by the name of the element. 

<?xml version="1.0"?>  

<!DOCTYPE menu[ 

<!DOCTYPE food [ 

<!ELEMENT menu (food)> 

<!ELEMENT food (name, img, price, description, calories)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT img (src, alt)> 

<!ELEMENT price (#PCDATA)> 

<!ELEMENT description (#PCDATA)> 

<!ELEMENT calories (#PCDATA)> 

<!ELEMENT src (#PCDATA)> 

<!ELEMENT alt (#PCDATA)> 

]> 

]> 

Figure 1.3. A sample of DTD 
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1.2 Problem Statement 

The XML is a tree-structured model for representing data. As more and 

more XML files are widely used in the Internet for data exchange and 

storage, searching in XML becomes important. One of the methods is the 

tree pattern matching, heavily used in the systems offering search in XML 

Languages such as XPath [15] and XQuery [14]. XPath is a declarative 

language, and XQuery is an iterative language which uses XPath as a 

building block, providing path expressions as a searching condition. For 

example, /food/img/[alt = 'by Raphael'] is a path expression that inquiries 

one of the paths in the tree shown in Figure 1.1(b) to find any picture painted 

by Raphael. Multiple path expressions can form a complex query that 

contains multiple paths, which are in fact a tree structure. Ordinarily, the 

query tree is small. So, the corresponding tree matching problem is called a 

"twig" pattern matching. In Figure 1.4, we show a simple twig.  

A 

B 

D  E  F  G

C E F 

A

 

Figure 1.4 A sample of tree embedding 
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Definition [5] An embedding of a tree pattern Q into an XML document T is 

a mapping f: Q → T, from the nodes of Q to the nodes of T, which satisfies 

the following conditions: 

(i) Preserve node label: For each u ∈ Q, label(u) = label(f(u)) (or say, u 

matches f(u)). 

(ii) Preserve parent-child/ancestor-descendant relationship: If u → v in Q, 

then f(v) is a child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u) 

in T. 

If there exists a mapping from Q into T, we say, Q can be imbedded into T, 

or say, T contains Q.  

Up to now, a lot of methods have been proposed to solve this problem. Early 

methods, such as those discussed in [2, 6, 9], works as follows. First, a twig 

pattern is decomposed into multiple paths to find the match. Then, all the 

paths are joined together. This definitely involves the time consuming join 

operations. Recently, several holistic twig join algorithms are proposed to 

solve the problem. The first one is TwigStack [4]. It uses a stack to handle 

the intermediate results. Because path matches don’t need to be part of 

complete matches, a lot of redundancy is conducted (we will discuss this in 

great detail in a later section. The other holistic twig join methods can be 

found in [7, 10, 16, 17, 18, 19]. Generally speaking, they all try to improve 

in two directions: improving the join algorithms, such as [7, 10, 16]; and 

using indexes to speed up accessing disks, such as [17, 18, 19]. 

In this thesis, we proposed a new algorithm with no join operations involved. 

The algorithm takes a set of data streams as inputs, and establishes XB-tree 
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as indexes. By combining these two strategies, we achieve an efficient 

method for evaluating twig pattern queries. 

 

1.3 Preliminaries 

In this part, we will present some concepts related to this thesis, including 

the definition of trees, tree encoding, and the index structure of XB-Tree. 

These conceptions are quite necessary for a further discussion. 

1.3.1 Tree 

A tree structure is a way to represent the hierarchical nature of data, as 

illustrated in Figure 1.5. The elements are referred to as "nodes", and the 

lines connecting elements are as "branches. We use T to represent a tree and 

the root of the tree is denoted by RootT. Nodes without children are called 

leaf nodes. The names of the relationships between nodes come from family 

relationships. A node v, which is one level higher than another node u, is 

called the parent of u if they are on the same path. For example, the node c is 

the parent of e and f. The nodes having the same parent are called siblings. 

For instance, b and c are siblings. They have the same parent a. The number 

of a node’s children is called the degree of the node. The degrees of node b 

and c are 1 and 2, respectively. A subtree is a tree whose root is the child of 

some non-root node. For example, in Figure 1.5 the trees rooted at b and c 

are two subtrees of node a, which is the root of T. There are three important 

properties for any tree we discussed: size, height, and width. The total 

number of the nodes is called the tree’s size. The length of the longest path 

in a tree is called the tree’s height. Finally, the number of the leaf nodes is 
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the tree’s width. In Figure 1.5, the size of T is 7, the height is 4, and the 

width is 3. 

g 

b

d  e f

c

a

 

Figure 1.5 A sample of tree structure 

1.3.2 Tree encoding 

For the efficiency of twig searching, tree encoding schema is very important. 

It includes two aspects: how the nodes in a partition are ordered, and how 

the position of a node is encoded. For the first question, most algorithms 

store nodes pre-orderly by using the depth first traversal. It means that a 

ancestor can be seen before its descendants. For the second question, a tree 

encoding is used, which assigns leftPos, RightPos, level values to nodes to 

recognize their different relationships, as shown in Figure 1.6 (b). The 

LeftPos and RightPos numbers reflect the positions of opening and closing 

tags in XML.  
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B(2,2) C(3,6) 

B(4,4) C(5,5) 

(c) Encoding Tree 

A(1,7) 

(b) Encoding Nodes

<A> 

(a) XML Data  

B 2 2 

Tag Left Right

1 7 1 A 

Level

B 4 4 

C 3 6 

3 5 5 C 

2 

3 

2 

</C> 
</A> 

<B></B> 
<C></C> 

<B></B> 

<C> 

Figure 1.6 A sample of tree index and query 

1.3.3 XB-tree Index 

In our algorithm, we will use an index structure, the so-called XB-tree [4], to 

improve the search efficiency. As the name suggests, an XB-tree is just a 

variant of B+-trees. However, an XB-tree is constructed based on the 

encoding scheme discussed above. 

(1, 1, 11, 1) 

(1, 2, 2, 2) 

(1, 3, 10, 2) 

(1, 4, 4, 3) 

(1, 5, 9, 3) 

(1, 6, 6, 4) 

(1, 7, 7, 4) 

(1, 8, 8, 4) 

1, 11   2, 2     3, 10 4, 4    5, 9 6, 6   7, 7   8, 8   

1, 11   3, 10    5, 9 7, 8  

1, 11 5, 9  

P.parent

P.parentindex

P7 

(a) 

(b)

P5 P4 

P3

P6

P1

P2 

 

Figure 1.7 A sample of XB-tree 
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Assume that we have an XML document file stored as a data stream as 

described in Figure 1.7 (a). We can establish an XB-tree over it, as shown in 

Figure 1.7 (b). The nodes in the leaf pages of the XB-tree are sorted by their 

LeftPos values, and each node is connected by a link from left to right. The 

main difference between a B+-tree and an XB-tree is in the data contained in 

the internal pages. Each entry v in an internal page of the XB-tree contains a 

pair [v.L, v.R] (where L and R represent LeftPos and RightPos, respectively; 

and the whole pair represents a bounding segment) and a pointer to its child 

page v.page (which contains all those nodes with pairs completely included 

in [v.L, v.R] as shown in Figure 1.7 (b). For example, P2 contains P4 and P5. 

We can also find that all L values in a page are in increasing order although 

the bounding segments in a page may partially overlap. For instance, in P2, 

(1, 11) contains (3, 9). Each page P has a pointer to the parent page, denoted 

as P.parent. In addition, P.parentIndex is an index of the node in P.parent, 

which points back to P as shown in the Figure 1.7(b). We will discuss how 

to use XB-trees in the next section. 

 

1.4 Object 

The main goal of this thesis is to create a new algorithm for evaluating twig 

pattern queries, including: 

 Implementing a new bottom-up twig pattern search algorithm which can 

be applied to efficiently determine whether one tree can be embedded in 

another. 
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 Investigating the effectiveness of this algorithm and comparing it with 

other 3 different algorithms which are also used for twig patter search 

problem. 

 

1.5 Thesis Organization 

The remainder of the thesis is organized as follows. In Section 2, we review 

and discuss the related works. In section 3, we discuss our algorithm in great 

detail. Section 4 is devoted to the implementation and experiments. Finally, 

the conclusion and future work are set forth in Section 5. 
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Chapter 2  

 

Related Work 

Generally speaking, the problem of twig pattern matching, is to query all 

existing embedding patterns in the data. This problem can be classified into 

two different categories. The first one is the unordered tree pattern, in which 

only the ancestor-descendant (A-D) and parent-child (P-C) relationships in a 

twig are considered. The second one is the ordered tree pattern, in which all 

structural information in the query has to be checked in the data. But the 

majority of twig queries in practice only concerns A-D and P-C axes. In this 

chapter, we will review the previous work on this topic. 

2.1 The early research for twig pattern matching 

The early solutions [2, 6, 9] on the twig pattern matching generally consisted 

in first decomposing twig queries into binary structural relationships 

between pairs of nodes, and then matching each of the binary relationships 

against the XML database. The final results are created by joining together 

all the path matches.  

The main disadvantages of these decomposition-based approaches are that 

the size of the intermediate results can be very large, even for quite small 

search results. Another disadvantage is for the P-C relationships. The 

algorithms work well for treating the A-D relationships. But in the presence 

of the P-C relationships, a lot of useless matches will be conducted. So, the 
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users may wait long to get (partial) results. In order to overcome this 

problem, many interesting twig join algorithms have been proposed.  

 

2.2 Holistic twig join 

The first holistic twig join algorithm was TwigStack, proposed by Bruno et 

al [4]. It can be divided into two-phase. In the first phase, all those paths in 

an XML document will be found, each of which matches a root-to-leaf path 

in the query. In the second phase, they are joined together to form the final 

result. The core idea of this method is to maintain a stack for each query 

node. 

