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The development of state-of-the-art convolutional neural networks (CNN) has allowed

researchers to perform plant classification tasks previously thought impossible and rely

on human judgment. Researchers often develop complex CNN models to achieve better

performances, introducing over-parameterization and forcing the model to overfit on a

training dataset. The most popular process for evaluating overfitting in a deep learning

model is using accuracy and loss curves. Train and loss curves may help understand

the performance of a model but do not provide guidance on how the model could be

modified to attain better performance. In this article, we analyzed the relation between

the features learned by a model and its capacity and showed that a model with higher

representational capacity might learn many subtle features that may negatively affect its

performance. Next, we showed that the shallow layers of a deep learning model learn

more diverse features than the ones learned by the deeper layers. Finally, we propose

SSIM cut curve, a new way to select the depth of a CNN model by using the pairwise

similarity matrix between the visualization of the features learned at different depths by

using Guided Backpropagation. We showed that our proposed method could potentially

pave a new way to select a better CNN model.

Keywords: explainable AI, deep learning—artificial neural network, Guided Backpropagation, neural network

visualization, convolutional neural network

1. INTRODUCTION

Deep learning approaches have been widely adopted into agriculture (Weng et al., 2019; Chandra
et al., 2020) (i.e., precision agriculture, crop breeding, plant phenotyping) due to their ability to
extract complex features from a large amount of data (Montavon et al., 2019). In recent years,
the focus has shifted toward developing tools to optimize the performance of the models to
help researchers integrate deep learning models easily into their studies (Humphrey et al., 2017;
Ubbens and Stavness, 2017; Ubbens et al., 2018). Despite the recent development, deep learning
models are often considered as “black box” (Tzeng and Ma, 2005; Oh et al., 2019). To improve the
trustworthiness of models and to design them effectively for the unique challenges that appear with
specialized datasets, many recent studies have focused on explaining the learning and prediction
of deep learning models (Tzeng and Ma, 2005; Mostafa and Mondal, 2021). However, explainable
deep learning models in plant phenotyping still remains to be an active field of research with room
for improvement (Ubbens and Stavness, 2017; Chandra et al., 2020; Hati and Singh, 2021). Plant
image datasets are often different from general image datasets due to small sample sizes, highly
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self-similar foreground objects, and simplified backgrounds.
Therefore, complex deep learning models that are used for
general image classification may perform poorly for plant
datasets (Mohanty et al., 2016; Zenkl et al., 2022).

Convolutional neural networks (CNN) are one of the
most widely used deep learning models in image-based plant
phenotyping. A common phenomenon when designing a CNN
model is model overfitting. Overfitting in a CNN model occurs
when the model approximates or memorizes the training data
and fails to generalize to unseen examples in the testing
data (Reed and Marks, 1999). A popular way to detect the
overfitting is by inspecting the difference between the training
and testing accuracy and loss using the accuracy and loss
curve (Géron, 2019; Gigante et al., 2019). However, this does not
provide insight into themodel’s learning or which features or part
of the image contributed to the model’s prediction.

1.1. Explainability in CNN
To explain the learning of CNN models, researchers
have proposed different feature-map visualization
techniques (Springenberg et al., 2014; Bach et al., 2015;
Ribeiro et al., 2016; Selvaraju et al., 2016; Lundberg and Lee,
2017). Zeiler and Fergus (2014) proposed deconvolutional
networks (Deconvnet) that provide insight into the function
of a CNN classifier’s intermediate layers by modifying the
model’s gradient and displaying the visual patterns in the input
image that generated the activation. There have been several
attempts that deviate from deconvolutional networks. Simonyan
et al. (2013) used the gradient of a CNN model’s output with
respect to the input image’s pixel intensities to generate saliency
maps. Zhou et al. (2016) and Selvaraju et al. (2017) proposed
class activation mapping (CAM), and Gradient-weighted Class
Activation Mapping (Grad-CAM), respectively, which helps
achieve class-specific feature visualization.

Ghosal et al. (2018) visualized feature maps in various layers
that detected the stress regions of a plant leaf. Nagasubramanian
et al. (2019) used a saliency map based visualization technique
to detect the hyperspectral wavelengths that are responsible for
the models’ performance. Dobrescu et al. (2017) showed that the
model always looks at the leaves in the image in the CNN-based
plant classifier. In Dobrescu et al. (2019), the research group used
layerwise relevance propagation and GBP to explain the learning
of intermediate layers of the CNN model by counting the leaves
in an image. Escorcia et al. (2015) studied the visualization of the
leaf features and found the existence of attribute-centric nodes,
which, rather than learning attributes, learns to detect objects.
A more recent work, Lu et al. (2021) used guided upsampling
and background suppression to improve models’ performance.
However, their explanation was limited to the visualization of the
instances responsible for the count.

