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ABSTRACT

Persistent homology is a powerful tool in topological data analysis (TDA) to
compute, study and encode efficiently multi-scale topological features and is being
increasingly used in digital image classification. The topological features represent
number of connected components, cycles, and voids that describe the shape of data.
Persistent homology extracts the birth and death of these topological features through
a filtration process. The lifespan of these features can represented using persistent
diagrams (topological signatures). Cubical homology is a more efficient method for
extracting topological features from a 2D image and uses a collection of cubes to com-
pute the homology, which fits the digital image structure of grids. In this research,
we propose a cubical homology-based algorithm for extracting topological features
from 2D images to generate their topological signatures. Additionally, we propose a
score, which measures the significance of each of the sub-simplices in terms of persis-
tence. Also, gray level co-occurrence matrix (GLCM) and contrast limited adapting
histogram equalization (CLAHE) are used as a supplementary method for extracting
features. Machine learning techniques are then employed to classify images using
the topological signatures. Among the eight tested algorithms with six published
image datasets with varying pixel sizes, classes, and distributions, our experiments
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demonstrate that cubical homology-based machine learning with deep residual net-
work (ResNet 1D) and Light Gradient Boosting Machine (lightGBM) shows promise
with the extracted topological features.

Keywords: Cubical complex, Cubical homology, Image classification, Machine learn-
ing, Persistent homology
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Chapter 1

Introduction

The origin of topological data analysis (TDA) and persistent homology can be traced
back to H. Edelsbrunner, D. Letscher and A. Zomorodian [23, 24]. More recently,
TDA has emerged as a growing field in applied algebraic topology to infer relevant
features for complex data [12]. One of the fundamental methods in computational
topology is persistent homology [70, 10], which is a powerful tool to compute, study
and encode efficiently multiscale topological features of nested families of simplicial
complexes and topological spaces [22]. Simplices are building blocks used to study
the shape of data and a simplicial complex is its higher level counterpart. The process
of shape construction is commonly referred to as a filtration [71]. There are many
forms of filtrations and a good survey is presented in [2]. Persistent homology ex-
tracts the birth and death of topological features throughout a filtration built from a
dataset [28]. In other words, persistent homology is a concise summary representation
of topological features in data and is represented in a persistent diagram or barcode.
This is important since it tracks changes and makes it possible to analyze data at
multiple scales since data structure associated with topological features is a multi-
set which makes learning harder. Persistent diagrams are then mapped into metric
spaces with additional structure useful for machine learning tasks [1]. Application
of TDA in machine learning (also known as TDA pipeline) in several fields is well-
documented [12]. The TDA pipeline consists of using data (e.g., images, signals) as
input and then filtration operations are applied to obtain persistence diagrams. Sub-
sequently, ML methods such as support vector machines, tree classifiers are applied
to the persistent diagrams.

In [28], a random forest classifier was used to classify the well-known MNIST
image dataset using the voxel structure to obtain topological features. However, it
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has been shown that mapping of topological signatures to a representation necessary
for machine learning is pre-defined which is a limitation [32]. The success of deep
learning [43] in computer vision problems, has led to its use in deep networks that
can handle barcodes [33]. Hofer et. al. used a persistence diagram as a topologi-
cal signature and compute a parametrized projection from the persistence diagram,
then leverage it during training of the network. The output of this process is stable
when using the 1-Wasserstein distance. Classification of 2D object shapes and social
network graphs were successfully demonstrated by the authors. In [11], persistent
diagrams were used with neural network classifiers in graph classification problems.
Persistent barcodes were used to classify brain activation patterns in rs-fMRI video
frames [19, 20]. The topological and geometric structures underlying data are often
represented as point clouds. More recently, multiclass classification of point cloud
datasets was discussed in [40].

However, it has been shown that the implementations of persistent homology
(of simplicial complexes) is inefficient for computer vision since it requires excessive
computational resources [3] due to the formulations based on triangulations. To
mitigate the problem of complexity, cubical homology was introduced which allows
direct application of its structure [41, 63]. Simply, cubical homology uses a collection
of cubes to compute the homology, which fits the digital image structure of grids.
Since there is neither skeletonization nor triangulation in the computation of cubical
homology, it has advantages in the fast segmentation of images for extracting features.
This aspect of cubical homology is the motivation for its application in the feature
engineering process of this thesis.

1.1 Problem Definition and Proposed Approach
Since machine learning models rely on accurate feature representations, multiscale
representation of features are becoming increasingly important in applications involv-
ing computer vision and image analysis. Persistence homology is able to bridge the
gap between geometry and topology and persistent-homology based machine learning
models have been used in various areas including image classification and analysis [60].
In this thesis, we address the problem of construction of feature vectors based on cu-
bical homology for different types of 2D images with varying pixel sizes, classes and
distributions. We then study the effect of these topological features on selected ma-
chine learning models. The comparative study is meant to give insights into the
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application of cubical homology for classification of different types of images as well
as the computational challenges with the topological signatures for the selected image
datasets. Fig. 1.1 illustrates our proposed approach. The first two steps form the core
of this thesis, namely, the generation of 1D topological signatures using a threshold
score. This score allows us to filter out low persistence features (or noise).

Figure 1.1: Classification pipeline

1.2 Contributions
Our contributions are as follows:

• We propose a cubical homology-based algorithm for extracting topological fea-
tures from 2D images to generate their topological signatures.

