Show simple item record

dc.contributor.authorCurrie, James D.
dc.contributor.authorAberkane, Ali
dc.date.accessioned2019-11-28T18:55:44Z
dc.date.available2019-11-28T18:55:44Z
dc.date.issued2005
dc.identifier.citationBull. Belg. Math. Soc. Simon Stevin 4 (2005), 525–534.en_US
dc.identifier.urihttp://hdl.handle.net/10680/1752
dc.description.abstractWe show that binary circular words of length n avoiding 7/3+ powers exist for every sufficiently large n. This is not the case for binary circular words avoiding k+ powers with k < 7/3en_US
dc.description.urihttps://projecteuclid.org/download/pdf_1/euclid.bbms/1133793340en_US
dc.language.isoenen_US
dc.publisherThe Belgian Mathematical Societyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcombinatorics on words, 7/3-powers, Thue-Morse word, circular words, words avoiding powersen_US
dc.titleAttainable lengths for circular binary words avoiding k-powersen_US
dc.typeArticleen_US
dc.identifier.doi10.36045/bbms/1133793340en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record