Toneva et al. (2018) explained the learning of the CNN
models in terms of forgetting patterns, where at some point
during the training, the model correctly predicts an example, but
eventually, it is misclassified. Feldman (2020) took a different
approach and demonstrated that when there are numerous
instances of rare examples in the dataset, the deep learning
models must memorize the labels to achieve state-of-the-art

performance. Feldman and Zhang (2020) showed that along with
memorizing outliers, the deep learning models also memorize
training examples and if there are testing examples similar to it
and hence overparameterized models perform extraordinarily.
Salman and Liu (2019) claimed that overfitting is caused
due to the continuous update of a deep learning model’s
gradient and scale sensitiveness of the loss function. They also
proposed a consensus-based classification algorithm for limited
training examples.

1.2. Contributions
In this study, we focus on the plant species classification,
which is relevant in digital agriculture, e.g., precision herbicide
application (Weis et al., 2008), and is a prevalent task for
employing CNN models (Dyrmann et al., 2016; Azlah et al.,
2019). We examine the features learned by the intermediate
layers of CNN classifiers to understand the behavior of
overfit models and the contribution of image background in
overfitting. To examine how the CNN models learn in various
conditions (overfit or balanced), we use Guided Backpropagation
(GBP) (Springenberg et al., 2014) to visualize the features being
learned at different layers of the CNN models. We explore
whether the GBP-based feature visualizations could be leveraged
to detect the overfitting. We then propose a new technique for
model selection that can be used to develop balanced models.

There are three main contributions of this study. First,
we visualize the intermediate layers of different CNN models
to investigate whether the learning of the features depends
on the model’s capacity. Second, we propose a novel SSIM-
based evaluation technique that relates overfitting to the depth
of the model and provides an intuitive way to understand
the differences between overfit and balanced models. Here
SSIM refers to a measurement of the similarity between two
feature map visualizations. Third, we show how our SSIM-based
evaluation may help detect potential underfitting or overfitting
in the CNN models and allow us to select a balanced model (i.e.,
a model which is neither overfit nor underfit). In particular, it
may suffice to examine models of various depths only at their first
training epochs, and the corresponding SSIM-based evaluation
may reveal a potential balanced model. This approach can reduce
the model selection time by several factors compared to the time
needed to train different models to select a preferable depth.

2. METHODOLOGY

2.1. Guided Backpropagation
The GBP is a gradient-based visualization technique
that visualizes the gradient with respect to images
when backpropagating through the Relu activation
function (Springenberg et al., 2014). GBP allows the flow
of only the positive gradients by changing the negative gradient
values to zero. This allows visualizing the image features that
activate the neurons. Let f be the feature map of any layer l then

the forward pass is f l+1
i = Relu(f li , 0). Since GBP only allows

the flow of positive gradients, the backward pass of the GBP is

Rli = (f li > 0) · (Rl+1
i > 0) · (Rl+1

i ), where R is an intermediate
result on the calculation of the backpropagation for layer l. The
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FIGURE 1 | GBP-based visualization of the intermediate layers (left to right) of different CNN models for Barnyard Grass of the Weedling dataset. The top-left image of

(A) is the input image for all models. (A) ResNet-50. (B) 2-Conv-ResNet. (C) Shallow CNN, 6 layers. (D) Shallow CNN, 13 layers.

final output of the GBP is an image of the same dimension as the
input, displaying the features of the input image that maximized
the activation of the feature maps. A major advantage of GBP is
that it works for both convolutional layers and fully connected
layers. Figure 1 shows some examples of the visualization
generated by GBP for the Weedling dataset using ResNet-50 (He
et al., 2016). The gray color in the output of the GBP images
(Figure 1) represents that the features in those positions of the
input image do not contribute to the prediction.

2.2. SSIM Cut Curve
We use the GBP approach to visualize the features learned by the
intermediate layers of a CNN (e.g., see Figure 1). GBP creates an
RGB image with the same shape as the input image representing
the learned features for every layer. Figure 2 depicts pairwise
SSIM matrices for ResNet-50 and 2-Conv-ResNet models on
different datasets, i.e., each entry (i, j) denotes the SSIM value
between the GBP visualizations obtained for the ith and jth
convolutional layer of ResNet-50 and 2-Conv-ResNet. Here a
darker red indicates higher SSIM. From the color-coding, we
can observe that the pairwise SSIM is much lower at the initial
layers compared to the layers at a deeper layer. This inspired us
to find a way to separate the initial (dissimilar) layers from the
later (similar) layers. Let L1, L2, ..., Ln be the GBP visualization
for different convolutional layers of a CNN model with n
convolutional layers. The intuition is that the number k, where
1 ≤ k ≤ n, with the best separation between {L1, . . . , Lk} and
{Lk+1, . . . , Ln} would suggest a reasonable depth for the model to
have a good performance.

