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The Complexity of the Simplex Algorithm

James D. Currie, M.Sc. Thesis

Abstract

The thesis begins by giving background in linear programming

and Simplex methods. Topics covered include the duality theorem,

Lemke's algorithm, and the patholpgical linear programs of Klee-Minty.

Because of the bad behaviour of Klee-Minty programs, the
behaviour of the Simplex algorithm is only good on average. To
take such an average, certain assumptions on the distribution of
linear programs are introduced and discussed.

A gebmetriﬁal meaning is given for the number of steps Lemke's
algorithm takes to solve a program. " This gives rise to a formula
bounding the average number of steps taken. The formula is
heuristically justified in an original way.

The formula is combinatorially simplified, to get a bound on the

complexity of Simplex.
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o . Preface

7~ ‘
The topic of this thesis is 'Why is Simplex so, fast?'' About

half of this paper is devoted to expounding the work of Steve Smale [6,7].
The first half of the paper leads up to Smale's analysis by giving back-
ground in linear programming and Simplex methods. The paper should be

self-contained. Here we will give a section breakdown. -
L ]

Section 1: What is linear programming?

In this section, we define and motivate linear programming. ILmportant

concepts are defined. The section cdlminates in the dualf&y theorem.

Section 2: What are Simplex methods?

Here we explain the general scheme of all Simplex methods.

Section 3: Lemke's algorithm.

The Simplex algorithm Smale analyzes 1s Lemke's algorithm. This algorithm

18 explained, and proved correct. . ~
Section 4: Klee~Minty Examples. -

Following Evatal, ve give the'Klee-Minty examples of linear programs

which tafe many steps to solve.

Section 5: Smale's Geometric Work.
Smale's analysis of Simplex breaks into two sections. In this section
we explain how Smale developed a geometric meaning for the number of

steps the Simplex algorithm takes.

Civ)




Section 6: Smale's Combinatorial Work.
Smale works with his geometric construct combinatorially, and shows

,that Simplex will usually be fast.

Section 7: Summary.

Here we evaluate Smale's approach.

In expounding Smale's work, we have mostly followed [7], which is
Smale's improvement and precis of [6]. We have filled in the gaps in
[7], sometimes by m;difying proofs of [6]. Unfortunately, [6] is very
difficult to read because of typographical errors. Another problem
which carries over to [7] is an apparent confusion between q0 and
another vector.

Because of this confusion, the geometric derivations in {6] and
[7] are simply incorrect as they stand. Our contribution h;EAPéen to
give correct proofs for the assertions of [7], and especially~€o motivate
the intricacies of both of Smale's papers. The way in which dominance
can be used for motivation is our own discovery, spurred by Blair [1]}.

Thanks to Dr. Mortimer for his patience. .

Also thanks to Dr. Cunningham for bringing [1] to my attention.

(V)




Linear Programming

A practical motivation can be given for linear programming. For
example, consider the following problem.

Construct a diet using milk, bread and liver, subject to the
condition that the minimum daily requirements of vitamins Q, R, S are

provided by the diet. Construct the diet in such a way that cost is

minimized.
Units of Q R S

in ) <
liver 10 20 6 :
milk 2 15 3 «
bread 1 1 4 -
requirement - 12 8 4

If we let the amounts of milk, bread and liver in our diet be

xl, X, x3 respectively, with costs € CZ’ 4:3 , then the problem
becomes
+ +
ainimize clx1 c2x2 c3x3 1
{
i
+ + >
subject‘to 10::1 2x2 x, 2 12
20x_ + + >
1 15;&2 x3 > 8
+ + >
6x1 3x2 4x3 2 4
> . - /
and Xpr Xy x, 2 0
1""




This example motivates the patandard form of a linear program~(LP).

N

T
min ¢ x
(L

s.t. Ax > b
x>0 ; xe€BR, beR", Agr™"

- Geometry -

)

A geome‘t?.c interpretation of the problem may be helpful. Let
e
K’f’t‘)‘ n :
A be the 1ith row of the matrix A. In R, the solution set

of A(i)x =b 1is a hyper-plane of dimension n=~1. Thus A(i)x >b

1 1

describes a half-space "above" t.hat: hyperpl’anq. If in addition, x >0,
then x 1lies in a (possibly unbounded) polyhedron (see‘Fig. 1),

When all the row ;onditions are true and x >0, then x 1lies in
a polyhedron arising from the intersection of m half-spaces and the
orthant x> 0. As ch is a linear function, it is intuitively ctear
that any extrema will be at the ''corners'" of this polytope.

We take a very simple example:

+ -
min xl 21:2 313

L, t. - ‘> -
8.t !1 1 .
- > -
xz 1

-x > -
x3_1

xl, x'z, x3 0.



In 3-spuce,/x1 =1 i{is a plane. In Figure 2, -x1 > -1 would

~ 4
be the half-space to the left of this plane. When all 6 conditions

of this LP are true, (x_ , x

Y x3) must be inside a cube, as in

Figure 3.

The cost function we are trying to minimize is x1A+ 252 - 3x3.

o

If we let N be a normal to the plane X + 2x2 - 3x3 = b', and call
the direction of N "up”, then solving the LP is finding the "highest"
point of the cube.

In general, solving an LP requires finding the highest point in
a certain n-dimensional po}lyhedron. Clearly,:in our example, the
highest point will pe on the outside of the cube. However, without
loss of generality, the highest point on a face will be at an edge, the
highest point of an edgeAat a vertex. Therefore, solving LP is equivalent

v

to the finite problem of findiné which vertex of a polyhedron is ’
highest.

Next, we introduce a notation g} help distinguish vertices
algebraically. in our example, each face of the cube corresponds to
the points where a constraint holds with equality. Given any LP in
standard form,

T
min ¢ x

Ax > b

x>0




we introduce "'slack'' variables,

)
= A -
x x b1 R

-for 4 =1 to .
In our example, we must introduce the varisbles .

= .x +
xa xl 1

= .x_ +
x5 xz 1

alt

= o +
x6 x3 1

_When we are on the face where x, = 1, then x, = 0. In fact we

“

have constructed the new vgriables so that whenever we are on the plane
corresponding fo constraint 1, Xt 0. PFor our cube, any timeré
variables are 0, we are at a vertex. In n dimensions, a 5;rtex -
can be fixed by n faces intersecting there. Before continuing to the
Simplex method, we give some algebraic background to what we have said

in this section.

Solving a Linear Program

Definition: The vector x ¢ R" is a solution for (1) if Ax > b.
Definition: A solution x. of (1) is feasible if x > 0.
Definition: A solution x of (1) is optimal if and only if it is
T T .
feasible, and c y > c x for all feasible y.
As we mentioned in our geometric interpretation of the linear
programming problem, it is intuitive that the optimal solution of any

LP should be in a corner of the corresponding polyhedron. In each
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corner, several x, are zero. Let this motivate the following /f”‘-’““’/

discussion: ‘ /

el
n A m+n
Augment x € R° to a vector X € R by adding slack variables

as in the previous section. Augment A to the matrix A = [A| I « 1.
: mXm

The constraints of (1) are equivalent to

% =Alt 1% =0v )
mXx m
x>0 3)
A has rank m. Let B be a column basis for A. Then one solution

(1)

AA ~ - .
of AX=1b 1is given by setting X, = 0 1f A ¢ B, and solving the

A
system T X(k) ﬁk =b. ( K(k) is the kth column of A.)

g(k)eB -
Definition: A solution X of (2) corresponding to a column basis B
of A& 1s called a bagic solution of (1).
Definition: A solution of (3) whicg 1s a basic solution of (1) is called
a Dasic feasible solution of 1).
We remark that a basic feasible solution (b.f.s.) of (1) gives a
feasible solution of (1).

- T
Our intuition tth ¢ x is minimized in a corner becomes a

theorem:
Theorem: 1) If there is any feasible solution to (1), then there is
a basic feasible solution;

2) If there is any optimal solution of (i) then there is a

basic optimal solution.
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Proof: 1) Let % correspond to a feasible solution of (1) with as

~

many of the X, zero as possible. If x =0, then b = A% = 0,

i

and X corresponds to any basis B.

Otherwise, let the non-zero components of X be X., X, ... ,ﬁk,

re-ordering columns 1if necessary. We will show that the columns

2(1), K(Z), . R(k) are independent, and may thus be augmented to
a basis. It will follow that &£ 1is basic.
a(d)
Suppose these A are linearly dependent. Then there are t,6 ¢

not all zero, such that

i

tlz(l) + t2;;(2) + .+ tkK(k) - 0.

