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1. Introduction

This article proposes the tolerance nearness measure (TNM) as a computationally reduced alternative
to the graph edit distance (GED) for performing graph comparisons. The graph comparison problem
consists of quantifying the similarity or dissimilarity of graphs [1] and is required by many applica-
tions [2]. The TNM is example of a graph comparison measure, while the GED is an example of a
graph matching algorithm. The chief difference between graph comparison and graph matching algo-
rithms is that a graph matching algorithm maps similar substructures between the two graphs under
comparison to produce areal value reflecting the degree these substructures align. Graph comparison
methods are a generalization of graph matching approaches where the only requirement is assigning
areal value indicating the degree of similarity between the two graphs, i.e. the likeness between the
two graphs does not necessarily depend on matching substructures. In fact, the TNM approach pro-
posed hereis based on finding maximal cliques distributed across the two graphs in question. Further,
it is important to note that the graph comparison problem is commonly solved by graph matching
algorithms' [1]. This observation provides a basis for the comparison presented in this paper. In
other words, both the GED and TNM make judgements regarding nearness and similarity of attributed
graphs.

Many distance measures have been proposed to solve the graph comparison problem. The TNM
is defined within the context of near set theory, where the central idea is that determining similarity
between sets of digoint objectsis at once intuitive and practically applicable. More importantly, near
set theory provides a mathematically-rigorous, theoretical framework for making decisions regarding
nearness or apartness. The TNM grew out of work on practical applications of descriptive near set
theory, and is calculated by using amaximal clique enumeration (MCE) algorithm. To date, the TNM
has only been used to quantify the similarity of digoint sets of objects with associated feature vec-
tors. Here, the TNM is used to quantify the similarity of graphs as a solution to the graph comparison
problem. In this regard, the TNM is applied to graphs in two ways: in its original form to assess the
similarity between the vertices of two graphs (i.e. two disjoint sets of objects) based on their attributes;
and to assess the similarity of two graphs using both vertex and edge information. The presented ap-
proach is contrasted with the well-known GED matching algorithm through application to the problem
of content-based image retrieval (CBIR) on the Tarragona Rotation Zoom [3, 4], SIMPLIcity [5] and
the Palmprint datasets [6]. The GED agorithm was selected due to its popularity and benchmark
status within the field of graph comparisons [7]. The contribution of this paper is the application of
TNM to the problem of quantifying the similarity of digjoint graphs —in the context of descriptive near
set theory — and that the MCE-based TNM produces comparable results to the GED when applied to
the problem of content-based image retrieval, which becomes important as the number of nodesin a
graph increases. This article is organized as follows. Section 2 gives background on the GED and
TNM, Section 3 describes the graph comparison measures and provides a detailed explanation of the
GED and TNM. Section 4 presents the results along with discussions, and, finally, Section 5 is the
conclusion of the article.

1The graph comparison problem is also referred to as graph similarity, graph distance, or graph measure in the literature.
Examples using this terminology are cited in the last paragraph of Section 2.
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2. Background

A comprehensive survey of most graph matching algorithms proposed since the late seventies, to-
gether with pattern recognition and machine vision applications, is presented in [8]. With respect to
applications, there are numerous examples of solving practical problems using graph similarity mea-
sures. Examples include structural pattern recognition [9, 10], graph classification [11], character
recognition [12], artificial intelligence [13, 14], chemoinformatics [15], document analysis [16], and
bioinformatics [17]. Other interesting examples include shape analysis[18] and 3D segmentation [19].

In this work, the focus is on the popular GED [20, 21, 20, 22], which is considered one of the
most well known graph matching approaches since it is generic and easily interpretable [22, 10, 7]
(see, [23, 1] for a extensive discussions on the GED). The GED is an error-tolerant, inexact graph
similarity measure. Accordingly, it can be applied to graphs with variable number of nodes, such as
the graphs formed by the content-based image retrieval (CBIR) application presented in this paper.

