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Abstract

3D signals have become widely popular in view of the advantage they provide via 3D rep-
resentations of data by employing a third spatial or temporal dimension to extend 2D signals.
Predominantly, 3D signals contain details inexistent in their 2D counterparts such as the depth
of an image, which is inherent to point clouds (PC), or the temporal evolution of an image,
which is inherent to time series data such as videos. Despite this advantage, 3D models are still
underexploited in machine learning (ML) compared to 2D signals, mainly due to data scarcity. In
this thesis, we exploit and determine the efficiency and influence of using both multispectral PCs
and time-series data with 3D convolutional neural networks (CNNs). We evaluate the performance
and utility of these networks and data in the context of two applications from the areas of digital
agriculture and medical imaging. In particular, multispectral PCs are investigated for the problem
of fusarium-head-blight (FHB) detection and total number of spikelets estimation, while time-series

echocardiography are investigated for the problem of myocardial infarction (MI) detection.

In the context of the digital agriculture application, two state-of-the-art datasets were created,
namely the UW-MRDC WHEAT-PLANT PC dataset, consisting of 216 multispectral PC of wheat
plants, and the UW-MRDC WHEAT-HEAD PC dataset, consisting of 80 multispectral PC of
wheat heads. Both dataset samples were acquired using a multispectral 3D scanner. Moreover, a
real-time parallel GPU-enabled preprocessing method, that runs 1065 times faster than its CPU
counterpart, was proposed to convert multispectral PCs into multispectral 3D images compatible
with CNNs. Also, the UW-MRDC WHEAT-PLANT PC dataset was used to develop novel and
efficient 3D CNNs for disease detection to automatically identify wheat infected with FHB from
multispectral 3D images of wheat plants. In addition, the influence of the multispectral information

on the detection performance was evaluated, and our results showed the dominance of the red,



green, and blue (RGB) colour channels over both the near-infra-red (NIR) channel and RGB
and NIR channels combined. Our best model for FHB detection in wheat plants achieved 100%
accuracy. Furthermore, the UW-MRDC WHEAT-HEAD PC dataset was used to develop unique
and efficient 3D CNNs for total number of spikelets estimation in multispectral 3D images of wheat
heads, in addition to adapting three benchmark 2D CNN architectures to 3D images to achieve the
same purpose. Our best model for total number of spikelets estimation in wheat head achieved 1.13
mean absolute error, meaning that, on average, the difference between the estimated number of
spikelets and the actual value is equal to 1.13. Our 3D CNN for FHB detection in wheat achieved
the highest accuracy amongst existing FHB detection models, and our 3D CNN for total number
of spikelets estimation in wheat is a unique and pioneer application. These results suggest that
replacing arduous tasks that require the input of field experts and significant temporal resources

with automated ML models in the context of digital agriculture is feasible and promising.

In the context of the medical imaging application, an innovative, real-time, and fully automated
pipeline based on 2D and 3D CNNs was proposed for early detection of MI, which is a deadly
cardiac disorder, from a patient’s echocardiography. The developed pipeline consists of a 2D
CNN that performs data preprocessing by segmenting the left ventricle (LV) chamber from the
apical 4-chamber (A4C) view from an echocardiogarphy, followed by a 3D CNN that performs MI
detection in real-time. The pipeline was trained and tested on the HMC-QU dataset consisting of
162 echocardiography. The 2D CNN achieved 97.18% accuracy on data segmentation, and the 3D
CNN achieved 90.9% accuracy, 100% precision, 95% recall, and 97.2% F1 score. Our detection
results outperformed existing state-of-the-art models that were tested on the HMC-QU dataset for
MI detection. Moreover, our results demonstrate that developing a fully automated system for LV
segmentation and MI detection is efficient and propitious and could enable the creation of a tool

that reliably suggests the presence of MI in a given echocardiography on the fly.

All the empirical results achieved in our thesis indicate the efficiency and reliability of 3D

il



signals, that are multispectral PCs and videos, in developing detection and regression 3D CNN

models that can achieve accurate and reliable results.

Keywords: Convolutional neural networks, 3D, point cloud, multispectral, wheat, fusarium

head blight, echocardiography, myocardial infarction, detection, segmentation, estimation.

v



Acknowledgment

I would like to express my sincerest gratitude and appreciation for Dr. Christopher Henry, whose
inestimable guidance, encouragement, support, and advice have been tremendously valuable and
crucial throughout my research work. Thanks to his tireless supervision, I was able to surpass

myself as a researcher as well as a person.

I also would like to express my deepest gratitude to Dr. Sheela Ramanna who was very generous

in providing her invaluable guidance and supervision in the making of a journal paper.

Many thanks to Dr. Maria Antonia Henriquez, Otto Gruenke, and Debbie Miranda for their

amazing collaborative work that contributed tremendously to the making of this thesis.

Thank you to Eric Benson, Ferdinand Borillo, Dylan Jones, and Connie Arnhold for their

constant availability to provide me with the best student service and kindest answers.

I would like to express my gratitude to Mitacs, EMILI, NSERC, Western Economic Diversifica-
tion Canada, and The Faculty of Graduate Studies, whose financial support during my studies

enabled me to devote my energy to research.

Thank you to the committee members, Dr. Christopher Bidinosti and Dr. Ian Jeffrey, for

taking the time to read and comment on my thesis.

Lastly, I would like to thank my parents and brother whose love, support, and trust have
provided me with the will and strength to pursue my ambitions and thank you to my husband for

his tireless kindness and support.



Contents

Contents
List of Tables
List of Figures

1 Introduction

1.1 Detection and Estimation in Point Clouds of Wheat . . . . . .. .. ... .. ...
1.1.1 Problem Statement . . . . . . . . . .. ...
1.1.2 Proposed Approach . . . . . . . . . ...

