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Abstract 

Colorectal cancer (CRC) is the second leading cause of cancer deaths in Canada. The 

high mortality rate for CRC patients demonstrate the urgent need for a convenient, 

accurate and cost-effective screening test, which could triage patients for more intensive 

procedures such as colonoscopy. Current CRC screening tests are limited by their 

efficacy, invasiveness, and poor acceptability by the patients. N-myristoylation refers to 

the covalent attachment of the 14-carbon fatty acid myristoyl group to the N-terminal 

glycine residue of a target protein, which ensures its proper functioning and intracellular 

trafficking. This reaction is common amongst signalling proteins and is often integral to 

their activity. Myristoylation is catalyzed by N-myristoyltransferase which transfers the 

myristoyl moiety from myristoyl-coenzyme A to the N-terminal glycine residue.  

The foremost aim of my study was to optimize and quantify NMT1 and METAP2 gene 

expression by using quantitative Polymerase Chain Reaction (qPCR). Due to its capacity 

to generate both qualitative and quantitative results, qPCR is considered a quick and 

accurate technique to begin with. NMT1 and METAP2 oncogenes overexpressed in 

colorectal cancer cells are directly associated with aggressive clinical behaviour. The 

NMT1 and METAP2 oncogenes and their respective protein products (NMT1 and 

METAP2) have been utilized for disease diagnosis and as predictive markers for 

treatment. To support accurate quantification and analysis in this study, I have optimized 

and standardized qPCR analysis to analyze colorectal cancer samples, obtaining 

significant and clinically useful results. We recently demonstrated that NMT1 is 

expressed in the peripheral blood mononuclear cells (PBMC) and T cells of colorectal 

cancer patients. The aims of this study are to quantify NMT1 and METAP2 expression in 
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individuals undergoing colonoscopy and determine whether NMT1 and METAP2 gene 

expression could serve as a screening marker for CRC.  

Chapter two: From chapter 1, it was determined that NMT1 and METAP2 expressions in 

peripheral blood and PBMC are potential biomarkers for CRC screening. These 

biomarkers are overexpressed in individuals with polyps and CRC. To understand the 

mechanism and the functional relevance of NMT1 and METAP2 overexpression in 

PBMC, Nmt1 was knocked out in mouse embryonic stem cells and its effect was 

investigated on metabolic pathway. The generation of homozygous (Nmt1-/-) deficient 

embryonic stem cells was confirmed by qPCR and Western analysis. The depletion of 

NMT1 leads to enhanced phosphorylation of key proteins within the PI3K/Akt signalling 

pathway that are normally stimulated by insulin and inhibited by rapamycin. The Nmt1-

deficiency resulted in the over activation of the PI3K/Akt signalling pathway and Igf1r 

gene expression, thus, NMT1 likely has a vital role in regulating metabolic disorders.  
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CHAPTER 1: N-myristoyltransferase 1 and Methionine Aminopeptidase 2 are novel 

biomarkers for early detection of colorectal adenomatous polyps and cancers 

 

Colorectal Cancer 

Colorectal cancer (CRC) is a common malignant disease and a major cause of 

mortality worldwide. Currently, it is the second most commonly diagnosed cancer in 

Canada, affecting approximately 25,000 Canadians [1]. CRC accounts for 13% of the 

annual incidence of cancer in Canada for men and 11% for women [1]. According to 

American Cancer Society, 1 in 22 men and 1 in 24 women are at a risk of developing the 

disease. The estimated number of CRC cases in United States for 2017 were reported to 

be as high as 95, 270 new cases of colon cancer and 39, 220 new cases of rectal cancer 

[2]. Compared to other cancers, CRC is a highly treatable cancer if it is detected early and 

it is up to 90% preventable with timely and thorough CRC screening. Unfortunately, as it 

stands today, nearly half of those diagnosed find out too late [2]. There are two types of 

colon polyps: non-neoplastic polyps and neoplastic polyps [3]. The non-neoplastic polyps 

are hyperplastic or inflammatory (non-adenomatous) but are non-precancerous. However, 

neoplastic polyps (adenomatous polyps or adenomas), are benign neoplasms that can 

progress to form cancer and are precancerous in nature (Figure 1) [3]. Adenomatous 

polyps display some dysplasia, which can be graded into mild, moderate, and severe 

based on histology. Neoplastic polyps are histologically divided into 3 sub-groups: 

tubular adenomas, villous adenoma and mixed. Patients with tubular adenomas are at a 

3% risk of malignant tumor formation; while villous adenomas have 15% or higher risk 

of malignant formation [4, 5]. Due to their malignant nature, these polyps should be 
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identified and removed at the early stage to avoid the development of CRC. CRC begins 

as adenomatous polyps which is benign growth in the lining of the colon. Over the years, 

these adenomatous polyps grow larger and can differentiate, thereby increasing the risk 

of cells in the polyps becoming cancerous. Therefore, early detection of adenomatous 

polyps is an important step in preventing progression of CRC. It is important to identify 

and remove these polyps as soon as possible. Since CRC develops slowly from 

precancerous lesions, early detection and prompt removal of adenoma can decrease the 

incidence and mortality rate. Once polyps are detected, especially adenomatous polyps, 

an increased risk for colorectal carcinoma must be anticipated and appropriate 

surveillance becomes mandatory even after polypectomy. If the adenomatous polyps are 

not treated or removed they can develop into cancers, a process that takes at least 10 

years [6]. Early detection is the key to survival, however the surgical resection of the 

growth, often in combination with chemotherapy, significantly increases life expectancy. 

Currently available CRC screening tests such as fecal occult blood testing (FOBT), 

sigmoidoscopy, and colonoscopy have several limitations including: limited efficacy, the 

invasive nature of the test, and poor patient compliance [7]. 

 

Figure 1. Photographs showing normal, non-adenomatous polyp (NAP), adenomatous 
polyp (AP), and CRC colon. 
 

Normal	Colon	
Non-adenomatous	

polyp	 Adenomatous	polyp	 Colorectal	Cancer	
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N-myristoyltransferase (NMT) and Myristoylation 

Acylation of proteins by long chain fatty acids promotes binding of proteins to the 

inner leaflet of the plasma membrane and regulates their intracellular trafficking [8]. N-

myristoylation is an irreversible modification and co-translational lipid modification that 

involves the covalent attachment of a 14-carbon saturated myristoyl group to the N-

terminal glycine residue of a target protein. The myristoyl transfer is catalyzed by N-

myristoyltransferase (NMT) (Figure 2), and is known to occur in viruses, fungi, plants 

and in mammals, including mice, rats and humans. [9-13]. A myriad of proteins involved 

in a variety of signaling cascades and cellular differentiation are myristoylated [10, 11]. 

These include the catalytic subunit of cAMP-dependent protein kinase [14], the β-subunit 

of calcineurin [15], the α-subunit of several G-proteins [16], non-receptor tyrosine 

kinases such as Lck of T cells and the cellular and transforming forms of pp60src [17]. 

The eukaryotic NMT is a member of the GCN5-related N-acetyltransferase (GNAT) 

superfamily of proteins [9-11]. 

 

NMT and METAP2 

Lipid modification of proteins has received great attention recently as a target for 

therapeutic interventions to cancer [18]. Myristoylated proteins are involved in a variety 

of signal transductions, cellular proliferation, and oncogenesis [18]. Myristoylation is an 

integral part of apoptosis or programmed cell death [18]. In the PI3K/Akt/mTOR 

pathway, c-Src is frequently observed to be activated or over-expressed in a number of 

human cancers; especially those of colon and breast. Activation of c-Src and its 

subsequent oncogenic growth signaling requires myristoylation. In 1995, it was first 
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discovered that there was an increase in NMT enzyme activity in rat colonic cancer tissue 

compared to adjacent normal-appearing cells. To confirm that this phenomenon was not 

specific to the rat model, a small sample of human colonic adenocarcinomas tissue were 

measured to have hyperactivity of NMT [19]. In mammalian systems, NMT activity has 

been shown to increase in colorectal tumors, leading to the proposal that NMT enzyme 

could serve as a target for anticancer therapies [20] and the possibility of NMT having a 

vital role in human tumor progression. After 2 years, the same group correlated NMT 

Enzyme activity to NMT protein expression by using Western blot analysis. The results 

showed that all the human colonic tumor samples had high NMT protein expression.  

 

A newly synthesized protein will always have a methionine group at the N-

terminal. Methionine aminopeptidase (MetAP2) cleaves the Methionine residue and 

removes it. The end product is an N-terminus glycine residue protein. An N-terminus 

glycine residue protein is the only protein that can be myristoylated. Thus, MetAP2 is an 

upstream event and it is an important part of myristoylation reaction. In order for NMT to 

catalyze myristoylation at the N-terminal glycine of a target protein, the removal of N-

terminal methionine is required, as it is essential for further amino-terminal modifications 

and the maturation of many proteins. The methionine aminopeptidases (MetAPs) 

represent a unique class of proteases which remove the initiation methionine residue from 

newly synthesized polypeptide chains [21]. MetAPs catalyze N-terminal methionine 

excision (NME) - an essential pathway of co-translational protein maturation (Figure 

2) [22]. In some instances, the action of MetAP is required for biological activity, proper 

subcellular localization, and eventual degradation. This enzyme is present in both 
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eukaryotes and prokaryotes [22].  In yeast and humans, two proteins are known to 

possess MetAP activity: MetAP1 and MetAP2. MetAP2 has attracted much more 

attention than MetAP1 due to its discovery as a target molecule of the anti-angiogenic 

compounds fumagillin and ovalicin. In 2006, reports from Western blot analysis shows a 

higher expression of MetAP2 in all cases of cancerous tissues compared with normal 

tissues. In addition, immunohistochemistry analysis revealed that all cases of colorectal 

adenocarcinoma show strong cytoplasmic positivity for MetAP2 with increased intensity 

in the invasive component [23]. In summary, both NMT and MetAP2 were over-

expressed in the colonic tumor. In 2007, Dr. Shrivastav’s group investigated whether 

those molecular signatures can be found in peripheral blood, as blood is easier to collect 

and it is an alternative to tissue samples. They found an over-expression of NMT1 in 

peripheral blood smears of rats with cancer relative to healthy rats [24]. In addition, they 

collected blood samples from patients with cancer and they found an over-expression of 

NMT1 in peripheral blood smears in cancer patients compared to healthy individuals 

[24]. Overall, there was a high expression of NMT in both colonic tumors and peripheral 

blood samples, but there have only been reports on the high expression of MetAP2 in the 

colonic tumor. 

