
Twig Pattern Search in XML Database

By

LEPING ZOU

A thesis submitted to the

Department of Applied Computer Science

in conformity with the requirements for

the degree of Master of Science

University of Winnipeg

Winnipeg, Manitoba, Canada

December 2010

Copyright © Leping Zou, 2010

Abstract

Today, Extensible Markup Language (XML) is becoming more and more

popular for data representation and data exchange over the World Wide Web.

So, more data files over the WWW will be represented in the XML format;

and handling a large amount of XML documents becomes compelling. For

the current search technology, we often have the experience that we can find

many results when we search the Internet by issuing some key words, but

most of them are useless or just not the one we want. So, for the next

generation of the search engine, the main challenge is how to find what we

exactly want. The main purpose of this thesis is to develop an algorithm for

efficiently searching a pattern, called a twig pattern or tree pattern, to find

all the matching documents. Unlike the traditional index methods that split a

tree pattern query into several paths, and then stick the results together to

provide the final answers, the twig pattern search uses tree structures as the

master unit of queries to avoid expensive join operations. In our research, an

efficient algorithm for the tree mapping problem in XML databases is

proposed. Given a target tree T and a pattern tree Q, the algorithm can find

all the embeddings of Q in T in O (|D||Q|) time, where D is the largest data

stream associated with a node of Q.

 i

Acknowledgments

I am heartily thankful to my supervisor, Dr. Yangjun Chen, for his

encouragement, guidance and support from the initial to the final level

enabling me to develop an understanding of this thesis work.

I would also like to thank to my friend Sandra Leone, Jian Ren and

Buddhika Madduma, who spent their time on the implementation of the

algorithm and the performance experiment. I am grateful to their patience

and valuable helps.

My deepest gratitude goes to my parents, Yuanming Zou and Zhengwu Shen

for their emotional support and encouragement. I dedicate this thesis to them.

Lastly, I offer my regards and blessings to all of those who supported me in

any respect during the completion of this thesis work.

 ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables v

List of Figures vi

Chapter 1

Introduction..1

1.1 Document Type Definition (DTD) .. 3

1.2 Problem Statement ... 4

1.3 Preliminaries .. 6

1.3.1 Tree.. 6

1.3.2 Tree encoding .. 7

1.3.3 XB-tree Index .. 8

1.4 Object... 10

1.5 Thesis Organization ... 10

Chapter 2

Related Work ...11

2.1 The early research for twig pattern matching ... 11

2.2 Holistic twig join... 12

2.3 Improvements of holistic twig join ... 18

Chapter 3

Twig Pattern Search..22

3.1 Tree encoding... 22

 iii

3.2 Main Algorithm ... 24

3.2.1 Tree reconstruction.. 24

3.2.1.1 DateStream generation... 24

3.2.1.2 DataStream Transition ... 25

3.2.1.3 Reconstruction ... 27

3.2.1.4 Correctness of Algorithm 3.. 33

3.2.2 Tree Matching ... 35

3.3 XB-tree index ... 47

Chapter 4

Performance Evaluation ...54

4.1 Experimental Setup.. 54

4.2 Data Sets .. 55

4.3 Tested Methods.. 58

4.4 Experiments on TreeBank.. 59

4.4.1 Queries... 59

4.4.2 Test results... 61

4.5 Experiment on DBLP data set.. 75

4.5.1 Queries... 75

4.5.2 Test results... 79

4.6 Experiments on XMark.. 88

4.6.1 Queries... 88

4.6.2 Results ... 88

Chapter 5

Conclusion and Future Work...95

5.1 Conclusion ... 95

5.2 Future Work. .. 96

Reference ..98

 iv

List of Tables

4.1 The List of Data Sets ...56

4.2 Group I. Queries with incremental path lengths..59

4.3 Group II. Queries with incremental depths ...60

4.4 Group III. Queries matching at higher level of a document..............................60

4.5 Group IV. Queries matching at middle level of a document.............................60

4.6 Group V. Queries matching at lower levels of a document61

4.7 The queries of XMark ...88

 v

List of Figures

1.1 A sample file in XML format..1

1.2 XML data structure shown as a tree ..2

1.3 A sample of DTD ...4

1.4 A sample of tree embedding..5

1.5 A sample of tree structure ..7

1.6 A sample of tree index and query..8

1.7 A sample of XB-tree ...9

2.1 Illustration of TwigStack process ..12

2.2 A list for the data and query of TwigStack ..13

2.3 TwigStack evaluating query...16

2.4 Shortage of TwigStack...17

2.5 Hierarchies of stacks for Twig2Stack...19

2.6 Intervals for TwigList ..20

2.7 Lists of Stacks of HolisticTwigStack...2

2.8 Intervals for TwigFast ...2

3.1 Tree Encoding ...23

3.2 Illustration for B(qi)'s...25

3.3 T' is achieved by removing v3 from T..27

3.4 Matching tree obtained based on a query tree ...28

3.5 Illustration for the construction of a matching subtree......................................29

3.6 Sample trace for Algorithm 3 ..33

3.7 Illustration of generating QS's ...36

3.8 Sample trace for Algorithm 4 ..42

3.9 Sample of XB-tree ...48

3.10 Illustration for advance (σq)...52

 vi

3.11 Stack structure in advance (σq) ..52

4.1 Sample data structures of 3 different data sets...57

4.2(a) Query Time in Group One...63

4.2(b) Total Execution Time of Group One...63

4.2(c) Total number of comparisons in Group One...64

4.2(d) Memory Usage in Group One ...64

4.2(e) Number of Search Results in Group One ..65

4.3(a) Query time in Group Two ...65

4.3(b) Total Execution Time of Group Two..66

4.3(c) Total number of comparisons in Group Two ..66

4.3(d) Memory Usage in Group Two ..67

4.3(e) Number of Search Results in Group Two ...67

4.4(a) Query Time in Group Three ..68

4.4(b) Total Execution time in Group Three ...68

4.4(c) Total number of comparisons in Group Three ..69

4.4(d) Memory Usage in Group Three ..69

4.4(e) Number of Search Results in Group Three ...70

4.5(a) Query Time in Group Four..70

4.5(b) Total Execution time in Group Four ...71

4.5(c) Total number of comparisons in Group Four ..71

4.5(d) Memory Usage in Group Four ..72

4.5(e) Number of Search Results in Group Four ...72

4.6(a) Query Time in Group Five ..73

4.6(b) Total Execution time in Group Five..73

4.6(c) Total number of comparisons in Group Five ..74

4.6(d) Memory Usage in Group Five...74

4.6(e) Number of Search Results in Group Five..75

4.7 Query of small size ..76

 vii

 viii

4.8 Query of median size ...77

4.9 Query of large size ...78

4.10(a) Query Time in Group One...80

4.10(b) Total Execution Time of Group One...81

4.10(c) Total number of comparisons in Group One...81

4.10(d) Memory Usage in Group One ...82

4.10(e) Number of Search Results in Group One ..82

4.11(a) Query time in Group Two ...83

4.11(b) Total Execution Time of Group Two..83

4.11(c) Total number of comparisons in Group Two ..84

4.11(d) Memory Usage in Group Two ..84

4.11(e) Number of Search Results in Group Two ...85

4.12(a) Query Time in Group Three ..85

4.12(b) Total Execution time in Group Three ...86

4.12(c) Total number of comparisons in Group Three ..86

4.12(d) Memory Usage in Group Three ..87

4.12(e) Number of Search Results in Group Three ...87

4.13(a) The query time of XMark Q1..89

4.13(b) Total Execution time in XMark Q1...90

4.13(c) Total number of comparisons in XMark Q1 ...90

4.13(d) Memory Usage in XMark Q1..91

4.13(e) Number of Search Results in XMark Q1 ..91

4.14(a) The query time in Xmark Q2...92

4.14(b) Total Execution time in XMark Q2...92

4.14(c) Total number of comparisons in XMark Q2 ...93

4.14(d) Memory Usage in XMark Q2..93

4.14(e) Number of Search Results in XMark Q2 ..94

Chapter 1

Introduction

XML stands for Extensible Markup Language. It is a series of rules for

marking up documents in a form which can be understood by computer. The

Specification is produced by W3C (World Wide Web Consortium). XML

not only describes the data itself, but also the semantics of the document.

This enables users to organize information flexibly. That is the reason why it

is used so widely in today's Internet. In order to give an intuitively

impression, a sample of XML document is given below.

< menu>

<food>

 <name>Belgian Waffles</name>

<price>$5.95</price>

<description>two of our famous Belgian Waffles </description>

 <calories>650</calories>

 </food>

</ menu>

Figure 1.1 A sample file in XML format

In this sample, a menu record is represented in XML format. It basically

contains three components: elements, contents, and attributes. An element is

a component begins with a start-tag and ends with a matching end-tag, such

as <menu> and </menu> in the above example. Content is a "raw" data that

 1

represents the content of a document such as "Belgian Waffles". An attribute

is a name/value pair that represents the additional properties of an element.

For example, the element img has two attributes: src and alt, specified as

follows

 .

Usually, an element can contain content and sub-elements, i.e. multiple

elements which can be nested in some way. Therefore, any XML document

can be represented as a tree-like structure, referred to as a document tree or

an XML tree, in which all contents are mapped to the leaf nodes and all

element tags are mapped to the internal nodes. For example, Figure 1.2

shows the tree structure associated with the sample document shown in

Figure 1.1.

Belgian Waffles

name img price description colories

Belgian waffles src alt $5.95 two of our famous

'by Raphael' Belgian waffles.jpg

650

food

Figure 1.2 XML data structure shown as a tree

 2

1.1 Document Type Definition (DTD)

A DTD describes the structure of a class of XML documents by the element

and attribute-list declarations. In an element declaration, the names of all its

sub elements are given, such as menu containing food, and food containing

name, img, price, description, and calories, which will be put in a pair of

parentheses as shown in the above example. Attribute-list declarations name

the possible set of attributes for each element, such as the #PCDATA

followed by the name of the element.

<?xml version="1.0"?>

<!DOCTYPE menu[

<!DOCTYPE food [

<!ELEMENT menu (food)>

<!ELEMENT food (name, img, price, description, calories)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT img (src, alt)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT calories (#PCDATA)>

<!ELEMENT src (#PCDATA)>

<!ELEMENT alt (#PCDATA)>

]>

]>

Figure 1.3. A sample of DTD

 3

1.2 Problem Statement

The XML is a tree-structured model for representing data. As more and

more XML files are widely used in the Internet for data exchange and

storage, searching in XML becomes important. One of the methods is the

tree pattern matching, heavily used in the systems offering search in XML

Languages such as XPath [15] and XQuery [14]. XPath is a declarative

language, and XQuery is an iterative language which uses XPath as a

building block, providing path expressions as a searching condition. For

example, /food/img/[alt = 'by Raphael'] is a path expression that inquiries

one of the paths in the tree shown in Figure 1.1(b) to find any picture painted

by Raphael. Multiple path expressions can form a complex query that

contains multiple paths, which are in fact a tree structure. Ordinarily, the

query tree is small. So, the corresponding tree matching problem is called a

"twig" pattern matching. In Figure 1.4, we show a simple twig.

A

B

D E F G

C E F

A

Figure 1.4 A sample of tree embedding

 4

Definition [5] An embedding of a tree pattern Q into an XML document T is

a mapping f: Q → T, from the nodes of Q to the nodes of T, which satisfies

the following conditions:

(i) Preserve node label: For each u ∈ Q, label(u) = label(f(u)) (or say, u

matches f(u)).

(ii) Preserve parent-child/ancestor-descendant relationship: If u → v in Q,

then f(v) is a child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u)

in T.

If there exists a mapping from Q into T, we say, Q can be imbedded into T,

or say, T contains Q.

Up to now, a lot of methods have been proposed to solve this problem. Early

methods, such as those discussed in [2, 6, 9], works as follows. First, a twig

pattern is decomposed into multiple paths to find the match. Then, all the

paths are joined together. This definitely involves the time consuming join

operations. Recently, several holistic twig join algorithms are proposed to

solve the problem. The first one is TwigStack [4]. It uses a stack to handle

the intermediate results. Because path matches don’t need to be part of

complete matches, a lot of redundancy is conducted (we will discuss this in

great detail in a later section. The other holistic twig join methods can be

found in [7, 10, 16, 17, 18, 19]. Generally speaking, they all try to improve

in two directions: improving the join algorithms, such as [7, 10, 16]; and

using indexes to speed up accessing disks, such as [17, 18, 19].

In this thesis, we proposed a new algorithm with no join operations involved.

The algorithm takes a set of data streams as inputs, and establishes XB-tree

 5

as indexes. By combining these two strategies, we achieve an efficient

method for evaluating twig pattern queries.

1.3 Preliminaries

In this part, we will present some concepts related to this thesis, including

the definition of trees, tree encoding, and the index structure of XB-Tree.

These conceptions are quite necessary for a further discussion.

1.3.1 Tree

A tree structure is a way to represent the hierarchical nature of data, as

illustrated in Figure 1.5. The elements are referred to as "nodes", and the

lines connecting elements are as "branches. We use T to represent a tree and

the root of the tree is denoted by RootT. Nodes without children are called

leaf nodes. The names of the relationships between nodes come from family

relationships. A node v, which is one level higher than another node u, is

called the parent of u if they are on the same path. For example, the node c is

the parent of e and f. The nodes having the same parent are called siblings.