The GED was first used for string matching, introduced as the edit distance, where it was used to
find the minimum cost for al sequences of edit operations required to transform one string to other
[24, 25]. This was followed by the adaptation of the edit distance for use in comparing trees [26].
In this case, it was modified to find the minimum amount of edit operations to convert one tree into
the other, where each operation was associated with specific cost. Finaly, the GED appears in its
present form in 1983 [27, 21, 20]. Since then, it has been used in many applications. fingerprint
classification [28], graph clustering problems [29], chemica graph recognition problem [30], molec-
ular electrostatic potentials comparison [31] and diatom identification [32]. Some of the more recent
examples include: database management [33], biological network alignment [34] and handwriting
recognition [12, 35]. In this paper, the GED and the TNM approach are both applied to the problem
of CBIR.

While the GED iswell established, the TNM was recently introduced in 2010 [36] within the con-
text of descriptive near setstheory?. In general, the TNM follows from arich and rigours mathematical
history on the study and formalism of the notion of nearness [37]. J. B. Listing and F. Hausdorff first
considered the ideas of near and far within a mathematical context. They were followed by J. H.
Poincaré's work on resemblance and similarity, which was inspired by kinesthesia experiments per-
formed by E. Weber in 1834, and G. T. Fechner’s sensation sensitivity experiments [39, 40, 41, 42].
Poincar€'s reflections led him to introduce resemblance in representative spaces (called physical con-
tinua) [43, 44, 45], where his work marked a shift from stimuli and sensations to an abstraction in
terms of mathematical setstogether with an implicit idea of tolerance. Only afew years later, F. Riesz
published a paper in 1908 on the nearness of sets [46, 47, 48], initiating the mathematical study of
proximity spaces and the eventua discovery of descriptively near sets. During the 1960s, E.C. Zee-
man introduced tolerance spaces in modelling visual perception [49], and A.B. Sossinsky observed in
1986 [50] that the main idea underlying tolerance space theory comes from Poincaré, especially [44].
The idea of near set theory — now known as descriptively near set theory —was inspired by a collabo-
ration in 2002 by Z. Pawlak and J. F. Peters on a philosophic poem entitled “How Near” [51]. In 2006,
a formal approach to the descriptive nearness of objects was considered by J. Peters, A. Skowron
and J. Stepaniuk [52, 53] in the context of proximity spaces [47, 54, 48, 55]. This work led to the

2A nice history of near set theory isavailablein [37, 38].
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introduction of descriptively near sets [56, 57], which was soon followed by tolerance near sets in
2009 [58, 59]. Tolerance near set theory builds on near set theory through the use of tolerance spaces
and relations (based on work by Zeeman [60] and Sossinsky [S0F). Finally, the TNM was introduced
in [36], which has been applied to the problems of image analysis and CBIR [62, 63, 64, 65, 66] and
forms the main contribution of this article.

Finally, thereisalarge body of work on graph comparison methods other than those used in graph
matching. This section concludes with recognition of these approaches. Tao et al. compare and con-
trast agraph measure defined with respect to topological indices withthe GED [7]. Walliset al. present
an extension of the maximum common subgraph distance measure to propose a new graph distance
metric. Similarly, [67] propose a new graph metric for measuring the similarity of graphs by identify-
ing the relationship between the maximum common subgraph and the minimon common supergraph,
and anew graph distance metric based on maxima common subgraph is presented by [68]. [2] present
an approach for graph similarity scoring and matching based on structural similarity of local neigh-
bourhoods. [69] demonstrate that graph similarity measures based on (sub)graph isomorphism and
error-tolerant graph matching are a special case of a generic similarity measure proposed by [70].
A graph comparison methods for large graphs with hundreds of nodes is proposed in [71], and [72]
present a graph similarity measure with low computational complexity based on the structural simi-
larity of graphs. [73] propose a graph comparison measure based on the mutual information between
graphs. Two further applications of graph comparison outside of graph matching are the work by [74]
presenting an application of graph similarity measures for assessing attacks in dynamic networks, and
an application of a pairwise graph comparison algorithm to the problem of automatic detection of
conserved gene clusters reported by [75].