Given a number k (i.e., a cut position), we first define a SSIM
cut value Ck to obtain an estimation of how good the cut is for the
value k. We define Ck to be the mean pairwise similarity between
{L1, . . . , Lk} and {Lk+1, . . . , Ln}:

Ck =
1

k(n− k)

k
∑

i=1

n
∑

j=k+1

si,j (1)

where si,j is the SSIM between Li and Lj. In the rest of the article,
we will refer to the function Ck with respect to k as the SSIM cut
curve.

We can observe this phenomenon better by examining the
rate of change, as follows. Let Mi be the sum of the SSIM values
of Li with all other layers. Then Ck can be rewritten as Ck =

1
k(n−k)

(

∑k
i=1Mi −

∑k
i=1

∑k
j=1 si,j

)

. If the curve appears to be

flat around the middle cut positions, i.e., when k ≈ (n− k), then
1Ck = Ck+1 − Ck = 0. In other words, we will have 1Ck ≈

Mk+1 − 2
∑k

i=1 si,k+1 = 0, and hence
∑k+1

i=1 si,k+1 = 1
2Mk+1.

Thus the similarity of Lk+1 with the earlier layers {L1, . . . , Lk}will
be equal to its similarity with the rest of the layers {Lk+1, . . . , Ln}.

2.3. Research Questions
In a CNN, it is expected that the convolutional layers will learn
features from the foreground objects in images that are being
classified (Kamal et al., 2021). The background features are
considered irrelevant, and often these features are not consistent
in the images. However, the features learned by a CNNmodel are
also dictated by the model’s capacity. Models with a large number
of layers have a very high representational capacity, and therefore
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FIGURE 2 | SSIM matrix (si,j ) generated with GBP images for (i) Barnyard Grass of the Weedling dataset (ii) Apple leaf of the Plant Village dataset using (a) ResNet-50

and (b) 2-Conv-ResNet. A darker red indicates higher SSIM.

such models are expected to learn diverse features. Although
this is widely believed, no formal exploration has been done in
the plant phenotyping context. We thus explore the following
research question.

RQ1:Are the variety of features learned by a model influenced
by the model’s capacity?

In a model with high representational capacity, the presence of
the potential redundant layers can cause the model to overfit
by memorizing irrelevant features. As a result, it performs well
for the training images but fails to classify the testing images
due to the absence of the features present in the training set. To
investigate the presence of redundant layers in CNN models, we
considered the following question.

RQ2: How diverse are the features learned at different depths
in a deep CNNmodel?

The visualizations of the feature maps represent the learning of
the layers. The SSIM similarity of these visualizations may be an
effective tool to investigate various options for model depth and
potentially select a balanced model.

RQ3: Can the SSIM-based evaluation of the feature map
visualizations be leveraged to select the required depth of a
model?

2.4. Datasets
The use of deep learning in plant phenotypic tasks are gradually
gaining popularity (Scharr et al., 2016; Aich and Stavness,
2017; Ubbens and Stavness, 2017; Aich et al., 2018), and the
dataset plays a vital role as it contains a large amount of noise
representing the real-world scenarios. Manually measuring the
plant traits is a time-consuming process, which is also prone
to error. Image-based automated plant trait analysis using deep
learning can help overcome these drawbacks (Aich et al., 2018).
However, most of the studies explaining the deep learningmodels
use benchmark datasets (e.g., MNIST (Deng, 2012), Fashion-
MNIST (Xiao et al., 2017), and so on), and very few studies have
attempted to explain the learning using a plant dataset (Dobrescu
et al., 2019).

We used three plant datasets: Weedling dataset (Beck et al.,
2020, 2021), Plant Village dataset (Mohanty, 2018), and Plant
Seedling dataset (Giselsson et al., 2017) which are commonly
used for creating deep learning models for plant phenotyping
tasks. For all the datasets, 80% of the available images were used
for training and 10% for testing and 10% for validation. The
detailed overview of the datasets is available in Mostafa et al.
(2021).

2.5. Deep Learning Models
ResNet-50: In this study, we used the ResNet-50 model
with random weight initialization and adam optimizer as the
optimization function. We also replaced the top layer of the
model with a fully connected layer, where Softmax was the
activation function, and the number of neurons was the number
of classes in a dataset. We trained the model for 100 epochs and
only used the model with the highest testing accuracy.

