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Abstract

Gene duplication is a key driver of genetic diversity and adaptation, allowing

genomes to develop complexity and redundant sequences that evolve along different

trajectories. After gene duplication, selective pressure relaxes, leading to various

evolutionary outcomes: neofunctionalization, subfunctionalization, or pseudogenization.

In human evolution, gene duplication played an important role: since divergence from the

common ancestor with chimpanzees, humans have gained approximately 75

lineage-specific genes, influencing brain development, dietary adaptation, and immune

regulation. The FAM72 gene family, with four paralogs (FAM72A-D) that arose after

human-chimpanzee divergence, illustrates this process.

The evolutionary history and function of the FAM72 paralogs remain poorly

described. The ancestral FAM72A protein drives early stages of somatic hypermutation

in B cells by antagonizing UNG2. However, FAM72C-D paralogs have Trp125Arg amino

acid substitution that prevents them from interacting with UNG2. This study hypothesizes

that after the initial duplication from FAM72A to FAM72B, FAM72B duplicated to

FAM72C and FAM72D. I hypothesize that opposing selective forces operate on

FAM72A-B and FAM72C-D paralogs. Another hypothesis is that population-specific

exposure to local environments during human evolution has driven the selection of

population-specific adaptive haplotypes of FAM72A paralogs.

The study used the 1000 Genomes dataset, testing selection through neutrality

metrics and haplotype-based scores, and investigated functional divergence by comparing

conserved amino acid sites and gene-wide LD patterns across human populations.

Bayesian divergence time estimation between FAM72 paralogs was performed using the
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most common haplotypes in humans and chimpanzees. The hypothesized sequence of

duplication events was supported by the phylogenetic analysis. The neutrality metrics

identified FAM72C as recovering from a selective sweep, with other paralogs not

showing signals of positive selection. Integrated haplotype scores of FAM72D suggested

a recent selective sweep in African populations, and FAM72A-B showed high

conservation. Linkage disequilibrium analysis highlighted functional regions, with

FAM72A and FAM72B sharing active LD-enriched promoters, while FAM72C contained

an active enhancer linked to immune cell function. Finally, multiple signatures of

balancing selection were observed in an intronic region of FAM72C.

The results suggest neutral or relaxed selection for FAM72A-B, but purifying

selection following a selective sweep for FAM72C-D. The divergence of paralog pairs is

evident in regulatory and functional shifts, notably with FAM72C’s unique immune cell

associations. No clear signs of population-specific adaptation were identified, but

FAM72B shows distinct haplotypes between East Asian and South Asian populations,

hinting at either population bottlenecks or adaptive evolution. The findings show how

gene duplication within the FAM72 gene family has contributed to genetic diversity and

potential adaptability, with some members potentially shaping the evolutionary trajectory

of immune function in human populations.
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Chapter 1: Introduction

1.1 Gene duplication and evolution

The diversity of life on earth and the complexity of biological systems are largely

attributed to the molecular mechanisms that govern genetic variation, including

nucleotide substitution and structural genomic changes. Gene duplication provides raw

material for the evolution of new genetic functions and contributes to the innovation of

phenotypes (Ohno, 1970).

Structurally complex regions of the human genome serve as the birthplace for

many unique human genetic variants. These areas are prone to structural changes, which

thereby enhance the emergence of new structural variants and gene copy number

changes. These changes are crucial for evolution, providing the raw materials from which

genes unique to humans have emerged, thereby contributing to significant phenotypic

changes in a short period of evolutionary time and potentially making an important

contribution to human-specific traits.

In this introduction, I aim to describe the mechanisms of gene duplications, how

duplicates become fixed within populations and species, their evolutionary fates, and the

role of segmental duplications in the evolution of humans and primates. I will also

synthesize the current research on the function of human-specific FAM72A paralogs and

their potential adaptive benefits in human evolution.

1.1.1 Mechanisms of gene duplication

The evolutionary paths and outcomes of duplicated genes are diverse and shaped

by the conditions under which the duplicates emerge (Davis and Petrov 2005; Guan,

Dunham, and Troyanskaya 2007; Makino and McLysaght 2010). Gene duplicates can
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arise from several different genomic processes: these processes leave idiosyncratic

molecular signatures informing us as to the mechanisms that generated the duplicates.

The mechanisms driving gene duplication also occur at different frequencies and have

different selective forces shaping their evolutionary fate. There are several strategies to

determine the age of a new gene, and depending on the gene’s classification, it may be

either straightforward or challenging to discern which copy is the ancestral gene and

which is the new or derived gene.

Gene duplications occur on two different scales: whole-genome duplication

(WGD) and small scale duplications (SSD) that involve duplication of individual genes

or chromosomal segments. WGD, often the result of errors in meiotic or mitotic cell

division, is a source of gene duplicates that typically leads to significant functional and

morphological innovations throughout evolution. The fixation rate of WGD events is low,

which is reflected in the small number of extant polyploid species (Van de Peer, Maere,

and Meyer 2009; Arrigo and Barker 2012; Van de Peer, Mizrachi, and Marchal 2017).

Despite their rarity, the lineages that have managed to resolve the complex genomic

issues such as genome instability, higher mutation load and doubled energy and resources

costs following a WGD, have often become extremely successful, as evidenced in both

vertebrates (Dehal and Boore 2005) and flowering plants (Tang et al. 2008).

Duplicated genes that are generated either via WGD or SSD are known as

paralogs: the subset of paralogs that are specifically derived from a WGD are referred to

as ohnologs. The generation of ohnologs represents a significant opportunity for genetic

novelty since the redundancy of having entire sets of genes allows for the entire network

to evolve new functions or become specialized while retaining the function of the

2

https://www.zotero.org/google-docs/?54K17b
https://www.zotero.org/google-docs/?54K17b
https://www.zotero.org/google-docs/?vbMYfc
https://www.zotero.org/google-docs/?j4UvIL


ancestral set of genes or network. The opportunity for the generation of specialized or

novel pathways following WGD occurs because duplication of the entire genome

preserves the stoichiometry of protein-protein interactions and, therefore, prevents dosage

imbalance. Further, duplication via WGD involves duplication of regulatory elements

that sometimes exist at considerable distances from the protein-coding region of a gene:

this further facilitates the creation of complex and redundant gene regulatory networks

that contribute to increased genomic complexity and robustness. However, computer

simulations have shown that post-WGD, these redundant gene regulatory networks can

decrease the fitness of organisms in stable environmental conditions due to the

accumulation of random mutations. On the other hand, in fluctuating environments or

near-extinction events, these duplicated networks have a greater likelihood of being

retained because they can improve the evolvability and adaptive capacity of the genomes,

allowing species to survive and adapt to changing conditions (Yao, Carretero-Paulet, and

Van de Peer 2019). Over time, when the environment stabilizes, polyploid genomes

undergo a process known as diploidization, whereby there is massive gene loss and

genomic reorganization with only a few adapted ohnologs being retained, and

chromosomes segregate in dyads (Wolfe 2001). Some studies have argued that the loss of

different sets of ohnologs between populations may lead to rapid divergence between

them, leading to radial speciation (Paterson, Bowers, and Chapman 2004; Hoegg et al.

2004). However, the long-term role of WGD in increasing diversification rates of

lineages, particularly in flowering plants, remains an area of debate.

While whole-genome duplication can lead to evolutionary novelties, the

likelihood of the successful establishment of polyploid lineages is low, making its
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contribution to adaptive evolution less frequent. Paralogs are more commonly produced

through SSD of chromosomal segments known as segmental duplications, which are

influenced by the genomic environment of the duplicated region. These duplications

often occur due to errors in DNA repair mechanisms or during DNA replication (Bailey

et al. 2001).

Double-strand DNA breaks can be repaired either through non-allelic homologous

recombination (NAHR) or non-homologous end joining (NHEJ). NAHR operates by

aligning homologous sequences with high similarity, which can mispair and crossover

during cell division, leading to deletions, duplications, or inversions depending on how

the sequences align. The involvement of NAHR in recent gene duplications is usually

indicated by identical sequences flanking the duplicated area. Conversely, in the absence

of such sequences, NHEJ or DNA replication errors are typically considered responsible.

Notably, ohnologs are rarely duplicated further by segmental duplication in

humans (Maere et al. 2005; Makino and McLysaght 2010). This observation may be

attributed to more stringent dosage balance constraints, supported by a higher probability

of haploinsufficiency in ohnologs (Vance and McLysaght 2023).

New gene copies may also arise via retrotransposition, which is an RNA-mediated

duplication mechanism distinct from DNA-mediated processes. In mammals, the primary

facilitators of this mechanism are the long interspersed nuclear elements (LINEs), which

are capable of reverse transcription due to their encoded reverse transcriptase enzyme (Q.

Feng et al. 1996). Most retrocopies generated through retroposition initially lack

promoters, rendering them inactive; however, they may acquire promoters secondarily de

novo. Conversely, some retrogenes may already possess promoters if they were
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transcribed from regions with distributed alternative start sites, resulting in

transcriptionally active retrogenes upon insertion (Okamura and Nakai 2008).

Additionally, retrotransposed genes can integrate into exons of other genes, creating

novel fusion genes with altered protein domain architectures (Akiva et al. 2006). These

retrogenes are characterized by a faster resolution of evolutionary trajectory, whether they

are rapidly purged due to deleterious effects or fixed in the genome due to adaptive

fitness effects, compared to retropseudogenes and products of segmental duplications

(Carelli et al. 2016).