3. Graph Comparison Measures

The notion of quantifying the differences between two objects can be formalized through the definition
of asimilarity measure d : X x X — R, where X isthe representation space, containing a diversity
of objects and their (multi-dimensional) descriptions, and R is the set of rea numbers. Further, d
is considered a metric if conditions of non-negativity, uniqueness, symmetry and triangle inequality
are satisfied. In this work, objects in X are attributed graphs and d provides a basis for decisions
regarding the similarity of these graphs, which is known as graph comparison [1]. Here, the focus
is on attributed graphs defined as a four tuple G = (V, E, a, B), where V' is the set of vertices, £
is aset of edges consisting of ordered pairs among elements v € V, and « (resp. 3) are functions
that produce feature vectors containing information about node (edge) labels. With these definitions
in mind, the remainder of this section describes the well-known GED metric and the recently reported
tolerance nearness measure (TNM) for use in error-tolerant attributed graph matching.

3See, e.g., [61]
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3.1. Graph Edit Distance

The graph edit distance (GED)* is the most common and well know method for performing error-
tolerant graph matching [10]. Briefly (and using the same notation as[76]), the GED is a measure of
the amount of distortion required to transform one graph into another. Distortion actions, called edit
operations, include insertion, deletion, and substitution of both nodes and edges. A series of distortions
used to transition G? into G? iscalled an edit path, and isdefined as edit Path(GP, G9) = (ey, . . ., €k),

where ¢; represents edit operation 4 in this process of morphing one graph into another. The set of all
edit paths for two graphs is labelled v, and for each edit Path € v there is an associated bijection
fP? e T, where a bijection 79 : VP — V4 assigns one vertex in GP to only one vertex in G¢ and

T is the set of al possible bijections. Continuing, there is an associated cost function for each edit
operation. Cost functions are combined to form an overall edit cost function, EditCost(@, G4, fP1),

used to find the minimum amount of operations required to transform @ into G (defined in [77]) [ 76].

Finally, the GED is defined as Edit Distance(GP,GY) = minracr EditCost(GP,GY, fP9).

The GED is generally determined by the A* algorithm [ 78] when exactly evaluating the Edit Dist
ance(GP,G?) [76]. However, the complexity of this approach is exponential in the number of nodes.
As a result, approximate methods are necessary when working on anything but small examples.
Approximate methods are appropriately named sub-optimal because they strike a balance between
computational cost and non-exact GED values. While there are many sub-optimal algorithms (see,
e.g., [76]), this article focuses on the bipartite algorithm for generating GED values since it is con-
sidered one of the best sub-optimal algorithms [76], and the results presented here were generated
using the implementation reported in [10], which also uses this algorithm. There are three variants of
the bipartite algorithm, namely the original approach reported by [27], fast bipartite matching [76],
and, recently, the square fast bipartite matching [13]. The fast bipartite matching algorithm was used
for this article. Lastly, given graphs GP, G? of order n, m, respectively, the time complexity for the
bipartite algorithm is O(n + m)? and the time complexity for both the fast and square fast bipartite
matching algorithmsis O (max(n, m)?) [13].

3.2. Tolerance Near ness M easure

The focus of descriptive near set theory is to assess similarity in terms of the descriptions of objects

within the sets. Until this article, the tolerance nearness measure (TNM) was used to quantify the
similarity between two sets of objects, where these sets of objects were not graphs (see [65] for a
detailed discussion). Thisprocess involves creating asingle attributed graph, GX¥, based on the union

of thetwo sets, X, Y C O, where the objects in O are used as graph vertices, i.e. VXY = X UY, and

edges between vertices in VXY are created based on the distance between feature vectors associated
with each v € VXY, Specifically, abinary relation is defined between vertices based on their feature
vectors, and edges between vertices are formed if the two objects satisfy the relation. Using GXV,

calculating the TNM requires finding all the maximal cliques, where, for each clique, the distribution
of the objects between the original two sets is used to produce the final TNM value (see below).

