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Abstract Climate change and climate-driven feedbacks on catchment hydrology and biogeochemistry
have the potential to alter the aquatic versus atmospheric fate of nitrogen (N) in forests. This study
investigated the hypothesis that during the forest growth season, topography redistributes water and
water-soluble precursors (i.e., dissolved organic carbon and nitrate) for the formation of gaseous N species.
Soil nitrous oxide (N2O) and nitrogen (N2) efflux and soil physical and chemical properties were measured in a
temperate forest in Central Ontario, Canada from 2005 to 2010. Hotspots and hot moments of soil N2O and
N2 efflux were observed in topographic positions that accumulate precipitation, which likely triggered the
formation of redox conditions and in turn intercepted the conversion of nitrate N flowing to the stream
by transforming it to N2O and N2. There was a strong relationship between precipitation and N2O efflux
(y= 0.44x1.22, r2 = 0.618, p< 0.001 in the inner wetland; y=1.30x1.16 r2 = 0.72, p< 0.001 in the outer wetland)
and significantly different N2:N2O ratios in different areas of the wetland (19.6 in the inner wetland and 10.1 in
the outer wetland). Soil N2O+N2 efflux in response to precipitation events accounted for 16.1% of the annual
N input. A consequence of the higher frequency of extreme precipitation events predicted under climate
change scenarios is the shift from an aquatic to atmospheric fate for N, resulting in a significant forest
N efflux. This in turn creates feedbacks for even warmer conditions due to increased effluxes of potent
greenhouse gases.

1. Introduction

More than one half of Canada’s non-Arctic land base [Canada’s National Forest Inventory’s, 2013] and about
one third of the U.S. [Smith et al., 2009] is forested. Despite recent decreases in anthropogenic N emissions
[e.g., Kothawala et al., 2011; International Joint Commission, 2012; Eshleman et al., 2013], elevated N levels
continue to affect temperate forests [Sirois et al., 2001; Lovett and Goodale, 2011]. Atmospherically deposited
N in forests can be stored in the soil, transformed by organisms, exported in dissolved forms to surface
waters, or exported as nitrous oxide (N2O) and dinitrogen (N2) gas to the atmosphere through denitrification
[Pardo et al., 2011]. Forest soils may contribute substantial amounts of N2O [Ambus and Roberston, 2006]. A
predictive understanding of the fate of atmospherically deposited N is important because exports to aquatic
and atmospheric systems can have negative effects on society—e.g., global warming, ozone depletion
resulting in UV depletion, and degraded drinking water quality. However, scientific understanding of
N cycling has not kept pace with other biogeochemical processes due to spatial and temporal heterogeneity
[McClain et al., 2003] and the methodological challenges of measuring and estimating N2O fluxes [Groffman
et al., 2006].

Recent observations suggest that the frequency of intense and heavy precipitation events has increased in
many areas of North America and Europe [Intergovernmental Panel on Climate Change, 2013]. Precipitation
influences soil water availability that in turn regulates soil N cycling rates and pathways on landscapes
[Lohse et al., 2009]. Precipitation-induced saturation of soils results in low O2 concentrations, causing low
redox potentials that favor N2O production, and prolonged saturation can lead to further reduction of N2O
to N2 [Gambrell and Patrick, 1978] (Figure 1). Several studies have reported increased N2O production with
increased precipitation using modeling techniques [Li et al., 1992], laboratory experiments [Rubol et al.,
2012; Hall et al., 2014], and field experiments [Vilain et al., 2010]. Precipitation that reaches the forest
floor is redistributed due to topography [Zhu et al., 2014], and so topography plays an important role in
regulating not only soil nutrient pools but also soil temperature, moisture, and redox, thereby influencing
microbial biomass and N cycling processes [Ambus, 1998; Hazlett and Foster, 2002; Gu et al., 2011;
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Stewart et al., 2014]. A predictive understanding of the links between precipitation, topography, and soil
properties that regulate soil N cycling processes may lead to improved estimates of soil N2O efflux from
natural landscapes [Creed et al., 2013; Duncan et al., 2013; Anderson et al., 2015].

The purpose of this study is to explore topographic controls on temporal and spatial patterns of redox poten-
tial and their relation to N2O and subsequent N2 production along a hillslope during the growing season in a
temperate forest. It was hypothesized that during the snow-free season, topography redistributes water and
water-soluble precursors of the formation of gaseous N species (dissolved organic carbon (DOC) and nitrate
(NO3

�)), creating hotspots of soil N2O efflux in topographic features that become hot moments in response
to storms. To test the hypothesis, the following questions were asked: Q1: How does soil N2O and N2 efflux
vary with topographic feature (uplands, lowlands, wetlands)? Q2: How do variations in the soil physical
(temperature, moisture, redox potential) or chemical (DOC and NO3

�) properties within topographic features
relate to soil N2O efflux? Q3: Do episodic variations in the soil physical or chemical properties caused by
summer storms correlate with changes in the rates of soil N2O efflux? The hypothesis and associated
questions were tested in the forested landscape of the Great Lakes-St. Lawrence forest region at the northern
edge of the temperate forest biome of North America.

2. Materials and Methods
2.1. Study Area

The Turkey Lakes Watershed (47°03ʹ00ʺN and 84°25ʹ00ʺW) is a 10.5 km2 long-term experimental watershed
located at the northern edge of the Great Lakes-St. Lawrence forest region near the eastern shore of Lake
Superior in the Algoma Highlands of Central Ontario, 60 km north of Sault Ste. Marie (Figure 2) [Jeffries et al.,
1988]. The watershed is characterized by a continental climate, with a mean total annual precipitation of
1189mm and mean annual temperature of 4.6°C based on a 30-year (1981–2010) data record from the
meteorological recording station located just outside the watershed. Total annual precipitation and stream
discharge have generally decreased over this 30 year time span [Mengistu et al., 2014] in response to a gradual
increasing trend in mean annual temperature (Figure 3). The watershed rests on Precambrian silicate green-
stone formed from metamorphosed basalt. Topographic relief is about 400m, ranging from 644m at the
apex of Batchawana Mountain to 244m at the outlet of the Batchawana River that drains into Lake
Superior. A thin discontinuous glacial till of varying depth overlays the bedrock, ranging from< 1m in high
elevation areas to 1–2m in lower elevation areas and occasionally as much as 65m in bedrock depressions.
The podzolic soils in the tills are generally thin and undifferentiated near ridges, which gradually thicken,
differentiate, and increase in organic content on topographic benches and toward the stream, and there
are highly humified organic deposits in wetlands [Canada Soil Survey Committee, 1978]. The watershed is
covered by an uneven-aged forest, including mature to overmature trees and some areas of old growth,
which is dominated by 90% sugar maple (Acer saccharum Marsh.), dotted with patches of white pine (Pinus
strobus L.), yellow birch (Betula alleghaniensis Britton), ironwood (Ostrya virginiana (Mill.) K. Koch), white
spruce (Picea glauca Moench Voss.), and red oak (Quercus rubra L.) in upland areas [Wickware and Cowell,
1985]. This study is a companion to one that focused on topographic effects on soil carbon dioxide efflux
from the same watershed [Webster et al., 2008a, 2008b].