2-Conv-ResNet, 3-Conv-ResNet, 4-Conv-ResNet: Keras
ResNet-50 model is an implementation of the architecture
proposed by He et al. (2016), where the authors used five
convolutional blocks. However, we also used smaller versions
of the ResNet-50, where we sequentially increased the number
of blocks to create 2-Conv-ResNet, 3-Conv-ResNet, and 4-
Conv-ResNet. For example, in 2-Conv-ResNet we only used
the layers in Conv1 and Conv2_x (see Table 1, He et al.,
2016), and in 3-Conv-ResNet we used the layers in Conv1,
Conv2_x, and Conv3_x. In different models, apart from
discarding the convolutional blocks, the rest of the architecture
remained the same. We used the modified ResNet models to
investigate the relation between the model depth and SSIM
cut curve and to see whether decreasing the depth helps
avoid overfitting.

ResNet-50-10% and 2-Conv-ResNet-10%: In an attempt to
create overfit models for this study, we trained the ResNet-50 and
2-Conv-ResNet on 10% training data for the Weedling and Plant
Village dataset; but we left out the Plant Seedling dataset due to
its small size.

Shallow CNN: Along with the ResNet-50, we also used
two shallow CNN models for our experiments: one with
6 convolutional layers and the other with 13 convolutional
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layers, which we named Shallow CNN, 6 Layers and Shallow

CNN, 13 Layers, respectively. In the shallow CNN models, we
only used a combination of convolutional layers and avoided
using the residual connection. These models aim to examine
whether the observations obtained from the comparative analysis
between ResNet-50 and 2-Conv-ResNet also hold for shallow
CNNmodels.

For the shallow CNNs, we used categorical cross-entropy
as the loss function, random weight initialization, and adam
optimizer to optimize the models. Similar to ResNet models, we
trained shallow models for 100 epochs with a minibatch size of
16 and chose the model with maximum testing accuracy. While
training the shallow CNNs on the Weedling dataset, we resized
the images to 512 × 512. For the other datasets, the size of the
images was 224×224, as it is required for the ResNet models. We
used varying zoom range, image flipping, and distorting images
along an axis (shear angle) for data augmentation and added an
additional batch of augmented images during each epoch. The
model architecture and more details of the shallow CNN models
are in the Supplementary Material.

The training, testing, and validation accuracy of different
models on the different datasets are in Table 1. In this study,
for the Weedling and Plant village dataset, we have considered
the ResNet-50-10% and 2-Conv-ResNet-10% as overfit models
due to their significant difference between training accuracy and
testing accuracy. All the models for the Plant Seedling dataset
were overfit except the shallow CNN with 13 convolutional
layers, which had a very poor accuracy indicating the model was
not optimized for the classification.

3. RESULT AND DISCUSSION

3.1. Learning of Intermediate Layers
ACNNmodel is expected to extract features from the foreground
of the images (Xiao et al., 2020). The foreground of an image
is the object that we are performing the task on. Hence we first
examined GBP visualization of the features being learned by the
intermediate layers in various models.

Figures 1, 3 show the GBP visualization of the consecutive
layers of different models for the Weedling and Plant Village
datasets, respectively. After inspecting the visualized features, we
can see that in Figure 1 the last convolutional layer of ResNet
models (ResNet-50 and 2-Conv-ResNet) extracted features from
the plant leaf, soil, and plant pot (zoom the figure for a better
view) based on which the classification is performed. There is
also the influence of background features on the ResNet models,
although it is not very strong. On the other hand, the shallow
models (Shallow CNN, 6 Layers and Shallow CNN, 13 Layers)
learned features from the plant leaf and soil. There is no visible
influence of the background features.

For the Plant Village dataset (Figure 3), the features extracted
by both ResNet models are strongly influenced by the
background of the image. The background of the Plant Village
dataset consisted of grainy structures, which might have forced
the ResNet models to extract features from them. However,
the shallow CNN models only extracted features from the leaf
edge. If we closely inspect the visualized features, we can see

TABLE 1 | Performances of different models for various datasets.

Dataset

name

Model name Training

accuracy

(%)

Testing

accuracy

(%)

Validation

accuracy

(%)

Weedling ResNet-50 98.70 96.70 96.29

ResNet-50-10% 99.89 50.70 62.88

2-Conv-ResNet 99.88 95.53 95.62

2-Conv-ResNet-10% 99.89 52.10 44.68

3-Conv-ResNet 99.93 95.14 95.13

4-Conv-ResNet 99.75 94.21 94.41

Shallow CNN, 6 Layers 94.00 89.60 88.73

Shallow CNN, 13 Layers 96.23 95.45 94.91

Plant ResNet-50 98.59 98.04 98.27

village ResNet-50-10% 87.99 77.93 65.45

2-Conv-ResNet 99.25 99.17 99.31

2-Conv-ResNet-10% 90.91 82.57 65.02

3-Conv-ResNet 99.65 99.29 99.30

4-Conv-ResNet 96.74 96.91 96.83

Shallow CNN, 6 Layers 98.26 96.46 97.75

Shallow CNN, 13 Layers 96.96 96.46 96.48

Plant ResNet-50 91.26 81.90 80.38

seedling 2-Conv-ResNet 85.16 68.75 61.67

Shallow CNN, 6 Layers 90.51 76.79 68.79

Shallow CNN, 13 Layers 68.41 69.22 64.54

Bold values represent the highest classification accuracy.