4See [76] for an in-depth description of the GED.
5 [53] details the difference between traditional spatial nearness relations and relations defined in terms of descriptive near-
ness relations.
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While useful, this process is not suited to assessing the similarity of graphs since new edges are
produced during the calculation. For this reason, two approaches to using the TNM for quantifying
the similarity of graphs are presented: one based solely on the vertices of the two graphs (using the
origina TNM approach), and the method presented below that incorporates the existing graph edge
information in the calculation. Both of these approaches are graphically depicted in Figure 1.

o0
® ®
© )
®

et o

Figure 1. Visua example of two approaches for calculating the TNM. (&) and (b) represent the original ap-
proach, where (a) contains two sets of objects (represented by two colours) and (b) shows the edges created
with atolerance relation and the grey areas are maximal cliques. (c) - (€) depict the TNM in quantifying the
similarity of graphs. (c) contains the original graphs (with edges), (d) shows new edges formed between the
graphs using a tolerance relation, and the grey regionsin (€) are maximal cliques.

Formally, the TNM is defined within the context of a perceptual system, which is denoted as
(O,F). A perceptua system consists of a non-empty set O of sample perceptua objects and a non-
empty set I of real-valued functions ¢ € F, where ¢ : O — R [79, 36]. Recall, for this application,
objects in O are graph vertices, and, for an attributed graph, each vertex has an associated feature
vector generated by a.. Within a perceptual system, « is defined as a feature vector given by a(x) =
(P1(2), p2(x),...,Pi(x),...,¢i1(x)), where [ is the length of the vector «, and each ¢;(z) in a(x)
is a probe function value [80] forming part of the description of x € O. In the descriptive near set
literature, the feature vector « is called an object description.

Thefirst step in finding the TNM between two sets of objectsisthe creation of GXY using abinary
tolerance relation [61, 36]. Briefly, atolerance relation is one that is reflexive and symmetric, but not
transitive. The specific relation used in this work is defined as follows. Givene € K} and F, the
perceptual tolerance relation =2, is defined as

~ = {(z,9) €O x O : | a(z) —a(y) |,< e}, (N

where || - ||, isthe L2 norm [36]. Using =, EXY isformed by adding an edge between z,y € VXY
if, and only if, (iff) two objects satisfy this relation, i.e. the distance between the two feature vectors
isless than . Fig. 1(a) & 1(b) give an example of forming edges in this manner. Now that GX¥ =
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(VXY EXY «, 3) has been defined® the TNM, between sets X and Y, is given as

TNM(GXY vX vY) =

X Y
(Ze)  pemiet e @
CeH CeH

where H isthe set of al maximum cliques obtained from GXY', i.e. each C' € H isaset of vertices
representing amaximal cliquein GXY'. Note, implicit in this definition is the requirement that 7 must
be extracted from GXY prior to performing the calculation given in Eq. 2.

As highlighted in the introduction, the focus of this article is the observation that Eq. 2 can aso
be used to assess the similarity between two graphs @ and G?. In this case, GP? is formed in the
following manner. The set of verticesissimply VP4 = VP U V4. EPY, on the other hand, is obtained
by the following two steps. First, set EP¢ = EP U E9. Then, each v, € V? is compared to each
vy € V4, and an edge is only added to E9 iff v, =, v,. Creating EP? in this manner isillustrated in
Fig. 1(c) - 1(e), and Algorithm 1 contains the pseudocode for calculating the TNM using this approach.
Note, edges are only added between the graphs, not between vertices within the same graph. Also,
MCEg (VP4, EP?) performs maximal clique enumeration using the Brong-Kerbosh algorithm [81],
and it returns a collection (family) of sets, each consisting of the vertices contained in a maximal
cligue. In Line 8, the cliques are chosen from H in the order in which they are generated by the MCE
agorithm MCEg (VP4, EP?).