In general, each query node q in a query Q is associated with matching 

stream Tq; and a stack for a query node q, denoted as Sq, is used to keep the 

current ancestor nodes of q. For simplicity, we use a path set shown in 

Figure 2.1(a) for illustration. Figure 2.1(b) is the query, in which label(q1) = 

A, label(q2) = B, and label(q3) = C. So, we have = {A1, A2}, = {B1, 

B2, B3},  and  = {C1}. Each data entry in a stack consists of a pair: 

(positional representation of a node from Tq, pointer to an entry in Sparent (q)) 

as show in Figure 1(c) :  

1qT
2qT

3qT

A2 B1  B3B2  C1 A1 

A2 

B1 

B2 

B3 

C1A B  C 

(c) Stack(a) Data Set  (b)Query 

 

A1 

 
Figure 2.1 Illustration of TwigStack process 

 
Figure 2.1(c) shows the stacks for all the query nodes in Figure 1(b). 
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According to the algorithms discussed in [4], when the current query node is 

a leaf, all related matching nodes are output. So, when the node C1 is pushed 

into the stack, all matching nodes will be popped out. By using the pointer to 

a node in Sparent (q), the nodes can easily be found. They are: {C1, B3, A2}, 

{C1, B2, A1}, and {C1, B1, A1}. Nodes on a higher level of a stack cannot be 

an ancestor of any node on a lower level of the stack. It is because the data 

nodes are processed in pre-order. In this example, A2 is not the ancestor of 

B2. So {C1, B2, A2} is not the query result. The processing time is linear to 

the size of the data streams and the space needed is O (d  |Q|), where d is 

the maximal depth of the data set. In this example, it is 6. 

In order to do a linear merge in the second phase, a technique was 

introduced to get all path matches sorted so that higher matching query 

nodes appear first. In [6], the so-called "self- and inherit-lists" for each 

stacked node were used to delay out-of-order outputs. Figure 2.2 shows the 

list for the data and query in Figure 2.1.  

 

 
Figure 2.2 A list for the data and query of TwigStack 

A1 

A2 

B1

B2

B3
(A2B3C1) 

(A1B1C1) (A1B2C1)(A1B3C1)

(A2B3C1) 

(B3C1)

(B2C1)

(B3C1)
(B1C1)

(B2C1) (B3C1)

 

 
When a node v is popped out of a stack, in order to maintain the correct 

output order, the contents of its lists are appended to the inherit-lists of the 

node below v in the same stack. For the example shown in Figure 2.1, (B1, 

C1)(B2, C1)(B3, C1) is appended to B1, (B2, C1)(B3, C1) to B2, etc. But if there 

are some ancestor nodes in the parent stack, the popped node v can use, 
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while the node below v in the same stack cannot, decided by the inter-stack 

pointers, the contents of the lists, appended to its self-list. As shown in the 

example, popped node B3 leads to adding (A2, B3, C1) to the self list of A2.   
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Algorithm 1 TwigStack 

 

 

Function TWigStack(Q) 1: 

2:  While not atEnd(Q)  

3:  q : = getNext(Q.root)  

4:  if not isRoot(q)  

5:  cleanStack(Sparent (q), Cq) 
6:  if isRoot(q) or not empty 

7:  cleanStack (Sq, Cq) 

8:  push (Sq, Cq, top(Sparent(q))) 

9:   if isLeaf (q)  

10:  outputPathsDelayed(Cq) 

11:  pop (Sq) 

12:  advance(Tq) 
mergePathSolutions() 13: 

14:  function getNext(q)

15: 
16:  return q 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

For )(qchildrenqi 
)(qigetNextq j 

ij qq if  
return  qj 

}.{argmin )(min begincq
ii qqchildrenq 

}.{argmax )(max begincq
ii qqchildrenq 

beginCend qq .. Cwhile  
max

advance (Cq)
beginCbegineC qq ..

min
if 

return q 

return  qmin 
else 

if isLeaf (q)  
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The pseudo-code for TwigStack is shown in Algorithm 1 [4], in which each 

query node q is associated with a stream Tq and a stack Sq. The current 

element in Tq is represented by Cq. The recursive function getnext(q) is the 

core of TwigStack. It returns a locally highest query node in the subtree of q, 

and check the heads of the streams of all child query nodes to see if they are 

all contained by Cq. If it is the case and all child nodes recursively satisfy 

this requirement, then push Cq into Sq. By this scheme, when a leaf node is 

pushed into a stack, a path matching is found. But the output is delayed to 

make sure that the paths are sorted by the top-down order of the query nodes. 

The getnext() function traverses bottom up, and it will jump out if some 

node does not have a solution extension (see line 20). Leaves don’t have any 

solution extensions. By a recursive execution of getnext() function, the query 

tree is traversed. The return value of each recursive call of getnext() is a 

query node q such that Cq has a descendant of in for each child node 

qi of q, and each has recursively the same property as Cq. 

iqC
iqT

iqC

In Figure 2.3 shows the process of evaluating the query (b) to data set (a). 

B4,4 

B2,2 

A(1,7) 

B(2,2) C(3,6) 

B(4,4) C(5,5) 

A 

B C 

(A(1,7) B(2,2) C(3,6)) 

(A(1,7) B(4,4) C(3,6)) 

A1,7  C7,7 

C4,4 

TB TA TC 

B2,2

B4,4

A1,7 C3,6

SB SA SC

A1,7B4,4 

A1,7B2,2 

A1,7C3,6 

(a) Data (b) Query (c) Matches 

(d) Streams (e) Stackes (f) Path Matches 
 

Figure 2.3 TwigStack evaluating query 
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After node B(2, 2) has been processed, for the first call of getNext(A), A itself 

is returned as all the heads of the streams of all child query nodes of A are 

contained by CA, and CA = A(1, 7). For the second call getNext(A), B(2, 2) has a 

usable ancestor A(1, 7) in the parent stack SA, the subtree rooted at B(2, 2) is 

usable. So CB = B(2, 2) is pushed into its own stack SB. Since it is a leaf, the 

path matching (A(1, 7), B(2, 2)) is output. After all paths have been found they 

are merge joined. 

Shortage of TwigStack: For mixed A-D and P-C queries, TwigStack may 

perform many redundant checks in calls function getnext(). As shown in 

Figure 2.4, the algorithm cannot always decide whether the data nodes used 

can satisfy all their P-C relationships by the nodes in the stacks and the 

heads of the streams. For example, in Figure 2.4, whether the path matches 

(A1, B1), …, (A1, BN) are part of a full match or not, cannot be decided 

before the node CN+1 is processed. So, many redundant check is performed. 

In fact, in the worst case, TwigStack needs O(|D||Q|) time for doing the merge 

joins [7]. 

A 

B C 

A1

B1
…… BN A2 CN+1

…... BN+1 CN C1

(a) Query (b) Data  

Figure 2.4 Shortage of TwigStack 

And for A-D only queries, TwigStack can solve the problem with a bound of 

O(d  |Q|) memory (d is the maximal depth of data set), but for A-D and P-C 
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mixed queries, it will require O(nmin n,d|D|) disk space in the worst case[8], 

where n is the number of structurally recursive labels and D is the size of the 

document. 

 

2.3 Improvements of holistic twig join 

A lot of different improvements [7, 10, 16, 17, 18, 19, 20] have been 

proposed since the introduction of TwigStack. We will give a review for 

some of these algorithms. 

Twig2Stack [7] uses the post order sorting for all query nodes. By using a 

hierarchical stack as shown in Figure 2.5, it can decide whether the entire 

subtree has a match when the top node is encountered. While processing a 

query, for each query node, a tree is maintained, in which each node is a 

stack, as shown in Figure 2.5. In a stack, a data node strictly nests all nodes 

below and all nodes in the child stacks. The lists of trees are stored in post-

order, and are linked together by a common root when an ancestor node is 

processed. For example, A1 is linked to B2, B3, and B5. By the post-order, the 

nodes to be linked will always be found at the end of the list, and the new 

root will always be put at the end. The order maintains itself naturally. So 

the nodes' locations will be very clear. Instead of pointing each node in a 

stack to its ancestor node in its parent stack as in TwigStack, Twig2Stack 

points each stacked data node to related child query node. So, a top down list 

of matching nodes is achieved by this scheme. A node is added only if A-D 

and P-C relationships can be satisfied, and a P-C pointer is added only when 

levels are correct, as shown by the P-C pointer: A1 to C5 and A4 to C4 in 

Figure 2.5.  
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C1 

C2B1  A1 

A2 
A4  C5

B2 

C3 

C4  B3 B5 C6

B4

A3 

A 

B C 

(a) Data  (b) Query 

A1

A4

B2 B5B3

B4

C2 C3 C4 C5

C6

C1

(c) Twig2Stack

B1 

 

Figure 2.5 Hierarchies of stacks for Twig2Stack  

TwigList [10] is a simplification of Twig2Stack using simple lists and 

intervals given by pointers, which improves performance in practice. For 

each query node, there is a post-order list of the data nodes encountered so 

far. As shown in Figure 2.6, by using the same data set as Figure 2.5, each 

node in a list has, for each child query node, a single recorded interval of 

contained nodes, such as A4 contains B4, B3, and B5. Interval start and end 

positions are recorded as nodes are pushed into and popped out of the global 

stack. All descendant data nodes are processed in between. Compared with 

the list of pointers in Twig2Stack, the enumeration of matches is not efficient 
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for P-C edges, but sibling pointers (as B3 to B5 showing below) can remedy 

this.  

A4 A1

 

Figure 2.6 Intervals for TwigList  

HolisticTwigStack [16] modifies TwigStack by using a pre-order processing, 

but maintaining a complex stack structure like Twig2Stack. The argument 

against Twig2Stack is a high memory usage, caused by the fact that all query 

leaf matches are kept in memory until the tree is completely processed, as 

they could be part of a match. HolisticTwigStack differentiates between the 

top-most branching node and its ancestors, for which a regular stack is used, 

and the lower query nodes, which have multiple linked lists of stacks, as 

shown in Figure 2.7. Each query node match has one pointer to the first 

descendant in pre-order for each child query node. For "lower" query nodes, 

new data nodes are pushed into the current stack if contained; otherwise, a 

new stack is created and appended to the list. As a match for an "upper" 

query node is popped, the node below it in the corresponding stack must 

inherit the pointers. For instance, node A1 would inherit the pointers from 

both A2 and A4 in the example shown in Figure 2.7. Also, the related lists of 

child matches would be linked. 