 

Since the myristoylation reaction is catalyzed by NMT, after removal of 

methionine by MetAP2, I investigated the correlation between MetAP2 and NMT1. It 

appears that higher expression of MetAP2 is required for the over-expression of NMT1 in 

colon carcinogenesis. The elevated NMT activity during colonic carcinogenesis may be 

due to the higher demand for myristoylation of various proteins/oncoproteins which are 
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overexpressed and activated during tumorigenesis. A direct relationship between elevated 

NMT expression and activity in colon cancer progression has been reported [18]. NMT1 

and MetAP2 can be a putative therapeutic drug target for CRC if the patient is diagnosed 

at an early stage. This study focused on the role of NMT1 and METAP2 gene expression 

in healthy, noncancerous adenomatous polyps, and CRC patients. These enzymes can be 

modulated by growth factors [25] and may be of importance in cancer development and 

therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Myristoylation reaction catalyzed by N-myristoyltransferase (NMT). The 
myristoyl functional group is added to the N-terminal glycine residue co-translationally 
following the removal of the N-terminal methionine residue by methionine 
aminopeptidase (MetAP) and the synthesis of myristoyl-CoA by acyl-CoA synthetase. 
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Whole Blood 

The peripheral blood expression profile represents a promising tool to discover 

biomarkers associated with physiological or pathological events. Circulating blood is 

easily accessible and can represent an alternative to tissue sampling for the purpose of 

finding molecular signatures. Here in we describe measuring gene expression from 

patient whole blood samples. This method consists in the combination of PAXgene™ 

tubes containing an mRNA stabilizer for blood collection, and the PAXgene Blood RNA 

Kit (IVD) for nucleic acid purification. The PAXgene Blood RNA System is intended for 

the isolation and purification of intracellular RNA for RT-PCR used in diagnostic testing. 

 

Peripheral Blood Mononuclear Cell (PBMC) 

The isolation of peripheral blood mononuclear cells (PBMC) from whole blood 

allows for the purification of immune system associated cells (Figure 3) [26]. These cells 

are able to respond to internal and external signals, and therefore have been proposed as a 

source of biomarkers of conditions and diseases, as their gene expression profile may 

reflect the physiological and pathological state of the organism. PBMCs are mainly 

comprised of monocytes, macrophages, T cells, B cells, natural killer (NK) cells, and 

dendritic cells (Figure 3). Thus, PBMCs contain different cell types that play important 

roles in the immune system such as monitoring immune-relevant events and response to 

inflammation [27]. The use of state-of-the-art proteomic profiling methods in PBMCs 

will enable minimally invasive monitoring of disease progression or response to 

treatment and discovery of biomarkers [27]. 
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Figure 3. Isolation of PBMC by Ficoll-Paque density gradient centrifugation: The bottom 
layer is made up of red blood cells (erythrocytes) collected or aggregated by the Ficoll 
medium and sink completely through to the bottom. The next layer up from the bottom is 
primarily granulocytes, which also migrate down through the Ficoll-Paque solution. The 
next layer towards the top is the PBMC, which are typically at the interface between the 
plasma and the Ficoll solution, along with monocytes and platelets. To recover the 
PBMC, this layer is carefully recovered, washed with a HBSS to remove platelets, Ficoll, 
and plasma, then centrifuged again. 
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HYPOTHESIS 

“NMT1 and METAP2 RNA transcripts are overexpressed in colorectal cancer patients’ 

peripheral blood mononuclear cells and whole blood samples and may translate into an 

effective biomarker for early detection of the disease and could possibly translate into a 

blood-based test for CRC screening.” 

 

OBJECTIVE 

The aim of the study is to investigate the patterns of gene expression of NMT1 and 

METAP2 in healthy control, non-adenomatous polyps, adenomatous polyps, and CRC 

patients’ whole blood and PBMC via the RT-PCR technique. 
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MATERIALS AND METHODS 

Whole blood study: RNA isolation with PAXgene® kit  

Blood samples from 18 participants including: 3 controls, 4 non-adenoma polyps, 

4 adenoma polyps, and 7 CRC patients were collected over the course of 1 year from 

September 2014 to April 2015. All participants went for colonoscopy at the Health 

Sciences Center (Winnipeg, Manitoba) and provided signed informed consent prior to 

their blood samples being obtained by venipuncture for accurate quantification of 

peripheral blood mRNA levels. A 2.5 ml sample of blood was transferred to a 

PAXgene™ tube for immediate cell lysis and nucleic acid precipitation. The mRNA is 

stable for up to 5 days in the blood lysate, provided the tubes are kept at room 

temperature until mRNA extraction. The PAXgene blood RNA kit (PreAnalytiX) was 

used for RNA extraction, according to the manufacturer’s protocol. 

 

PBMC study: RNA isolation using Ficoll-Hypaque gradient centrifugation 

Blood samples from 25 participants containing: 9 controls, 7 non-adenoma 

polyps, 6 adenoma polyps, and 3 CRC patients were collected from August 2017 to 

February 2018. All participants went for colonoscopy at the Health Sciences Center 

(Winnipeg, Manitoba) and provided signed informed consent prior to their blood samples 

being obtained by venipuncture for accurate quantification of peripheral blood mRNA 

levels. Blood samples were collected in EDTA tubes and PBMCs were isolated by Ficoll-

Hypaque gradient centrifugation. A Total RNA Kit was used for RNA extraction from 

PBMC (Omega Bio-Tek) according to the manufacturer’s protocol. 
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RNA Quantification 

The concentration and the purity of total RNA was measured using the ratio of 

absorbance at 260nm and 280nm (A260/A280) with a SpectraMaxR i3 spectrophotometer, 

and SoftMax software. The SpectraDrop Micro-Volume Microplate can confirm that the 

sample is free of protein (A260/A280) if the ratio ranges between 1.8 to 2.0.  

 

cDNA Synthesis:  Reverse Transcription of mRNA 

RNA samples were prepared for as follows: Total RNA (1 µg) was reverse-

transcribed using the iScript Reverse Transcription Supermix for RT-PCR (Bio-Rad) in a 

total volume of 20 µl according to the manufacturer’s instructions; The reaction mixture 

was incubated at 25 °C for 5 min for priming, then at 42 °C for 60 min for reverse 

transcription, and finally at 85 °C for 5 min for reverse transcriptase inactivation. The 

complementary DNA (cDNA) was stored at −20 °C until further use. 

 

Primers 

Quantitative PCR was performed on two target genes: NMT1 and METAP2; and three 

housekeeping genes: GAPDH, ACTB, and RPLP0. Information for all primers used is 

listed in Appendix T. 

 

Real Time Quantitative RT-PCR Analysis 

The expression of NMT1 and METAP2 was measured using RT-PCR. For 

amplification and data collection I used the CRX ConnectTM Real-Time System Cycler 

and CFX Manager 3.1 software (BioRad). The optimal reaction conditions were obtained 
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with 1x SsoAdvanced™ Universal SYBR® Green Supermix, 300 nM specific primer, 

RNase/DNase-free water, and cDNA template (20 ng/well) up to final volume of 15 

µl/well. Amplifications were performed starting with a 30 sec enzyme activation cycle at 

95 °C, followed by 40 cycles of denaturation at 95 °C for 5 sec, 1 cycle of 

annealing/extension at 60 °C for 30 sec, and a final cycle at 72 °C for 30 sec. At the end 

of each run a melting curve analysis was done from 65 °C to 95 °C for 0.5 to 5 sec. All 

samples were amplified in triplicates, and the obtained cycle of quantification (Cq) value 

was then used for further analysis. Cq values of >35 were excluded from further 

mathematical calculations. A NTC “no template sample” (RNA from reverse 

transcription without reverse transcriptase) and a sample without RNA or cDNA were the 

negative controls. 

 

Calculation of the amounts of gene expression 

The relative gene expression was calculated by the subtraction of the Cq value of NMT1 

(target gene) in the samples relative to GAPDH and ACTB (housekeeping gene) for 

whole blood samples. GAPDH and RPLP0 was the housekeeping gene for PBMC 

samples. Relative quantification is the most commonly used method [28]. 

 

Step 1. Normalize to (REF): ΔCq = Cq (Target gene) – Cq (Housekeeping genes) 

Step 2. Exponential expression transform: ΔCq Expression = 2(–ΔCq) 
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RESULTS  

1. NMT1 and METAP2 gene expression in Whole Blood 

Expression was measured by RT-PCR to examine the relative transcript levels of 

NMT1 and METAP2 in 18 patients, which consisted of healthy controls (n=3), non-

adenomatous polyps (n=4), adenomatous polyps (n=4), and CRC patient (n=7) whole 

blood samples (Figure 4 & 5). Analysis of the real-time RT-PCR results was performed 

by a relative quantification method whereby the change in expression of the target gene: 

NMT1 and METAP2 is determined relative to the average expression of GAPDH and 

ACTB housekeeping genes. 