1.1.2 Evolutionary fates of duplicated genes

Following a segmental duplication that results in a paralog formation, the new

gene enters a polymorphic phase. During this period, it is characterized by instability, as

it could either become fixed within the population or be completely lost. Under an

assumption of neutrality, the probability of the segmental duplication achieving fixation

by genetic drift in a diploid species with a census population size NC is (2NС)-1 (Kimura

and Ohta 1969). However, this probability shifts when considering duplications that have

fitness effects. In large populations, duplicates that have beneficial effects are more likely

to become fixed, while deleterious duplicates are swiftly purged from large populations

(Crow and Kimura 1970). Fundamentally, while deleterious gene duplicates are typically

eliminated shortly after their formation, the probability that a neutral duplicate becomes

fixed is equal to its frequency in the population, and the probability that a beneficial gene

duplicate becomes fixed depends on the selective advantage of the gene and the

population size (Otto and Yong 2002).
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While gene duplication is predominantly associated with deleterious phenotypic

consequences (Conrad and Antonarakis 2007; Makino and McLysaght 2010; Mahjani et

al. 2022), duplicated genes can provide direct adaptive benefits (Rapoport 1940; Ohno

1970). One beneficial scenario is gene dosage amplification, particularly advantageous

when the ancestral gene does not produce enough of its protein to meet the organism's

needs under specific environmental conditions. Under such circumstances, the expression

of a duplicated gene can effectively double the gene dosage, potentially providing an

adaptive advantage that could lead to the rapid fixation of the duplicate within the

population. This process is exemplified by the widespread duplication of ribosomal and

transfer RNA genes across various species (Ohno 1970) and the duplication of amylase

genes (Perry et al. 2007). Notably, this mechanism would lead to a distinct pattern of

duplicated gene maintenance: the newly duplicated gene would provide an immediate

adaptive advantage, prompting a strong selective sweep that rapidly fixes the duplicate in

the population. Following fixation, the fixed locus would be almost identical to the

ancestral gene (Hahn 2009).

Segregation avoidance is another mechanism that can direct fixation of a

duplicated gene (Spofford 1969; Ohno 1970). According to this model, heterozygous

individuals show higher fitness than homozygous individuals, which carry identical

alleles. However, due to the principles of Mendelian inheritance, these heterozygous

individuals would produce offspring, half of which would be homozygous and have

lower fitness. To avoid segregation load, a single-copy gene may be duplicated in the

genome. This duplication allows one copy to become fixed with one allele, and the other

to become fixed with the alternate allele, thereby maintaining persistent heterozygosity
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within the population. The mechanism ensures that all offspring will inherit the fitness

advantages of heterozygosity. Segregation avoidance was observed in the mosquito

species Culex pipiens, where duplication of the gene coding for acetylcholinesterase led

to the presence of individuals carrying both an insecticide-resistant allele, which had

reduced activity, and a sensitive allele with normal enzymatic activity. Heterozygous

individuals were not affected by pesticides but also did not suffer from fitness costs

associated with the reduced enzyme activity (Lenormand et al. 1998).

After achieving fixation, the long-term fate of a duplicated gene is typically

categorized into one of three evolutionary trajectories, as illustrated in Figure 1. One of

the duplicate genes often experiences relaxed selection, meaning it no longer faces the

strong evolutionary pressure to retain its function. This happens because the other

duplicate can maintain the necessary function, freeing its counterpart from the

evolutionary constraint. Over time, the gene under relaxed selection can accumulate

mutations. Some of these mutations, if they disrupt the gene's function, can lead to

pseudogenization, converting the gene into a non-functional pseudogene. However,

during this critical period, the duplicated gene also has a limited window to acquire

gain-of-function mutations. Such mutations could result in novel, selectable traits,

providing new opportunities for different selective forces to act upon the gene, and

preventing it from pseudogenization (Walsh 1995). In addition to the high probability of

pseudogenization following duplication, some genes that are successfully

neo-functionalized can, at a later time point, undergo pseudogenization due to changes in

the environment, as illustrated by the rapid loss of functional olfactory receptors in the

Homininae clade (Hughes, Teeling, and Higgins 2014).
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Figure 1. Evolutionary fates of duplicated genes. In pseudogenization, the duplicated
gene accrues detrimental mutations, such as start-loss mutations, leading to a loss of

protein expression. Subfunctionalization is marked by the complementary partitioning of
the ancestral gene’s functions and/or expression profiles between the derived genes,

effectively maintaining the ancestral state across the duplicates. Coding
neofunctionalization involves the acquisition of novel protein functions through the

accumulation of coding mutations, resulting in functions not present in the ancestral gene.
Regulatory neofunctionalization, on the other hand, is defined by the emergence of new

expression patterns not present in the ancestral gene, contributing to the diversification of
gene function post-duplication.

Prior to the fixation of loss-of-function mutations in one of the duplicate genes,

the redundancy provided by the duplicated gene creates an opportunity for the

exploration of mutations that were previously unfavourable. These mutations might

enable the gene to overcome local fitness peaks in search of a global fitness maximum, or

they might lead to the development of novel protein functions. This process, where

duplicated genes evolve new functions due to relaxed purifying selection followed by

positive selection of adaptive mutations, is termed neofunctionalization by Ohno (1970).

Two types of neofunctionalization are distinguished: regulatory

neofunctionalization (Figure 1, lower gene diagram), which results from mutations in

regulatory elements leading to new spatial and/or temporal patterns of gene expression
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not observed in the ancestral gene; and coding neofunctionalization (Figure 1, upper gene

diagram), which results from gain-of-function mutations in the gene’s open reading frame

(Moore and Purugganan 2005). Both types have been observed recurrently in the

evolution of opsin genes across multiple vertebrate lineages (Yokoyama 2008; Cortesi et

al. 2015).

The probability of a random mutation being beneficial is very low, making

Ohno’s adaptation model of neofunctionalization as the sole mechanism for the retention

of functional duplicates implausible. According to the Dykhuizen–Hartl model, initially

proposed by Kimura (1983), mutations in a duplicated gene do not become fixed

immediately after their emergence. Rather, in this model, neutral variants segregating in a

population may become subject to positive selection in the presence of new

environmental challenges. On the other hand, the adaptation model suggests that

neofunctionalization occurs through the ongoing adaptive fixation of mutations at one of

the duplicated loci.

Näsvall et al. (2012) proposed the "innovation–amplification–divergence” model

of neofunctionalization. In this model, a gene with a minor secondary function, which is

not initially essential for survival, can gain selective advantage if environmental

conditions change. Duplication of this gene may result in a higher dosage of an adaptive

protein with immediate fitness effects. Subsequently, the duplicated genes can specialize,

each developing distinct functions. This model of paralog evolution was observed in

Salmonella enterica, whereby the ancestral gene was originally involved in histidine

biosynthesis and had a nonessential tryptophan biosynthesis activity. Three thousand
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generations following the gene duplication event, the paralogs specialized, one

performing histidine and the other tryptophan biosynthesis.

Reliance of neofunctionalization models on beneficial adaptive consequences of

gene duplications and relaxed selective pressures acting on them makes these models

unlikely in many ecological contexts. An alternative model of duplicate retention by

subfunctionalization was proposed and has become more widely accepted (Force et al.

1999; Lynch and Conery 2000). In this model, the duplicated genes go through a

two-phase process known as duplication-degeneration-complementation (DDC). In the

early stages after gene duplication, the fate of the gene copies can diverge in several

ways: they might become nonfunctional and turn into pseudogenes, evolve new roles via

neofunctionalization, or accumulate mutations. These mutations might limit the range of

activities that the gene copies can perform or reduce their expression under relaxed

selection. However, the mutations might allow each duplicate to complement the other,

effectively restoring the functional capacity of the ancestral gene. This process of

complementation serves to retain both genes in the population, since neither can perform

the full functions of the parent gene on its own. It will also limit the genes’ potential for

undergoing neofunctionalization or turn into pseudogenes. If such changes occurred, it

would render the second duplicate incapable of performing the ancestral gene's functions,

thereby solidifying the need for both duplicates to coexist and cooperate.

While the DDC model provides a mechanism for the long-term maintenance of

duplicated genes in a genome, it falls short in accounting for the rapid fixation of a

duplicated gene, attributing this phenomenon mainly to stochastic genetic drift. In

contrast, the “Escape from Adaptive Conflict” (EAC) model assumes that adaptive
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mutations drive the fixation and retention of duplicated genes. This model presupposes

that the ancestral gene, prior to duplication, carried out two distinct functions. However,

selection for the performance of one function inadvertently led to a compromise in the

other. The duplication event thus provides an opportunity to distribute the diverging

functions of the ancestral gene across the two resulting duplicates. This functional split

allows each duplicate to undergo function-specific adaptive mutations, leading to their

rapid fixation and preservation. Over time, this process results in a rapid functional and

structural divergence between the two duplicates, enabling them to collectively

outperform the ancestral gene in carrying out its original functions (Sikosek, Chan, and

Bornberg-Bauer 2012; Barkman and Zhang 2009).

The various models proposed to explain the retention of duplicated genes in a

genome do not operate in isolation; rather, they are interconnected and can influence each

other in numerous ways. It is plausible to suggest that gene families have undergone

multiple cycles of subfunctionalization, serving to distribute various functions across

different genes that originated from a single ancestral gene. This process of spreading out

functions can reduce the constraints on these new genes, creating favorable conditions for

subsequent neofunctionalization. As a result, the reduced constraints on these new genes

can enhance neofunctionalization (Rastogi and Liberles 2005; He and Zhang 2005;

Jouffrey, Leonard, and Ahnert 2021). Similarly, ongoing cycles of neofunctionalization

can lead to a single gene accumulating a variety of functions over time. When such a

gene undergoes duplication, followed by subfunctionalization, these accumulated

functions can be distributed across multiple genes. This distribution not only preserves
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the functions but also provides additional opportunities for the evolution of novel

functions.

1.1.3 Segmental duplications drive adaptation in great apes and humans

Comparative analyses of high-quality genome assemblies from various mammals,

including primates, have revealed that a significant portion of their genomes is made up

of segmental duplications (SDs). Segmental duplications are highly identical blocks of

genomic DNA either scattered across and between chromosomes or serially (tandemly)

organized in close proximity to each other (Bailey et al. 2001), These regions are

enriched for repetitive DNA and can contain genes with preserved intron-exon structure.

Notably, primates, and particularly humans, show a higher proportion of these SDs

compared to other mammals (She et al. 2008; Liu et al. 2009; Nicholas et al. 2009;

Vollger et al. 2022; Shao et al. 2023). In contrast to the 70-90% of SDs in mice (She et al.