Figure 1. Conceptual figure showing the relationship between reduction-oxidation (redox) potential conditions and the
end products of denitrification (modified from Kralova et al. [1992]).
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2.2. Experimental Design

Within the Turkey Lakes Watershed, catchment 38 (c38) occupies an area of 6.33 ha and includes a major
wetland (25% of catchment area) (Figure 2). Three replicate transects were established, and each was
instrumented to monitor environmental conditions and collect gas samples from sampling sites at four
topographic positions, including the inner wetland (IW), outer wetland (OW), lowlands (LOW), and uplands
(UP). Each sampling site was instrumented for continuous monitoring of soil temperature, moisture and
redox potential, synoptic monitoring of soil solution for DOC and dissolved NO3

�, and synoptic sampling
of soil N2O efflux. Synoptic samples were collected from postsnowmelt in early June to presnowfall in late
September and were targeted to coincide with precipitation events, with baseline samples collected during
days without precipitation.

Figure 2. Map of the Turkey Lakes Watershed near Sault Ste. Marie, Ontario, Canada.

Figure 3. Annual precipitation, discharge, and temperature and snow-free season (June to September) precipitation and
discharge in the Turkey Lakes Watershed from 1981 to 2010.
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2.3. Data Collection
2.3.1. Defining Topographic Features
The IW (raised centre of the wetland), OW (depressed ring around the edge of the wetland), LOW (flat to
gently sloped area at the base of the hillslope), and UP (steep area at themiddle of the hillslope) were defined
using a lidar-derived 5m digital elevation model of the c38 catchment. Five terrain derivatives were selected
to represent topographic characteristics: percent height relative to local pits and peaks, percent height rela-
tive to local channels and divides, wetness index, slope curvature, and slope gradient. These terrain deriva-
tives were used to classify LOW and UP topographic positions using a fuzzy membership function defined
based on extensive field experience of scientists working in the watershed. The wetland area was delineated
using a probabilistic approach to determine the likelihood of an area being flat or in a depression as
described in Lindsay and Creed [2006]. The boundary of the IW was determined from a ground-based survey
of the wetland on a 5m grid. The field survey was then spatially interpolated, and the IW was defined as the
portion of the wetland with peat depths greater than 70 cm. The OW was defined as the area outside the IW
but within the delineated wetland. SeeWebster et al. [2011] for additional details of how topographic features
were defined.
2.3.2. Catchment Hydrology
Meteorological data including daily total precipitation and daily average air temperature were obtained from
the Canadian Air and Precipitation Monitoring Network (CAPMoN) station operated by Environment Canada
and located just outside the Turkey Lakes Watershed (47°02ʹ06ʺN and 84°22ʹ52ʺW). Daily discharge was
derived from continuously measured stream stage at V notch weirs. Wetland water table depth was continu-
ously measured using a water level logger (WT-HR Water Height Data Logger, TruTrack Inc., Christchurch, NZ)
at the IW position from 2005 to 2010, with positive values indicating water above the ground surface.
2.3.3. Soil Physical and Chemical Properties
Soil temperature (2006–2010), soil moisture (2005–2010), and soil redox potential (2005) were measured at
each sampling site [Webster et al., 2008a]. Redox potential was determined by measuring the voltage
between a platinum electrode and a potassium chloride reference electrode. All the instruments were wired
to data loggers (Campbell Scientific CR10X) using multiplexors, which were powered by batteries charged by
solar panels. All environmental data were collected every 5min and averaged every 30min by the data
logger. Soil pore water samples were collected within 48 h of N2O sampling using suction lysimeters
(Model 1900, Soil Moisture Corp., Santa Barbara, CA) installed at each sampling site up to a depth of 10 cm
into the mineral soil or peat [Webster et al., 2008a]. The samples were then filtered through 0.45μm
polysulfone membrane filters (Supor 450, Pall Gelman Science, Michigan, USA) and then analyzed for DOC
using oxidative combustion coupled with infrared detection (Shimadzu TOC-V, Tokyo, Japan) and for NO3

�

using flow injection colorimetry (Lachat QuikChem 8000, Milwaukee, WI).
2.3.4. Soil N2O and N2 Efflux
Ground-based static chambers [Hutchinson and Livingston, 2001] were used to monitor soil N2O efflux at each
sampling site from 2006 to 2010. Square collars measuring 45.7 × 45.7 cm (2088 cm2) were inserted 10–20 cm
into the soil. Samples were collected between 1000 h and 1400 h. Collars were placed at sampling sites for
each of the IW, OW, LOW, and UP positions on each of the three transects. Vented polyvinylchloride chambers
(14.6 L) were placed over the collars for an hour to inhibit the air turbulence during chamber placement and
to minimize pressure changes during sampling that would affect accumulation of N2O during sampling.

Nitrous oxide samples were collected at time 0, 20, 40, and 60min from each of the collars using a 30mL syr-
inge fitted with a needle. Prior to sample collection, the sampling tube was flushed five times with 30mL of
air from the chamber to clear tubing of previous sample and ensure mixing of the air inside the chamber.
Nitrous oxide samples equivalent to 30mL of chamber air were then drawn into a sampling syringe—5mL
of the sample was flushed through the sampling needle to rinse it of any residual atmospheric air. The
remaining 25mL of the sample was injected into sealed 12.1mL pre-evacuated Exetainers® that contained
a small amount of magnesium perchlorate as a desiccant, which was transported to the laboratory for
analysis. Nitrous oxide concentration was determined using gas chromatography on an SRI 8610C (SRI Inc.,
Las Vegas, NV) equipped with an electron capture detector.