 

Both NMT1 and METAP2 were detected in all the individuals (Figure 4 & 5). The 

overall expression of NMT1 and METAP2 was seen to be the highest in the non-

adenomas polyp samples with METAP2 being consistently higher than NMT1 (Figure 6). 

METAP2 and NMT1 expression patterns showed no significant differences in patient 

healthy control and non-adenomatous polyp samples. However, expression was the 

lowest in the healthy control compared to non-adenomatous polyps, adenomatous polyps 

and CRC (Figure 6). METAP2 expression was the lowest in the adenomatous polyp but 

increased by over 0.08-fold in control, 0.60-fold non-adenomatous polyps and 0.64-fold 

CRC patients (Figure 6). There was a significant increase in METAP2 in CRC whole 

blood samples. NMT1 showed a similar trend, expression was the lowest in the 

adenomatous polyp but increased by over 0.07-fold in control, 0.30-fold CRC and 0.58-

fold non-adenomatous polyp patients (Figure 6). There was a significant increase in 

METAP2 than NMT1 in CRC whole blood samples. 
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Figure 4. First set: Transcript levels of NMT1 and METAP2 from whole blood (PAXgene 
Tube), where Log 2 (Fold change) expression values shown on y-axis are calculated 
relative to GAPDH and ACTB. Control (C), non-adenomatous polyps (P), adenomatous 
polyps (AP), and CRC patients are shown on x-axis. 
 

 

Figure 5. Second set: Transcript levels of NMT1 and METAP2 from whole blood 
(PAXgene Tube), where Log 2 (Fold change) expression values shown on y-axis are 
calculated relative to ACTB. Control (C), non-adenomatous polyps (P), adenomatous 
polyps (AP), and CRC patients are shown on x-axis. 
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Figure 6. Transcript levels of NMT1 and METAP2 from whole blood (PAXgene Tube), 
where Log 2 (Fold change) expression values shown on y-axis are calculated by relative 
to the average housekeeping genes: GAPDH and ACTB. Control, non-adenomatous 
polyps, adenomatous polyps, and CRC patients are shown on x-axis. NMT1 and METAP2 
expression was lowest in adenomatous patients; however, NMT1 and METAP2 was the 
highest in non-adenomatous polyp and CRC patients. METAP2 was significantly higher 
than NMT1 in CRC patients’ whole blood sample. 
 

2. NMT1 and METAP2 gene expression in PBMC 

Expression was measured by RT-PCR to examine the gene expression of NMT1 

and METAP2 in PBMC samples from 25 patients, which consisted of healthy controls 

(n=9), non-adenomatous polyps (n=7), adenomatous polyps (n=6), and CRC patients 

(n=3) (Figure 7 & 8). Analysis of the real-time RT-PCR results was performed by a 

relative quantification method whereby the change in expression of the target gene: 

NMT1 and METAP2 is determined relative to the GAPDH and RPLP0 housekeeping 

genes.  
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The overall expression of NMT1 and METAP2 was higher in the non-

adenomatous polyps, adenomatous polyps, and CRC compared to healthy control 

samples (Figure 9). METAP2 expression was lowest in the healthy controls but increased 

by over 0.16-fold in CRC, 0.25-fold adenomatous polyps and 0.96-fold non-adenomatous 

patients (Figure 9). There was a significant increase in METAP2 in CRC whole blood 

samples. NMT1 showed a similar trend, expression was the lowest in the healthy controls 

but increased by over 0.34-fold in CRC, 0.30-fold adenomatous polyps and 0.95-fold 

non-adenomatous patients (Figure 9). There was a significant increase in NMT1 in CRC 

PBMC samples. 

 

Figure 7. First set: Transcript levels of NMT1 and METAP2 in PBMC isolated from 
whole blood sample using density gradient centrifugation (Ficoll), where Log 2 (fold 
change) expression values shown on y-axis are calculated relative to the GAPDH. 
Control (C), non-adenomatous polyps (P), adenomatous polyps (AP), and CRC patients 
are shown on x-axis. METAP2 and NMT1 was significantly lower in control patients. 



 17 

 

Figure 8. Second set: Transcript levels of NMT1 and METAP2 in PBMC isolated from 
whole blood sample using density gradient centrifugation (Ficoll), where Log 2 (fold 
change) expression values shown on y-axis are calculated relative to the RPLP0. Control 
(C), non-adenomatous polyps (P), adenomatous polyps (AP), and CRC patients are 
shown on x-axis. METAP2 and NMT1 was significantly lower in control patients. 
 

 

Figure 9. Transcript levels of NMT1 and METAP2 in PBMC isolated from whole blood 
sample using density gradient centrifugation (Ficoll), where Log 2 (fold change) 
expression values shown on y-axis are calculated relative to the average GAPDH and 
RPLP0. Control, non-adenomatous polyps, adenomatous polyps, and CRC patients are 
shown on x-axis. NMT1 and METAP2 expressions was lowest in control patient however, 
NMT1 and METAP2 was the highest in patients with non-adenomatous polyp. METAP2 
was lower than NMT1 in PBMC in CRC patients. 
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DISCUSSION 

 

N-myristoylation is a lipid modification found in mammalian, fungal, plant, and 

viral proteins. The enzyme mediating the protein myristoylation, N-myristoyltransferase 

(NMT), covalently attaches a 14-carbon fatty acyl group (myristoyl group) to a glycine 

residue at the N-terminus of a protein. The known myristoylated proteins include the 

catalytic subunit of cAMP-dependent protein kinase, various tyrosine kinases (pp60c-src), 

the β-subunit of calmodulin-dependent protein phosphatase (calcineurin), the 

myristoylated alanine-rich C-kinase substrate, and the α-subunit of several G proteins 

[23]. The myristoylated protein has multiple functions such as membrane localization, 

protein translocation, and oncogenesis.  

 

In general, protein myristoylation is a co-translational process that occurs after the 

removal of methionine by methionine aminopeptidase (MetAP). Methionine 

aminopeptidase 2 (MetAP2) is a bifunctional protein that plays a critical role in the 

regulation of post-translational processing and protein synthesis. The main aim of this 

study was to investigate the gene expression of NMT1 And METAP2 in whole blood and 

PBMC in HSC patients by Real Time RT-PCR methods. RT-PCR was chosen because it 

is highly specific, sensitive, and can detect the gene expression of multiple genes at one 

time. Moreover, it is one of the most reliable methods of quantifying mRNA and is 

therefore well-suited to the application of helping to triage patients who are waitlisted for 

colonoscopy and is a favorable option for the analysis of cancer markers [29].  
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I quantitatively evaluated the expression profile of 2 target genes: NMT1 and 

METAP2 in both whole blood and PBMC from healthy controls, non-adenomatous 

polyps, adenomatous polyps, and CRC patients. Here we show that both NMT1 and 

METAP2 were overexpressed in PBMCs from the CRC patients. This result demonstrated 

that both the enzymes NMT and MetAP play a major role in the process of 

myristoylation of oncoproteins, and more glycine terminal protein is required by the cells 

for proliferation and cancer development. When both genes were compared, METAP2 

expression was found to be higher than NMT1 and it was significantly more prevalent in 

CRC. The high expression of METAP2 in human colorectal carcinoma, revealed the 

potential role of MetAP2 in cancer. The high level of METAP2 activity in colon cancer 

correlates with both an increase in enzyme synthesis and an association of the activated 

kinase with the cytoskeleton. MetAP2 is also known as the molecular target of the 

angiogenesis inhibitor TNP-470 [30]. There been reports that a high level of MetAP2 

expression was observed in B cells of malignant lymphomas [31].  

 

All the samples had similar gene expression except in adenomatous polyps from 

the whole blood and PBMC. In whole blood, NMT1 gene expressed higher than 

METAP2, but in PBMCs the NMT1 expressed lower than METAP2. The discrepancy in 

expression profile of NMT1 and METAP2 in whole blood and PBMC suggest that cells 

other than PBMC such as neutrophils have different pattern of expression for these genes. 

In an earlier study by Shrivastav et al have shown that neutrophil upon activation display 

differential expression of NMT1 compared to resting neutrophils.  
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Real-time PCR approaches are now widely applied in clinical research to quantify 

the abundance and expression of functional gene markers in biological samples. 

However, RT-PCR has significant limitations. Traditionally, false-positives due to 

carryover contamination have caused considerable problems in the routine 

implementation of qPCR in research and have led to strict guidelines in the design of 

laboratories dedicated to performing PCR. RT-PCR workflow has multiple steps, and 

there can be several sources of bias in gene measurement by RT-PCR that can alter the 

results. In the initial step, RNA extraction, excess use of 95% ethanol can crosslink RNA, 

and the presence of polysaccharides can reduce the elution of RNA. During the second 

step, in which the RNA is converted to cDNA, the presence of reverse transcriptase 

inhibitors can result in the incomplete conversion of all the RNA present into cDNA. The 

presence of inhibitors can significantly increase the measurement biases, and produce 

false negative or false positive results in both RT-PCR and cDNA reverse transcription. 

 

        An alternative to PCR is western blot analysis - a technique in which the 

activation of proteins in signaling pathways can be detected. Western blots can be used to 

study the protein expression of NMT1 and MetAP2. This method is sensitive and 

specific, and inexpensive compared to PCR. Another alternative to qPCR is 

immunofluorescence. Used observe the expression and localization on NMT1 and 

MetAP2 in PBMCs, this method is both quicker and inexpensive relative to PCR and 

Western blots Analysis. 
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Overall, RT-PCR is an excellent tool that may assist in the understanding of the 

molecular events underlying human cancer. An accurate RT-PCR analysis could improve 

clinical diagnosis as well as predictive and prognostic monitoring of disease. 