B1  B2 B4 B5 C2 C3 C6C4B3 CC 15
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Figure 2.7 Lists of Stacks of HolisticTwigStack 

TwigFast [1] further simplifies HolisticTwigStack and works in a way 

similar to TwigList. There is one list containing matches for each query node, 

sorted in pre-order. The data nodes in the lists have pointers, giving the 

interval of the contained matches for each child query node, as shown in 

Figure 2.8. Each data node put into a list has a pointer to its closest ancestor 

in the same list, and a "tail pointer", which gives the last position where a 

node can be the ancestor of the subsequent nodes in the streams. These 

pointers are used for the construction of the intervals. 

 

Figure 2.8 Intervals for TwigFast 

 

 

B2 B4B3 B5 C3 C5C4

A4A1

tail tail

A2

tail

B4

B5 B3

B2

A1

A4

A2 C3

C4
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Chapter 3 

 

Twig Pattern Search  

 

This Chapter describes the method that I implemented to evaluate tree 

pattern queries in a document database. The main purposes of this method 

are: 1) to efficiently retrieve all matching documents form a database for a 

give query; 2) to avoid expensive join operations which many index-based 

methods have to do. To achieve these purposes, we devise a method based 

on two basic techniques: holistic structure twig join and XB-tree structure. 

The holistic structure twig join algorithm treats every document as a set of 

data streams, and checks the query tree against each document tree to find 

out whether the query tree can be successfully embedded in it. The XB-tree 

technique helps to speed up the process of twig join by: 1) dramatically 

reducing the number of documents that the tree matching algorithm needs to 

check; 2) eliminating unnecessary subtree checking. By combining these 

two powerful techniques, we are able to efficiently find all the documents 

matching a given query without involving any join operations. 

 

3.1  Tree encoding  

An efficient tree encoding scheme was presented in [9]. It can be used to 

identify different relationships among the nodes of a tree. 
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Assume T is a document tree as shown in Figure 3.1. We represent each 

node v in T by a quadruple (DocId, LeftPos, RightPos, LevelNum), denoted 

as α(v), where DocId is the document identifier, LeftPos and RightPos are 

generated by counting word numbers from the beginning of the document 

until the start and end of the element, respectively; and LevelNum is the 

nesting depth of the element in the document. (See Figure 3.1) By using 

such a data structure, the structural relationship between the nodes in an 

XML database can be simply determined [9]: 

a) ancestor-descendant: a node v1 associated with (d1, l1,r1, ln1) is an 

ancestor of another node v2 with (d2, l2, r2,ln2) iff d1 = d2, l1 < l2, and r1 > 

r2. 

b) parent-child: a node v1 associated with (d1, l1,r1, ln1) is the parent of 

another node v2 with (d2, l2, r2,ln2) iff d1 = d2, l1 < l2, and r1 > r2 and ln2 = 

ln1 + 1. 

(1,7,7,4) 

c) from left to right: a node v1 associated with (d1, l1,r1, ln1) is to the left of 

another node v2 with (d2, l2, r2,ln2) iff d1 = d2, r1 < r2 

 T    A v1(1,1,11,1) 

(1,2,2,2) v2 B        C v3(1,3,10,2) 

(1,4,4,3) v4 C              B v5 (1,5,9,3) 

(1,6,6,4) v6 B      v7C      Dv8(1,8,8,4) 

 

Figure 3.1 Tree Encoding 

In Figure 3.1, v3 is an ancestor of v7 , as we have v7.LeftPos = 3 < v6.LeftPos = 7 

and v3.RightPos = 10 > v7.RightPos = 7. Another example, v5 is the parent of v7 , as 

we have v5.LeftPos = 5 < v6.LeftPos = 7 and v3.RightPo s= 9 > v7.RightPos = 7, as well as 
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v5.level = 3 and v6.level =4, which satisfy condition (b). By using the same 

method as stated above, we can verify all other relationships of the nodes in 

the tree. In addition, for simplify, if any leaf node v, we set v.LeftPos = v.RightPos. 

 

3.2  Main Algorithm  

In this section, we discuss our algorithm according to Definition 1 given in 

section 1.2. The main idea of this algorithm is to reconstruct a sub-tree from 

the corresponding data streams (a set of quadruple sequences). In the 

following section, we will separately discuss the subtree reconstruction and 

twig patterns checking for A-D and P-C relationships in queries. 

 

3.2.1 Tree reconstruction 

3.2.1.1 DateStream generation 

Using the same notations as [4], we associate each node q in a twig pattern 

(query tree)Q with a data stream B(q), which contains quadruples (the 

representation of the node position) of the database nodes v that has the same 

tag with q. All the quadruples in a data stream are sorted by their (DocID, 

LeftPos) values. For example, in Figure 3.2, we show a query tree 

containing 5 nodes and 4 edges and each node is associated with a list 

matching nodes of the document tree shown in Figure 3.1. For simplicity, 

the node’s name is shown, instead of its quadruple.  
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A q1 

Bq2 Cq3 

Bq4 Cq5 

Q 
The query nodes with the same  tag will 
be associated with the same data stream: 
B(q3)=B(q5)={v3,v4,v7} 

{v1} 

{v3, v4, v7}
{v2, v5, v6} 

 

Figure 3.2 Illustration for B(qi)'s 

In Q, we can find that multiple query nodes may share the same data stream. 

So we use gq to represent a group of such query nodes and use B(gp) to 

denote the data stream shared by them. For example, the nodes in Q shown 

in Figure 3.2 can be categorized into three groups: gq1={ q1}, gq2={ q2, q4}, 

and gq3={ q3, q5}. Then, B(gq1)={v1}, B(gq2)={v2, v5, v6}, and B(gq3)={v3, v4, 

v7}. 

 

3.2.1.2 DataStream Transition 

The nodes in each data stream are sorted by their LeftPos values, as the 

access of document nodes is done in preorder. However our algorithm needs 

to visit them in postorder (in sorted order of their RightPos values). For this 

reason, we designed a global stack ST to make a transformation of data 

streams. The detail process is shown in Algorithm 2. In ST each entry is a 

pair (gq, v) with gq ⊆ Q and v ∈ T. 
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Algorithm 2 stream-transformation(B(gqi)'s) 

input: all data streams B(gqi), each sorted 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

end 

output: new data streams L(gqi) , each sorted by RightPos 

begin 

repeat until each  B(gqi) becomes empty 

{ identify gqi such that the first element v of B(gqi) is of 

the minimal LeftPos value; 

while ST is not empty and ST.top is not v's 

{x←ST. pop( ); Let x =(gqi, u); top(Sparent(q))) 

put u at the end of L(gqi); } 

ST.push(qi, v);

} 8: 

 

In this algorithm, ST is used to maintain all the nodes on a path of in a 

document tree until we meet a node v which is not a descendant of S.top() 

(see line 2 &3). Then, we pop out all those nodes which are not an ancestor 

of v, and then push v into ST (see lines 4 - 5). The output of the algorithm is 

a set of data streams L(gqi)'s and the nodes in it are all sorted by RightPos. 

Since the popped nodes themselves are listed in postorder (see line 3), so we 

can directly process them in postorder without explicitly generating L(gqi)'s. 

Just for ease explanation, we will assume L(gqi)'s are completely generated 

in the following discussion. So We use gq to represent a set of such query 

nodes and denote, by L(gq), the data stream shared by them. We also assume 

that the query nodes in gq are sorted by their RightPos values. Furthermore, 

we will use L(Q)={ L(gq1), …, L(gqn)} to represent all the data streams with 
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respect to Q, where each qi (i=1, …, n) is a set of sorted query nodes which 

share the same data stream. 

 

3.2.1.3 Reconstruction  

Before we discuss how to reconstruct a tree structure from the data streams, 

we would like to introduce another conception of matching subtrees. Denote 

a tree by T and v is a node in T which has a parent node u. Denote another 

tree by T' which is obtained by removing node v. This process is denoted by 

delete(T, v) and the children of v3 become the children of v1 (see Figure. 3.3) 

 

 T           A v1     T'                A v1 

v2 B           C  v3      delete(T, v3)            v2 B        C  v4         B  v5 

v4 C               B v5                                                         v6 B      C  v7        D v8 

v6 B      v7  C      D v8  

 

Figure 3.3  T' is achieved by removing v3 from T 

Definition 2.(matching subtree) A matching subtree T ' of T with respect to 

a twig pattern Q is a tree obtained by a series of deleting operations to 

remove any node in T, which does not match any node in Q. 

According to this definition, the tree shown in Figure 3.4(a) with respect to 

the query tree shown in Figure 3.4(b) is a matching subtree which is 

obtained by a series of node deleting (in this case the nodes contain tag C are 

deleted) from the document tree shown in Figure 3.1.  
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A   v1 

B  v5 B  v6 B  v2 D  v8 

(a) 

a matching subtree:

Aq1 

Bq2 Dq3 

(b) 

Q 

 

Figure 3.4. Matching tree obtained based on a query tree 

Based on this matching subtrees, we can design a recursive process to access 

the nodes in L(gqi)'s one by one, and a subtree structure T' of T can be 

constructed as below: 

1.  Identify a data stream L(q) with the first element being of the minimal 

RightPos value. Choose the first element v of L(q). Remove v from L(q); 

2.  For each popped node, generate a node for v; 

3.  If v is not the first node created, let v' be the node chosen just before v, 

and do the following two steps. 

a) If v' is not a child or descendant of v, create a link from v to v', called 

a left-sibling link and denoted as left-sibling(v) = v'. 

b) If v' is a child or descendant of v, we will first create a link from v' to 

v, called a parent link and denoted as parent(v') = v. Then, we will go 

along the left-sibling chain starting from v' until we meet a node v'' 

which is not a child or a descendant of v. For each encountered node 

u except v'', set parent(u) ← v. Finally, set left-sibling(v) ← v''. 