Nitrous oxide fluxes were determined by calculating the linear regression of the slope of N2O concentration
within the chambers with time. The N2O fluxes were scaled up to the total headspace volume derived from
the addition of chamber volume and the collar volume above the soil surface and cross-sectional area of the
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collar and corrected for ambient pressure and temperature. Only positive soil N2O efflux measurements were
included in the analysis. There were a few negative N2O fluxes (200 of 1263, 16%) that were small in magni-
tude (�0.01 to �92.10 gNha�1 d�1); while only positive N2O measurements were included in the analysis,
inclusion of both positive and negative measurements did not change the final results (data not shown).

Dinitrogen fluxes were estimated using the acetylene inhibition technique [Tiedje et al., 1989] in the topo-
graphic positions where N2 production would be likely (i.e., IW and OW) based on low redox conditions
and low oxygen levels [Morse et al., 2015]. Twenty-five squaremetal collars (45.7 × 45.7 cm) were installed: five
controls and 10 treatments in each of the IW and OW positions. The collars were left to settle for a year before
gas samples were collected in July 2010. Soil moisture content within each collar was manipulated with
simulated precipitation equivalent to 10mm using deionized water prior to acetylene treatment. The five
control collars had no acetylene added, and samples were collected at 15min intervals for one hour similar
to the treated collars. The 20 treatment collars were subjected to a 30% acetylene volume relative to

Figure 4. Soil temperature, moisture, dissolved organic carbon (DOC), and nitrate (NO3
�) from 2006 to 2010 in the inner

wetland (IW), outer wetland (OW), lowlands (LOW), and uplands (UP) topographic positions averaged across three transects.
Different letters indicate significant differences among soil characteristics by topographic position based on ANOVAs on
ranks with post hoc Dunn’s tests (p< 0.05). Numbers indicate the sample sizes (one value per day).
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headspace volume. The 30% acetylene
was selected from a 10% incremental
range from 0 to 50 % based on a field-
based optimization experiment that
showed the most rapid increase in N2O
to reach a maximum within 1 h
(data not shown). Acetylene gas was
allowed to percolate into the soil for
one hour, after which the chambers
were lifted off the collars and aired
out. The chamber was replaced on
the collar, sealed by adding water to
the grooves on the collars, and gas
samples were collected immediately
after placing the chamber onto the
collar and at 15min intervals for 1 h.
Dinitrogen was estimated as the differ-
ence in N2O produced from the
acetylene treated and untreated (con-
trol) collars, and the N2:N2O ratio was
calculated.

Atmospheric N deposition measure-
ments have been collected at the
CAPMoN since 1981. Wet deposition
measurements were collected using a
wet-only precipitation chemistry sam-
pler, and samples for daily air chemistry
measurements were collected using filter
packs. Dry deposition values were calcu-
lated using daily deposition velocities
[Sirois and Vet, 1988]. The CAPMoN air
concentration measurements included
nitrate (NO3

�) and ammonium (NH4
+).

Nitrate, nitric acid (HNO3), and NH4
+

measurements were determined from
precipitation and dry air [Sirois and Vet,
1988]. Total organic N was estimated as
15% of total N, based on average
regional deposition of total organic N
[Dillon et al., 1991].

To calculate the total annual N2O+N2

efflux caused by precipitation, the rela-
tionship between precipitation and
N2O efflux was used to estimate N2O
efflux for all days where precipitation
exceeded 3mm and the water table
depth was less than 10mm from 2005
to 2010 in all topographic positions
where there was a significant relation-
ship and the N2:N2O ratios were used
to estimate N2 efflux. The daily fluxes
were multiplied by the area of each
position and then summed to give a

Figure 5. Relationship between redox potential and soil moisture condi-
tions. The centroids show the mean redox potential and soil moisture for
each topographic position, with the ends of the branches showing each
observed value. The shaded area represents the range of redox potentials
appropriate for N2O production.

Figure 6. Soil N2O efflux from 2006 to 2010 in the inner wetland (IW),
outer wetland (OW), lowlands (LOW), and uplands (UP) topographic
positions averaged across three transects. Different letters indicate
significant differences among soil N2O efflux by topographic position
based on ANOVAs on ranks with post hoc Dunn’s tests (p< 0.05). Numbers
indicate the sample sizes (one value per day).
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total N2O+N2 gaseous export in response to precipitation during the forest growth season for each year. The
proportion of N deposition that was N efflux was then calculated and averaged from 2005 to 2010.

2.4. Data Analyses

Daily soil temperature, moisture, and DOC, NO3
�, and N2O efflux measurements from the three transects were

averaged to give one value per day per topographic position and then compared using analyses of variance
(ANOVAs) on ranks with post hoc Dunn’s tests (p< 0.05). The relationships between soil N2O efflux and water
table depth, soil temperature, soil moisture, DOC, and NO3

�were investigated using Spearman rank correlations.

The relationship between precipitation and N2O efflux was assessed using nonlinear regression with a power
function for all four topographic positions. To determine the effect of storm events on soil N2O efflux, the rela-
tionship between precipitation and N2O efflux was investigated by defining effective precipitation as the
amount of precipitation that fell on the same day that the soil N2O efflux wasmeasured and on the preceding
day (to capture overnight precipitation). Days when precipitation exceeded the forest canopy interception
capacity (≥3mm) and when the water table depth was< 10mm above the ground surface were used to iso-
late the effects of the effective precipitation event and ensure there was not excessive standing water in the
wetland. An analysis of covariance (ANCOVA) was performed to determine if the effective precipitation versus

N2O relationship varied among topo-
graphic positions. Monte Carlo simula-
tion was employed to estimate the
potential distribution of N2 efflux using
the observed soil N2O efflux values and
N2:N2O ratios determined using acety-
lene inhibition experiments. Statistical
analyses were performed in SigmaPlot
v. 12, SPSS v. 22, and Microsoft Excel.

3. Results
3.1. Catchment Hydrology

There was a declining trend in precipita-
tion and discharge in the Turkey Lakes
Watershed since 1981 (Figure 3).
However, among the years investigated
in this study (2005–2010), precipitation
and discharge were lowest in 2005 and
tended to increase from 2006 to
2010 (Figure 3).