Notice that the complexity for calculating TNM depends on the approach used to find al the
maximal cliques in a graph. Specifically, the Bron-Kerbosh algorithm [81] was used in this work to
produce H. While the results reported here use the original Bron-Kerbosh agorithm, the addition
of adding pruning methods gives this algorithm a worst-case running time complexity of O(3"/3)
for a graph of n vertices. This is optimal since there exists up to 3*/3 maximal cliques in a graph
with n vertices [82]. However, the TNM algorithm also consists of either: finding edges between
all nodes when comparing two sets of objects (of sizes n and m), or only finding edges between
the two sets of vertices when comparing graphs (also of sizes n and m). Thus, the final worst case
runtime complexities are O((n+m)? +3(+7)/3) = O((n+m)?) and O(max(n, m)? +3+m)/3) =
O(max(n,m)?), respectively. Observe that both of these complexities are lower than those reported
for the GED above.

4. Resultsand Discussion

This section compares the GED and TNM through their use in performing content-based image re-
trieval (CBIR) on two different datasets. CBIR is the task of retrieving all the images from a digital
image dataset that match a given query image. The goa is to retrieve al the perceptually similar
images, and in most cases rank the relevance of each image to the query image. Besides subjective
evaluation of the results, CBIR methods are typically compared using datasets partitioned into cat-

63 isnot used in thiswork, i.e. thereis no extrainformation associated with edges.
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Algorithm 1: TNM(edges) Algorithm
Input : GP, G, ¢
Output: TN M (GP4,VP V1)
VP4 VP UV EPY + EP U EY,;
for v, € VP do
for v, € V9do
if v, =, v, then
| EP1 < EP1U (vp,v,);
end
end
end
H = MCEg (VP1, EP?),
w <+ 0; TNM « 0;
for C € H do
w <+ w+|C);

. min(|]CNVP[,|CNV]) .
TNM =TNM + |C| iemveticavan:

end
TNM 1 —-TNM/w;

egories of images. Taking this approach alows the use of metrics such as precision and recall to
evaluate, compare, and contrast the reported methods.

In comparing the two measures in this article, test datasets used in previously published GED and
TNM papers were employed. Consequently, the datasets used in this work are the Tarragona Rotation
Zoom [3, 4], SIMPLIcity [5] and the Palmprint datasets [6]. The Tarragona Rotation Zoom dataset was
selected as this article uses the same GED implementation from [10] — as well as the learnt edit-costs
identified in the paper. SIMPLIcity was similarly chosen for its use in earlier TNM papers [36, 65].
The Pamprint dataset was picked to demonstrate the increase in computational complexity asthe size
of the graph grows.

The Tarragona dataset consists of four categories: boat, east park, east south, and residence. Each
category consists of 10 images, where each image produces a single graph. The features associated
with each vertex in a graph are extracted using the SpeedUp Robust Features (SURF) algorithm [83]
and the edges between the vertices are created using Delaunay triangulation [84]. Each graph consists
of 50 vertices and 64 features. There are no attributes associated with graph edges.

The SIMPLIcity dataset contains 10 categories, where each category consists of 100 images.
Again, a single graph is extracted from each image, consisting of 228 vertices and 18 features per
vertex. Features are extracted using texture based techniques, moments in CIELUV colour space,
edge based features and Zernike moments [36]. Edges between vertices are created using Eq. 1,
where an edge is formed if two vertices satisfy the perceptual tolerance relation. The graphs used to
generate the results were created using ¢ = 0.2" as this value produced the best results in [65]. The

"See [36] for adiscussion on how the TNM varieswith e.
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Figure 2. Average precision vs. recal plots for the GED and TNM on the Tarragona dataset. (a) GED, (b)
GED (PTR), (c) TNM (edges), and (d) TNM (Original).

value of ¢ is typically selected based on trial and error and falls into the range [0,v/], where [ is the
feature vector length, e = 0 produces no edges and ¢ =/ produces a fully connected graph.