Let t= (£, t

1’ B0 e tk, o, 0, 0, .

T
.., 0) . Then A& - rt) =b for

all r € R, Then let r=m1n(z?i/ci[ ci#O).

We get Qi - rti >0 for {1 =
But if r =2/t then X, - rt
ity 3 3

A A
y = X ~rt has more zeroes than X.

result follows.

1 to m+n, by our choice of r.
= 0, and the feasible solution

This 18 a contradiction, and our

2) Let ¥ give an obtimal solution and require X to have the

most zeroes possible.

nt+m

Augment ¢ to &€ R by adding m =zeroes.

~

If X=0, then X is basic.

~

Otherwise let the non-zero

components of X be X,..., ik' Again, assume the corresponding

1

R

b



columns are dependent, and pick t as before.

Aa ’
AR - rt) =b for all re R . (&)
For small enough r, the solution corresponding to (4) will be

feasible, and the new cost is

T T
TR -rt) = 8x -1t .

~ T P A-T .
However, ¢ x 1is the optimal cost, so we need ¢ t = 0. {(Hint:

1f Eit >0 then pick small positive ).
Choosing r ,y as before, we get a feasible solution y , with
GTy = EIx - rGTt = ETX , and y 1is a basic optimal solution. [J
By the above theorem, we can restrict our attention to basic

A n+m
feasible solutions. As A has at most ( m ) column bases, we have

moved from a continuous problem to a finite discrete problem.
Duality Theory

The standard linear program has as data an mxn matrix A, and
n m
two vectors, c € R°, b &R . We then have the program

] T
min ¢ X

Ax > b (1)

x>0 .

However, in the interest of symmetry, we might ask, '"Why not do

it this way?"




T
y A < ¢ ()

[}

The two problems are related in an interesting and important way.

Suppose x 1is a feasible solution of (1) and y 1is a feasible

9

solution of (5). Then

Ax > b
T T
= yAx 2yb 6)
T T
also yA<c
T T
= yAx < ¢ x )]
T T
whence y b < ¢ x . , 8)

We introduce some terminology:
- .
Given a program of the form (1), the program (5) is called its dual .
Alternatively, (1) {s the primal of (5). The dual can be written

as the sgtandard LP

T
min (-b) y
]
(-A)y > -c
y 2 0.

One sees that the dual of the dual is equivalent to the primal.

Inequality (8) says, in words, that the cost of any solution of the



dual gives a lower bound on the cost of any solution for the primal.

This yields immediately a sufficient condition for the optimality of

a solution of (2).
i
Sufficient Condition for Optimality: Suppose x is a feasible solution

0

for (1), and Yo is a feasible solution for (5), with

Then X, is an optimal solution of (1), and Vo 1is an optimal

solution of (5). a

The central result of duality theory for linear programs is the
converse of this result.
Duality Theorem: If (1) and (5) have feasible solutions, then they

have feasible solutions x such that

0’ Yo
cx, = Yo b

This theorem is generally proved either by using the machinery
of Dantzig's Simplex algorithm, or by using the following lemma.
Lemmg: [Farkag] Let C be an Mx N matrix, and let z ¢ 'RM.
Then either
\
() Cp=1z has a solution p € RN , p2>20, or (exclusive)
CED) qTC >0, qu < 0 has a solution q € RM.

M
In geometrical terms, the set [x € R | x = Cp for some p > 0}

is the convex cone of the columns of C. The lemma theﬁ‘says that z
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either lies in the cone of C , or else there 18 q € RM such that

q has non-negative projection on each column of C , but negative
projection of =z . See Figure 4 for an example in R2 .  The theorem
follows readily from basic theorems On convex sets and separating
planes, a detalled development of which would be out of place here. An

accessible treatment is found in [4] (p.4s4 f£.).

Proo D orem: Consider the m+n+1) x 2(m+n) matrix
1 -A 0
m+n
C = 0 AT
T T
0 -C b

T
together with the vector z = (b, ¢, 0) ,
If Cp =2z has a solution p >0, then write p = (u, v, x, y);

u,y € Rm; v, X € R® g0 that

u=-Ax = -b
' T

v+Ay= ¢

T T

cx~-by= 0 -
and Ax = u+b >0b

T .T T T
yA= Ay) = (-v) <c

T T
cx= by = yb

so that our dual pair (1), (5) has a feasible solution x,y with

T T
yb=c¢cx.
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Otherwise we have the Farkas alternative.

+n+
There is & vector q ¢ R» e L with

T
Writing q as (y, x, t) yields
T T
-y A > -tc¢
TT T
x A > tb

x,y,t\z 0

and ' by + ex < 0. (10s)

Therefore

T T
vy A < te (9
Ax > tb
T T
(tc'x) € by) . - (10)
T T
Case 1) If t >0, then (8) applied to (9) becomes tc x > ty b,
so that tcx = tby , and t-lx s t-ly are feasible for (1), (5), so

that our conclusion follows.

Case 2) If t =0, then let Xy Vg be feasible solutions for (1),

»

(5). Then (9), (10a) yield

yA <O

Ax > 0

T T
cx <by.
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T T .- T T .
But then ¢ x > (yoA)x >0 > ( A)xo >y b . This contradiction

shows that this case never occurs. Q
]
Simplex Methods and DegenePacy
Recall our geometric exposition of the linear programming problem.
We wish to examine vertices of a polyhedron. Eacg vertex is specified
by the intersection of n 1linearly independent planes, and hence 1is
given by at least one basgic feasible solution. Obviously a point
tn R" 1s fixed by f;s coordinates; by the words '"at least one', we
refer to the fact that the b.f.s. were labelled by bggses. It is pos-
. sible that two choices of bases give the same point as a basic feasible
solution. For example,
x1 + x2 ’ = 0
x3 =0
}N\\ x4 =0
has two column bases, (A(l),’A(3), A(a)l and (A(Z), A(3), A(a)l,

both~giving as b.f.s, (0, 0, 0, 0),

Having given this note of caution, let us turn to describing the
Simplex methods.

In a Simplex method we attempt to examine vertices of our polyhedron
by always moving from one vertex to another adjacent one, via some edge.

This requires moving from one b.f.s. to another differing in exactly

-
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one column of the basis. Usually we try to move to an adjacent vertex
in
such that the cost never decreases. The implementation follows a
scheme of the following sort:
1) Find a b.f.s.
2) If the cost is optimal stop.
3) Otherwise pick some bas£c column to leave the basis, and
some non-basic column to enter the basis, and repeat 2).
This scheme does not always work. We have seen that looking either
at all vertices, or looking at all b.f.s. of our LP guarantees that we

will fingvthe optimal vertex/b.f.s. However, there is nothing in this
scheme towinsure we visit every vertex. If one b,f.s. is represented
by more than one basis, it is conceivable that we might spend all our
time looking at that b.f.s., our changes of bases only exchanging one
representation of the point for another. To clarify this idea, let us
look at Figure 5.

Figure 5 represents a square pyramid in 3 dimensions. Because
4 planes iégersect at the top of the pyramid, there are 4 ways to ad-
dregs this top point as an intersection of 3 planes. Conceivably a
Simplex algorithm might look at this top point many times under different
aliases.

A polyhedron in n dimensions with more than n faces intersecting

at a point is degenerate. An LP 1is degenerate if some b.f.s. has

more than n of {ts variables equal to zero.

- e b
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At best, degeneracy in an LP is an embarassment. The Simplex
methods may look at one point many times. At wordt, a phenomenon
called "cycling' may occur: a Simélex algorithm may stick at one point,
only exchanging- one representation of the point for another.

In practical examples, degeneracy comes up all the time, as problems

are often pogsed containing redundant information.

The ambiguities of degeneracy can be avoided by perturbation methods.

Each of our bi is adjusted by a small constant Zi , with

>> >> >> L. > ,
Zl 22 23 > Zm and

each of these numbers much smaller than the numbers in a given LP.

The effect of such a method on our pyramid of Figure 5 may be seen in
Figure 6. Perturbation methods may be shown to work in general: We
can always perturb an LP to remove degeneracy. This is not, however,
desirable in general, because perturbation costs 0(m) additions. In
practice, programmers will perturb only when an LP seems to be cycling.
We will have to return to these remarks on the use of perturbation

¥
when we evaluate Smale's paper in our concluding remarks.

An Example of A Simplex Method
We will now give an example of a Simplex method: the method of
least cost coefficient.
* We begin at a b.f.s. of (1), and on each iteration, we add to the

basis the non-basic column which is least expensive. We remove a column
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|3

from the basis in such a way that we add as much of the "entering''

variable as possible.