Furthermore, RT-PCR may offer tools to detect and measure gene expression at an early 

stage. The results demonstrate that when a patient’s blood is over-expressing NMT1 or 

METAP2, they should be prioritized and screened for colorectal cancer. Screening can 

prevent colorectal cancer by finding and removing polyps before they turn into cancer. 

Early detection will result in a greater number of treatment options and better outcomes. 

 

 

  



 22 

CHAPTER 2:  

Functional Relevance of N-myristoyltransferase 1 in Cellular Growth Pathway 

 

Mouse Embryonic Stem Cells 

Mouse embryonic stem cells (mESC) are self-renewing, pluripotent cells derived 

from the inner cell mass of blastocyst stage mouse embryos. mESC, spontaneously 

differentiate into numerous cell types derived from all three embryonic germ layers [32]. 

Stem cells can be classified into three broad categories, based on their ability to 

differentiate. Totipotent stem cells are found only in early embryos. Each cell can form a 

complete organism (e.g., identical twins). Pluripotent stem cells exist in the 

undifferentiated inner cell mass of the blastocyst and can form any of the over 200 

different cell types found in the body [33]. Multipotent stem cells are derived from fetal 

tissue, cord blood and adult stem cells [32]. Although their ability to differentiate is more 

limited than pluripotent stem cells, they already have a track record of success in cell-

based therapies. 

 

NMT and ESC 

As is known, the N-myristoylation process is catalyzed by the enzyme N-

myristoyltransferase. N-Myristoylated proteins comprise a large family of functionally 

diverse eukaryotic and viral proteins. Proteins that are destined to be covalently modified 

with the 14-carbon saturated fatty acyl group (myristoyl group) generally contain the 

sequence Gly–X–X–X–Ser/Thr at the amino terminus (Figure 2). The significance of 

NMT in normal cellular functioning is evident from a study where Drosophila embryos 
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with null NMT mutations displayed a range of abnormal phenotypes, including failure of 

head involution, dorsal closure, and germ-band retraction, all of which are strikingly 

similar to phenotypes caused by mutations to genes involved in dynamic rearrangement 

of the actin cytoskeleton. As just stated above, together with the recent demonstrations 

that showcase that the myristoylated non-receptor tyrosine kinases, Dsrc42A and 

Dsrc64B, are key regulators of cytoskeletal dynamics [34, 35], support the idea that 

myristoylated proteins have important functions in fundamental morphogenetic processes 

in Drosophila [36]. NMT in lower eukaryotes is encoded by a single NMT gene, whereas 

in higher eukaryotes such as bovines, humans, and plants, NMT is encoded by two NMT 

genes located on separate chromosomes. The second genetically distinct NMT cDNA 

(NMT2) has been cloned from a human liver library [37].  

 

Since, NMT1 and METAP2 were found to be overexpressed in whole blood and 

PBMC of individuals with polyps and CRC, I wanted to further investigate the role of 

NMT1 in signaling proteins especially those of metabolic pathway which are known to 

be perturbed in CRC [38]. Furthermore, previous findings from our group suggest NMT1 

is crucial for mouse embryo development and myelopoiesis. By knocking out the Nmt1 

gene in mice, it was demonstrated that NMT1 is the principal enzyme in early 

embryogenesis. Inter-crosses of Nmt1+/- mice yielded no viable homozygotes (Nmt1-/-). 

Since Nmt1-/- Embryonic Stem cells (ES Nmt1-/- KO) could be isolated, NMT1 does not 

appear to be essential for viability of mammalian cells, but it is required for the early 

embryonic development. Although both NMT isoforms share 77% amino acid sequence 

homology, they differ in substrate affinity [39]. NMT1 has been acknowledged to be the 
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principal isoform responsible during early embryogenesis of mice [40]. It has also been 

reported that NMT1 and regulated total NMT activity is essential for proper monocytic 

differentiation [41] and, using bovine neutrophils, it was demonstrated that NMT1 has a 

role in regulating neutrophil lifespan [42].  

 

As demonstrated in the chapter 1, NMT1 and METAP2 genes were overexpressed 

in peripheral blood or PBMC of individuals with polyps and CRC. Based on previous 

reports where NMT1 has been demonstrated to be the downstream target of Akt [43], I 

was interested in investigating the effect of NMT1 knockout on PI3K/Akt/mTOR 

signaling pathway. 

 

PI3K/Akt/mTOR Signaling Pathway 

The PI3K/Akt/mTOR pathway is an important intracellular downstream pathway 

that regulates cellular growth, cell proliferation over differentiation (stem cells/ neural 

stem cells), protein synthesis, and apoptosis (Figure 2) [44]. Once this pathway is 

activated, it can propagate to downstream substrates including: receptor tyrosine kinases 

(RTK), PI3K, Akt/PKB, mammalian target of rapamycin (mTOR), and NMT. When this 

pathway is overactive, it can increase cell proliferation and inhibit apoptosis [45]. In 

order to activate this pathway, insulin or insulin-like growth factors must bind to the 

insulin-like growth factor-1 receptor (IGF-1R), which is a receptor tyrosine kinase 

(RTK). RTKs are composed of 2 extracellular alpha-subunits and 2 transmembrane beta 

subunits. This pathway is first initiated by insulin binding to the alpha-subunits of the 

RTK [46], [47]. Insulin binding causes autophosphorylation of the RTK beta subunits 
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that transduces downstream regulators and triggers phosphorylation of multiple 

substrates. Insulin receptor substrate 1 (IRS-1) is the first intracellular substrate of the 

RTK following autophosphorylation [45, 48]. This results in the activation of IRS-1 

docking proteins, followed by PI3K. PI3K is composed of two subunits; one subunit 

houses two SH2 domains and another serves as a catalytic domain [49]. The PI3K 

substrate becomes activated by phosphorylation at the SH2 domain [49]. The activated 

protein approaches phosphatidylinositol-4,5,-bisphosphate (PIP2), converting this 

phospholipid to phosphatidylinositol-3,4,5,-trisphosphate (PIP3). The activation of 

Akt/PKB is facilitated by its binding to PIP3, which in turn exposes the residues Ser473 

and Thr308 [45, 48]. To fully activate Akt, phosphoinositide-dependent kinase 1 (PDK-1) 

phosphorylates Akt at Thr308 and mTOR-rictor complex 2 phosphorylates Ser473. 

Activated Akt translocates to the cytoplasmic region to control mTOR phosphorylation. 

 

Figure 10. The PI3K/Akt/mTOR pathway plays an essential role in cell proliferation. 
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i. Regulation of mTOR: mTOR is a serine/threonine kinase that regulates protein 

synthesis and cell proliferation through phosphorylation of its downstream targets [45, 

50]. Recent biochemical and genetic studies have demonstrated that mTOR exists in two 

different complexes referred to as mTOR-raptor complex 1 (mTORC1) and mTOR-rictor 

complex 2 (mTORC2). mTORC1 positively regulates cell proliferation, autophagy, and 

protein synthesis. mTOR activation following RTK stimulation can result in 

phosphorylation and activation of ribosomal protein S6 kinase (S6K), which leads to 

activation of S6 transcription factors. mTORC2 plays a key role in various biological 

processes, including: metabolism, cytoskeleton organization, and phosphorylation of Akt.  

 

ii. Dysregulation of mTOR: mTOR plays a central role in the regulation of cell growth 

and proliferation. One downstream target of mTOR is p70S6K, which then leads to the 

phosphorylation of 40S ribosomal S6 to initiate translation of mRNA [51], [52]. 

Dysregulation of mTOR activity manifests as abnormal cell growth. A protein that can 

decrease activity of mTOR is PTEN [53]. PTEN is a tumor suppressor that functions as a 

dual-specificity lipid and protein phosphatase that inhibits cell proliferation and the 

inactivation of other tumor suppressors. By dephosphorylation of PIP3 into PIP2, PTEN 

negatively regulates PI3K/Akt signaling and subsequent downstream pathways [51]. 

Regulating the PI3K/Akt/mTOR signaling pathway has been shown to be pivotal to 

prostate cancer proliferation and the pathogenesis of an advanced disease [54], [55]. 
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NMT Activity in PI3K/Akt/mTOR pathway 

NMT modifies proteins by covalently attaching a myristoyl group to their N-

terminus. Activation of Akt/PKB, a central hub protein of the insulin signaling pathway, 

leads to the phosphorylation of NMT1. Our lab has previously shown that the mTOR and 

NMT based pathways are interlinked since NMT has been demonstrated to myristoylate 

mTOR and mTOR phosphorylates NMT. 

Rapamycin Treatment 

Rapamycin (Sirolimus) is a macrocyclic antibiotic that is produced by bacteria 

called Streptomyces hygrocopius (Figure 11) [56]. It is used as an immunosuppressant, 

and its analog, RAD001, delays cell proliferation. Rapamycin and the rapalogue, 

RAD001, are used as tumor suppressive drugs in cancer treatments and are used as 

immunosuppressive drugs during organ transplants [56]. Rapamycin is known to inhibit 

mTOR, thus blocking the activity of its downstream targets (Figure 12). mTOR directed 

inhibition can take place via one of two mechanisms, competitive ATP-subunit inhibitors, 

or uncompetitive allosteric inhibitors. Rapamycin is an allosteric inhibitor that first binds 

with the intracellular receptor FKB12 and targets the FRB (FKBP12/rapamycin-binding) 

domain of mTORC1[56]. mTOR forms two major complexes: mTORC1, and mTORC2. 