that the shallow models also extracted features from the leaf ’s
veins. In contrast, the ResNet models also depended on the leaf
pixels. Between the ResNetmodels, the ResNet-50 extractedmore
features from the image background than the 2-Conv-ResNet.
This observation is consistent for both datasets.

Analyzing Figures 1, 3, one can observe that the variety of
features learned by amodel depends on the capacity of themodel.
ResNet-50 has the highest representational capacity, followed by
the 2-Conv-ResNet, Shallow CNN, 13 Layers, and Shallow CNN,
6 Layers. The figures show that the variety of extracted features
was higher for the ResNet-50 than other models. Although
the background seems uniform in the Weedling dataset, the
lighting condition varied for different images. The presence
of irregular bright patches might have been deemed as a
feature to the ResNet-50 model, which it learned due to its
higher representational capacity. The extraction of such features
decreased with the decrease of the model capacity. The same
trend was followed by the models used for the Plant Village
dataset. The analysis of Figures 1, 3 reveal that the features
learned by a model is influenced by the model’s capacity (RQ1).

3.2. Contribution of Model Depth to
Performance
When designing a CNNmodel, a common practice is to increase
the depth of the model to achieve better performance. In
this section, we studied whether increasing the depth of the
model helps learn better features. From Figures 1, 3, we can
see that the ResNet-50 models have the highest number of
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FIGURE 3 | GBP-based visualization of the intermediate layers (left to right) of different CNN models for Bean leaf of the Plant Village dataset. The top-left image of (A)

is the input image for all models. (A) ResNet-50. (B) 2-Conv-ResNet. (C) Shallow CNN, 13 layers. (D) Shallow CNN, 6 layers.

FIGURE 4 | Comparison of the Cut Position (Layer) VS SSIM cut curve, and Cut Value Difference for the ResNet-50 models for different datasets. The value in the

legend of the chart indicate the training and testing accuracy of the model.

convolutional layers. Examining the features extracted by the
convolutional layers, it is evident that for the ResNet-50 model
after a certain depth, GBP visualizations are similar. However,
for the 2-Conv-ResNet, and both shallow models, the GBP
visualizations were dissimilar across all the layers. To quantify
the similarity of features extracted by different layers, we propose
SSIM cut curve. For every class in a dataset, we randomly
selected an image from the testing set and calculated the SSIM
cut values for the images (see Section 2.2). Next, we averaged
the SSIM cut values over all the images for every layer of a
CNN model. Thus for every model, we ended up with an SSIM
cut curve.

The SSIM cut curve resembles the “elbowmethod,” commonly
used in cluster analysis (Ketchen and Shook, 1996) to choose
the number of clusters that optimize the clustering cost. For
the SSIM cut curve, the elbow of the curve is a point where
moving the cut position more to the right no longer improves
the SSIM cut value significantly. Figure 4 shows the SSIM cut
curves of ResNet-50 for different datasets. Initially, every SSIM
cut curve shows a sharp positive slope, which indicates the feature
visualizations for the initial layers are very dissimilar from the
rest of the layers. The slope becomes flatter with the increase in
cut position. Thus, in a model with many convolutional layers,
the feature visualizations obtained from the shallow layers are
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FIGURE 5 | Comparison of the Cut Position (Layer) VS SSIM cut curve for ResNet models for (A) Weedling and (B) Plant Village dataset for Epoch (Best).

FIGURE 6 | Comparison of the Cut Position (Layer) VS SSIM cut curve for the 2-Conv-ResNet, Shallow CNN, 6 Layers, and Shallow CNN, 13 Layers for different

datasets. The value in the legend of the chart indicate the training and testing accuracy of the model. (A) Weedling. (B) Plant village. (C) Plant seedling.

FIGURE 7 | GBP visualization of the convolutional layers of the Small-flowered Cranesbill of the Plant Seedling dataset for Shallow CNN, 13 Layers. (A) Input image.

(B) Convolution 1. (C) Convolution 5. (D) Convolution 9. (E) Convolution 13.
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FIGURE 8 | Comparison of the Cut Position (Layer) VS SSIM cut curve for the ResNet-50, ResNet-50-10%, 2-Conv-ResNet, and 2-Conv-ResNet-10% models, and

Cut Value Difference for the ResNet-50, ResNet-50-10% for different datasets. The value in the legend of the chart indicate the training and testing accuracy of the

model. (A) Weedling. (B) Plant village.