1.2 Myocardial Infarction Detection in Echocardiography . . . . .. ... .. ... ..
1.2.1  Problem Statement . . . . . . . . . .. ..
1.2.2  Proposed Approach . . . . . . . . ...

1.3 Thesis Contributions . . . . . . . . . ...

1.4 Thesis Outline . . . . . . . . . . .

vi



2 Literature Review 13

2.1 Detection and Estimation in Point Clouds of Wheat . . . . . . . . .. ... .. .. 13
2.2 Myocardial Infarction Detection in Echocardiography . . . . . . . . .. ... ... 17
3 Convolutional Neural Networks 22
3.1 Artificial Neural Networks . . . . . . . . . ... .. . 22
3.1.1 Artificial Neuron . . . . . . . ... 22
3.1.2  Multi-Layer Perceptron . . . . . . . . .. .. oo 23

3.2 Convolutional Neural Network . . . . . . . . . ... ... .. ... ... . 24
3.2.1 Convolutional Layers . . . . . . . .. ... ... 25
3.2.2 Pooling Layers . . . . . . . . . 28

3.3 Learning Process and Evaluation . . . . ... ... ... .. ... ......... 30
3.3.1 Loss Functions . . . . . . . . .. 30
3.3.2 Optimization . . . . . . . . . 31
3.3.3 Regularization . . . . . . . ..o 35
3.3.4 Performance Metrics . . . . . . . ... L 36

3.4 Advanced Convolutional Neural Network Architectures . . . .. .. ... ... .. 37
3.4.1 Deep residual Learning . . . . . . . . . ... oL 37
3.4.2 Densely Connected Convolutional Networks . . . . . ... ... ... ... 39

3.5 Chapter Summary . . . . . . . .. . 43

vii



4 Detection and Estimation in Point Clouds of Wheat 44

4.1

4.2

4.3

4.4

4.5

Methodology Overview . . . . . . . . . . .. . 44
4.1.1 Datasets Creation . . . . . . . . . .. .. 45
4.1.2 Data Preprocessing . . . . . . . . .. Lo A7
4.1.3 Fusarium Head Blight Detection and Severity Index Estimation . . . . . . 49
UW-MRDC Dataset Creation . . . . . . .. ... . .. ... ... ... ...... 49
4.2.1 Data Preparation . . . . . . . . ... Lo 50
4.2.2  Data acquisition . . . . . . .. . 51
4.2.3 Data Naming and Labelling . . . . . ... ... ... ... ... . ..... 54
Data Preprocessing with CUDA . . . . . . . . . . ... .. ... .. ... ..., 56
4.3.1 Motivation . . . . . ... Y
4.3.2 Point Cloud to 3D Image Conversion Theory and Implementation . . . . . 61
4.3.3 Results, Complexity, and Execution Time . . . .. ... ... ... .... 69

Detection of Fusarium Head Blight in Point Clouds of Wheat Using 3D Convolutional

Neural Networks . . . . . . . . . . 71
4.4.1 Experiments . . . . . . . ... 72
442 Results. . . . . . . 82
4.4.3 Discussion . . . . . . ..o 82

Estimation of the Total Number of Spikelets in Point Clouds of Wheat Using 3D

Convolutional Neural Networks . . . . . . . . . . . . . . . . 83

4.5.1 Experiments . . . . . . . ... 84

viil



4.5.2 Results. . . . . .
4.5.3 DISCuSsion . . . . ...

4.6 Chapter SUMMAary . . . . . . . . . vt e

5 Myocardial Infarction Detection in Echocardiography

5.1 Methodology . . . . . . . .
5.1.1 Pipeline Overview . . . . . . . . . . . .
5.1.2 HMC-QU Dataset . . . . . . . . . . . . ..

5.2 Left Ventricle Segmentation with 2D Convolutional Neural Networks . . . . . ..
5.2.1 Data Preprocessing . . . . . . . .. ..o
5.2.2 2D Convolutional Neural Network Architecture . . . . ... ... .. ...

5.3 Myocardial Infarction Detection with 3D Convolutional Neural Networks . . . . .
5.3.1 Data Preprocessing with Temporal Sliding Window . . . . . . . .. .. ..
5.3.2 3D Convolutional Neural Networks Architecture . . . . . . ... ... ...

5.4 Experiments and Results . . . . . . . . .. ... o
5.4.1 Left Ventricle Segmentation with 2D Convolutional Neural Networks
5.4.2 Myocardial Infarction Detection with 3D Convolutional Neural Networks .

5.5 Chapter Summary . . . . . . . ... L

6 Conclusions and Future Work

Bibliography

X

92

93

93

94

97

97

100

101

102

104

104

105

107

111

113

117



List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

5.1

Summary of scanning parameters of the UW-MRDC WHEAT-PLANT PC dataset. 54

Architectures of the 20 models created from the monitored grid search. . . . . . . 76
The architecture of model 8 trained on the 3SDWP_RGB dataset. . . . . .. . .. 77
The architecture of model 10 trained on the 3DWP_ RGB dataset. . . . . . . . .. 78
The architecture of model 11 trained on the 3DWP_ RGB dataset. . . . . . . . .. 79
The architecture of model 3 trained on the SDWP_NIR dataset. . . . . . . . . .. 79
The architecture of model 5 trained on the 3DWP_NIR dataset. . . . . . . . . .. &0
The architecture of model 9 trained on the 3DWP_NIR dataset. . . . . . . . . .. &1
Evaluation metrics of the top three 3D CNN models on FHB detection. . . . . . . 83
Architectures of the five 3D CNN models generated by the monitored grid search. 86
The architecture of model 5 trained on the UW-MRDC WHEAT-HEAD PC Dataset. 87
The training parameters of the best performing architecture per model. . . . . . . 88
Evaluation metrics of the best regression models. . . . . . ... .. ... .. ... 89
Number of windows obtained by applying the temporal sliding window. . . . . . . 103



5.2

5.3

5.4

5.9

5.6

3D CNN characteristics per layer according to the size of the temporal window.
2D CNN training parameters. . . . . . . . . . .. L
Training parameters per window size corresponding to the 3D CNN models.