2008) and rat (Gibbs et al. 2004) that occur as tandem duplications, the majority of SDs

in humans are dispersed throughout the genome, indicating a shift from tandem to

interspersed duplications in the primate lineage, which is most evident in humans and

great apes.

A study of 50 primate genomes (Shao et al. 2023) confirmed a significant increase

in segmental duplications in the ancestor of the great apes. This research also highlighted

numerous lineage-specific duplications in primates that are thought to contribute to their

unique evolutionary adaptations. Sudmant et al. (2013) reported that in the lineage of

African great apes, segmental duplications have occurred at a rate 2.8 times higher than

deletions. Moreover, the contribution of copy number changes to the genetic
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differentiation between species was found to be 1.4 times greater than that of single

nucleotide substitutions in the period from 8 to 12 million years ago.

The pattern of these duplications is not random, with SDs in the hominid lineage

forming large, fractally organized clusters (Jiang et al. 2007). Using a repeat-graph

approach, researchers identified 24 core duplicons — segments each about 15 kilobases

long — that are overrepresented within 437 duplication blocks in the human genome.

These core segments serve as starting points for further accumulations of SDs, leading to

larger blocks of duplicated DNA over 250 kilobases in size. These larger blocks are made

up of smaller, newer segments that are positioned increasingly further from the core

duplicon. Intriguingly, these central duplicons have been independently expanded in

different primate lineages (Cantsilieris et al. 2020).

In the human genome, SDs that are unique to our lineage are known as

human-specific duplicates (HSDs). Dennis et al. (2017) identified 30 gene families with

more than 80 genes that are present in > 90% of humans. Expression divergence analysis

between these human-specific paralogs and corresponding single-copy orthologs failed to

identify the unifying factor driving this process (Shew et al. 2021). However, the authors

showed that expression of HSDs is asymmetrically conserved, with the derived paralogs

having reduced and more divergent expression across tissues compared to the ancestral

gene.

Many HSDs are associated with traits that are characteristic of human neural

development, and are actively expressed in the brain (Dougherty et al. 2018). For

instance, the gene SRGAP2C is involved in human-specific synaptogenesis(Schmidt et al.

2019); ARHGAP11B plays a role in the amplification of neocortical basal progenitor cells
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(Heide et al. 2020; Fischer et al. 2022); and NOTCH2NLB is implicated in cortical

neurogenesis (Fiddes et al. 2018). Moreover, HSDs were also implicated in more recent

non-neuronal adaptations. For example, the adaptation to a starch-rich diet following the

Neolithic revolution is associated with the segmental duplication and copy number

variation in the AMY1 gene, which codes for the salivary amylase enzyme (Perry et al.

2007; 2015). Shew et al. 2021 proposed that paralogs of the NCF1 gene in humans may

offer protection against autoimmune diseases. This hypothesis is supported by evidence

that mice lacking the equivalent gene exhibit a higher incidence of arthritis and

autoimmune encephalomyelitis (Hultqvist et al. 2004). Furthermore, having additional

copies of the NCF1 gene correlates with a lower risk of systemic lupus erythematosus in

humans (Jiang et al. 2007; Zhang et al. 2022). Although the paralogs NCF1B and NCF1C

are generally nonfunctional pseudogenes, gene conversion events can occasionally revert

them to their functional ancestral state, resulting in an increased gene dosage in some

individuals (Heyworth, Noack, and Cross 2002).

1.2 FAM72A gene family

Evolutionary and population genetic studies provided evidence of varying

strength for the contribution of human-specific genes to the traits that distinguish humans

from other ape species (Dennis et al 2017, Hsieh et al. 2021). Feng et al. (2021) showed

the critical role of ancestral FAM72A in adaptive immune response. This gene, unique to

humans due to three segmental duplication events, has been identified as a key factor in

somatic hypermutation and class switch recombination in B cells, primarily through its

interaction with UNG2. However, the human-specific paralogs FAM72C and FAM72D

have a critical Trp125Arg amino acid substitution, which inhibits their ability to bind to
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UNG2. Despite this divergence from the ancestral function, these genes exhibit a high

degree of conservation, suggesting alternative functional roles or evolutionary pressures

maintaining their presence in the genome. To further explore this phenomenon, my

research aims to identify the evolutionary drivers behind the conservation of these genes

and generate hypotheses regarding the novel functions of the derived FAM72A paralogs.

1.2.1 FAM72A evolution

The evolutionary history of the Family with sequence similarity 72 (FAM72) is

not well annotated or understood. FAM72A is an archaic group of proteins hypothesized

to have originated during the emergence of Opisthokonta, but subsequently lost within

the Protostomia lineage. The domain architecture diverges significantly between fungal

and metazoan FAM72 proteins. Specifically, the latter demonstrates a notable degree of

protein conservation characterized by the presence of a single functional domain. In

contrast, the former taxonomic cluster is characterized by the presence of several

functional domain groups along with the FAM72 domain. These structural differences

potentially mirror the functional divergence of these proteins over the course of their

evolution. Following two successive rounds of WGDs that occurred prior to the

emergence of jawed vertebrates, the duplicates of the FAM72A gene rapidly underwent

subsequent losses. The presence of multiple gene copies of FAM72A within the

Cyprinidae and Salmonidae families can be traced back to lineage-specific WGD events.

In mammalian species such as humans, blue whales, and degus, several paralogs of the

FAM72A gene can be identified. In degus and blue whales, the duplication of FAM72A

took place through retrotransposition, resulting in a duplicated gene characterized by its
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CDS being encoded within a single exon. In contrast, the duplicated FAM72A genes in

humans have preserved the structural configuration of the ancestral gene.

Within the human genome, the FAM72 gene family comprises four paralogous

genes located on chromosome 1. These genes originated from three lineage-specific

segmental duplication events. The paralogs are colocalized with the SRGAP2 paralogs

and underwent sequential duplication together. By analyzing shared genomic regions

among SRGAP2 paralogs, Dennis et al. (2012) proposed that approximately 3.4 million

years ago (Mya), a duplication in the FAM72A-SRGAP2 region led to the emergence of

FAM72D-SRGAP2B. Subsequently, around 2.4 Mya, another duplication event gave rise

to FAM72B-SRGAP2C, originating from the pre-existing FAM72D-SRGAP2B locus.

Finally, approximately 1 million years ago, the FAM72C-SRGAP2D locus emerged from

the same genomic region (Figure 2). This proposed model establishes a connection

between the formation of the FAM72D-SRGAP2C and FAM72C-SRGAP2D loci with the

evolutionary emergence of the Homo genus.

Figure 2. Chromosomal localization of segmentally duplicated FAM72-SRGAP2 loci.
Each gene is represented by an arrow, with the direction indicating its orientation; genes

on the upper part are on the positive strand, while those on the lower part are on the
negative strand. The white segments within the arrows denote the exonic regions.

Additionally, black arrows mark the proposed sequence of locus duplication events based
on Dennis et al. (2012). The pink-shaded region on the chromosome corresponds to the

centromeric region, while the blue area represents the pericentromeric region.

16

https://www.zotero.org/google-docs/?zDBG26
https://www.zotero.org/google-docs/?ANIDux


1.2.2 FAM72A gene structure

FAM72A paralogs are located on chromosome 1, with the ancestral gene residing

on 1q32.1 distantly from the derived genes. Three derived genes are positioned in

euchromatin around the pericentromeric and centromeric regions, with FAM72C and

FAM72D located on the q arm, and FAM72B on the p arm (Figure 2). Importantly, the

FAM72A-C genes are oriented on the negative strand, while FAM72D is located on the

positive strand. Each FAM72A paralog is found in close proximity to one of the four

human-specific SRGAP2 paralogs on the opposite strand. The first exons of the

FAM72A-SRGAP2 and FAM72B-SRGAP2C gene pairs share overlapping regions

spanning 1068 and 629 bp, respectively. Conversely, the first exons of the

FAM72C-SRGAP2D and FAM2D-SRGAP2B gene pairs are separated by 3010 and 446 bp

(Figure 2) (Kutzner et al. 2015).

In contrast to divergent co-duplicated SRGAP2 paralogs, human FAM72A

paralogs display a remarkably high degree of similarity in both gene sequence and

structure. The derived FAM72A paralogs originated from complete gene duplication that

retained the entirety of the ancestral ORF, whereas two duplicated SRGAP2 genes encode

truncated ancestral proteins, and the third derived gene is pseudogenized (Dougherty et

al. 2018; Sporny et al. 2017). The Ensembl 110 (Cunningham et al. 2022) canonical gene

models of FAM72A paralogs consist of four exons (Figure 3, Figure 4A), the length of the

second and third is constant across all paralogs, while the lengths of the first and the

fourth exons vary due to less conserved 5’- and 3’-UTRs (Figure S1). The three introns of

FAM72A, FAM72B, and FAM72C have the same intron lengths (~ 2kb, 3.9kb and 8.4 kb),

while FAM72D possesses an approximately 200 bp longer first intron, and an
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approximately 1 kb longer second and third introns compared to the other paralogs’

(Kutzner et al. 2015).

Segmentally duplicated FAM72 genes are characterized by high sequence

similarity. The average pairwise sequence identity across the whole gene among human

FAM72 paralogs is 99.15%. The lowest sequence identity is observed between FAM72A

and FAM72D at 98.91%, while the highest sequence identity of 99.39% is found between

FAM72C and FAM72D. When comparing these derived paralogs to their ancestral gene, a

non-random pattern of sequence divergence becomes apparent, as illustrated in Figure 3.