Construction process is shown in Figure 3.5. 
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B v6  v7C 

v4 C v5 B 

v1 A 

v2 B v3 C 

... 

v

v'' v' 

link to the left sibling 

v' ...

v

v''

T':
v'' is not a 
child of v. 

(a) (b) (c) 
 

Figure 3.5. Illustration for the construction of a matching subtree 

In Figure 3.5(a), you will find that v' is a child (descendant) of v. If this 

condition is satisfied, the navigation goes along a left-sibling chain starting 

from v' to the next sibling until meet v'', a node that is not a child 

(descendant) of v. In Figure 3.5 (b) a left-sibling link of v is set to v'', which 

is previously navigated from the left-sibling link of v's leftmost child. 

Applying the above process to B(qi)'s shown in Figure. 3.2, we will regain a 

tree T', called a matching subtree, as shown in Fig. 3.5(c). This is similar to 

the tree shown in Figure 3.3, but with node v3 being removed. 

The Algorithm 3 gives the detail of this reconstruction process, as shown in 

next page. 
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Algorithm 3 subtree reconstruction
input: all data streams L(Q).
output: a matching subtree 
begin 
1: 

2: 

3: 

4: 

5: 

6: 
7: 
8: 
9: 

10: 
11: 

12: 
13: 
14: 
15: 
16: 
end 

{identify gq such that the first element v of L(gq) is of the minimal
RightPos value; remove v from L(q); 

generate node v; 

if v is not the first node created then 

{ let v' be the node genertated just before v; 

if v' is not a child (descendant) of v then 

{ left-sibling(v) ← v';} (*generate a left-sibling link*) 
else 
{ v'' ← v'; w ← v';} (*v'' and w are two temporary variables.*)

while v'' is a child (descendant) of v do 
{ parent (v'') ← v; (* generate a parent link. Also, indicate 

whether v'' is a /-child or a //-child. *) 
w ← v''; v'' ← left-sibling(v'');

}  

 }  
} 

repeat until each L(gq) in L(Q) become empty

left-sibling (v) ← v'';

In the above algorithm, a new node is created for each chosen v from a L(gq). 

Assume that v' has already created before v, if v' is not a child or descendant 

of v (see line 7), create a left-sibling link from v, pointing to the node v'. 

Otherwise, we need to go into a while-loop (see line 10) to travel along the 

left-sibling linked list starting from v' until we meet a node v'' which is not a 

child or descendant of v. During this process, a parent link is generated for 
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each node encountered except v''. (see lines 9-13). Finally, the left-sibling 

link of v is set to v'' (see line 14).  

In order to make a more brief explanation, we make an illustration of this 

data tree generating process, shown as Figure 3.6(based on the data tree 

shown in Figure 3.1 and query tree shown in Figure 3.2). 
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data stream: L(gq1)= {v1}, L(gq2)= {v2, v6, v5}, L(gq3)= {v4, v7, v3} 

gq1 =  {q1},  gq1 =  {q2, q4},  gq1 =  {q3, q5}

v with the least RightPos: generated data structure: 

v2 v2 B Step 1: 

v2 B 
v4 C B v6 v7 C 

left-sibling link 

B v7 

v5 B 

C v6 

C v4 
B v2 

left-sibling links 

v2 B 
v4 v6 B C 

C 
B 

v4 
v2 

left-sibling link from v6 to v2

v4 Step 2: 

v6 Step 3: 

v7 Step 4: 

left-sibling links 

Step 5: v5 

v4 
C 

v6 B v7 

v5 B v2 B 

left-sibling link v3 
C 

C 

Step 6: v3 
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v with the least RightPos: generated data structure: 

v4 
C 

v6 
B v7 

v5 
B 

B v3 C 

v1 A 

v2 v1 Step 7: 

C 

 

Figure 3.6 Sample trace for Algorithm 3 

In step 1(see Figure 3.6), v2 is checked since it has the least RightPos value; 

and a node for it is created. In Step 2, we meet v4. Since v2 is not a 

descendant of v4, we establish a left-sibling link from v4 to v2. In Step 3, we 

meet v6. For the same reason as Step 2, we establish a left sibling link from 

v6 to v4. In step 4, we establish a left sibling link from v7 to v6. In step 5 we 

meet v5. Since v7 is the child of v5, we generate an edge between them, and 

then navigated to v6, which is also a child of v5. So, an edge from v5 to v6 is 

generated. In this step, not only two edges are constructed, but also a left-

sibling link from v5 to v4 is generated. This is the key link that enables us to 

reconstruct a matching subtree in an efficient way. The following steps are 

shown in Figure 3.6 above. 

 

3.2.1.4 Correctness of Algorithm 3 

In this section, we will prove the correctness of the algorithm matching-tree-

reconstruction. 

  33



Proposition 1 Denote a document tree as T and a twig pattern as Q. Let 

L(Q)= {L(gq1), …, L(gqn)} be all the data streams based on Q and T, where 

each qi (1 ≤ i ≤ n) is a subset of Q, in which query nodes is sorted,  and share 

the same data stream. Algorithm matching-tree-construction generates the 

matching subtree T' of T with respect to Q correctly. 

Proof. Denote L =|L(gq1)| + … + |L(gqn)|. We prove the proposition by 

induction on L. 

Basis. When L=1, the proposition holds. 

Induction hypothesis. Assume that when L = k, the proposition holds. 

Induction step.  

We consider the case when L = k + 1. Assume that all the quadruples in L(Q) 

are {u1, …, uk, uk+1} with RightPos (u1) < RightPos (u2) < … < RightPos (uk) 

< RightPos (uk+1). The algorithm will first generate a tree structure Tk for 

{u1, …, uk}. In terms of the induction hypothesis, Tk is correctly created. It 

can be a tree or a forest. If it is a forest, all the roots of the subtrees in Tk are 

connected through left-sibling links. When we meet vk +1, we consider two 

cases:  

a) vk+1 is an ancestor of vk; 

b) vk+1 is at the right of vk. 

In case a), the algorithm will generate an edge (vk +1, vk), and then travel 

along a left-sibling chain starting from vk until we meet a node v which is not 

a descendant of vk+1. For each node v' encountered, except v, an edge (vk +1, 

v') will be generated. Therefore, Tk+1 is correctly constructed. In case b), the 
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algorithm will generate a left-sibling link from vk +1 to vk. It is obviously 

correct since in this case vk+1 cannot be an ancestor of any other nodes. The 

proof completes.  

The time complexity of this process is easy to analyze. First, we notice that 

each quadruple in all the data streams is accessed only once. Secondly, for 

each node in T', all its child nodes will be visited along a left-sibling chain 

for a second time. So we get the total time 

|)||(||)'(||)||(||)||(| QDOTOQDOdQDO
i

i    

where di represents the outdegree of node vi in T'. 

During the process, for each encountered quadruple, a node v will be 

generated. Associated with this node have we at most two links (a left-

sibling link and a parent link). So the used extra space is bounded by O(|T'|). 

 

3.2.2 Tree Matching 

In fact, Algorithm 3 hints an efficient way for twig pattern matching. 

We observe that during the reconstruction process of a matching subtree T'. 

we can also associate each node v in T' with a query node stream QS(v). That 

is, each time we choose a v with the largest LeftPos value from a data stream 

L(gq), we will insert all the query nodes in gq into QS(v). For example, in 

the first step shown in Figure 3.6, the query node stream for v2 can be 

determined as shown in Figure 3.7(a). 
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A v1 

B v2 C v3

v5 B Cv4 {q3, q5}

{q3, q5}v7 C Bv6 

{q3, q5} 

{q2, q4}

{q2, q4} 

{q2, q4}

{q1} T' :

(a) 

B 
v2 {q2, q4} 

(b) 
 

Figure 3.7 Illustration of generating QS's 

In the same way, we can create the whole matching subtree as shown in 

Figure 3.7(b), each node in T' is associated with a sorted query node stream. 

If we check, before a q is inserted into the corresponding QS(v), whether Q[q] 

(subtree rooted at q) can be imbedded into T'[v] or not, we actually get an 

algorithm for twig pattern matching. The only problem left is how to make 

an efficient checking. 

For this purpose we can associate each q in Q with a variable, denoted γ(q). 

During the process, γ(q) will be dynamically assigned a series of values a0, 

a1, …, am for some m in sequence, where a0 = Ф and ai's (i = 1, …, m) are 

different nodes from T'. In another word, we just use these symbols to 

represent a specific node in T'. Initially, γ(q) is set to a0 =Ф. γ(q) will be 

changed from ai - 1 to ai = v (i = 1, …, m) while the following conditions are 

satisfied. 

i) v is the node currently encountered. 

ii) q appears in QS(u) for some child node u of v. 

iii) q is a //-child,  
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or q is a /-child, and u is a /-child with label(u) = label(q). 

Then, each time before we insert q into QS(v), we will do the following 

checking: 

1. Let q1, …, qk be the child nodes of q.  

2. If for each qi (i = 1, …, k), γ(q) is equal to v and label(v) = label(q), insert 

q into QS(v). 

As the matching subtree is constructed in a bottom-up way, the above 

checking is guaranteed that for any q∈ QS(v), T'[v] contains Q[q]. 

Let v1, …, vj be the children of v in T'. All the QS(vi)'s (i = 1, …, j) should 

also be added into QS(v). This process can be elaborated as follow: 

Let QS(vi) = { , …, } (i = 1, …, j). 
1i

q
jiq

Pay attention to the complex symbol { , …, } here, it means, for 

example, if i=1, it means that v has only one child and QS(v1) will be 

{ , …, } {i = 1, …, j), in which the query nodes sharing the same tag is 

{ , …, } {i = 1, …, j). 