A subset of the Palmprint dataset is extracted because of very high computational time which
contains 4 categories and each category consits of 8 images (graphs). The dataset contains variable
number of nodes. Maximum nodes in a graph are 1385 and minimum is 574, where the average
number of nodes is ~ 841. There are total 5 features associated with each nodes i.e. position, type,
guality and type of minutiae. The features associated with each node in a graph are extracted using
the agorithm described in [85] and the original edges between the nodes were created using delaunay
triangulation with no attributes [6]. The edges used in this experiment are created using the perceptual
tolerance relation withe = 0.4.

The results are compared in this article using precision and recall [86] and are given in Ta
bles1 & 2 & 3 and Figures 2 & 3 & 4 Here it is important to note a few points. First, the TNM
results presented here are broken into two categories, namely the original approach (depicted in
Figs. 1(a) & 1(b)) and the method that incorporates the existing graph edge information in the cal-
culation (depicted in Figs. 1(c)-1(e)). These two approaches are labelled original and edges. Next,
with respect to the SIMPLIcity & Palmprint dataset, the TNM original and edges results are the same
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since the SIMPLIcity & Pamprint graphs are created with the perceptual tolerance relation. Thus,
only one set of figures is presented. Lastly, the Tarragona dataset consists of graphs, however, for
comparison with the TNM, new edges are also created between vertices using the perceptual tolerance
relation. These results are labelled GED (perceptual tolerance relation (PTR)) and were generated
using e = 1.5. Thisvalue of epsilon was selected as it produces graphs which generate the same final

learnt costs when using the approach reported in [10].

Tablel. Comparison of GED and TNM on Tarragona dataset using Precision(P) and Recall(R)

Category GED GED (PTR) TNM (edges) TNM (Original)
P P R P R P R
Boat 0.9500 0.7600 | 0.9500 0.7600 | 0.9000 0.7200 | 0.8500 0.6800
East Park 1.000 0.8000 | 1.000 0.8000 | 1.000 0.8000 | 0.9000 0.7200
East South 1.000 0.8000 | 0.8500 0.6800 | 0.9000 0.7200 | 0.9000 0.7200
Residence 1.000 0.8000 | 1.000 0.8000 | 1.000 0.8000 | 0.9500 0.7600
Average 0.9875 0.7900 | 0.9500 0.7600 | 0.9500 0.7600 | 0.9000 0.7200
Timing (ms) ‘ 43.33 4571 40.29 16.29

Table2. Comparison of GED and TNM on SIMPL Icity dataset using Precision(P) and Recall(R)

Theresults were generated asfollows. First, asingle image was selected asthe query image, which

Category GED TNM
P R P R

1. Africans 0.6635 0.1327 | 0.7230 0.1446
2. Beaches 0.5245 0.1049 | 0.4755 0.0951
3. Buildings | 04385 0.0877 | 0.4745 0.0949
4. Buses 0.6985 0.1397 | 05145 0.1029
5. Di- 1.000 0.2000 | 1.000 0.2000
nosaurs
6. Ele- 0.7680 0.1536 | 0.7210 0.1442
phants
7. Flowers 0.9470 0.1894 | 0.8615 0.1723
8. Horses 0.8375 0.1675 | 0.7360 0.1472
9. Moun- 0.6425 0.1285 | 0.6325 0.1265
tains
10. Food 0.7130 0.1426 | 0.7425 0.1485
Average 0.7233 0.14466 | 0.6881 0.13762
Timing 11.36 0.61
(ms)
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Table3. Comparison of GED and TNM on Palmprint dataset using Precision(P) and Recall(R)

Category GED TNM
P R P R
1.Catl 0.6875 0.3438 | 0.6563 0.3281
2.Cat 2 0.4063 0.2031 | 05625 0.2813
3.Ca3 05938 0.2969 | 0.6875 0.3438
4. Cat 4 1 0.5000 | 1 0.5000
Aver age 0.6719 0.3359 | 0.7265 0.3633
| Timing(9) | 1127.348 283.144
GED ) TNM (Original)