The mTORC1 consists of mTOR, Raptor, mLST8, FKBP38, PRAS40, and Deptor. 

Compared to mTORC2, rapamycin inhibition is extremely selective for mTORC1. In 

early studies of mTOR, rapamycin was used almost entirely to describe the functions of 

mTOR, which it inhibits [57]. The inability of rapamycin and other rapalogues to inhibit 

mTORC2 has contributed to the lessened understanding regarding the cellular functions 

of this complex.  



 28 

 

Figure 11. Rapamycin is a macrocyclic antibiotic that inhibits the highly conserved 
protein kinase target of rapamycin (TOR) by forming a complex with FKBP12, which 
then binds directly to mammalian TOR complex 1 (mTORC1) and inhibits mTOR 
pathway. 
 

The proposed mechanism of rapamycin inhibition is postulated to be through the 

destabilization of the mTOR-raptor binding, resulting in the destabilization of the 

mTORC1 complex [56]. The major issue with inhibiting mTORC1 as a method of cancer 

treatment is the inherent nature of the negative feedback loop it controls. mTORC1 

inhibition may lead to the development of an mTORC1 independent growth pathway 

with an upregulation of Akt, due to failure of inhibiting IRS-1/2 activity [58]. Mitigating 

strategies have been developed, such as using dual mTOR and PI3K inhibitors, and ATP-

competitive inhibitors that inhibit both mTORC1 and mTORC2 have been developed as 

alternative cancer treatments [56]. 
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Figure 12. Rapamycin binds the intracellular receptor, interfering with growth-promoting 
cytokine signaling. This is done through inhibition of mTOR autophosphorylation and 
phosphorylation of initiation factor 4E binding protein, 4EBP1, which plays an important 
role in translation. 
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HYPOTHESIS 

NMT1 regulates metabolic pathways. 

OBJECTIVE 

To investigate the effect of NMT deficiency on metabolic pathway. 
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MATERIALS AND METHODS 

Generation of Heterozygous (Nmt1+/-) and Homozygous (Nmt1-/-) – deficient ES cells 

Nmt1-deficient (Nmt1+/- and Nmt1-/-) ES cells were generated as described previously 

[59]. In brief, a mouse ES cell line (XE400, strain 129/Ola) with an insertional mutation 

in the Nmt1 gene was created in a gene-trapping program, BayGenomics 

(baygenomics.ucsf.edu). 

Isolation of Heterozygous (Nmt1+/-) and Homozygous (Nmt1-/-) – deficient ES cells  

Nmt1-deficient ES cells were isolated as previously described [59].  In brief, Nmt1 

mutant ES cells were grown for 24 h in ES cell medium in a 100-mm gelatin-coated petri 

dish. Single colonies were picked and grown under G418 selection pressure (20 mg/ml). 

Nmt1 mutant ES cells were validated by Western blotting and RT-PCR. 

ESC Cell culture 

Wild type (WT) and Nmt1-deficient ES cell lines were cultured in Glasgow 

minimum essential medium (GMEM) (Sigma-Aldrich) supplemented with 2 mM 

glutamine (Invitrogen Life Technologies), 1 mM sodium pyruvate, 1X nonessential 

amino acids, 10% (v/v) FBS, a 1/1000 dilution of 2-mercaptoethanol (ME) of stock 

solution, 500 Units/ml LIF (Leukemia Inhibitory Factor) in a 100-mm gelatin coated 

Petri dish. Cells were cultured at 37 °C/5% CO2. For metabolic pathway analysis, ES 

cells were seeded in gelatin coated T25 culture flasks and cultured overnight at 37 °C in a 

CO2 incubator. One day prior to ES cell stimulation, ES cells were serum starved 

overnight, followed by 10 nM insulin and 10 nM rapamycin treatment. ES cells were 

cultured in the presence or absence of treatments for the indicated time points, after 

which the cells were washed with ice cold 1X PBS. Thereafter, cell pellets were collected 
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and incubated in lysis buffer (50mM HEPES (pH 7.4), 150mM sucrose, 2 mM sodium 

orthovanadate, 10 mM sodium fluoride, 10 mM sodium pyrophosphate, 2 mM EGTA, 2 

mM EDTA, 1% triton X-100, and 0.1% SDS), supplemented with 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and 1% protease inhibitor cocktail for 10 minutes 

on ice. After incubation, the pellets were centrifuged at 1600 rpm for 5 minutes. The 

supernatant was collected and stored at -20 °C until further analysis. 

Western Blotting’s 

Adherent cells ESC were washed with PBS on ice, and then lysed with ice-cold 

1% SDS lysis buffer. The Bicinchoninic acid (BCA) kit (Pierce) was used to estimate 

protein concentration (all in duplicate) of cell lysates according to the manufacture’s 

protocol. Protein concentration was read by measuring absorbance at λ = 560 nm on a 

Multiskan Ascent (Thermo Electron Corporation) plate reader. Thirty µg of protein was 

mixed with SDS-PAGE sample buffer (0.2M Tris-HCl pH 6.8, 40% glycerol, 8% SDS, 

and 0.04% bromophenol blue) and heated at 95 °C for 5 mins. The samples were resolved 

on a 10% polyacrylamide gel ran on SDS-PAGE buffer in a Bio-Rad Mini-Protean Tetra 

cell. Samples were run through the stacking gel at 100 V until the samples lined up at the 

top of the stacking gel and then the voltage was increased to 150 V. The proteins were 

transferred onto a PVDF membrane (Biorad) at 120 V for 90 minutes. The membrane 

was incubated for an hour with blocking solution (5% non-fat dry milk dissolved in 1X 

PBS-containing 0.02% Tween 20) at room temperature. Blots were probed with specific 

polyclonal rabbit antibodies against PI3K p100α, phosphorylated Akt, AMPK, mTOR, 

GSK and IGF1R diluted (1:1000) in 5% milk-PBST, overnight at 4 °C. The membrane 

was then washed in PBST three times for 10 min each followed by incubation with 
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suitable secondary antibody (1:2000) conjugated with horseradish peroxidase for 1 hour 

at room temperature. The membrane was washed in PBST three times for 10 min each; 

visualization was done using ClarityWestern ECL substrate (Bio-Rad) reagent and a 

Molecular Imager® ChemiDoc™ XRS System (Bio-Rad) and Image Lab™ software 

Version 3.0. Thereafter, the blots were routinely stripped and re-probed with antibodies 

against total Akt, AMPK, mTOR, GSK and IGF1R. that were used as loading controls. 

Densitometric analysis was performed and integrated density values were presented as 

ratio of phosphorylated protein over total compared with WT control. 
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RESULTS 

1. NMT1 protein expression is completely abrogated in Nmt1-/- ESC  

In order to study the mechanism by which NMT1 activity impacts metabolic 

pathway, Nmt1-/- KO cells were developed as described in materials. The successful 

ablation of Nmt1 was validated by qPCR and Western blot analysis [41]. Western blot 

analysis revealed the complete absence of NMT1 protein expression in homozygous KO 

cells and almost 50% ablation in heterozygous cells whereas β-actin, which was used as 

the loading control, was similar in Nmt1+/+, Nmt1+/- and Nmt1-/- KO ES cells. Relative 

normalized Nmt1 gene expression was assessed by RT-PCR in Nmt1+/- ES, Nmt1-/- and 

WT ES cells (Figure 13B). We also validated NMT1 protein expression using both 

commercially available antibodies and custom monoclonal antibodies raised in a murine 

system (Figure 13A).  

 

Figure 13. NMT1 protein expression by Western blot was assessed in WT ES and Nmt1-/- 
ES cells by different antibodies (Figure 13A). Relative normalized Nmt1 gene expression 
was assessed by RT-PCR in Nmt1+/- ES, Nmt1-/- and WT ES cells (Figure 13B). 
 

 

2. PI3K p110α expression is up-regulated in Nmt1-/- ESC 

Growth factors such as insulin, epidermal growth factors, nerve growth factors 

and platelet derived growth factors bind to cell surface transmembrane receptors 
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belonging to the RTK superfamily and regulate metabolic pathways. A major 

downstream hub of I/IGF1R pathway is PI3K/Akt, therefore, the effect of NMT1 ablation 

was investigated on metabolic pathway regulated by PI3K/Akt compounded with the fact 

that NMT1 is a downstream target of Akt [43]. For this, I used embryonic stem (ES) cells 

from Nmt1-/- knockout mice, and these cells were subjected to different treatments to 

modulate insulin signaling.  The ES cells were treated with insulin to activate the RTK 

and its downstream target proteins, and with rapamycin to inhibit mTOR. Thereafter, a 

combination of rapamycin pretreatment, followed by insulin treatment was also given to 

assess the effect of mTOR inhibition on the activation of RTK and downstream targets. 

The phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (p110α) is a 

major regulator of PI3K/Akt pathway; therefore, I first investigated the effect of Nmt1-/- 

knockout on p110α expression. As shown in Figure 14, NMT1 WT ES cells showed 

p110α basal expression and different treatments had no effect on the basal expression. 

However, Nmt1-/- ES cells showed increased p110α expression, and activation of the 

pathway with insulin or rapamycin further enhanced p110α expression. The same 

membrane was probed with anti-NMT1 antibody to confirm that Nmt1-/- ES cells were 

deficient in NMT1. Figure 14C shows the NMT1 expression in WT and Nmt1-/- ES cells 

in the same blot that was probed with Akt. 
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Figure 14. Nmt1-/- ES cells show increased PI3K p110α expression. WT ES and Nmt1-/- 
ES cells were treated with rapamycin (10 nM) and/or insulin (100 nM) for 24 hrs. The 
cells were lysed and the lysates were assessed by Western blot for the expression of the 
catalytic subunit of PI3K, p110α (Figure 14A). The right panel shows the corresponding 
densitometry (Figure 14B). The same membrane was stripped and reprobed with NMT1 
(Figure 14C). 
 