For instance, b and c are siblings. They have the same parent a. The number

of a node’s children is called the degree of the node. The degrees of node b

and c are 1 and 2, respectively. A subtree is a tree whose root is the child of

some non-root node. For example, in Figure 1.5 the trees rooted at b and c

are two subtrees of node a, which is the root of T. There are three important

properties for any tree we discussed: size, height, and width. The total

number of the nodes is called the tree’s size. The length of the longest path

in a tree is called the tree’s height. Finally, the number of the leaf nodes is

 6

the tree’s width. In Figure 1.5, the size of T is 7, the height is 4, and the

width is 3.

g

b

d e f

c

a

Figure 1.5 A sample of tree structure

1.3.2 Tree encoding

For the efficiency of twig searching, tree encoding schema is very important.

It includes two aspects: how the nodes in a partition are ordered, and how

the position of a node is encoded. For the first question, most algorithms

store nodes pre-orderly by using the depth first traversal. It means that a

ancestor can be seen before its descendants. For the second question, a tree

encoding is used, which assigns leftPos, RightPos, level values to nodes to

recognize their different relationships, as shown in Figure 1.6 (b). The

LeftPos and RightPos numbers reflect the positions of opening and closing

tags in XML.

 7

B(2,2) C(3,6)

B(4,4) C(5,5)

(c) Encoding Tree

A(1,7)

(b) Encoding Nodes

<A>

(a) XML Data

B 2 2

Tag Left Right

1 7 1 A

Level

B 4 4

C 3 6

3 5 5 C

2

3

2

</C>

<C></C>

<C>

Figure 1.6 A sample of tree index and query

1.3.3 XB-tree Index

In our algorithm, we will use an index structure, the so-called XB-tree [4], to

improve the search efficiency. As the name suggests, an XB-tree is just a

variant of B+-trees. However, an XB-tree is constructed based on the

encoding scheme discussed above.

(1, 1, 11, 1)

(1, 2, 2, 2)

(1, 3, 10, 2)

(1, 4, 4, 3)

(1, 5, 9, 3)

(1, 6, 6, 4)

(1, 7, 7, 4)

(1, 8, 8, 4)

1, 11 2, 2 3, 10 4, 4 5, 9 6, 6 7, 7 8, 8

1, 11 3, 10 5, 9 7, 8

1, 11 5, 9

P.parent

P.parentindex

P7

(a)

(b)

P5 P4

P3

P6

P1

P2

Figure 1.7 A sample of XB-tree

 8

Assume that we have an XML document file stored as a data stream as

described in Figure 1.7 (a). We can establish an XB-tree over it, as shown in

Figure 1.7 (b). The nodes in the leaf pages of the XB-tree are sorted by their

LeftPos values, and each node is connected by a link from left to right. The

main difference between a B+-tree and an XB-tree is in the data contained in

the internal pages. Each entry v in an internal page of the XB-tree contains a

pair [v.L, v.R] (where L and R represent LeftPos and RightPos, respectively;

and the whole pair represents a bounding segment) and a pointer to its child

page v.page (which contains all those nodes with pairs completely included

in [v.L, v.R] as shown in Figure 1.7 (b). For example, P2 contains P4 and P5.

We can also find that all L values in a page are in increasing order although

the bounding segments in a page may partially overlap. For instance, in P2,

(1, 11) contains (3, 9). Each page P has a pointer to the parent page, denoted

as P.parent. In addition, P.parentIndex is an index of the node in P.parent,

which points back to P as shown in the Figure 1.7(b). We will discuss how

to use XB-trees in the next section.

1.4 Object

The main goal of this thesis is to create a new algorithm for evaluating twig

pattern queries, including:

 Implementing a new bottom-up twig pattern search algorithm which can

be applied to efficiently determine whether one tree can be embedded in

another.

 9

 Investigating the effectiveness of this algorithm and comparing it with

other 3 different algorithms which are also used for twig patter search

problem.

1.5 Thesis Organization

The remainder of the thesis is organized as follows. In Section 2, we review

and discuss the related works. In section 3, we discuss our algorithm in great

detail. Section 4 is devoted to the implementation and experiments. Finally,

the conclusion and future work are set forth in Section 5.

 10

Chapter 2

Related Work

Generally speaking, the problem of twig pattern matching, is to query all

existing embedding patterns in the data. This problem can be classified into

two different categories. The first one is the unordered tree pattern, in which

only the ancestor-descendant (A-D) and parent-child (P-C) relationships in a

twig are considered. The second one is the ordered tree pattern, in which all

structural information in the query has to be checked in the data. But the

majority of twig queries in practice only concerns A-D and P-C axes. In this

chapter, we will review the previous work on this topic.

2.1 The early research for twig pattern matching

The early solutions [2, 6, 9] on the twig pattern matching generally consisted

in first decomposing twig queries into binary structural relationships

between pairs of nodes, and then matching each of the binary relationships

against the XML database. The final results are created by joining together

all the path matches.

The main disadvantages of these decomposition-based approaches are that

the size of the intermediate results can be very large, even for quite small

search results. Another disadvantage is for the P-C relationships. The

algorithms work well for treating the A-D relationships. But in the presence

of the P-C relationships, a lot of useless matches will be conducted. So, the

 11

users may wait long to get (partial) results. In order to overcome this

problem, many interesting twig join algorithms have been proposed.

2.2 Holistic twig join

The first holistic twig join algorithm was TwigStack, proposed by Bruno et

al [4]. It can be divided into two-phase. In the first phase, all those paths in

an XML document will be found, each of which matches a root-to-leaf path

in the query. In the second phase, they are joined together to form the final

result. The core idea of this method is to maintain a stack for each query

node.

In general, each query node q in a query Q is associated with matching

stream Tq; and a stack for a query node q, denoted as Sq, is used to keep the

current ancestor nodes of q. For simplicity, we use a path set shown in

Figure 2.1(a) for illustration. Figure 2.1(b) is the query, in which label(q1) =

A, label(q2) = B, and label(q3) = C. So, we have = {A1, A2}, = {B1,

B2, B3}, and = {C1}. Each data entry in a stack consists of a pair:

(positional representation of a node from Tq, pointer to an entry in Sparent (q))

as show in Figure 1(c) :

1qT
2qT

3qT

A2 B1 B3B2 C1 A1

A2

B1

B2

B3

C1A B C

(c) Stack(a) Data Set (b)Query

A1

Figure 2.1 Illustration of TwigStack process

Figure 2.1(c) shows the stacks for all the query nodes in Figure 1(b).

 12

According to the algorithms discussed in [4], when the current query node is

a leaf, all related matching nodes are output. So, when the node C1 is pushed

into the stack, all matching nodes will be popped out. By using the pointer to

a node in Sparent (q), the nodes can easily be found. They are: {C1, B3, A2},

{C1, B2, A1}, and {C1, B1, A1}. Nodes on a higher level of a stack cannot be

an ancestor of any node on a lower level of the stack. It is because the data

nodes are processed in pre-order. In this example, A2 is not the ancestor of

B2. So {C1, B2, A2} is not the query result. The processing time is linear to

the size of the data streams and the space needed is O (d |Q|), where d is

the maximal depth of the data set. In this example, it is 6.

In order to do a linear merge in the second phase, a technique was

introduced to get all path matches sorted so that higher matching query

nodes appear first. In [6], the so-called "self- and inherit-lists" for each

stacked node were used to delay out-of-order outputs. Figure 2.2 shows the

list for the data and query in Figure 2.1.

Figure 2.2 A list for the data and query of TwigStack

A1

A2

B1

B2

B3
(A2B3C1)

(A1B1C1) (A1B2C1)(A1B3C1)

(A2B3C1)

(B3C1)

(B2C1)

(B3C1)
(B1C1)

(B2C1) (B3C1)

When a node v is popped out of a stack, in order to maintain the correct

output order, the contents of its lists are appended to the inherit-lists of the

node below v in the same stack. For the example shown in Figure 2.1, (B1,

C1)(B2, C1)(B3, C1) is appended to B1, (B2, C1)(B3, C1) to B2, etc. But if there

are some ancestor nodes in the parent stack, the popped node v can use,

 13

while the node below v in the same stack cannot, decided by the inter-stack

pointers, the contents of the lists, appended to its self-list. As shown in the

example, popped node B3 leads to adding (A2, B3, C1) to the self list of A2.

 14

Algorithm 1 TwigStack

Function TWigStack(Q) 1:

2: While not atEnd(Q)

3: q : = getNext(Q.root)

4: if not isRoot(q)

5: cleanStack(Sparent (q), Cq)
6: if isRoot(q) or not empty

7: cleanStack (Sq, Cq)

8: push (Sq, Cq, top(Sparent(q)))

9: if isLeaf (q)

10: outputPathsDelayed(Cq)

11: pop (Sq)

12: advance(Tq)
mergePathSolutions() 13:

14: function getNext(q)

15:
16: return q
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

For)(qchildrenqi
)(qigetNextq j

ij qq if
return qj

}.{argmin)(min begincq
ii qqchildrenq

}.{argmax)(max begincq
ii qqchildrenq

beginCend qq .. Cwhile
max

advance (Cq)
beginCbegineC qq ..

min
if

return q

return qmin
else

if isLeaf (q)

 15

The pseudo-code for TwigStack is shown in Algorithm 1 [4], in which each

query node q is associated with a stream Tq and a stack Sq. The current

element in Tq is represented by Cq. The recursive function getnext(q) is the

core of TwigStack. It returns a locally highest query node in the subtree of q,

and check the heads of the streams of all child query nodes to see if they are

all contained by Cq. If it is the case and all child nodes recursively satisfy

this requirement, then push Cq into Sq. By this scheme, when a leaf node is

pushed into a stack, a path matching is found. But the output is delayed to

make sure that the paths are sorted by the top-down order of the query nodes.

The getnext() function traverses bottom up, and it will jump out if some

node does not have a solution extension (see line 20). Leaves don’t have any

solution extensions. By a recursive execution of getnext() function, the query

tree is traversed. The return value of each recursive call of getnext() is a

query node q such that Cq has a descendant of in for each child node

qi of q, and each has recursively the same property as Cq.

iqC
iqT

iqC

In Figure 2.3 shows the process of evaluating the query (b) to data set (a).

B4,4

B2,2

A(1,7)

B(2,2) C(3,6)

B(4,4) C(5,5)

A

B C

(A(1,7) B(2,2) C(3,6))

(A(1,7) B(4,4) C(3,6))

A1,7 C7,7

C4,4

TB TA TC

B2,2

B4,4

A1,7 C3,6

SB SA SC

A1,7B4,4

A1,7B2,2

A1,7C3,6

(a) Data (b) Query (c) Matches

(d) Streams (e) Stackes (f) Path Matches

Figure 2.3 TwigStack evaluating query

 16

After node B(2, 2) has been processed, for the first call of getNext(A), A itself

is returned as all the heads of the streams of all child query nodes of A are

contained by CA, and CA = A(1, 7). For the second call getNext(A), B(2, 2) has a

usable ancestor A(1, 7) in the parent stack SA, the subtree rooted at B(2, 2) is

usable. So CB = B(2, 2) is pushed into its own stack SB. Since it is a leaf, the

path matching (A(1, 7), B(2, 2)) is output. After all paths have been found they

are merge joined.

Shortage of TwigStack: For mixed A-D and P-C queries, TwigStack may

perform many redundant checks in calls function getnext(). As shown in

Figure 2.4, the algorithm cannot always decide whether the data nodes used

can satisfy all their P-C relationships by the nodes in the stacks and the

heads of the streams. For example, in Figure 2.4, whether the path matches

(A1, B1), …, (A1, BN) are part of a full match or not, cannot be decided

before the node CN+1 is processed. So, many redundant check is performed.

In fact, in the worst case, TwigStack needs O(|D||Q|) time for doing the merge

joins [7].

A

B C

A1

B1
…… BN A2 CN+1

…... BN+1 CN C1

(a) Query (b) Data

Figure 2.4 Shortage of TwigStack

And for A-D only queries, TwigStack can solve the problem with a bound of

O(d |Q|) memory (d is the maximal depth of data set), but for A-D and P-C

 17

mixed queries, it will require O(nmin n,d|D|) disk space in the worst case[8],

where n is the number of structurally recursive labels and D is the size of the

document.

2.3 Improvements of holistic twig join

A lot of different improvements [7, 10, 16, 17, 18, 19, 20] have been

proposed since the introduction of TwigStack. We will give a review for

some of these algorithms.

Twig2Stack [7] uses the post order sorting for all query nodes. By using a

hierarchical stack as shown in Figure 2.5, it can decide whether the entire

subtree has a match when the top node is encountered. While processing a

query, for each query node, a tree is maintained, in which each node is a

stack, as shown in Figure 2.5. In a stack, a data node strictly nests all nodes

below and all nodes in the child stacks. The lists of trees are stored in post-

order, and are linked together by a common root when an ancestor node is

processed. For example, A1 is linked to B2, B3, and B5. By the post-order, the

nodes to be linked will always be found at the end of the list, and the new

root will always be put at the end. The order maintains itself naturally. So

the nodes' locations will be very clear. Instead of pointing each node in a

stack to its ancestor node in its parent stack as in TwigStack, Twig2Stack

points each stacked data node to related child query node. So, a top down list

of matching nodes is achieved by this scheme. A node is added only if A-D

and P-C relationships can be satisfied, and a P-C pointer is added only when

levels are correct, as shown by the P-C pointer: A1 to C5 and A4 to C4 in

Figure 2.5.

