
GPU-Accelerated Algorithm to Compute

Bessel-Fourier Moments

by

Tianpeng Xia

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment

of the requirements for the Master of Science degree.

Department of Applied Computer Science

University of Winnipeg

Winnipeg, Manitoba, Canada

March 2020

Copyright © 2020 Tianpeng Xia



Abstract

Bessel-Fourier moments have been applied in image pattern reconstruc-

tion since their introduction in 2010. In this research, a scalable GPU-based

algorithm is proposed to accelerate the computation of Bessel-Fourier mo-

ments of high orders while preserving accuracy. To analyze our new al-

gorithm, image reconstructions from Bessel-Fourier moments of orders up

to 1000 were tested on two systems. The experimental results prove the

correctness and scalability of the algorithm. In addition, by investigating

the precision-related performance, both 64-bit and 32-bit precisions were

shown to provide the same level of computational accuracy for Bessel-Fourier

moments of orders up to 1000. Nevertheless, reconstructions with 64-bit

precision are computationally more costly. Furthermore, we applied filter-

ing in Bessel-Fourier moments and Fourier Frequency domains and found

that Bessel-Fourier moments share some similarities with the frequencies in

Fourier Frequency domain, though more image power is distributed in the

Bessel-Fourier moments of lower orders.

i



Acknowledgements

This research would never have been possible without the support and

guidance of professors and my classmates from the University of Winnipeg.

I am a very lucky person to have the help and advice from those wonderful

people.

First, I would like to thank Dr. Simon Liao for giving me the precious op-

portunity to complete my Master thesis under your supervision. Thank you

for all the valuable ideas, suggestions and patience in guiding me through this

research. Your wealth of knowledge in the field of digital image processing

and pattern recognition in particular is inspiring. Thank you for sharing your

programming experience with me when I was having a hard time debugging

my programs.

I also want to thank Dr. Christopher Henry for your excellent course that

introduced GPU programming to me. Being a listener in your classes is both

a rewarding and enjoyable experience.

My sincere gratitude also goes to the faculty at the Department of Applied

Computer Science for creating a friendly and comfortable study environment.

Last but not the least, I want to thank my family for their consistent

encouragement and support, especially my parents and wife - Xiangli Wang.

Since I started working on my thesis, Xiangli has been doing most of the

housework so that I could focus on the research.

I believe the past two years of study at the University of Winnipeg to be

a milestone in my life, and I am confident that the skills and experience I

gained here will continue to serve as precious assets in my future career.

ii



Contents

1 Introduction 1

2 Image Moments 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Orthogonal Image Moments . . . . . . . . . . . . . . . . . . . . 4

2.3 Computation Efficiency . . . . . . . . . . . . . . . . . . . . . . 6

3 Bessel-Fourier Moments 8

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Computational Accuracy . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Approximation Error . . . . . . . . . . . . . . . . . . . 11

3.2.2 Improvement of Accuracy . . . . . . . . . . . . . . . . 12

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 GPU-Based Implementation for Computing Bessel-Fourier

Moments 15

4.1 Matrix Operation for Moment Computing and Reconstruction . . 15

4.2 Symmetric Algorithm for Computing Bessel-Fourier Moments . . . 18

4.3 Reordering of Image Data . . . . . . . . . . . . . . . . . . . . . 20

4.4 Memory Optimization . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5.1 Kernels for Computing Bessel-Fourier Moments . . . . 26

4.5.2 Reconstruction Kernel . . . . . . . . . . . . . . . . . . 28

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



5 Image Reconstructions from Bessel-Fourier Moments 29

5.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Filtering of Color Images in the Domain of Bessel-Fourier

Moments 36

6.1 Ideal Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Gaussian Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Concluding Remarks 53

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Source Code for GPU Kernels 56

iv



List of Figures

3.1 Bessel polynomial J1(λnr) with n = 1, 2, . . . , 5 . . . . . . . . . 9

3.2 Circular domain in a Cartesion plane . . . . . . . . . . . . . . 10

3.3 The distributions of J1(λnr) within one of the four central

pixels for an image sized at 1024×1024. . . . . . . . . . . . . . 12

3.4 The distributions of exp(−jmθ) within one of the four central

pixels for an image sized at 1024×1024. . . . . . . . . . . . . . 13

3.5 Applying a 2× 2 scheme to a 4× 4 image (a) yields (b). . . . 14

4.1 Eight octants in a unit disk area . . . . . . . . . . . . . . . . 18

4.2 Reordering of image data . . . . . . . . . . . . . . . . . . . . . 22

4.3 Two cases for warp Wi . . . . . . . . . . . . . . . . . . . . . . 23

4.4 CUDA Memory hierarchy . . . . . . . . . . . . . . . . . . . . 24

4.5 A Minimum Working Example of tiled algorithm . . . . . . . 25

5.1 The testing images is sized at 1, 024 × 1, 024, with 256 gray

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Reconstructed Figure 5.1 from Bessel-Fourier moments from

order 80 to 200 . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Reconstructed Figure 5.1 from Bessel-Fourier moments from

order 400 to 1000 . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Filtering in (a) Fourier Frequency domain and (b) Bessel-

Fourier moments domain. . . . . . . . . . . . . . . . . . . . . 37

6.2 The Filtering Workflow . . . . . . . . . . . . . . . . . . . . . . 38

v



6.3 The two testing images are sized at 256× 256 with 256 RGB

densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Reconstruction results of the two testing images . . . . . . . . 39

6.5 Results of applying ILF in the Bessel-Fourier moments domain 41

6.6 Results of applying ILF in the Fourier Frequency domain . . . 42

6.7 Results of applying IHF in the Bessel-Fourier moments domain 43

6.8 Results of applying IHF in the Fourier Frequency domain . . . 44

6.9 The percentage of image power for Figure 6.3(a) in the Bessel-

Fourier moments domain . . . . . . . . . . . . . . . . . . . . . 46

6.10 The percentage of image power for Figure 6.3(a) in the Fourier

Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.11 The percentage of image power for Figure 6.3(b) in the Bessel-

Fourier moments domain . . . . . . . . . . . . . . . . . . . . . 47

6.12 The percentage of image power for Figure 6.3(b) in the Fourier

Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.13 Results of applying GLF in the Bessel-Fourier moments domain 49

6.14 Results of applying GLF in the Fourier Frequency domain . . 50

6.15 Results of applying GHF in the Bessel-Fourier moments domain 51

6.16 Results of applying GHF in the Fourier Frequency domain . . 52

vi



List of Tables

4.1 The Radial and Fourier parts of the eight points in Figure 4.1 19

5.1 PSNR values of applying different numerical schemes with 32-

bit precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Reconstruction times of applying different numerical schemes

with 64-bit precision . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Reconstruction times of applying different numerical schemes

with 32-bit precision . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 The breakdown of computing time on System II . . . . . . . . 35

6.1 The PSNR values for the red, green, blue, and combined chan-

nels for the two images in Figure 6.3. . . . . . . . . . . . . . . 39

vii



Chapter 1

Introduction

In the past four decades, information technologies have rapidly devel-

oped, and today, we are in the age of an information explosion. Information

is coming from various forms such as voice, text, video, and image. As a com-

munication medium, images contain richer information than texts or voices.

At the same time, since videos are comprised of frames that are basically

consecutive images, the analysis of videos is closely related to the analysis of

images. Image analysis is thus becoming indispensable for modern society.

A digital image, depending on whether it is gray-level or color, can be repre-

sented as a matrix or as three matrices of pixels with different density values

and analyzed mathematically with the help of computer programs. Image

analysis has been widely applied in such areas as security, traffic monitoring

and face recognition.

Since the introduction of geometric moments by Hu in 1962 [9], remark-

able achievements have been made by researchers around the world. Density

values and other mathematical properties of pixels are usually used to com-

pute image moments. Moreover, an approximated version of original images

can be retrieved by conducting reconstruction from image moments.

The next breakthrough was the introduction of orthogonal moments by

Teague in 1980 [24]. Zernike and Legendre moments were proposed by Teague

as a solution to the inherent high information redundancy of geometric mo-

ments. Based on the foundational work of orthogonal moments laid by

Teague, researchers have proposed other orthogonal moments to describe

image information.

Numerous researchers have explored such topics as accuracy and the ap-

1



plication of continuous moments in both rectangular and circular domains.

As defined in a circular domain, Bessel-Fourier moments have been shown to

be more suitable for image analysis and pattern recognition [29]. Neverthe-

less, the computation of continuous moments is time consuming, which tends

to limit their potential for further application. In this research, a parallel al-

gorithm is proposed to compute Bessel-Fourier moments on CUDA-enabled

GPUs. Filtering in the domain of Bessel-Fourier moments is also used to

study some of their properties.

The remaining content is organized into six chapters. In Chapter 2, a brief

literature review of image moments is provided. Chapter 3 introduces Bessel-

Fourier moments and discusses the approximation error. Chapter 4 provides

the implementation details of our algorithm. In Chapter 5, the experimental

results are shown and analyzed. In Chapter 6, filtering is applied to the

domain of Bessel-Fourier moments and the results are compared to those in

the Fourier Frequency domain. Finally, a summary is given and potential

areas of future work discussed in Chapter 7.

2



Chapter 2

Image Moments

2.1 Introduction

Image moments were first introduced to the field of pattern recognition

by Hu in 1962 [9]. Based on the foundational work on algebraic invariants by

Cayley, which is a branch of abstract algebra, Hu defined the 2-D (p + q)th

order moments of an image function f(x, y) as [9]

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dx dy, (2.1)

where p, q = 0, 1, 2, · · · .

According to the uniqueness theorem, proven by Hu, the moment se-

quence mpq is uniquely determined by the image function f(x, y) and vice

versa, which allows image reconstruction and recognition to be performed

with image moments.

Geometric moments of lower orders hold intuitive properties of an image.

The “mass” of an image is m00; and the centroid of the image is defined

by m10 and m01. If we think of an image as a probability density function

(pdf), with m00 normalized to 1, m10 and m01 represent the mean values.

Second-order moments m20 and m02 reveal the “distribution of mass” of an

image with regards to the coordinate axes, which is also called inertia in

mechanics [7].

Hu also discovered that the centroid moments µpq are invariants under

3



translation, which are defined as

µpq =

∫ ∞
−∞

∫ ∞
−∞

(x− x̄)p(y − ȳ)qf(x, y)d(x− x̄) d(y − ȳ), (2.2)

where x̄ = m10/m00 and ȳ = m01/m00.

Built upon the definition in Equation (2.1), seven absolute orthogonal

moment invariants are introduced to accomplish pattern identification, inde-

pendently of position, size, and orientation, and also independently of parallel

projection.

In any case, the major issue of geometric moments is the high information

redundancy. To address this problem, orthogonal moments have been pro-

posed with various features such as higher accuracy and better performance.

The general definition of image moments is given as

Φpq =

∫ ∞
−∞

∫ ∞
−∞

Ψpq(x, y)f(x, y)dx dy, (2.3)

where Ψpq denotes the kernel function and p, q = 0, 1, 2 · · · . In the case of

geometric moments, xpyq is the kernel function.