3D CNN models’ evaluation metrics per window size. . . . . . . . . . .. .. ...

Performance comparison between the 3D CNN and two state-of-art methods. . . .

x1

105

106

108

109

111



List of Figures

1.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

Example of the SI estimation in a FHB-infected wheat head. . . . . . . . . . . .. 5
An artificial neuron. . . . ... oL 23
A multi-layer perceptron. . . . . . . ... 24
Convolution operations to show how samples of the filtered image are calculated. . 26
A 3D convolution operation. . . . . . .. ... L 27
A convolution operation on a three-channel 2D image. . . . . . . . .. .. ... .. 28

Max pooling operations to show how samples of the filtered feature map are calculated. 29

A shortcut operation in a residual block in ResNet v1. . . . . .. ... ... ... 39
A shortcut operation in a residual block in ResNet v2. . . . . .. ... ... ... 40
A two-layer dense block in DenseNet. . . . . . .. . ... ... ... ... ... 41
A bottleneck layer preceding a 1-layer dense block. . . . . . ... ... ... ... 42
A transition layer between two dense blocks. . . . . . . ... o000 42
Diagram of the UW-MRDC WHEAT-PLANT PC dataset creation process. . . . . 45
Diagram of the UW-MRDC WHEAT-HEAD PC dataset creation process. . .. . 47

xii



4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Diagram of preprocessing steps required to convert PCs into 3D images. . . . . . . 48

Diagram of SI estimation with 3D CNN. . . . .. .. .. ... ... .. ... ... 50
Plots of wheat spikes from the field of the MRDC. . . . . . .. .. ... ... ... 51
Phenospex PlantEye F500 multispectral 3D scanner. . . . . . .. ... ... ... 52
Spectral distribution of the light emitted from PlantEye. . . . . . . . ... .. .. 53
Visualizations of RGB PCs produced by CloudCompare of FHBO. . . . . . . . .. 56
Visualizations of NIR PCs produced by CloudCompare of FHB0. . . . . ... .. 57
Visualizations of RGB PCs of different wheat head samples. . . . . ... ... .. 58
The representations of a PLY file in 2D and its converted image. . . . . . . . . .. 60
Element-wise product on both a PLY file in 2D and its converted 2D image. . . . 61
Diagram of CUDA implementation steps. . . . . . . . . . . . ... ... ... ... 66
Non-coalesced versus coalesced memory organization of data. . . . . . . . . . ... 68
2D projections of a 3D image converted with different resolution factors R. . . . . 70
GPU and CPU execution times in ms with respect to batch size. . . . . . . . . .. 71
Fully automated pipeline for MI detection. . . . . . . . .. ... .. .. ... ... 94
The apical four-chamber view. . . . . . . . .. ..o 95

Captured frames from 6 different echocardiography videos of the HMC-QU dataset. 96
The process of the spatial sliding window. . . . . . .. ... ... ... . ..... 99

[lustration of the input and output images of the segmentation by the 2D CNN. . 100

The architecture of the 2D CNN. . . . . . . . .. ... ... ... 101
The process of the temporal sliding window. . . . . . .. . ... ... ... .... 103
The generic architecture of the 3D CNN used to train all the datasets. . . . . . . . 104

xiil



Dedication

To my family and husband.

Xiv



Chapter 1

Introduction

Artificial intelligence (AI) was developed to create machines that can imitate the human way of
active thinking and problem solving. In fact, the field of digital image processing (DIP) allowed the
development of advanced Al algorithms throughout the years in order to speed up and improve the
outcome of complex DIP applications such as pattern recognition and detection [1]. Traditionally,
DIP was based on analytical methods such as Fourier analysis, linear filtering, and histogram
estimation [2]. These were used for a variety of DIP applications, ranging from image transformation
(e.g. denoising and colour enhancement) to pattern recognition (e.g. detection of facial features
and fingerprint recognition). However, in order to obtain efficient results for a given application,
there was a need to develop a deep theoretical understanding of the problem that is tackled. This
required the knowledge of experts and was a time-consuming process. For instance, in the case of
cloud detection in satellite images, classical methods such as histogram estimation [3] and varying
thresholding [4] were employed to extract relevant features for manual engineering to identify

relationships conducive to maximizing detection accuracy.

In order to minimize manual feature analysis, machine learning (ML) models such as support-

vector machines (SVM) [5] and decision trees [6] have been used to automatically create a



relationship between the extracted features by learning from a significant number of examples [7, §].
Nevertheless, these ML models still relied on mandatory feature extraction performed with classical
DIP methods which were sensitive to the image acquisition contexts such as lighting, contrast, or
background. Moreover, the detection could only be effective under specific conditions that may not

always be met in practice such as high radiometric resolutions [3].

These limitations motivated researchers to exploit models that can imitate human traits of
analyzing data and that can produce accurate results for real-world problems. In fact, these
models were inspired from the investigation of the human brain, consisting of millions to billions
of neurons that communicate with each other via neurotransmitters known as synapses, and the
observation that the more knowledge and experience acquired by a person, the more synaptic links
are created between neurons to carry valuable information [9]. Predominantly, one of these models
is the multi-layer perceptron (MLP), which applies the latter mechanism in a way that produces
meaningful features by learning from a set of given examples. With MLPs, features are extracted
automatically using the backpropagation algorithm by exposing the model to a large set of image
examples [10]. This produces features that are highly robust to noise which enables the generation

of highly accurate and efficient results compared to classical models [11].