1i
q

jiq

1i
q

1i
q

jiq

jiq

Then, we have .LeftPos < … < .LeftPos.  Because, all the query nodes 

inserted into QS(vi) come from a same set "gq", in which all the elements are 

sorted by their LeftPos values. Each time we insert a q into QS(vi), we can 

check whether it is subsumed by the query node q' which has just been 

inserted before. If it is subsumed by the node q' which is inserted before, q 

will not be inserted, since the embedding of Q[q'] in T[vi] implies the 

embedding of Q[q] in T[vi] (As the reason that LeftPos(q') < LeftPos(q), q 

1i
q

jiq
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cannot be an ancestor of q'.) Thus, QS(vi) contains only the query nodes 

which are on different path. Therefore, we must also have .RightPos < … 

< .RightPos (As the reason that LeftPos(q') < LeftPos(q), if RightPos(q') 

> RightPos(q), q' will be the ancestor of q, so Q[q'] in T[vi] implies the 

embedding of Q[q] in T[vi], which not satisfy the condition we discussed 

above just now). So the query nodes in QS(vi) are increasingly sorted by 

both LeftPos and RightPos values. Obviously, |QS(vi)| ≤ LeafQ(all the leaf 

node in Q). We can store QS(vi) as a linked list. Let QS1 and QS2 be two 

sorted lists with |QS1| ≤ leafQ and |QS2| ≤ leafQ. The union of QS1 and QS2 

(QS1∪QS2) can be performed by scanning both QS1 and QS2 from left to 

right and inserting the query node of QS2 into QS1 one by one. During this 

process, any query node in QS1, which is subsumed by some query node in 

QS2 will be removed; and any query node in QS2, which is subsumed by 

some query in QS1, will not be inserted into QS1, The result is stored in QS1. 

From this , we can see that the resulting linked list is still sorted and its size 

is bounded by leafQ. We denote this process as merge(QS1, QS2) and define 

merge(QS1, …, QSj–1, QSj) to be merge(merge(QS1, …, QSj–1), QSj), it's a 

recursive way. 

jiq

jiq

In the following, we will present Algorithm 4. twig pattern matching, which 

is an enhance of Algorithm 3. The main idea can be simply described as 

follow: While we are constructing the matching subtree T' of T as 

Algorithms 3, we append only the "correct related" nodes into an QS, 

("correct related" means the nodes which satisfy the 3 conditions we 

discussed above), and store them in a linked list QS(v), then the twig 

matching result can be generated with the T' reconstruction process 

automatically. 
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Algorithm 4 twig pattern matching 

input: all data streams L(Q).
output: a matching subtree T' of T, represented by a data stream QS(v)
begin 
1: 

2: 

3: 

4: 

5: 

6: 
7: 

8: 

9: 
10: 

12: 

13: 

14: 
15: 

16: 

{identify gq such that the first element v of L(gq) is of the minimal
RightPos value; remove v from L(q); 

generate node v; 

if v is not the first node created then 

{ QS(v) ← subsumption-check(v,q);} 

else 
{let v' be the quadruple chosen just before v, for which a node 

is constructed 
if v' is not a child (descendant) of v then 
{ left-sibling(v) ← v'; QS(v) ← subsumption-check(v,q);} 
else 

while v'' is a child (descendant) of v do 

{ parent (v'') ← v; (* generate a parent link. Also, 
indicate whether v'' is a /-child or a //-child. *) 

 if((q is a //-child) or  
(q is a /-chld and v'' is a /-child and label(q) = label(v'')))

for each q in QS(v'') do { 

repeat until each L(gq) in L(Q) become empty

11:  { v'' ← v'; w ← v';} (*v'' and w are two temporary variables.*)

then γ(q) ← v;}
17:  w ← v''; v'' ← left-sibling(v'');
18:  remove left-sibling(w);
19:  } 
20:  gq ← subsumption-check(v,gq);
21:  let v1, …, vj be the child nodes of v;
22:  gq' ← merge(QS(v1), …, QS(vj));

remove QS(v1), …, QS(vj);23: 
24:  QS(v) ← merge(gq, gq') ;}}
end 
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Fuction subsumption-check(v,gq) (*v satisfies the node name test at each 
      q in gq.*) 

1: 

2: 

begin 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

for each q in gq do 

{let q1, …, qj be the child nodes of q;

generate node v; 

if for each /-child qi γ(qi) = v and for each //-child qi γ(qi) is 
subsumed by v then 

{ 

QS ← QS ∪{q};

end 

return QS;  
} 

}  

3: 

{QS ← Ф; 

 

Algorithm 4 does almost the same work as Algorithm 3 matching-tree-

reconstruction(). The main difference is lines 14 - 18 and lines 20 - 24. In 

lines 14 - 18, we set γ values for some q's. Each of them appears in a QS(v'), 

where v' is a child node of v, satisfying the conditions i) ii) iii) given above. 

In lines 20 - 24, we use the merging operation to construct QS(v). 

In Function subsumption-check(), we check whether any q in gq can be 

inserted into QS by examining the A-D and P-C relationships between nodes 

(see line 4). Continuing this process, we can find that T' embeds Q. 
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Applying Algorithm 4 to the data set shown in Figure 3.1, we will find the 

document tree shown in Figure 3.1, contains the query tree shown in Figure 

3.2. We trace the computation process as shown in Figure 3.8. 
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data stream: L(gq1)= {v1}, L(gq2)= {v2, v6, v5}, L(gq3)= {v4, v7, v3} 

gq1 =  {q1},  gq1 =  {q2, q4},  gq1 =  {q3, q5}

For simplicity, we start at step 4  

v with the least RightPos: generated data structure: 

{q2, q4}
{q2, q4} 

 

Figure 3.8 Sample trace for Algorithm 4 

Step 4: v7 

v4 
C 

v6 B C v7 

v5 B 
Step 5: 

v2 B 
v4 C B v6 C v7 

{ q3, q5}{q3, q5}

(q2) = , (q4) = ,   (q3) = , (q5) =  

(q2) = v5 

(q4) = v5 

(q3) =  

(q5) = v5

{q2, q4} {q2, q3} 
{ q3, q5}v5 

B v2 

{ q3, q5}
{q2, q4} 

Step 6: v3 v4 
C 

v6 B C v7 

v5 B v2 B 

{q2, q3} v3 (q2) = v3 

(q3) = v3 
C 

{q2, q3} 

{q2, q4}

{ q3, q5}

{ q3, q5}{q2, q4}

Step 7: v1 

v4 
C 

v6 
B v7 

v5 
B 

v2 B v3 C 

v1 
{q1}

A (q2) = v1 

(q3) = v1  
{q2, q4} {q2, q3}

{q2, q3} 

{q3, q5}

{q3, q5} 

C 
{q2, q4}
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In the first four steps, we will generate part of the matching subtree as shown 

in Figure 3.8 step 4. At this time point, we meet v7, associate with v4 and v7 

is a query node stream: QS(v4) = QS(v7) ={q3, q5}, QS(v2) = QS(v6) = {q2, q4}, 

and  (q2) = (q4) = (q3) = (q5) = . Because, in the last several steps, we 

didn't meet any node which is the ancestor/parent of the current nodes (see 

line 12).  In step 5, we meet v5 (associate with L(gq), {q2, q4}), the parent of 

v6 and v7. Basic on the Algorithm 4, we will check QS(v6) and QS(v7) (see 

line 15, 16), as the reason all the q nodes are //-child except q3, q3 is a /-child 

but v7 is not a /-child of v5, so we will get (q2) = (q4) = (q5) =v5, (q3) = . 

So q3 will not satisfy the subsumption-check, QS(v5) = {q5}. Then we will 

merge QS(v6) and QS(v7) into QS(v5), q4 and q5 will be subsumed by q3, so at 

last QS(v5) = {q2, q3}. In step 6, we meet v3 (associated with L(gq), {q3, q5}), 

the parent of v4 and v5, QS(v4) = {q3, q5}, QS(v5) = {q2, q3}, as the reason q2, 

q5 is //-child, (q2) =  (q5) = v3. For q3, it is /-child and the v''(v5) is a //-child, 

so (q3) = . After subsumption-check and merging of QS(v4) and QS(v5), 

QS(v3) = {q2, q3}. In the last step, we meet v1, according to QS(v2) = {q2, q4}, 

QS(v3) = {q2, q3}, we will set (q2) =  (q4) = v1, as q2 and q4 are //-child, q3 

is a /-child, v'' (v3) is also a /-child, and label(v3) = label(q3). So (q3) = v1, 

leading to the insertion of q1 into QS(v1). After merging QS(v1) = {q1}. 

Finally, the embedding Q in T has been generated while the process of 

constructing T', which mean the twig searching has been finished. 

In the following, we will prove the correctness of this algorithm. First, we 

need to prove a simple lemma. 
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Lemma 1 Assume v1, v2 and v3 are three nodes in a tree and v3.LeftPos < 

v2.LeftPos < v1. LeftPos. If v1 is a descendant of v3. Then, v2 must also be a 

descendant of v3. 

Proof. Considering two cases: i) v2 is at the left position of v1, ii) v2 is an 

ancestor of v1. In case i), we have v1.RightPos > v2.RightPos. So we have 

v3.RightPos > v1.RrightPos > v2.RrightPos. This shows that v2 is a 

descendant of v3. In case ii), v1, v2 and v3 are on the same path. Since 

v2.LeftPos > v3.LeftPos, v2 must be a descendant of v3. 

Proposition 2 Let Q be a twig pattern containing only /-edges, //-edges and 

branches. Let v be a node in the matching subtree T' with respect to Q 

created by Algorithm 4. Let q be a node in Q. Then q appears in QS(v) if and 

only if T'[v] contains Q[q]. 

Proof. If-part. A query node q is inserted into QS(v) by executing Function 

subsumption-check(), which shows that for any q inserted into QS(v) we 

must have T''[v] containing Q[q] for the following reason: 

(1) label(v) = label(q). 