• We propose a score, which is used as measure of the significance of the sub-
complex calculated from the persistence diagram. Also, we use gray level co-
occurrence matrix (GLCM) and contrast limited adapting histogram equaliza-
tion (CLAHE) for getting additional image features, in an effort to improve the
classification performance.
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• We provide a comparative study of eight well-known machine learning algo-
rithms using the extracted topological features from six different published im-
age datasets.

1.3 Thesis Layout
The rest of this thesis organized as follows:

Chapter 2 provides a background of other topological approaches in image and
graph classification problems.

Chapter 3 introduces the mathematical framework for understanding persistent ho-
mology. Basic definitions for graph theory, simplicial homology, and cubical
homology are given.

Chapter 4 discusses the process of feature engineering. Specifically, we introduce
the notion of score in this chapter.

Chapter 5 introduces six image datasets which is used as benchmark for evaluating
the performance of proposed method.

Chapter 6 introduces machine learning algorithms briefly. Also, we provide the
evaluation criteria, and discuss the classification results.

Chapter 7 concludes the thesis, summarizes the work done and provides possible
future research directions.
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Chapter 2

Related Works

Topological approach is widely used in machine learning for image classification and
graph classification. In particular, persistence diagrams (PD) are common tools to
extract features and are used in a number of different ways. In this chapter, we
discuss a few papers that use persistence diagrams in image classification as well as
in science, to model and analyze geometric structures.

2.1 Direct Use of Persistence Diagrams

2.1.1 Analyzing force networks

In [42], PDs are used in quantifying differences between force networks derived from
particulate systems. Here, force networks are designed to model interactions between
particles typically derived from either experiments or simulations. For the problem of
analyzing network, it is important to find a connection between particles and back-
bone of the force chains. Such networks are characterized by their critical parameters,
which are difficult to use directly because these parameters contain important geo-
metric structures of force distributions between particles. PDs of the network are able
to extract concise information of network components using Betti numbers. PDs de-
fine a set of points FN(f, θ) that exceeds the threshold θ of the force field f . The
threshold moves from high to low to calculate persistent homology thereby revealing
the geometric features.
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2.1.2 Analyzing Molecular Dynamics

Persistence diagrams are also used in the case of analyzing polyatomic structure such
as molecular liquid, granular materials, and metallic glasses. The authors in [50]
discuss the relationship between medium-range order and short-range order of amor-
phous materials. Here, PDs are used to extract structures of these materials such
as size and shape of crystalline materials. In this paper, topological properties(birth
and death) are computed from a persistence diagram A, where Dn(A) is constructed
which represents a collection of pairs (birth, death) of the many body atomic struc-
ture in the glass. A normalized distribution for Dn is then calculated. PDs have
an advantage because they reduce the size of data by summarizing their geometric
features.

2.2 Machine Learning from Persistence Diagrams

2.2.1 Classical Methods

In [21], microvascular patterns in endoscopy images can be categorized as regular
and irregular. Furthermore, there are three types in regular surface of microvascular;
oval, tubular, and villous. To classify these patterns, persistent homology plays a
important role by deriving topological features with persistence diagrams. In this
paper, per q-th norm of p-th diagram is computed as,

Nq =

[ ∑
A∈Dgmp(f)

pers(A)q
] 1

q

,

where Dgmp(f) denotes the p-th diagram of f and pers(A) is persistence of a point A
in Dgmp(f). Since Nq is a norm of p-th Betti number with restriction (or threshold) s,
it will get p-th Betti number of Ms where M is the rectangle covered by pixels. Then,
M is mapped to R by signed distance function. A naive Bayesian learning method
which combines the results of several Adaboost classifiers is then used to classify the
images. The analysis also concludes that only a few of geometric and topological
features are responsible for a large majority of decisions.
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Figure 2.1: The superposition of two persistence diagrams. Figure retrieved from [21]

2.2.2 Multi-Scale Kernels for Machine Learning

The authors in [61] point out that persistence diagrams are hard to use directly in
a class of learning techniques such as Support Vector Machines or Principal Com-
ponent Analysis which use kernel functions to redefine the Hilbert space structure.
This paper introduces a multi-scale kernel for persistence diagrams which is based on
scale space theory [34]. This kernel is defined on L2-valued feature map and satisfies
Lipschitz continuous which implies that it maintains the stability property of persis-
tent homology. (See Figure 2.2. ) The focus is on stability of persistent homology
since any occurrence of small changes in the input, affects both the 1-Wasserstein
distance and persistent diagrams. Experiments on two benchmark datasets for 3D
shape classification/retrieval and texture recognition are discussed.

Figure 2.2: Construction of kernel from sample data. Figure retrieved from [61].
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2.2.3 Filtration Methods for the TDA pipleline

Among the multiple filtration methods for computing persistent homology, some fil-
tration methods including Vietoris-Rips filtration regard pixels as point cloud and
others use the structure of pixels directly [28]. This work discuss how to use topo-
logical features with different filtration methods in the context of the MNIST digits
image dataset using the random forest classifier (See Figure 2.3).

Figure 2.3: Grayscale image obtained from different filtration methods. Figure re-
trieved from [28]

2.2.4 Deep Learning Methods

Persistent homology is widely used in topological data analysis, however, its struc-
ture of a multiset makes learning harder. Hofer et. al [33] construct a kernel for a
persistence diagram as a topological signature. The characteristics of the kernel is
that it satisfies some properties that are Lipschitz continuous and differentiable. A
parametrized projection from the persistence diagram is computed, and then lever-
aged during the training of the deep network. The output of this process is stable
when it comes to the 1-Wasserstein distance. This is demonstrated in the classification
of 2D object shapes and social network graphs.
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2.2.5 Persistence as Feature Vector

Although image classification tasks involve grayscaling of images in preprocessing, it
is possible to utilize the RGB channel without grayscaling. In [17], RGB intensity
values of each pixel of an image is mapped to the point cloud P ∈ R5 and then
deriving a feature vector. Computing and arranging the persistence of point cloud
data by descending order makes it possible to understand persistence of features(See
Figure 2.4). The extracted topological features and the traditional image processing
features are used in both vector based supervised classification and deep network
based classification experiments on the CIFAR-10 image data set.