Example 1 min -x1 - 2x2 + 3x3

8.t -x1 2 -1
- > -
xz > -1
- > -1
x3 >
X, , X, X > 0

1 2 3
This is our cube. The progress of the algorithm can be seen in
Figures 7-9.
First we introduce slack variables
-x + x = -1

-X -~ X = .1
-X - X = -1

We are lucky, in this special case, to have the b.f.s. x1=x2=x3=0

to start from: xa, xS, x6 are a basis, and solving gives

= .x - +
cost x1 2x2 3x3

We will now add one of our non-basic variables to the basis. The

variable x2 has least cost efficlient, and letting x5 become zero

allows us to increase x2 to 1.
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+
1 3x3 x5 !k

0
o -
o
"
]
U
N
]
M
+

Now we increase x_, . This forces x to leave the basis, as

1 4

we wish to increase x1 as much as possible.

= 3 +x +x +
cost 3 x4 xs 3x3

We can no longer find a variable with cost coefficient negative,

but this matters not. -3 is the optimal cost, as xa, xs, x3 >0.
E -x_ + - +
Example 2 min x1 2x2 3x3 Ax4
- - - - > -
x1 x2 x3 x4 > -1
-2 - > =2
x1 2x3 >
- - - > -
x1 x2 x3 xA > =1
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Start at the vertex

x1 = xz = x3 = x4 =0

= -x_ + - +
cost xl 2x2 3x3‘ 4x

4
We increase x3 . x3 can become 1 before xS becomes O, so let
’
our basis be Xyo Koo X Thé;'
x, =x, =x_=x =0

and x, = 1 - x, = x_ -x = x

= 0 + -
x, 2x1 X ——

cogt = 3 + 2x1 + 5x2 + 7xa + 3x5 g\

Our program is degenerate, yet nonetheless, we arrive at the
optimal cost in only one fiteration (!). .

Early in the history of the Simplex algorithm it becgme apparent
that the algorithm is usually very fast. Empirical data suggests that
the algorithm is linear in m, and only logarithmic in n, even for
degenerate programs. Why this should be so is what Smale has tried

to show.

&
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Lemke's Algorithm

We want to solwve
T
min ¢ x
Ax > b 1)

x20; x€R', ceR', beRr", AgrR""

or equivalently
T
max y b
T T
yA<ge (5>
y=20

By the duality theorem, wy know that if we have optimal solutions,
T T T

T T T T
then cx=yb. Let u=Ax-b, v =c¢c -y A. Then y u =y Ax -y

K

T T T
and v x = c¢c x-y Ax. If x and y are optimal, then we have
T T T T
vyut+tvx = yb-cx = 0

This allows us to give an equivalent problem to (1). .

atn
Find z,w € R such that

T
c 0 -A
0

and w,z 2

and ¢y z =0 (12)

T T.T T TT
Here we let ¢ = (v ,u ) and z = (x, y ) to show the

equivalence.

T
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+ (mtn) » (artn)
With general gq ¢ R" n) and M R noir n , the problem
Find w, z ‘
7
s.t. (_u=q+MZ
T
w,z -0, wz=20
Pins
is called the linear complementarity problem. fq;-
&

Lemke's algorithm attacks an LP by putting it in the form of this
' T
new problem. Let N = m+n. Note that since @,z ~ 0 and @ z = O,

then for each 1 ¢ 1, ...,N}, w, = 0 and/or z, = 0.

N T
Definjtion: If , ,z € R for some N and @ z = 0, we say

that  and =z are complementary vectors in R

Suppose the LP (1) is not degenerate. In particular, every b.f.s.
of (1) has exactly n variables equal to zero, and we can solve for
the basic variables in terms of the others. (In fact, in solving Ax = b
in 1linear algebra, we do just this, writing the non-basic variables as
parameters.) Then if we.,increase a non-basic variable starting at a
b.f.s.J this induces a linear change in each of the basic variables.

We introduce two cases.

(1) We 1increase the non-basic variable xi until some basic
variable x is forced to become zero.

(11) We can increase a non-basic variable indefinitely without
causing any variable to become zero. This produces an unbounded edge

or ray of our polyhedron.
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From the proof of part 1 of the theorem on b.f.s., we know that
the basic solutions are characterized by the number of zeroes in such
solutions. Then in a non-degenerate LP, each b.f.s. has exactly n
zeroes, and this characterizes the set of b.f.s. Then in situation (1)
above, the feasible solution resgsulting when we increase a non-basic
variable from zero until a basic variable becomes zero, is a basic
feagible solutfon.

This is because it has at least n =zeroes. DBy non-degeneracy,

y .
it will thep/have exactly n zeroes.

Suppose the LP (1) and its dual (5) are both non-degenerate. Lemke's

N
algorithm finds ¢ ,z € R

s.t. pp = q + Mz

wz=0; w,z >0 (13)

T
0 =-A
o o o[] - 2]

N
It finds ¢ and z by looking at a sequence of 2-tuples in R ,

2 2 s s
w y z l; W 5, 2Z , ee.; mt,zt wvhere each w , z is a partial solution
of (13).
N
Definjtjion: A pair w, z € R is an almost complementary

solution of (13) 1{f
w = qtMz

w,z >0 and ©,rZ = 0 except for at most one coefficient { .

A~
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In Lemke's algorithm, we will begin each iteration at some g ,z
T TT T T.T

pair where ¢ = (v ,u ) , z= (& ,y ) correspgnd to the slack
variables, ordinary variables of some b.f.s. % of (1) and some b.f.s.
$ of (5). Further, we will have  ,z an almost-complementary
(a-c) pair.

If @,z are also complementary, the algorithm will terminate,
for we will have solved (13).

Let % be a b.f.s. of (1), and ¥ be a b.f.s. of (5). Suppose

the corresponding  ,z pair

_ - A
v 2
wHl 1
-~ ) )A(
~ Y o | *a
[{V ~ N z = A
*a+1 7
: . 9
L%n+m ym
— —_ —'

is almost complementary. Now by our non~degeneracy assumption X ,§
have exactly N = m+n zeroes between them. Then either N pairs

w .z have wz, = 0, and we have a solution to (13), or else N-1
pairs wy ,zi have wizi = 0, and there is exactly one coefficient v
such that w yz  are both zero. Thus for each iteration of Lemke's
algorithm, one coefficient \ 1is distinguished in a natural wvay.

One more notational matter before we describe the algorithm: in

a glven a-c solution o ,z of (13), we say that o is non-basic
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if wi = 0, basic otherwise. Similarly z, is basic 1f and only 1if

z, # 0 1in the given solution.

Lemke 's Algorithm:

1. The algorithm begins with an a-c pair  ,z and a unique coefficient
v such that o = z = 0. Increase the non-basic variable 2 holding
all other non-basic variables at zero, until

(1) a basic variable becomes zero;

(11) an unbounded ray is produced.

Exactly one basic variable becomes zero in (1). Otherwise we could

get a degenerate solution for one of our LP's (1) and (5).

2. In the general step of our algorithm, we have an a-c pair w,z.
If @,z 1is complementary, then stop. Otherwise there will be a unique

coefficient  such that ¢y =2z = 0, and either or z became
v v ) v

zero in the previous iteration. If 4 became zero last iteration, we
v

increase z . If ¢z became zero last iteration, we increase w
v v v

Again we either arrive at an unbounded ray or a new a-~-c

solution. 0

N
The indices of R are always broken into three sets in our

algorithm: one index B has wg » % #0. One index  has w =z =0.
A\ vV

T 7 111 out our & -c¢ solution, the other indices give basic/non-basic

pairs: 1if w, is basic, then zi is not, and vice versa.
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If we move from one b.f.s. to another in step 2, then a basic
vgriable becomes zero. If this basic variable was one of wB, zB ve
are done. Otherwise we get a new a-c solution, One of the N
from the basic/non-basic pairs becomes zero, and 1 takes the role
of .

We can also describe Lemke's algorithm as a "dual Simplex' method.
From 1w ,z we can read off a pair of b.f.s. for the standard Lp (1)
and 1its dual (5). To begin with, we let xv enter the basis of (1),
with x leaving. We then let y, enter the basis of (5).

We go back and forth from primal to dual, selecting as entering
variable the variable leaving the other program. Our arguments about
v ,B etc., would become, in these terms, arguments that a certain column
was indeed not yet in a basis.

Now that we have described Lemke's algorithm, we must prove its

correctness. We answer three questions.

1. Will the algorithm terminate?
2. How will the algorithm start?

3. What happens if we end with an unbounded edge?

Apswer 1: We show that the algorithm terminates.