 3. Akt phosphorylation is up regulated in Nmt1-/- ES cells compared to WT ESC 

Previously it has been demonstrated that overexpression of Akt/PKB resulted in 

the phosphorylation of NMT1 in breast cancer cells [60] establishing NMT1 as a 

downstream target of Akt. Therefore, I determined the effect of different treatments on 

the phosphorylation of Akt in WT and Nmt1-/- ES cells. As shown in (Figure 15A), WT 

ES cells showed decrease in the phosphorylation of Akt compared to Nmt1-/- ES cells. 

Interestingly, phosphorylation of Akt at Ser473 was significantly upregulated upon 

treatment with insulin alone in Nmt1-/- KO cells.  
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Figure 15. Akt and GSK phosphorylation was upregulated in Nmt1-/- ES cells upon 
insulin treatment. WT ES and Nmt1-/- ES cells were treated with rapamycin (10nM) 
and/or insulin (100nM) for 24 hrs. The cells were lysed and the lysates were assessed by 
western blot for the phosphorylation of Akt (Figure 15A) and GSK3 (Figure 15C). The 
same blots were stripped and re-probed with Abs against total Akt and GSK3 and used as 
loading controls. The right panel shows the corresponding densitometry (Figure 15B and 
15D). The Western blot results represent one of three independent experiments with 
similar findings. 
 

4. GSK phosphorylation is up regulated in Nmt1-/- ES cells compared to WT ESC 

Remarkable up-regulation of p110α and AKT in Nmt1-/- KO ES cells prompted 

me to further investigate two key regulators of metabolic pathways – glycogen synthase 

kinase 3 (GSK3) and mTOR (Figure 15). Although GSK3 was initially identified in the 

regulation of glycogen synthesis, it has been shown that GSK3 plays a role in a wide 

range of cellular processes particularly in cancer [61]. The GSK3 gene family has two 

highly conserved kinases including GSK3 α and GSK3 β. Both kinases are structurally 

similar but not identical in terms of their functions [61]. Figure 15D shows the expression 

of GSK 3 α /β. GSK3 α /β. phosphorylation was upregulated upon treatment with insulin 

alone or in combination with rapamycin in Nmt1-/- ES cells compared to WT cells.  
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5. mTOR phosphorylation is up regulated in Nmt1-/- ES cells compared to WT ESC 

mTOR is a downstream target of the PI3K/Akt pathway and is the central regulator of 

protein synthesis and metabolism [62]. Therefore, we determined the expression of total 

mTOR and its phosphorylation at the Ser2448 residue (Figure 16A). In WT ES cells, the 

total mTOR expression did not change upon treatment with insulin and/or rapamycin. 

However, the phosphorylation of mTOR Ser2448 was downregulated upon rapamycin 

treatment in WT cells whereas the mTOR phosphorylation was greater in Nmt1-/- ES cells 

and was further enhanced upon treatment with insulin. In line with what I observed for 

other PI3K pathway proteins, NMT1 deficiency is associated with increased mTOR 

phosphorylation. 

 

6. Nmt1-/- ES cells show increased IGF1R phosphorylation compared to WT ESC 

Insulin like growth factor 1 and 2 binds to type 1 insulin like growth factor 

receptor and activates the downstream signaling pathways. Insulin receptor substrates 

IRS1 and IRS2 are the main adaptors that act as docking sites and link the activated 

receptors to various intracellular adaptor proteins and downstream signaling cascades 

including PI3K/Akt signaling cascades [63, 64]. Insulin-like growth factor is important in 

mammary development and IGF1R is required for mammary gland morphogenesis. 

Although IGF1 plays a critical role in cell growth, survival and migration several studies 

have shown that alterations in the IGF signaling results in the development and 

progression of multiple cancers. Since increased p110α expression and increased 

phosphorylation of Akt and mTOR were observed due to NMT1 ablation, I wanted to 

investigate whether the IGF1R phosphorylation is affected in WT and in Nmt1 -/- ES cells. 
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Therefore I treated both, the WT and Nmt1-/- ES cells, with insulin and rapamycin and 

assessed the phosphorylation. Interestingly, IGF1R phosphorylation was upregulated in 

the Nmt1 -/- ES cells compared to WT cells (Figure 16C). 

 

Figure 16. mTOR and IGF1R phosphorylation was upregulated in Nmt1-/- ES cells 
compared to WT cells. WT ES and Nmt1-/- ES cells were treated with rapamycin (10nM) 
and/or insulin (100nM) for 24 hrs. The cells were lysed and the lysates were assessed by 
Western blot for the phosphorylation of mTOR (Figure 16A) and IGF1R (Figure 16C). 
The same blots were stripped and re-probed with Abs against total mTOR and IGF1R and 
used as loading controls. The right panel shows the corresponding densitometry (Figure 
16B and 16D). The Western blot results represent one of three independent experiments 
with similar findings.  
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7. AMPK phosphorylation is upregulated in WT cells compared to Nmt1-/- ESC 

AMP activated protein kinase (AMPK) is a heterotrimeric enzyme consisting of 

one catalytic subunit and two regulatory subunits.  Reports have shown that AMPK 

regulates IRS1 and Akt whereas insulin and Akt are shown to have negative impacts on 

AMPK activation [65-67]. In Figure 17, we were interested to see the effect of NMT1 

deficiency on AMPK phosphorylation. Unlike the other signaling molecules, AMPK 

phosphorylation was upregulated in WT cells compared to Nmt1 -/- ES cells. 

 

Figure 17. AMPK phosphorylation was upregulated in WT ES cells compared to Nmt1-/-

ESC cells. 
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DISCUSSION 

N-myristoylation is an important protein modification that regulates protein 

function and localization. Myristoylated proteins have shown to be involved in various 

cellular processes, including cellular proliferation and oncogenesis [13]. Evidence from 

various studies suggests the involvement of NMT in cancer development and progression 

[25]. In the present study, I attempted to identify whether NMT deficiency has any 

impact on the PI3K-Akt signaling pathway. Several reports have shown that the PI3K-

Akt signaling pathway proteins involved in cell growth and differentiation undergo 

oncogenic changes and are altered in various human cancers. This pathway plays a 

critical role in tumor development as well as in the potential response of tumor to cancer 

treatment. 

 

The results of this study identify for the first time how the deficiency of NMT1 

affects the key PI3K-Akt pathway signaling proteins. The class IA PI3K forms an 

important node in the insulin metabolic pathway. It was observed that in the absence of 

NMT1, p110α protein expression was upregulated and all subsequent downstream targets 

such as Akt, mTOR, GSK3 and IGF1R phosphorylation was also increased following 

insulin treatment.  

 

The Wilm’s tumor 1 protein (WT1) has been shown to be a transcriptional 

regulator that can either activate or repress transcription of key growth factors [68]. WT1 

functions as an activator on its own, but its binding to the BASP1 corepressor shifts WT1 

activity to a state of transcriptional repression [69]. BASP1 has been identified as a WT1-
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binding protein, which mediates the transcriptional repression activity of the latter [70]. 

Translocation of transcription factors is important for the regulation of gene expression. 

Many transcription factors, such as BASP1 are myristoylated and several studies have 

shown that BASP1 is stoichiometrically N-terminally myristoylated in different tissues 

[71]. Myristoylation is required for the binding of BASP1 to WT1 [69]. It has been 

demonstrated that IGF1R gene expression is regulated by WT1 [72], which indirectly 

suggests the possibility of NMT1 involvement in IGF1R gene expression/regulation. 

When BASP1 and WT1 are joined in a complex, WT1 acts as a transcriptional repressor 

that inhibits IGF1R gene expression. This increase in IGF1R gene expression could be 

the reason for over activation of the IGF1R signaling pathway proteins observed in Nmt1-

/- ES cells. 

 

I observed that NMT1 deficiency has a direct effect on overall protein expression 

(Figures 7-9). NMT1 deficiency resulted in the activation of PI3K/AKT pathway upon 

treatment with Rapamycin and Insulin. GSK3 has been shown to regulate the activities of 

certain transcription factors such as NF-kappaB, Snail, Notch and CAAT-enhancer 

binding protein (C/EBP) [73-75]. Even after several years of research, the role of GSK3 

in cancer remains complex and controversial. GSK3 has shown to be overexpressed in 

various cancers including that of colon, liver, ovarian and pancreatic tumors [76-78]. Our 

results show an increase in GSK3 phosphorylation in Nmt1-/- ES cells compared to WT 

cells, suggesting that in the absence of NMT1, no myristoylation occurs and therefore 

there is no complex formation between BASP1 and WT1, which in turn leads to 

increased IGF1R expression due to the lack of repressor activity. 
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CONCLUSION 

 

In summary, a precise balance between growth promoting signals and growth 

inhibitory signals plays important roles in the maintenance of healthy cells. Any 

dysregulation of this critical balance converts normal cells into abnormal or cancerous 

cells. In chapter one, RT-PCR analysis show that NMT1 and METAP2 transcripts are 

overexpressed in CRC patients’ whole blood and PBMC. Both NMT1 and METAP2 were 

the highest in CRC compared to healthy controls, non-adenomatous polyps, and 

adenomatous polyps. In addition, an increase in METAP2 than NMT1 activity appeared in 

adenomatous polyp. The results of my study provide insight into effect of NMT1 and 

METAP2 overexpression on immune response PBMC as they play important role in 

tumor progression. Therefore, METAP2 can be used as a potential marker for the early 

detection of colorectal cancer. These observations lead to the possibility of developing 

MetAP2 specific inhibitors, which may be therapeutically useful. RT-PCR method is a 

convenient, more accurate and cost-effective screening test that could triage patients for 

more intensive procedures such as colonoscopy. The outcome of my study could lead to 

development of an efficacious screening test for CRC. 