Figure 2.4: Point cloud and its persistence diagrams. Figure retrieved from [17]

2.2.6 Betti Curves for classification of chaotic time series
datasets

In [67], the authors apply topological data analysis to the classification of time series
data. A 1D convolutional neural network is used where the input data is a Betti
sequence. Persistent homology is used to generate Betti sequences from what are
known as quasi-attractors. A quasi-attractor represents the set of delay vectors and
encodes transition rules of the underlying system.

2.3 Other Approaches

2.3.1 Vector Summaries of Persistence Diagram

Although persistent homology is useful tool to identify geometric signatures in many
cases, it is hard to handle vector spaces in terms of distances [7]. Vector summaries
of persistence diagram is a technique that transforms a persistence diagram into
vectors and summarizes a function by its minimum through a pooling technique.
The authors present a novel pooling within the bag-of-words approach that shows
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significant improvement in shape classification and recognition problems with the
Non-Rigid 3D Human Models SHREC 2014 dataset.

2.3.2 Betti Numbers in resting state brain network analysis

In topological data analysis, Betti numbers represent counts of the number of homol-
ogy groups such as points, cycles, and so on. In [15], similarity of brain networks
of twins are measured using Betti numbers. Specifically, the first Betti number rep-
resents the count of the number of cycles and is significant in network analysis.
Figure 2.5 is an example of network, by the authors. The significance of the number
of cycles is evaluated using the Kolmogorov–Smirnov (KS) distance.

Figure 2.5: Example of network and its topological analysis. Figure retrieved from [15]

2.3.3 Betti Numbers in resting state (rs-fMRI) videos

In [19, 20] persistent barcodes were used to visualize brain activation patterns in
resting state functional magnetic resonance imaging(rs-fMRI) video frames. The au-
thors use a geometric Betti number that counts the total number of connected cycles
forming a vortex (nested, usually non concentric, connected cycles) derived from the
triangulation of brain activation regions. The vortexes correspond to the changing
activation areas in the video frames. These activation areas represent intrinsic brain
activity that contains reproducible temporal sequences (lag structures). The authors
found that persistent, recurring blood oxygen level dependent (BOLD) signals in
triangulated rs-fMRI video frames display previously undetected topological findings,
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Chapter 3

Mathematical Foundations

In this chapter, we give basic definitions for simplicial, cubical and persistent homol-
ogy. A simplicial complex is a space or an object that is built from a union of points,
edges, triangles, tetrahedra, and higher-dimensional polytopes. Homology theory is
in the domain of algebraic topology related to the connectivity in multi-dimensional
shapes [3].

3.1 Simplicial Homology
Graphs are mathematical structures used to study pairwise relationships between
objects and entities.

Definition 1. A graph [6] is a pair of sets, G = (V, E), where V is the set of
vertices (or nodes) and E is a set of edges.

Let S be a subset of a group G. Then the subgroup generated by S, denoted ⟨S⟩,
is the subgroup of all elements of G that can be expressed as the finite operation
of elements in S and their inverses. For example, the set of all integers, Z can be
expressed by operation of elements {1} so Z is the subgroup generated by {1}.

Definition 2. A rank [6] of a group G is the size of the smallest subset that
generates G.

For instance, since Z is the subgroup generated by {1}, rank(Z)=1.

Definition 3. A simplex complex [62] on a set V is a family of arbitrary-cardinality
subsets of V closed under the subset operation, which means if a set S is in the family,
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all subsets of S are also in the family. An element of the family is called a simplex or
face.

Definition 4. Also, p − simplex [62] can be defined to the convex hull of p + 1

affinely independent points x0, x1, · · · , xp ∈ IRd.

For example, in a graph, 0-simplex is a point, 1-simplex is an edge, 2-simplex is a
triangle, 3-simplex is a tetrahedron and so on. (See Figure 3.1. [26])

Figure 3.1: Examples of p-simplex for p = 0, 1, 2, 3 in tetrahedron. A 0-simplex is a
point, a 1-simplex is an edge which convex hull of two points, a 2-simplex is a triangle
which convex hull of three distinct points and a 3-simplex is tetrahedron where the
convex hull of four points.

3.1.1 Chain, Boundary, and Cycle

To extend simplicial homology to persistent homology, the notion of chain, boundary,
and cycle is necessary [54].

Definition 5. A p-chain [62] is a subset of p-simplices in a simplicial complex K.
Assume K is a triangle. Then, a 1-chain is a subset of 1-simplices, in other words, a
subset of the three edges.

Definition 6. A boundary [62], generally denoted ∂, of p-simplex is the set of
(p− 1)-simplices faces.

For example, a triangle is a 2-simplex, so the boundary of a triangle is a set of 1-
simplices which are the edges. Therefore, the boundary of the triangle is the three
edges.