However, MLPs can only take feature vectors as input which makes them unsuitable to
process 2D images directly. In fact, the spatial and spectral relationships are lost when images are
transformed into vectors. Therefore, convolutional neural networks (CNNs) gained attraction due to
weight sharing which enabled the automatic extraction of features that consider spatial relationships
such as orientation and spatial distribution. Moreover, they became computationally practical due
to advances in the computational power of computers, specifically platforms that support parallel
programming, and in graphics processing units (GPUs) that support the simultaneous execution of
thousands, if not millions, of floating-point instructions. Similarly, advancements of imaging tools

and sensors allowed the creation of image datasets consisting of thousands of samples that were



used in training CNN models. For example, medical imaging is commonly employed in medicine
to produce images such as CT scans and x-ray, which allowed the development of automated
applications such as brain tumor detection from MRI images [12] and breast cancer detection using
CNNs [13]. Furthermore, hyperspectral and multispectral imaging have become widely used in
agriculture to create plant datasets in order to develop automated tools such as weed detection
among crops [14] and plant disease detection [15]. Since CNNs are based on convolution, they are

able to process images directly and extract features that can be used to issue a decision when fed

to ML model such as MLP or SVM.

Although CNNs proved efficient in analyzing 2D signals, they are yet to be widely used on 3D
signals. In fact, 3D signals contain details that can not be represented with 2D signals, such as the
depth of an image which is inherent to point clouds (PCs), and the temporal evolution of an image
which is inherent to time series data (such as videos). Therefore, in this thesis, we tackled two
problems involving the two aforementioned types of 3D signals namely “Detection and Estimation
in Point Clouds of Wheat” and “Myocardial Infarction Detection in Echocardiography”, and we

set out to determine if 3D signals allow the development of efficient and accurate 3D CNN models.

1.1 Detection and Estimation in Point Clouds of Wheat

1.1.1 Problem Statement

Fusarium Head Blight (FHB) is a devastating fungal disease caused by the fungal genus Fusarium.
It mainly affects wheat, but it can also spread through other cereals like barley, oat, and corn
[16]. The disease starts infecting spikelets' [17] during the flowering stage, causing a deficiency in
the plant development and a premature grain shivering and bleaching. Moreover, in some specific

weather conditions, a mycotoxin called deoxynivalenol may be triggered in the infected kernels and

LA spike consists of a number of spikelets, and a spikelet consists of a number of grains (2 to 3 in most cases).
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cause acute toxicity to humans [18]. The development of FHB is favoured by wet, moist, and warm
weather conditions. Also, wind and rainfalls are major sources of seed and crop contamination.
The disease is considered a serious problem that severely decreases yield quantity and quality and
reduces wheat production. In Canada, farmers have been dealing with heavy yield losses and

extreme crop damage in wheat for decades, yet, FHB is still a problem to date [19].

To help reduce the impact of FHB, many practices and management strategies are adapted by
farmers and researchers. Examples include using multiple varieties of wheat seeds that are known
to be resistant to the disease, using seeds that are unlikely infected with FHB, or controlling the
irrigation frequencies and durations during the flowering stage. This latter method aims to control
humidity conditions that favor the spread of FHB. Among all these practices, using resistant
wheat seed varieties seems the most effective strategy to limit the spread of the disease. Thus,
the Morden Research and Development Centre (MRDC) [20], which is one of Agriculture and
Agri-Food Canada’s 20 research and development centres, performs research on crop pathologies,
genomics, proteomics and, in particular, conducts research on FHB in wheat. One of the main goals
of the centre is to develop wheat varieties that are resistant to FHB. In doing so, multiple wheat
varieties are annually seeded, grown, inoculated with the fungus, and tested on their resistance
level. Their ability to resist FHB is quantified based on a severity index (SI) that is determined by
the ratio of the total number of infected spikelets in a wheat head to the total number of spikelets
in the same wheat head. Figure 1.1 shows an example of the SI estimation in a FHB-infected wheat
head, where the total number of FHB-infected spikelets is 9, and the total number of spikelets
in the same wheat head is 15, which results in a 60% severity in the wheat head. This index is
usually determined visually by human agents that estimate the approximate value of the SI of
a wheat plant based on a subjective observation. However, determining the SI on a daily basis
for thousands of wheat plants grown in a vast wheat field or even in a small growth chamber is

a very time-consuming task that involves multiple experts and requires high levels of expertise,



concentration, and accuracy. Therefore, experts emphasize the need to develop an automated tool
to detect whether a specific wheat plant is infected with FHB and, if so, automatically estimate
its SI. Consequently, a collaboration between our TerraByte? research group and the MRDC
was established to create a bridge between agriculture and ML, in order to develop efficient and
automated 3D models for FHB detection and SI estimation in wheat. However, the scope of this
thesis covers the automated detection of FHB and the first part of the SI estimation, which is the

automated estimation of the total number of spikelets in a wheat head.

Total number of —
infected spikelets
=9

Total number of
spikelets
=15

Figure 1.1: Example of the severity index estimation in a FHB-infected wheat head [21].

1.1.2 Proposed Approach

In this thesis, we propose novel datasets and methods to overcome the following issues:
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e unavailability of datasets consisting of PCs of wheat plants,

e unavailability of datasets consisting of PCs of wheat heads,

e unavailability of datasets of wheat PCs defined by multispectral information,
e incompatible PC representation with CNNs,

e manual, time-consuming, and subjective detection of FHB in wheat, and

e manual, time-consuming, and costly manual estimation of the total number of spikelets on a

wheat head.