Lempa 1° There are at most two edges followed by the algorithm in

L)

z

arriving at or leaving a given a-c¢ solution Wy 2y
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Proof: To leave the point Wy Zg arrived at in the course of
/

the algorithm, we either increase ¢ or z ., It remains to show
v N

that the two edges generated in this way are the only edges entering

, Z That is, Lf the algorithm goes from some point ' ,z' to

U)O 0 .

t

ZO , then we arrive at ' ,z' from z by increasing

Yo 0’70 v

or z
N

This follows by considering degrees of freedom. Suppose starting
from ' ,z' we increase the distinguished variable x to reduce 1

to zero and arrive at Wy 2 Then ' ,z' differs in its non-basic

variables from ¢ z, only in the substitution of x for w . Then

3
0 v a

t

w ,2' and zo have N -1 non-basic variables in common, which

O b

are fixed at zero along the edges leaving’ w' ,z' and ¢,z

O b
N
But @ = q+Mz is an equatfon in R , so that fixing N-~1

variables l#aves only one degree of freedom. Changing any of the other

variables must generate the same edge. o

Lepma 2: The first point to recur in Lemke's algorithm is the
initial point.

Proof: Exactly two edges touch any a-c b.f.s. on the path of
Lemke's algorithm. Thus the only way the algorithm revisits a point
is by first revisiting the previous point. We can't repeat the second
point of our path until the first is repeated. Induction finishes the

lemma. (See figure 10). 0O
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Corollary: If our algorithm commences at the endpoint of an un-

bounded ray, the algorithm terminates.

) Proof: Since the first point never repeats, no point does. We
visit each of finitely many b.f.s. pairs X ,? at most once. O
Apngwer 2: This last corollary tells us how we would like to start.
We introduce dummy variables w, ,zO £ R.
= +q+M
Let g zquy * 4 z (14)
T.
vhere ug = a,1,...,1) .
Clearly for a large enough z, we can let z = 0, and still have
w >0.
We write
- 1000...0
w z
0 - - 0
= q+ % (15)
. M z

w

Here we have written (14) in the form of (13). We get an a-c
ray by saying z = 0, and increasing zO . To get to the endpoint of
this a-c ray, we let =z decrease toward zero. If Z5 becomes zero

N
with no w_ becoming negative, then (14) reduces to
w = q + Mz
and we have a solution for (13).

Otherwise, one o, will become zero. We will then have an a -c

solution for (15) with exactly N+ 1. zeroes, and can commence our
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algorithm., If our algorithm reaches a complementary solution of (15),

we will have z, = 0, and thus, a solution for (13). We must ask

then, vhat happens if we end in an a -c ray? \

Apsyer 3: If our algorithm terminates in an a-c rtay of (15),
then (13) has no solution. Suppose the .endpoint of the a-c ray that
the algorithm reaches is (o*; za'; z) .

h h

h
Then let (y ; z2y 2 ) be another point on the ray. We have

h h

h
w = zOuN+Mz (16)
h h h
(w; 25,2 ) >0.
Also the points on the ray are a-c. Thus for any )\ > 0,
h h.T h
*+ = * + M(z* ’
(o™ +rw ) q+(zo+>\zo) uy (z"+2rz.) 17)
* h ”*% h
+ + =
and (wi )‘mi)(zi )\zi) 0
- for 1=1,2,..., N+1 ' (18)
h
Cage 1: z =0,
h h h
Since (g ; zg,zh)i‘ 0, we must have zB#O, for o = zouy -
h h
But now @ # 0, and by (18) z*+ iz = z* = 0.

But then the ray we have arrived at is the same one used to start
the algorithm, which is impossible.

Cage 2: zh #0.

Lemke defined a class of matrices as co-positive plug. Such

matrices muat satisfy
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T
uMa > O for all u -~ 0. a9
T T
M+M Ju=0 if uMau =0 and u > 0. (20)
0 -AT
Our matrix M has the form M = A 0 ] » and must satisfy -
both these conditions. (See [5], p. 102).
By (18),
* * - * - h » - h h = 0
R S S SR S SR P ’
T T T
h * h h™ h h h h
* b . N = = +
since wi,u)t,zi,ziﬁO ow, O zZ W z uNzO z Mz

Both parts of this sum are non-negative, hence both are zero.

h
Ag z # 0, we must have zg=0.

Also by (20)

h T h
Mz +M2z = 0.

h h
Since inO, Mz =, > 0. Therefore
T h hTM<O (21)
Mz <0, and z -
' \~fh T h T Th b
But O =2z%y = z¥Mz = z* (Mgz ) = -z Mz* ,
T T T T
Now, 0=zhw*=th+zhuNz6+thz*
T T
= h +h *
.ziqtz UNZO
h'l' T

We conclude that z q < 0, since zh uNZS > 0.

But now we have

T T
thSO, th<0, zh>0, and
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(13) has no solution. For suppose
w=q+ Mz; ws.2z2 >0,

T

Then, multiplying by 2N ,

T T T
nghm’th+zhﬁz<0.

This is a contradictionm.
In conclusion, Lgmke's algorithm always terminategf'and glves a
J

solution to (13), or proof no solution exists.

Klee-Minty Examples .

We are almost ready to discuss the conteats of Smale's paper. But
Smale discusses the average speed of Simplex. Here we will use the
examples of Klee-Minty to show that in some cases, the Simplex algoritham
is very bad. Good average time is the best we can do.

Ag we know, the Simplex algorithm traces a path around the edges of
a polyhedron. We will attempt to find a long path for a polyhedron
given by m+n planes. We will look at hyper-cubes. A line segment
has a path of length, 1 edge. Thus as a square is generated by moving
a line through a second dimension, we can find tyo paths of length 1
on opposlte sides of a square, and connect these paths to form a path

of length 3 edges. With a cube we can trace paths of length 3 on op-
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posite faces and connect them for a path of length 7. See Figures 11-13.
In general, by tracing a path of length Zn—1 -1 oo opposite facets of
a hypercube in n dimensions, we can find a path of length 2n -1 on
the hypercube.

This is well and good, but a Simplex method using least coefficlent
on non-degenerate polyhedra always decreasgses the cost function on each
iteration. We need to deform our cubes so that the cost function decreases
everywhere along our path. For example, in 3-dimensions the rule of
leagt cost coefficient takes 3 iterations on any cube, not 7. (Think
about Figures 7-9 to see why this is so.)

We can build a ''squashed' hypercube on which some cost always

~
decreages along our path in the following inductive way: Given a
"squashed' hypercube of dimensian n-1, generate the '"squashed' cube
of dimension n by first moving the (n-1)-dimension cube through the
nth dimension, and then drawing our long path. Then shrink the path
edge connecting the two (n-1)-dimensional components. (See Figures
14-16 for ''squashed' objects in 1, 2, 3 dimensions, and cost directions
along which the path is always decreasing.)

Finally, we must force the Simplex algorithm to always take a
long path. We do this by remarking that the method of least cost co-

efficient 1s very sensitive to scale. If we replace xq in an LP by

—l—n—

100 tq , then in the new program the magnitude of tq's cost coefficight
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will be 100 Cq . We now construct the entire Klee-Minty example for
n=3. Let us take the cube of Example 1 of our geometric exposition.

<1
xl S
< 1
x2 <
1
x3 <
X Xy Xy 2 0
Then
x1 < 1
0.2x1 +  ¥q < 1

.0 + 0, + .
o 2x1 sz x3 < 1

>
xl, xz, x3 > 0

is the squashed cube in Figure 17. If we let our objective function

be lOOOOx1 + 1000x2 + IOOx3 , then this function always decreases along
the indicated pLFh. We will now use scaling to make this path attractive
to the Simplex method.

We will change our scale so that the cost coefficients of the top
and bottom faces are least attractive, those of the front and back faces
second, and those of the left and right faces, most attractive. This
will force the Simplex algorithm to follow our path. The pairs of faces

are given by



31
.
right/left: X and x, = 1 - X,
: d = - 0. -
front/back x, and x, 1 2x1 x
top/bottom: X, and x = 1 - O.OZx1 - 0.2x2 - x4

1

Letting t1 = x1 , t2 = 1?']‘.5 X, t:3 = W x3 will
certainly be adequate.
This gives the program
minimize 10000 tl + 10000000 t2 + 10000000000 t,
sub ject to

t
L

IA
—

+ 100000 0
2t +1 t, < 1
2e, + 200000 £, + 10000000000 t, < 100

tl' t2’ t3

v
(=}

We now know why the Simplex algorithm takes 7 iterations on this
program. Also, following the steps of our explanation shows how to

prove the following lemma by induction.