FIGURE 9 | Comparison of the Cut Position (Layer) VS SSIM cut curve for different classes of the ResNet-50 (blue), and ResNet-50-10% (orange) models for (top

row) Weedling and (bottom row) Plant Village dataset.

more diverse than those from the deeper layers. Furthermore,
the diversity of the feature visualizations at a deeper layer is
larger in a balanced model compared to those in an overfit
model (RQ2).

To evaluate whether the SSIM cut curve’s elbow point could be
used as a guide for selecting the depth of the model, we examined
the performances of truncated ResNet-50 (i.e., 2-Conv-ResNet)
for the same datasets.We observed that (Table 1) 2-Conv-ResNet
achieved similar performance when compared with ResNet-50
for the Weedling dataset and even better performance for the
Plant Village dataset. For the Seedling dataset, both the ResNet-50
and 2-Conv-ResNet remained overfit.

Next, we varied the number of blocks (see Section 2.5) in
the ResNet-50 model to investigate the relation between the

depth of a model and the performance of the model and
also to see whether SSIM cut curve can help select the model
depth more precisely. From Figure 5, we can see that the 2-
Conv-ResNet and 3-Conv-ResNet have a sharper positive slope
than 4-Conv-ResNet and ResNet-50 for both datasets. A flat
SSIM cut curve indicates that the convolutional layers are
learning less diverse features, indicating that a higher depth
model will not always perform better. Table 1 supports this
observation as compared to the larger 4-Conv-ResNet and
ResNet-50; the 2-Conv-ResNet and 3-Conv-ResNet performed
similarly for the Weedling dataset and better for the Plant
Village dataset.

To examine whether shallow models could achieve high
performances, we compared the SSIM cut curve for the
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2-Conv-ResNet, Shallow CNN with 6 Layers, and Shallow CNN
with 13 layers (Figure 6).

For the Weedling and Plant Village datasets, the Shallow
CNN models achieved comparable performance to the ResNet-
50 models. Furthermore, the Shallow CNN models with 6 layers
performed similarly to CNNmodels with 13 layers. We observed
a steady increase in the SSIM cut value in both cases. The Shallow
CNN with 13 layers performed poorly for the Seedling dataset
and relied on the background features (Figure 7). The Shallow
CNN with 6 layers was overfit, but its training and test accuracy
were higher than Shallow CNN with 13 layers.

To examine the diversity of the feature visualizations between
balanced and overfit models, we compared the SSIM cut curve
of ResNet-50, ResNet-50-10%, 2-Conv-ResNet, and 2-Conv-
ResNet-10% models for the Weedling and Plant Village dataset
(Figure 8). ResNet-50 and 2-Conv-ResNet models were balanced
for both datasets, and ResNet-50-10%, and 2-Conv-ResNet-10%
models were overfit. In both cases, the SSIM curve of the overfit
model had smaller initial SSIM cut values, which increased more
sharply than in the balanced models. This can be observed
better using the cut value difference plot. The decrease in the
cut value difference was sharper for the overfit models for both
datasets. This observation indicates that an overfit model may
cease extracting new features earlier than a balanced model.
A similar trend can also be seen for the per class analysis in
Figure 9.

3.3. Model Selection Using SSIM Cut Curve
This section discusses whether the SSIM cut curve could be
leveraged to select an appropriate ResNet-50 model. An ideal
situation would be to check all the SSIM cut curves and select
the one that learns over all the layers, i.e., where the SSIM cut
curve is constantly rising. However, computing the SSIM cut
curves for all the models (2-Conv-ResNet, 3-Conv-ResNet, 4-
Conv-ResNet, ResNet-50) is infeasible due to the huge amount
of time it requires to train these models. For example, it took
72.81 h and 7.80 h to train ResNet-50 for 100 epochs using the
Weedling and Plant Village datasets. However, if we can predict
the appropriate depth by examining these models only at their
first training epochs, we can reduce the time for selecting an
appropriate model. This idea would only work if the SSIM cut
curves for various models at the first epoch and the best epoch
maintained the same shape and relative ordering of the curves.