Specifically, the 5'-UTR region, as well as several sections in the second and third

introns, emerge as the primary drivers of sequence dissimilarity. Comparative analysis

with Neanderthal and Denisovan sequences indicated that the second and third introns of

FAM72A demonstrate the most variability (Kutzner et al. 2015). Although the 5'-UTR

region showed the greatest dissimilarity among the paralogs, their divergence is primarily

attributed to variation in the lengths of the beginning of the region that differs by up to 60

nt between paralogs (Figure S1), whereas the aligned portion of the region differs only at

five nucleotide positions (Kutzner et al. 2015). On the contrary, the 3’-UTR region is

highly identical among paralogs with no observed truncations. In the 3’-UTR, the

paralogs differ by the presence/absence of seven indels, each ranging in size from 1-3 nt,

and by seven substitutions in potential AU-rich areas known to affect translation (Kutzner

et al. 2015; Otsuka et al. 2019).
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Figure 3. Comparative sequence similarity of human FAM72 paralogs. This figure
represents the sequence similarity between the derived FAM72B-D genes and the

ancestral FAM72 gene, assessed using overlapping windows of 250 nucleotides (nt) with
a step size of 10 nt. At the bottom of the plot, the structure of the canonical FAM72A

transcript is plotted.

The FAM72 genes in humans produce multiple transcripts, each distinct in exon

content and amino acid composition (Figure 4A). Canonical transcripts from the Ensembl

database for the four paralogs encode a consistent 149 amino acid peptide, a pattern also

mirrored in other mammalian species. Intriguingly, this highly conserved isoform has

only five variable amino acid positions among the four human paralogs (Figure 4B). In

addition to this canonical transcript, FAM72A-B paralogs generate a shorter isoform of

109 amino acids. This isoform begins with the same start codon as the canonical version,

but its first exon is truncated due to an alternative upstream donor site. Similarly,

FAM72B-C paralogs produce a 94 amino acid isoform by skipping the third exon, a

variation also identified in multiple other mammalian species. Besides well-supported

isoforms, several novel FAM72A-B isoforms with additional upstream exons and

alternative start codons were computationally predicted (Cunningham et al. 2022).
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Figure 4. Isoform and protein diversity of human FAM72 paralogs. A. Ensembl gene
models of human FAM72 paralogs. The canonical gene models are shown in blue color;

gene models, for which CDS is not defined, are not provided. B. Multiple sequence
alignment of proteins encoded by canonical gene models. Amino acid positions are
color-coded based on their conservation level, with lighter shades indicating lesser

conservation.

1.2.3 FAM72A expression

As described earlier, divergence in gene expression is one of the mechanisms by

which paralogous genes are maintained in the genome. This process, involving tissue-

and developmental-stage-specific gene expression, fosters purifying selection which

protects genes from accruing loss-of-function mutations and subsequently becoming

pseudogenes. Considering the FAM72A paralogs, which show low divergence in protein
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sequence but pronounced variations in the 5’-UTR region (Figure 3), expression

divergence could be a major factor in the retention of these derived genes.

Supported by harmonized expression data from the Human Protein Atlas (Human

Protein Atlas 2023; Uhlén et al. 2015) widespread expression of the FAM72A gene was

observed, while its derived counterparts demonstrate tissue-specific variation in

expression magnitude (Figure 5). Notably, FAM72C is not expressed in the central

nervous system, in contrast to the other genes. Additionally, when comparing expression

levels, FAM72A stands out as the major contributor to the total expression in tissues, with

the other genes contributing less than half of all FAM72 transcripts. However, in immune

tissues, this pattern shifts: there is an overall higher expression of paralog genes, and

FAM72A's contribution drops to around a quarter of the combined expression of paralogs.

Examining the expression profile of SRGAP2 paralogs, co-duplicated counterparts

to FAM72 with the ancestral gene still dominating the expression profiles, reveals another

layer of contrast. Firstly, these genes exhibit a nearly six-fold increase in expression

levels compared to FAM72. Secondly, there is an observed tissue specificity in the

magnitude of expression: FAM72 genes predominantly express in lymphoid organs, while

SRGAP2 genes mainly express in central nervous tissues. Ho, Kutzner, and Heese (2019)

corroborate this, demonstrating that activation of the Fam72-Srgap2 intergenic region

promoter in response to contrary growth factors (Ngf and Egf) results in the selective

overexpression of Srgap2 or Fam72a, respectively.
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Figure 5. Expression profile of FAM72A and SRGAP2 paralogs across tissues. The
data is represented as normalized transcripts per kilobase million from the Human Protein

Atlas (HPA) and Genotype-Tissue Expression (GTEx) project. FAM72D TPM values
were filtered out.

As discussed in Section 1.3.2, FAM72A-B genes are characterized by the presence

of several alternative start codons and splice sites leading to the existence of distinct

isoforms. Unfortunately, short-read RNA-sequencing (RNA-seq) technologies usually

fail to accurately capture and quantify the transcript isoforms of genes that are highly

identical and segmentally duplicated (Hardwick et al. 2019). In an effort to overcome

these limitations, Glinos et al. (2022) used Oxford Nanopore Technologies to generate a

log-read RNA-seq dataset from GTEx tissues and cell lines, where they detected over

70,000 novel transcripts that were not previously annotated. Being compatible with the

short-read combined HPA-GTEx data, the overall expression of FAM72 genes remained

low across all tissues. FAM72A stood out as the primary contributor to gene expression in

these tissues (Figure 6).
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At the transcript level, only two transcripts of FAM72A were detected.

Intriguingly, neither of them matched the canonical transcript listed in Ensembl. The

transcript with the highest expression was a previously unannotated and novel one. The

second transcript, while also detected, was characterized by low support evidence in

Ensembl. On the other hand, the derived FAM72A paralogs were found to have the

highest expression of the canonical transcripts. Additionally, a low-support FAM72B

transcript was identified, which was similar to the one detected in FAM72A. The absence

of ancestral primate fam72a canonical transcript produced by FAM72A in humans may

indicate its neofunctionalization after gene duplication.

Figure 6. Transcript-level expression profile of FAM72A-D genes across organs
based on the GTEx long-read RNA-seq dataset. A. FAM72A-D transcripts that were

identified in the dataset. B. Expression profiles of FAM72A-D genes, TPM values
color-coded to match the associated transcript from Panel A. Data from distinct regions

within the same organ have been aggregated.
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1.2.4 FAM72 and immunity

Somatic hypermutation (SHM) plays a vital role in diversifying antibodies, a key

aspect of the adaptive immune response. This process refines and enhances antibody

function after the initial V(D)J recombination event in activated B cells. SHM primarily

occurs in the germinal centers located in secondary lymphoid organs. During SHM, the

enzyme activation-induced cytidine deaminase (AID) introduces mutations at a high rate

specifically in the variable regions of immunoglobulin genes by converting C:G base

pairs into U:G mismatches (Neuberger et al. 2003).

Typically, the appearance of U:G mismatches would activate the base excision

repair (BER) machinery. The first step of this repair process involves Uracil

DNA-Glycosylase 2 (UNG2), which removes the uracil base, leaving behind an abasic

site. The BER machinery is then supposed to resolve this site to maintain genomic

integrity. However, the scenario is different in germinal B cells. These cells express the

FAM72A protein, which targets and degrades the UNG2 protein (Y. Feng et al. 2021;

Rogier et al. 2021). As a result, the U:G mismatches introduced by AID persist through

the cell cycle until the S-phase. At this stage, the error-prone mismatch repair (MMR)

system excises mismatched nucleotides along with surrounding nucleotides, producing

single-stranded DNA, which is then repaired by low-fidelity, error-prone polymerases.

This process, while seemingly counterintuitive, is essential for creating the diverse range

of antibodies required for a robust adaptive immune response (Chahwan et al. 2012).

Despite existing evidence that demonstrates FAM72A’s role in UNG2

degradation, the exact mechanism behind this process remains unclear. Previous research

using murine models showed that FAM72A can moderately inhibit UNG2 upon binding
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(Y. Feng et al. 2021). However, this interaction appears to be species-specific, as the

human paralogs of these proteins do not exhibit the same behavior (Guo et al. 2008). Guo

et al. (2008) utilized co-immunoprecipitation of FAM72A with various deletion

constructs of UNG2, followed by Western blot analysis, to identify the protein regions

critical for their interaction. Their findings pinpointed the necessity of the first 25 amino

acids at the N-terminus of the UNG2 protein for effective protein binding. Furthermore,

they identified a crucial tryptophan residue at position 125 of the FAM72A protein,

which is required to facilitate the UNG2-FAM72A binding. Interestingly, the FAM72C-D

genes encode an arginine instead of tryptophan at the equivalent position, rendering their

protein products incapable of binding to UNG2. Molecular modeling studies further

contributed to our understanding of this interaction. (Renganathan et al. 2021).

demonstrated that, in addition to the W125 residue, the F61, F104, and T131 residues are

essential for maintaining FAM72A stability and ensuring effective binding to UNG2.

However, experimental data, particularly from studies conducted by Stewart and

Bhagwat (2022) suggest that only mutations in F104 and W125 have a more pronounced

impact, significantly disrupting the expression and stability of murine FAM72A.

UNG is also crucial for the innate immune response, working downstream of the

APOBEC (Apolipoprotein B mRNA Editing Catalytic Polypeptide-Like) enzymes.

APOBEC enzymes deaminate cytosine bases in DNA, transforming them into uracil,

particularly when pathogen DNA is detected within the cytoplasm. However,

herpesviruses have evolved strategies to counteract the APOBEC3 enzyme, helping them

to escape the inhibitory effects of UNG. By doing so, these viruses can take advantage of

UNG’s DNA repair functions while safeguarding their genomic stability from its
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potentially damaging effects. Additionally, herpesviruses encode their version of UNG,

the function of which is unknown (Savva 2020). The human FAM72A paralogs, which are

unable to degrade human UNG2, might have acquired new functions or specialized roles

to address the challenge posed by viral Ung proteins. Indeed, indirect evidence of

FAM72A paralogs involvement in innate immune response exists. For example, in a study

on the embryonic mouse neocortex, when human FAM72D was ectopically expressed,

three out of the six genes that showed increased expression levels were linked to the

immune response (Andrä 2020). In a separate study, (Y. Li et al. 2019) employed a

Bayesian gene co-expression network analysis to identify central hub and driver genes

implicated in the development of systemic lupus erythematosus, an autoimmune disease.

Within this network, FAM72C emerged as one of the top 12 hub genes. Notably, 10 out of

these 12 genes demonstrated a strong association with interferon (IFN) levels. A hub

gene is defined as a gene that exhibits a statistically significant higher number of

expression correlations with other genes than what is expected on average.