2.2 Orthogonal Image Moments

To overcome some of the drawbacks in geometric moments, such as the

high information redundancy and computing complexity, Teague, in 1980,

studied the properties of Legendre moments and Zernike moments [24]. Due

to the recursive relation of Legendre moments, the computing complexity is

much lower than that of geometric moments. It was also found that Zernike

moments can be computed from geometric moments. Compared with geo-

metric moments, higher-order moment invariants based on Zernike moments

are simpler to retrieve. In addition, since each Zernike moment merely ac-

quires a phase factor on rotation, the Zernike moments have relatively simple

rotational properties.

4



In 1988, Teh and Chin carried out a comprehensive research on Legendre

moments, Zernike moments and pseudo-Zernike moments [25]. They investi-

gated three fundamental issues regarding their usefulness in image analysis,

which were sensitivity to noise, aspects of information redundancy, and image

reconstruction capacity. Their experimental results showed that moments of

higher orders are generally more sensitive to noise and they all have lower in-

formation redundancy than the regular moments. Furthermore, a relatively

small set of moments were sufficient to describe an image.

Since then, a number of orthogonal image moments in rectangular and

circular domains were introduced to image processing. In 1994, Orthogonal

Fourier-Mellin moments were proposed by Sheng and Shen [22]. In 2001,

Mukundan proposed discrete Chebyshev moments [18]. In 2005, Wu and

Shen presented Gaussian-Hermite moments [21]. In 2007, Jacobi-Fourier mo-

ments were proposed by Ping as a type of generic orthogonal moments defined

in a circular domain, from which Legendre-Fourier moments, Chebyshev-

Fourier moments and Zernike moments could be derived [20]. More recently

in 2016, Xuan proposed circularly semi-orthogonal moments that do not in-

volve factorial terms and are more robust to numeric errors [11].

Computation accuracy is closely related to the usefulness of continuous or-

thogonal moments such as Zernike moments and Orthogonal Fourier-Mellin

moments. In 1998, Liao analyzed the discretization error for Zernike mo-

ments in detail, using cubature formulas to reduce the numerical error. In

2013, Wang proposed a numerical scheme that divides a pixel into k×k sub-

regions with the same weights, and significant improvement was gained for

images reconstructed from higher orders [28]. Due to its straightforwardness

and performance, the k × k scheme was also used to improve the computing

accuracy of other orthogonal image moments [3, 19, 27].

With the maturing of the theoretical premise for orthogonal moments,

increasing interest has been shown by researchers in terms of different appli-

cations. In 2007, Xin proposed a method to select “good” Zernike/pseudo-

5



Zernike moments. Based on the invariance property for watermarking, the

embedded information can be decoded at low error rates, and is robustness to

various image manipulations [30]. In 2018, Bo studied rotation invariants for

vector fields images computed from Gaussian-Hermite moments and Zernike

moments, and found that the former demonstrated more stability [33].

In 2015, Bo proposed Gaussian-Hermite moments in 3D space and derived

rotation invariants [32]. In 2018, Mostafa proposed 3D radial Hahn moments

and conducted experiments in image reconstruction, geometric transforma-

tions, and pattern recognition [6].

As the popularity of artificial intelligence continued to rise in recent years,

orthogonal image moments have been used in the field of machine learning.

In 2017, Vijayalakshmin derived initial trainable convolution kernel coeffi-

cients from Zernike moments for a convolutional neural network (CNN) and

analyzed the accuracy in gender classification and facial expression recogni-

tion [15]. Compared to the CNN architecture initialized with random kernels,

the new method yielded satisfactory accuracy with less computation time.

In 2018, Zernike moments were used as feature descriptors for facial images

and trained under supervision using a Bayesian, support vector machine, lin-

ear discriminant analysis, and neural network classifiers by Vijayalakshmin.

A greater than 90% accuracy was obtained for the neural network classi-

fiers [16].

2.3 Computation Efficiency

Most techniques involving continuous moments are computationally ex-

pensive due to the exponential and factorial calculations. Therefore, besides

accuracy, computation efficiency is another factor that has been impeding

their application, especially in areas with limited processing time, such as

surveillance and image search engines. There haven been some optimized

algorithms for image moments defined in both rectangular and circular do-

6



mains.

In 2003, Chong and Raveendran proposed a fast algorithm called q-

recursive method to improve the computing efficiency of Zernike moments

by deriving moments of higher orders from those of lower orders [4]. Hwang

made use of symmetric and anti-symmetric properties of Zernike basis func-

tions and got Zernike moments by computing an octant of basis functions [10].

Chandan made q-recursive method even faster by deriving recurrence relation

for the computation of trigonometric functions in 2011 [23]. In 2016, Rahul

accelerated the computation of Jacobi-Fourier moments by using a recursive

algorithm [26]. In 2016, Wang proposed a matrix algorithm for exponent-

Fourier moments and improved the computation efficiency significantly even

with increasing k × k schemes [27].

In 2019, Marcel developed a new algorithm by applying the recurrent

formulas, symmetry properties, and parallelized matrix operations to com-

pute the moments defined in a rectangular region. The experimental re-

sults showed that the new algorithm improved the efficiency of computing

Legendre, Gegenbauer, and Jacobi moments extensively with excellent accu-

racy [19].

With the recent development of GPU (graphics processing unit) par-

allel programming, some research is emerging on GPU-accelerated parallel

algorithms for computing orthogonal image moments. In 2014, Requena

carried out an in-depth study on GPU computations for Zernike moments

and achieved a 5x speedup for the Geforce 8800 GTX against a Pentium 4

CPU [17]. In 2018, Xuan proposed an optimized algorithm for computing

Zernike moments by reordering the pixels before loading the data into GPU

kernels, and the computing time was reduced by approximately half with the

use of two GPUs [31].

7



Chapter 3

Bessel-Fourier Moments

3.1 Definition

Bessel function of the first kind [1, 2] is defined as

Jv(x) =
∞∑
p=0

(−1)p

p!Γ(v + p+ 1)
(
x

2
)v+2p, (3.1)

where Jv(x) represents Bessel polynomial, Γ(v+p+1) is the Gamma function

based on v, which is the order of Bessel function, and p = 1, 2, 3, . . ..

Utilizing Bessel function of the first kind as the moment weighting kernel,

Bessel-Fourier moments are defined in a polar coordinate system

Bnm =
1

2πan

∫ 2π

0

∫ 1

0

f(r, θ)Jv(λnr)exp(−jmθ)rdrdθ, (3.2)

where n = 0, 1, 2, 3, . . . and m = 0,±1,±2,±3, . . . as the orders of Bessel-

Fourier moments, f(r, θ) is the image function, and

an =
[Jv+1(λn)]2

2
(3.3)

is the normalization constant. Please note that the orders of Bessel-Fourier

moments n and m are different from the order of Bessel function v in Equa-

tion 3.1, and that it is conventional to use the term - “order” in the study of

image moments.

8



J
1
(
λ
n
r
)

0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

n=1

n=2

n=3

n=4

n=5

r

Figure 3.1: Bessel polynomial J1(λnr) with n = 1, 2, . . . , 5

Jv(λnr) is the Bessel polynomial in r of order n, λn is the n-th zero of

Jv(r) [29]. The 0-th zero of Jv(r), λ0, is defined as 0 when the order v 6= 0 [1,

2]. The plotting of J1(λnr) up to the fifth order are displayed in Figure 3.1,

with v = 1. Since the value of v does not have an impact on the computation

of image moments and it is a common practice to set v to 1, J1(λnr) is used

in this research.

The Bessel polynomial set J1(λnr) satisfies the orthogonal property in

range 0 ≤ r ≤ 1 ∫ 1

0

rJ1(λnr)J1(λmr)dr = anδnm, (3.4)

where δnm is the Kronecker symbol. Therefore, the kernel function of Bessel-

Fourier moments, J1(λnr) exp(−jmθ), is also orthogonal on a unit circle disk∫ 1

0

∫ 2π

0

[J1(λnr) exp(−jpθ)]J1(λmr) exp(−jqθ)rdrdθ = 2πanδnmδpq. (3.5)

For the purpose of image processing and analysis, digital images are usu-

ally obtained by the means of Cartesian coordinate model [14]. Since Bessel-

Fourier moments are defined in circular domain, only pixels located inside

the unit disc area are involved in the computation, with the origin shifted to

the center of the image (see Figure 3.2) and image dimensions scaled to be

between 0 and 1.

9



Figure 3.2: Implementing a circularly defined function in a Cartesian plane

for a digital image

In a Cartesian coordinate system, Bessel-Fourier moments of a digital

image function f(xi, yj) sized at M ×N can be computed as

B̂nm =
1

2πan

M∑
i=1

N∑
j=1

f(xi, yj)J1(λnr) exp(−jmθ)4x4y, (3.6)

where 4x and 4y represent the sampling intervals in the x and y directions,

respectively.

Due to the orthogonal property of Bessel-Fourier moments, an image func-

tion can be reconstructed by its infinite set of Bessel-Fourier moments [29]

f(r, θ) =
∞∑
n=0

∞∑
m=−∞

BnmJ1(λnr) exp(−jmθ), (3.7)

where f(r, θ) represents the reconstructed image function, and Bnm is the set

of Bessel-Fourier moments with order n from 0 to ∞ and order m from −∞
to ∞.

Nevertheless, in practice, with a finite set of Bessel-Fourier moments,

0 ≤ n ≤ N and −M ≤ m ≤ M , we can only reconstruct an approximate

10



version of f(r, θ) by

f̂(r, θ) =
N∑
n=0

M∑
m=−M

BnmJ1(λnr) exp(−jmθ). (3.8)

If we replace Bnm with its version in a Cartesian coordinate system, B̂nm

as expressed in Equation (3.6), the reconstructed image from a finite set of

Bessel-Fourier moments, f̂(r, θ), can be expressed by

f̂(xi, yj) =
N∑
n=0

M∑
m=−M

B̂nmJ1(λnr) exp(−jmθ). (3.9)

3.2 Computational Accuracy

3.2.1 Approximation Error

As one of the commonly used formulas to compute Bessel-Fourier mo-

ments of a digital image, Equation (3.6) is straightforward and relatively

easy to implement. However, its computational accuracy is closely related to

the distribution of the kernel function J1(λnr) exp(−jmθ).

If the distribution of the kernel function is smooth within each pixel,

Equation (3.6) would provide a relatively justified approximation of Equa-

tion (3.2) [14]. Unfortunately, the distribution within a pixel varies signifi-

cantly when the order increases.

For an image sized at 1024×1024, the distributions of J1(λnr) and exp(−jmθ)
within one of the four central pixels are displayed in Figure 3.3 and Figure 3.4

respectively. As order increases, it can be observed that the distribution of

J1(λnr) varies more smoothly than that of exp(−jmθ). When n = m = 20,

the accuracy of approximated values for double integration in Equation (3.2)

will suffer severe degradation.