Definition 7. A cycle [62] can be defined using the definitions of chain and
boundary. A p-cycle c is a p-chain with empty boundary. Put it simply, it is a path
where the starting point and destination point is the same.
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3.2 Cubical Homology
Cubical homology [41] is efficient since it allows direct use of the cubical structure of
the image whereas simplicial theory requires increasing the complexity of data. While
the simplicial homology is built with the triangle and its higher-dimensional structure
such as tetrahedron, cubical homology consists of cubes. In cubical homology, each
cube has a unit size and the n-cube represents its dimension. For example, 0-cubes
are points, 1-cubes are lines with unit length, 2-cubes are unit squares, and so on.

Definition 8. 0-cubes [41, 35, 36] can be defined as an interval,

[m] = [m, m], m ∈ Z,

which generate subsets I ∈ R, such that

I = [m, m+ 1], m ∈ Z.

Therefore, I is called a 1-cube, or elementary interval.

Definition 9. A n-cube [41, 35, 36] can be expressed as a product of elementary
intervals as

Q = I1 × I2 × · · · × In ⊆ Rn,

where Q indicates n-cube, Ii(i = 1, 2, · · · , n) is an elementary interval.

A d-dimensional image is a map I : I ⊆ Zd → R.

Definition 10. A pixel [41, 35, 36] can be defined an element v ∈ I, where d = 2.
If d > 2, v is called a voxel.

Definition 11. [41, 35, 36] Let I(v) be intensity or greyscale value. Also, in the
case of binary images, we consider a map B : I ⊆ Zd → {0, 1}.

A voxel is represented by a d-cube and with all of its faces added, we have

I ′(σ) := min
σ face of τ

I(τ).

Let K be the cubical complex built from the image I, and let

Ki := {σ ∈ K|I ′(σ) ≤ i},
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be the i-th sublevel set of K. Then, the set {Ki}i∈Im(I) defines a filtration of the
cubical complexes. So, the pipeline to filtration from image with cubical complex is
as follows:

Image → Cubical complex → Sublevel sets → Filtration

Also, chain, boundary, and cycle in cubical homology can be defined by the same
manner as in section 3.1.1.

3.3 Persistent Homology
In topology, there are subcomplices of complex K and cubes are created (birth) and
destroyed (death) by filtration. Assume that Ki (0 ≤ i ≤, i ∈ Z) is a subcomplex of
filtered complex K such that

∅ ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Kn = K,

and Z i
k, Bi

k are its corresponding cycle group and boundary group.

Definition 12. Persistent homology [25] can be defined as

Hk = Zk/Bk (3.1)

Definition 13. A persistence [25] is a lifetime of these attributes based on the
filtration method used.

One can plot the birth and death times of the topological features as a barcode
also known as persistence barcode shown in Figure 3.2. This diagram graphically
represents the topological signature of the data. Illustration of persistence is useful
when detecting change in terms of topology and geometry, which plays a crucial role
in supervised machine learning [46].



15

Figure 3.2: An example of persistent homology for grayscale image. (a) A given
image, (b) A matrix of gray level of given image, (c) the filtered cubical complex of
the image, (d) the persistence barcode according to (c). This figure is taken from [54]
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Chapter 4

Feature Engineering

In this chapter, we describe the feature engineering process that was used in this
thesis. The main purpose of this process is to obtain a 1-dimensional array from each
image in the dataset. Each point from the persistence diagram plays a significant
role in the extraction of the topological features. Also, the Gray level co-occurrence
matrix (GLCM) supports these topological features as additional signatures. Because
every image dataset is not identical in size and some images have very high resolu-
tion, resizing every image to 200x200 and converting them to gray-scale guarantees a
relatively constant duration of extraction (about 4 seconds) regardless of its original
size.

Algorithm 1 gives the method for extracting topological features from a dataset.
In this algorithm, β0 and β1 are Betti numbers derived from Eqn. 3.1 where the
dimension of ith homology is called the ith Betti number of K. β0 gives the number
of connected components and β1 gives the number of holes. Betti numbers represent
the count of the number of topological features. The number of these features in each
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dimension is captured by the corresponding Betti number.
Algorithm 1: Extraction of Topological Features
1 N ← number of dataset;
2 for i = 1, 2, · · · , N do
3 img ← load ith image from dataset;
4 img ← resize img to (200, 200) and convert to grayscale;
5 PD0 ← set of points of β0 in persistence diagram of img with cubical

complex;
6 PD1 ← set of points of β1 in persistence diagram of img with cubical

complex;
7 PD0 ← sort PD0 in descending order of persistence;
8 PD1 ← sort PD1 in descending order of persistence;
9 di ← project each point in PD0 to [0, 1];

10 di ← di + project each point in PD1 to [1, 2];
11 fimg ← adapt CLAHE filter to img;
12 fPD0 ← set of points of β0 in persistence diagram of fimg with cubical

complex;
13 fPD1 ← set of points of β1 in persistence diagram of fimg with cubical

complex;
14 fPD0 ← sort fPD0 in descending order of persistence;
15 fPD1 ← sort fPD1 in descending order of persistence;
16 di ← di + project each point in fPD0 to [0, 1];
17 di ← di + project each point in fPD1 to [1, 2];
18 di ← di + convert img to GLCM with distances (1, 2, 3), directions (0◦,

45◦, 90◦, 135◦), and properties (energy, homogeneity);
Output: D(d1, d2, · · · , dN)

4.1 Projection of Persistence Diagrams
After filtration by cubical complex, we are ready to construct a persistence diagram.
The dth persistence diagram, Dd contains all of the d-dimensional topological infor-
mation. These are series of points with a pair of (birth, death), where birth indicates
the time at which the topological features were created and the death gives the time
at which these features are destroyed. From here, persistence is defined using the