 18

C1

C2B1 A1

A2
A4 C5

B2

C3

C4 B3 B5 C6

B4

A3

A

B C

(a) Data (b) Query

A1

A4

B2 B5B3

B4

C2 C3 C4 C5

C6

C1

(c) Twig2Stack

B1

Figure 2.5 Hierarchies of stacks for Twig2Stack

TwigList [10] is a simplification of Twig2Stack using simple lists and

intervals given by pointers, which improves performance in practice. For

each query node, there is a post-order list of the data nodes encountered so

far. As shown in Figure 2.6, by using the same data set as Figure 2.5, each

node in a list has, for each child query node, a single recorded interval of

contained nodes, such as A4 contains B4, B3, and B5. Interval start and end

positions are recorded as nodes are pushed into and popped out of the global

stack. All descendant data nodes are processed in between. Compared with

the list of pointers in Twig2Stack, the enumeration of matches is not efficient

 19

for P-C edges, but sibling pointers (as B3 to B5 showing below) can remedy

this.

A4 A1

Figure 2.6 Intervals for TwigList

HolisticTwigStack [16] modifies TwigStack by using a pre-order processing,

but maintaining a complex stack structure like Twig2Stack. The argument

against Twig2Stack is a high memory usage, caused by the fact that all query

leaf matches are kept in memory until the tree is completely processed, as

they could be part of a match. HolisticTwigStack differentiates between the

top-most branching node and its ancestors, for which a regular stack is used,

and the lower query nodes, which have multiple linked lists of stacks, as

shown in Figure 2.7. Each query node match has one pointer to the first

descendant in pre-order for each child query node. For "lower" query nodes,

new data nodes are pushed into the current stack if contained; otherwise, a

new stack is created and appended to the list. As a match for an "upper"

query node is popped, the node below it in the corresponding stack must

inherit the pointers. For instance, node A1 would inherit the pointers from

both A2 and A4 in the example shown in Figure 2.7. Also, the related lists of

child matches would be linked.

B1 B2 B4 B5 C2 C3 C6C4B3 CC 15

 20

Figure 2.7 Lists of Stacks of HolisticTwigStack

TwigFast [1] further simplifies HolisticTwigStack and works in a way

similar to TwigList. There is one list containing matches for each query node,

sorted in pre-order. The data nodes in the lists have pointers, giving the

interval of the contained matches for each child query node, as shown in

Figure 2.8. Each data node put into a list has a pointer to its closest ancestor

in the same list, and a "tail pointer", which gives the last position where a

node can be the ancestor of the subsequent nodes in the streams. These

pointers are used for the construction of the intervals.

Figure 2.8 Intervals for TwigFast

B2 B4B3 B5 C3 C5C4

A4A1

tail tail

A2

tail

B4

B5 B3

B2

A1

A4

A2 C3

C4

 21

Chapter 3

Twig Pattern Search

This Chapter describes the method that I implemented to evaluate tree

pattern queries in a document database. The main purposes of this method

are: 1) to efficiently retrieve all matching documents form a database for a

give query; 2) to avoid expensive join operations which many index-based

methods have to do. To achieve these purposes, we devise a method based

on two basic techniques: holistic structure twig join and XB-tree structure.

The holistic structure twig join algorithm treats every document as a set of

data streams, and checks the query tree against each document tree to find

out whether the query tree can be successfully embedded in it. The XB-tree

technique helps to speed up the process of twig join by: 1) dramatically

reducing the number of documents that the tree matching algorithm needs to

check; 2) eliminating unnecessary subtree checking. By combining these

two powerful techniques, we are able to efficiently find all the documents

matching a given query without involving any join operations.

3.1 Tree encoding

An efficient tree encoding scheme was presented in [9]. It can be used to

identify different relationships among the nodes of a tree.

 22

Assume T is a document tree as shown in Figure 3.1. We represent each

node v in T by a quadruple (DocId, LeftPos, RightPos, LevelNum), denoted

as α(v), where DocId is the document identifier, LeftPos and RightPos are

generated by counting word numbers from the beginning of the document

until the start and end of the element, respectively; and LevelNum is the

nesting depth of the element in the document. (See Figure 3.1) By using

such a data structure, the structural relationship between the nodes in an

XML database can be simply determined [9]:

a) ancestor-descendant: a node v1 associated with (d1, l1,r1, ln1) is an

ancestor of another node v2 with (d2, l2, r2,ln2) iff d1 = d2, l1 < l2, and r1 >

r2.

b) parent-child: a node v1 associated with (d1, l1,r1, ln1) is the parent of

another node v2 with (d2, l2, r2,ln2) iff d1 = d2, l1 < l2, and r1 > r2 and ln2 =

ln1 + 1.

(1,7,7,4)

c) from left to right: a node v1 associated with (d1, l1,r1, ln1) is to the left of

another node v2 with (d2, l2, r2,ln2) iff d1 = d2, r1 < r2

 T A v1(1,1,11,1)

(1,2,2,2) v2 B C v3(1,3,10,2)

(1,4,4,3) v4 C B v5 (1,5,9,3)

(1,6,6,4) v6 B v7C Dv8(1,8,8,4)

Figure 3.1 Tree Encoding

In Figure 3.1, v3 is an ancestor of v7 , as we have v7.LeftPos = 3 < v6.LeftPos = 7

and v3.RightPos = 10 > v7.RightPos = 7. Another example, v5 is the parent of v7 , as

we have v5.LeftPos = 5 < v6.LeftPos = 7 and v3.RightPo s= 9 > v7.RightPos = 7, as well as

 23

v5.level = 3 and v6.level =4, which satisfy condition (b). By using the same

method as stated above, we can verify all other relationships of the nodes in

the tree. In addition, for simplify, if any leaf node v, we set v.LeftPos = v.RightPos.

3.2 Main Algorithm

In this section, we discuss our algorithm according to Definition 1 given in

section 1.2. The main idea of this algorithm is to reconstruct a sub-tree from

the corresponding data streams (a set of quadruple sequences). In the

following section, we will separately discuss the subtree reconstruction and

twig patterns checking for A-D and P-C relationships in queries.

3.2.1 Tree reconstruction

3.2.1.1 DateStream generation

Using the same notations as [4], we associate each node q in a twig pattern

(query tree)Q with a data stream B(q), which contains quadruples (the

representation of the node position) of the database nodes v that has the same

tag with q. All the quadruples in a data stream are sorted by their (DocID,

LeftPos) values. For example, in Figure 3.2, we show a query tree

containing 5 nodes and 4 edges and each node is associated with a list

matching nodes of the document tree shown in Figure 3.1. For simplicity,

the node’s name is shown, instead of its quadruple.

 24

A q1

Bq2 Cq3

Bq4 Cq5

Q
The query nodes with the same tag will
be associated with the same data stream:
B(q3)=B(q5)={v3,v4,v7}

{v1}

{v3, v4, v7}
{v2, v5, v6}

Figure 3.2 Illustration for B(qi)'s

In Q, we can find that multiple query nodes may share the same data stream.

So we use gq to represent a group of such query nodes and use B(gp) to

denote the data stream shared by them. For example, the nodes in Q shown

in Figure 3.2 can be categorized into three groups: gq1={ q1}, gq2={ q2, q4},

and gq3={ q3, q5}. Then, B(gq1)={v1}, B(gq2)={v2, v5, v6}, and B(gq3)={v3, v4,

v7}.

3.2.1.2 DataStream Transition

The nodes in each data stream are sorted by their LeftPos values, as the

access of document nodes is done in preorder. However our algorithm needs

to visit them in postorder (in sorted order of their RightPos values). For this

reason, we designed a global stack ST to make a transformation of data

streams. The detail process is shown in Algorithm 2. In ST each entry is a

pair (gq, v) with gq ⊆ Q and v ∈ T.

 25

Algorithm 2 stream-transformation(B(gqi)'s)

input: all data streams B(gqi), each sorted

1:

2:

3:

4:

5:

6:

7:

end

output: new data streams L(gqi) , each sorted by RightPos

begin

repeat until each B(gqi) becomes empty

{ identify gqi such that the first element v of B(gqi) is of

the minimal LeftPos value;

while ST is not empty and ST.top is not v's

{x←ST. pop(); Let x =(gqi, u); top(Sparent(q)))

put u at the end of L(gqi); }

ST.push(qi, v);

} 8:

In this algorithm, ST is used to maintain all the nodes on a path of in a

document tree until we meet a node v which is not a descendant of S.top()

(see line 2 &3). Then, we pop out all those nodes which are not an ancestor

of v, and then push v into ST (see lines 4 - 5). The output of the algorithm is

a set of data streams L(gqi)'s and the nodes in it are all sorted by RightPos.

Since the popped nodes themselves are listed in postorder (see line 3), so we

can directly process them in postorder without explicitly generating L(gqi)'s.

Just for ease explanation, we will assume L(gqi)'s are completely generated

in the following discussion. So We use gq to represent a set of such query

nodes and denote, by L(gq), the data stream shared by them. We also assume

that the query nodes in gq are sorted by their RightPos values. Furthermore,

we will use L(Q)={ L(gq1), …, L(gqn)} to represent all the data streams with

 26

respect to Q, where each qi (i=1, …, n) is a set of sorted query nodes which

share the same data stream.

3.2.1.3 Reconstruction

Before we discuss how to reconstruct a tree structure from the data streams,

we would like to introduce another conception of matching subtrees. Denote

a tree by T and v is a node in T which has a parent node u. Denote another

tree by T' which is obtained by removing node v. This process is denoted by

delete(T, v) and the children of v3 become the children of v1 (see Figure. 3.3)

 T A v1 T' A v1

v2 B C v3 delete(T, v3) v2 B C v4 B v5

v4 C B v5 v6 B C v7 D v8

v6 B v7 C D v8

Figure 3.3 T' is achieved by removing v3 from T

Definition 2.(matching subtree) A matching subtree T ' of T with respect to

a twig pattern Q is a tree obtained by a series of deleting operations to

remove any node in T, which does not match any node in Q.

According to this definition, the tree shown in Figure 3.4(a) with respect to

the query tree shown in Figure 3.4(b) is a matching subtree which is

obtained by a series of node deleting (in this case the nodes contain tag C are

deleted) from the document tree shown in Figure 3.1.

 27

A v1

B v5 B v6 B v2 D v8

(a)

a matching subtree:

Aq1

Bq2 Dq3

(b)

Q

Figure 3.4. Matching tree obtained based on a query tree

Based on this matching subtrees, we can design a recursive process to access

the nodes in L(gqi)'s one by one, and a subtree structure T' of T can be

constructed as below:

1. Identify a data stream L(q) with the first element being of the minimal

RightPos value. Choose the first element v of L(q). Remove v from L(q);

2. For each popped node, generate a node for v;

3. If v is not the first node created, let v' be the node chosen just before v,

and do the following two steps.

a) If v' is not a child or descendant of v, create a link from v to v', called

a left-sibling link and denoted as left-sibling(v) = v'.

b) If v' is a child or descendant of v, we will first create a link from v' to

v, called a parent link and denoted as parent(v') = v. Then, we will go

along the left-sibling chain starting from v' until we meet a node v''

which is not a child or a descendant of v. For each encountered node

u except v'', set parent(u) ← v. Finally, set left-sibling(v) ← v''.

Construction process is shown in Figure 3.5.

 28

B v6 v7C

v4 C v5 B

v1 A

v2 B v3 C

...

v

v'' v'

link to the left sibling

v' ...

v

v''

T':
v'' is not a
child of v.

(a) (b) (c)

Figure 3.5. Illustration for the construction of a matching subtree

In Figure 3.5(a), you will find that v' is a child (descendant) of v. If this

condition is satisfied, the navigation goes along a left-sibling chain starting

from v' to the next sibling until meet v'', a node that is not a child

(descendant) of v. In Figure 3.5 (b) a left-sibling link of v is set to v'', which

is previously navigated from the left-sibling link of v's leftmost child.

Applying the above process to B(qi)'s shown in Figure. 3.2, we will regain a

tree T', called a matching subtree, as shown in Fig. 3.5(c). This is similar to

the tree shown in Figure 3.3, but with node v3 being removed.

The Algorithm 3 gives the detail of this reconstruction process, as shown in

next page.