3.2. Soil Physical and
Chemical Properties

Soil temperature was consistent across
topographic positions, but there was sig-
nificant variation in soil moisture, with

Table 1. Spearman Rank Correlations Between Soil N2O Efflux and Soil Physical and Chemical Properties in the Inner Wetland (IW), Outer Wetland (OW), Lowlands
(LOW), and Uplands (UP) Topographic Positionsa

IW OW LOW UP

Control Variable r p r p r p r P

Water table depth (mm) 0.111 0.353 �0.308 0.009 0.372 0.002 0.425 0.001
Soil temperature (°C) �0.115 0.374 �0.039 0.745 0.355 0.004 0.065 0.612
Moisture (%) 0.098 0.453 �0.288 0.014 0.264 0.034 0.342 0.006
Soil pore water NO3

� 0.443 0.021 0.404 0.055 �0.103 0.653 0.000 0.989
Soil pore water DOC �0.091 0.479 0.182 0.196 0.031 0.840 0.156 0.360

aBolded values indicate significant relationships (p<0.05).

Figure 7. Precipitation and water table depth in c38 from 2005 to 2010
with number of days with no flow inset.
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the IW and OW having significantly higher moisture than the LOW and UP (Figure 4). Unfortunately, redox
potential data were only available for 2005. In the year when redox was measured, appropriate redox condi-
tions for N2O production, namely, between �100 and +100mV [Kralova et al., 1992]), were only found at the
IW and OW positions and only occurred when soil moisture ranged from 50 to 70% (Figure 5). In all of the years
of measurement, the soil moisture regimes at the UP position never reached the 50 to 70% volumetric water
content range, and therefore, it is unlikely that redox conditions necessary to support sustained N2O existed
at the UP positions. There was significantly more DOC in the LOW and UP positions compared to the IW and
OW positions, and there was little difference in NO3

� among the topographic positions (Figure 4).

3.3. Soil N2O and N2 Efflux

There were significant differences in soil N2O efflux among the topographic positions; the OW position had
higher soil N2O efflux than all other topographic positions (Figure 6). While significant relationships existed
between soil properties and soil N2O efflux, these relationships were generally quite weak (|r| ranged from
0.25 to 0.44) (Table 1). Soil moisture patterns from 2006 to 2010 (Figure 4) closely approximated those of
the soil N2O efflux patterns (Figure 6), while DOC and NO3

� patterns (Figure 4) did not show a direct
association with N2O. Although the soil moisture and soil N2O efflux patterns were similar, there was less
variation in soil moisture (coefficients of dispersion of 0.24 in IW, 0.04 in OW, 0.14 in LOW, and 0.18 in UP) than
in soil N2O efflux (coefficients of dispersion of 1.08 in IW, 1.45 in OW, 1.33 in LOW, and 1.09 in UP). To inves-
tigate what other factor could be influencing soil N2O efflux, the relationship between effective precipitation
(which influences moisture) and soil N2O efflux was investigated.

Precipitation varied considerably from 2005 to 2010; years with less precipitation resulted in lower water
tables and more no flow days (Figure 7). Looking at the effect of precipitation on soil N2O efflux, there was
no significant relationship between N2O efflux and precipitation when all data were included (data not
shown). To investigate the effect of storm events on N2O efflux, days with effective precipitation events (same
day plus previous) greater than 3mm and days where water table depth was less than 10mm were

Figure 8. Relationship between effective precipitation (same day plus previous day) and soil N2O efflux on a subset of days where same day plus previous day precipita-
tion exceeded 3mm and the water table depth was less than 10mm with the 95% confidence intervals (dotted lines) and 95% prediction intervals (dashed lines).
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investigated. We chose the 10mm threshold to include all possible data when soils were not inundated. We
found that when data greater than 10mm were included, relationships that were significant were no longer
significant. In the LOW and UP positions, there were no significant relationships between the magnitude of
effective precipitation and the soil N2O efflux from the LOW and UP positions (Figure 8). In contrast, there
were significant relationships between effective precipitation and soil N2O efflux in the IW and OW topo-
graphic positions (Figure 8). The magnitude of effective precipitation explained 62% of the variation in soil
N2O efflux from the IW position (y=0.442x1.224, r2 = 0.618, p< 0.001) and 72% of the variation in the OW posi-
tion (y= 1.301x1.164, r2 = 0.721, p< 0.001). There was one 48 h period with a large storm (75mm) and a water
table depth less than 10mm. This data point also had the largest N2O efflux in the IW and OW positions. The
relationship between effective precipitation and soil N2O efflux still held when these points were removed
(IW: 1.33x0.721, p=0.049, r2 = 0.309; OW: 1.864x0.999, p=0.005, r2 = 0.523). An ANCOVA of the relationships
between the magnitude of effective precipitation and soil N2O efflux showed that there were significant dif-
ferences between the IW and OW topographic positions (d.f. = 1, F= 22.16, p< 0.001) and no significant inter-
action. Same day plus previous day precipitation was used to investigate the relationship between N2O efflux

and precipitation, but there were some days
where the majority of the precipitation fell the
day before sampling. Removing these days
from the investigation improved the variation
explained in the IW and OW (to 77% and 83%,
respectively) but left only six data points.

The average N2:N2O ratio in the IW (19.6:1) was
significantly higher than the N2:N2O ratio in the
OW (10.1:1) (Table 2). Using these ratios, the com-
bined N2O+N2 efflux was higher in the IW and
OW positions compared to the LOW and UP
positions (Figure 9). Based on these ratios, the
effective precipitation versus soil N2O+N2 efflux
was y=8.669x1.224 for the IW and y=13.136x1.164

for the OW. The observed N2:N2O ratios were
highly variable (IW standard deviation=9.7 and
OW standard deviation=6.3). Using these ratios
in Monte Carlo simulations resulted in highly
variable soil N2 efflux data (Table 3).

The average total N2O+N2 efflux from the
catchment caused by effective precipitation
events during the snow-free season, calculated
using estimated N2O+N2 per hectare based on
the relationship between effective precipita-
tion and N2O efflux in the IW and OW positions
and the N2:N2O ratios, multiplied by the area
of each topographic position and summed for
all days with effective precipitation events,
was 10.0 kg yr�1. This represents 16.1 % of
the average annual N input (which was
9.9 kgNha�1 yr�1 or 62.7 kgNyr�1 for the entire
6.33 ha catchment).