Lemma: The following program takes 2n -1 1iterations to solve by the
least cost coefficient Simplex method:

n 2+34

minimize T 10 3 ti
1=1

sub ject to

1-1 - - -
@ = (100000)1 ] tj) + (100000)i 1 £, < 10i 1
i=1

for i=1 to n

t, >20.

Thus the Simplex method can take exponentially long. a

.




&

32

Smale's Geometrical Approach to the Simplex Method

Smale analyzes Lemke's algorithm to find the expected number of
steps the algorithm takes. To speak of an expected number of steps,
we must give a distribution of input. Our input space for the Simplex

mn m
algorithm is the set of 3-tuples (A, b, c) where Ac R , b e€R,
and c¢ € Rn. Originally Smale projected his 3-tuples onto a sphere
and gave the sphere a uniform distribution. Later he realized that he
only used certain properties of his particular measure. We will list

mn n
the properties we wish our measure on R x R™ x R to have, with

reasons.
) We assume a measure o on R™" X R X R" , with the followin
A - mn,m,n
pro bo.\o.l-'}\‘ .
three properties:
(1>eContinuity. The measure Mon oo 18 absolutely continuous with
b ’

m n
respect to ‘Lebesgue measure. In particular a subset of ™" x R x R

*
-~

of Lebesgue measure zero occurs as input with probability zero.
This assumption allowe Smale to reduce his expected complexity for
Simplex. Later, in a certain sum, property (1) will be invoked to throw
¢

away half the sum. The terms discarded have measure zero. This will be

crucial to proving a small expected number of steps.
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(2) Independence. The measure | is a product of three measures

mn,m,n0
mn m n
4 " s My on R, R R respectively, and in the natural way.
mn m n
R R R
Also u is a product of measures u X W X ... X 4 on the rows of
mn n n n

m x n matrices.
' These independence properties allow us to break our complexity
problem into sub-problems. For example, in later estimates we work in

N n m N
R =R x R . Because of property (2), a measure on R is available

to us.

N
(3) Symmetry. Permuting coordinates of R induces permutations on
mn n m
R™", and on R x R ., We will want to make estimates later based on
the number of columns having a certain property. In order that we don't
have to worry which columng have property P, we want our measure to
be invariant under the gbove permutations. In particular, switching
columns in A or renaming variables should have no effect.

@
C This is the end of our discussion of measure.

Suppose we are given the LP (1).

T
min ¢ x
s.t. Ax > b D
x>0 ; xeR, per" Agr™

To solve (1) means to exhibit a solution, or to decide that no

solution exists.
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Smale's Main Theorem: Let o (m,n) be the average number of steps

to solve an LP of form (1) under our measure. Then for m fixed,
and ¢ -0, p(m,n) grows more slowly than Kn®, for some constant K.

If we take ¢ = 1, we find that the Simplex algorithm takes less

than linear time in n.

Define = [ ‘ where ig the number of

0y . PAb.c “m*n
n
R™y R
steps to solve (1) using Lemke's algorithm.

DA,b c

1

Then pf{m,n) = f Pa "o
RN

To prove Smale's main theorem, we derive a geometric meaning for

By manipulating this geometric expression for we prove the

pA’ pA’

theorem.

To develop Smale's geometric formula for DA , we use something

called a 1loop invariant . In complexity theory, when we wish to count

iterations of an algorithm, it 18 useful to label each iteration by
some well-behaved function of the quantities used by the algorithm.
This label is called a loop invariant.

At each step of Lemke's algorithm we have
m=q+Mz+zOuN (25)

T
where Uy =-(1,1, ..., 1)

+
Recall that when we commence the algorithm we let @ = 1, <4 + Zy Yy

+ T
for some zO , and z = (0, 0, ..., 0) . Also zo never increasges, but
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rather decreases to zero. Although the coordinates of ¢ and z move
up and down, Z i well-behaved. We can label each iteration by =z

We now wish to recast formula (25) into a functional notation (pun not

intended).
Let x = (al, 8,, oo aN)
where
-z if z -0
_ i i
a, =
wi otherwise
we use here the fact that wizi =0,
+
Then 1f x = (max(O,xl), ces max(O,xN)) and

- +
x = (min(O,xl), min(O,xz), vees min(O,xN)) , we have x = and

-x =z . Therefore, (25) becomes a simple equation.

+ -
x +Mx = q+z_ u . @6) -
0 n

In fact, if we find any x for which (26) holds, we can let

+
-X and z = x , and we will have

<3
]

w = q + Mz + 2y U

and wez=20,

+ -
let x + Mx = mM(x) . Then solving L.C.P. consists in finding
N
x € R such that mM(x) =q, mM(x)‘ will be our loop invariant. At

the beginning of our algorithm, as we remarked earlier,

0"
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During the algorithm, z, decreases monotonically towards zero.
Thus, during the execution of Lemke's algorithm, @M(x) varies linearly

from qO to q. However, we have not yet given a method of counting

{terations by looking at wM(x).

In each iteration of Lemke's algorith, some z, (or wi) increases

from zero, and some wj {or z ) decreases to zero. These two changes
cause x to move from one orthant of R to another: The 1ith
and jth coordinates of x change sign. Thus an iteration corresponds
to the change of x from one orthant to another. We can describe the
image of an orthant under Oy easily. This will allow us to bound the
number of orthants x visits by looking at wM(x).

3

+ - N
Recall, mM(x) = x + M(x ). An orthant of R corresponds to

a subset S of (1,2, ..., Nl in the following obvious way.
N
Se Q ={x&R | x, <0 if L €S
s i
x. >0 if ;¢ 5]
i .
Then mM(Q )= | -3 A, m, T A, e A2 0}, where e, is the
s {es i 1 I s J o] k i
N
ith component vector in R , and M = [ml, My e mN] , mj the jth

column of M,

Define the complementary cone of M, KS A by

b

KS,A = mM(Qs).

We are now almost ready to give Smale's "First Main Formula" .
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The number of steps Lemke's algorithm will take is equal to the number

of orthants through which x varies. But if x ¢ Q@ , then @M(x) € KS A
S 9,

But, mM(x) varies from qO to q, thus

= -
PA b, (orthants x moves through) - 1

A

# K -
(cones S A touching qoq) 1

where 9,9 is the path in RN from 9, to 4q. We gubtract 1 because
x must begin in some orthant.
Lerma: The segment qoq meets KS,A if and only if q 1lies in
the cone generated by Uy and KS,A . ]
The lemma can be proved by trivial algebra. Thi; allows us to
state a new lemma.
Lemma:

- + -
Pab c < -1 #lSIqGK(uN,KS’A)l

K(- K i K -u_ .
where K( uy o S,A) is the cone generated by S.A and  -uy 0O

We will now prove Smale's 'First Main Formula."

F : -1 + - K

Formula Py, £ -1 T VK (-u S,A)
Sc{1,...,N}

where VP means the volume of P, in this case with respect to u e
m X

Progof: From the previous lemma,

oAb c < -1+ #‘S"‘EK("H«’ KS,A)I,

?
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"
Now baA ]

< f (-1) + I
¥
Rmen Rmen
= -1 + T f
Sc {1,...,N} qéK(-uN
Rmx RD
= -1 + T VK(-UN, KS
sci1,...,N]

K
' S,A)

,A)'

This lemma is the most important result of the geometric portion

of Smale's paper.

(He, in fact, by more careful attention to cases

vhere no solution exists, proves equality.)

A number of properties of (pM(x),
this geometric section.

+ -
Recall coM(x)= x + Mix ),

s =11, 2,3, ..., s ntl, nt2,
%1
—N—
A A
1 | 3 }32

Suppose

oo, nt+s 1,
n 82

to be used later, also fit in

%

x €Q ,
, s

We partition the matrix A:
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Now for x ¢ Q , ‘wm(x) = x 4 M(x )
3
T
[0 o A o |
1
T
0 I -A 0
n-s1 2
= [ x]
A 0 0 0
1
A 0 0 I
3 m-52
L p

From this it follows that @M(x) is linear on Q , the identity
s

N+ N
on R, and continuous on R . a

Smale's 'First Main Estimate’

In terms of concepts, Smale's paper breaks into two parts. In the

first part, he develops his '"Main Formula'; Using a loop lnvariant,
' -l

he gives a pleasing geometrical interpretation of the expected number

rt
of steps for the Simplex method, as the sum of volumes of cones in RO,

However, it gseems difficult to motivate the combinatorial section
of Smale's paper in terms of these geometric ideas. To motivate the
second section of Smale's paper, we turn to the idea of dominance,

¥

which Smale himself does not mention explicitly.
o .