Precision %
Precision %

Cat 10 Cat 10

0 02 0.4 06 08 1 0 02 0.4 06 0.8 1
Recall % Recall %

Figure3. Average precision vs. recall plots for the GED and TNM on the SIMPL I city dataset. (a) GED, and
(b) TNM.
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Figure4. Average precisionvs. recall plotsfor the GED and TNM on the Palmprint dataset. (a8) GED, and (b)
TNM.
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was compared to each other image in the dataset using either the GED or TNM approaches mentioned
above. The measure values were then sorted and the image category information was used to calculate
precision and recall. This process was then repeated for each image in the dataset. Finally, precision
and recall values were averaged across each category and the results are giving in Figures2 & 3 & 4.
Similarly, the results reported in Tables 1 & 2 & 3 represent the values obtained for the top 4, top 20
and top 4 images, respectively, in each category. Note, this process consisted of 210 comparisons for
the Tarragon dataset, 500,500 comparisons for SIMPLIcity and 528 comparisons for the Palmprint.

Given this information, some interesting observations about the results can be made. Begining
with Tables 1 & 2 notice that the TNM results are al quite similar to the GED. With respect to the
original TNM (using only vertex information) and the Tarragona dataset, TNM precision values are
lower than both GED and GED (PTR)®. Recall values are closer than precision, but still all lower than
GED. The TNM using the graph edge information performs better, where precision and recall values
tie GED in East Park and Residence categories. The better performance makes sense since more
of the original, domain-specific graph information is used. With respect to the SIMPLIcity dataset,
TNM out performs GED in the Africans, Buildings, and Food categories. As before, GED performs
better in the majority of cases, but the results are close. With respect to Figures 2 & 3, it is harder to
make a direct comparison. In general, Figure 2 shows that TNM produces comparable results to the
GED, where GED performs dlightly better. On the other hand, from Figure 3, TNM performs better
in the Beaches, Buildings, Elephants, and Mountains categories, while GED performs better in Buses,
Horses, and Food categories. Both measures perform comparably in categories Africans, Dinosaurs,
and Flowers. Table 3 shows the results for the Palmprint dataset for both TNM and GED; where GED
performs dlightly better than TNM in first category. On the contrary, the TNM performs better than
GED in second and third category and the GED & the TNM tie results for fourth category. The overall
average precision and recall represents that the TNM performs better than the GED with much less
computational time for single comparison. Figure 4 shows the results for both TNM and GED are
very close, however, the TNM performs better in most of the categories.

The average time per graph comparison for each approach are given in the bottom of Tables1 & 2
& 3. Notice, as expected, the runtime for the TNM approach is less than the GED approach in all
cases. Further, the TNM(Qriginal) approach is much faster than the TNM (edges) approach since the
graphs produced by the perceptual tolerance relation with e = 1.5 contain less edges than the original
Tarragona graphs. Likewise, the timing results presented in Table 3 shows that computational time
increases with the increase in size of graph which in this case is much less for the TNM than the
GED. Finally, these timing results were generated using Matlab version R2012a on a system running
Windows 10 with an Intel i5-4200U CPU @ 1.6GHZ and 4GB or memory.

5. Conclusion

This article presented a new application of the TNM for use as a graph comparison measure, and
demonstrated it is a competitive alternative to the popular and well-known GED. Graph-based results
were presented with respect to the original TNM definition (using only vertices in the calculation) as

8Recdll, GED (PTR) uses the same edges as used in the TNM calculation (rather than the edges that are present in the
dataset).
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well as anew approach that also uses graph edge information. The results demonstrate that both mea-
sures produced comparable precision and recall values. Further, the TNM approach is advantageous
in that it is not dependent on costs, i.e. cost functions must be defined for each edit operation in the
GED, whereas the TNM approach is only dependent on ¢ from Eqg. 1. Additionally, the runtime com-
plexity of the TNM was shown to be less than that of GED, which is important as graph sizes grow
ever larger. Future work will consist of exploration into learning optimal ¢ values for a given problem
domain, and applications of these methods to other datasets since results suggest TNM may perform
as good (or better) than GED in many real world applications.
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