Table 2. Ratios of N2 to N2O in the Inner Wetland (IW) and Outer Wetland (OW) Topographic Positions Determined Using
a Field Acetylene Inhibition Experiment

Average Standard Deviation Minimum Maximum

IW (n = 10) 19.585 9.659 6.831 33.616
OW (n = 10) 10.056 6.265 3.986 21.785

Figure 9. Soil N2O +N2 efflux from 2006 to 2010 in the inner wet-
land (IW), outer wetland (OW), lowlands (LOW), and uplands (UP)
topographic positions averaged across three transects. In the
LOW and UP positions, N2 was not measured and was assumed to
be negligible due to oxic conditions. Different letters indicate
significant differences among soil N2O +N2 efflux by topographic
position based on ANOVAs on ranks with post hoc Dunn’s tests
(p< 0.05). Numbers indicate the sample sizes (one value per day).
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4. Discussion

Nitrogen budgets in forested catch-
ments are frequently unbalanced, with
inputs exceeding outputs, and the sinks
for this excess N are the subject of much
debate. Underestimation of gaseous N
losses from forest soils is a common
hypothesis for this missing sink [Yanai
et al., 2013], but estimating N2O and N2

losses at catchment scales is difficult.
Recent studies have had success relating
topographic wetness indices to N2O and

N2 efflux [Duncan et al., 2013; Kulkarni et al., 2014; Anderson et al., 2015], but substantial uncertainty remains.
In the present study, 16.1 % of the annual N input was exported as N2O and N2 gas from the wetland in
response to effective precipitation events. This finding is similar to the few other studies that have included
estimates of denitrification in forested watershed N budgets, for instance, Duncan et al. [2013] found that
denitrification accounted for 16 to 27% of N inputs from an oak forest in Maryland, whereas Kulkarni et al.
[2014] found that up to half of N inputs to hardwood forests in New Hampshire were lost to denitrification.
These results reaffirm the primary role of topography in determining gaseous N fluxes, not only through
the distribution of soil moisture and thus appropriate redox conditions but also by delivering the water-
soluble reactants necessary for the denitrification reaction.

The UP and LOW positions recorded higher redox potential values (>300mV) compared to the wetland areas;
hence, denitrification was not favored at these positions because the soils were better aerated [Kralova et al.,
1992; Foster et al., 2005; Morse et al., 2015].

The OW position experienced a large range of redox potentials, oscillating between oxic (>400mV) and
anoxic (<400mV). There were dry spells (redox >400mV) during which nitrification could occur [Hazlett
and Foster, 2002; Foster et al., 2005; Snider et al., 2009], replenishing the NO3

� that was depleted during
denitrification from the wet periods (redox <400mV). Precipitation events that exceeded the forest canopy
interception capacity increased the soil moisture content in surface soils with a corresponding decrease in
redox potential while at the same time likely bringing more DOC and NO3

� through the vertical and lateral
flow of water, thereby creating conditions that favor N2O production. The relationship between the magni-
tude of an effective precipitation event and the amount of soil N2O flux was more significant in the OW
compared to the IW, probably due to the in situ production of precursors of denitrification (DOC and
NO3

�) when redox was high and from the ex situ production of precursors from upland areas that are
transported to the OW during these periods of hydrological connectivity [Cirmo and McDonnell, 1997;
Lohse et al., 2009].

The IW position experienced a narrower range of redox potentials. This may have resulted in greater
depletion of NO3

� with minimal to no in situ replenishment because redox conditions were not in the
range to promote nitrification and replenish the precursors. In addition, the location of the IW relative
to the OW position along the hillslope continuum (the IW is surrounded by the OW) ensured that the
IW’s main source of inputs through lateral flow is from the OW position. The OW position may be rich
in N2O due to its rapid processing of NO3

�, which would leave the IW to receive inputs depleted in
NO3

� and rich in N2O from the OW position and lead to an increase in the denitrification processes that
further reduce N2O to N2 [Gambrell and Patrick, 1978; Wrage et al., 2001]. Further reduction of N2O to N2 in
the absence of adequate NO3

� would be favored [Wrage et al., 2001], potentially explaining the lower N2O
fluxes observed from the IW position relative to the OW position. The observed N2:N2O ratio was higher in
the IW compared to the OW positions. This suggests that water arriving to the IW is depleted in NO3

� after
passing through the adjacent OW, and therefore, more N2O is being used as an electron acceptor and
reduced to N2 in the absence of the preferred O2 or NO3

� in the IW [Gambrell and Patrick, 1978]. Our esti-
mates of N2:N2O ratios were quite variable (Table 2), although well within the wide ranges reported in the
literature (Table 4). More accurate N2 estimates are necessary to develop a better predictive understanding
N cycling in catchments.

Table 3. Estimates of N2 Efflux (g ha
�1 d�1) in the Inner Wetland (IW)

and Outer Wetland (OW) Based on Monte Carlo Simulation (10,000
Replicates) Using N2O Fluxes (n = 72 for IW, n = 72 for OW) and N2:N2O
ratios (n = 10 for IW, n = 10 for OW)

Percentile IW OW

2.5th 11.64 7.30
5th 13.58 10.24
25th 35.30 34.53
50th 55.51 60.30
75th 99.48 121.57
95th 152.96 432.03
97.5th 165.46 727.68
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Precipitation events triggered N transforma-
tion processes that led to significantly more
soil N2O efflux from the OW topographic
position. The observation that precipitation
triggers soil N2O efflux suggests that precipi-
tation influences key physical and chemical
properties that promote N2O efflux. These
responses include increasing soil moisture
content, reducing O2 concentration due to
water occupying some of the soil pore
spaces that result in low redox potential [Li
et al., 1992; Liptzin and Silver, 2009; Rubol
et al., 2012]. In the IW and OW, there was very
little variation in soil moisture but much
more variation in soil N2O efflux (as indicated
by the coefficients of dispersion), which sug-
gests that precipitation may be the mechan-
ism that controls soil N2O flux. Precipitation
events only triggered soil N2O efflux epi-
sodes if the event exceeded the canopy
interception capacity [Carlyle-Moses and
Price, 1999; Price and Carlyle-Moses, 2003]
and if the water table depth was less than
10mm because at higher water table depths
nutrients would bypass the bioactive layer
and get flushed from the catchment into
the stream [Creed et al., 1996]. Water table
depths greater than 10mm above the
ground surface lead to inundated soils with
slow diffusion of N2O [Arah, 1997; Teh et al.,
2011], which may have reduced the amount
of N2O efflux to the atmosphere, due to
reduction to N2 in the inundated soils.