11



(a) n=m=10 (b) n=m=100

(c) n=m=1000

Figure 3.3: The distributions of J1(λnr) within one of the four central pixels

for an image sized at 1024×1024. Sub-figure (a) to (c) shows the distribution

of J1(λnr) with n = 10, n = 100 and n = 1000, respectively

3.2.2 Improvement of Accuracy

To improve the computational accuracy of Bessel-Fourier moments, Equa-

tion (3.6) can be rewritten to

B̂nm =
1

2πan

M∑
i=1

N∑
j=1

f(xi, yj)hnm(xi, yj), (3.10)

12



(a) real part, n=m=10 (b) imaginary part, n=m=10

(c) real part, n=m=20 (d) imaginary part, n=m=20

Figure 3.4: The distributions of exp(−jmθ) within one of the four central

pixels for an image sized at 1024×1024. Sub-figures (a) and (c) display the

distributions of the real part of exp(−jmθ) with n = 10 and n = 20, while

(b) and (d) show those of the imaginary part

where

hmn(xi, yj) =

∫ xi+
4x
2

xi−4x
2

∫ yi+
4y
2

yi−4y
2

J1(λnr) exp(−jmθ)dx dy. (3.11)

It is obvious that the accuracy of B̂nm depends on the computation of

Equation (3.11). In this research, we have adopted the method proposed in

Reference [28], which divides each pixel into k × k sub-regions, the idea of

13



which is illustrated in Figure 3.5. By averaging the values of all sub-regions,

the double integration in Equation (3.11) can be computed more accurately

with a higher k due to increased sampling points within each pixel.

(a) (b)

Figure 3.5: Applying a 2× 2 scheme to a 4× 4 image (a) yields (b).

3.3 Summary

In this chapter, we have analyzed the computational errors of Bessel-

Fourier moments and concluded that the distributions of the Bessel kernel

function and Fourier function are the major causes of the errors in computing.

In order to improve the computational accuracy of Bessel-Fourier moments,

the numerical k × k sub-region scheme is adopted in this research.

14



Chapter 4

GPU-Based Implementation for

Computing Bessel-Fourier Moments

4.1 Matrix Operation for Moment Comput-

ing and Reconstruction

To implement the k × k numerical scheme in GPU computing, we have

developed our algorithms based on the matrix operations.

Based on the matrix concept, we can rewrite the definition of Bessel-

Fourier moments expressed in Equation (3.6) to

Bnm =
1

2π ×An

◦ [f(x, y) ◦ J1(λnr)× exp(−jmθ)T ]dxdy, (4.1)

where An, f(x, y), J1(λnr), and exp(−jmθ) represent matrices. The

symbol ◦ and × indicate the entrywise and matrix products between two

matrices respectively.

Bnm is a matrix for the radial order n and Fourier order m of Bessel-

Fourier moments with (n + 1) rows and (2m + 1) columns, which can be

expressed by

Bnm =


B0,−m · · · B0,0 · · · B0,m

B1,−m · · · B1,0 · · · B1,m

...
. . .

...
. . .

...

Bn,−m · · · Bn,0 · · · Bn,m

 . (4.2)

In Equation (4.1), An is a matrix with (n+1) rows and 1 column containing

15



normalization constants J2(λn)2/2 corresponding to different radial order n

An =
[
J2(λ0)

2/2 J2(λ1)
2/2 J2(λ2)

2/2 · · · J2(λn)2/2
]T
, (4.3)

where the symbol T denotes the transpose of a matrix. Assuming that the

image function is sized at M ×N , the dimensions of J1(λnr) are n rows by

MN columns, where r represents the matrix dimensioned with M columns

by N rows for the radius of sampling points

r =


r1,1 r1,2 · · · r1,N

r2,1 r2,2 · · · r2,N
...

...
. . .

...

rM,1 rM,2 · · · rM,N

 , (4.4)

and λn is the matrix dimensioned with n rows and 1 column for the n-th

zeros of Bessel function of the first kind

λn =
[
λ0 λ1 λ2 · · · λn

]T
. (4.5)

By combining the matrices r and λn, J1(λnr) can be expressed as

J1(λnr) =


J1(λ0r1,1) · · · J1(λ0r1,N) · · · J1(λ0rM,N)

J1(λ1r1,1) · · · J1(λ1r1,N) · · · J1(λ1rM,N)
...

. . .
...

. . .
...

J1(λnr1,1) · · · J1(λnr1,N) · · · J1(λnrM,N)

 . (4.6)

On the other hand, f(x, y) is the data matrix of the image function

f(x, y) =
[
f(x1,1, y1,1) · · · f(x1,N , y1,N) · · · f(xM,N , yM,N)

]
, (4.7)

therefore, the matrix f(x, y) ◦ J1(λnr) can be expressed as
J1(λ0r1,1)f(x1,1, y1,1) · · · J1(λ0r1,N)f(x1,N , y1,N) · · · J1(λ0rM,N)f(xM,N , yM,N)

J1(λ1r1,1)f(x1,1, y1,1) · · · J1(λ1r1,N)f(x1,N , y1,N) · · · J1(λ1rM,N)f(xM,N , yM,N)
...

. . .
...

. . .
...

J1(λnr1,1)f(x1,1, y1,1) · · · J1(λnr1,N)f(x1,N , y1,N) · · · J1(λnrM,N)f(xM,N , yM,N)

 .
(4.8)

16



Meanwhile, exp(−jmθ) is the matrix of e−jmθ that shows the eθ of (−jm)-

th order and the dimension of the matrix is 2×m+ 1 rows, which represents

the orders from −m to m, and M × N columns corresponding to every

sampling point

exp(−jmθ) =



ejmθ1,1 ejmθ1,2 · · · ejmθM,N

...
...

. . .
...

ejθ1,1 ejθ1,2 · · · ejθM,N

e0 e0 · · · e0

e−jθ1,1 e−jθ1,2 · · · e−jθM,N

...
...

. . .
...

e−jmθ1,1 e−jmθ1,2 · · · e−jmθM,N


. (4.9)

Each element in matrixBnm of Equation (4.2) represents the correspond-

ing Bessel-Fourier moments of the image function f(x, y) with the radial and

Fourier orders, n and m, respectively.

To fully utilize the computing potential of GPUs, matrix operations are

also used for image reconstruction, as shown in the equation below:

f(x, y) = J∗
1
T (λnr)× f(x, y) ◦ exp(−jmθ)T × onesT dxdy, (4.10)

where ones is a 1×M matrix with all its elements equal to one. By reshaping

the generated (MN)×1 matrix to a M×N one, the reconstructed image is

retrieved.

17



4.2 Symmetric Algorithm for Computing Bessel-

Fourier Moments

I

IIIII

IV

V

VI VII

VIII

Figure 4.1: Eight octants in a unit disk area

In a Cartesian coordinate system, there are already four quadrants formed

by the X and Y axes. The four quadrants can further by divided by two ad-

ditional lines y = x and y = −x. Due to the fact that Bessel polynomials

are orthogonal within a unit disk, pixels outside the disk area do not partici-

pate in the calculation of Bessel-Fourier moments, the valid pixels eventually

reside in eight octants of the circle shown in Figure 4.1.

For the point P1 in octant I, there is one special point in each of the other

seven octants, as shown in Figure 4.1. Let the polar coordinates of P1 be

(r0, ρ0), where r0 ≤ 1 and ρ0 < π/4, the coordinates of the other seven points

are derived in Table 4.1.

18



Octant # Point Radius Angle J1(λnρ) exp(−jmθ)
I P1 ρ0 θ0 J1(λnρ0) exp(−jmθ0)
II P2 ρ0

π
2
− θ0 J1(λnρ0) exp[−jm(π

2
− θ0)]

III P3 ρ0
π
2

+ θ0 J1(λnρ0) exp[−jm(π
2

+ θ0)]

IV P4 ρ0 π − θ0 J1(λnρ0) exp[−jm(π − θ0)]
V P5 ρ0 π + θ0 J1(λnρ0) exp[−jm(π + θ0)]

VI P6 ρ0
3π
2
− θ0 J1(λnρ0) exp[−jm(3π

2
− θ0)]

VII P7 ρ0
3π
2

+ θ0 J1(λnρ0) exp[−jm(3π
2

+ θ0)]

VIII P8 ρ0 2π − θ0 J1(λnρ0) exp[−jm(2π − θ0)]

Table 4.1: The evaluation of Radial J1(λnρ) and Fourier exp(−jmθ) parts

for the eight points in Figure 4.1

According to Eula’s formula, the Fourier part exp(−jmθ) can also be

expressed as:

exp(−jmθ) = cos(mθ)− j sin(mθ), (4.11)

Therefore, Equation (3.6) can be rewritten to Equation (4.12) form using

the similar notations in Reference [10]:

Bnm = BRnm + BI nm,BRnm = 1
2πan

∑N
i=1

∑M
j=1 f(xi, yi)J1(λnr) cos(mθ),

BI nm = − 1
2πan

∑N
i=1

∑M
j=1 f(xi, yi)J1(λnr)j sin(mθ),

(4.12)

where BRnm and BI nm are the real and imaginary parts of Bnm respectively.

As explained in Reference [10], because the sinusoidal function is a peri-

odic function with a regular waveform, cos(mθ) and i sin(mθ) have specific

symmetric or anti-symmetric properties.

By the aforementioned symmetric and anti-symmetric properties, Equa-

19



tion (3.2) can be rewritten with two new notations gim and grm:

Bnm =
1

2πan

∫∫
x2+y2≤1

J1(λnr)[g
r
m(x, y)− jgim(x, y)]dxdy, (4.13)

where grm(x, y) and gim(x, y) are defined in Equation (4.14). Let hi(i =

1, 2, ..., 8) be the value of the image function f(r, θ) at point Pi, g
i
m and

grm can be grouped into four cases [10]:

m = 4k :

grm = [h1 + h2 + h3 + h4 + h5 + h6 + h7 + h8] cos(mθ0),

gim = [h1 − h2 + h3 − h4 + h5 − h6 + h7 − h8] sin(mθ0),

m = 4k + 1 :

grm = [h1 − h4 − h5 + h8] cos(mθ0) + [h2 − h3 − h6 + h7] sin(mθ0),

gim = [h1 + h4 − h5 − h8] sin(mθ0) + [h2 + h3 − h6 − h7] cos(mθ0),

m = 4k + 2 :

grm = [h1 − h2 − h3 + h4 + h5 − h6 − h7 + h8] cos(mθ0),

gim = [h1 + h2 − h3 − h4 + h5 + h6 − h7 − h8] cos(mθ0),

m = 4k + 3 :

grm = [h1 − h4 − h5 + h8] cos(mθ0) + [−h2 + h3 + h6 − h7] sin(mθ0),

gim = [h1 + h4 − h5 − h8] sin(mθ0) + [−h2 − h3 + h6 + h7] cos(mθ0),

(4.14)

where k ∈ Z and k > 0.

According to the CUDA Programming Guide by Nvidia, “applications

should strive to minimize data transfer between the host and the devices” [5].

In our case, only 1/8 of the data is needed to compute the exp(−jmθ)

matrix, which reduces the data transfer overhead by 7/8.

4.3 Reordering of Image Data

As illustrated in Figure 4.2 (a), the discrete version of Equation (4.12)

can be applied to all of the pixels except for the shaded ones because they

20



lie in the joint areas of two octants.

For pixel Ṕ1 on the diagonals in Figure 4.2 (a), gim and grm can be grouped

into 2 cases:
m = 2k :

grm = [h1 + h2 + h3 + h4] cos(mπ
4
),

gim = [h1 − h2 + h3 − h4] sin(mπ
4
),

m = 2k + 1 :

grm = [h1 − h2 − h3 + h4] cos(mπ
4
),

gim = [h1 + h2 − h3 − h4] sin(mπ
4
),

(4.15)

where k ∈ Z and k > 0. Therefore, those diagonal pixels need special

treatment.