1.2.5 FAM72 and neurogenesis

Given the role of SRGAP2 in cortical migration and development, emergence of

human-like characteristics in pyramidal neurons (Charrier et al. 2012; Fossati et al.

2016), and high expression of FAM72 in proliferating neural stem cells in hippocampus

(Benayoun et al. 2014), Ho et al. proposed that co-duplicated SRGAP2 and FAM72

paralogs operate together to enhance higher cognitive functions of the brain (Ho,

Kutzner, and Heese 2019; Ho et al. 2021). Specifically, their model suggests that while

SRGAP2 triggers the differentiation of neural stem cells, FAM72 works to preserve a pool

of undifferentiated cells.
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Indirect evidence in support of FAM72 as a regulator of neural progenitor cell

(NPC) proliferation comes from Benayoun et al. (2014), who isolated mouse NPCs and

assessed regulatory landscape using ChIP-Seq targeting H3K4me3. They found Fam72a

among the genes with the top 5% broadest domains. Further experimental evidence

showed that Fam72a knock-off in these cells decreased their proliferation and led to

increased neuronal differentiation. Additionally, cancer studies associated FAM72A

overexpression with increased proliferation of neoplastic cells (Guo et al. 2008; Rahane,

Kutzner, and Heese 2019; Ho et al. 2021).

1.3 Rational for the study

Segmental duplications have been pivotal in the evolutionary divergence and

adaptation of African great apes including humans. In humans, the FAM72A-SRGAP2

locus has undergone sequential duplications over two million years, resulting in the

retention of seven non-pseudogenized paralogs from two gene families, which suggests a

process of either neofunctionalization, where new genes acquire novel functions, or

subfunctionalization, where gene copies divide the work of the ancestral gene. Indeed,

SRGAP2 and its paralog SRGAP2C are recognized as key players in the development of

human-specific patterns of neurogenesis. However, the remaining SRGAP2 paralogs do

not seem to be under the same evolutionary pressure to maintain function.

The hypothesis that SRGAP2 alone or the combined action of FAM72-SRGAP2 as

master locus are responsible for conserving all four loci does not fully align with the

observed discrepant conservation patterns of these paralogs. Here, I address recent

evolutionary history and population genetics of human-specific FAM72A paralogs
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attempting to untangle evolutionary mechanisms responsible for the maintenance of these

genes.

1.4 Objectives

The primary objectives of my thesis are to determine whether different selection

forces act on FAM72A paralogs and whether duplication events resulted in functional

divergence of the genes.

My secondary objective is to refine the timeline of duplication events leading to

the emergence of FAM72A paralogs.

1.5 Hypotheses

H1: Ancestral FAM72A gene was duplicated to FAM72B, which gave rise to

FAM72C and FAM72D.

H2: Opposing selective forces operate on FAM72A paralogs: FAM72A and

FAM72B show signatures of neutral evolution or balancing selection, FAM72C and

FAM72D demonstrate signatures of positive selection.

H3: Given the involvement of FAM72A protein in immune response,

population-specific locally beneficial haplotypes exist.
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Chapter 2: Methods

2.1 Data acquisition and preprocessing

2.1.1 Data sources and code availability

Links to publicly available datasets used in this work are provided in Table S1.

Code that was used for data processing and the analysis is available on GitHub at

https://github.com/iykisselev/fam72_evo.

2.1.2 1000 Genomes data preprocessing

PCR-free high-coverage whole-genome sequencing data provided by the 1000

Genomes Project (Byrska-Bishop et al. 2022) was used as a main dataset in the present

work. The dataset consists of 3,202 individuals, including 602 trios, from 26 populations

across the globe (Table S2). The key steps of data processing performed by data

providers are summarized in this section.

The Illumina NovaSeq 6000 sequenced reads were aligned to the 1000 Genomes

version of GRCh38 that includes additional decoy sequences and alternate versions of the

HLA locus using a pipeline from the Centers for Common Disease Genomics (Regier et

al. 2018). Variant discovery was performed using the HaplotypeCaller tool in GVCF

mode, incorporating sex-specific ploidy configurations for chromosomes X and Y. Before

phasing, only SNVs that passed variant quality score recalibration (VQSR), had genotype

missingness rate <5%, Hardy-Weinberg equilibrium (HWE) exact test p-value > 10-10 in

at least one superpopulation, mendelian error rate (MER) < 5%, and minor allele count

(MAC) > 2 were retained. Phasing was conducted chromosome-wise using the

SHAPEIT-duohmm software (O’Connell et al. 2014).
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2.1.3 Chimpanzee FAM72A haplotypes

Whole-genome sequencing FASTQ files of three chimpanzee subspecies (P. t.

troglodytes (n = 14), P. t. schweinfurthii (n = 12), P. t. verus (n = 5)), sequenced by de

Manuel et al. (2016) were downloaded from the European Nucleotide Archive (ENA) at

EMBL-EBI with accession number PRJEB15086. Low-quality base tetramers with an

average base quality below 30 were removed using trimmomatic v0.39 (Bolger, Lohse,

and Usadel 2014). Subsequently, the trimmed FASTQ files were divided into 20 chunks

with Seqkit v2.3.0 (Shen et al. 2016), facilitating parallel mapping to the chimpanzee

NHGRI_mPanTro3-v1.1 assembly using the BWA-MEM algorithm of bwa v0.7.17 (H.

Li and Durbin 2009) with the specified options “-Y -K 100000000”.

After mapping, the individual SAM files were merged, and using samtools

fixmate (v1.17, Danecek et al. 2021) mate coordinates, insert size, and related flags were

refined. PCR duplicates were then removed with samtools rmdup. The deduplicated bam

files were filtered to include reads that mapped to chromosome 1, had a mapping quality

of 30 or higher, and were part of a properly aligned pair. In contrast, the reads that were

unmapped, had an unmapped mate, were duplicates, or were supplementary alignments

were excluded. This specific filtering was executed using the samtools view command

with the arguments “-q 30 -f 3 -F 1796”.

Freebayes v1.3.6 (Garrison and Marth 2012), was used to jointly call genotypes

for individuals from the three chimpanzee subspecies separately. The resulting VCF files

were filtered to retain only those variants with specific criteria: a quality score exceeding

19, an average quality per alternate read above 10, support from both forward and reverse

strands for the alternate allele, and more than one read at each tail distance, ensuring the
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minimization of positional bias for the reference allele. This was defined by the filter:

“QUAL > 19 && QUAL / INFO/AO > 10 && SAF > 0 && SAR > 0 && RPR > 1 &&

RPL > 1”. Using bcftools norm and the argument “-m -any”, multiallelic sites in these

VCF files were converted to biallelic, followed by the removal of any variants with

absent genotypes. A custom R script was then used to shift the positions of multiallelic

sites, preventing position overlap.

Phasing of haplotypes from the FAM72 gene, along with its ±5 kb flanking region,

was carried out using SHAPEIT v2.r904 (O’Connell et al. 2014). A 0.5 Mb window was

used, and the recombination rate parameter (rho) and effective population size (Ne) were

set to 0.00119 and 32492 for Pan troglodytes schweinfurthii, and 0.00119 and 44000 for

Pan troglodytes troglodytes, as inferred by Fontsere et al. (2022). Pan trogodytes verus (n

= 5) samples were excluded from the analysis due to insufficient sample size.

Post-phasing, the SHAPEIT output was converted back to VCF files. The

genomic positions were shifted to their original locations, and positions for multiallelic

sites were merged using “bcftools norm -m +any”. Finally, FASTA consensus sequences

for the chimpanzee FAM72A haplotypes were generated using bcftools consensus.

2.2 Phylogenetic analysis

To infer phylogenetic relationships and the order of duplication events of FAM72

genes in the human lineage, a Bayesian phylogenetic-based analysis was performed using

BEAST (Bouckaert et al. 2019). First, the FAM72 paralogs’ haplotypes, with frequencies

> 100 across human populations, were aligned alongside the predominant FAM72A

haplotypes from two chimpanzee subspecies and a gorilla FAM72A gene sequence

sourced from the NCBI reference genome (NHGRI_mGorGor1-v1.1-0.2). This multiple
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sequence alignment was performed using the L-INS-i iterative refinement method

implemented in MAFFT v7.490 (Katoh and Standley 2013).

IQ-TREE v2.1.2 (Minh et al. 2020) was used for substitution model selection

(Kalyaanamoorthy et al. 2017). The BEAST substitution settings, based on the

IQ-TREE's results, included the Gamma site model (Yang 1994) with Category Count set

to 1, a proportion of invariant sites of 0.7582, and the HKY substitution model

(Hasegawa, Kishino, and Yano 1985) with transition/transversion ratio of 5.1714. The

Calibrated Yule phylogenetic branching model was chosen, setting the birthRate

parameter's distribution to Gamma (0.001, 1000) for both the Strict and Optimized

Relaxed Clock models. Specifically for the Strict Clock model, the clockRate was set to

Gamma (0.001, 1000). The average of absolute mutation rate estimates for humans,

chimpanzees, and gorillas, taken from Besenbacher et al. (2019), was set at 0.00054

substitutions per site per million years (Myr). For calibrations based on fossil records, the

divergence distribution for the human-chimpanzee split was set as uniform [4.631, 15

Myr] (Vries and Beck 2023), the Hominini-Gorillini split was set to normal (13.0, 1.8

Myr) based on estimates by Langergraber et al. (2012).

Both the Strict Clock and Optimized Relaxed Clock models were applied to the

dataset to determine which provided a better fit to the data. The performances of the

different clock models were evaluated using nested sampling (Russel et al. 2019). This

calculation involved using 4 particles, a ChainLength of 105, and a SubChainLength of

2×104. The preferred clock model was identified by contrasting marginal log-likelihoods

to derive the Bayes factor and used to generate estimates for the Time to the Most Recent

Common Ancestor (TMRCA) for internal nodes on the tree.
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Subsequent analysis was conducted using the top-performing clock model across

three independent runs, each with a ChainLength of 108 and a 10% burn-in. The most

suitable run for further analysis was selected based on the criteria of highest effective

sample size (ESS) and likelihood, as assessed through Tracer v1.7.2 (Rambaut et al.