Due to the lack of FHB diseased wheat datasets, we proposed two novel datasets of multispectral
PCs, namely the UW-MRDC WHEAT-PLANT PC dataset for FHB detection in a wheat plant and
the UW-MRDC WHEAT-HEAD PC dataset for the estimation of the total number of spikelets per
wheat head. The multispectral colour information is defined by the red (R), green (G), blue (B) (i.e.
RGB), and near-infra-red (NIR) channels. Each sample within both datasets is a multispectral
PC that was acquired by a multispectral 3D scanner. The UW-MRDC WHEAT-PLANT PC
dataset contained 216 samples, from which 42 represent FHB-infected samples and the remaining
174 represent water-controlled (WC or healthy) samples, and the UW-MRDC WHEAT-HEAD
PC dataset contained 80 samples. Moreover, a highly efficient and fast parallel CUDA algorithm
that runs on GPU was introduced to convert multispectral PCs into multispectral 3D images with
varying resolution factors. The conversion was necessary because PC representation is incompatible
with 3D CNNs. Following that, we performed a grid search to find the best 3D CNN architectures
and the most efficient multispectral information to perform FHB detection in multispectral 3D
images of wheat plants. These best performing detection models were trained and evaluated on
the UW-MRDC WHEAT-PLANT PC dataset. Also, we performed a grid search to find the best

3D CNN architectures to perform total number of spikelets estimation in multispectral 3D images



of wheat heads, in addition to adapting three well-know 2D CNN architectures to 3D images to
achieve the same purpose. These best performing regression models were trained and evaluated
on the UW-MRDC WHEAT-HEAD PC dataset. Finally, a set of the best performing 3D CNN
architectures for both FHB detection and total number of spikelets estimation were evaluated
and compared in terms of their accuracy, inference time, and number of parameters to determine
the most efficient 3D CNN for each problem as well as the most representative multispectral

information.

1.2 Myocardial Infarction Detection in Echocardiography

1.2.1 Problem Statement

Early detection of myocardial infarction (MI) [22], which is colloquially referred to as a heart attack,
can prevent a patient from enduring several extreme health complications such as heart failure or
sudden death [23, 24]. In fact, MI is pathologically defined as the death of the myocardial cells
due to extended cardiac ischemia which, in turn, is defined as an abrupt and prolonged limitation
of blood supply to the heart muscles [25]. Once a patient is suspected with MI, an immediate and
accurate diagnosis should be performed to detect early and basic symptoms associated with the
disease. Predominantly, a common symptom is an abnormal or a non-uniform motion, known as
hypokinesia, of one or several regional sections of the left ventricle (LV) wall of the heart [26]. As
soon as regional wall motion abnormalities (RWMA) of the LV are perceived [27, 28], the process
of infarction can be completely aborted within the first hour [29] and the affected patient can avoid
serious or fatal health complications [30]. However, the major constraints to an accurate diagnosis
are the unavailability of an end-to-end, rapid, and exact assessment tool to reliably detect MI in

real-time.



During the last two decades, non-invasive imaging for cardiovascular disease diagnosis and
monitoring have witnessed an important evolution [31, 32, 33] that enabled cardiologists to
further develop their understanding of cardiac pathologies and, in particular, benefitted MI
analysis, identification, and treatment [34]. To detect and assess RWMA of the cardiac chambers,
echocardiography is highly recommended by The American Society of Echocardiography because
of its capability to assess, in real-time, both the cardiac function and structure [35]. It generates
important amounts of visual data including the size and shape of the heart and its chambers and
the motion of the heart walls while they are beating. This helps cardiologists to identify RWMA
in a patient’s echocardiography and assign the adequate treatment immediately [36], which may

minimize the damage on the cardiac muscle tissues and prevent patients from facing death [37].

Some works in early detection of MI in echocardiography used ML and CNNs [38, 39, 40], while
some others were based on classical approaches such as metaheuristics [41] and Fourier tracking
[42]. Some methods either heavily rely on very specific and limited conditions of data acquisition
(high-resolution echocardiograms, high frame-rate, minimal noise) [43], that require the technician
or the cardiologist to perform preliminary preprocessing steps to be able to proceed with the
prediction process [44], or extract finite and restricted features to be used with the classification

model.

Even though echocardiography is an ideal tool to detect RWMA during a myocardial ischemia,
some cardiologists find it challenging to use as a primary diagnosis tool and often employ other
diagnosis methods to determine the disease, such as electrocardiogram or angiogram [45], due
to their straightforwardness or simplicity to use and interpret. For instance, echocardiography
produces large and complex data that needs to be entirely exploited and understood in order to
make a complete diagnosis based on visual interpretation [46], which is highly dependent on the level
of experience of the cardiologist in question [47]. Moreover, in some cases, an important amount of

the generated data remains unused due to insufficient time and difficulty in interpretation [48].



Furthermore, data acquisition is usually performed in emergencies, which often yields images of low
quality [49, 50], that may also be of a low-resolution because of the cardiac machine characteristics
itself. As a result, these constraints negatively impact the accuracy of the MI diagnosis [51]. Thus,
there is a need to create an advanced, reliable, and fully-automated process that efficiently uses

echocardiography to perform accurate MI detection in real-time [52, 43].

1.2.2 Proposed Approach

In this thesis, we propose a novel method to overcome the following issues:

subjective reading of the data that relies on expert cardiologists,

generated poor-quality and low-resolution echocardiography;,
e massive amounts of video data that requires preprocessing prior to detection, and

e slow, manual, and inefficient MI detection.