18

definition of birth and death as,

pers(birth, death) := death− birth, where (birth, death) ∈ Dd. (4.1)

Then, a low-persistence feature is treated as having a low importance, or ’noise’
whereas high-persistence features are regarded as ’real’ features [25]. However, using
persistence as a result of projection of a topological feature to a 1-dimensional value
is inadequate, because it is impossible to distinguish the features which have the same
persistence but different values for birth. Therefore, we propose a metric (score ),
to compensate for this limitation of persistence as

scored(birth, death) :=


0 if persistence < threshold

d+

(
esin

death
255·2 π − 1

e− 1

)3

−

(
esin

birth
255·2π − 1

e− 1

)3

if persistence ≥ threshold

(4.2)

A threshold is a value that allows us to ignore noise. Therefore, the score takes
into account not only the persistence, but also other aspects such as dimension, birth,
and death of topological features.

4.2 Contrast Limited Adapting Histogram Equal-
ization (CLAHE)

When pixel values are concentrated in a narrow range, it is hard to perceive features
visually. Histogram equalization makes the distribution of pixel values in the image
balanced, thereby enhancing the image. However, this method often results in de-
grading the content of the image and also amplifying the noise. Therefore, it produces
undesirable results. Contrast limited adapting histogram equalization (CLAHE) is
a well-known method for compensating the weakness of histogram equalization by
dividing an image into small sized blocks and performing histogram equalization for
each block [59]. After completing histogram equalization in all blocks, bi-linear in-
terpolation makes the boundary of the tiles (blocks) smooth. In this thesis, we apply
CLAHE to the extraction of topological features process in an effort to finding fea-
tures efficiently. An illustration of the CLAHE method on the APTOS data is given
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(a) (b) (c) (d)

Figure 4.1: Comparison of the original image and the CLAHE filtered image (a)
Original image. (b) Persistence diagram of the original image (a). (c) CLAHE
Filtered image, (d) Persistence diagram of the filtered image (c).

in Figure 4.1.
For extracting textual features, we use the well-known Gray Level Co-occurrence

Matrix (GLCM) [49]. We used three distances (1, 2, 3) and four directions (0◦, 45◦,
90◦, 135◦) to get the GLCM features. From each of co-occurrence matrices, two global
statistics were extracted: energy and homogeneity resulting in 3× 4× 2 = 24 textual
features for each image.

Table 4.1 gives a sample list of extracted features from the APTOS dataset. From
the CLAHE filtered image, 144 features are extracted for each dimension. Similary,
100 topological features for each dimension and 24 GLCM features are extracted from
the original-gray level image.
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Chapter 5

Image Datasets

In this chapter, we give a brief description of the six published image datasets used
in this work, which are collected from Mendelay, Tensorflow Dataset, and Kaggle
competition. Also, Table 5.1 gives summarized information of datasets.

5.1 Concrete Crack Images for Classification
The concrete crack images for classification dataset [55], contains a total of 40,000
images where each image consists of 227×227 pixels. It was collected from the METU
campus building and consists of 2 states; 20,000 images of positive crack and 20,000
images of negative crack. A crack on an outer wall occurs as time goes on or due
to natural aging. It is important to detect these cracks in terms of evaluating and
predicting structural deterioration and reliability of buildings. Samples of the two
types of images are shown in Figure 5.1.

5.2 APTOS Blindness Detection
APTOS blindness detection dataset is a set of retina images taken by fundus pho-
tography for detecting and preventing diabetic retinopathy from causing blindness1.
This dataset has 3,662 images and consists of 1,805 images diagnosed as non-diabetic
retinopathy and 1,857 images diagnosed as diabetic retinopathy as shown in Fig-
ure 5.2. Figure 5.3 shows the distribution of examples in the four classes using a
severity range from 1 to 4.

1https://www.kaggle.com/c/aptos2019-blindness-detection/overview
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(a) Negative crack image (b) Positive crack image

Figure 5.1: Sample images of the Concrete Crack Dataset.

(a) Non diabetic retinopathy (b) Diabetic retinopathy

Figure 5.2: Sample images of the APTOS dataset.

5.3 Pest Classification in Mango Farms
Pest classification in Mango farms dataset [44] is a collection of 46,500 images
of mango leaves affected by 15 different types of pests and one normal (unaffected)
mango leaf as shown in Figure 5.5. Some of these pests can be detected visually.
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Figure 5.3: Data distribution for the APTOS 2019 Blindness Detection dataset.

Figure 5.4 shows the data distribution of examples in the 15 classes of pests and one
normal class.

5.4 Indian Fruits
The Indian fruits dataset [5] contains 23,848 images that cover five popular fruits
in India; apple, orange, mango, pomegranate, and tomato. This dataset includes
variation of each fruit resulting in 40 classes. This dataset was already separated
into training and testing sets as shown in Figure 5.6. Note, that this dataset has an
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Figure 5.4: Data distribution for Pest classification in Mango farms dataset.

imbalanced class distribution.
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(a) normal (b) apoderus javanicus (c) aulacaspis tubercularis (d) ceroplastes rubens

(e) cisaberoptus kenyae (f) dappula tertia (g) dialeuropora decempuncta (h) erosomyia sp

(i) icerya seychellarum (j) ischnaspis longirostris (k) mictis longicornis (l) neomelicharia sparsa

(m) orthaga euadrusalis (n) procontarinia matteiana (o) procontarinia rubus (p) valanga nigricornis

Figure 5.5: Sample images of Pest classification in Mango farms.