(2) For each //-child q' of q there exists a child v' of v such that T[v'] contains 

Q[q']. (See line 15 in Algorithm 4) 

(3) For each /-child q'' of q there exists a /-child v'' of v such that T[v''] 

contains Q[q''] and label(v'') = label(q''). (see lines 15 in algorithm 4) 

In addition, a query node q in QS(v) may comes from a QS of some child 

nodes of v. Obviously, we have T'[v] containing Q[q]. 
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Only-if-part. The proof of this part is tedious. In the following, we give only 

a proof for the simple case that Q contains no /-edges, which is done by 

induction of the height h of the nodes in T'. 

Basis. When h = 0, for the leaf nodes of T', the proposition holds. 

Induction step. Assume that the proposition holds for all the nodes at height 

h ≤ k. Consider the nodes v at height h = k + 1. Assume that there exists a q 

in Q such that T'[v] contains Q[q] but q does not appear in QS(v). Then there 

must be a child node qi of q such that (i) γ(qi) = , or (ii) γ(qi) is not 

subsumed by v when q is checked against v. Obviously, case (i) is not 

possible since T'[v] contains Q[q] and qi must be contained in a subtree 

rooted at a node v' which is a child (descendant) of v. So γ(qi) will be 

changed to a value not equal to  in terms of the induction hypothesis. Now 

we show that case (ii) is not possible, either. First, we note that during the 

whole process, γ(qi) may be changed several times since it may appear in 

more than one QS's. Assume that there exist a sequence of nodes v1, …, vk 

for some k ≥ 1 with v1.LeftPos > v2.LeftPos > … > vk.LeftPos such that qi 

appears in QS(v1),  …., QS(vk). In terms of the induction hypothesis, v' = vj 

for some j ∈ {1, …, k}. Let l be the largest integer ≤ k such that vl.LeftPos 

> v.LeftPos. Then, for each vp (j ≤ p ≤ l), we have 

v'.LeftPos ≥ vl.LeftPos  > v.LeftPos 

In terms of Lemma 1, each vp (j ≤ p ≤ l) is subsumed by v. When we check q 

against v, the actual value of γ (qi) is the node name for some vp's parent, 

which is also subsumed by v (in terms of Lemma 1), contradicting (ii). The 

above explanation shows that case (ii) is impossible. The proof of the 

proposition completes. 
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Lemma 1 helps to clarify the only-if part of the above proof. In fact, it 

reveals an important property of the tree encoding, which enables us to save 

both space and time. That is, it is not necessary for us to keep all the values 

of γ(qi), but only one to check the A-D/P-C relationship. Due to this property, 

the path join [4], as well as the result enumeration [7], can be completely 

avoided.  

The time complexity of the algorithm can be divided into three parts: 

1. The first part is the time spent on accessing L(Q). Since each element 

in a L(Q) is visited only once, this part of cost is bounded by O(|D|·|Q|) 

2. The second part is the time used for constructing QS(vj)'s. For each 

node vj in the matching subtree, we need )(
i

ji
cO  time to do the task, 

where is the outdegree of , which matches vj. (See line 2 and 3 

in Function subsumption-check() for explanation.) So this part of cost 

is bounded by 

ij
c

ij
q

|).||(|)|(|)(
||

QDOcDOcO
Q

k
k

j i
ji

   

3. The third part is the time for establish γ values, which is the same as 

the second part since for each q in a QS(v) its γ value is assigned only 

once. 

Therefore, the total time is O(|D|·|Q|). 

The space overhead of the algorithm is easy to analyze. Besides the data 

streams, each node in the matching subtree needs a parent link and a values. 
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right-sibling link to facilitate the subtree reconstruction, and an QS to 

calculate γ values. So the extra space requirement is bounded by 

O(|D|·|Q| + |D| + |Q|) = O(|D|·|Q|). 

However, if we record only those parts of T', which contain the whole Q or 

the subtree rooted at the output node, the runtime memory usage must be 

much less than O(|D|·|Q|) for the following two reasons: 

(i) The QS data structure for a node is removed once its parent node is 

created. So the space overhead is bounded by O(|D|·LeafQ). 

(ii) During the whole process, the elements in the data streams are 

removed one by one. 

Of course, if we want to record all those parts of T', which contain one or 

more parts of Q, we need O(|D|·|Q|) space to store all the results. 

In the above discussion, we handle wildcards in the same way as any non-

wildcard nodes. But a wildcard matches any tag name. Therefore. L(*) 

should contain all the nodes in t. However, as we can see in the next section, 

by using the XB-tree[4], L(*) contains a much smaller set of nodes in T. In 

fact, during the whole process each entry in an XB-tree is accessed only one 

along the nodes' postorder numbers. That is, for each node in Q, no matter 

whether it is a wildcard or not, we only check it against the nodes currently 

encountered. Thus with the help of XB-trees, * can be handled in the same 

as non-wildcard, causing no extra time complexity. 
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3.3  XB-tree index  

In this section, we discuss how the algorithm presented in the previous 

section can be adapted to an indexing environment by constructing XB-tree 

[4] over data streams.  

For each data stream B(q) associated with a certain q, we can establish an 

XB-tree [4], which can be considered as a variant of B+-tree. In such an 

index structure, each entry in a page is a pair a = (LeftPos, RightPos) 

(referred to as a bounding segment) such that any entry appearing in the 

subtree pointed to by the pointer associated with a is subsumed by a. In 

addition, all the entries in a page are sorted by their LeftPos values. As an 

example, consider a sorted quadruple sequence shown in Figure 3.9(a), for 

which we may generate an XB-tree as shown in Figure 3.9(b). 

(1, 1, 11, 1) 

(1, 2, 2, 2) 

(1, 3, 10, 2) 
P1

(a) (1, 4, 4, 3) 

 

Figure 3.9 Sample of XB-tree 

In each page P of an XB-tree, the bounding segments may partially overlap, 

but their LeftPos positions are in increasing order. Besides, it has two extra 

(1, 5, 9, 3) 

(1, 6, 6, 4) 

(1, 7, 7, 4) 

(1, 8, 8, 4) 

1, 11   2, 2     3, 10 4, 4    5, 9 6, 6   7, 7   8, 8   

1, 11   3, 10    5, 9 7, 8  

1, 11 5, 9  

P.parent

P.parentindexP2 P3

P4 P5 P6 P7 

(b)
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data fields: P.parent and P.parentindex is a number i to indicate that the ith 

pointer in P.parent points to P. For instance, in the XB-tree shown in Figure 

13(b), P7.parentIndex = 2 since the second pointer in P3 (the parent of P7) 

points to P7. 

We notice that in a Q we may have more than one query nodes q1, .., qk with 

the same label. So they will share the same data stream and the same XB-

tree. For each qj (j = 1, …, k), we maintain a pair (P, i), denoted 
jq , to 

indicate that the ith entry in the page P is currently accessed for qj. Thus, 

each 
jq (j = 1, …, k) corresponds to a different searching of the same XB-

tree as if we have a separate copy of that XB-tree over B(qj). 

In [4], two operations are defined to navigate an XB-tree, which change the 

value of σq 

1. advance(σq)(going up from a page to its parent): if σq = (P, i) does not 

point to the last entry of P, i ← i + 1. Otherwise, σq ← (P.parent, P.parentIndex + 

1). 

2. drilldown(σq) (going down from a page to one of its children): If σq = (P, i) 

and P is not a leaf page, σq ← (P', 1), where P' is the ith child page of P. 

Initially, for each q, σq points to (rootPage, 0), the first entry in the root page. 

We finish a traversal of the XB-tree for q when σq = (rootPage, last), where 

last points to the last entry in the root page, and we advance it (in this case, 

we set σq to , showing that the XB-tree over B(q) is exhausted.) As with 

TwigStackXB, the entries in B(q)'s will be taken form the corresponding 

XB-tree; and many entries can be possibly skipped. Again, the entries taken 

from XB-tree will be reordered as shown in Algorithms 2. stream-
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transformation(). According to [4], each time we determine a q (∈Q), for 

which an entry from B(q) is taken, the following three conditions are 

satisfied: 

i) For q, there exists an entry vq in B(q)such that it has a descendant  in 

each of the streams B(qi) (where qi is a child of q.) 

iqv

ii) Each  recursively satisfies (i). 
iqv

iii) LeftPos(vq) is minimum. 

In the case of XB-tree, we use the function getNext() given in [4] to do the 

task and fit it for our strategy, in which the following functions are used. 

isLeaf(q) - returns true if q is a leaf of Q; otherwise, false. 

isRoot(q) - returns true if q is the root of Q; otherwise, false. 

currL(σq) - return the LeftPos of the entry pointed to by σq. 

currR(σq) - returns the RightPos of the entry pointed to by σq. 

isPlainValue(σq) - returns true if σq is pointing to a leaf node in the 

corresponding XB-tree. 

end(Q) - if for each leaf node q of Q, σq =  (i.e., B(q) is exhausted), then 

returns true; otherwise, false.  
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Fuction getNext(q) (*Initially, q is the root of Q.*) 

begin 

 

The goal of the above function is to figure out a query node to determine 

what entry from data streams will be checked in the next step, which has to 

satisfy the above condition (i) - (iii). Lines 7 - 9 are used to find a query 

node satisfying condition (i) (see Figure 3.10 for illustration of Line 7). The 

recursive call performed in line 3 shows that condition (ii) is met. Since each 

XB-tree is navigated top-down and the entries in each node are scanned 

form left to right, condition (iii) must be always satisfied. 