 29

Algorithm 3 subtree reconstruction
input: all data streams L(Q).
output: a matching subtree
begin
1:

2:

3:

4:

5:

6:
7:
8:
9:

10:
11:

12:
13:
14:
15:
16:
end

{identify gq such that the first element v of L(gq) is of the minimal
RightPos value; remove v from L(q);

generate node v;

if v is not the first node created then

{ let v' be the node genertated just before v;

if v' is not a child (descendant) of v then

{ left-sibling(v) ← v';} (*generate a left-sibling link*)
else
{ v'' ← v'; w ← v';} (*v'' and w are two temporary variables.*)

while v'' is a child (descendant) of v do
{ parent (v'') ← v; (* generate a parent link. Also, indicate

whether v'' is a /-child or a //-child. *)
w ← v''; v'' ← left-sibling(v'');

}

 }
}

repeat until each L(gq) in L(Q) become empty

left-sibling (v) ← v'';

In the above algorithm, a new node is created for each chosen v from a L(gq).

Assume that v' has already created before v, if v' is not a child or descendant

of v (see line 7), create a left-sibling link from v, pointing to the node v'.

Otherwise, we need to go into a while-loop (see line 10) to travel along the

left-sibling linked list starting from v' until we meet a node v'' which is not a

child or descendant of v. During this process, a parent link is generated for

 30

each node encountered except v''. (see lines 9-13). Finally, the left-sibling

link of v is set to v'' (see line 14).

In order to make a more brief explanation, we make an illustration of this

data tree generating process, shown as Figure 3.6(based on the data tree

shown in Figure 3.1 and query tree shown in Figure 3.2).

 31

data stream: L(gq1)= {v1}, L(gq2)= {v2, v6, v5}, L(gq3)= {v4, v7, v3}

gq1 = {q1}, gq1 = {q2, q4}, gq1 = {q3, q5}

v with the least RightPos: generated data structure:

v2 v2 B Step 1:

v2 B
v4 C B v6 v7 C

left-sibling link

B v7

v5 B

C v6

C v4
B v2

left-sibling links

v2 B
v4 v6 B C

C
B

v4
v2

left-sibling link from v6 to v2

v4 Step 2:

v6 Step 3:

v7 Step 4:

left-sibling links

Step 5: v5

v4
C

v6 B v7

v5 B v2 B

left-sibling link v3
C

C

Step 6: v3

 32

v with the least RightPos: generated data structure:

v4
C

v6
B v7

v5
B

B v3 C

v1 A

v2 v1 Step 7:

C

Figure 3.6 Sample trace for Algorithm 3

In step 1(see Figure 3.6), v2 is checked since it has the least RightPos value;

and a node for it is created. In Step 2, we meet v4. Since v2 is not a

descendant of v4, we establish a left-sibling link from v4 to v2. In Step 3, we

meet v6. For the same reason as Step 2, we establish a left sibling link from

v6 to v4. In step 4, we establish a left sibling link from v7 to v6. In step 5 we

meet v5. Since v7 is the child of v5, we generate an edge between them, and

then navigated to v6, which is also a child of v5. So, an edge from v5 to v6 is

generated. In this step, not only two edges are constructed, but also a left-

sibling link from v5 to v4 is generated. This is the key link that enables us to

reconstruct a matching subtree in an efficient way. The following steps are

shown in Figure 3.6 above.

3.2.1.4 Correctness of Algorithm 3

In this section, we will prove the correctness of the algorithm matching-tree-

reconstruction.

 33

Proposition 1 Denote a document tree as T and a twig pattern as Q. Let

L(Q)= {L(gq1), …, L(gqn)} be all the data streams based on Q and T, where

each qi (1 ≤ i ≤ n) is a subset of Q, in which query nodes is sorted, and share

the same data stream. Algorithm matching-tree-construction generates the

matching subtree T' of T with respect to Q correctly.

Proof. Denote L =|L(gq1)| + … + |L(gqn)|. We prove the proposition by

induction on L.

Basis. When L=1, the proposition holds.

Induction hypothesis. Assume that when L = k, the proposition holds.

Induction step.

We consider the case when L = k + 1. Assume that all the quadruples in L(Q)

are {u1, …, uk, uk+1} with RightPos (u1) < RightPos (u2) < … < RightPos (uk)

< RightPos (uk+1). The algorithm will first generate a tree structure Tk for

{u1, …, uk}. In terms of the induction hypothesis, Tk is correctly created. It

can be a tree or a forest. If it is a forest, all the roots of the subtrees in Tk are

connected through left-sibling links. When we meet vk +1, we consider two

cases:

a) vk+1 is an ancestor of vk;

b) vk+1 is at the right of vk.

In case a), the algorithm will generate an edge (vk +1, vk), and then travel

along a left-sibling chain starting from vk until we meet a node v which is not

a descendant of vk+1. For each node v' encountered, except v, an edge (vk +1,

v') will be generated. Therefore, Tk+1 is correctly constructed. In case b), the

 34

algorithm will generate a left-sibling link from vk +1 to vk. It is obviously

correct since in this case vk+1 cannot be an ancestor of any other nodes. The

proof completes.

The time complexity of this process is easy to analyze. First, we notice that

each quadruple in all the data streams is accessed only once. Secondly, for

each node in T', all its child nodes will be visited along a left-sibling chain

for a second time. So we get the total time

|)||(||)'(||)||(||)||(| QDOTOQDOdQDO
i

i

where di represents the outdegree of node vi in T'.

During the process, for each encountered quadruple, a node v will be

generated. Associated with this node have we at most two links (a left-

sibling link and a parent link). So the used extra space is bounded by O(|T'|).

3.2.2 Tree Matching

In fact, Algorithm 3 hints an efficient way for twig pattern matching.

We observe that during the reconstruction process of a matching subtree T'.

we can also associate each node v in T' with a query node stream QS(v). That

is, each time we choose a v with the largest LeftPos value from a data stream

L(gq), we will insert all the query nodes in gq into QS(v). For example, in

the first step shown in Figure 3.6, the query node stream for v2 can be

determined as shown in Figure 3.7(a).

 35

A v1

B v2 C v3

v5 B Cv4 {q3, q5}

{q3, q5}v7 C Bv6

{q3, q5}

{q2, q4}

{q2, q4}

{q2, q4}

{q1} T' :

(a)

B
v2 {q2, q4}

(b)

Figure 3.7 Illustration of generating QS's

In the same way, we can create the whole matching subtree as shown in

Figure 3.7(b), each node in T' is associated with a sorted query node stream.

If we check, before a q is inserted into the corresponding QS(v), whether Q[q]

(subtree rooted at q) can be imbedded into T'[v] or not, we actually get an

algorithm for twig pattern matching. The only problem left is how to make

an efficient checking.

For this purpose we can associate each q in Q with a variable, denoted γ(q).

During the process, γ(q) will be dynamically assigned a series of values a0,

a1, …, am for some m in sequence, where a0 = Ф and ai's (i = 1, …, m) are

different nodes from T'. In another word, we just use these symbols to

represent a specific node in T'. Initially, γ(q) is set to a0 =Ф. γ(q) will be

changed from ai - 1 to ai = v (i = 1, …, m) while the following conditions are

satisfied.

i) v is the node currently encountered.

ii) q appears in QS(u) for some child node u of v.

iii) q is a //-child,

 36

or q is a /-child, and u is a /-child with label(u) = label(q).

Then, each time before we insert q into QS(v), we will do the following

checking:

1. Let q1, …, qk be the child nodes of q.

2. If for each qi (i = 1, …, k), γ(q) is equal to v and label(v) = label(q), insert

q into QS(v).

As the matching subtree is constructed in a bottom-up way, the above

checking is guaranteed that for any q∈ QS(v), T'[v] contains Q[q].

Let v1, …, vj be the children of v in T'. All the QS(vi)'s (i = 1, …, j) should

also be added into QS(v). This process can be elaborated as follow:

Let QS(vi) = { , …, } (i = 1, …, j).
1i

q
jiq

Pay attention to the complex symbol { , …, } here, it means, for

example, if i=1, it means that v has only one child and QS(v1) will be

{ , …, } {i = 1, …, j), in which the query nodes sharing the same tag is

{ , …, } {i = 1, …, j).

1i
q

jiq

1i
q

1i
q

jiq

jiq

Then, we have .LeftPos < … < .LeftPos. Because, all the query nodes

inserted into QS(vi) come from a same set "gq", in which all the elements are

sorted by their LeftPos values. Each time we insert a q into QS(vi), we can

check whether it is subsumed by the query node q' which has just been

inserted before. If it is subsumed by the node q' which is inserted before, q

will not be inserted, since the embedding of Q[q'] in T[vi] implies the

embedding of Q[q] in T[vi] (As the reason that LeftPos(q') < LeftPos(q), q

1i
q

jiq

 37

cannot be an ancestor of q'.) Thus, QS(vi) contains only the query nodes

which are on different path. Therefore, we must also have .RightPos < …

< .RightPos (As the reason that LeftPos(q') < LeftPos(q), if RightPos(q')

> RightPos(q), q' will be the ancestor of q, so Q[q'] in T[vi] implies the

embedding of Q[q] in T[vi], which not satisfy the condition we discussed

above just now). So the query nodes in QS(vi) are increasingly sorted by

both LeftPos and RightPos values. Obviously, |QS(vi)| ≤ LeafQ(all the leaf

node in Q). We can store QS(vi) as a linked list. Let QS1 and QS2 be two

sorted lists with |QS1| ≤ leafQ and |QS2| ≤ leafQ. The union of QS1 and QS2

(QS1∪QS2) can be performed by scanning both QS1 and QS2 from left to

right and inserting the query node of QS2 into QS1 one by one. During this

process, any query node in QS1, which is subsumed by some query node in

QS2 will be removed; and any query node in QS2, which is subsumed by

some query in QS1, will not be inserted into QS1, The result is stored in QS1.

From this , we can see that the resulting linked list is still sorted and its size

is bounded by leafQ. We denote this process as merge(QS1, QS2) and define

merge(QS1, …, QSj–1, QSj) to be merge(merge(QS1, …, QSj–1), QSj), it's a

recursive way.

jiq

jiq

In the following, we will present Algorithm 4. twig pattern matching, which

is an enhance of Algorithm 3. The main idea can be simply described as

follow: While we are constructing the matching subtree T' of T as

Algorithms 3, we append only the "correct related" nodes into an QS,

("correct related" means the nodes which satisfy the 3 conditions we

discussed above), and store them in a linked list QS(v), then the twig

matching result can be generated with the T' reconstruction process

automatically.

 38

Algorithm 4 twig pattern matching

input: all data streams L(Q).
output: a matching subtree T' of T, represented by a data stream QS(v)
begin
1:

2:

3:

4:

5:

6:
7:

8:

9:
10:

12:

13:

14:
15:

16:

{identify gq such that the first element v of L(gq) is of the minimal
RightPos value; remove v from L(q);

generate node v;

if v is not the first node created then

{ QS(v) ← subsumption-check(v,q);}

else
{let v' be the quadruple chosen just before v, for which a node

is constructed
if v' is not a child (descendant) of v then
{ left-sibling(v) ← v'; QS(v) ← subsumption-check(v,q);}
else

while v'' is a child (descendant) of v do

{ parent (v'') ← v; (* generate a parent link. Also,
indicate whether v'' is a /-child or a //-child. *)

 if((q is a //-child) or
(q is a /-chld and v'' is a /-child and label(q) = label(v'')))

for each q in QS(v'') do {

repeat until each L(gq) in L(Q) become empty

11: { v'' ← v'; w ← v';} (*v'' and w are two temporary variables.*)

then γ(q) ← v;}
17: w ← v''; v'' ← left-sibling(v'');
18: remove left-sibling(w);
19: }
20: gq ← subsumption-check(v,gq);
21: let v1, …, vj be the child nodes of v;
22: gq' ← merge(QS(v1), …, QS(vj));

remove QS(v1), …, QS(vj);23:
24: QS(v) ← merge(gq, gq') ;}}
end

 39

Fuction subsumption-check(v,gq) (*v satisfies the node name test at each
 q in gq.*)

1:

2:

begin

3:

4:

5:

6:

7:

8:

9:

for each q in gq do

{let q1, …, qj be the child nodes of q;

generate node v;

if for each /-child qi γ(qi) = v and for each //-child qi γ(qi) is
subsumed by v then

{

QS ← QS ∪{q};

end

return QS;
}

}

3:

{QS ← Ф;

Algorithm 4 does almost the same work as Algorithm 3 matching-tree-

reconstruction(). The main difference is lines 14 - 18 and lines 20 - 24. In

lines 14 - 18, we set γ values for some q's. Each of them appears in a QS(v'),

where v' is a child node of v, satisfying the conditions i) ii) iii) given above.

In lines 20 - 24, we use the merging operation to construct QS(v).

In Function subsumption-check(), we check whether any q in gq can be

inserted into QS by examining the A-D and P-C relationships between nodes

(see line 4). Continuing this process, we can find that T' embeds Q.