This writer became aware of dominance through a paper of Blair [1].

Blair seems hostile to Smale's geometric approach, and attempts to prove




40

Smale's result for a broad class of Simplex methods, using only dominance.

He succeeds in proving a weaker result, but only at the expense of as-

suming m << n . |

Consider the following linear program:

-x, - - +
min x1 2x2 x3 x4
-x_ + + +
X, 15x2 x3 x4 21
3x. + 4x2 - 2x, - 2x4 > 2
- - 2 + - 6
2x1 x2 x3 x4 >

A moment's reflection tells us that no optimal solution contains
column 1, because column 2 has lower cost, and the constraint coefficients
of column 2 are all greater than those of column 1. If a solution
contains x1 , we can still satisfy our constraints by replacing x

with an equal amount of x2 , and the cost is reduced.

We say column 1 1s dominated by column 2. Similarly, column 4
(1) (1) .
is dominated by column 3. In general, if A < A and c z Cj

in a linear program (1), we say A(i) (or sometimes xi) is dominated

by A(j) (sometimes xj).

-~
>

Blair observes that some Simplex methods, in particular Lemke's
algorithm, but others also, never allow dominated columns to enter the

basis. Then if matrix A has U undominated columns, we only choose /
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bages.from our starting set of m basis columns, and the U wundominated
columns. We thus look only at é]:nb bases, at most.

So far we have followed Blair, but now we turn from Blair, to at-
tempt to use dominance to give Sﬁale's "Firgt Main Estimate''.

Let P(m, n, s) be the probability under our measure um a that
an mvn matrix A has as undominated columns precigely its first s
columns. Because we have assumed in conditlion 3 on our measure that
permuting columns does not matter, this is the probability that any
specified set of s columns of A 1ig undominated. There are (2)
such sets.

Surprisingly, we can now almost prove Smale's "First Main Estimate'.

We have,

n tm
p < T (Probability of s undominated columns) x ()
m,n m

8=0
n
n s+m
= ¢ () Plm,n,s)( )
s s
s=0

Now, suppose we can show that Plm,n,s) = 0 for s >m+1.

“Then
art1 +
o < ¥ MPand®™ .
m,n §=0 s s
X |
< max (7™ ™) PG,n,s)
=0 to mtl 8 s=0 s

o
= C r () Plm,n,s)
o s
s=0
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To make our supposition plausible, we note that Smale introduces
a lemma to reduce hig largest index in the summation from n to wmtl.

We have not been able to deduce completely Smale's estimate from
dominance, but the above remarks serve to motivate Smale's estimate,
and particularly the definition of o (m,n,s). We now turn to Smale's

work.

Let E be a partial order on a set S of n elements, S = (1,2,...

For example, an mx n matrix A 1induces a partial order E(A) by
dominance:

p = E(A)q iff aip > aiq ) i=1 to m.

We define an invariant vy(E) to be the number of total orders om S
compatible with the partial order E, divided by n! . Ag there are n!
total orders on S, we can interpret v (E) to be the (uniform)
probability that if we pick a total order at random, it is compatible

with E .

Define another partial order on S as follows. Let 81 c S.

Then Eg (A) 1is given by
1

iff and q € S

> > .
PoE, ¢ P=g@? 1

1
Define o (m,n,s) by

of(m,n,s) = I y(ES A)) b

Rmn 1

nt.
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where 151] = g. Again, by property 3 of the measure, o (m,n,s)

depends only on s, not on the actual elements of Sl . Clearly,

o(m,n,s) has the form of a probability.

Smale's First Main Egtimate:

atl
p « C z (Jolm,n,s)
m,n m
g=0

where C is a constant depending on m.
m

We see that Smale's estiméte {8 of the same form as our previous
attempt. In fact, his constant will have the same form. Although
o (m,n,s)} 1is clearly the probability that a matrix has some sort of
ordering property, it is not clear to this writer what type of property
this 1s. )

Before giving Smale's proof of this estimate, we recall the main

formula, with some of its accompanying definitions.

Recall: p, = -1+ /¥ VR(-u_ ,K_ )
—_— A . N S,A
S {1,%..,N} ’
Recall: VK(-UN ’KS A) i{s the volume of the cone generated by
-UN and KS AC !
Recall: KS,A is the image under o of the orthant QS'

In particular,

K s = - + >O’-
5 A (- ¢ A m ) >\je ‘)‘K—

ie€s jés !

v,
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T
Recall: M= | AL ]
call: A 0 ml, ...,mN .

~

Note that the first n columns of M correspond to columns of A
with zeroes added. The last m columns correspond to rows of A with
zeroes added. If S 1s a subset of (1, 2,...,N] then let

S1 =Sn (1,2, ..., n}, that is, the elements of S corresponding

to columns of A,

To prove Smale's estimate, we start with the following lemma.

Lemma 1: For E a partial order on = (1, 2, ..., o}, let
X, = {x¢€ Rnl x > x if p>._q
E P~ 9 — E
Then under our measure, VXE =y (E).

n
Proof: The measure referred to is the measure on R assured us by
property 2 of our measure.
n
We divide R into n. parts, one for each total order

i ,..., 1), by
1 n

n
X =lxeR |X >X >...>x |
(11,...,1n) L ) .

If 4 ,...,1)# (G.,...y i), then we find V(X
1 n 1 n

For example, in R3 = [x¢ R3| X >x. = x_ 1,

R n R
’ 1,2,3) (1,3,2)
a subspace of dimension 2 in R3 . By condition 1 of the measure, such

a subspace has measure 0.

LAY

n X .
d,, ..., in) (jl se e ]n)
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But R" = U X(i Ly and by condition 3 (symmetry) of our
17777 n 1
measure, each X(i R . has equal measure ., - Since X(i R | ) © XE
1 n 1 n
exactly when the order (11 yeoas in) 1s compatible with E , the
result follows.
N n ®
Lemma 2: Let n: R - R be the projection onto the first half of
N n m
RV =Ry R®, T K K X ,
x hen n( (-uN S,A)) - e @)
1
P : = ey , ) e . S
roof: Let «x ()t1 ' Xy LI S xN) uppose
K(- K e . - K .
X € (uN, S,A)’ so that (xl; ,xn) - K Uy S,A)) As we
= -3 4+ + K¢ S
recall, xg )\0 Mg by )\i ay if ¢ 1 ,
1€S
= - + K
and X gt T A Ay if €5
. 1eS

for K=1 to n.

W e X .
e must show that (xl s ,xn) € Xg @) Therefore, suppose

S
1
. S, > .
P2 Es (A)q This means that q € 1 and ajp > ajq for all j
1
From our above formulae for Xy » We see x >x . Q,E.D, O
P q

It is interesting to remark that in the previous two lemmas we
N
have been working in R® rather than in R . In fact in lemma 2,
N n m
for no obvious reason, we throw away our second factor of R =R xR
N
This is a serious step; by condition 3, our measure on R is a product i

of probability measures. This means that VK(-u_,K_ ) < Vp®(-u ,K  ,))
_ “NCTs,A ™’ s,A

N
under the measures in R , R" respectively.
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Lemma 3: < z VXE (A)

slcll,...,nl s1

SZC (n+1,...,N]}

Proof: The main formula gives p, <. & VK(-u_ ,K_ ), We
Proof A NS A
Sc {1,..,N]
- divide S into two sets, S1 =s5n-{1,2,...,n} and 52 =Sn {aotl,...,N}.
We know that VK(-UN ’KS,A) < Vin (K('“N ’KS,A))) < VXES @
1

However, each time a given S1 appears, there are (:) possibilities

for S2 where r runs from O to m, which gives us the double summation.

Lemmg &4 V(K(-uN,KS,A)) = 0 unless ]sll =18, or s, b =1s,] +1
or ]SI] = (SZI -1.
Proof: Let S, correspond to the first ISI‘ columns of A, S, to
the first ]SZ] rows. Then write A as /
A A } I's,1
A= .
A A - 1S
3 4 }“’ 15,1
IS a-ls,|
-
Thus M has the form )
' T T
i - - - -
: 0 0 - -A |
0 0 -a -A¥
M= 4 .
A A
1 2 0 °
A A
-3 4 0 0
<
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.