2018). The maximum clade credibility tree was then extracted using TreeAnnotator

v2.7.5, discarding a 10% burn-in. This tree was visualized using ggtree v3.8.0 (S. Xu et

al. 2022).

2.3 Diversity of FAM72A paralogs

2.3.1 Genetic differentiation

The fixation index, Fst, measures the proportion of genetic diversity between

populations relative to the overall genetic variance. Both selective pressures and

demographic events influence the extent to which populations genetically differ from

each other. A higher Fst value in certain genomic regions may indicate directional

selection in one population if an allele becomes favoured and increases in frequency in

one population but not in another, leading to marked differentiation. On the other hand,

lower Fst values indicate a lack of time to diverge by drift, purifying selection that

removes new variants or balancing selection, in which multiple alleles are maintained at

intermediate frequencies across populations. While Fst values are influenced by both

selection and demographic factors, the effects of selection are specific to individual loci,

whereas demographic history and population structure exert their influence across the

entire genome.

Pairwise genetic differentiation between 26 human populations from the 1000

Genomes Project (Table S2) at FAM72 loci was calculated using the method of Weir and
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Cockerham (1984). This analysis was performed using the hierfstat R package v0.5-11

(Goudet 2005), using multiallelic indel-free VCF files that were imported in R and

converted to genind objects. Then, nonmetric multidimensional scaling (vegan v2.6

(Dixon 2003)) was used to inspect patterns of genetic differentiation patterns among the

populations.

To determine which model — either the Out-of-Africa (OoA) or biogeographical

ancestries/Superpopulations (population groups based on ancestral continental origins) —

better explained the observed variation in genetic differentiation, the Permutational

Multivariate Analysis of Variance (PERMANOVA) introduced by Anderson (2001) was

used. This analysis was conducted using the vegan v2.6 R package (Dixon 2003), with

106 permutations for each model. In cases where both models yielded a p-value < 0.05

(indicating the proportion of permutations with a pseudo-F value equal to or exceeding

the actual data), the model with the higher partial R2 was selected as the best fit.

2.3.2 Haplotype networks

While genetic differentiation may indicate presence of selective forces, their

targets within the gene cannot be inferred using Fst values alone. Analyzing haplotype

frequencies across various populations can shed light on their genetic diversity and

evolutionary trajectories. Isolation between populations often results in the divergence of

allele frequencies between populations due to random genetic drift, the accumulation of

population-specific genetic variants and can change the frequency of alleles or haplotypes

between populations if different selective pressures are operating in different populations;

each of these evolutionary forces can lead to distinct signatures in the distribution and

nature of haplotypes between populations.
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FAM72 genetic variants were extracted and saved in separate VCF files from the

phased indel-free 1000 Genomes chromosome 1 VCF file. Then, each file was read into

R using the vcfr v1.14.0 package (Knaus and Grünwald 2017) and transformed into a

DNAbin object. The frequency of each distinct haplotype was calculated, the haplotype

networks were inferred and plotted with pegas v1.2 R package (Paradis 2010) using

haplotypes with a minimal frequency of 15.

2.3.3 Genetic variation profile of FAM72A paralogs

To assess the conservation of human-specific FAM72A paralogs at the nucleotide

and protein level, the chr1 VCF file was sourced from the gnomAD v3.1.2 dataset (Chen

et al. 2022). Variants were filtered to exclude those with a zero allele count,

low-confidence genotypes (GQ < 20; DP < 10; and AB < 0.2 for het calls), those that did

not meet the VQSR filtering thresholds of -2.7739 for SNPs and -1.0606 for indels, and

those with an inbreeding coefficient of less than -0.3. The filtered dataset was then subset

to include only variants of FAM72A paralogs. These selected genetic variants were then

processed in R to classify and quantify their mutation types, utilizing the

VariantAnnotation v1.46 package (Obenchain et al. 2014).

3.3 Natural selection of FAM72A paralogs

3.3.1 Phylogenetic protein conservation

Highly conserved regions across different species often indicate critical functional

or structural roles of the protein. High conservation suggests that these regions are

essential for the protein's function and have been maintained through evolutionary

pressures, whereas variation in conserved regions might indicate relaxed selection or

adaptive evolution in response to different environmental pressures.
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Multiple sequence alignment (MSA) of vertebrate FAM72A protein sequences

from EggNOG v5.0 (Huerta-Cepas et al. 2019) was performed using L-INS-i iterative

refinement method implemented in MAFFT v7.490 (Katoh and Standley 2013). Before

alignment, protein sequences were reviewed, and non-canonical discrepant isoforms and

potential assembly errors were discarded. Using this alignment, two conservation scores

for each position were calculated. The first score, based on Shannon entropy, offers a

straightforward conservation measure that correlates with consensus amino acid

frequencies, but does not account for amino acid substitution probabilities. It was

calculated using BALCONY v0.2.10 R package (Płuciennik et al. 2018). Conversely, the

score by Bodenhofer et al. (2015) in msa v3.17 R package that takes these substitutions

into account, yielding a more moderate conservation estimate, was used with

BLOSUM62 substitution matrix.

3.3.2 Neutrality tests

To test the departures of FAM72A paralogs from neutral evolution, I computed

several metrics: Tajima’s D, Fay and Wu’s D, Zeng’s H, nucleotide diversity, and

haplotype diversity. These tests differ by their ability to detect selective sweeps at

different time scales. While Tajima’s D and Zeng’s H detect loci that restore depleted

variation after a selective sweep, Fay and Wu’s D detects signatures of ongoing selective

sweep. Given that these metrics can be influenced by both selective forces and

demographic processes, the method outlined by Atkinson et al. (2018) was adopted.

Specifically, to account for unique population histories characterizing specific

biogeographical ancestry groups, I derived background distributions of the neutrality

statistics individually for each superpopulation. Superpopulation-specific neutrality
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metrics were considered extreme, if they were within the top or bottom 5% of the

empirical distribution for that metric.

The neutrality statistics were calculated in adjacent non-overlapping segments

equivalent to the average length of FAM72A paralogs (17,387 bp) on chromosome 1. To

speed up and parallelize computation, the multiallelic, indel-free, filtered chromosome 1

VCF file was segmented into approximately 250 subsets using bcftools (Danecek et al.

2021). Using the PopGenome v2.7.5 R package (Pfeifer et al. 2014), these segments were

imported into R and the neutrality statistic values in non-overlapping sliding windows for

each superpopulation were calculated. Regions containing fewer than 5 polymorphic sites

were omitted to prevent inaccurate results caused by low variation.

Using the same dataset, a sliding window approach — with a window size of 5 kb

and a shift of 500 bp — was applied to determine Tajima’s D values throughout the

FAM72-SRGAP2 loci, including its adjacent ±100 kb regions. This strategy aimed to

produce a detailed Tajima’s D map, highlighting potential regions of interest within the

gene bodies. In addition, neutrality statistics for FAM72 and SRGAP2 paralogs, along

with the intergenic regions, were computed separately for each human population.

3.3.3 Integrated Haplotype Score (iHS)

While classical neutrality statistics can detect departures from neutral evolution

within a locus of interest, they cannot identify core SNPs that drive selective sweep of the

haplotype. In contrast, integrated haplotype scores identify regions of extended haplotype

diversity at the center of which selected SNPs are located.

The variation VCF file for Homo sapiens from Ensembl 110 was filtered to retain

only SNPs located on chromosome 1. Biallelic sites in this file were merged, after which
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the chromosomal position, and ancestral allele information for every variant were

extracted. In this file, the ancestral state was inferred from the EPO multiple alignments

using Ortheus by the Ensembl team (Paten et al. 2008).

In the phased VCF file for chromosome 1 from the 1000 Genomes project,

parents of trios were omitted, indels were removed and biallelic variants were merged

into multiallelic format. This VCF file was then annotated with ancestral allelic state data

from the filtered Ensembl file. Any variants lacking ancestral data were discarded. The

multi-sample VCF file was then split into 26 population-specific VCF files, which were

then processed concurrently.

Each of these VCF files was loaded into R and converted into a haplohh object

using the rehh v3.2.2 R package (Gautier, Klassmann, and Vitalis 2017). During this

process, alleles were polarized using ancestral allele information provided in the

INFO/AA tag. The integrated extended haplotype homozygosity (EHH) was computed

for haplotypes observed a minimum of two times. Parameters set during this phase

included an EHH termination threshold at 0.01, a maximum permissible gap between two

markers of 20 kb, and the deactivation of EHH curve interpolation. The standardized

ratio of iHH values for two alleles was determined using variants that had a minor allele

frequency (MAF) of at least 0.01. The standardization frequency bin was also fixed at

0.01. Adjustments to the p-values for multiple comparisons were made using the

Benjamini and Hochberg (1995) method.

3.3.4 Balancing selection statistic β(1)

The β(1) score, introduced by (Siewert and Voight 2017), serves as a quantitative

tool to identify genomic positions under the effect of long-term balancing selection. This
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metric is based on an expectation that alleles near a site undergoing LTBS should exhibit

a correlated frequency pattern. To test this hypothesis, the β(1) score contrasts two distinct

measures of population mutation rate: Watterson’s theta (θW) and θβ, the latter of which is

calculated as an average of variant counts weighted for similarity in allele frequency to

the core variant of interest.

To detect signatures of balancing selection, 26 population-specific VCF files

containing multiallelic SNPs with identified ancestral allelic states were used. Ancestral

alleles were extracted from the INFO/AA flag and transformed into homozygous diploid

genotypes and added as an extra "dummy" individual to the VCF files. Subsequently,

each VCF file was transitioned into an ACF file using glactools (Renaud 2018) and the

vcfm2acf command with the argument “--onlyGT”. Then, the dummy individual with

homozygous ancestral genotypes was set as the ancestor and used as the root populations

using the usepopsrootanc command followed by conversion into betascan format with

acf2betascan command using “--useanc” parameter to obtain unfolded site frequency

spectrum.