 40

Applying Algorithm 4 to the data set shown in Figure 3.1, we will find the

document tree shown in Figure 3.1, contains the query tree shown in Figure

3.2. We trace the computation process as shown in Figure 3.8.

 41

data stream: L(gq1)= {v1}, L(gq2)= {v2, v6, v5}, L(gq3)= {v4, v7, v3}

gq1 = {q1}, gq1 = {q2, q4}, gq1 = {q3, q5}

For simplicity, we start at step 4

v with the least RightPos: generated data structure:

{q2, q4}
{q2, q4}

Figure 3.8 Sample trace for Algorithm 4

Step 4: v7

v4
C

v6 B C v7

v5 B
Step 5:

v2 B
v4 C B v6 C v7

{ q3, q5}{q3, q5}

(q2) = , (q4) = , (q3) = , (q5) =

(q2) = v5

(q4) = v5

(q3) =

(q5) = v5

{q2, q4} {q2, q3}
{ q3, q5}v5

B v2

{ q3, q5}
{q2, q4}

Step 6: v3 v4
C

v6 B C v7

v5 B v2 B

{q2, q3} v3 (q2) = v3

(q3) = v3
C

{q2, q3}

{q2, q4}

{ q3, q5}

{ q3, q5}{q2, q4}

Step 7: v1

v4
C

v6
B v7

v5
B

v2 B v3 C

v1
{q1}

A (q2) = v1

(q3) = v1
{q2, q4} {q2, q3}

{q2, q3}

{q3, q5}

{q3, q5}

C
{q2, q4}

 42

In the first four steps, we will generate part of the matching subtree as shown

in Figure 3.8 step 4. At this time point, we meet v7, associate with v4 and v7

is a query node stream: QS(v4) = QS(v7) ={q3, q5}, QS(v2) = QS(v6) = {q2, q4},

and (q2) = (q4) = (q3) = (q5) = . Because, in the last several steps, we

didn't meet any node which is the ancestor/parent of the current nodes (see

line 12). In step 5, we meet v5 (associate with L(gq), {q2, q4}), the parent of

v6 and v7. Basic on the Algorithm 4, we will check QS(v6) and QS(v7) (see

line 15, 16), as the reason all the q nodes are //-child except q3, q3 is a /-child

but v7 is not a /-child of v5, so we will get (q2) = (q4) = (q5) =v5, (q3) = .

So q3 will not satisfy the subsumption-check, QS(v5) = {q5}. Then we will

merge QS(v6) and QS(v7) into QS(v5), q4 and q5 will be subsumed by q3, so at

last QS(v5) = {q2, q3}. In step 6, we meet v3 (associated with L(gq), {q3, q5}),

the parent of v4 and v5, QS(v4) = {q3, q5}, QS(v5) = {q2, q3}, as the reason q2,

q5 is //-child, (q2) = (q5) = v3. For q3, it is /-child and the v''(v5) is a //-child,

so (q3) = . After subsumption-check and merging of QS(v4) and QS(v5),

QS(v3) = {q2, q3}. In the last step, we meet v1, according to QS(v2) = {q2, q4},

QS(v3) = {q2, q3}, we will set (q2) = (q4) = v1, as q2 and q4 are //-child, q3

is a /-child, v'' (v3) is also a /-child, and label(v3) = label(q3). So (q3) = v1,

leading to the insertion of q1 into QS(v1). After merging QS(v1) = {q1}.

Finally, the embedding Q in T has been generated while the process of

constructing T', which mean the twig searching has been finished.

In the following, we will prove the correctness of this algorithm. First, we

need to prove a simple lemma.

 43

Lemma 1 Assume v1, v2 and v3 are three nodes in a tree and v3.LeftPos <

v2.LeftPos < v1. LeftPos. If v1 is a descendant of v3. Then, v2 must also be a

descendant of v3.

Proof. Considering two cases: i) v2 is at the left position of v1, ii) v2 is an

ancestor of v1. In case i), we have v1.RightPos > v2.RightPos. So we have

v3.RightPos > v1.RrightPos > v2.RrightPos. This shows that v2 is a

descendant of v3. In case ii), v1, v2 and v3 are on the same path. Since

v2.LeftPos > v3.LeftPos, v2 must be a descendant of v3.

Proposition 2 Let Q be a twig pattern containing only /-edges, //-edges and

branches. Let v be a node in the matching subtree T' with respect to Q

created by Algorithm 4. Let q be a node in Q. Then q appears in QS(v) if and

only if T'[v] contains Q[q].

Proof. If-part. A query node q is inserted into QS(v) by executing Function

subsumption-check(), which shows that for any q inserted into QS(v) we

must have T''[v] containing Q[q] for the following reason:

(1) label(v) = label(q).

(2) For each //-child q' of q there exists a child v' of v such that T[v'] contains

Q[q']. (See line 15 in Algorithm 4)

(3) For each /-child q'' of q there exists a /-child v'' of v such that T[v'']

contains Q[q''] and label(v'') = label(q''). (see lines 15 in algorithm 4)

In addition, a query node q in QS(v) may comes from a QS of some child

nodes of v. Obviously, we have T'[v] containing Q[q].

 44

Only-if-part. The proof of this part is tedious. In the following, we give only

a proof for the simple case that Q contains no /-edges, which is done by

induction of the height h of the nodes in T'.

Basis. When h = 0, for the leaf nodes of T', the proposition holds.

Induction step. Assume that the proposition holds for all the nodes at height

h ≤ k. Consider the nodes v at height h = k + 1. Assume that there exists a q

in Q such that T'[v] contains Q[q] but q does not appear in QS(v). Then there

must be a child node qi of q such that (i) γ(qi) = , or (ii) γ(qi) is not

subsumed by v when q is checked against v. Obviously, case (i) is not

possible since T'[v] contains Q[q] and qi must be contained in a subtree

rooted at a node v' which is a child (descendant) of v. So γ(qi) will be

changed to a value not equal to in terms of the induction hypothesis. Now

we show that case (ii) is not possible, either. First, we note that during the

whole process, γ(qi) may be changed several times since it may appear in

more than one QS's. Assume that there exist a sequence of nodes v1, …, vk

for some k ≥ 1 with v1.LeftPos > v2.LeftPos > … > vk.LeftPos such that qi

appears in QS(v1), …., QS(vk). In terms of the induction hypothesis, v' = vj

for some j ∈ {1, …, k}. Let l be the largest integer ≤ k such that vl.LeftPos

> v.LeftPos. Then, for each vp (j ≤ p ≤ l), we have

v'.LeftPos ≥ vl.LeftPos > v.LeftPos

In terms of Lemma 1, each vp (j ≤ p ≤ l) is subsumed by v. When we check q

against v, the actual value of γ (qi) is the node name for some vp's parent,

which is also subsumed by v (in terms of Lemma 1), contradicting (ii). The

above explanation shows that case (ii) is impossible. The proof of the

proposition completes.

 45

Lemma 1 helps to clarify the only-if part of the above proof. In fact, it

reveals an important property of the tree encoding, which enables us to save

both space and time. That is, it is not necessary for us to keep all the values

of γ(qi), but only one to check the A-D/P-C relationship. Due to this property,

the path join [4], as well as the result enumeration [7], can be completely

avoided.

The time complexity of the algorithm can be divided into three parts:

1. The first part is the time spent on accessing L(Q). Since each element

in a L(Q) is visited only once, this part of cost is bounded by O(|D|·|Q|)

2. The second part is the time used for constructing QS(vj)'s. For each

node vj in the matching subtree, we need)(
i

ji
cO time to do the task,

where is the outdegree of , which matches vj. (See line 2 and 3

in Function subsumption-check() for explanation.) So this part of cost

is bounded by

ij
c

ij
q

|).||(|)|(|)(
||

QDOcDOcO
Q

k
k

j i
ji

3. The third part is the time for establish γ values, which is the same as

the second part since for each q in a QS(v) its γ value is assigned only

once.

Therefore, the total time is O(|D|·|Q|).

The space overhead of the algorithm is easy to analyze. Besides the data

streams, each node in the matching subtree needs a parent link and a values.

 46

right-sibling link to facilitate the subtree reconstruction, and an QS to

calculate γ values. So the extra space requirement is bounded by

O(|D|·|Q| + |D| + |Q|) = O(|D|·|Q|).

However, if we record only those parts of T', which contain the whole Q or

the subtree rooted at the output node, the runtime memory usage must be

much less than O(|D|·|Q|) for the following two reasons:

(i) The QS data structure for a node is removed once its parent node is

created. So the space overhead is bounded by O(|D|·LeafQ).

(ii) During the whole process, the elements in the data streams are

removed one by one.

Of course, if we want to record all those parts of T', which contain one or

more parts of Q, we need O(|D|·|Q|) space to store all the results.

In the above discussion, we handle wildcards in the same way as any non-

wildcard nodes. But a wildcard matches any tag name. Therefore. L(*)

should contain all the nodes in t. However, as we can see in the next section,

by using the XB-tree[4], L(*) contains a much smaller set of nodes in T. In

fact, during the whole process each entry in an XB-tree is accessed only one

along the nodes' postorder numbers. That is, for each node in Q, no matter

whether it is a wildcard or not, we only check it against the nodes currently

encountered. Thus with the help of XB-trees, * can be handled in the same

as non-wildcard, causing no extra time complexity.

 47

3.3 XB-tree index

In this section, we discuss how the algorithm presented in the previous

section can be adapted to an indexing environment by constructing XB-tree

[4] over data streams.

For each data stream B(q) associated with a certain q, we can establish an

XB-tree [4], which can be considered as a variant of B+-tree. In such an

index structure, each entry in a page is a pair a = (LeftPos, RightPos)

(referred to as a bounding segment) such that any entry appearing in the

subtree pointed to by the pointer associated with a is subsumed by a. In

addition, all the entries in a page are sorted by their LeftPos values. As an

example, consider a sorted quadruple sequence shown in Figure 3.9(a), for

which we may generate an XB-tree as shown in Figure 3.9(b).

(1, 1, 11, 1)

(1, 2, 2, 2)

(1, 3, 10, 2)
P1

(a) (1, 4, 4, 3)

Figure 3.9 Sample of XB-tree

In each page P of an XB-tree, the bounding segments may partially overlap,

but their LeftPos positions are in increasing order. Besides, it has two extra

(1, 5, 9, 3)

(1, 6, 6, 4)

(1, 7, 7, 4)

(1, 8, 8, 4)

1, 11 2, 2 3, 10 4, 4 5, 9 6, 6 7, 7 8, 8

1, 11 3, 10 5, 9 7, 8

1, 11 5, 9

P.parent

P.parentindexP2 P3

P4 P5 P6 P7

(b)

 48

data fields: P.parent and P.parentindex is a number i to indicate that the ith

pointer in P.parent points to P. For instance, in the XB-tree shown in Figure

13(b), P7.parentIndex = 2 since the second pointer in P3 (the parent of P7)

points to P7.

We notice that in a Q we may have more than one query nodes q1, .., qk with

the same label. So they will share the same data stream and the same XB-

tree. For each qj (j = 1, …, k), we maintain a pair (P, i), denoted
jq , to

indicate that the ith entry in the page P is currently accessed for qj. Thus,

each
jq (j = 1, …, k) corresponds to a different searching of the same XB-

tree as if we have a separate copy of that XB-tree over B(qj).

In [4], two operations are defined to navigate an XB-tree, which change the

value of σq

1. advance(σq)(going up from a page to its parent): if σq = (P, i) does not

point to the last entry of P, i ← i + 1. Otherwise, σq ← (P.parent, P.parentIndex +

1).

2. drilldown(σq) (going down from a page to one of its children): If σq = (P, i)

and P is not a leaf page, σq ← (P', 1), where P' is the ith child page of P.

Initially, for each q, σq points to (rootPage, 0), the first entry in the root page.

We finish a traversal of the XB-tree for q when σq = (rootPage, last), where

last points to the last entry in the root page, and we advance it (in this case,

we set σq to , showing that the XB-tree over B(q) is exhausted.) As with

TwigStackXB, the entries in B(q)'s will be taken form the corresponding

XB-tree; and many entries can be possibly skipped. Again, the entries taken

from XB-tree will be reordered as shown in Algorithms 2. stream-

 49

transformation(). According to [4], each time we determine a q (∈Q), for

which an entry from B(q) is taken, the following three conditions are

satisfied:

i) For q, there exists an entry vq in B(q)such that it has a descendant in

each of the streams B(qi) (where qi is a child of q.)

iqv

ii) Each recursively satisfies (i).
iqv

iii) LeftPos(vq) is minimum.

In the case of XB-tree, we use the function getNext() given in [4] to do the

task and fit it for our strategy, in which the following functions are used.

isLeaf(q) - returns true if q is a leaf of Q; otherwise, false.

isRoot(q) - returns true if q is the root of Q; otherwise, false.

currL(σq) - return the LeftPos of the entry pointed to by σq.

currR(σq) - returns the RightPos of the entry pointed to by σq.

isPlainValue(σq) - returns true if σq is pointing to a leaf node in the

corresponding XB-tree.

end(Q) - if for each leaf node q of Q, σq = (i.e., B(q) is exhausted), then

returns true; otherwise, false.

 50

Fuction getNext(q) (*Initially, q is the root of Q.*)

begin

The goal of the above function is to figure out a query node to determine

what entry from data streams will be checked in the next step, which has to

satisfy the above condition (i) - (iii). Lines 7 - 9 are used to find a query

node satisfying condition (i) (see Figure 3.10 for illustration of Line 7). The

recursive call performed in line 3 shows that condition (ii) is met. Since each

XB-tree is navigated top-down and the entries in each node are scanned

form left to right, condition (iii) must be always satisfied.

