dc.contributor.author | Currie, James D. | |
dc.contributor.author | Aberkane, Ali | |
dc.date.accessioned | 2019-11-28T18:55:44Z | |
dc.date.available | 2019-11-28T18:55:44Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | Bull. Belg. Math. Soc. Simon Stevin 4 (2005), 525–534. | en_US |
dc.identifier.uri | http://hdl.handle.net/10680/1752 | |
dc.description.abstract | We show that binary circular words of length n avoiding 7/3+ powers exist
for every sufficiently large n. This is not the case for binary circular words
avoiding k+ powers with k < 7/3 | en_US |
dc.description.uri | https://projecteuclid.org/download/pdf_1/euclid.bbms/1133793340 | en_US |
dc.language.iso | en | en_US |
dc.publisher | The Belgian Mathematical Society | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | combinatorics on words, 7/3-powers, Thue-Morse word, circular words, words avoiding powers | en_US |
dc.title | Attainable lengths for circular binary words avoiding k-powers | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.36045/bbms/1133793340 | en_US |