To obtain standardized β(1), a chromosomal map of Watterson’s θ is required. The

population-specific Watterson’s θ were calculated for 0.5 Mb non-overlapping windows

on chromosome 1, adopting an approach analogous to what is described in the Neutrality

tests section. Population-specific unfolded site frequency spectrum files and Watterson

theta maps were then used to run BetaScan (Siewert and Voight 2017) on 2kb windows.

A β(1) statistic that fell within the topmost 2% was considered extreme.
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3.3.5 Linkage disequilibrium

To explore the potential evolutionary and functional implications of haplotype

stratification, I analyzed the linkage disequilibrium (LD) correlation coefficients of the

FAM72-SRGAP2 loci. The phased chr1 VCF file was subset to include only biallelic

variants at FAM72-SRGAP2 loci using bcftools (Danecek et al. 2021). This VCF file was

subsequently transformed into a DNAbin object, and in the process, indels were

excluded. Pairwise LD correlation coefficients for all potential SNP pairs within each

locus and population were then calculated using the pegas v1.2 package (Paradis 2010).

To identify regions that are enriched in LD, I employed a two-step approach.

First, SNPs falling within the uppermost 2% of LDs in every population were identified.

From this subset, the first genomic position of each SNP pair was extracted. We then

counted the number of populations in which a specific SNP was associated with the top

2% LD. This strategy identifies both: genomic positions exhibiting robust LD across

various populations, and positions displaying strong LD with several regions

concurrently. Based on the frequency of occurrence gene-wise, the top 10% of these

positions were binned into 100 bp genomic intervals. These intervals were annotated with

overlapping regulatory elements using the Ensembl Regulatory Build (release 110)

(Zerbino et al. 2015).
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Chapter 3: Results

3.1 Phylogenetics and emergence of human-specific FAM72A paralogs

The duplication model of the FAM72-SRGAP2 locus presented by Dennis et. al

(2012), which primarily relied on SRGAP2 sequence divergence, convincingly described

the structural evolution of the locus. The analysis was based on SRGAP2 gene sequences

from humans, chimpanzees, and orangutans that were used for the construction of a

neighbor-joining gene tree. Tajima's relative rate test was used to equalize the substitution

rates across all branches. The corrected phylogenetic tree was used to estimate the timing

of the duplication events. This involved using the standardized substitution rate and the

chimpanzee-human divergence time (6 million years) to calculate the approximate

timeframes for the initial and subsequent duplication events. However, the inferences

from their study were not tested for concordance with variation across FAM72A paralogs.

To properly resolve the chronology of FAM72 gene duplication events, I used seven

common human haplotypes from FAM72A, six from FAM72B, three from FAM72C, and

five from FAM72D. Additionally, three haplotypes from two chimpanzee subspecies were

included to determine the time to the most recent common ancestor (TMRCA) using

Bayesian molecular sequence analysis.

Using IQ-TREE's ModelFinder (Kalyaanamoorthy et al. 2017), the HKY+F+I

model was identified as the most suitable for the dataset, based on the Bayesian

Information Criterion (BIC) with a score of 61607.012 (Table S3). This model combines

the Hasegawa-Kishino-Yano (HKY) model for nucleotide substitution, variable base

frequencies (F), and a consideration for invariant sites (I). The rate parameters indicated

higher transitions rates between A-G and C-T (5.1714) compared to other nucleotide
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substitutions. The rate heterogeneity model revealed a significant proportion of invariant

sites (0.7582), indicating notable conservation within the dataset.

When contrasting two clock models, the optimized relaxed model markedly

outperformed the strict clock model (log(BF) = 13587.7), and it was used for

phylogenetic dating. The three runs obtained using this model did not show significant

disparities, and the most suitable run with the highest log likelihood and ESS of 1637.67

was selected. The summary of the estimated parameters of the model, including the

estimated TMRCA of internal nodes, is provided in Table S4.

The resulting phylogenetic tree from this model demonstrates the distinct

haplotypes of the FAM72A paralogs converging into well-supported monophyletic clades

(Figure 7). The inferred timeline for the duplication events of FAM72A-B was

approximately 3.16 million years ago (Mya) (95% High Posterior Density (HPD):

1.25-5.36 million years (Myr)), for FAM72B-CD was around 2.38 Mya (95% HPD:

0.89-4.12 Myr), and the FAM72C-D divergence was estimated to be 1.57 Mya (95%

HPD: 0.51-2.83 Myr). Another important observation is the relatively recent divergence

timelines of the FAM72 paralogs' haplotypes. Specifically, the divergence between

FAM72A and FAM72B haplotypes is estimated at 0.48 Mya (95% HPD: 0.10-0.83 Myr)

and 0.42 Mya (95% HPD: 0.10-0.83 Myr), respectively, while those for FAM72C and

FAM72D, are estimated at 0.17 Mya (95% HPD: 0.01-0.38 Myr) and 0.2 Mya (95%

HPD: 0.03-0.42 Myr), respectively.

42



Figure 7. Maximum clade credibility phylogenetic tree illustrating the evolutionary
relationships among human FAM72A-D haplotypes. The x-axis indicates divergence

time in million years before the present, nodes represent the most recent common
ancestors of each branch, and blue bars indicate the 95% high posterior probability

densities of TMRCA point estimates.

3.2 Diversity of FAM72A paralogs

3.2.1 Genetic differentiation

For this study, genetic differentiation in FAM72 loci was assessed between 26

populations from the 1000 Genomes dataset using unbiased Weir and Cockerham’s

estimator of Fst (Weir and Cockerham 1984). The findings indicate a generally low level

of genetic differentiation across the populations and loci examined, with an average

pairwise Fst of 0.061 for FAM72A, 0.076 for FAM72B, 0.045 for FAM72C, and 0.052 for

FAM72D. A deeper look into superpopulation data, as illustrated in Figure 8A, shows that

African populations consistently clustered across all genes. Notably, other
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superpopulations form distinct clusters only in the FAM72A and FAM72B genes. For

FAM72C and FAM72D genes, non-African populations formed an Out-of-Africa (OoA)

cluster (Figure 8A).

Varying patterns of population differentiation between FAM72A-B and

FAM72C-D genes may indicate either demographic shifts or distinct evolutionary

processes. To determine the statistical significance of the observed clusters, I used

permutational analysis of variance (Anderson 2001) that compared two simplified models

of population grouping. The first model organized the 26 populations based on their

biogeographical ancestries into five superpopulations based on prehistoric ancestral

continental origins. In contrast, the second model grouped all non-African populations,

contrasting them from the African superpopulation.
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Figure 8. Population differentiation of FAM72 paralogs across 26 populations
from the 1000 Genomes project. A. Non-metric Multidimensional scaling of pairwise

Fst values. B. A heatmap depicting pairwise Fst values between populations. Hierarchical
clustering of populations was performed using Ward’s method.
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Both models showed statistically significant cluster assignments. However, the

partial R2, which quantifies the variance explained by reduced models in relation to the

full model, showed a clear pattern across the loci. The biogeographical ancestry model

had consistent performance across all four genes, whereas the Out-of-Africa (OoA)

model performed well only for the FAM72D gene (Table 1).

Table 1. PERMANOVA results for out-of-Africa and biogeographical ancestry
models.

When examining pairwise Fst values between populations more closely (as shown

in Figure 8B), distinct patterns of genetic differentiation were observed. FAM72C

exhibited the least differentiation among populations, followed closely by FAM72D. On

the other hand, FAM72B was the most differentiated gene. Interestingly, while African

populations consistently showed differentiation from other superpopulations across all

genes, the FAM72B gene is also characterized by exceptionally high Fst values between

East Asian and South Asian populations.

3.2.2 Haplotype networks

To identify potential adaptive haplotypes that could drive genetic differentiation

across populations, I analyzed haplotype frequencies and networks of the four FAM72A
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Model FAM72A FAM72B FAM72C FAM72D

P-value

Biogeographical
ancestry

9.9×10-5 9.9×10-5 9.9×10-5 9.9×10-5

Out-of-Africa 9.9×10-5 9.9×10-5 9.9×10-5 9.9×10-5

Partial R2

Biogeographical
ancestry

0.973 0.981 0.986 0.994

Out-of-Africa 0.508 0.432 0.769 0.892



paralogs across five superpopulations. When examining haplotype frequencies

(Figure 9A), population-specific haplotypes were observed. FAM72C and FAM72D genes

displayed a few dominant haplotypes, uniformly spread across the superpopulations. In

contrast, FAM72A showed two primary haplotypes that had very low frequency in

African groups. The haplotype diversity pattern of FAM72B diverged from the other

paralogs, demonstrating six prevalent haplotypes, each bearing varied ancestry

compositions.

To further examine gene- and ancestry-specific haplotype diversity,

median-joining haplotype networks for each gene were constructed (Figure 9B). These

networks visually represent evolutionary ties between haplotypes, positioning each based

on its genetic relationship to others, based on location and frequency of mutations.

Closely related haplotypes cluster together, while more genetically distant ones, and those

harbouring rare alleles, remain apart. Notably, the haplotype network for FAM72A-B

genes are similar, as well as those for FAM72C and FAM72D are more similar to each

other. The FAM72C network forms a star-like cluster, marked by a central prevalent

haplotype surrounded by minor, derived ones. The FAM72D gene, although less

prominent, mirrors this pattern with the emergence of two derived haplotypes.

Conversely, FAM72A and FAM72B genes have no overrepresented haplotype, instead

presenting a chain of derived haplotypes. In FAM72B, the haplotypes form into two

separate clusters, seemingly correlated with ancestry.
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Figure 9. Haplotype composition of FAM72 genes. A. Haplotype frequencies of four
FAM72A paralogs. Only haplotypes with > 50 observations were plotted. B.

Median-joining haplotype networks of FAM72 genes. Sector areas are proportional to the
number of observations, the colors represent different Superpopulations.