1:

2:

4:

5:

6:

7:

8:

9:

10:

for each child qi of q do

{ ri ← getNext(qi);

if (ri ≠ qi isPlainValue(σq)) then return q;

q
min

 q'' such that currL(σ
q''

) = mini{currL(
jr)};

while (currR(σq) < currL(
maxq)) do advance (σq);

if (isLeaf(q)) then return q;

3:

q
max

 q''' such that currL(σ
q'''

) = maxi{currL()};
ir

if (currL(σq) < currL()) then return q;
minq

else return qmin;
}

end

 51

If currR(bq) < currL() qmin

Figure 3.10 Illustration for advance (σq)

Once a q ∈ Q is returned, we will further check σq. If it is an entry in a leaf

node in the corresponding XB-tree, insert it into stack ST (See Algorithm

stream-transformation().) Otherwise, we will do advance (σq) or

drilldown(σq), according to the relation ship between σq and the nodes stored

in ST.

We associate each q ∈ Q with an extra linked list, denoted linkq, such that

each entry in it contains a pointer to a node v stored in ST with label(v) =

label(q). We append entries to the end of a linkq one by one as the document

nodes are inserted into ST, as illustrated in Figure 3.11(a). The last entry in

linkq is denoted as linkqlast.

Figure 3.11 Illustration for advance (σq)

T: Q: we have to advance q.

q

qmin

σq

σqmin

ST

…

linkq:

... T Q

σparent(q) parent(q)

q

σq

(a) (b)

 52

Based on the simple structure, tree-embedding() is modified as follows.

Algorithm tree-embeddingXB(Q)

begin

In the above algorithm, we distinguish between two cases. If σq) is a leaf

node in the corresponding XB-tree, we will insert it into ST. Otherwise, lines

10 - 12 will be carried out. If currR(σq) < LeftPos(linkparent(q),last), we have a

situation as illustrated in Figure 3.11(b). In this case, we will advance σq (see

line 11.) If it is not the case, we will drill down the corresponding XB-tree

(see line 2) since a solution may be found.

1:

2:

4:

5:

6:

7:

8:

9:

10:

{q getNext(root-of-Q);

if (isPlainValue(σq) then;

{let v be the node pointed to by σq;

while ST is not empty and ST.top is not v’s ancestor do

call embeddingCheck(q’, u); }

while (end(Q)) do

3:

{x ST.pop(); Let x = (q’, u); (*a node for u will be created.*)

ST.push(q, v); advance(σq);

}

else if ((isRoot(q) linkq currR(σq) < LeftPos(linkq,last)

then advance(σq) (*not part of a solution*) 11:

end

else drilldown(σq); (*may find a solution.*)12:

}

 53

Chapter 4

Performance Evaluation

In this section, we will present the results of the experimental evaluation of

the proposed tree pattern matching algorithms. In particular, we evaluate the

performance on several data sets and compare our algorithms with some

other twig matching algorithms reviewed in chapter 2. Then, we focus on

our algorithms again and discuss the main advantage of our algorithms.

4.1 Experimental Setup

We implemented our TreeEmbed algorithm using C++ and performed on a

Pentium IV 3.0Ghz PC with 2GB RAM and 80 GB hard disk, running

Windows XP professional with Service Pack 3. We compare TreeEmbed

with 3 other twig join algorithms: TwigStack [4], Twig2Stack [7], and

TwigList [10]. We choose TwigStack as the basis for comparison, as it is the

classical holistic twig join algorithm. Twig2Stack improves TwigStack by

using a kind of complex data structure for storing intermediate results.

TwigList simplifies the data structure used by Twig2Stack, which is useful

from a practical viewpoint.

 54

4.2 Data Sets

Our experiments are based on both real and synthetic data sets. For real data

we use TreeBank from [11] and DBLP [13]. For synthetic data we use

Xmark from [12].

 The TreeBank [11] is a project which focus on the text corpora structure

analyze. In linguistics, in order to statistically analyze language structure,

we need to annotate a corpus by POS-tagging (Part of speech tagging).

For example, information about each word's part of speech is tagged by

verb, noun, adjective, etc. Commonly, the structures are represented as

tree structures, as shown in Figure 4.1. The deep recursive structure of

this data makes it an interesting case for experiments.

 The Digital Bibliography and Library Project database (DBLP) is the

popular computer science bibliography in the XML format. It includes

conference paper articles, journal papers, etc. The original data set is a

huge file with file size 650MB. DBLP dataset is a wide and shallow

document, as shown in Figure 4.1.

 XMark is an XML benchmark project. It can efficiently generate XML

document files with several different scales, which can be the size of

several GBs. Independent of the size of generated documents; it uses

only low and constant memory. We use this data generator to generate

several synthetic dataset for scalability analysis.

Some quantitative characteristics of the data sets are summarized in Table 1.

 55

To study the effects of different tree shapes, we use TreeBank data set. To

explore the impact of document quantity, we use DBLP. Xmark is for

checking scalability.

Table 4.1 The List of Data Sets

 Size of Data
Set(MB)

Number of
Nodes(Million)

Max Tree
Depth

Average
Tree Depth

TreeBank 82 2.4 36 7.9
DBLP 650 16.8 7 2.7
XMark1 151 2 12 5.5
XMark2 303 4.1 11 5.0
XMark3 456 6.1 12 5.5
XMark4 609 8.2 11 5.5
XMark5 761 10.2 11 5.0

 56

S

NP VP .
DT NN VBZ NP

.
The TreeBank is NN DT ADJP

JJ , JJ
tree a

deep , recursive

(a) A sample of TreeBank data structure

Paper

Section Section Section Section

Figure 4.1 Sample data structures of 3 different data sets

Title Subsection Title Paragraph

"XML" Table "Query" Table Figure

(b) A sample of DBLP data structure

site

regions reople open_auctions close_auctions catgraph categories

{africa, asia...} person
close_auction category

description

......

......

homepage

name

creditcard

profile

income

anotation price itemref

description
edge

from toopen_auction

item

description reserve name

anotation bidder initial itemref
mainbox

description increasemail

(c) A sample of XMark data structure

 57

4.3 Tested Methods

We experimented with the following four methods of twig pattern query

evaluation to study and compare their performance.

TwigStack [4]: The first holistic twig join algorithm. It uses a chain of

linked stacks to compactly represent partial results, which match the root-to-

leaf query paths. They are then composed to obtain matches for the twig

pattern.

Twig2Stack [7]: A bottom up algorithm for processing twig queries based on

an encoding scheme. The algorithm generates a single combined stream with

post order sorting for all query nodes matches by using a single stack.

Working in the postorder, it can be decided if an entire subtree has a match

when the top node is met.

TwigList [10]: One-phase holistic twig pattern matching algorithms based on

TwigStack. It avoids devising a stack structure to hold matching paths until

all twig matches are formed, by using a simple list and intervals given by

pointers.

TreeEmbed [5]: Processing a tree reconstruction from data streams with the

XB-tree index structure being used. It associates each query node with an

XML data stream during the reconstruction process to reduce the time

complexity.

 58

4.4 Experiments on TreeBank

In this section, we present our test results on the TreeBank data set. It is a

simple data set of sentence structures with each represented as a tree. In each

tree, the leaf nodes are the words in a sentence, and the root node as well as

the internal nodes, represent the structure of the sentence, as shown in Figure

4.1(a). A sentence can be very complicated and the tree representing it can

be deep and recursive, which makes the data set an interesting case for

experiments. In the test, we use a variety of XML queries patterns, as shown

in Table 4.2- 4.6.

4.4.1 Queries

We tested 25 queries which are organized into 5 groups as shown in Table

4.2 - 4.6. The syntax of the path expressions is borrowed form XPath, and is

simplified for the sake of easy understanding. In an expression, '/' stands for

a parent-child relationship, and '//' for an ancestor-descendant relationship.

The expression within a pair of square brackets is a predicate. The logic

symbol "" connects different paths together.

Table 4.2 Group I. Queries with incremental path lengths.

Query Path Expression

Q1 //S//NP

Q2 //S//NP//NNP

Q3 //S//NP//VP//NNP

Q4 //S//VP//ADJP//S//NNP

Q5 //S//VP//ADJP//SBAR//S//NNP

 59

Table 4.3 Group II. Queries with incremental depths.

Query Path Expression

Q6 //S//NP

Q7 //S[.//NNP VP]
Q8 //S[.//NNP]/VP[.//NP]

Q9 //S[.//NNP]/VP[.//NP[.//S]]

Q10 //S[.//NNP]/VP[.//NP[.//S[.//NNP]]]

Table 4.4 Group III. Queries matching at higher level of a document.

Query Path Expression

Q10 //S [NP/NNP]/VP[VBD]

Q11 //S [NP/NNP]/VP[VBZ]

Q12 //S [NP/NN]/VP[VBD]

Q13 //S [NP/NN]/VP[VBZ]

Q14 //S [NP/PRP]/VP[VBD]

Table 4.5 Group IV. Queries matching at middle level of a document.

Query Path Expression

Q16 //NP [NP/NNP]/VP[VBD]

Q17 //NP [NP/NNP]/VP[VBZ]

Q18 //NP [NP/NN]/VP[VBD]

Q19 //NP [NP/NN]/VP[VBZ]

Q20 //NP [NP/PRP]/VP[VBD]

 60

Table 4.6 Group V. Queries matching at lower levels of a document.

Query Path Expression

Q21 //VP [VBZ['be']]/ADVP[RB['here']]

Q22 //VP [VBZ['is']]/ADVP[RB['here']]

Q23 //VP [TO['to']]/ VP[VB['leave']]

Q24 //VP [TO['to']]/ VP[VB['rain']]

Q25 //VP [MD['should']]/ VP[VB['leave']]

The queries in Group I are used to test the impact of path lengths on

performance. The queries in Group II are to test the impact of node degrees

on performance. The queries in Group III - V are to test the impact on

performance when query trees are embedded in different parts of a document.

In a same group, the queries are embedded at the same subtree level and

follow the left-to-right order.

4.4.2 Test results

We ran each group five times, and recorded an average execution time for

each query as the final test result.

Figure 4.2 shows the test results of Group I. From the figure, we can see that.

Twig2Stack is less efficient than the other three algorithms. The reason for

this is that, with only one single path involved, the hierarchical stack

operation in Twig2Stack spends some unnecessary operation time.

Comparing the results shown Figure 4.2 (a), (b) and (c), we also see that

TreeEmbed works better than the other 3 algorithms, especially the total

execution time is much lower than theirs. The Figure 4.2(c) shows the

comparing checking times for each algorithm, it explains the where the time

spent on when querying take place. Actually, the total execution time grows

 61

in order of the times of comparing nodes. In our algorithm, only a tree

reconstruction process is involved, in which the tree matching is checked

with no join operations being performed.

The results of Group II are shown in Figure 4.3. As the query tree depth

increases, the total execution time of TwigStack increases dramatically. It is

because for the deep and recursive data structure of the TreeBank getNext()

function (used in TwigStack) has to a lot of checkings. We also find that our

algorithm works best for this group of queries. The reason for this is that we

treat the data as a stream. No matter how deep the recursion of the data

structure is, we only visit each node once. By using the XB-tree index

structure, we can avoid any unnecessary node access.

The results form the rest three groups (Figure 4.4, 4.5, 4.6) are similar to

each other no matter where a matching takes place. For the same reason as

above, TwigStack needs more time than the other three methods. It spends

around 4 to 7 seconds for the queries in Group III, VI, and V. Again,

TreeEmd method uses the least time with around 0.5 second for answering

each query.

Due to the two phase operations of TwigStack, it needs to store all path

matches in memory. From the Figures about memory usage, we can found

TwigStack consumes much more memory than the other 3 one phase

algorithms.