The proposed solution is an end-to-end and fully automated pipeline consisting of a 2D CNN
that performs data preprocessing followed by a 3D CNN that performs binary classification to
detect MI from an echocardiography in real-time. The pipeline begins with a 2D CNN that
segments the LV region from an echocardiography, since the occurrence of MI is highly correlated
with RWMA of the LV walls [26]. Then, the segmented video is fed to a 3D CNN, which extracts
from it the relevant spatio-temporal features and uses them to detect MI. The input of the pipeline
is an unprocessed echocardiography of a patient as acquired by a technician or a cardiologist, and
the output is the detection result, which is either abnormal (MI) or normal (N). Both 2D and
3D CNNs were trained and tested on the HMC-QU benchmark dataset [53], which contains 162
4-chamber view echocardiography recordings obtained at the Hamad Medical Corporation (HMC)

[54] between 2018 and 2019 and approved for scientific use in February 2019. The echocardiography
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videos represent 93 patients that were diagnosed with MI, while the remaining 69 videos represent

normal patients.

1.3 Thesis Contributions

The work presented in this thesis led to the following journal paper:

e “Fully Automated 2D and 3D Convolutional Neural Networks Pipeline for Video Segmen-
tation and Myocardial Infarction Detection in Echocardiography”, Multimedia Tools and

Applications, Springer (Accepted on 09-21-2021 and not yet published). [55]

The main contributions of this thesis are the following:

A novel labelled dataset of multispectral PCs of wheat plants consisting of both healthy and

FHB-diseased samples for the FHB detection in wheat.

e A novel labelled dataset of multispectral PCs of wheat heads for the estimation of the total

number of spikelets per wheat head.

e A real-time CUDA-based preprocessing model for the conversion of multispectral PC into

multispectral 3D image that runs, on average, 1065 times faster than its CPU counterpart.

e An accurate, reliable, and real-time FHB detection model on multispectral 3D images that

achieved 100% accuracy on the UW-MRDC WHEAT-PLANT PC dataset.

e An efficient and real-time model for estimating the total number of spikelets in a wheat
head on multispectral 3D images that achieved a 1.13 mean absolute error (MAE) on the
UW-MRDC WHEAT-HEAD PC dataset.
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The empirical determination of the most important spectral information for FHB detection

with CNNs.

A fully automated pipeline for video segmentation and MI detection in echocardiography.

An indiscriminative pipeline that processes videos of different sizes, different frame rates, and

different resolutions.

An early and real-time MI detection model in echocardiography.

A robust pipeline that operates on low-quality videos corrupted with intense noise.

A system for LV segmentation in echocardiography that achieved 97.18% accuracy on the

HMC-QU benchmark dataset.

A system for MI early detection in echocardiography that achieved 90.9% accuracy, 100%

precision, and 95% recall on the HMC-QU benchmark dataset.

A lightweight system that runs on parallel threads and does not require high memory or

computational power in order to be executed.

A system that outperformed state-of-the-art methods in MI detection on the HMC-QU

benchmark dataset.

1.4 Thesis Outline

Chapter 2 provides a review of the most recent works related to Chapter 4 and Chapter 5, such
as a review of the applications of 3D CNNs on FHB detection and automatic counting of wheat
spikelets, multispectral 3D wheat datasets, and MI detection in echocardiography. Chapter 3 gives

a detailed description of CNNs. It describes the theory, the building blocks, and the concepts
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behind a CNN model, and presents three benchmark CNN architectures. Chapter 4 provides a
general overview of the methodologies developed while creating the datasets, a detailed explanation
of the theory and implementation of the multispectral 3D PC to multispectral 3D image conversion
method, and a detailed description of the data preparation, acquisition, and labelling related to
the creation of the two datasets. It also provides a detailed explanation of the creation process,
the experiments performed to determine the best model architectures, and the results related to
both FHB detection and number of spikelets estimation models. Chapter 5 gives an overview on
the methodology followed during the creation of the fully automated 2D and 3D CNN models for
MI detection in echocardiography, followed by detailed explanation of video segmentation with a
2D CNN and MI detection with a 3D CNN. Then, a description of each model’s experiments and
results is given. Chapter 6 provides conclusions related to Chapter 4 and Chapter 5 and gives an

overview on their corresponding future works.
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Chapter 2

Literature Review

2.1 Detection and Estimation in Point Clouds of Wheat

The technological advances in multispectral and hyperspectral imaging, remote sensing, and 3D
imaging that occurred in agriculture during recent years [56, 57] have led to the development of
advanced 2D and 3D acquisition systems such as drones and 3D scanners that are used to create
3D image datasets of plants and crops [58]. Meanwhile, ML has drastically evolved due to the
advance of computing power, the availability of large labelled datasets, and new algorithms with
many more parameters than were previously computationally possible [59]. For these reasons,
many advanced applications in agriculture were created such as yield monitoring and plant disease
detection [60, 61]. However, at the moment, there are only a few 3D image datasets of certain
plants and crops available, and none that contains wheat plants. Consequently, the available
studies on FHB detection in wheat either use 2D images of wheat kernels or wheat plants, or use

morphological and physiological features to perform the detection.

Reference [62] is one of the very few works that developed a PC dataset of plants. In their work,

7 tomatoes and 7 maize plants were captured daily using a laser scanning system for a period of
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two weeks. The laser scanner captures 2D scan profiles for about a 100 mm distance generating a
2D profile every 0.012 mm consisting of a maximum of 7640 points. Then, manual outlier removal
was applied on each PC to remove, as much as possible, unwanted data points such as points
representing the soil or the pot. Finally, each point within every PC was given a unique label that
defines its class. Only a few samples were acquired for this study since the workload to create
this dataset is time-consuming and heavy. Nonetheless, this work is one of a few pioneers in the

creation of plant PC datasets [63, 64].