A straightforward approach is to make each thread check if a pixel belongs

to the diagonal group before processing it. However, this method has a major

flaw of creating branch divergence, which arises if some threads in a warp

take the if path while the others take the else path. It will cost the extra

pass for the hardware to allow the threads in the same warp to make their

own decisions and hinders the performance [13].

To address the divergence issue, Xuan et al. used eight arrays of the same

dimensions while setting four of the slots of a diagonal pixel to 0 for parallel

computation of Zernike moments [31]. To avoid adding the unnecessary

zeroes used as dummy values to the GPU kernel, in this research, we have

proposed a method for reordering image.

As shown in Figure 4.2(b), except for the diagonal pixels, all the pixels

in octant I has seven corresponding pixels in the other octants which share

the same colour. Pixels with a radius greater than 1 are not used for the

computation of Bessel-Fourier moments and are coloured by white. In Fig-

ure 4.2(c), we have categorized the valid pixels into two groups - diagonal

and non-diagonal.

The values of pixels in non-diagonal group are concatenated together from

a1 to a8, and those in diagonal group from b1 to b4. Then the concatenated

21



values from diagonal and non-diagonal groups are further joined together to

a flat array I, with the non-diagonal group followed by the diagonal group.

I

IIIII

IV

V

VI VII

VIII

(a)

I

IIIII

IV

V

VI VII

VIII

1 2 3 4 5 6 70

9 10 11 12 13 14 158

18 19 20 21 22 2316 17

26 29 30 3124 25

34 37 38 3932 33

42 43 44 45 46 4740 41

50 51 52 53 54 5548 49

58 59 60 61 62 6356 57

27 28

35 36

(b)

31 2223 30 29

4 135 12 20

3 102 11 19

24 1716 25 26

32 4140 33 34

59 5058 51 43

60 5361 52 44

39 4647 38 37

21 2814

18 279

42 3549

45 3654

31 2223 30 29 ... 39 4647 38 37

21 2814 45 3654...

Non-diagonal group

Diagonal group

Reordered image data

(c)

Figure 4.2: Reordering of image data for an 8×8 image. (a)Diagonal pixels,

(b)pixels of the image with corresponding groups of a pixel filled the same

color, (c)reordering of image data from diagonal and non-diagonal groups

According to Reference [5], threads are executed in groups of 32 parallel

threads called warps and branch divergence happens only within a warp.

Let Wi be the last warp (shaded), whose first thread is responsible for the

calculation of pixels from the diagonal group in the reordered image data.

There are two cases shown in Figure 4.3. In Case 1, all 32 threads in Wi

will only do the computation for pixels from non-diagonal group and no

divergence will occur. As for Case 2, Wi is spanning the pixels from both

22



i*32+31...... ... ...

Case 1:

Case 2:

... ...

i*32+32i*32 i*32+63

i*32+31... ...i*32+32i*32 i*32+63

Figure 4.3: Two cases for warp Wi

groups and there will be one divergence. Therefore, using the reordering

method proposed in this research, we can limit the occurrence of branch

divergences to only once without extra zeroes. Compared with the method

used in Reference [31], our reordering could reduce the consumption of device

memory especially when there are a large number of small images to be

processed.

4.4 Memory Optimization

To compute Jv(λnr) and exp(−jmθ), two arrays of r and θ are copied

to the GPU global memory using the same ordering as I in Figure 4.2(c),

which will allow the computation ofBnm to use the same indexing method to

find image values, corresponding radial polynomials and exponential values.

We store zeros crossings in constant memory as shown in Figure 4.4,

which will benefit from constant cache residing in a multiprocessor and are

accessible for all threads in the running kernel [5].

The efficiency of computing Bnm is closely related to two issues: data

locality and access pattern. If we read data directly from the global mem-

ory, the implementation will suffer from relatively high latency. According

to Reference [13], the favourite access pattern to data in global memory is

achieved when all threads in a warp access consecutive global memory loca-

23



Grid

Block(0,0)

Registers

Thread
(0, 0)

Thread
(1, 0)

Block(0,1)

Shared Memory

Thread
(0, 0)

Thread
(1, 0)

Global Memory

Constant Memory 

Host

Shared Memory

Registers Registers Registers

Figure 4.4: The hierarchical structure of CUDA Memory [13]

tions, which means that we have to do some extra work to make the threads

read data in a coalesced pattern.

A tiled algorithm to utilize the shared memory is employed in this research

to address both issues at the same time. The introduction of shared memory

can address the former issue with its low latency because it is on-chip [5],

which can be viewed in Figure 4.4. The latter issue is also addressed by

loading partial data into their corresponding tiles so that a more intrinsic

access pattern can be used without extra effort for a coalesced one.

However, due to the limited space of shared memory, we would have to

do the loading multiple times to apply the tiled algorithm.

An Minimum Working Example (MWE) is shown in Figure 4.5 to display

the computation process for the first thread block, where l and ĺ denotes the

number of pixels in one of the eight non-diagonal groups and those in one of

the four diagonal groups. If we have a device that has only enough shared

24



...

...

...8

...

...

...
...
...
...
...
...

... ...

4

Load into shared memory

Compute value

Figure 4.5: A Minimum Working Example of tiled algorithm

25



memory to store the data for 5 pixels in a block and each block has 64

threads, with variables blockDim.y = blockDim.x = 8, and n = m = 8.

This will result in an 8 × 8 array as displayed in Figure 4.5. In Figure 4.5,

ar jv,ar exp and ar img denote the inputs of Jv(λnr), exp(−jmθ) and

image data respectively. Variables suffixed with “ ph” are used to store the

values of the three input arrays in each iteration of the tiled algorithm.

4.5 Kernels

4.5.1 Kernels for Computing Bessel-Fourier Moments

Five kernels are used for computing Bnm:

• RADIUS KERNEL

• ARCTAN KERNEL

• JV KERNEL

• EXP KERNEL

• BNM KERNEL

The first two kernels compute the radius and angle values for pixels of

radius greater than 1. Results computed from the first two kernels are then

copied to JV KERNEL and EXP KERNEL to get Jv(λnr) and exp(−jmθ).

Since the first four kernels are straightforward, pseudocode of their algorithms

is not given here.

Lastly, with Jv(λnr) and exp(−jmθ) at hand, we could computeBnm

in BNM KERNEL. The pseudocode for BNM KERNEL is given in Algo-

rithm 1, where t, ar bnm out, j, ph len represent the current thread, the

output array, imaginary unit and the number of pixels for each iteration

respectively.

26



Algorithm 1 BNM KERNEL

1: function BNM KERNEL(ar bnm out, ar jv, ar exp, ar img)

2: shared ar jv ph[ph len]

3: shared ar exp ph[ph len]

4: shared ar img ph[ph len]

5: total← 0

6: for each iteration do

7: if t should load jv into shared memory then

8: load values from ar jv to ar jv ph

9: end if

10: if t should load exp into shared memory then

11: load values from ar exp to ar exp ph

12: end if

13: if t should load image value into shared memory then

14: if t maps to a pixel from non-diagonal group then

15: load values of 8 pixels into ar img k ph[ph len]

16: else

17: load values of 4 pixels into ar img k ph[ph len]

18: end if

19: end if

20: syncthreads()

21: if t should compute a value then

22: if t maps to a pixel from non-diagonal group then

23: compute grm and gim according to Equation (4.14)

24: else

25: compute grm and gim according to Equation (4.15)

26: end if

27: total← total + (grm − j × gim)

28: end if

29: syncthreads()

30: end for

31: if t should compute a value then

32: ar bnm out[pos]← total

33: end if

34: end function

27



The CUDA C++ source code for the five kernels are listed in Appendix A.

4.5.2 Reconstruction Kernel

After the reconstruction of Bessel-Fourier moments, they are then copied

to RECONSTRUCTION KERNEL for reconstruction. Since the logic for

RECONSTRUCTION KERNEL is very similar to that of BNM KERNEL,

its pseudocode is not listed here. The source code for RECONSTRUC-

TION KERNEL is listed in Appendix A as well.

4.6 Summary

Based on matrix operations, a scalable GPU-based algorithm to com-

pute Bessel-Fourier moments is proposed for the higher computational per-

formance in this chapter. To minimize the data transfer between host and

kernels, we employed the symmetric algorithm which reduced the data trans-

fer overhead by nearly 7/8. At the same time, a pixel reordering method is

also proposed to reduce the branch divergences without introducing extra

dummy data.

Furthermore, constant and shared memories in the CUDA memory hier-

archy are leveraged for lower accessing latency.

28



Chapter 5

Image Reconstructions from Bessel-

Fourier Moments

To verify the new approaches to improve the accuracy and the efficiency in

Bessel-Fourier moments computing, we have performed the image reconstruc-

tions from different maximum orders of Bessel-Fourier moments. Figure 5.1

shows the testing image used in this research, which is sized at 1, 024×1, 024

with 256 gray levels.

Figure 5.1: The testing images is sized at 1, 024×1, 024, with 256 gray levels

To evaluate the performances of image reconstructions, we have employed

the Peak Signal to Noise Ratio (PSNR) to measure the qualities of the re-

constructed images. The PSNR is defined as

PSNR = 10 log10(
Max2

MSE
), (5.1)

whereMax is the maximum gray level of the evaluated image, and MSE is the

Mean Square Error between the original image f(xi, yj) and its reconstructed

29



version f̂(xi, yj), both are sized at M ×N

MSE =
1

MN

M∑
i=1

N∑
j=1

[f(xi, yj)− f̂(xi, yj)]
2. (5.2)

In general, a higher PSNR value indicates the less difference between the

reconstructed image and the original one.

We have performed the image reconstructions from Bessel-Fourier mo-

ments on two different computer systems for comparison, with precision set

to 32-bit.

• System I: a laptop equipped with an Nvidia GTX 1050Ti, 16GB RAM

and an 4-core Intel I7-8750H of 2.20GHz,

• System II: a Google Cloud Instance equipped with an Nvidia Tesla T4,

32GB RAM and an 8-core Intel Xeon of 2.30GHz.

Figure 5.2 and 5.3 show the reconstructed Figure 5.1 from Bessel-Fourier

moments of orders 80 to 200 and 400 to 1,000, respectively. The numerical

schemes ranges from 3 to 15.

30



k\order 80 120 160 200

3

7

11

15

Figure 5.2: Reconstructed Figure 5.1 using different numerical schemes with

32-bit precision from Bessel-Fourier moments of order 80 to 200

5.1 Experiment

Shown in Table 5.1 are the PSNR values of the reconstructed images,

with 2 digits preserved after the decimal point. As order increases, higher k

is needed for better reconstruction qualities.

We have also done the reconstructions with 64-bit precision for compar-

31



k\order 400 600 800 1000

3

7

11

15

Figure 5.3: Reconstructed Figure 5.1 using different numerical schemes with

32-bit precision from Bessel-Fourier moments of order 400 to 1,000

ison. The results in Table 5.2 show that the 64-bit precision takes much

longer computing time than those of 32-bit precision in Table 5.3 on every

task. For example, when k = 15 and order = 1, 000, the computing time for

64-bit precision is about 10 times longer even on System II, while there is no

improvement on the corresponding PSNR values.