5.5 Colorectal Histology
The colorectal histology dataset [37] contains 5,000 histological images of different
tissue types of colorectal cancer. It consists of 8 classes of tissue types with 625 images
for each class as shown in Figure 5.7.

5.6 Fashion MNIST
The Fashion MNIST dataset [69] is a collection 60,000 training images of fashion
products as shown in Figure 5.8. It consists of 28 × 28 grayscale images labeled by
one of 10 classes. Since the dataset contains an equal number of images for each class,
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(a) Training (b) Testing

Figure 5.6: Data distribution for the Indian Fruits dataset.

there are 6,000 test images in each class resulting in a balanced dataset.
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Figure 5.7: Example of colorectal cancer histology. (a) tumour epithelium, (b) simple
stroma, (c) complex stroma, (d) immune cell conglomerates, (e) debris and mucus,
(f) mucosal glands, (g) adipose tissue, (h) background

Table 5.1 gives the dataset characteristics in terms of various image datasets used in
this work. Also, we provide the preprocessing time per each image. For example, the
feature extraction time for the concrete dataset was 5 hours 12 minutes.
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Figure 5.8: Example of the Fashion MNIST dataset

Table 5.1: Datasets details with preprocessing times

Dataset Size Num of classes Pixel Size Balanced time in secs/image
Concrete 40,000 2 227×227 Yes 0.4713
Mangopest 46,000 16 from 500×333 to 1280×853 No 0.5394
Indian fruits 23,848 40 100×100 No 0.4422
Fashion MNIST 60,000 10 28×28 Yes 0.4297
APTOS 3,662 5 227×227 No 0.5393
Colorectal histology 5,000 8 150×150 Yes 0.3218
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Chapter 6

Machine Learning Implementations
and Results

6.1 Brief Description
In this thesis, the following machine learning algorithms were implemented: Deep
Residual Network, decision tree, random forest, k-nearest neighbours, support vec-
tor machine, XGBoost, and light GBM.

6.1.1 Deep Residual Network (ResNet)

Deep Residual Network suggested by [31] is an ensemble of VGG-19 [47], plain net-
work, and residual network as a solution to the network depth-accuracy degradation
problem. This is done by a residual learning framework which is a feedforward net-
work with a shortcut. Multi-scale 1D ResNet is used in this thesis where multiscale
refers to flexible convolutional kernels rather than flexible strides [45]. The authors
use different sizes of kernels so that the network can learn features from original sig-
nals with different views with multiple scales.The structure of the model is described
in Figure 6.1. The 1D ResNet model [45] consists of a number of subblock of the basic
CNN blocks. A basic CNN block computes batch normalization after convolution for
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Figure 6.1: Structure of the Multi scale 1D ResNet [45]

input as,

y = W ⊗ x+ b

s = BN(y)

h = ReLU(s)

(6.1)

where ⊗ denotes convolution operator and BN is a batch normalization operator.
Also, stacking two basic CNN blocks forms subblock of the basic CNN blocks as,

h1 = Basic(x)
h2 = Basic(h1)

y = h2 + x

ĥ = ReLU(y)

(6.2)

where Basic operator denotes the basic block as in 6.1. Following these process, it is
possible to construct multiple subblocks of CNN with different kernel sizes.

For our experiments, for training the network, 100 epochs was used with a 0.01
learning rate. In addition, we used an early stopping option if there is no improvement
in the validation loss after 20 epochs. Therefore, a number of epochs for each training
experiment is different.
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6.1.2 Classification and Regression Tree

Typically, the decision tree learns from top to down recursively, choosing the best
attribute to construct the tree by partitioning the training data. There are several
versions of decision tree algorithms such as ID3, C4.5, and CART [53, 29]. The
Classification and Regression Tree algorithm (CART) implementation was used in
this study with the following parameters: Gini index as the criterion, best as splitter
and unlimited depth.

6.1.3 Random Forest

Random forest is a widely used learning method and is an ensemble of multiple
decision trees where the training set is drawn at random from distributions sampled
independently and meant to reduce the impact of overfitting with a single tree [8].
200 trees in the forest were used with gini as a criterion, and unlimited depth so
nodes can be expanded until all leaves are pure.

6.1.4 k-Nearest Neighbors (kNN)

k−nearest neighbors is a distance-based non-parametric supervised learning [4] used
for classification and regression problems. However, since it is sensitive to data with
large dimensions, a proper choice of k becomes important. In our experiments, we
use k = 5 and Minkowski as a metric.

6.1.5 Support Vector Machines (SVM)

Support vector machines map input vectors into a hyperplane which implies high-
dimensional space and construct an optimal separating hyperplane [68, 16]. When
the hyperplane splits the data, it computes the distance, margin, between the hyper-
plane and its nearest attribute. SVM implements kernel functions which allows for
attributes with higher dimensions to be separated linearly. Besides the linear case,
SVM’s based on polynomials, splines, radial basis function networks and multilayer
perceptrons [64], have been successfully applied in several areas for example in life-
sciences [52]. Radial bias function (rbf), and a regularization parameter C = 10 was
used in our experiments.
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6.1.6 Gradient Boosting Machine (XGBoost, lightGBM)