 62

0

200

400

Query

T
i
m
e
(m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 52 103 150 202 250

Twig2Stack 64 128 189 252 320

TwigList 48 89 130 198 245

TreeEmbed 40 80 119 161 200

Q1 Q2 Q3 Q4 Q5

Figure 4.2 (a) Query Time in Group One

0

200

400

600

800

Total

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 152 204 254 303 360

Twig2Stack 264 328 449 552 650

TwigList 98 139 200 258 300

TreeEmbed 40 80 119 161 200

Q1 Q2 Q3 Q4 Q5

Figure 4.2 (b) Total Execution Time of Group One

 63

0

0.5

1

1.5

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 0.298 0.414 0.498 0.5941 0.7058

Twig2Stack 0.514 0.643 0.885 1.058 1.275

TwigList 0.192 0.277 0.421 0.505 0.578

TreeEmbed 0.076 0.158 0.224 0.315 0.389

Q1 Q2 Q3 Q4 Q5

Figure 4.2 (c) Total number of comparisons in Group One

0

100

200

300

400

500

Memory Usage

K
B
y
t
e

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 158 229 298 329 400

Twig2Stack 16 21 30 34 39

TwigList 15 20 29 35 39

TreeEmbed 15 20 29 34 39

Q1 Q2 Q3 Q4 Q5

Figure 4.2 (d) Memory Usage in Group One

 64

0

1000

2000

3000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 2800 1789 1023 897 532

Twig2Stack 2800 1789 1023 897 532

TwigList 2800 1789 1023 897 532

TreeEmbed 2800 1789 1023 897 532

Q1 Q2 Q3 Q4 Q5

Figure 4.2 (e) Number of Search Results in Group One

0

2000

4000

6000

8000

10000

Query

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 52 1103 3150 6202 9000

Twig2Stack 64 728 1189 1252 1900

TwigList 48 189 330 498 600

TreeEmbed 40 180 219 265 419

Q6 Q7 Q8 Q9 Q10

Figure 4.3 (a) Query time in Group Two

 65

0

5000

10000

15000

Total

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 152 2103 5150 9202 13000

Twig2Stack 264 1928 3196 4242 5950

TwigList 98 189 630 898 1000

TreeEmbed 40 180 219 265 419

Q6 Q7 Q8 Q9 Q10

Figure 4.3 (b) Total Execution Time of Group Two

0

10

20

30

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 0.298 4.123 12.456 18.043 25.49

Twig2Stack 0.514 3.781 5.266 8.317 11.569

TwigList 0.192 0.371 1.235 1.78 1.965

TreeEmbed 0.076 0.352 0.329 0.519 0.821

Q6 Q7 Q8 Q9 Q10

Figure 4.3 (c) Total number of comparisons in Group Two

 66

0

500

1,000

1,500

2,000

2,500

Memory Usage

K
B
y
t
e

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 158 320 641 1,327 2,238

Twig2Stack 16 21 45 62 69

TwigList 15 20 38 42 45

TreeEmbed 15 20 38 41 45

Q6 Q7 Q8 Q9 Q10

Figure 4.3 (d) Memory Usage in Group Two

0

1000

2000

3000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 2800 2437 1223 659 158

Twig2Stack 2800 2437 1223 659 158

TwigList 2800 2437 1223 659 158

TreeEmbed 2800 2437 1223 659 158

Q6 Q7 Q8 Q9 Q10

Figure 4.3 (e) Number of Search Results in Group Two

 67

0

1000

2000

3000

4000

Query

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 2980 3004 2984 3208 3100

Twig2Stack 690 700 710 730 703

TwigList 500 510 514 520 518

TreeEmbed 419 432 428 430 437

Q11 Q12 Q13 Q14 Q15

Figure 4.4 (a) Query Time in Group Three

0

2000

4000

6000

Total

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 4978 5011 4998 5002 4999

Twig2Stack 1290 1302 1300 1310 1297

TwigList 800 810 812 814 809

TreeEmbed 419 432 428 430 437

Q11 Q12 Q13 Q14 Q15

Figure 4.4 (b) Total Execution time in Group Three

 68

0

5

10

15

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 9.741 9.806 9.788 9.807 9.801

Twig2Stack 2.529 2.552 2.54 2.55 2.54

TwigList 1.568 1.588 1.593 1.596 1.586

TreeEmbed 0.821 0.847 0.839 0.843 0.856

Q11 Q12 Q13 Q14 Q15

Figure 4.4 (c) Total number of comparisons in Group Three

0

500

1,000

1,500

2,000

Memory Usage

K
B
y
t
e

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 1,327 1,258 1,355 1,369 1,544

Twig2Stack 102 98 103 103 108

TwigList 84 82 84 85 87

TreeEmbed 84 83 85 85 86

Q11 Q12 Q13 Q14 Q15

Figure 4.4 (d) Memory Usage in Group Three

 69

0

500

1,000

1,500

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 1,183 1,059 1,124 1,164 1,312

Twig2Stack 1,183 1,059 1,124 1,164 1,312

TwigList 1,183 1,059 1,124 1,164 1,312

TreeEmbed 1,183 1,059 1,124 1,164 1,312

Q11 Q12 Q13 Q14 Q15

Figure 4.4 (e) Number of Search Results in Group Three

0

1000

2000

3000

4000

5000

Query

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 3980 4004 3984 4208 4100

Twig2Stack 897 900 910 920 902

TwigList 600 610 614 620 613

TreeEmbed 413 422 450 432 428

Q16 Q17 Q18 Q19 Q20

Figure 4.5 (a) Query Time in Group Four

 70

0

2000

4000

6000

8000

Total

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 5987 6005 5988 6105 6100

Twig2Stack 1230 1200 1218 1220 1202

TwigList 904 920 940 933 912

TreeEmbed 413 422 450 432 428

Q16 Q17 Q18 Q19 Q20

Figure 4.5 (b) Total Execution time in Group Four

0

5

10

15

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 11.739 11.774 11.761 12.058 11.96

Twig2Stack 2.411 2.352 2.388 2.392 2.356

TwigList 1.772 1.803 1.843 1.829 1.788

TreeEmbed 0.809 0.827 0.882 0.847 0.839

Q16 Q17 Q18 Q19 Q20

Figure 4.5 (c) Total number of comparisons in Group Four

 71

0

500

1,000

1,500

Memory Usage

K
B
y
t
e

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 1,072 1,085 1,053 1,069 1,045

Twig2Stack 82 84 81 81 80

TwigList 69 68 68 69 69

TreeEmbed 69 68 67 68 68

Q16 Q17 Q18 Q19 Q20

Figure 4.5 (d) Memory Usage in Group Four

0

200

400

600

800

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 578 697 500 673 487

Twig2Stack 578 697 500 673 487

TwigList 578 697 500 673 487

TreeEmbed 578 697 500 673 487

Q16 Q17 Q18 Q19 Q20

Figure 4.5 (e) Number of Search Results in Group Four

 72

0

1000

2000

3000

4000

5000

Query

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 3985 4001 4003 4100 4009

Twig2Stack 789 790 801 819 802

TwigList 598 600 602 605 603

TreeEmbed 459 472 477 479 463

Q21 Q22 Q23 Q24 Q25

Figure 4.6 (a) Query Time in Group Five

0

2000

4000

6000

8000

Total

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 6010 5988 6100 6120 6005

Twig2Stack 1289 1279 1290 1294 1295

TwigList 799 800 902 801 804

TreeEmbed 459 472 477 479 463

Q21 Q22 Q23 Q24 Q25

Figure 4.6 (b) Total Execution time in Group Five

 73

0

5

10

15

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 11.784 11.76 11.969 11.976 11.751

Twig2Stack 2.527 2.507 2.539 2.532 2.539

TwigList 1.566 1.568 1.768 1.588 1.576

TreeEmbed 0.911 0.925 0.935 0.939 0.907

Q21 Q22 Q23 Q24 Q25

Figure 4.6 (c) Total number of comparisons in Group Five

0

200

400

600

800

1,000

Memory Usage

K
B
y
t
e

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 879 865 887 827 895

Twig2Stack 71 75 74 77 72

TwigList 54 59 57 56 58

TreeEmbed 55 59 56 57 58

Q21 Q22 Q23 Q24 Q25

Figure 4.6 (d) Memory Usage in Group Five

 74

0

200

400

600

800

1000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 857 874 889 657 754

Twig2Stack 857 874 889 657 754

TwigList 857 874 889 657 754

TreeEmbed 857 874 889 657 754

Q21 Q22 Q23 Q24 Q25

Figure 4.6 (e) Number of Search Results in Group Five

4.5 Experiment on DBLP data set

In this experiment, we report the test results on DBLP data set. DBLP is a

wide and shallow data set. It is very suitable for us to test the quality of the

four different kind of twig pattern matching algorithm.

4.5.1 Queries

In this section, we list all the queries used in the test. They can be organized

into three groups of queries: small, median and large. Each group has 5

different queries, in which the query node names are different, as shown

below:

 75

Figure 4.7 Query of small size

incollection
incollection

title year author page
Q1 Q2

incollection incollection

booktitle title url
crossref

Q3 Q4

incollection

author author

Q5

 76

Figure 4.8 Query of median size

incollection
author title

author page
author

Q6

Q7

incollection
author title

author year
url

Q8

incollection
author title

year booktitle

url

Q9

incollection crossref
author

author page

tile

Q10

incollection
author isbn

publisher year

url

 77

Figure 4.9 Query of large size

incollection
url author

crossref author

author
author booktitlepage title

Q11

incollection
isbn author

crossref author

author
author booktitletitle author

Q12

incollection

crossref author
editor author

author
isbn booktitlepage title

Q13

incollection
url author

crossref author

title
year publisher page booktitle

Q14

incollection
page author

year author

author
author title author author

Q15

 78

4.5.2 Test results

Figure 4.10 to 4.12 show the results of this experiment. From these charts,

we see that the TreeEmbed method beats all the other methods in this test.

When the queries are small, TreeEmbed finishes most of them within 7

seconds, whereas TwigStack takes about 1 minute to finish a query. The

performance of Twig2Stack is quite better than TwigSatck but still takes

around 18 seconds. Only TwigList is close to TreeEmbed, which is around 8

seconds. For the median size queries, most of them can be finished in 12

seconds by TreeEmbed, slightly longer than small size queries. However,

the query time of TwigStack and Twig2Stack increase rapidly, nearly

doubled than small size test results. The average difference between

TwigList and TreeEmbed increases to more than 18 seconds. For the Large

size queries, the average query time of TreeEmbed is around 40 seconds, but

it still performed best in this group. Especially, the average difference

between TwigList and TreeEmbed becames 60 seconds. TwigStack has to

spend about 8 minutes to finish a query. Twig2Stack is much better, but

needs more than 2 minutes.

We find that the performance of TwigSatck and TreeEmbed are less stable

than Twig2Stack and TwigList, especially for the group of the small size

queries (e.g. Q3, Q5 and Q10), where their performance variations are more

radical than those of large queries. Due to the randomness of XB-tree, the

TreeEmbed method may skip some leaf nodes. As the conclusion mentioned

in [4], for data sets with solutions concentrated around certain portions of the

data, the impact of XB-trees is more significant since many internal nodes

can be skipped. This can be an explanation for the randomness of the test

result.

 79

Overall, TreeEmbed works best in this experiment. The results show that by

using XB-tree, TreeEmbed can immediately jump to potential matching

documents without running through each document one by one to carry out

an embedding checking.

0

20

40

60

80

Query

T
i
m
e
(
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 60.342 59.256 40.398 59.889 41.956

Twig2Stack 18.234 18.352 18.256 18.432 18.226

TwigList 8.278 8.335 8.257 8.369 8.469

TreeEmbed 6.234 6.125 4.139 7.158 4.224

Q1 Q2 Q3 Q4 Q5

Figure 4.10 (a) Query Time in Group One

 80

0

20

40

60

80

100

Total

T
i
m
e
(
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 90.254 89.134 69.335 89.368 69.125

Twig2Stack 28.223 28.334 28.123 28.445 28.156

TwigList 12.278 12.783 12.36 12.335 12.158

TreeEmbed 6.234 6.125 4.139 7.158 4.224

Q1 Q2 Q3 Q4 Q5

Figure 4.10 (b) Total Execution Time of Group One

0

100

200

300

400

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 291.141 287.529 223.661 288.283 222.983

Twig2Stack 91.041 91.399 90.719 91.759 92.132

TwigList 41.235 41.235 39.879 39.79 39.219

TreeEmbed 19.756 19.758 13.351 23.091 13.625

Q1 Q2 Q3 Q4 Q5

Figure 4.10 (c) Total number of comparisons in Group One

 81

0

0.1

0.2

0.3

0.4

0.5

0.6

Memory Usage

K
B

yt
e

Twig2Stack TwigList TreeEmbed

Twig2Stack 0.3 0.4 0.4 0.5 0.3

TwigList 0.3 0.3 0.4 0.5 0.3

TreeEmbed 0.3 0.4 0.4 0.5 0.3

Q1 Q2 Q3 Q4 Q5

Figure 4.10 (d) Memory Usage in Group One

0

500,000

1,000,000

1,500,000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 1,325,458 654,879 879,987 1,278,617 796,558

Twig2Stack 1,325,458 654,879 879,987 1,278,617 796,558

TwigList 1,325,458 654,879 879,987 1,278,617 796,558

TreeEmbed 1,325,458 654,879 879,987 1,278,617 796,558

Q1 Q2 Q3 Q4 Q5

Figure 4.10 (e) Number of Search Results in Group One

 82

0

50

100

150

200

Query

T
i
m
e
(
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 152.645 152.345 155.483 153.394 107.333

Twig2Stack 64.284 60.294 61.245 63.332 62.386

TwigList 48.231 52.893 53.159 52.178 51.283

TreeEmbed 10.234 12.167 13.225 12.289 8.335

Q6 Q7 Q8 Q9 Q10

Figure 4.11 (a) Query time in Group Two

0

50

100

150

200

250

Total

T
i
m
e
(
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 201.223 203.238 203.384 202.335 157.112

Twig2Stack 83.289 85.334 85.472 84.178 83.444

TwigList 53.679 54.124 55.356 55.246 55.258

TreeEmbed 10.234 12.167 13.225 12.289 8.335

Q6 Q7 Q8 Q9 Q10

Figure 4.11 (b) Total Execution Time of Group Two

 83

0

200

400

600

800

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 649.106 655.606 656.071 652.693 506.812