Table 5.4 shows a breakdown of the computing time for JV KERNEL,

EXP KERNEL, BNM KERNEL and the reconstruction, which reveals that

the computation of Bnm is significantly more time consuming. It also can

32



Table 5.1: PSNR values of applying different numerical schemes with 32-bit

precision

80 120 160 200 240 400 600 800 1000

1 26.16 28.33 29.75 30.48 30.40 26.21 21.61 18.10 11.31

3 26.67 29.30 31.57 33.60 35.18 38.22 35.50 32.34 29.38

5 26.75 29.43 31.78 33.95 35.72 40.33 40.19 38.20 35.73

7 26.79 29.49 31.86 34.07 35.91 40.97 42.37 41.48 39.33

9 26.82 29.53 31.93 34.17 36.03 41.13 43.32 43.42 41.72

11 26.83 29.56 31.96 34.22 36.10 41.24 43.97 44.20 43.34

13 26.84 29.57 31.98 34.24 36.13 41.37 44.13 45.14 44.01

15 26.85 29.58 31.99 34.26 36.16 41.45 44.27 45.79 44.55

be observed that the time of kernel computing increases more considerably

than that of data transfer as precision becomes higher.

Theoretically, the number of computing operations equals to k2 and the

time complexity of our algorithm is O(k2). According to Table 5.2 and 5.3,

the computing time grows slower than the number of sub-pixels in a pixel.

For instance, in Table 5.2, with order equal to 1000, the computing time

increases from 209.30 to 14773.64 seconds while a 225 time increase is seen

for k2 when k grows from 1 to 15. The computing time grows every slower

with 32-bit precision in Table 5.3.

Since there has not been any report about the results of Bessel-Fourier

moments computing and image reconstructions of high orders. It is hard to

carry out a comparative study on the performance of image reconstruction.

5.2 Summary

In this chapter, we first demonstrated the scalability of our parallel algo-

rithm by performing image reconstruction on two systems. As the compu-

33



tational complexity increases, the system with higher computing resources

can reduce the computing time by larger percentage. On both systems, the

computing time grows much slower than the number of sub-regions in a pixel

does.

The precision-related computing performance is also investigated. Our

experimental results suggest that both 32-bit and 64-bit precision provide the

same computational accuracy in computing Bessel-Fourier moments of orders

from 80 to 1000, while the computing time is longer for 64-bit precision.

Table 5.2: Reconstruction times (in seconds) of applying different numerical

schemes with 64-bit precision from order 80 to 1000 on System II

k\order 80 120 160 200

1 6.72 10.26 14.67 19.13

3 13.81 20.93 33.62 45.42

5 28.12 42.10 71.51 97.82

7 49.76 74.47 128.88 176.72

9 79.30 117.48 205.11 281.58

11 114.98 171.12 300.13 413.42

13 158.68 235.28 414.97 571.55

15 209.89 311.28 548.83 756.75

k\order 400 600 800 1000

1 50.01 91.49 145.44 209.30

3 141.22 286.39 483.23 729.70

5 322.27 675.38 1160.11 1769.07

7 594.69 1261.17 2175.30 3328.16

9 958.28 2040.38 3529.70 5409.28

11 1404.66 3015.76 5225.11 8008.10

13 1945.71 4187.63 7257.12 11131.78

15 2580.52 5551.94 9628.64 14773.64

34



Table 5.3: Reconstruction times (in seconds) of applying different numerical

schemes from order 80 to 1000 on both systems with 32-bit precision on both

systems

k\order 80 120 160 200

I II I II I II I II

1 3.06 3.40 4.85 4.88 7.09 6.72 10.36 8.68

3 4.56 4.63 7.88 7.07 11.72 9.76 16.88 12.71

5 7.85 7.48 13.90 11.51 22.43 15.80 32.60 20.83

7 13.98 11.82 25.34 18.18 34.69 25.06 50.76 33.20

9 19.34 17.70 36.27 27.27 55.15 37.56 80.50 50.41

11 27.51 25.13 53.26 38.91 85.40 53.06 116.94 71.26

13 41.08 34.46 70.28 52.32 107.10 71.90 160.61 96.74

15 51.33 44.35 93.11 68.37 153.42 93.26 213.79 126.08

k\order 400 600 800 1000

I II I II I II I II

1 31.07 20.78 63.41 37.01 110.41 57.28 168.38 81.64

3 54.67 31.82 112.74 58.84 194.74 92.71 298.77 134.95

5 106.40 53.66 226.24 102.55 414.07 160.23 567.99 234.25

7 171.16 86.11 364.06 168.44 631.78 263.55 959.19 386.46

9 273.30 130.03 582.32 256.38 965.04 399.85 1494.69 590.58

11 395.26 185.86 808.45 366.66 1388.19 574.62 2130.56 845.97

13 535.27 252.10 1156.07 499.41 1898.63 780.58 2916.74 1150.95

15 682.04 330.05 1453.13 654.02 2633.60 1023.67 3828.35 1508.32

Table 5.4: The breakdown of computing time on System II (in seconds),

when k = 15 and n = m = 1000

32bit 64bit

step kernel data transfer kernel data transfer

JV KERNEL 2.52 105.7 42.45 208.44

EXP KERNEL 1.41 212.05 7.09 424.41

BNM KERNEL 1139.36 56.24 13940.2 113.95

RECONSTRUCTION-

KERNEL
44.8 30.18 84.26 57.84

35



Chapter 6

Filtering of Color Images in the

Domain of Bessel-Fourier Moments

Filtering is a technique commonly used in the Fourier Frequency domain,

where certain image information gets filtered, weakened or strengthened de-

pending on the type of filters applied. As a tool for pattern recognition,

Bessel-Fourier moments could be filtered so that only desirable image infor-

mation gets kept for further analysis.

In daily life, most images contain color information. A digit color im-

age consists of three channels: Red, Green and Blue, each of which can be

represented by a 2-D matrix of intensity values from 0 to 255.

Similar to the filtering in the Fourier Frequency domain, a filter function

H(m,n) in the Bessel-Fourier moments domain is defined as

f̂ ′(xi, yj) = H(m,n)
N∑
n=0

M∑
m=−M

B̂mnJ1(λnr) exp(−jmθ). (6.1)

In this research, four filters [8] are proposed and applied to the sample

images in Figure 6.3:

• Ideal Lowpass Filter (ILF)

H(u, v) =

{
1 if D(u, v) 6 D0

0 otherwise,
(6.2)

36



• Ideal Highpass Filter (IHF)

H(u, v) =

{
1 if D(u, v) > D0

0 otherwise,
(6.3)

• Gaussian Lowpass Filter (GLF)

H(u, v) = e−D
2(u,v)/2D2

0 , (6.4)

• Gaussian Highpass Filter (GHF)

H(u, v) = 1− e−D2(u,v)/2D2
0 , (6.5)

where D(u, v) is used to denote the distance of point (u, v) from the origin

in the Bessel-Fourier moments domain, and D0 is the “cutoff” distance. For

better computational accuracy, a 7× 7 numerical schema is used.

Figure 6.1 illustrates filtering in the Fourier Frequency and Bessel-Fourier

moments domains. In Figure 6.1, the radius of purple transparent circles

represent the cutoff range. According to Equation (3.2), m can only be a

non-negative integer. Therefore, by setting m = n, only half of the area in

Figure 6.1 (b) has Bessel-Fourier moment data which is highlighted in blue.

(a)

v

u
(0,0) m

(b)

Figure 6.1: Filtering in (a) Fourier Frequency domain and (b) Bessel-Fourier

moments domain.

37



Image Moments Filter Filtered Image

Figure 6.2: The Filtering Workflow

Figure 6.2 illustrates the flowchart of color image filtering. The Bessel-

Fourier moments for each channel of a color image are firstly calculated sep-

arately. Then, the Bessel-Fourier moments of three channels are filtered. Fi-

nally, the filtered Bessel-Fourier moments of three channels are reconstructed

individually and merged to yield a filtered color image.

Figure 6.3 displays the two testing images used in our experiment. Fig-

ure 6.3 (a) contains three colors of red, blue and green without any inter-

section area, and Figure 6.3 (b) is the image of a bird with more details.

(a) (b)

Figure 6.3: The two testing images are sized at 256 × 256 with 256 RGB

densities

Figure 6.4 shows the reconstructed images from different channels of

Bessel-Fourier moments with the maximum order of 150, where m = n = 150,

and the combined color image.

38



image\type combined red green blue

(a)

(b)

Figure 6.4: Reconstruction results of the two testing images

Table 6.1 lists the corresponding PSNR values of the reconstructed im-

ages shown in Figure 6.4. It can be observed that the reconstructions are

satisfactory with all the PSNR values above 30. For the same original image,

there is no significant difference among the PSNR values of its three chan-

nels and the combined one. Since Figure 6.3 (b) contains more details, its

reconstructed images have lower PSNR values.

Table 6.1: The PSNR values for the red, green, blue, and combined channels

for the two images in Figure 6.3.

image\type combined red green blue

(a) 37.25 37.17 37.40 37.17

(b) 31.60 31.66 31.33 31.81

For comparison, we have performed the filtering on the testing images

in both the Bessel-Fourier moments and Fourier Frequency domains. To

perform filtering in the Fourier Frequency domain, it is common to set 0 <

D0 < N , where N is the width of image. However, the dimension of Bessel-

Fourier moment matrix is dependent on the specified order, which is 150×301

when n = 150. Therefore, it is more feasible to use a percentage value α to

39



calculate D0 dynamically as in

D0 = α r′, (6.6)

where

r′ =

{
n if in Bessel-Fourier moments domain,

N otherwise.

6.1 Ideal Filters

The results of applying ILF to sample images in the Bessel-Fourier mo-

ments domain and the Fourier Frequency domain are shown in Figures 6.5

and 6.6. It can be observed that Bessel-Fourier moments and frequencies

close to the origin in the Fourier Frequency domain correspond to the slowly

varying components of the image.

In Figure 6.5, a small area in the central part is missing for all the 3

channels when α = 0.1. As α increases, the central area and more details

start to show up. The phenomenon is not observed in Figure 6.6, which

shows the results of applying ILFs in Fourier Frequency domain. We can

also see that the results for ILFs in Bessel-Fourier domain have more ringing

effects than those in Fourier Frequency domain.

Figure 6.7 and Figure 6.8 display the results of applying the Ideal High-

pass Filters in both of Bessel-Fourier moments and Fourier Frequency do-

mains.

From Figure 6.7 and Figure 6.8, it can be seen that both the higher orders

in the Bessel-Fourier moments domain and the higher frequencies close to the

origin in Fourier Frequency domain correspond to changes in the intensity

such as borders and textures. The central missing area in Figure 6.5 is present

in Figure 6.7.