 

 

In the last chapter, Western blot analysis revealed that ESC Nmt1-/- KO has an 

over activation of the PI3K/Akt pathway compared to WT ESC. This pathway is essential 

for cellular growth, and cell proliferation. In the absence of NMT1, the downstream 

targets: p110α subunit of PI3K, Akt, GSK3, mTOR, and IGF1R were all upregulated. 
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However, AMPK levels were downregulated in NMT1-/- ES cells. In addition to Western 

blots, I observed the ESC Nmt1-/- KO cell line was proliferating faster than WT. NMT1 is 

vital for proper function cell division. The macroscopic result reveals that when NMT1 

not present, the P13K/Akt pathway is overactive and induce cell proliferation. It is 

possible that overexpression of NMT1 in PBMC of individuals with polyps and CRC 

may be one of the reasons for their lower PBMC proliferation [79]. 

 

Overall, the results from RT-PCR and Western blot demonstrate development of 

rational combinations, driven by compelling preclinical data and matched to genetic 

drivers in patients. This study has the potential to significantly improve the future care of 

cancer patients. The outcome of my study would lead to the development of an 

efficacious screening test for CRC. 
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APPENDICES 

Appendix  A: To maintain ESC media 

Cell Type LIF (10ng/ml) = 5 µl G418 (50mg/ml) = 20 µl 
ESC wild-type Yes No 
ESC Nmt1-/- KO  Yes Yes 

 

Western Blot Assay 

Treatment Concentration 
DMSO 10nM 
Rapamycin 10nM 
Insulin 100nM 

 

To dilute 2-Mercaptoethanol Stock Solution 

For ESC media (GMEM media) 

35ul (2-mercaptoethanol) + 10ml (Ultrapure Distilled Water RNase and DNase free) 

 

To make incomplete 1L of ESC Media (check if L-glutamine is added) 

1. 12.5g (GMEM powder) 

2. 2.75g (Sodium Bicarbonate NaHCO3) 

3. 800ml (Distilled Water) 

4. Adjust pH 7.2-7.4 

5. Add the remaining distilled water, Final volume = 1L 

6. **Note make 5L instead of 1L** 

Filter Sterilize: using a 2 micron vacuum filter before use 
To make Complete 1L of ESC Media 

1. 900ml (Incomplete-GMEM media) 

2. 10ml (Sodium Pyruvate 100mM) à 1mM 
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3. 10ml (Non-essential amino acid 100X) à 1X 

4. 100ml (FBS: Fetal bovine serum) à 10% 

5. 1ml (B-mercaptoethanol Stock Solution) à 1:1000 

6. 5ul (LIF 10ng/ml) per 10ml media 

7. 20ul (G418 50mg/ml) only for ESC Homo 

 

 

 

Appendix  B: 0.05% Trypsin-EDTA (5mL) 

• 1 mL 0.25% Trypsin-EDTA (1X), Phenol Red 
• 4mL phosphate buffered saline 

 

Appendix  C: PBS (10X) (1 Litre) 

• 80 g NaCl 
• 2 g KCl 
• 14.4 g Na2HPO4  
• 2.4 g KH2PO4  
• Dissolve all components in 800 mL R/O water 
• Adjust pH to 7.4 using HCl or NaOH and bring final volume to 1000 mL 

 

Appendix  D: Lysis Buffer Preparation for Phosphoproteins (500 mL) 

• 50 mM HEPES (pH 7.4)  (5.975 g) 
• 150 mM sucrose (25.67 g) 
• 2 mM sodium orthovanadate (5 mL from 200 mM stock)* 
• 80 mM glycerophosphate (12.24 g) 
• 10 mM sodium fluoride (0.21 g) 
• 10 mM sodium pyrophosphate  (2.23 g) 
• 2 mM EGTA (2 ml from 0.5M stock)** 
• 2 mM EDTA (2 ml from 0.5M stock)*** 
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• 1% TritonX-100 (5 mL)  
• 0.1% SDS (0.5 g) 
• 20 µl Phenylmethylsulfonyl fluoride (100 mM)**add fresh to 1 mL lysis buffer  
• 20 µl protease inhibitor cocktail – add fresh to 1 mL lysis buffer  

 

*Activation of sodium orthovanadate (Na3VO4) 

(to achieve maximal inhibition of protein tyrosine phosphatases) 

1. Prepare 200 mM solution of sodium orthovadate [0.7356 g Na3VO4 per 20 mL] 
2. Adjust pH to 10 using NaOH or HCl (should be yellow in colour at pH 10) 
3. Boil solution until it becomes colourless (approximately 10 minutes) 
4. Cool to room temperature 
5. Re-adjust pH to 10 (until the solution remains colourless and pH stabilizes at 10) 
6. Store activated sodium orthovanadate as aliquots at -20oC   

** 0.5 M EGTA stock 

0.146 g EGTA per 1 mL R/O water  

*** 0.5 M EDTA stock  

0.190 g EDTA per 1 mL R/O water  

**** 100 mM Phenylmethylsulphonyl fluoride stock  

0.087 g phenylmethylsulfonyl fluoride in 5 mL isopropanol  

 

Appendix  E: Micro BCATM Protein Assay Kit Working Reagent  

• 25 parts Reagent A : 24 parts Reagent B : 1 part Reagent C 
For 15 mL – 7.5 mL Reagent A : 7.2 mL Reagent B : 0.3 mL Reagent C 

Appendix  F: Loading Buffer (4X) 

1. Prepare Resolving Gel  

Component 10% Gel (mL) 8% Gel (mL) 

R/O water 15.9 9.3 

30% acrylamide  13.3 5.3 
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Tris-Cl (1.5M, pH 8.8) 10.0 5.0 

10% SDS 0.4 0.2 

10% APS 0.4 0.2 

TEMED  0.016 0.012 

 

 

 

 

 

NOTE: add APS and TEMED last  

• Mix all components thoroughly and pour gel, leaving sufficient space for stacking 
gel and combs 

• Pipette water gently over gel solution to ensure no bubbles are present and gel 
polymerizes in a straight horizontal line under stacking gel 

• Allow sufficient time to polymerize (approximately 20 minutes or until a clear 
line is present between gel and overlaying water)  

• Pour off water, before preparing stacking gel  
2. Prepare Stacking Gel  

 
Component 5% Gel (mL) 

R/O water  8.2 

30% acrylamide 2.0 

Tris-Cl (1M, pH 6.8) 1.5 

10% SDS 0.12 

10% APS 0.12 

TEMED 0.012 

NOTE: Add APS and TEMED last  
• Mix all components thoroughly and pour gel, filling glass caste  
• Insert 1.5 mm combs immediately and allow gel to polymerize  
• Store in 4oC fridge wrapped in damp paper towel if not using immediately  

Appendix  G: 30% Acrylamide (100 mL) 



 54 

• 29 g Acrylamide 
• 1 g N,N’ methylene bisacrylamide (dissolved in 60 mL distilled water) 
• Bring volume to 100mL with distilled water  

Appendix  H: 1M TRIS (pH 6.8) (500 mL) 

• 60.57 g TRIS 
• 400 mL distilled water  
• Bring volume to 500 mL once dissolved  
• Adjust pH to 6.8 using either hydrochloric acid or sodium hydroxide  

 
 
 

Appendix  I: 1.5 TRIS (pH 8.8) 

• 90 g TRIS  
• 400 mL distilled water 
• Bring volume to 500 mL once dissolved  
• Adjust pH to 6.8 using either hydrochloric acid or sodium hydroxide  

Appendix  J: Running Buffer (10X) (2 Litres) 

• 1500 mL distilled water  
• 60 g TRIS 
• 288 g Glycine 
• Bring volume up to 2000 mL 
• 20 g SDS (add last) 

Appendix  K: Transfer Buffer (5 Litres) 

• 3500 mL distilled water  
• 1000 mL methanol  
• 39 mM Glycine (14.5 g) 
• 38 mM TRIS (29 g) 
• Top up volume to 5000 mL 
• 0.0317% SDS (1.85 g) – add last  

Appendix  L: Blocking Solution (100 mL)  

• 5% non-fat milk (5 g) 
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• 100 mL PBS-T 

Appendix  M: 1X PBS-T (1 Litre) 

• Dilute 10X PBS to 1X (100 mL PBS (10X) + 900 mL distilled water) 
• 2 mL 10% TWEEN solution  

Appendix  N: Protocol for mild stripping PVDF membranes Buffer, 1 liter  

• 15 g glycine 

• 1 g SDS 

• 10 ml Tween20 

• Adjust pH to 2.2 

• Bring volume up to 1 L with R/O water.  

Membrane incubation  

1. Use a volume that will cover the membrane.  

2. Incubate at room temperature for 5-10 minutes. 

3. Discard buffer. 5-10 minutes fresh stripping buffer. 

4. Discard buffer. 10 minutes PBS twice, then 5 minutes TBST twice 

5. Ready for blocking stage. 

6. Block membrane twice for 5 minutes with 5% non-fat milk blocking solution 

7. Apply primary antibody 

 

Appendix  O: G418 (Geneticin) 

• 50 mg/mL stock dissolved in water 
• Dilute to 0.1 mg/mL when needed (ex. 20 µL in one 10 mL culture flask) 
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Appendix  P: Protein Estimation Protocol 

The BSA stock was first diluted from 2.0 mg/mL to 200 µg/mL using R/O water. 