We recall that Oy is linear on the orthant Qs , and thus has

the form
— * ks
T
-A 0
0 0 1
T
I ~A 0
n—’SI' 2
Pyl = A o 0 0
A 0 0 I
. 3 m-’Szl -

Thus the image of cpM[ 9 is generated by the columns of the matrix

i 0 0 AT 0 i
1
T
0 I A 0
B = n-’sll 2 .
-A 0 0 0
1
-A 0 0 I
L 3 m-{S,| |
= K = B « B
Now KS,A mM(Qs) fmd thus dim S.A rank y property 1

of the measure, VK(-UN ’KS,A) =0 if
- > .
dim < uN ’KS,A # N

VWe thus require dim KS >N-1 & rank B>N-1, if

‘

1

,A
VK(-U_ ,K, ) #0.
N’ §5,A 0 A'f
Discounting the identity matrices, this gives rank | _, ol 2 ]SI] +l‘Sz‘ --1£
1
0 AT T ,
But rank = rank (-A ) + rank (A) = 2 rank A < 2min ([slj 18,10
-.A1 0

" S l
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If [sly < [52[ -1, then 2(min(’51] ,|32])) < 2[311 < 1sl|+[szf -1 .

Then 1if VK(~UN K. ) # 0, we require ‘51] 2 132] -1,

S,A

1S

| > 131] -1, and the lemma follows.

2|

Thus lemma 3 is strengthened to say

VX
Py S T

—Slcil,...,n} ESI(A)
szc{nﬂ,...,m
5,1 = Is,]
s | = -1.
or 111 ]SZI+/ 1
= b \/(ES @a))
s.cii,...,nl 1
1
Szcln+1,...,Nl
S =
DARSEN
or Is] =]+ /-1

In particular, ’51[ < mtl . Thus by working with cones, Smale

has made g crucial step. '

Now,
=
pm,n J pAMm,n 2 f ( ZY(}ES (A))um,n
RED RN SIC 1,...,n
Szc(n‘*'l,...,Nl
S

18,1 =18,
or s | = [s,|+/-1




= J" Z ) 7 y(ES A)) u

SZC{n+1,..,_.,,N} Slc{l,...,nl 1 m, 0
= I8 +/-1 '
= . : 5 jl Y(ES Aa)) pm 0
52C!n+1,..-.,N}_-.slcll,...,nl i 1 ,
S = ] -
5115 15+
= = ST (S) O'(m,n,s)
SZC {nt+1 ’.'."'.’N; ¥ 3-_-0
Is,1 =1s,1, ]jsl;__.+_(_-__1
m mloqn )
S max &) = (s)'cr(m,n,s)
=0 to m s=0
n .
= C z () olm,n,s) .

s=0
n
In a strict analogy to our earlier motivation, the (S) appears
because of{m,n,s) is dependent only on s = lSll . Smale has essentially
followed our outline in arriving at this combinatorial estimate, but by

working with his geometrical formula, he has replaced n by o+1 . O
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Smale's ''Second Main Estimate'

In the previous section, we showed, following Smale, that

(:) o{m,n,s)

mrtl
p@m,n) < Cm T

=0

where C is a constant depending on m, and
m

= 7
g (m,n,s) ) v Eg Q))Hmm
AcrR™ L
In this section, we will introduce a partial order jS(A) which

is veaker than Eg (A) . It will follow that

1
il g
plm,n) < C s ()o_(m,n,s)
m 8 0
=0
where
oL -
= A
oo(m,q,s) oy 8()) Fan
AcRrR™

The combinatorial definition of ?S (A) will then allow us to
prove the main theorem.

We motivated the previous section by looking at undominated columns.
As we saw, this was natural in terms of the Simplex method. However,
now we wish to use counting arguments, and it is easier to look at
dominated columns. This is because 'undominated” is a negative property.
For example, if a column is undominated, there is little we can say

about the other columns. But if column A 1is dominated, it must be




dominated by some undominated column B: An undominated column may
dominate something or not, but a dominated column always induces some
grouping of columns, which facilitates counting.

Suppose the mxn matrix A has 8 undominated columns. As the
order of columns is immaterial, assume that it is the first s columns
of A that are undominated. As a first st;p toward grouping the

dominated columng with undominated columns, we divide the n -s dominated

columns as evenly as possible into s sets:

%
Label the n columns of A as- 1, 2,3, ..., n. We give a
partition of these columns having the form (S , Hl, HZ’ ceey, BO)
s 8
where the partition is fixed for each s > 0. The partition is given

on the labels by S_= 11,2, ..., s}, and if h, = |Hi|,

(a) [(n-8)s] < hi < [(a-8)/s] +1,

b)) the labels of Hi are gmaller than those of Hi+1 , 1=1,...,s-1,
(c) the hi are non-decreasing.

Example: If s =5 and n = 14, the partition would give:

s, =11, 2,3, 4,505 H o=1el;  H = (7,8} H o= (9,10}
B, =11, 12); H =113, . O

To arrive at a partial order, we will look at the columns of Hk

which are dominated by the undominated column k.

4

Let gs be the set of all as-tuples (Jl’ ""Js) where

J,cH . Amap o R““‘»;s 1s defined by
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= Q. ,...,J
ws(A) G , s) ;

= ]
where Jk {j e Hk‘ aij > a Vi

ik ’

Example: If 8=5 and n = 14, then

8 1 2 3 4 5 6 7 7 6 5 4 3 2 1
0 2 4 6 8 1 2 3 4 5 6 7 8 9
8 5 2 -1 -4 -7 -8 11 12 1 3 6 6 6
— ~ s g ooyt S S—
S H H H H H
s 1 2 3 4 5
= (t}V, 8}, (91,11} ,1 } ), because no column in Hl is

greater than column 1, column 8 1in HZ is greater than column 2, etc. \////

By means of J = ws(A) , A induces a partial order js of columns:

p q if q € SS and p € J

2 .
N q
J

-]

Clearly 33 is a weaker partial order than E_ (A) with S1 =3
1

Therefore

y@ ) > vEs W),
by the definition of vy . This gives Lemma 1.

Lemma 1: Let oo(m,n,s) = f vy (Jg(A)) S Then

- qun
oo(m,n,s) > o(m,n,s) . a

We will no longer need to talk about undominated and dominated
/

columns. In fact the discerning reader will note that we have not



really used dominance to define Ty However, only thinking in terms
of dominance makes the partition used, and the partial order introduced,
have any natural meaning. On consideration, the reader shoul&-see

that the motivating use of dominance here is exactly analogous to that
in the previous section. /\\\

The usefulnegs of the new partial order becomes immediately

evident in Lemma 2 .

~ s

: J_ (A = —L

Lemma 2 'Y( s )) 1T=71 (1+’Jil
Proof: By definition, y(j) is the number of partial orders on

n elements compatible with ?s, divided by n. Thus y<3) is the
(uniform) probability that if we pick an order on n elements, it
agrees with J . But the only order given by J is on sets of the
fom Iq, qu . Any order compatible with 33 on each of these sets

is compatible with J_ . What is the probability that some order is

compatible with 35 on lq, Hq}?

Jg only specifies q < j for each j € Jq .  Thus an order is

compatible with Jg on lq, qu if and only if q 1is before the

‘Jq‘ elements of Jq in the order. This happens with probability

—al_ . 4 d @) =
| la, I R =1 11y

RAw
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Now that vy has been given a simple form, we change the integral

in the definition of o to a sum, 80 that we can simplify further.

0
-1 ~
Lemma 3: Let PJ = VGps (J)). Then oo(m,n,s) = 7 v@ PJ.
J€74
Proof: Simple change of variable.
Since vy has already been simplified, we next attack PJ.
] 1 8
Lemma &4: For J, J' € jg we define |J -Jl = ]Ji -Ji] , where
i=1
lJi -Jif is the number of elements in Ji -Ji . Then
13'-3] ~, @
PJ= (1) vA3")
J'cJ
Proof: First we define a region L, which contains w;l(J)i
L =(ac®R™a, 2a, v3€J,, Vi, £=1,2,....n)
J Zj 21 i .

~

Thus w(LJ) gives an order compatible with J , but possibly stricter.

Claim: V(@) = y(@" .
Proof of claim: Each row of any matrix in LJ must be compatible
with J . Each matrix has m rows. The probability that one row gives

an order compatible to J is Y(W). As the rows are independent, we

get V(LJ) =y@™ . Compare the proof that V(XE) = v(E) 1in the

previous section. 0 N
Notation: Given J, J' € ys , let union, intersection, containment be

understood component-wise, e.g. J U J' = (Jl U Ji s ves ,Js U J;)
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W

Clearly, LJ' c LJ if J'>J, and LJ* N LJ = LJ*LJJ .