Temperate forest soils contribute a substantial
amount of N2O and cannot be ignored in N
budgets. Studies that havemeasured nitrifica-
tion rates in upland versus wetland positions
in sugar maple forests have demonstrated
that the high soil moisture and consequent
low redox potential result in very low rates
of nitrification at wetland positions during
the growing season [Devito et al., 1999;
Casson et al., 2014]. Furthermore, nitrification
is suppressed in soils with a pH lower than
4.5 [Ste-Marie and Pare, 1999], making nitrifi-
cation an unlikely source of the observed
N2O. The NO3

� observed at the OW position
was likely flushed from the hillslope to the
wetland during the rain event, not produced
in situ via nitrification. Chemodenitrificaiton,
another process which produces N2O, is
mainly observed in very acidic soils (pH< 4;
Kesik et al. [2006]) and thus is likely to be aTa
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minor mechanism at these study sites. The environmental conditions in the wetland make it very likely that the
N2O produced from these positions is a result of denitrification.

The increase in reactive atmospheric N and the inextricable link between precipitation, topography, soil
redox potential, and soil N2O efflux in temperate forests suggests that soil N2O efflux will continue to be a
substantial component of the N cycle. The finding that precipitation events trigger bursts of N2O efflux
emphasizes the interaction between long-term landscape determinants and short-term hydrological events
in creating conditions appropriate for N2O production. There is a need for more intensive monitoring of
gaseous N fluxes and coupling hydrological models to these observations to produce robust, spatially explicit
estimates of N2O and N2 effluxes in temperate forested catchments.

5. Conclusion

Denitrification is a key process of the forest N cycle, with N2O and N2 contributing to N transformations in the
forest soils. While denitrification occurred at all topographic positions, it was more pronounced in wetland
areas where appropriate redox conditions occur. Nitrous oxide and N2 efflux from the wetland in response
to effective precipitation events accounted for 16.1% of the annual N inputs. The wetland areas had greater
potential for accumulation of denitrification precursors, mainly labile carbon (DOC) and NO3

�, due to their
relative position compared to the inclined upland areas in addition to the alternating redox potential
between oxic and anoxic zones. The environmental determinants of denitrification in forest soils operate
at different spatial and temporal scales making it challenging to derive catchment-specific estimates of
gaseous N2O and N2 fluxes. Accurate estimates of these fluxes are needed both to quantify global warming
effects associated with N2O flux and to understand differences in the ways that forests process N across
gradients of topography, climate, and N status.

References
Addy, K. L., A. J. Gold, P. M. Groffman, and P. A. Jacinthe (1999), Ground water nitrate removal in subsoil of forested and mowed riparian

buffer zones, J. Environ. Qual., 28, 962–970.
Ambus, P. (1998), Nitrous oxide production by denitrification and nitrification in temperate forest, grassland and agricultural soils, Eur. J. Soil

Sci., 49, 495–502.
Ambus, P., and G. P. Roberston (2006), The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from

unmanaged forest and grassland communities in Michigan, Biogeochemistry, 79, 315–337.
Anderson, T. R., P. M. Groffman, and M. T. Walter (2015), Using a soil topographic index to distribute denitrification fluxes across a northeastern

headwater catchment, J. Hydrol., 522, 123–134.
Arah, J. R. M. (1997), Apportioning nitrous oxide fluxes between nitrification and denitrification using gas phase mass spectrometry, Soil Biol.

Biochem., 29, 1295–1299.
Blanco-Jarvio, A., C. Chávez-López, M. Luna-Guido, L. Dendooven, and N. Cabirol (2011), Denitrification in a Chinampa soil of Mexico City as

affected by methylparathion: A laboratory study, Eur. J. Soil Biol., 47, 271–278.
Butterbach-Bahl, K., G. Willibald, and H. Papen (2002), Soil core method for direct simultaneous determination of N2 and N2O emissions from

forest soils, Plant Soil, 240, 105–116.
Canada Soil Survey Committee (1978), Canadian System of Soil Classification, Department of Agriculture, Ottawa, Ontario, Canada.
Canada’s National Forest Inventory (2013), Area of land cover by terrestrial ecozone in Canada. [Available at https://nfi.nfis.org/publications/

standard_reports/pdf/NFI3_T1_LC_AREA_en.pdf, Accessed March 31, 2015.]
Carlyle-Moses, E., and A. G. Price (1999), An evaluation of the Gash interception model in a northern hardwood stand, J. Hydrol., 214, 103–110.
Casson, N. J., M. C. Eimers, and S. A. Watmough (2014), Controls on soil nitrification and stream nitrate export at two forested catchments,

Biogeochemistry, 121, 355–368.
Cirmo, C. P., and J. J. McDonnell (1997), Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of

temperate-forested catchments: A review, J. Hydrol., 199, 88–120.
Creed, I. F., L. E. Band, N. W. Foster, I. K. Morrison, J. A. Nicolson, R. S. Semkin, and D. S. Jeffries (1996), Regulation of nitrate-N release from

temperate forest: A test of the N flushing hypothesis, Water Resour. Res., 32, 3337–3354.
Creed, I. F., J. F. Miller, D. A. Aldred, J. Adams, S. Spitale, and R. A. Bourbonniere (2013), Hydrologic profiling for greenhouse gas effluxes from

natural grasslands in the prairie pothole region of Canada, J. Geophys. Res. Biogeosci., 118, 680–697, doi:10.1002/jgrg.20050.
Dannenmann, M., K. Butterbach-Bahl, R. Gasche, G. Willibald, and H. Papen (2008), Dinitrogen emissions and the N2:N2O emission ratio of a

Rendzic Leptosol as influenced by pH and forest thinning, Soil Biol. Biochem., 40, 2317–2323.
Del Grosso, S. J., W. J. Parton, A. R. Mosier, D. S. Ojima, A. E. Kulmala, and S. Phongpan (2000), General model for N2O and N2 gas emissions

from soils due to denitrification, Global Biogeochem. Cycles, 14, 1045–1060.
Dendooven, L., and J. M. Anderson (1995), Maintenance of denitrification potential in pasture soil following anaerobic events, Soil Biol.

Biochem., 27, 1251–1260.
Devito, K. J., C. J. Westbrook, and S. L. Schiff (1999), Nitrogen mineralization and nitrification in upland and peatland forest soils in two

Canadian Shield catchments, Can. J. For. Res., 29, 1793–1804.
Dillon, P. J., L. A. Molot, and W. A. Schneider (1991), Phosphorus and nitrogen export from forested stream catchments in Central Ontario,

J. Environ. Qual., 20, 857–864.
Duncan, J. M., P. M. Groffman, and L. E. Band (2013), Towards closing the watershed nitrogen budget: Spatial and temporal scaling of

denitrification, J. Geophys. Res. Biogeosci., 118, 1105–1119, doi:10.1002/jgrg.20090.

Acknowledgments
This research was funded by an NSERC
Discovery grant to IFC (217053-2009
RGPIN). Data are available by contacting
Irena Creed (icreed@uwo.ca).