Twig2Stack 268.674 275.271 275.716 271.541 269.174

TwigList 173.158 174.593 178.567 178.212 178.251

TreeEmbed 33.012 39.248 42.661 30.641 26.887

Q6 Q7 Q8 Q9 Q10

Figure 4.11 (c) Total number of comparisons in Group Two

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Memory Usage

K
B

yt
e

Twig2Stack TwigList TreeEmbed

Twig2Stack 0.5 0.6 0.5 0.6 0.5

TwigList 0.5 0.5 0.5 0.6 0.5

TreeEmbed 0.5 0.5 0.5 0.6 0.5

Q6 Q7 Q8 Q9 Q10

Figure 4.11 (d) Memory Usage in Group Two

 84

0

50,000

100,000

150,000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 65,124 102,554 85,479 78,155 91,354

Twig2Stack 65,124 102,554 85,479 78,155 91,354

TwigList 65,124 102,554 85,479 78,155 91,354

TreeEmbed 65,124 102,554 85,479 78,155 91,354

Q6 Q7 Q8 Q9 Q10

Figure 4.11 (e) Number of Search Results in Group Two

0

200

400

600

Query

T
i
m
e
(
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 500.246 502.134 501.226 500.135 500.244

Twig2Stack 130.589 129.335 130.228 132.128 130.248

TwigList 100.345 100.234 100.445 100.238 100.229

TreeEmbed 40.234 42.167 40.225 41.289 42.335

Q11 Q12 Q13 Q14 Q15

Figure 4.12 (a) Query Time in Group Three

 85

0

200

400

600

800

Total

T
i
m
e
(
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 600.354 600.179 600.385 600.382 600.573

Twig2Stack 180.234 180.334 180.134 180.256 180.269

TwigList 120.159 120.245 120.255 120.289 120.253

TreeEmbed 40.234 42.167 40.225 41.289 42.335

Q11 Q12 Q13 Q14 Q15

Figure 4.12 (b) Total Execution time in Group Three

0

500

1000

1500

2000

2500

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 1936.625 1936.061 1936.725 1936.716 1937.332

Twig2Stack 581.399 581.722 581.077 581.471 581.512

TwigList 387.609 387.887 387.919 388.029 387.912

TreeEmbed 136.022 136.061 129.758 133.19 136.564

Q11 Q12 Q13 Q14 Q15

Figure 4.12 (c) Total number of comparisons in Group Three

 86

0.1

0.3

0.5

0.7

0.9

Memory Usage

K
B

yt
e

Twig2Stack TwigList TreeEmbed

Twig2Stack 0.7 0.9 0.9 0.8 0.8

TwigList 0.7 0.9 0.8 0.8 0.8

TreeEmbed 0.7 0.9 0.7 0.8 0.8

Q6 Q7 Q8 Q9 Q10

Figure 4.12 (d) Memory Usage in Group Three

0

10,000

20,000

30,000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 13,759 25,897 18,449 13,576 12,475

Twig2Stack 13,759 25,897 18,449 13,576 12,475

TwigList 13,759 25,897 18,449 13,576 12,475

TreeEmbed 13,759 25,897 18,449 13,576 12,475

Q6 Q7 Q8 Q9 Q10

Figure 4.12 (e) Number of Search Results in Group Three

 87

4.6 Experiments on XMark

In this experiment, we will make tests on XMark data set. The data set

structure was shown in Figure 4.1 (c). We use 5 factors to test the scalability

of the 4 algorithms.

4.6.1 Queries

In this test, we used only two queries. One is a simple path and the other is

of a tree structure, as shown in Table 4.7.

Table 4.7 The queries of XMark

Name Query Trees

Q1 //item[description]//mail

Q2 //open_auction[.//annotation[.//person]//parlist]//bidder//increase

4.6.2 Results

Figure 4.13 show the test results on XMark. The data size of this test can be

found in Table 4.1. We vary the XMark scale factor from 1 to 5. From the

charts in Figure 4.13, we see that the times of all the four algorithms grow

linearly in the document sizes. Again, we see that the TreeEmbed method

beat the other methods in this experiment. Something needs to notice is that

as the size of queries increases the times spent by TwigStack and

Twig2Stack grow much faster than TwigList and TreeEmbed. For Q2, the

query time of TwigStack and Twig2Stack is nearly 4 times larger than that

for Q1, while for TwigList and TreeEmbed the query time of Q2 is only

around 2 times larger than that for Q1. The reason for this is that when

TwigStack and Twig2Stack use a join operation to enumerate results, a huge

 88

volume of intermediate results will be produced and manipulated. But

TwigList and TreeEmbed do not generate any intermediate results. So the

impact of the query size is not so large as TwigStack and Twig2Stack.

0

5000

10000

15000

20000

25000

30000

Query

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 5132 10256 16404 21496 25612

Twig2Stack 1514 3020 4663 6150 7568

TwigList 1231 2468 3695 4926 5109

TreeEmbed 519 1140 1660 2181 2659

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

Figure 4.13 (a) The query time of XMark Q1

 89

0

10000

20000

30000

40000

50000

Total

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 8724 17435 27886 36543 43540

Twig2Stack 2422 4832 7460 9840 12108

TwigList 1847 3702 5543 7389 7664

TreeEmbed 727 1596 2332 3053 3723

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

 Figure 4.13 (b) Total Execution time in XMark Q1

0

20

40

60

80

100

120

Number of comparisons

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 21.271 42.524 68.014 89.129 108.195

Twig2Stack 5.907 11.785 18.195 24.001 29.531

TwigList 4.504 9.029 13.519 18.021 18.692

TreeEmbed 1.773 3.892 5.687 7.446 9.081

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

 Figure 4.13 (c) Total number of comparisons in XMark Q1

 90

0.1

0.6

1.1

1.6

Memory Usage

K
B

yt
e

Twig2Stack TwigList TreeEmbed

Twig2Stack 1.6 1.7 1.9 1.6 1.7

TwigList 1.7 1.6 1.9 1.6 1.7

TreeEmbed 1.6 1.7 1.8 1.5 1.7

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

Figure 4.12 (d) Memory Usage in XMark Q1

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 19,654 30,289 38,559 52,186 69,881

Twig2Stack 19,654 30,289 38,559 52,186 69,881

TwigList 19,654 30,289 38,559 52,186 69,881

TreeEmbed 19,654 30,289 38,559 52,186 69,881

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

Figure 4.12 (e) Number of Search Results in XMark Q1

 91

0

20000

40000

60000

80000

100000

120000

Query

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 20356 41025 65238 85334 105264

Twig2Stack 6125 12178 18599 24801 30681

TwigList 2014 4123 6058 8169 10559

TreeEmbed 1032 2295 3258 4351 5317

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

Figure 4.14 (a) The query time in Xmark Q2

0

20000

40000

60000

80000

100000

120000

Total

T
i
m
e
(
m
s
)

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 20356 41025 65238 85334 105264

Twig2Stack 6125 12178 18599 24801 30681

TwigList 2014 4123 6058 8169 10559

TreeEmbed 1032 2295 3258 4351 5317

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

 Figure 4.14 (b) Total Execution time in XMark Q2

 92

0

50

100

150

200

250

300

Query

M
i
l
l
i
o
n

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 49.649 100.061 159.117 208.132 256.741

Twig2Stack 14.939 31.019 45.363 60.491 74.832

TwigList 4.912 10.056 14.776 19.924 25.754

TreeEmbed 2.517 5.597 7.946 10.612 12.968

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

 Figure 4.14 (c) Total number of comparisons in XMark Q2

0.1

0.6

1.1

1.6

2.1

2.6

Memory Usage

K
B

yt
e

Twig2Stack TwigList TreeEmbed

Twig2Stack 2.7 2.5 2.6 2.7 2.5

TwigList 2.6 2.6 2.5 2.7 2.6

TreeEmbed 2.7 2.6 2.5 2.6 2.6

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

Figure 4.12 (d) Memory Usage in XMark Q2

 93

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Search Result Number

TwigStack Twig2Stack TwigList TreeEmbed

TwigStack 7,997 15,214 19,458 29,346 36,447

Twig2Stack 7,997 15,214 19,458 29,346 36,447

TwigList 7,997 15,214 19,458 29,346 36,447

TreeEmbed 7,997 15,214 19,458 29,346 36,447

Xmark1 Xmark2 Xmark3 Xmark4 Xmark5

Figure 4.12 (e) Number of Search Results in XMark Q2

 94

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we developed a new algorithm to evaluate tree pattern queries

based on unordered tree matching. The motivation for this work is to

overcome some limitations of current query evaluation methods, such as

redundant computation of subtrees which contain the matching nodes, or

reading and processing parts of the streams which cannot contain useful

nodes. In order to achieve a better performance, we use a new labeling

method for tree pattern queries, and treat the data set in a bottom up way.

The core idea of the method is to reconstruct a tree from data streams, during

which each node v that matches a query node will be inserted into the tree

and associated with a query node stream QS(v) such that for each node q in

QS (v) T[v] embeds Q[q]. Especially, the algorithm can be adapted into an

indexing environment with XB-tree [4] being used.

An overview of the tree pattern matching problem for XML databases is

presented, which provides some background information on the tree

encoding, the data streams, as well as the XB-tree index technique to solve

this problem. We have also surveyed the literature related to the tree pattern

matching problem, and proposed a new bottom up query evaluation

algorithm TreeEmbed. In addition, how to combine TreeEmbed with the

XB-tree index is discussed in great detail. We implemented the bottom up

 95

tree reconstruction algorithm and the XB-tree index over the data streams,

and compared the performance of our method with three other algorithms:

TwigStack, Twig2Stack and TwigList, which shows that our query

evaluation method TreeEmbed is promising.

5.2 Future Work

As the future work, we will continue our research in the following aspects.

 XB-tree enhance

The XB-tree as an index technique plays a very important role in our

algorithm. We will do more test on its dynamical maintenance when the

deletion and insertion of nodes are conducted.

 Ordered and Unordered

Our algorithm only supports the unordered tree matching. We will make

more analysis on our tree reconstruction process to find a way to support

the ordered tree matching. [3]

 Practical Example

In our experiments, our algorithm shows a high efficiency. But more

work has to be done to make it useful in practice, especially, to extend it

to do the image search, the protein sequence search and the social

network search, etc. Also, a graphical interface needs to be established.

 Support XQuery

XQuery is a new query language designed specifically for querying

XML data. Its current version is 1.0 [14] and it will become a standard

 96

 97

for processing XML data sets. So, in the near future, any query will be

submitted in this standard format. One of our next main tasks is to

integrate our algorithm into this language to speed up the query

evaluation.

Reference

[1] J. Li and J. Wang. Fast matching of twig patterns. In Proc. DEXA,

2008.

[2] [C.chung, J.Min, and K.Shim, APEX: An adaptive path index for

XML data, ACM SIGMOD, Jun 2002.

[3] Pekka Kilpeläinen and Heikki Mannila. Ordered and unordered tree

inclusion. SIAMJ. Comput., 24(2):340-356, 1995

[4] N. Bruno, N. Koudas, and D. Srivastava, Holistic twig joins: Optimal

XML pattern matching. In Proc. SIGMOD., 2002.

[5] Yanjun Chen, A Time Optimal Algorithm for Evaluating Tree

Pattern, In SAC'., 2010

[6] S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, and D. Srivastava.

Structural joins: A primitive for efficient XML query pattern

matching. In Proc. ICDE., 2002.

[7] S. Chen, H-G. Li, J. Tatemura, W-P. Hsiung, D. Agrawa, and K.S.

Candan, Twig2Stack: Bottom-up Processing of Generalized

Tree-Pattern Queries over XML Documents, In Proc VLDB, Seoul,

Korea, Sept. 2006, pp. 283-294.

[8] B. Choi, M. Mahoui, and D. Wood. On the optimality of holistic

algorithms for twig queries. In Proc. DEXA, 2003.

 98

[9] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On

supporting containment queries in relational database management

systems. In SIGMOD Rec., 2001.

[10] L. Qin, J. X. Yu, and B. Ding. TwigList: Make twig pattern matching

fast. In Proc. DASFAA, 2007.

[11] U. of Washington XML Repository.

 http://www.cs.washington.edu/research/xmldatasets/

[12] A.R.S. et al. The XML Benchmark Project Technical Report,

http://www.xml-benchmark.org/ 2009

[13] M. Ley. Computer Science Bibliography.

http://www.informatik.uni-trier.de/~ley/db/ 2010

[14] W3C Recommendation, XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/ 2007

[15] W3C Recommendation, XPath 1.0 XML Path Language

(XPath)Version 1.0 http://www.w3.org/TR/xpath/ 1999

[16] Z. Jiang, C. Luo, W.-C. Hou, and Q. Z. D. Che. Efficient processing

of XML twig pattern: A novel one-phase holistic solution. In Proc.

DEXA, 2007.

[17] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-tree: Indexing XML

data for efficient structural joins. In Proc. ICDE, 2003

[18] Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,

and C. Zhang. Storing and querying ordered XML using a relational

database system. In Proc. SIGMOD, 2002.

 99

 100

[19] T. Chen, J. Lu, and T.W. Ling, On Boosting Holism in XML Twig

Pattern Matching, In Proc. SIGMOD, pp. 455- 466, 2005

[20] Nils Grimsmo and Truls A.Bjorklund, Towards Unifying Advances

in Twig Join Algorithms, In the Twenty-First Australasian Database

Conference(ADC2010), Brisbane, Australia., 2010.

	Cover.pdf
	Front
	Chapter1-5
	Reference