The stock was further diluted via serial dilution to construct a standard curve from 200 

µg/mL to 1.5625 µg/mL BSA. Each unknown sample was diluted 10X with R/O water 

for a total volume of 150 µL in each well (15 µL sample + 135 µL R/O water). Once all 

standards and samples were added to the plate in duplicate, BCA reagents were mixed 

(25 parts reagent A : 24 parts reagent B : 1 part reagent), 150 µL of BCA reagent was 

added to each well and the 96-well plate was incubated for one hour at 37 oC. Absorbance 

was measured at 562 nm on the SpectraMax 190 Absorbance Microplate Reader 

(Molecular Devices) using SoftMax® Pro software. 

 

 

 

Appendix  Q: RNA Protocol 

Total RNA was isolated from 5×105 PBMC with Omega Bio-tek’s E.Z.N.A.® Total 

RNA Kit I with an elution volume of 40 µL. RNA concentrations were quantified with 

SpectraMaxR i3 spectrophotometer. 

 

Appendix  R: cDNA Synthesis kit 

Components 1X Volume 10X Volume 
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5X iScript Rxn Supermix 4 µl 40 µl 

iScript RT 1 µl 10 µl 

RNA template variable variable 

RNase free H2O variable variable 

Total volume 20 µl 200 µl 

 

Appendix  S: cDNA Thermocycler: Incubation Time 

 Time (mins) Temperature (°C) 

1 5 mins 25 °C 

2 60 mins 42 °C 

3 5 mins 85 °C 

4 Hold 4 °C 

 

 

 

Appendix  T: RT-PCR Primer Information 

Bio Rad Product 

PrimerPCR SYBR Green Assay 

Assay 

Design: 

Chromosome 

Location:  

Mapping: 

Amplicon 

Length 

(bp): 

Context Sequence 

1. Gene Symbol: NMT1 

Gene Name:     

N-myristoyltransferase 1 

RefSeq:  

Intron-

spanning 

Location: 

17:43159068-

43163945 

 

93 AGAAGAAAGAAAA

AGGCAGTGAGACA

GATTCAGCCCAGGA

TCAGCCTGTGAAGA



 58 

NC_000017.10, NT_010783.15 

Ensembl: ENSG00000136448 

Mapping 

17q21.31 

TGAACTCTTTGCCA

GCAGAGAGGATCC

AGGAAATACAGAA

GGCCATTGAGCTGT

TCTCAGTGGGTCAG

G 

2. Gene Symbol: METAP2 

Gene Name: 

Methionyl aminopeptidase 2 

RefSeq:   

NC_000012.11, NT_029419.12 

Ensembl: ENSG00000111142 

Intron-

spanning 

Location: 

12:95879687-

95887920 

 

Mapping 

12q22 

130 ATATGTGACCTGTA

TCCTAATGGTGTAT

TTCCCAAAGGACAA

GAATGCGAATACCC

ACCCACACAAGAT

GGGCGAACAGCTG

CTTGGAGAACTACA

AGTGAAGAAAAGA

AAGCATTAGATCAG

GCAAGTGAAGAGA

TTTGGAATGATTTT

CGAGAAGCTG 

3. Gene Symbol: GAPDH 

Gene Name:   

Glyceraldehyde-3-phosphate 

dehydrogenase 

RefSeq: 

NC_000012.11 NG_007073.2 

NT_009759.16 

Ensembl: ENSG00000111640 

Exonic Location: 

12:6647267-

6647413 

 

Mapping: 

12p13 

 

117 GTATGACAACGAAT

TTGGCTACAGCAAC

AGGGTGGTGGACCT

CATGGCCCACATGG

CCTCCAAGGAGTAA

GACCCCTGGACCAC

CAGCCCCAGCAAG

AGCACAAGAGGAA

GAGAGAGACCCTC

ACTGCTGGGGAGTC
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CCTGCCACAC 

4.Gene Symbol: ACTB 

Gene Name: actin, beta 

RefSeq: 

NC_000007.13 NG_007992.1 

NT_007819.17 

Ensembl: ENSG00000075624 

Exonic Location: 

17:43159068-

43163945 

 

Mapping: 

7p22 

62 GTGCTCGATGGGGT

ACTTCAGGGTGAGG

ATGCCTCTCTTGCT

CTGGGCCTCGTC 

GCCCACATAGGAAT

CCTTCTGACCCATG

CCCACCATCA 

5. Gene Symbol: RPLP0 

Gene Name: 

Ribosomal protein, large, P0 

RefSeq: 

NC_000012.11 

NT_009775.17 

Ensembl: ENSG00000089157 

Exonic Location: 

12:120637113-

120637205 

 

Mapping: 

12q24.2 

63 TTCTCCAGAGCTGG

GTTGTTTTCCAGGT

GCCCTCGGATGGCC

TTGCGCATCATGGT

GTTCTTGCCCATCA

GCACCACAGCCTTC

CCGCGAAGG 

 

 

 

Appendix  U: RT-PCR SYBR Green Mastermix 

BIORAD REAGENTS 1X Volume 10X Volume 

SsoAdvanced Universal supermix 7.5 µl 75 µl 

Primer  0.75 µl 7.5 µl 

cDNA (10ng/ µl) X 2 µl = 20ng 2 µl 20 µl 

RNase free H2O 4.75 µl 47.5 µl 
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Appendix  V: Whole Blood Study: Patient’s Colonoscopy/ Pathology Report 

Patient Sample Gender/Age Polyps Diagnosis CRC 

1 Control 1 F/ 38 No Normal No 

2 Control 2 F/ 70 No Normal No 

3 Control 3 M/ 31 No Normal No 

4 NAP 1 M/ 60 Yes (4) Single diminutive sessile polyp (2) No 

5 NAP 2 M/ 38 Yes (2) 1. Single sessile polyp 

2. Pseudopolyp 

No 

6 NAP 3 F/ 64 Yes (1) Hyperplastic polyp (1) No 

7 NAP 4 F/ 65 Yes (6) Single sessile polyp (6) No 

8 AP 1 M/ 77 Yes (6) Tubular Adenoma (6) No 

9 AP 2 F/ 71 Yes (1) Tubular Adenoma (1) No 

10 AP 3 F/ 49 Yes (3) 1. Tubular Adenoma (1) 

2. Single sessile polyp (1) 

3. Hyperplastic polyp (1) 

No 

11 AP 4 F/ 67 Yes (4) 1. Tubular Adenoma (1) 

2. Single sessile polyp (3) 

No 

12 CRC 1 F/ 69 Yes (2) Adenocarcinoma Yes 

13 CRC 2 F/ 52 Yes (3) Adenocarcinoma Yes 

14 CRC 3 F/ 51 Yes (2) Adenocarcinoma Yes 

15 CRC 4 M/ 73 Yes (3) Adenocarcinoma Yes 

16 CRC 5 F/ 75 Yes (2) Adenocarcinoma Yes 

17 CRC 6 F/ 69 Yes (1) Adenocarcinoma Yes 

18 CRC 7 M/ 44 Yes (1) Adenocarcinoma Yes 
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Appendix  W: PBMC Study: Patients’ Colonoscopy/ Pathology Report 

Patient Sample Gender/Age Polyps Diagnosis CRC 

1 Control 1 F/ 44 No Normal No 

2 Control 2 F/ 54 No Normal No 

3 Control 3 M/ 73 No Normal No 

4 Control 4 F/ 53 No Normal No 

5 Control 5 F/ 61 No Normal No 

6 Control 6 M/ 27 No Normal No 

7 Control 7 F/ 52 No Normal No 

8 Control 8 M/ 66 No Normal No 

9 Control M/51 No Normal No 

10 NAP 1 M/ 58 Yes (2) 1. Pseudopolyp 

2. Hyperplastic polyp 

No 

11 NAP 2 M/ 73 Yes (1) Single sessile polyp No 

12 NAP 3 M/ 38 Yes (2) 1. Single sessile polyp 

2. Pseudopolyp 

No 

13 NAP 4 F/ 65 Yes (6) Single sessile polyp (6) No 

14 NAP 5 M/ 53 Yes (1) Single sessile polyp No 

15 NAP 6 M/ 67 Yes (1) Pseudopolyp No 

16 NAP 7 F/ 67 Yes (1) Single sessile polyp No 

17 AP 1 M/ 55 Yes (4) 1. Tubular Adenoma (1) 

2. Hyperplastic polyp (3) 

No 

18 AP 2 F/ 72 Yes (8) 1. Tubular Adenoma (3) 

2. Hyperplastic polyp (2) 

No 
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3. Single diminutive sessile polyp 

(1) 

4. Diminutive sessile polyp (1) 

5. Flat polyp (1) 

19 AP 3 M/ 38 Yes (4) 1. Tubular Adenoma (1) 

2. Single diminutive sessile polyp 

(1) 

3. Diminutive sessile polyp (2) 

No 

20 AP 4 M/ 83 Yes (9) 1. Tubular Adenoma (1) 

2. Hyperplastic polyp (5) 

3. Single diminutive sessile polyp 

(2) 

4. Diminutive sessile polyp (1) 

No 

21 AP 5 M/ 67 Yes (1) Tubular Adenoma (1) No 

22 AP 6 F/ 65 Yes (3) 1. Tubular Adenoma (1) 

2. Single diminutive sessile polyp 

(1) 

3. Diminutive sessile polyp (1) 

No 

23 CRC 1 M/ 73  Yes (3) Adenocarcinoma Yes 

24 CRC 2 F/ 69 Yes (1) Adenocarcinoma Yes 

25 CRC 3 F/ 71 Yes (1) Adenocarcinoma Yes 

 

 