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003027

ENANGA ET AL. STORMS TRIGGER N2O EFFLUX IN FORESTS 106

https://nfi.nfis.org/publications/standard_reports/pdf/NFI3_T1_LC_AREA_en.pdf
https://nfi.nfis.org/publications/standard_reports/pdf/NFI3_T1_LC_AREA_en.pdf
http://dx.doi.org/10.1002/jgrg.20050
http://dx.doi.org/10.1002/jgrg.20090


Eshleman, K. N., R. D. Sabo, and K. M. Kline (2013), Surface water quality is improving due to declining atmospheric N deposition, Environ. Sci.
Technol., 47(21), 12,193–12,200.

Foster, N., J. Spoelstra, P. Hazlett, S. Schiff, F. D. Beall, I. F. Creed, and C. David (2005), Heterogeneity in soil nitrogen within first-order forested
catchments at the Turkey Lakes Watershed, Can. J. For. Res., 35, 797–805.

Gambrell, R. P., and W. H. Patrick Jr. (1978), Chemical and microbiological properties of anaerobic soils and sediments, in Plant Life in
Anaerobic Environments, edited by D. D. Hook and R. M. Crawford, pp. 375–423, Ann Arbor Sci. Pub. Inc., Mich.

Groffman, P. M., M. A. Altabet, J. K. Bohlke, K. Butterbach-Bahl, M. B. David, M. K. Firestone, A. E. Giblin, T. M. Kana, L. P. Nielsen, and
M. A. Voytek (2006), Methods for measuring denitrification: Diverse approaches to a difficult problem, Ecol. Appl., 16, 2091–2122.

Gu, J., B. Nicoullaud, P. Rochette, D. J. Pennock, C. Hénault, P. Cellier, and G. Richard (2011), Effect of topography on nitrous oxide emissions
from winter wheat fields in Central France, Environ. Pollut., 159, 3149–3155.

Hall, M. K. D., A. J. Winters, and G. S. Rogers (2014), Variations in the diurnal flux of greenhouse gases from soil and optimizing the sampling
protocol for closed static chambers, Commun. Soil Sci. Plant Anal., 45, 2970–2978.

Hazlett, P. W., and N. W. Foster (2002), Topographic controls of nitrogen, sulfur, and carbon transport from a tolerant hardwood hillslope,
Water Air Soil Pollut. Focus, 2, 63–80.

Hutchinson, G. L., and G. P. Livingston (2001), Vents and seals in non-steady-state chambers used for measuring gas exchange between soil
and the atmosphere, Eur. J. Soil Sci., 52, 675–682.

Intergovernmental Panel on Climate Change (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, Cambridge Univ. Press, Cambridge, U. K.,
and New York.

International Joint Commission (2012), Canada-United States air quality report 2012. [Available at https://www.ec.gc.ca/Publications/
D9D6380B-4834-41C4-9D36-B6E3348F1A39/CanadaUnitedStatesAirQualityAgreementProgressReport2012.pdf.]

Jeffries, D. S., J. R. M. Kelso, and I. K. Morrison (1988), Physical, chemical, and biological characteristics of the Turkey Lakes Watershed, central
Ontario, Canada, Can. J. Fish. Aquat. Sci., 45, 3–13.

Kesik, M., S. Blagodatsky, H. Papen, and K. Butterbach-Bahl (2006), Effect of pH, temperature and substrate on N2O, NO and CO2 production
by Alcaligenes faecalis p, J. Appl. Microbiol, 101, 655–667.

Kothawala, D. N., S. A. Watmough, M. N. Futter, L. Zhang, and P. J. Dillon (2011), Stream nitrate responds rapidly to decreasing nitrate
deposition, Ecosystems, 14(2), 274–286.

Kralova, M., P. H. Masscheleyn, C. W. Lindau, and W. H. Patarick Jr. (1992), Production of dinitrogen and nitrous oxide in soil suspensions as
affected by redox potential, Water Air Soil Pollut., 61, 37–45.

Kulkarni, M. V., P. M. Groffman, J. B. Yavitt, and C. L. Goodale (2014), Complex controls of denitrification at ecosystem, landscape and regional
scales in northern hardwood forests, Ecol. Model., 298, 39–52.

Li, C., S. Frolking, and T. A. Frolking (1992), A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and
sensitivity, J. Geophys. Res., 97, 9759–9776.

Lindsay, J., and I. F. Creed (2006), Distinguising actual and artefact depressions in digital elevation data, Comput. Geosci., 32, 1192–1204.
Liptzin, D., andW. L. Silver (2009), Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil, Soil

Biol. Biochem., 41, 1696–1702.
Lohse, K. A., P. D. Brooks, J. C. McIntosh, T. Meixner, and T. E. Huxman (2009), Interactions between biogeochemistry and hydrologic systems,

Ann. Rev. Environ. Resour., 34, 65–96.
Lovett, G. M., and C. L. Goodale (2011), A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak

forest, Ecosystems, 14(4), 615–631.
Mander, U. E., V. Kuusemets, K. Lohmus, T. Mauring, S. Teiter, and J. Augustin (2003), Nitrous oxide, dinitrogen and methane emission in a

subsurface flow constructed wetland, Water Sci. Tech., 48, 135–142.
McClain,M. E., et al. (2003), Biogeochemical hot spots and hotmoments at the interface of terrestrial and aquatic ecosystems, Ecosystems, 6, 301–312.
Menendez, S., R. J. Lopez-Bellido, J. Benıtez-Vega, C. Gonzalez-Murua, L. Lopez-Bellido, and J. M. Estavillo (2008), Long-term effect of tillage,

crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions, Eur. J. Agric., 28, 559–569.
Mengistu, S. G., I. F. Creed, K. L. Webster, E. Enanga, and F. D. Beall (2014), Searching for similarity in topographic controls on carbon, nitrogen

and phosphorus export from forested headwater catchments, Hydrol. Process., 28, 3201–3216.
Morse, J. L., J. Durán, F. Beall, E. M. Enanga, I. F. Creed, I. Fernandez, and P. M. Groffman (2015), Soil denitrification fluxes from three

northeastern North American forests across a range of nitrogen deposition, Oecologia, 177, 17–27.
Pardo, L. H., et al. (2011), Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States, Ecol. Appl.,