For the detection of FHB in wheat, reference [65] used 27 hyperspectral images, each containing
a mixture of 25 to 50 wheat kernels of different varieties, to develop an automated algorithm for
FHB detection in wheat kernels. Their approach begins with a region of interest delimitation
that locates the kernels in the image by thresholding the pixel values reflected from the 647
nm wavelength, followed by a kernel and background segmentation using a wavelength-based
thresholding. Next, a convex-hull clustering was applied to isolate the kernels, followed by a
calculation of a fusarium index using the mean of the values located in the 1411 nm band. Then,
FHB kernels were separated from sound kernels using a threshold, which resulted in 91% accuracy
in FHB detection from hyperspectral images. The authors used a detection method based on
determining the reflectance band of the kernels and the bandwidth that separated diseased kernels
from healthy ones with empirical observations, thus, the detection results may be subject to human

error.

In reference [66], three wheat variants of different susceptibility to FHB were used to create a
method for FHB detection. 12 images of a wheat plot from the field were collected such that each
variant was photographed in four images. Then, the images were augmented by dividing each one
into smaller sub-images of resolution 700 x 700 pixels (px), and a final dataset of 2829 images was
generated. Next, a pretrained Mask RCNN model was fine tuned on the dataset by retraining its

last few layers to segment the spikes from the background and output their boundaries. Then, a
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region growing algorithm was employed to detect FHB infected zones from the segmented spikes
and achieved 92% accuracy. Although this research work achieved good accuracy in detecting FHB
from coloured wheat images, the model’s performance is constrained to specific data acquisition

conditions that could not be easily reproduced.

In reference [67], 1680 wheat head samples consisting of both FHB-diseased and non-diseased
samples were captured to create a dataset of hyperspectral 2D images. Then, texture features
were extracted from the images using a gray-level co-occurrence matrix and dual-tree complex
wavelet transform. Colour feature processing was applied by combining three wavelengths each
from the RG'B spectrums, respectively, to create an RG'B image, which was transformed to the
YDbDr colour space for feature extraction. Next, principal component analysis was applied to
reduce the feature dimensionality and compress the images. Then, gradient boosting decision tree
and sequential backward elimination were used to select the relevant features for the prediction
models. Lastly, a deep CNN, a support vector regressor, a random forest algorithm, and a partial
least square regressor were all used to develop prediction models. The deep CNN achieved a 3.78
root mean squared error and a 0.98 R2. Although the obtained results are good, the process used
to extract the features for the detection models is very long and relies on empirical parameters,

which may alter the detection performance.

While there are several works that developed FHB detection methods on wheat, there are
no models for the automated estimation of the number of kernels or spikelets in wheat available
at the moment of writing this thesis. In fact, the closest work found is a model for counting
kernels on maize ears [68] based on image and signal processing where 8 maize varieties were
used to gather a dataset consisting of 2000 RG B images of maize ears taken under LED and
natural lights. Next, a Gaussian pyramid compression model was applied on the images to remove
colour and pixel redundancy, followed by a canny operator for edge detection. Then, a threshold

segmentation was applied to separate the maize ear from the background, followed by the mean
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shift filter algorithm for kernel pixel clustering. Next, a colour deconvolution algorithm was applied
to enhance the edges of the kernels, followed by an adaptive threshold segmentation algorithm
for kernel segmentation. Lastly, a local maximum detection method based on Gaussian filtering
was applied to detect the maize kernels. The method achieved 93.6% accuracy on kernel detection.
Although the performance of the model is good, the methodology consists of a substantial number
of steps where each step is very detailed and sometimes consists of multiple sub-steps, which makes
it time-consuming, may reduce the efficiency and accuracy of the final outcome that relies on the
good performance of all its preceding processing steps, and may reduce the generalization of the

approach on new data.

Despite the existence of several research papers that use either hyperspectral or RG B 2D images,
or morphological and physiological parameters to develop methods for FHB detection on wheat,
there are still no research works that employ multispectral 3D PCs of wheat. Moreover, most of the
existing studies use signal and image processing techniques rather than CNNs or rely on empirical
features to perform the detection, which tend to generate models that are slower and less precise
than neural network-based approaches, and do not generalize well on unseen datasets. Nonetheless,
these studies still achieved some interesting results. However, there is room for improvement in the
detection performance and execution time. Our work proposes two unique and novel datasets to
overcome the unavailability of 3D data representing FHB-diseased and healthy wheat. Moreover,
a parallel CUDA-based preprocessing method was created to convert multispectral 3D PCs into
multispectral 3D images in order to propose a reliable and fast preprocessing model that allows
CNNs to correctly read and process PCs. In addition, a novel and efficient 3D CNN for FHB
detection in multispcetral 3D images of wheat is proposed to replace the manual and subjective
FHB detection. A unique, fast, and reliable 3D CNN for the total number of spikletes estimation
in a wheat head is also proposed to replace the time-consuming, manual, and subjective spikelets

counting.
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2.2 Myocardial Infarction Detection in Echocardiography

Cardiac imaging technologies have been evolving during the last few decades into more advanced
machines that generate complex and detailed data, such as real-time videos of the chambers and
valves of the heart. These latter achievements have inspired scientists along with cardiologists
to develop newer methods that aim to detect and assess cardiac deficiencies based on evaluating
cardiac imaging data. Predominantly, multiple techniques which have been produced over the
years to detect cardiac diseases by evaluating the myocardial motion have been based either on

signal-processing, chemical-processing, image-processing or, more recently, video-processing.