The rapid increase in the SSIM cut curve indicates that the
feature maps are extracting new and diverse features. The curve’s
saturation indicates that the feature maps may have stopped
extracting additional features or learning very subtle features. To
select a preferred depth of a model from the SSIM cut curve,
we should consider the layers as long as the cut curve is rising,
i.e., cut value differences are large. Figure 10 illustrates the SSIM
cut curves for different models at the first epoch, which have a
shape similar to the SSIM cut curves computed from the best
epoch, e.g., see Figure 6. To precisely find the desired model
depth, we can use the cut value difference curve and the SSIM
cut curve. For the Weedling dataset, in Figure 12A, the change
of cut value difference is much less after layer 31, which indicates
that the rest of the layers might be redundant. A model with

around 31 layers is likely to be able to replicate the performance
of the ResNet-50 model. From Figures 6, 10, we can see that
the SSIM cut curve of the 3-Conv-ResNet is consistently rising,
with around 31 layers. From both figures, we can see that the
change of the SSIM cut values of the 4-Conv-ResNet in later
layers is much smaller, showing that the additional depth of the
4-Conv-ResNet fails to help learn additional features. The SSIM
cut curve of the 2-Conv-ResNet always increases, indicating that
the feature maps are still learning features, and more layers can
help learn additional features. Based on these observations, we
can say that the 3-Conv-ResNet is the preferred model for the
Weedling dataset.

For the Plant Village dataset, the cut value difference of
Figure 12B suggests that a model with around 16 layers should
be sufficient to perform the task. In Figures 6, 10, the increasing
SSIM cut curve of the 2-Conv-ResNet and 3-Conv-ResNet also
supports thesemodels being chosen as the preferredmodel. From
Table 1, it is evident that the 3-Conv-ResNet outperforms all the
models. So, the SSIM cut curve can help us choose the depth
of a model.

We now examine the behavior of the SSIM cut curve over
various epochs. Figure 11 shows the SSIM cut curve of ResNet-
50 and 2-Conv-ResNet models for Weedling and Plant Village
datasets at different epochs. From Figure 11, we can see that
the SSIM cut curves are similar at different epochs for a
model, and the pattern is consistent for both models and both
datasets. For both datasets, the SSIM cut curve of the ResNet-
50 model suggests an earlier elbow point, whereas the 2-Conv-
ResNet shows a steady increase. The stability of the SSIM cut
at various epochs gives further evidence that relying on the first
training epoch would be sufficient for the SSIM cut curve based
model selection.

Next, in Figure 12, we compared the SSIM cut curves for the
first epoch of ResNet-50, ResNet-50-10%, 2-Conv-ResNet, and 2-
Conv-ResNet-10% models along with their cut value difference
plots for the ResNet-50 and ResNet-50-10%. From Figures 8, 12,
it is evident that shape and relative ordering of the SSIM-cut
curves obtained at the first epoch (Figure 12) is consistent with
the model’s best epoch (Figure 8).

Since the empirical results show that the SSIM cut curve
follows the same trend throughout the training of a CNN,
we can choose the preferred model depth by examining
the SSIM cut curves for various models at the beginning
of their training. So, the SSIM cut curve of the feature
map visualizations may help detect potential underfitting or
overfitting in the CNN models and allow us to select a balanced
model (RQ3).

3.4. Early Stopping VS SSIM Cut Curve
There are several ways to avoid overfitting, and early stopping
is one of them (Ying, 2019). Early stopping is a form of
regularization that is used during training in iterative methods
to select how long a model is going to be trained (Girosi
et al., 1995; Prechelt, 1998). In early stopping, it is possible
that the learning of the model is stopped before it is fully
optimized (Caruana et al., 2000), which may prevent the model
frommaking accurate predictions. Early stopping is insensitive to
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FIGURE 10 | Comparison of the Cut Position (Layer) VS SSIM cut curve for ResNet models for (A) Weedling and (B) Plant Village dataset at Epoch (1). The value in

the legend of the chart indicate the training and testing accuracy of the model.

FIGURE 11 | Comparison of the Cut Position (Layer) VS SSIM cut for different epochs of (i) Weedling and (ii) Plant Village dataset using (a) ResNet-50 and (b)

2-Conv-ResNet. The value in the legend of the chart indicate the training and testing accuracy of the model.

the capacity of the model. As a result, the training of the smaller
models can be stopped before it is optimized (Caruana et al.,
2000).

The advantage of the SSIM cut curve is that it helps select an
optimizedmodel. By looking at the SSIM cut of models of various
depth, we propose the depth that is likely to provide better
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FIGURE 12 | Comparison of the Cut Position (Layer) VS SSIM cut curve for the ResNet-50, ResNet-50-10%, 2-Conv-ResNet, and 2-Conv-ResNet-10% models, and

Cut Value Difference for the ResNet-50, ResNet-50-10% for different datasets at Epoch (1). The value in the legend of the chart indicate the training and testing

accuracy of the model. (A) Weedling. (B) Plant village.

accuracy. For a fixed model, the shape of the SSIM cut curve
remains similar whether we stop early or not (see Figures 6, 10).
Therefore, we look at the SSIM cut curves of models built after
the first epoch to expedite the process.