1: 

2: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

for each child qi of q do

{ ri ← getNext(qi);

if (ri ≠ qi  isPlainValue(σq)) then return q; 

q
min

  q'' such that currL(σ
q''

) = mini{currL(
jr )}; 

while (currR(σq) < currL(
maxq )) do advance (σq); 

if (isLeaf(q)) then return q;

3: 

q
max

  q''' such that currL(σ
q'''

) = maxi{currL( )}; 
ir



if (currL(σq) < currL( )) then return q;
minq

else return qmin; 
} 

end 
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If currR(bq) < currL(       )  qmin 

 

Figure 3.10  Illustration for advance (σq) 

Once a q ∈ Q is returned, we will further check σq. If it is an entry in a leaf 

node in the corresponding XB-tree, insert it into stack ST (See Algorithm 

stream-transformation().) Otherwise, we will do advance (σq) or 

drilldown(σq), according to the relation ship between σq and the nodes stored 

in ST. 

We associate each q ∈ Q with an extra linked list, denoted linkq, such that 

each entry in it contains a pointer to a node v stored in ST with label(v) = 

label(q). We append entries to the end of a linkq one by one as the document 

nodes are inserted into ST, as illustrated in Figure 3.11(a). The last entry in 

linkq is denoted as linkqlast. 

 

Figure 3.11 Illustration for advance (σq) 

T: Q: we have to advance q. 

q

qmin

σq

σqmin

ST

…

linkq: 

... T Q 

σparent(q) parent(q)

q

σq 

(a)  (b) 
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Based on the simple structure, tree-embedding() is modified as follows. 

 

Algorithm tree-embeddingXB(Q) 

begin 

In the above algorithm, we distinguish between two cases. If σq) is a leaf 

node in the corresponding XB-tree, we will insert it into ST. Otherwise, lines 

10 - 12 will be carried out. If currR(σq) < LeftPos(linkparent(q),last), we have a 

situation as illustrated in Figure 3.11(b). In this case, we will advance σq (see 

line 11.) If it is not the case, we will drill down the corresponding XB-tree 

(see line 2) since a solution may be found. 

 

1: 

2: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

{q  getNext(root-of-Q); 

if (isPlainValue(σq) then; 

{let v be the node pointed to by σq;

while ST is not empty and ST.top is not v’s ancestor do 

call embeddingCheck(q’, u); } 

while (end(Q)) do

3: 

{x  ST.pop(); Let x = (q’, u); (*a node for u will be created.*) 

ST.push(q, v); advance(σq);

} 

else if ((isRoot(q)  linkq    currR(σq) < LeftPos(linkq,last) 

then advance(σq) (*not part of a solution*) 11: 

end 

else drilldown(σq); (*may find a solution.*)12: 

} 
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Chapter 4   

 

Performance Evaluation  

 

In this section, we will present the results of the experimental evaluation of 

the proposed tree pattern matching algorithms. In particular, we evaluate the 

performance on several data sets and compare our algorithms with some 

other twig matching algorithms reviewed in chapter 2. Then, we focus on 

our algorithms again and discuss the main advantage of our algorithms. 

 

4.1 Experimental Setup  

We implemented our TreeEmbed algorithm using C++ and performed on a 

Pentium IV 3.0Ghz PC with 2GB RAM and 80 GB hard disk, running 

Windows XP professional with Service Pack 3. We compare TreeEmbed 

with 3 other twig join algorithms: TwigStack [4], Twig2Stack [7], and 

TwigList [10]. We choose TwigStack as the basis for comparison, as it is the 

classical holistic twig join algorithm. Twig2Stack improves TwigStack by 

using a kind of complex data structure for storing intermediate results. 

TwigList simplifies the data structure used by Twig2Stack, which is useful 

from a practical viewpoint. 
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4.2  Data Sets 

Our experiments are based on both real and synthetic data sets. For real data 

we use TreeBank from [11] and DBLP [13]. For synthetic data we use 

Xmark from [12]. 

 The TreeBank [11] is a project which focus on the text corpora structure 

analyze. In linguistics, in order to statistically analyze language structure, 

we need to annotate a corpus by POS-tagging (Part of speech tagging). 

For example, information about each word's part of speech is tagged by 

verb, noun, adjective, etc. Commonly, the structures are represented as 

tree structures, as shown in Figure 4.1. The deep recursive structure of 

this data makes it an interesting case for experiments. 

 The Digital Bibliography and Library Project database (DBLP) is the 

popular computer science bibliography in the XML format. It includes 

conference paper articles, journal papers, etc. The original data set is a 

huge file with file size 650MB. DBLP dataset is a wide and shallow 

document, as shown in Figure 4.1. 

 XMark is an XML benchmark project. It can efficiently generate XML 

document files with several different scales, which can be the size of 

several GBs. Independent of the size of generated documents; it uses 

only low and constant memory. We use this data generator to generate 

several synthetic dataset for scalability analysis.  

Some quantitative characteristics of the data sets are summarized in Table 1. 
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To study the effects of different tree shapes, we use TreeBank data set. To 

explore the impact of document quantity, we use DBLP. Xmark is for 

checking scalability. 

Table 4.1 The List of Data Sets 

 Size of Data 
Set(MB) 

Number of 
Nodes(Million)

Max Tree 
Depth 

Average 
Tree Depth 

TreeBank 82 2.4 36 7.9 
DBLP 650 16.8 7 2.7 
XMark1 151 2 12 5.5 
XMark2 303 4.1 11 5.0 
XMark3 456 6.1 12 5.5 
XMark4 609 8.2 11 5.5 
XMark5 761 10.2 11 5.0 
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Figure 4.1 Sample data structures of 3 different data sets 

Title Subsection Title Paragraph ......

"XML"  Table  "Query" Table Figure
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(c) A sample of XMark data structure 
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4.3  Tested Methods 

We experimented with the following four methods of twig pattern query 

evaluation to study and compare their performance. 

TwigStack [4]: The first holistic twig join algorithm. It uses a chain of 

linked stacks to compactly represent partial results, which match the root-to-

leaf query paths. They are then composed to obtain matches for the twig 

pattern. 

Twig2Stack [7]: A bottom up algorithm for processing twig queries based on 

an encoding scheme. The algorithm generates a single combined stream with 

post order sorting for all query nodes matches by using a single stack. 

Working in the postorder, it can be decided if an entire subtree has a match 

when the top node is met. 

TwigList [10]: One-phase holistic twig pattern matching algorithms based on 

TwigStack. It avoids devising a stack structure to hold matching paths until 

all twig matches are formed, by using a simple list and intervals given by 

pointers. 

TreeEmbed [5]: Processing a tree reconstruction from data streams with the 

XB-tree index structure being used. It associates each query node with an 

XML data stream during the reconstruction process to reduce the time 

complexity.  
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4.4  Experiments on TreeBank 

In this section, we present our test results on the TreeBank data set. It is a 

simple data set of sentence structures with each represented as a tree. In each 

tree, the leaf nodes are the words in a sentence, and the root node as well as 

the internal nodes, represent the structure of the sentence, as shown in Figure 

4.1(a). A sentence can be very complicated and the tree representing it can 

be deep and recursive, which makes the data set an interesting case for 

experiments. In the test, we use a variety of XML queries patterns, as shown 

in Table 4.2- 4.6. 

 

4.4.1 Queries 

We tested 25 queries which are organized into 5 groups as shown in Table 

4.2 - 4.6. The syntax of the path expressions is borrowed form XPath, and is 

simplified for the sake of easy understanding. In an expression, '/' stands for 

a parent-child relationship, and '//' for an ancestor-descendant relationship. 

The expression within a pair of square brackets is a predicate. The logic 

symbol "" connects different paths together. 

Table 4.2 Group I. Queries with incremental path lengths. 

Query  Path Expression 

Q1 //S//NP 

Q2 //S//NP//NNP 

Q3 //S//NP//VP//NNP 

Q4 //S//VP//ADJP//S//NNP 

Q5 //S//VP//ADJP//SBAR//S//NNP 
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Table 4.3 Group II. Queries with incremental depths. 

Query  Path Expression 

Q6 //S//NP 

Q7 //S[.//NNP  VP] 
Q8 //S[.//NNP]/VP[.//NP] 

Q9 //S[.//NNP]/VP[.//NP[.//S]] 

Q10 //S[.//NNP]/VP[.//NP[.//S[.//NNP]]] 

 

 

Table 4.4 Group III. Queries matching at higher level of a document. 

Query  Path Expression 

Q10 //S [NP/NNP]/VP[VBD] 

Q11 //S [NP/NNP]/VP[VBZ] 

Q12 //S [NP/NN]/VP[VBD] 

Q13 //S [NP/NN]/VP[VBZ] 

Q14 //S [NP/PRP]/VP[VBD] 

 

 

Table 4.5 Group IV. Queries matching at middle level of a document. 

Query  Path Expression 

Q16 //NP [NP/NNP]/VP[VBD] 

Q17 //NP [NP/NNP]/VP[VBZ] 

Q18 //NP [NP/NN]/VP[VBD] 

Q19 //NP [NP/NN]/VP[VBZ] 

Q20 //NP [NP/PRP]/VP[VBD] 
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Table 4.6 Group V. Queries matching at lower levels of a document. 

Query  Path Expression 

Q21 //VP [VBZ['be']]/ADVP[RB['here']] 

Q22 //VP [VBZ['is']]/ADVP[RB['here']] 

Q23 //VP [TO['to']]/ VP[VB['leave']] 

Q24 //VP [TO['to']]/ VP[VB['rain']] 

Q25 //VP [MD['should']]/ VP[VB['leave']] 

 

The queries in Group I are used to test the impact of path lengths on 

performance. The queries in Group II are to test the impact of node degrees 

on performance. The queries in Group III - V are to test the impact on 

performance when query trees are embedded in different parts of a document. 

In a same group, the queries are embedded at the same subtree level and 

follow the left-to-right order. 

4.4.2 Test results 

We ran each group five times, and recorded an average execution time for 

each query as the final test result. 

Figure 4.2 shows the test results of Group I. From the figure, we can see that. 

Twig2Stack is less efficient than the other three algorithms. The reason for 

this is that, with only one single path involved, the hierarchical stack 

operation in Twig2Stack spends some unnecessary operation time. 