While the random forest method is an ensemble bagging method using decision trees,
gradient boosting machine (GBM) uses boosting [27] to train the model (decision
trees) by adding new weak models consecutively with the negative gradient from the
loss function and is one of the most successful machine learning models in recent
years. XGBoost, extreme gradient boosting [14, 13], is widely applied in many fields
due to its accuracy and rapid learning compare to the original GBM. Both XGBoost
and lightGBM [39] are advanced models of gradient boosting machines. The main
idea of this model is to make accurate predictions by combining some weak models
so that it makes the model robust to outliers and flexible to customize [51]. XGBoost
is a histogram-based algorithm that uses bins to split the features into a discrete,
therefore, it is more efficient than the pre-sorted method of the conventional GBM.
lightGBM combines two techniques: Gradient-based One-Side Sampling and Exclu-
sive Feature Bundling [57]. Therefore, the main difference between LightGBM and
XGBoost is that LightGBM uses a leaf-wise growth algorithm, whereas XGBoost is a
level-wise growth algorithm. Because the leaf-wise growth algorithm compares nodes
and uses leaves of higher gradient only, LightGBM is much faster than XGBoost.
Both of algorithms utilize 1000 estimators (n_estimators = 1000) with a base score
of 0.5.

6.2 Implementation details
In this thesis, a variety of well-known supervised learning algorithms using pack-
ages from the Python ecosystem supported by scikit-learn [9] were used. All tests
are conducted using a desktop workstation with Intel i7-9700K at 3.6 GHz, 8 CPU
cores, 16GB RAM and Gigabyte GeForce RTX 2020 GPU. To a large extent, the
implementation follows pipeline shown below:

Data Collection → Feature Engineering
→ Training the models → Evaluating the model performance

Data sets used for benchmarking were collected from various sources that in-
clude Mendelay, Tensorflow dataset, and Kaggle competition. Feature engineering
and learning algorithms were implemented with Python libraries: Gudhi [65, 18] for
calculating persistent homology, PyTorch [56] for modeling and execution of ResNet
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1D, and scikit-learn [58] for implementation of other machine learning algorithms.
Also, libraries such as NumPy [30] and pandas [48] were used for computing matrices
and analyzing the data structure.

6.2.1 Evaluation Criteria

The performance of the machine learning models was evaluated using accuracy and
weighted F1 score. After the model is trained, predicted labels are compared with
true labels and these are separated as True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN).

Definition 14. Accuracy is the proportion of correctly predicted samples from all
samples.

Accuracy =
TP + TN

TP + FP + TN + FN
(6.3)

The accuracy metric gives us intuitive performance of model, however, this metric
has weakness in the case of imbalanced data. Therefore, we use F1 score.

Definition 15. Precision is the proportion of true positives from those samples
predicted as true

Precision =
TP

TP + FP
(6.4)

Definition 16. Recall is the proportion of true positive from those samples that
are actually true.

Recall =
TP

TP + FN
(6.5)

Definition 17. F1 score is the harmonic mean of the precision and recall.

F1 score = 2× Precision×Recall

Precision+Recall
(6.6)

When F1 score is calculated for each label, it is called weighted F1 score which is
suitable for imbalanced data. Since scikit-learn supports F1 score metric, we evaluate
the performance using this library.
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6.3 Analysis of results
Table 6.1 gives the accuracy, weighted F1 score, and run-time information for each
of the datasets. In addition, the accuracy score reported with the benchmark datasets
is given in the related works column. The best result is indicated in blue. We also
revisit the characteristics of the datasets which is summarized in Table 5.1. Over-
all, ResNet 1D outperforms other ML algorithms while different types of gradient
boosting machines show fairly good accuracy and weighted F1 score. When it comes
to the binary classification problems, as in the Concrete dataset, most of the algo-
rithms achieve 0.99 accuracy and F1 score. However, for the multi-class problem, the
performance of SVM and kNN gets worse, mainly due to the difficulty of parameter
setting. The proposed methods perform significantly worse than the benchmark with
the Fashion MNIST and APTOS datasets. This is because it is hard to obtain good
trainable topological signatures from the images that have low resolution even though
Fashion MNIST was resized. In the case of the APTOS dataset, imbalanced training
data is the main cause of poor results. Label 0 indicates the absence of diabetic
retinopathy and has the highest number of images (See Figure 5.3). However, the
presence of diabetic retinopathy can be found in 4 classes of which label 2 (severity
level 2.0) has the most number of cases. As a result, more than half of examples were
classified as label 2 (See Figure 6.2.(b)). Imbalanced data such as Mangopest and
Indian fruits were classified well because there were sufficient training examples. In
summary, the best classification performance using cubical homology with the ResNet
1D classifier was obtained for 3 out of 6 datasets. The topological signatures were
not helpful in the classification of the Fashion MNIST and APTOS images. With the
concrete dataset, the result is comparable with only slight difference (≤.005) with
the benchmark result. Confusion matrices that shows hard to classify types are given
in Figures 6.2, 6.3 and 6.4. It is noteworthy that for these datasets, application of
cubical homology has led to meaningful results in 4 out of 6 datasets.
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Table 6.1: Accuracy and weighted F1 score for each dataset.
ResNet 1D Decision Tree Gradient Boost LightGBM Random Forest SVM XGBoost kNN Related works

Accuracy 0.994 0.989 0.991 0.9945 0.993 0.956 0.9935 0.890 0.999 with CNN [55]
concrete Weighted F1 0.994 0.988 0.989 0.994 0.992 0.955 0.993 0.884

run time 465.87 9.08 252.15 11.25 7.63 214.05 59.15 1.93
Accuracy 0.931 0.764 0.681 0.898 0.869 0.474 0.889 0.666 0.76 with CNN[44]

mangopest Weighted F1 0.931 0.764 0.676 0.898 0.869 0.439 0.889 0.663
run time 760.94 17.17 5562.09 260.62 13.94 662.45 2041.22 2.33
Accuracy 1.000 0.9608 0.9608 0.9608 0.9608 0.7313 0.9608 0.676 0.999 SVM with deep features [5]