Note that early stopping may be used while training the model
to expedite the model selection by generating SSIM cut curves.
However, here we only used one training epoch to generate the
curves. Once we select an appropriate model by examining the
generated SSIM cut curves, we do not use any early stopping
criteria on the selected model.

3.5. Summary
In summary, our experimental results suggest that the extraction
of features of a deep learning model depends on the capacity of
the model (RQ1). Our analysis of the SSIM curve shows that the
GBP visualizations of the initial convolutional layers of a model
are muchmore diverse than the GBP visualizations for the deeper
layers (RQ2). Furthermore, the rate of change and the SSIM cut
curve’s elbow point can be used for model selection (RQ3). Since
the SSIM cut curve is consistent for a model throughout different
training epochs, we can use it to choose a model depth at an early
training stage. This can save a lot of time in a traditional approach
that compares models after fully training them.

3.6. Testing With Segmented Images
Table 2 illustrates the accuracy of different models on the
Weedling and Plant Village dataset for segmented images.

For segmentation, we retained all the green pixels in the
image and marked the rest of the pixels as black (see
Supplementary Material for examples of segmented images).
Finally, we ended up with images where only the leaf was present.
Next, we used the pre-trained models on the segmented images
to calculate the accuracy.

From Table 2, we can see that the 3-Conv-ResNet has higher
classification accuracy than other models for both Weedling and
Plant Village dataset, which implies that the models are more
focused on the leaf features than the background features. Also,
the low accuracy of the ResNet-50 model indicates background
features may more influence it than the 3-Conv-ResNet model.
Comparing the accuracy of Epoch (1) to the accuracy of Epoch
(Best), we can see that as the training progresses, the models tend
to focus more on the leaf features than the background features.
However, the results of such experiments can be limited by the
quality of the segmented images.

4. CONCLUSION

In this article, we explained the overfitting in a CNN model
for plant phenotyping by visualizing the intermediate layers’
learning. We used guided backpropagation to visualize the
learning of the intermediate layer of different CNN models. We
used four different models on three different plant classification
datasets. We proposed a novel SSIM cut based analysis to
measure the similarity among the features learned in the
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TABLE 2 | Performances of ResNet-50 model with different block for various

datasets with segmented images.

Epoch (best) Epoch (1)

Training

dataset (%)

Testing

dataset (%)

Training

dataset (%)

Testing

dataset (%)

Weedling

ResNet-50 58.87 53.61 14.01 11.99

ResNet-50-10% 41.95 35.49 28.43 25.60

2-Conv-ResNet 33.56 24.74 29.39 25.88

2-Conv-ResNet-10% 27.61 18.66 27.82 17.26

3-Conv-ResNet 65.50 66.64 14.08 12.08

4-Conv-ResNet 30.77 23.38 13.97 11.97

Plant village

ResNet-50 28.00 23.68 10.60 10.50

ResNet-50-10% 31.45 27.80 10.08 11.54

2-Conv-ResNet 40.78 34.71 28.66 25.35

2-Conv-ResNet-10% 24.03 23.37 28.66 25.35

3-Conv-ResNet 61.72 62.94 30.94 26.52

4-Conv-ResNet 43.90 38.09 21.48 20.56

Bold values represent the highest classification accuracy.

intermediate layers of a CNN. Our experiments showed that the
features extracted by a model depend on its capacity. Our SSIM
cut curve revealed that in a more complex model, the shallow
layers learn more diverse features as compared to the deeper
layers and that a more distinct transition between these regimes
is noticeable for overfit models. The SSIM cut curve method can
help detect a potential overfit condition or inform a practitioner
that a shallower model may be more appropriate for training
with a particular dataset. We also showed the usage of the SSIM
cut curve in selecting the model depth. It can help reduce a
model’s training time and resource as we can predict the required
model depth at the beginning of training. We believe our study
contributes to a better understanding of the behavior of overfit
CNNmodels and provides new directions for creating metrics to
detect and avoid model overfitting in plant phenotyping tasks.

Future works may further examine various facets of our SSIM
cut curve based analysis. In our SSIM cut curve analysis, the
elbow point may not always correspond to a sharp elbow or
be identified unambiguously in practice, which is a commonly
known limitation of elbow heuristics (Ketchen and Shook, 1996).

We envision running a user study involving deep learning
experts, where one can show the output of different models
by hiding the model’s label and recording their opinions to
see whether a domain expert can detect an overfit model by
only observing the GBP visualization of the intermediate layers.
Due to the residual connection in the ResNet models, it might
be possible to avoid overfitting and influence the similarity
of the GBP visualizations of various layers. Hence it would
be interesting to investigate the contribution of the residual
connections in an overfit model’s performance.
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