. Write ‘\]:lJ'e;s‘ J' - 3J and]J'-J'=1l,

We are preparing to use an inclusion-exclusion argument, and ()

is the set of J' differing from J only in one cqmponent

J' =J Uy lk} for some k in H -J and some 1 _.
i, i, i 1, 0

-1, .
Now cps Jy = LJ -J.UEKLJ'

By inclusion-exclusion we get

o

o~/
]
<
~
!
—
~
-+
™

(-1) r V(L n...nL )
. J - J(1) J(r)
r=1 J(1)GB

J(i) distinct

[}
<
—~
|
[N
N’
+
™
—
]
—
—
™1
<
—~
(=
p e

Therefore,

n-s-]J' a
P = v (-1) T V(LJ.)

=0 '3
1

J' € ;s

13°-3] =x

By our claim,

~~—

p= ¢ P am. )
J'oJ
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Lemma 5 We have

o @ae) = T N AR Y S
JEJS

J'eJd, e,
Proof: This follows from

g.m,n,8) = T Y(}) P
0 ses, 3

and the previous lemma, by interchanging J, J'. O

We are almost ready to prove the main theorem. We now need two

lemmas. The first deals with binomial coefficients:

S R NS D
Lemma 6° zio(z)z+1—j+1
proot: 2 () f—i)-f Rt
i+l j+l
= —:+Lf T (3:1) 0F = j—f‘I (5:1) D" + j—h
] k=1 j=0 -
.
e 0

In the next lemma, we show how to introduce our slowly growing

function,

N .
Lempa 7: For m >0, N>0 define Gm,N) = = 21 (-l)q (f:) ':;
q= )

Then 0 <GG@,N) < (1 + 1ogN)™ .
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Proof: First of all, let us show
[( : )N ]
1 1 ettt ... t -1 N
G(m,N) = - | j 12 B at. ... dt .
o t, ... t 1 m

0 1 m

Expanding the right hand side by the binomial theorem gives

N 1 1
q ... q-1
2 (Z) (-1) j( f(tl...cm) dt) ...de_,
q=1 0 0
and integration gives
N q
- r OB 1 ents clatn 1.
-7 9 q
q=1
q 1 1 [Q-t t )N
N - -t .. -
Claim 1: - (N)'L;}IL= -j‘~-~F l o %dt oo dt .
——== L4 q X t ot 1 m
1 0 0
N1
Claim 2: GO,N)=1 YN, and G@m,N) = ¢ " G (m-1, k) .
k=1
Proof of claim 2: Part 1 is clear. Using x =1 mty ety in claim 1,
1 1 & N-1
=X h|
G N = LRy e o4 = o0 e oo .
write G, N) = [ [ Tox 9t de_ T J (tl £) dt, de_
0 =0 o 0
Integrating w.r.t. t, glves
Nop 1 IR GRS )3
T J’ [ —l—‘_‘m‘]‘_+ de, ... dt ;
K 1 1 -1
=0 0 5 ] !

and letting k = j+1
From claim 2 ,
Ga,N) =1 +

N
G2 ,N) = 3
k=1

N
G@3,N) = ¥

proving our lemma.

establishes our claim.

%+...+§<1+103N

k
tz i} < @+ 10gN)
£=1
k
tZ ‘l‘ i% J‘g (1+1c>gN)3
=1 j'lj

e e ———————
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We now can prove the main theorem.

Proof of Main Theorem:

.
oo(m,n,s) = 7 y(J)myG')(-l)
ez,

By lemma 5 we know that

J'cd, 3'eg,

Write J = (J_ ,...,J ) and
1 s

Lec 2y = 1yl5 4y

£, =0,1,...,h

LT

£ £ 2
()
£4=0 1 £:=0

' o= vees ' H
l,i 0,1, li (Ag cJ < 1)
Then we can write
h, h.\ h. /h h
1 2
o, @n,e) =| % (;) £ <£2> ... 3
zi=o 1 zz=o 2 2,0
s m
A eI A vore
i=1 i i=1 i
by lemma 2. This can be rewritten as
h ; ;E h : ;1
2.=0 \¥2/ @+ )" ¢ =0 \fs/ (144 )"
1 1 s s
z{ P ) Ll
s
iyt (1)
!=0\zg!/ +s!) £2.'=0 o a+g')
1 1 1 s s

If we now use lemma 6, this simplifies to

co(m,r'x,s) =

s hi
n T
= =0
i=1 Li

h
<1
‘zi

)

4

1
G )
ort]

(1+41)

{3-3"

b4

h

s

i

L+ +. ..

-1)

2

Ls -zl—z

ET A

2

s

)



59

which gives, letting ki = l,i+1 ,

h,+1 k h,+1

-1 i i i

h +1)  ° -1) < ) =
i ki=1

’ I

8
X c (@,n,s) =
o 1=1

which recognize from lemma 6 as

G(m, h +1)
e )
=1 M7l :

From claim 1 of lemma 6, G(m,N) indreases with N, and as

hi < (n~8) / s+l , we get

G (m, hiﬂ) < G, m-s)/s+2) . 2)

This is an abuse of notation as (n-s)/ s . may not be an integer.

Also, hi+1 > (n~s)/s, so that

I —8 ‘
0 hi+1 s n-s8 G)

Combining (1), (2) and (3), and using lemma 6, we find that

o Gune) € T ) A+10g@R42)) .
0 =1 n-g

- 9 aereg(BR42)) .

a

It remains to subgtitute this in the first main estimate' and

simplify:
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o+l n
plm,n) g C T (a)c(m,n,s)
m s=0

mrtl
ca+'z G)o,n,s)
" s=1 :

ortl n
< C 4+ 3 (‘) co(m,n,s))
s=l [y

ol o - -
< ca+z ) (;f:)’ (1 +10g (R4 2))78 )

N s=1
urtl s
< ¢ G+ (1+log(n+1))m(m+1) r ) (t) )
e s=1
8
Now max :T is a constant~depending on wm. Thus *
s=1l,...,a+l
art-1 o, .8 wtl o(n-1) (n-gt+l)
L i) @-28 = 5 Z ‘ .
8'1 8=1 (n"s)(n"s)-..(ﬂ"s)
mtl .
< K bX (;'il")s » where Km is a constant depending on m.
s=1 s
i mtl s o1
Suppose \n > 2m . Then S < 2, and K % (’A’) < K ¢ 28,
. n-s m - . m
- P \ : s=1 - s=1
H .
a constant depénding on m. We have thus shown that
A p@,n) < C +K a+ log(n+1))m(m+1) .

Thus p (m,n) grows with n more, slowly than any positive power of n.

L

.
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Concluding Remarks

Having understood Smale's proof, we must now ask 'What has Smale
really proved?'" Lemke's slgorithm assumes non-degeneracy of (1) and
(5), so that no vertex is visited twice, and this is crucial to Smale's
proof. Otherwise the main formula does not follow. We cannot merely
aim that the proof is general by perturbing (1), (5): This would
tak;.-O(n*'m) operations, dominating the complexity we wish to show!
One may éiaim thgt degenerate cases are rare, have messure zero, and
thus do not effecg\pur average, but then we do not show what we have
set out to show: the %implex method is empirically seen to solve LP's,
mést of which aretin practice degenerate, in time logarithmic in n,

linear in m. We gtill do not know why this is so. Smale shows that

for "random" programs (which will be non-degenerate usually), the

cqmplexity seen will be expected." ‘ s

t

At least one attempt to "patch up" Smale has been made by Blair,
who seems hostile to Smale's geometricAapproach. By using dominance, N
Blair gets a result close to Smale's. However, élair assumes n>>m.
That is, Blair really shows a "bié ﬁh” complexity. Smale only needs
n>2m. In effect p(m,n) converges to Smale's estimate most immediatgly,
while Blair takes limits. Also, Blair's estimate is veaker than Smale's.

As Blair admits, the main importance of his paper is to bring dominance

to- a. central role.




Smale's exact formﬁiéif&i”the number of pivots of Lemke's algorithm
is very satisfying: thé §;£ 6f a volume of cones. According to Smale,

these volumes are diffiéuiﬁiéoffind.

problems?" Of courge, .

Smale's analysis. In an {mportant lemma, the structure of M is used

explicitly in finding  : ina t, to prove the first main estimate.

in a very broad sense: Solve

here f(xO) = a, 1is our first

oach to Newton's method in

| ;
numerical amalysis [81

it to solving piece-wise

linear equatioms on R
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In summary, Smale's paper gives an interesting and pleasing
result about the Simplex methods. However, more ingight into degeneracy
will be required to explain the empirical speed of Simplex. Smale's
method may generalize to other Simplex problems via dominance. His

approach should certainly be considered when attacking the complexity

of some path-finding algorithm for f(x) = A.
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