40



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.5: Results of applying ILF in the Bessel-Fourier moments domain

41



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.6: Results of applying ILF in the Fourier Frequency domain

42



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.7: Results of applying IHF in the Bessel-Fourier moments domain

43



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.8: Results of applying IHF in the Fourier Frequency domain

44



To quantitatively study the effects of ideal filters, we used the follow-

ing equations to compute the percentages of image power for IHF in the

respective domain:

• Fourier Frequency domain

Pf =

∑N
u

∑N
v |F (u, v)|2H(u, v)∑N
u

∑N
v |F (u, v)|2

, (6.7)

• Bessel-Fourier moments domain

Pb =

∑n
u=0

∑m
v=−m |Bnm|2H(u, v)∑n

u=0

∑m
v=−m |Bnm|2

, (6.8)

where Pf and Pb represents the percentages of image power in the Fourier Fre-

quency domain and Bessel-Fourier moments domain respectively, and F (u, v)

is the Fourier component.

Figure 6.9 and Figure 6.10 demonstrate the percentages of image power

for Figure 6.3 (a) in Bessel-Fourier moments domain and Fourier Frequency

domain, respectively. For all of the three channels and the combine color

image, there is more power in the Bessel-Fourier moments domain than that

in Fourier Frequency domain with the same α value.

As α increases, the percentages of image power starts to drop. Drastic

decreases can be seen for both images when α is raised to 0.5. Since the

percentages of image power for IHF can be computed by subtracting those

for ILF from 1, they are not listed here.

45



0.1 0.5 0.9
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

red
green
blue
combined

cutoff distance

p
e
rc

e
n
ta

g
e
 o

f 
im

a
g

e
 p

o
w

e
r

Figure 6.9: The percentage of image power for Figure 6.3(a) in the Bessel-

Fourier moments domain with cutoff distances set to 0.1, 0.5 and 0.9

0.1 0.5 0.9
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

red
green
blue
combined

cutoff distance

p
e
rc

e
n
ta

g
e
 o

f 
im

a
g

e
 p

o
w

e
r

Figure 6.10: The percentage of image power for Figure 6.3(a) in the Fourier

Frequency domain with cutoff distances set to 0.1, 0.5 and 0.9

46



0.1 0.5 0.9
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

red
green
blue
combined

cutoff distance

p
e
rc

e
n
ta

g
e
 o

f 
im

a
g

e
 p

o
w

e
r

Figure 6.11: The percentage of image power for Figure 6.3(b) in the Bessel-

Fourier moments domain with cutoff distances set to 0.1, 0.5 and 0.9

0.1 0.5 0.9
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

red
green
blue
combined

cutoff distance

p
e
rc

e
n
ta

g
e
 o

f 
im

a
g

e
 p

o
w

e
r

Figure 6.12: The percentage of image power for Figure 6.3(b) in the Fourier

Frequency domain with the cutoff distance set to 0.1, 0.5 and 0.9

47



6.2 Gaussian Filters

Results of applying Gaussian Lowpass Filters in Bessel-Fourier moments

and Fourier Frequency domains are shown in Figure 6.13 and Figure 6.14,

while Figure 6.15 and Figure 6.14 demonstrate the results of applying Gaus-

sian Highpass Filters in Bessel-Fourier moments domain and Fourier Fre-

quency domain.

Compared with the results of applying ILFs, the ringing effect has been

substantially reduced in both Bessel-Fourier moments and Fourier Frequency

domains. When α equals to 0.1, the ringing effect is nearly invisible in

Figure 6.13 and Figure 6.14. With most of the ringing removed, we can see

that the results for GLFs in Bessel-Fourier moments domain are less blurry

than those in Fourier Frequency domain, especially around the bird eye.

6.3 Summary

In this chapter, we proposed Ideal and Gaussian filters in the Bessel-

Fourier moments domain and performed image filtering with two sample

images. To compare the results, filtering was also done in the Fourier Fre-

quency domain. It is observed that Bessel-Fourier moments appear to share

some similarities with frequencies in the Fourier transform. Bessel-Fourier

moments of lower orders corresponds to smooth intensity parts of images,

while those of higher orders are more related to details. In addition, Ideal

Lowpass Filter creates a ringing effect, while Gaussian Lowpass Filter can

be used to reduce the ringing.

We also found specific behaviors of Bessel-Fourier moments. Most of the

information in the central small area is missing for lower orders. Bessel-

Fourier moments have a higher percentage of image power than the frequen-

cies in the Fourier Frequency domain, particularly for lower cutoff distances.

48



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.13: Results of applying GLF in the Bessel-Fourier moments domain

49



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.14: Results of applying GLF in the Fourier Frequency domain

50



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.15: Results of applying GHF in the Bessel-Fourier moments domain

51



α\type combined red green blue

0.1

0.5

0.9

0.1

0.5

0.9

Figure 6.16: Results of applying GHF in the Fourier Frequency domain

52



Chapter 7

Concluding Remarks

7.1 Summary

In this research, we have proposed a GPU-based algorithm to compute

Bessel-Fourier moments more efficiently with little compromise in accuracy.

The symmetric algorithm is used to reduce the data transfer overhead by

almost 7/8. Image pixels are also reordered to reduce the branch divergences

without introducing extra data. By leveraging the constant and shared mem-

ories with the tiled algorithm, further optimization is achieved.

To benchmark the performance of the algorithm, image reconstructions

were performed on two systems. On the system with better hardware, less

computing time is required to perform reconstructions, which demonstrates

the scalability of our algorithm. On both systems, the computing time in-

creases more slowly than the number of sub-regions. From the breakdown

of time consumption, the computation of the moment matrix takes up the

largest part of the computing time.

We also investigated the performance in relation to precision. The results

lead to the discovery that reconstructions with 64-bit precision yielded no

noticeable quality improvement in comparison to 32-bit precision. Thus,

since 64-bit precision is significantly more time-consuming, 32-bit precision

would be recommended for most cases.

Furthermore, Ideal and Gaussian filters were introduced in the Bessel-

Fourier moments domain. Filtering was also performed in the Fourier domain

for comparison. The results show that Bessel-Fourier moments of lower orders

53



correspond to the slowly varying parts of images, while the moments of higher

orders are more related to details such as borders and textures. In both the

Bessel-Fourier moments domain and the Fourier domain, the Ideal Lowpass

Filter can give rise to a ringing effect, while the Gaussian Lowpass Filter can

reduce the ringing.

Lastly, we studied the image power of the Bessel-Fourier moments and

found that the percentage of image for the Bessel-Fourier moments is greater

than that of the frequencies in the Fourier domain for lower cutoff distances.

7.2 Future Work

Our results demonstrate a satisfactory performance of our newly proposed

algorithm with little loss in the computational accuracy. Based on our work,

some further areas should be explored in the future.

Extending our algorithm to other orthogonal moments

defined in a circular domain

The computation of most orthogonal moments defined in a circular do-

main can benefit from the symmetric properties, because their kernel func-

tions take radius and angle as input parameters. In addition, since the ma-

trix operations can be used for computing other orthogonal moments, like

the Exponent-Fourier moments, a similar parallel algorithm could lead to

significant performance gains.

Use of multi-GPU architecture

Although several optimizations were made in this research, we did not

take advantage of multiple GPUs, which would improve the system through-

54



put by increasing the available memory. At the same time, if the algorithm

was implemented in CUDA-powered GPUs, the use of NVLink could lead to

even higher bandwidths and lower latencies.

55



Appendix A

Source Code for GPU Kernels

The CUDA C++ source code snippets are given in this section. Since

some of the variable types remain unknown until the initialization of kernels,

we used Jinja as the template language for kernel codes [12]. Jinja variables

are enclosed by {{}}.

Below is a list of Jinja variables present in the code snippets:

• float type - the type of floating numbers,

• ph len - the number of pixels to be processed in each iteration of the

tiled algorithm,

• bw - the width of CUDA thread blocks,

• group size - the group size by which the summation is done, which is

set to k2.

__global__ void radius_kernel(

{{float_type}} * ar_radius_k,

{{float_type}} * ar_radius,

{{float_type}} * ar_radius_special,

{{float_type}} * ar_radius_ndarray_mask,

{{float_type}} * ar_radius_ndarray_mask_for_k,

long long * width,

long long * k,

long long * width_special_scaled,

long long * middle,

56



long long * middle_k,

long long * middle_special_scaled,

float * special_to_full_ratio,

long long * special_start,

long long * special_end

){

const long long tx = threadIdx.x;

const long long ty = threadIdx.y;

const long long bw = blockDim.x;

const long long bx = blockIdx.x;

const long long by = blockIdx.y;

const long long col = bx*bw + tx;

const long long row = by*bw + ty;

const long long special_start_local = *special_start;

const long long special_end_local = *special_end;

const long long middle_local = *middle;

const long long middle_k_local = *middle_k;

const long long middle_special_scaled_local =

*middle_special_scaled;

const float special_to_full_ratio_local =

*special_to_full_ratio;

long long pos_in_area;

{{float_type}} radius;

const long long width_k = *width * *k;

// load ar_radius

if(col < *width && row < *width){

pos_in_area = row * *width + col;

ar_radius_ndarray_mask[pos_in_area] = 1;

57



ar_radius_ndarray_mask_for_k[pos_in_area] = 1;

ar_radius[pos_in_area] = sqrt(

powf(-row-1+ middle_local+(({{float_type}})1)/2, 2)

+

powf(col+1- middle_local-(({{float_type}})1)/2, 2)

) / middle_local;

}

__syncthreads();

// load ar_radius_k

if(col < width_k && row < width_k){

const long long new_row = row / (*k);

const long long new_col = col / (*k);

radius = sqrt(

powf(-row-1+ middle_k_local+1./2, 2) +

powf(col+1- middle_k_local-1./2, 2)

) / middle_k_local;

const long long pos_in_origin = new_row * *width

+ new_col;

if(radius > 1 ){

ar_radius_ndarray_mask[pos_in_origin] = 0.;

ar_radius_ndarray_mask_for_k[pos_in_origin] = 0.;

}

if(

new_row >= special_start_local &&

new_row < special_end_local &&

new_col >= special_start_local &&

new_col < special_end_local

){

58



ar_radius_ndarray_mask_for_k[pos_in_origin] = 0.;

}

pos_in_area = row * width_k + col;

ar_radius_k[pos_in_area] = sqrt(

powf(-row-1+ middle_k_local+1./2, 2) +

powf(col+1- middle_k_local-1./2, 2))

/ middle_k_local;

}

// load ar_radius_special

if(col < *width_special_scaled && row < *

width_special_scaled){

pos_in_area = row * *width_special_scaled + col;

ar_radius_special[pos_in_area] = sqrt(

powf(-row-1+ middle_special_scaled_local+1./2, 2) +

powf(col+1- middle_special_scaled_local-1./2, 2)

) / middle_special_scaled_local *

special_to_full_ratio_local;

}

}

Kernel Code for RADIUS KERNEL

59



__global__ void arctan_kernel(

{{float_type}} * ar_arctan_k,

{{float_type}} * ar_arctan,

{{float_type}} * ar_arctan_special,

long long * width,

long long * k,

long long * width_special_scaled,

long long * middle,

long long * middle_k,

long long * middle_special_scaled

){

const long long tx = threadIdx.x;

const long long ty = threadIdx.y;

const long long bw = blockDim.x;

const long long bx = blockIdx.x;

const long long by = blockIdx.y;

const long long col = bx*bw + tx;

const long long row = by*bw + ty;

long long pos_in_area;

{{float_type}} angle;

const long long width_k = *width * *k;

const {{float_type}} pi = atan(1.)*4;