21(8), 3049–3082.
Price, A. G., and D. E. Carlyle-Moses (2003), Measurement and modelling of growing-season canopy water fluxes in a mature mixed decid-

uous forest stand, southern Ontario, Canada, Agric. For. Meteorol., 119, 65–89.
Rubol, S., W. L. Silver, and A. Bellin (2012), Hydrologic control on redox and nitrogen dynamics in a peatland soil, Sci. Total Environ., 432, 37–46.
Scheer, C., R. Wassmann, K. Butterbach-Bahl, J. P. A. Lamers, and C. Martius (2009), The relationship between N2O, NO, and N2 fluxes from

fertilized and irrigated dryland soils of the Aral Sea Basin, Uzbekistan, Plant Soil, 314, 273–283.
Sirois, A., R. Vet, and D. MacTavish (2001), Atmospheric deposition to the Turkey Lakes Watershed: Temporal variations and characteristics,

Ecosystems, 4, 503–513.
Smith, W. B., P. D. Miles, C. H. Perry, and S. A. Pugh (2009), Forest resources of the United States, 2007 Gen. Tech. Rep. WO-78. Washington,

D. C., U. S. Department of Agriculture, Forest Service, Washington Office.
Snider, D. M., S. L. Schiff, and J. Spoelstra (2009),

15
N/

14
N and

18
O/

16
O stable isotope ratios of nitrous oxide produced during denitrification in

temperate forest soils, Geochim. Cosmochim. Acta, 73, 877–888.
Speir, T. W., J. A. Townsend, R. D. More, and L. F. Hill (1999), Short-lived isotopic method to measure nitrous oxide emissions from a soil under

four low-fertility management systems, Soil Biol. Biochem., 31, 1413–1421.
Ste-Marie, C., and D. Pare (1999), Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands, Soil

Biol. Biochem., 31, 1579–1589.
Stewart, K. J., P. Grogan, D. S. Coxson, and S. D. Siciliano (2014), Topography as a key factor driving atmospheric nitrogen exchanges in arctic

terrestrial ecosystems, Soil Biol. Biochem., 70, 96–112.
Sun, P., Y. Zhuge, J. Zhang, and Z. Cai (2012), Soil pH was the main controlling factor of the denitrification rates and N2/N2O emission ratios in

forest and grassland soils along the Northeast China Transect (NECT), Soil Sci. Plant Nutr., 58, 517–525.
Teh, Y. A., W. L. Silver, O. Sonnentag, M. Detto, M. Kelly, and D. D. Baldocchi (2011), Large greenhouse gas emissions from a temperate

peatland pasture, Ecosystems, 14, 311–325.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003027

ENANGA ET AL. STORMS TRIGGER N2O EFFLUX IN FORESTS 107

https://www.ec.gc.ca/Publications/D9D6380B-4834-41C4-9D36-B6E3348F1A39/CanadaUnitedStatesAirQualityAgreementProgressReport2012.pdf
https://www.ec.gc.ca/Publications/D9D6380B-4834-41C4-9D36-B6E3348F1A39/CanadaUnitedStatesAirQualityAgreementProgressReport2012.pdf


Tiedje, J. M., S. Simkins, and P. M. Groffman (1989), Perspectives on measurement of denitrification in the field including recommended
protocols for acetylene based methods, Plant Soil, 115, 261–284.

Ullah, S., G. A. Breitenbeck, and S. P. Faulkner (2005), Denitrification and N2O emission from forested and cultivated alluvial clay soil,
Biogeochemistry, 73, 499–513.

Vilain, G., J. Garnier, G. Tallec, and P. Cellier (2010), Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin,
France), Agric. For. Meteorol., 150, 1192–1202.

Wang, R., Q. Feng, T. Liao, X. Zheng, K. Butterbach-Bahl, W. Zhang, and C. Jin (2013), Effects of nitrate concentration on the denitrification
potential of calcic cambisol and its fractions of N2, N2O and NO, Plant Soil, 363, 175–189.

Webster, K. L., I. F. Creed, F. D. Beall, and R. A. Bourbonnière (2008a), Sensitivity of catchment-aggregated estimates of soil carbon dioxide
efflux to topography under different climatic conditions, J. Geophys. Res., 113, G03040, doi:10.1029/2008JG000707.

Webster, K. L., I. F. Creed, R. A. Bourbonnière, and F. D. Beall (2008b), Controls on the heterogeneity of soil respiration in a tolerant hardwood
forest, J. Geophys. Res., 113, G03018, doi:10.1029/2008JG000706.

Webster, K. L., I. F. Creed, F. D. Beall, and R. A. Bourbonnière (2011), A topographic template for estimating soil carbon pools in forested
catchments, Geoderma, 160, 457–467.

Weier, K. L., J. W. Doran, J. F. Power, and D. T. Walters (1993), Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water,
available carbon, and nitrate, Soil Sci. Soc. Am. J., 57, 66–72.

Wickware, G. M., and D. W. Cowell (1985), Forest ecosystem classification of the Turkey Lakes Watershed, in Environment Cons. Services, Lands
Dir., Eco. Land. Class. Ser, vol. 18, 33 pp., Can. Dep. Environ, Ontario.

Wrage, N., G. L. Velthof, M. L. van Beusichem, and O. Oenema (2001), Role of nitrifier denitrification in the production of nitrous oxide, Soil
Biol. Biochem., 33, 1723–1732.

Yanai, R. D., M. A. Vadeboncoeur, S. P. Hamburg, M. A. Arthur, C. B. Fuss, P. M. Groffman, T. G. Siccama, and C. T. Driscoll (2013), From missing
source to missing sink: Long-term changes in the nitrogen budget of a northern hardwood forest, Environ. Sci. Technol., 47, 11,440–11,448.

Yang, W. H., A. C. McDowell, P. D. Brooks, andW. L. Silver (2014), New high precision approach for measuring
15
N-N2 gas fluxes from terrestrial

ecosystems, Soil Biol. Biochem., 69, 234–241.
Zaman, M., and M. L. Nguyen (2010), Effect of lime or zeolite on N2O and N2 emissions from a pastoral soil treated with urine or nitrate-N

fertilizer under field conditions, Agric. Ecosyst. Environ., 136, 254–261.
Zhu, Q., X. Nie, X. Zhou, K. Liao, and H. Li (2014), Soil moisture response to rainfall at different topographic positions along a mixed land-use

hillslope, Catena, 119, 61–70.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003027

ENANGA ET AL. STORMS TRIGGER N2O EFFLUX IN FORESTS 108

http://dx.doi.org/10.1029/2008JG000707
http://dx.doi.org/10.1029/2008JG000706


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