Indian fruits Weighted F1 score 1.000 0.9608 0.9608 0.9608 0.9608 0.7236 0.9608 0.656
run time 271.21 4.44 4265.09 82.55 4.13 72.73 451.65 1.18
Accuracy 0.7427 0.567 0.696 0.749 0.693 0.535 0.746 0.397 0.99 with CNN [38]

Fashion MNIST Weighted F1 0.7414 0.569 0.694 0.749 0.692 0.529 0.746 0.390
run time 467.12 8.36 1808.07 89.37 7.66 935.21 1108.20 3.38
Accuracy 0.7326 0.698 0.760 0.787 0.782 0.674 0.775 0.655 0.971 with CNN [66]

APTOS Weighted F1 0.667 0.695 0.737 0.771 0.757 0.591 0.764 0.637
run time 61.81 0.63 86.02 13.16 0.70 3.49 42.34 0.08
Accuracy 0.892 0.75 0.842 0.869 0.855 0.679 0.874 0.759 0.874 with SVM[37]

colorectal histology Weighted F1 0.89 0.727 0.832 0.850 0.834 0.686 0.843 0.743
run time 86.23 1.18 255.08 12.52 1.10 4.06 44.63 0.14
Accuracy 0.882±0.109 0.789±0.147 0.822±0.121 0.876±0.087 0.856±0.102 0.675±0.154 0.873±0.90 0.674±0.148

Weighted F1 0.871±0.125 0.784±0.148 0.815±0.124 0.870±0.091 0.851±0.105 0.654±0.164 0.866±0.092 0.662±0.147
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(a) Concrete (b) APTOS

(c) Fashion MNSIT (d) Colorectal histology

Figure 6.2: Confusion matrices with ResNet 1D
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Figure 6.3: Confusion matrix for the Mango pest dataset with ResNet 1D implemen-
tation
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Figure 6.4: Confusion matrix for the Indian fruits dataset with ResNet 1D implemen-
tation
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Chapter 7

Conclusion

In this thesis, we address the problem of construction of feature vectors based on
cubical homology for different types of 2D images with varying pixel sizes, classes
and distributions. We then study the effect of these topological features on selected
machine learning models. In the process of extracting features, we proposed a score
that filters out low peristence features and transforms the input image into a 1-
dimensional array. We implemented ResNet 1D, lightGBM, XGBoost, and other well-
known ML methods with the data obtained from our proposed feature engineering
process. We used the accuracy, weighted F1 score, and execution time to compare the
classification performance of 8 algorithms. Our experiments demonstrate that in three
out of six datasets, our proposed method outperforms the results from the benchmark
methods. However, with two datasets, the performance of our proposed method is
poor, due to low resolution and imbalanced dataset respectively. This work reveals
that application of cubical homology to image classification shows promise especially
with ResNetID deep learning algorithm.

7.1 Future Research Directions
Since conversion of input images to 2D data, is very time consuming, future work will
involve seeking more efficient ways to reduce the time for pre-processing.

• Score Although the proposed scoring method works well for most image datasets,
we may consider how this score handles the situation when an image has low-
resolution and data distribution is imbalanced. In addition, optimization of the
threshold value is also part of the future work.
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• Pre-processing The run time for pre-processing is significant for the entire
dataset. For example, in the worst case, the pre-processing time for the Fashion

MNIST dataset was 7.1 hours. Decreasing the pre-processing time will con-
tribute to the overall performance of the pipeline.

• Deep learning model ResNet 1D model is designed to use 512 features as
input. However, we get far less than 512 topological features for each image
so that the data contains dispensable features. Therefore, we may improve the
ResNet 1D model by designing the model to require fewer features.

• Feature Engineering Future work would also involve performing correlation
analysis to evaluate the importance of the derived features.
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Appendix A

Snapshots from the Experiments

In this appendix, we present some snapshots from our experiments especially feature
engineering in order to provide the reader a better illustration of our experimental
environment.

A.1 Feature Engineering

A.1.1 Score Metric

In Figure A.1 we give a snapshot from definition of the score which we proposed in
Section 4.1. To ignore noise, we set threshold for persistence less than 10. Also, for
convenient calculation, death will be 1 if a component persists infinitely.

A.1.2 Extraction of Topological Feature

Persistent homology is computed by GUDHI library and this library requires perseus
format for cubical homology. Perseus format consists of multiple lines of single number
where the first line indicates the dimension of the image (2 in this case), second &
third lines indicate number of cubes each dimension, and following lines are birth
time of each cube from bottom left to top right. Figure A.2 shows the process of
converting the image to perseus format. We regard each pixel as cube and its value
as its time of birth.

Figure A.3 shows part of the process of extraction of topological features. We
get p_data after computing persistent homology, score will be calculated for each
dimension of subcomplex. Then, we arrange scores in descending orders.
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Figure A.1: Definition of score function.

A.1.3 GLCM computation

In Figure A.4 we show a snapshot of GLCM computation. We define 3 distances, 4
angles, and 2 properties. Therefore, we get 24 GLCM features after computation.
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Figure A.2: Converting image to perseus format.

Figure A.3: Extraction of topological features.
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Figure A.4: Extraction of GLCM features.
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