// load ar_arctan_k

if(col < width_k && row < width_k){

pos_in_area = row * width_k + col;

angle = atan2(-row-1+ *middle_k+1./2, col+1-

*middle_k-1./2);

60



ar_arctan_k[pos_in_area] = angle < 0 ? angle +

2*pi : angle;

}

// load ar_arctan

if(col < *width && row < *width){

pos_in_area = row * *width + col;

angle = atan2(-row-1+ *middle+1./2, col+1-

*middle-1./2);

ar_arctan[pos_in_area] = angle < 0

? angle + 2*pi : angle;

}

// load ar_arctan_special

if(col < *width_special_scaled && row < *

width_special_scaled){

pos_in_area = row * *width_special_scaled + col;

angle = atan2(-row-1+ *middle_special_scaled+

1./2, col+1- *middle_special_scaled-1./2);

ar_arctan_special[pos_in_area] = angle < 0

? angle + 2*pi : angle;

}

}

Kernel Code for ARCTAN KERNEL

61



__constant__ {{float_type}} zero_crossings[2048];

__global__ void jv_kernel({{float_type}} * ar_c, {{float_type}}

* ar_a, long long * n, long long * pixels_in_part

){

const long long tx = threadIdx.x;

const long long ty = threadIdx.y;

const long long bw = blockDim.x;

const long long bh = blockDim.y;

const long long bx = blockIdx.x;

const long long pos = tx + ty*bw + bx*bw*bh;

const long long n_local = *n;

const long long pixels_in_part_local = * pixels_in_part

;

if(pos < n_local * pixels_in_part_local){

long long idx_origin_y = pos / pixels_in_part_local;

long long idx_origin_x = pos - idx_origin_y*

pixels_in_part_local;

ar_c[pos] = j1(ar_a[idx_origin_x] * zero_crossings[

idx_origin_y]) / \

(powf(jn(2, zero_crossings[idx_origin_y]), 2.)/2);

}

}

Kernel Code for JV KERNEL

62



__constant__ {{float_type}} zero_crossings[2048];

__global__ void exp_kernel({{float_type}} * ar_c, {{float_type

}} * ar_a, long long * n, long long * pixels_in_part)

{

const long long tx = threadIdx.x;

const long long ty = threadIdx.y;

const long long bw = blockDim.x;

const long long bh = blockDim.y;

const long long bx = blockIdx.x;

const long long pos = tx + ty*bw + bx*bw*bh;

const long long n_local = *n;

const long long pixels_in_part_local = * pixels_in_part;

if(pos < n_local * pixels_in_part_local){

long long idx_origin_y = pos / pixels_in_part_local;

long long idx_origin_x = pos -

idx_origin_y*pixels_in_part_local;

ar_c[pos] = j1(ar_a[idx_origin_x] *

zero_crossings[idx_origin_y]);

}

}

Kernel Code for EXP KERNEL

63



#include <pycuda-complex.hpp>

typedef pycuda::complex<{{float_type}}> dcmplx;

__global__ void bnm_kernel(

dcmplx *ar_bnm,

{{float_type}} *ar_jv,

{{float_type}} *ar_img_k,

dcmplx *ar_exp,

int *n,

int *m,

int *pixels_in_part,

int *pixels_in_part_diagonal,

int *pixels_in_part_no_diagonal

){

const int bx = blockIdx.x;

const int by = blockIdx.y;

const int bw = blockDim.x;

const int tx = threadIdx.x;

const int ty = threadIdx.y;

const int n_local = *n;

const int m_local = *m;

const int pixels_in_part_local = *pixels_in_part;

const int pixels_in_part_no_diagonal_local =

*pixels_in_part_no_diagonal;

const int pixels_in_part_diagonal_local =

*pixels_in_part_diagonal;

const int ph_len = {{ph_len}};

// identify the row and col num for the current thread

const int row = by * bw + ty;

64



const int col = bx * bw + tx;

const long long pos = (long long)row * m_local + col;

const int col_as_m = col - m_local/2;

// for the imagine part of exp

const {{float_type}} exp_imagine_multiplier =

col_as_m > 0 ? -1 : 1;

const int block_pos = tx + bw*ty;

dcmplx total = dcmplx(0,0);

dcmplx total_tmp = dcmplx(0,0);

int count = 0;

// allocate shared memory

__shared__ {{float_type}} ar_jv_ph[{{bw}}][ph_len];

__shared__ dcmplx ar_exp_ph[{{bw}}][ph_len];

__shared__ {{float_type}} ar_img_k_ph[8 * ph_len];

// loop over tiles in ar_jv and ar_exp to calculate

for (

int ph = 0;

ph <= (pixels_in_part_local-1)/ph_len;

ph++

){

// load data into shared momery && boundary checking

const int iteLen = (ph+1)*ph_len > pixels_in_part_local

? pixels_in_part_local-ph*ph_len : ph_len;

const int ph_start = ph * ph_len;

const int ph_end = ph_start + iteLen;

65



int base_load_count = iteLen / bw +

int(tx < iteLen % bw);

if(row < n_local){

for(int i=0; i<base_load_count; i++){

ar_jv_ph[ty][i*bw + tx] =

ar_jv[(long long)row * pixels_in_part_local

+ ph*ph_len + i*bw + tx];

}

}

base_load_count = iteLen / bw + int(ty < iteLen % bw);

if(col < m_local){

dcmplx tmp_exp = dcmplx(0,0);

for(int i=0; i<base_load_count; i++){

tmp_exp = ar_exp[((long long)(m_local/2)-

(int)fabs(({{float_type}})(col_as_m))) *

pixels_in_part_local +

ph*ph_len + i*bw + ty

];

ar_exp_ph[tx][i*bw + ty] = dcmplx(

tmp_exp.real(),

exp_imagine_multiplier * tmp_exp.imag()

);

}

}

int pixels_diagonal_ph = fmaxf(fminf(ph_end -

pixels_in_part_no_diagonal_local, iteLen), 0);

66



const int pixels_no_diagonal_ph = iteLen -

pixels_diagonal_ph;

if(block_pos < iteLen){

int pos_in_part = ph_start + block_pos;

if(pos_in_part < pixels_in_part_no_diagonal_local){

// load 8 octants if it’s not diagonal

for(int i=0; i<8; i++){

ar_img_k_ph[

i*pixels_no_diagonal_ph + block_pos

] =

ar_img_k[(long long)pos_in_part +

pixels_in_part_no_diagonal_local * i];

}

}else{

// load 4 quarters

for(int i=0; i<4; i++){

ar_img_k_ph[

7*pixels_no_diagonal_ph +

pixels_diagonal_ph*i + block_pos

] = ar_img_k[

(long long)pos_in_part +

pixels_in_part_no_diagonal_local*7 +

pixels_in_part_diagonal_local * i

];

}

}

}

__syncthreads();

67



// do stuff if the coordinates of current thread is

supposed to calculate a value

if(row < n_local && col < m_local ){

// except for the upper-left quadrant, the other 3

need special treatment

// if col_as_m is 0, the else part of odd-even test

will handle the case correctly as 1 is a real number

// and conjugate() won’t change it

const bool odd = col_as_m % 2;

const {{float_type}} upper_right_real_multiplier =

powf(-1, (int)odd);

for (

int vec_idx_in_ph = 0;

vec_idx_in_ph < iteLen;

vec_idx_in_ph++

){

// for pixels in the the 8 octants

if(vec_idx_in_ph < pixels_no_diagonal_ph){

// for upper half in the upper left

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[vec_idx_in_ph]

* ar_exp_ph[tx][vec_idx_in_ph];

// upper right: conj(-1 * (real, imag))

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

68



2*pixels_no_diagonal_ph +

vec_idx_in_ph

]

* dcmplx(

upper_right_real_multiplier*

ar_exp_ph[tx][

vec_idx_in_ph

].real(),

-upper_right_real_multiplier*

ar_exp_ph[tx][

vec_idx_in_ph

].imag()

);

// lower right: -1 * (real, imag)

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

6*pixels_no_diagonal_ph +

vec_idx_in_ph

]

* (upper_right_real_multiplier) *

ar_exp_ph[tx][vec_idx_in_ph];

// lower left: conj

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

4*pixels_no_diagonal_ph +

vec_idx_in_ph

]

* conj(ar_exp_ph[tx][vec_idx_in_ph]);

// for lower half in the upper left

69



dcmplx exp_lower = dcmplx(

ar_exp_ph[tx][vec_idx_in_ph].imag(),

ar_exp_ph[tx][vec_idx_in_ph].real()

);

if(odd){

if(

(

col_as_m > 0 &&

!((col_as_m+1) % 4 )

)

|| ((col_as_m-1) % 4 )

){

exp_lower *= -1;

}

}else{

if(col_as_m % 4){

exp_lower = -conj(

ar_exp_ph[tx][vec_idx_in_ph]

);

}else{

exp_lower = conj(

ar_exp_ph[tx][vec_idx_in_ph]

);

}

}

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

pixels_no_diagonal_ph +

vec_idx_in_ph

70



] * exp_lower;

// upper right: conj(-1 * (real, imag))

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

5*pixels_no_diagonal_ph +

vec_idx_in_ph

] * dcmplx(

upper_right_real_multiplier *

exp_lower.real(),

-upper_right_real_multiplier *

exp_lower.imag()

);

// lower right: -1 * (real, imag)

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

7*pixels_no_diagonal_ph +

vec_idx_in_ph

] * (upper_right_real_multiplier) *

exp_lower;

// lower left: conj

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

3*pixels_no_diagonal_ph +

vec_idx_in_ph

] * conj(exp_lower);

count +=8;

}else{

// for pixels along the diagonal axies in 4

quarters

71



// for upper half in the upper left

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

7*pixels_no_diagonal_ph +

vec_idx_in_ph

] * ar_exp_ph[tx][vec_idx_in_ph];

// upper right: conj(real, imag)

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

7*pixels_no_diagonal_ph +

vec_idx_in_ph +

pixels_diagonal_ph

] * dcmplx(

upper_right_real_multiplier *

ar_exp_ph[tx][vec_idx_in_ph].real()

,

-upper_right_real_multiplier *

ar_exp_ph[tx][vec_idx_in_ph].imag()

);

// lower right: -1 * (real, imag)

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

ar_img_k_ph[

7*pixels_no_diagonal_ph +

vec_idx_in_ph +

3*pixels_diagonal_ph

] * (upper_right_real_multiplier) *

ar_exp_ph[tx][vec_idx_in_ph];

// lower left: conj

total_tmp += ar_jv_ph[ty][vec_idx_in_ph] *

72



ar_img_k_ph[

7*pixels_no_diagonal_ph +

vec_idx_in_ph +

2*pixels_diagonal_ph

] * conj(ar_exp_ph[tx][vec_idx_in_ph]);

count +=4;

}

if(

count>={{group_size}} ||

vec_idx_in_ph == iteLen-1

){

count=0;

total += total_tmp;

total_tmp = dcmplx(0,0);

}

}

}

__syncthreads();

}

if(row < n_local && col < m_local )

ar_bnm[pos] = total;

}

Kernel Code for BNM KERNEL

73



# include <pycuda-complex.hpp>

typedef pycuda::complex<{{float_type}}> dcmplx;