In reference [69], a contour-based technique for detecting wall motion abnormality by analyzing
the temporal pattern of normalized wall thickening was proposed. Epicardium and endocardium
zones were manually extracted by segmenting images representing 27 real-life patients and AHA
17-segment model was used to evaluate regional wall changes in normalized wall thickness followed
by a Naive Bayes classifier. Although the model achieved 100% true-negative, it only obtained
70% true-positive for apical 4-chamber (A4C) view, which means that the model does not predict
the cardiac disease when it happens 30% of the time. Moreover, manual preprocessing is time-
consuming, subject to human error, and relies on human expertise to perform the segmentation

task properly, which may affect the accuracy and the quality of the results.

In reference [70], existing quantitative approaches were applied to detect and identify local-
ized wall motion abnormalities from 12-lead ECG, 2D echocardiography images, and coronary
angiography in patients affected with MI. Adequate 2D echocardiography images representing 4
different cardiac views were obtained from 74% of well-defined patients and used to assess abnormal
segments. These abnormal segments were characterized by a standard deviation that is inferior
to the average contraction estimated over 10 normal subjects. Then, ECG and angiography data
were analyzed independently by two observers. The results concluded that 2D echocardiography

images allow an extended assessment of endocardial wall motion and regional wall thickening and
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can be applied for a quantitative approach to detect regional LV abnormalities, while ECG and
angiography have certain limitations. Furthermore, results showed that area methods performed
better than linear methods by achieving at best 95% of accuracy versus 84% for linear models
in predicting localized regional LV contraction deficiencies. Even though the accuracy of the
prediction is 95%, the model does not allow an early detection of LV abnormalities. In fact, it only

examines the effects of MI on the myocardial performance.

Another approach to assessing data generated from cardiac imaging uses ML models. In
reference [71], 723,754 clinically acquired echocardiographic videos of the heart (around 45 million
images), representing 27,028 patients, were evaluated to predict 1-year mortality rate in patients
who had encountered heart deficiencies. The dataset was divided into 21 groups such that each
group represented a standard echocardiographic view. Then, distinct 3D CNN models were
generated, trained, and tested on each data group separately. Additionally, longitudinal electronic
health records were added to the videos as input data to the models during training, and the
accuracy of the 1-year mortality prediction in patients with heart abnormality records was 75%.
This paper shows that applying 3D CNNs to echocardiography videos to perform a prediction
task is efficient and plausible. However, there is still room for improvement in the accuracy of the
models. For example, adding a preprocessing method to normalize the raw videos prior to training

the CNNs could enhance the accuracy of the prediction.

The authors in reference [72] used ML in order to assess regional wall motion abnormality in
Echocardiographic images. Data from 300 patients with a history of MI were divided into 3 groups
such that each data group contained images representing a distinct cardiac abnormality. Data
from 100 healthy patients were also included as a 4" data group. Then, only images with good
or adequate acoustic detail were selected while poor quality images were discarded from the final
dataset. Images were then standardized to the same spatial dimensions and fed to 10 versions of

the same CNN model to detect the presence of RWMA. In comparison to the prediction outcome
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performed by two expert cardiologists, a CNN produced similar results such that the AUC curve
produced by the cardiologists was similar to that produced by the CNN model (0.99 vs 0.98).
Even though the prediction results are considerably fair, models were trained only on good-quality
echocardiographic images, which implies that testing it over real-life images that potentially contain
noise, missed information, or inadequate acoustic details could reduce its performance and may

lead to erroneous predictions.

In reference [73], both electrocardiogram and serum analysis were used to detect acute MI in
82 patients who were suspected of having MI within one hour of their arrival to the care unit. The
electrical activity of the heart produced by the 12-lead electrocardiogram was recorded and a 10
ml blood sample was obtained within the first hour of their admission to the care unit. Then, all
the data was analyzed by two observers. Moreover, several chemical substances such as creatine
kinase and myoglobin were measured, which takes 10 minutes to perform. These parameters were
combined to perform a logistic regression analysis that led to the detection of MI by 64% accuracy.
The model of this work requires a chemical examination that is source-intensive in order to make

an assessment that is only 64% accurate, which may not be sufficient for reliable MI detection.

A more recent study [37] developed an MI detection model based on local motion estimation in
an attempt to overcome the limitations of speckle tracking methods. The model achieved at best
around 85% of sensitivity and specificity by investigating more reliable and robust wall motion
analysis models. Although both speckle tracking and local motion estimation used a standard LV
segmentation model from which they analyse the motion of each segment of the LV wall separately
to determine signs of RWMA and therefore detect MI, speckle tracking relies solely on assessing
the motion of a single speckle per segment, while local motion estimation used several speckles
per segment. However, the accuracy of both techniques can be negatively impacted by noisy
echocardiography, since noise makes segment’s tracking difficult and unreliable. Therefore, the

authors further explored the use of local motion estimation by developing an approach based on
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active polynomial which captures the LV contour and divides it into 7 segments. The motion
of each segment was then evaluated to detect RWMA and MI was detected if at least one LV
segment motion was determined to be abnormal. The model’s performance metrics were estimated
on two subsets on the HMC-QU benchmark dataset; the first subset contained the totality of the
videos while the second subset contained only reasonable quality echocardiography videos that
were selected based on a subjective visual assessment. The reported results showed that the model
achieved better MI detection accuracy on reasonable quality videos than on the totality of the
dataset, by obtaining 87% accuracy on the second subset and only 83% on the other. Despite
attaining better results than current state-of-the-art methods, active polynomials performance
decreases considerably when tested on low-quality or low-resolution echocardiography videos, which

affects the efficiency and robustness of the method.

Reference [74] also employed the HMC-QU benchmark dataset and proposed a three-phase early
MI detection approach for low-quality echocardiography. The architecture of the model begins
with an encoder-deco