Comparing the results shown Figure 4.2 (a), (b) and (c), we also see that 

TreeEmbed works better than the other 3 algorithms, especially the total 

execution time is much lower than theirs. The Figure 4.2(c) shows the 

comparing checking times for each algorithm, it explains the where the time 

spent on when querying take place. Actually, the total execution time grows 
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in order of the times of comparing nodes. In our algorithm, only a tree 

reconstruction process is involved, in which the tree matching is checked 

with no join operations being performed. 

The results of Group II are shown in Figure 4.3. As the query tree depth 

increases, the total execution time of TwigStack increases dramatically. It is 

because for the deep and recursive data structure of the TreeBank getNext() 

function (used in TwigStack) has to a lot of checkings. We also find that our 

algorithm works best for this group of queries. The reason for this is that we 

treat the data as a stream. No matter how deep the recursion of the data 

structure is, we only visit each node once. By using the XB-tree index 

structure, we can avoid any unnecessary node access. 

The results form the rest three groups (Figure 4.4, 4.5, 4.6) are similar to 

each other no matter where a matching takes place. For the same reason as 

above, TwigStack needs more time than the other three methods. It spends 

around 4 to 7 seconds for the queries in Group III, VI, and V. Again, 

TreeEmd method uses the least time with around 0.5 second for answering 

each query. 

Due to the two phase operations of TwigStack, it needs to store all path 

matches in memory. From the Figures about memory usage, we can found 

TwigStack consumes much more memory than the other 3 one phase 

algorithms.  
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Figure 4.2 (c) Total number of comparisons in Group One 
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Figure 4.2 (e) Number of Search Results in Group One 
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Figure 4.3 (d) Memory Usage in Group Two 
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Figure 4.4 (a) Query Time in Group Three 
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Figure 4.4 (c) Total number of comparisons in Group Three 
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Figure 4.4 (e) Number of Search Results in Group Three 
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Figure 4.5 (a) Query Time in Group Four 
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Figure 4.5 (b) Total Execution time in Group Four 
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Figure 4.5 (c) Total number of comparisons in Group Four 
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Figure 4.5 (d) Memory Usage in Group Four 
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Figure 4.6 (a) Query Time in Group Five 
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Figure 4.6 (b) Total Execution time in Group Five 
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Figure 4.6 (c) Total number of comparisons in Group Five 
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Figure 4.6 (d) Memory Usage in Group Five 
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Figure 4.6 (e) Number of Search Results in Group Five 

 

4.5  Experiment on DBLP data set 

In this experiment, we report the test results on DBLP data set. DBLP is a 

wide and shallow data set. It is very suitable for us to test the quality of the 

four different kind of twig pattern matching algorithm. 

4.5.1 Queries 

In this section, we list all the queries used in the test. They can be organized 

into three groups of queries: small, median and large. Each group has 5 

different queries, in which the query node names are different, as shown 

below: 
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Figure 4.7 Query of small size 
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Figure 4.8 Query of median size 
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Figure 4.9 Query of large size 
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4.5.2 Test results 

Figure 4.10 to 4.12 show the results of this experiment. From these charts, 

we see that the TreeEmbed method beats all the other methods in this test. 

When the queries are small, TreeEmbed finishes most of them within 7 

seconds, whereas TwigStack takes about 1 minute to finish a query. The 

performance of Twig2Stack is quite better than TwigSatck but still takes 

around 18 seconds. Only TwigList is close to TreeEmbed, which is around 8 

seconds. For the median size queries, most of them can be finished in 12 

seconds by TreeEmbed, slightly longer than small size queries. However, 

the query time of TwigStack and Twig2Stack increase rapidly, nearly 

doubled than small size test results. The average difference between 

TwigList and TreeEmbed increases to more than 18 seconds. For the Large 

size queries, the average query time of TreeEmbed is around 40 seconds, but 

it still performed best in this group. Especially, the average difference 

between TwigList and TreeEmbed becames 60 seconds. TwigStack has to 

spend about 8 minutes to finish a query. Twig2Stack is much better, but 

needs more than 2 minutes. 

We find that the performance of TwigSatck and TreeEmbed are less stable 

than Twig2Stack and TwigList, especially for the group of the small size 

queries (e.g. Q3, Q5 and Q10), where their performance variations are more 

radical than those of large queries. Due to the randomness of XB-tree, the 

TreeEmbed method may skip some leaf nodes. As the conclusion mentioned 

in [4], for data sets with solutions concentrated around certain portions of the 

data, the impact of XB-trees is more significant since many internal nodes 

can be skipped. This can be an explanation for the randomness of the test 

result. 
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Overall, TreeEmbed works best in this experiment. The results show that by 

using XB-tree, TreeEmbed can immediately jump to potential matching 

documents without running through each document one by one to carry out 

an embedding checking. 
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Figure 4.10 (a) Query Time in Group One 
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Figure 4.10 (b) Total Execution Time of Group One 
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Figure 4.10 (c) Total number of comparisons in Group One 
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Figure 4.10 (d) Memory Usage in Group One 
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Figure 4.10 (e) Number of Search Results in Group One 
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Figure 4.11 (a) Query time in Group Two 
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Figure 4.11 (b) Total Execution Time of Group Two 
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Figure 4.11 (c) Total number of comparisons in Group Two 
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Figure 4.11 (d) Memory Usage in Group Two 
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Figure 4.11 (e) Number of Search Results in Group Two 
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Figure 4.12 (a) Query Time in Group Three 
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Figure 4.12 (b) Total Execution time in Group Three 
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Figure 4.12 (c) Total number of comparisons in Group Three 
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Figure 4.12 (d) Memory Usage in Group Three 
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Figure 4.12 (e) Number of Search Results in Group Three 
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4.6  Experiments on XMark 

In this experiment, we will make tests on XMark data set. The data set 

structure was shown in Figure 4.1 (c). We use 5 factors to test the scalability 

of the 4 algorithms.  

4.6.1 Queries 

In this test, we used only two queries. One is a simple path and the other is 

of a tree structure, as shown in Table 4.7. 

Table 4.7 The queries of XMark 

Name Query Trees 

Q1 //item[description]//mail 

Q2 //open_auction[.//annotation[.//person]//parlist]//bidder//increase 

 

4.6.2 Results 

Figure 4.13 show the test results on XMark. The data size of this test can be 

found in Table 4.1. We vary the XMark scale factor from 1 to 5. From the 

charts in Figure 4.13, we see that the times of all the four algorithms grow 

linearly in the document sizes. Again, we see that the TreeEmbed method 

beat the other methods in this experiment. Something needs to notice is that 

as the size of queries increases the times spent by TwigStack and 

Twig2Stack grow much faster than TwigList and TreeEmbed. For Q2, the 

query time of TwigStack and Twig2Stack is nearly 4 times larger than that 

for Q1, while for TwigList and TreeEmbed the query time of Q2 is only 

around 2 times larger than that for Q1. The reason for this is that when 

TwigStack and Twig2Stack use a join operation to enumerate results, a huge 
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volume of intermediate results will be produced and manipulated. But 

TwigList and TreeEmbed do not generate any intermediate results. So the 

impact of the query size is not so large as TwigStack and Twig2Stack. 
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Figure 4.13 (a) The query time of XMark Q1 
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Figure 4.12 (d) Memory Usage in XMark Q1 
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Figure 4.12 (e) Number of Search Results in XMark Q1 
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Figure 4.14 (a) The query time in Xmark Q2 
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Figure 4.12 (e) Number of Search Results in XMark Q2 
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Chapter 5   
 

Conclusion and Future Work  

 

5.1  Conclusion  

In this thesis, we developed a new algorithm to evaluate tree pattern queries 

based on unordered tree matching. The motivation for this work is to 

overcome some limitations of current query evaluation methods, such as 

redundant computation of subtrees which contain the matching nodes, or 

reading and processing parts of the streams which cannot contain useful 

nodes. In order to achieve a better performance, we use a new labeling 

method for tree pattern queries, and treat the data set in a bottom up way. 

The core idea of the method is to reconstruct a tree from data streams, during 

which each node v that matches a query node will be inserted into the tree 

and associated with a query node stream QS(v) such that for each node q in 

QS (v) T[v] embeds Q[q]. Especially, the algorithm can be adapted into an 

indexing environment with XB-tree [4] being used. 

An overview of the tree pattern matching problem for XML databases is 

presented, which provides some background information on the tree 

encoding, the data streams, as well as the XB-tree index technique to solve 

this problem. We have also surveyed the literature related to the tree pattern 

matching problem, and proposed a new bottom up query evaluation 

algorithm TreeEmbed. In addition, how to combine TreeEmbed with the 

XB-tree index is discussed in great detail. We implemented the bottom up 
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tree reconstruction algorithm and the XB-tree index over the data streams, 

and compared the performance of our method with three other algorithms: 

TwigStack, Twig2Stack and TwigList, which shows that our query 

evaluation method TreeEmbed is promising. 

5.2  Future Work 

As the future work, we will continue our research in the following aspects. 

 XB-tree enhance 

The XB-tree as an index technique plays a very important role in our 

algorithm. We will do more test on its dynamical maintenance when the 

deletion and insertion of nodes are conducted.  

 Ordered and Unordered 

Our algorithm only supports the unordered tree matching. We will make 

more analysis on our tree reconstruction process to find a way to support 

the ordered tree matching. [3] 

 Practical Example 

In our experiments, our algorithm shows a high efficiency. But more 

work has to be done to make it useful in practice, especially, to extend it 

to do the image search, the protein sequence search and the social 

network search, etc. Also, a graphical interface needs to be established. 

 Support XQuery  

XQuery is a new query language designed specifically for querying 

XML data. Its current version is 1.0 [14] and it will become a standard 
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for processing XML data sets. So, in the near future, any query will be 

submitted in this standard format. One of our next main tasks is to 

integrate our algorithm into this language to speed up the query 

evaluation. 
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