__global__ void reconstruction_kernel(

{{float_type}} *ar_jv,

dcmplx *ar_bnm,

dcmplx *ar_exp,

long long *n,

long long *m,

long long *pixels_in_part

){

const long long bx = blockIdx.x;

const long long by = blockIdx.y;

const long long bw = blockDim.x;

const long long tx = threadIdx.x;

const long long ty = threadIdx.y;

const long long n_local = *n;

const long long m_local = *m;

const long long pixels_in_part_local = *pixels_in_part;

const long long ph_len = {{ph_len}};

// identify the row and col num for the current thread

const long long row = by * bw + ty;

const long long col = bx * bw + tx;

const long long pos = (long long)row *

(long long)pixels_in_part_local + (long long)col;

// const long long block_pos = tx + bw*ty;

dcmplx total = dcmplx(0,0);

// allocate shared memory

74



__shared__ {{float_type}} ar_jv_ph[{{bw}}][ph_len];

__shared__ dcmplx ar_bnm_ph[{{bw}}][ph_len];

// loop over tiles in ar_jv and ar_bnm to calculate

for (int ph = 0; ph <= (n_local-1)/ph_len; ph++){

// load data into shared momery && boundary checking

const long long iteLen = (ph+1)*ph_len > n_local

? n_local-ph*ph_len : ph_len;

long long base_load_count = iteLen / bw +

(int)(tx < iteLen % bw);

if(row < m_local){

for(int i=0; i<base_load_count; i++){

ar_bnm_ph[ty][i*bw + tx] = ar_bnm[

(ph*ph_len + i*bw + tx)*m_local + row

];

}

}

base_load_count = iteLen / bw + (int)(ty < iteLen % bw);

if(col < pixels_in_part_local){

for(int i=0; i<base_load_count; i++){

ar_jv_ph[tx][i*bw + ty] = ar_jv[

(ph*ph_len + i*bw + ty)*pixels_in_part_local

+ col

];

}

}

75



__syncthreads();

if(row < m_local && col < pixels_in_part_local ){

for (

int vec_idx_in_ph = 0;

vec_idx_in_ph < iteLen;

vec_idx_in_ph++

){

total += ar_bnm_ph[ty][vec_idx_in_ph] *

ar_jv_ph[tx][vec_idx_in_ph];

}

}

__syncthreads();

}

if(row >= m_local || col >= pixels_in_part_local )

return;

ar_exp[pos] = total * (({{float_type}})1)/ar_exp[pos];

}

Kernel Code for RECONSTRUCTION KERNEL

76



Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical

functions: with formulas, graphs, and mathematical tables. Vol. 55.

Courier Corporation, 1964.

[2] DE Amos. “A portable package for Bessel functions of a complex ar-

gument and nonnegative order, 1983”. In: Trans. Math. Software ().

[3] Amy Chiang and Simon Liao. “Image Analysis with Legendre Mo-

ment Descriptors”. In: Journal of Computer Science 11.1 (Jan. 2015),

pp. 127–136. issn: 1549-3636. doi: 10.3844/jcssp.2015.127.136.

[4] C W Chong, P. Raveendran, and R. Mukundan. “A comparative anal-

ysis of algorithms for fast computation of Zernike moments”. In: Pat-

tern Recognition 36.3 (Mar. 2003), pp. 731–742. issn: 0031-3203. doi:

10.1016/S0031-3203(02)00091-2.

[5] CUDA C++ Programming Guide. Aug. 2019. url: https://docs.

nvidia.com/cuda/cuda-c-programming-guide/index.html#data-

transfer-between-host-and-device.

[6] Mostafa El Mallahi et al. “Radial Hahn Moment Invariants for 2D

and 3D Image Recognition”. In: International Journal of Automation

and Computing 15.3 (June 2018), pp. 277–289. issn: 1476-8186. doi:

10.1007/s11633-017-1071-1.

[7] Jan Flusser, Tomáš Suk, and Barbara Zitová. Moments and moment

invariants in pattern recognition. Wiley, 2009. isbn: 0470699876.

[8] Rafael C Gonzalez and Richard E Woods. Digital image processing.

Prentice Hall, 2008. isbn: 013505267X.

[9] Ming-Kuei Hu. Moments and Moment Invariants - Theory and Appli-

cations. Vol. 8. IEEE, Feb. 1962, pp. 179–187.

77



[10] Sun-Kyoo Hwang and Whoi-Yul Kim. “A novel approach to the fast

computation of Zernike moments”. In: Pattern Recognition 39.11 (2006),

pp. 2065–2076. issn: 0031-3203. doi: //doi.org/10.1016/j.patcog.

2006.03.004. url: http://www.sciencedirect.com/science/

article/pii/S0031320306001166.

[11] Image analysis by circularly semi-orthogonal moments. 2016. doi: //

doi.org/10.1016/j.patcog.2015.08.005. url: http://www.

sciencedirect.com/science/article/pii/S0031320315002939.

[12] Jinja Document 2.11.x. url: https://jinja.palletsprojects.com/

en/2.11.x/.

[13] David Kirk and Wen-mei Hwu. Programming Massively Parallel Pro-

cessors, 3rd Edition. 3rd ed. Morgan Kaufmann, Nov. 2016. isbn:

9780128119860. url: https://proquestcombo.safaribooksonline.

com/9780128119877.

[14] Simon Liao. “Accuracy Analysis of Moment Functions”. In: ed. by

George A. Papakostas. Moments and Moment Invariants - Theory and

Applications. Science Gate Publishing, 2014. Chap. 2, pp. 33–56.

[15] Vijayalakshmi G. V Mahesh. “Invariant moments based convolutional

neural networks for image analysis”. In: International Journal of Com-

putational Intelligence Systems (Jan. 2017). issn: 1875-6883. doi: 10.

2991/ijcis.2017.10.1.62.

[16] Vijayalakshmi G. V. Mahesh and Alex Noel Joseph Raj. “Zernike Mo-

ments and Machine Learning Based Gender Classification Using Facial

Images”. In: ed. by Ajith Abraham et al. Springer International Pub-

lishing, 2018, pp. 398–408.

[17] Manuel Jesús Mart́ın Requena, Pablo Moscato, and Manuel Ujaldón.

“Efficient data partitioning for the GPU computation of moment func-

tions”. In: Journal of Parallel and Distributed Computing 74.1 (Jan.

2014), pp. 1994–2004. issn: 0743-7315. doi: 10.1016/j.jpdc.2013.

78



07.008. url: https://www.sciencedirect.com/science/article/

pii/S0743731513001342.

[18] R. Mukundan, S. H. Ong, and P. A. Lee. Image analysis by Tchebichef

moments. 2001. doi: 10.1109/83.941859.

[19] Marcel Nwali and Simon Liao. “A new fast algorithm to compute con-

tinuous moments defined in a rectangular region”. In: Pattern Recog-

nition 89 (May 2019), pp. 151–160. issn: 0031-3203. doi: 10.1016/

j.patcog.2019.01.001. url: https://www.sciencedirect.com/

science/article/pii/S0031320319300019.

[20] Ziliang Ping et al. “Generic orthogonal moments: Jacobi–Fourier mo-

ments for invariant image description”. In: Pattern Recognition 40.4

(2007), p. 1245. issn: 0031-3203. doi: //doi.org/10.1016/j.patcog.

2006.07.016". url: http://www.sciencedirect.com/science/

article/pii/S0031320306003475.

[21] “Properties of Orthogonal Gaussian-Hermite Moments and Their Ap-

plications”. In: EURASIP Journal on Advances in Signal Processing

2005 (2005), p. 439420. issn: 1687-6180. doi: 10.1155/ASP.2005.588.

url: https://doi.org/10.1155/ASP.2005.588.

[22] Yunlong Sheng and Lixin Shen. “Orthogonal Fourier–Mellin moments

for invariant pattern recognition”. In: Journal of the Optical Society of

America A 11.6 (June 1994), p. 1748. issn: 1084-7529. doi: 10.1364/

JOSAA.11.001748.

[23] Chandan Singh and Ekta Walia. “Algorithms for fast computation of

Zernike moments and their numerical stability”. In: Image and Vision

Computing 29.4 (2011), pp. 251–259. issn: 0262-8856. doi: 10.1016/

j.imavis.2010.10.003. url: https://www.sciencedirect.com/

science/article/pii/S0262885610001423.

[24] M R TEAGUE. “Image-Analysis Via the General-Theory of Moments”.

In: Journal of the Optical Society of America 70.8 (1980), pp. 920–930.

issn: 0030-3941. doi: 10.1364/JOSA.70.000920.

79



[25] C. -. Teh and R. T. Chin. On image analysis by the methods of mo-

ments. 1988. doi: 10.1109/34.3913.

[26] Rahul Upneja. “Accurate and fast Jacobi-Fourier moments for invari-

ant image recognition”. In: Optik - International Journal for Light

and Electron Optics 127.19 (Oct. 2016), pp. 7925–7940. issn: 0030-

4026. doi: 10.1016/j.ijleo.2016.05.097. url: https://www.

sciencedirect.com/science/article/pii/S0030402616305472.

[27] Tiansheng Wang and Simon Liao. “Computational aspects of exponent-

Fourier moments”. In: Pattern Recognition Letters 84 (2016), pp. 35–

42. issn: 0167-8655. doi: //doi.org/10.1016/j.patrec.2016.08.

004. url: http://www.sciencedirect.com/science/article/pii/

S0167865516301982.

[28] Xiaoyu Wang and Simon Liao. “Image Reconstruction from Orthogonal

Fourier-Mellin Moments”. In: Image Analysis and Recognition 7950

(2013), pp. 687–694. issn: 0302-9743.

[29] Bin Xiao, Jian-Feng Ma, and Xuan Wang. “Image analysis by Bessel-

Fourier moments”. In: Pattern Recognition 43.8 (Aug. 2010), pp. 2620–

2629. issn: 0031-3203. doi: 10.1016/j.patcog.2010.03.013.

[30] Yongqing Xin, Simon Liao, and Miroslaw Pawlak. “Circularly orthog-

onal moments for geometrically robust image watermarking”. In: Pat-

tern Recognition 40.12 (Dec. 2007), pp. 3740–3752. issn: 0031-3203.

doi: 10.1016/j.patcog.2007.05.004.

[31] Yubo Xuan, Dayu Li, and Wei Han. “Efficient optimization approach

for fast GPU computation of Zernike moments”. In: Journal of Parallel

and Distributed Computing 111 (2018), pp. 104–114. issn: 0743-7315.

doi: //doi.org/10.1016/j.jpdc.2017.07.008. url: http://www.

sciencedirect.com/science/article/pii/S0743731517302204.

80



[32] Bo Yang, Jan Flusser, and Tomáš Suk. “3D rotation invariants of

Gaussian–Hermite moments”. In: Pattern Recognition Letters 54 (Mar.

2015), pp. 18–26. issn: 0167-8655. doi: 10.1016/j.patrec.2014.11.

014. url: http://dx.doi.org/10.1016/j.patrec.2014.11.014.

[33] Bo Yang et al. “Rotation invariants of vector fields from orthogonal mo-

ments”. In: Pattern Recognition 74.C (Feb. 2018), pp. 110–121. issn:

0031-3203. doi: 10.1016/j.patcog.2017.09.004. url: https://

www.sciencedirect.com/science/article/pii/S0031320317303540.

81