3.2.3 Genetic variation profile of FAM72A paralogs

Genetic variants across different functional genomic regions may provide insights

into the evolutionary pressures acting on a gene. For instance, intronic variants can
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modulate gene expression or alternative splicing events, whereas variants in the

untranslated regions (5'UTRs and 3'UTRs) can disturb post-transcriptional regulation via

mechanisms such as altered mRNA stability or microRNA interaction sites. In promoter

regions, variants may impact transcriptional initiation kinetics and thus, the gene's overall

expression profile. By systematically assessing the distribution and nature of variants

across genomic compartments, it is possible to delineate the selective landscapes

determining a gene's evolutionary trajectory.

I examined the distribution of known genetic variants in the FAM72A paralogs

using data from the gnomAD v3.1.2 dataset (Chen et al. 2022). These variants were

categorized based on their location in the genome's functional regions (Table 2). Counts

of nonsense, synonymous, frameshift exonic variants, as well as 3’-UTR and splice site

polymorphisms, were similar across all four FAM72 genes. However, there was a distinct

pattern of variation between FAM72A-B and FAM72C-D. Specifically, FAM72A-B had a

notably higher number of promoter and intronic variants. Also, the higher ratio of

missense to synonymous variants in FAM72B suggests possible balancing selection.
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Table 2. Number of different classes of polymorphisms in FAM72A-D genes (data
from gnomAD v3.1.2).
Location FAM2A FAM72B FAM72C FAM72D

Promoter 341 305 0 0
5'-UTR 17 142 6 9
Intron 1372 1556 989 940
Exon Synonymous 4 7 1 3

Missense 9 33 1 0
Nonsense 0 1 1 0
Frameshift 1 3 0 2

Splice site 1 1 0 0
3'-UTR 79 75 85 64

Since some protein domains are more tolerant to amino acid substitutions due to

differences in evolutionary constraints on protein structure, I examined the distribution of

protein-coding variants along the FAM72 peptides (Figure 10). As seen before,

FAM72A-B proteins are characterized by a larger number of observed variants than

FAM72C-D. In FAM72A-B proteins, there is a noticeable trend of increased variation in

the C-terminus of the protein. Moreover, FAM72B stands out with an additional region of

variability located between the 80th and 100th amino acid positions. The analysis of

missense variants in FAM72A-D genes using data from the 1000 Genomes dataset

showed that variations tend to be specific to individual superpopulations, as illustrated in

Figure S3.
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Figure 10. Distribution and frequency of coding variants within FAM72A-D genes.
The y-axis displays the variant frequency as negative log10, while the x-axis denotes the

amino acid positions impacted by these genetic variants.

3.3 Natural selection of FAM72A paralogs

3.3.1 Phylogenetic protein conservation

Selective pressures that act upon functionally important regions of a protein result

in the preservation and maintenance of the protein’s structural and functional integrity

across diverse lineages. In particular, amino acids that are central to a protein's catalytic

activity, ligand binding, or interaction with other macromolecules demonstrate a high

degree of conservation that indicates strong purifying selection acting to eliminate

deleterious mutations. Conversely, regions of a protein that are subject to less stringent
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structural constraints, or that are involved in lineage-specific adaptations, may display

signatures of positive selection, with an elevated rate of non-synonymous substitutions.

These observations could indicate adaptive evolution, potentially driven by

co-evolutionary arms races with interacting human or pathogen proteins.

To identify potential regions of functional or structural importance, I aligned

FAM72A protein sequences from 58 taxa and identified stretches of high sequence

conservation using 2 metrics of protein conservation. The results of the multiple sequence

alignment and the conservation scores are visually presented in Figure 11. The analysis

indicated that the FAM72A protein consists of regions of strong conservation,

interspersed with variable regions. Specifically, the segments spanning amino acids

29-37, 66-80, and 93-105 demonstrated a notable degree of conservation. On the other

end of the spectrum, the region around amino acids 134-145, located at the C-terminus of

the protein, was identified as the most variable. Interestingly, the analysis also identified

certain variable sites that appear to be lineage-specific amino acid substitutions. The most

prominent example is the transition of amino acids at 15 distinct positions (16, 18, 27, 52,

62, 65, 106, 108, 111, 112, 10, 138, 139, 142, 144), which separates fish from other

vertebrate groups. Here, the transition involves a switch either from or to hydrophilic

amino acids, underlining a clear evolutionary divergence between these groups.
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Figure 11. Phylogenetic conservation of FAM72A protein across vertebrates. A)
Multiple sequence alignment of FAM72A proteins, and amino acids are colored

according to the Zappo scheme. B) The consensus protein sequence and frequency of
consensus amino acids in the alignment. C) Site-specific conservation scores based on

Shannon entropy and substitution matrices.

3.3.2 Neutrality tests

Tajima's D, Fay and Wu's D, and Zeng's H are neutrality tests designed to detect

deviations from neutral evolution in DNA sequences. Tajima’s D involves comparing two

different estimators of theta, where θ = 4Neµ, and Ne is the effective population size and

µ is the mutation rate. One estimate of θ is based on estimating the mean number of

pairwise differences between sequences and is thus strongly influenced by alleles at an

intermediate frequency (θ = π), while the other estimator is based on the frequency of all

segregating sites and is, therefore, more influenced by rare alleles (Watterson’s theta, θw).

At equilibrium the two estimates of θ are equal, and Tajima’s D = 0, so that deviations

from zero indicate potential non-neutral evolution or changes in Ne (Tajima 1989). Zeng’s
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H, on the other hand, contrasts rare and high-frequency variants to detect signs of

recovery after a selective sweep (Zeng et al. 2006). Fay and Wu’s D highlights an

imbalance between high-frequency and intermediate-frequency alleles, incorporating

ancestral allele information (Fay and Wu 2000). Extreme negative values of these metrics

indicate signatures of positive selection.

Using the 1000 Genome dataset, I calculated three neutrality metrics and two

diversities to test for signatures of a recent selective sweep at the FAM72 loci. Null

distributions for the metrics were calculated empirically across the entirety of

chromosome 1 in non-overlapping windows of 17,387 bp in each superpopulation. The

value of the observed metric for each FAM72 paralog by superpopulation was considered

significant if it lays in the top or bottom 5% of distribution. The empirical distributions

created by this process reflect a range of values primarily influenced by the demographic

dynamics of each population, serving as a reference to interpret the calculated neutrality

tests' results.

The empirical distributions of the metrics were similar across superpopulations

(Figure 12). However, the distributions in African populations were shifted to the right

indicating higher genetic variation overall along chromosome 1. Among the five

neutrality metrics applied, Tajima's D and Zeng's E consistently fell within the lowest 5%

tail of the empirical distribution for the FAM72C gene across almost all superpopulations.

However, Tajima’s D values for the African population and Zeng’s E values for the

European population were exceptions to this trend. In addition, FAM72D had low

Tajima’s D values in four populations, with South Asians as the exception, and low

Zeng’s E values with Americans as the exception. For FAM72A, a low Tajima’s D value
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was observed in the American population, along with a low Zeng’s E value in African

populations. FAM72B, on the other hand, only demonstrated a low Zeng’s E value in the

South Asian population.

Figure 12. Comparative distributions of nucleotide diversity, haplotype diversity,
and neutrality test metrics for FAM72A-D genes across superpopulations. Rows

correspond to individual populations, while columns denote specific genetic metrics. The
four solid lines in each graph signify the population-specific estimates for the FAM72A-D

metrics, with the red dashed line marking the lower 5% tail threshold.

To analyze regional variations in Tajima's D values around the FAM72-SRAGP2

loci, including a ±100 kb flanking region, I used overlapping 5kb sliding windows,

shifting each by 500 bp (Figure 13). Globally, FAM72A-SRGAP2 and

FAM72B-SRGAP2C loci were characterized by shorter stretches of low Tajima’s D values

compared to other segmentally duplicated loci. Additionally, the downstream flanking

region of SRGAP2 paralogs displayed notable differences between these two pairs of loci.

The former pair had a higher SNP density and Tajima’s D values. Conversely, the
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downstream flanking regions of FAM72C-D exhibited lower Tajima’s D values in

comparison to the analogous region of the older paralog pair.
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Figure 13. Regional fluctuations of Tajima’s D values in FAM72-SRGAP2 ±100 kb
loci. The upper part of each panel depicts Tajima’s D variation in five superpopulations in
5 kb windows with a 500 bp shift. The dashed lines indicate standard Tajima’s D cut-off

values, indicating that a gene is not evolving neutrally. The lower part of the panel
contains the canonical Ensembl gene structure.
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Across all four FAM72 paralogs, the second exon consistently demonstrated a

drop in Tajima’s D below -2. Additionally, there was a marked decrease in Tajima's D at

the fourth exon of FAM72B and a less noticeable drop for the same exon in FAM72A. In

contrast, the gene region between these exons displayed a sudden increase in Tajima's D.

Meanwhile, for FAM72C, Tajima’s D remained below -2 from the second exon to the

middle of the third intron across three superpopulations. Tajima’s D values remained

above the cut-off across the FAM72D gene, except for a region around the second exon.

Intriguingly, all SRGAP2 paralogs, including the pseudogenized SRGAP2D, showed low

Tajima’s D values around the exons and within certain intron regions. Contrary to other

paralogs, which showed a narrow spike in Tajima’s D values in the middle of the second

intron, SRGAP2 had a ~33 kb stretch with high Tajima’s D values. Overall, the observed

regional Tajima’s D patterns were more consistent among SRGAP2 paralogs compared to

FAM72 genes.

3.3.3 Integrated haplotype score

The integrated haplotype score (iHS) is a statistic that identifies signals of recent

positive selection in the genome based on patterns of linkage disequilibrium. The iHS

compares the extent of haplotype homozygosity between derived and ancestral alleles at a

given genomic position. In the case of a selective sweep, the frequency of beneficial

alleles increases, leading to an extended region of a long haplotype around this variant

that will slowly decay by recombination. Specifically, extended haplotype homozygosity

(EHH) measures the probability of two randomly chosen haplotypes being identical by

state over a specific distance. The iHH (integrated EHH) is then derived by integrating

the EHH values to capture the area under the EHH curve. The iHS is the normalized log
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ratio of iHH values for the derived versus the ancestral allele. Under neutrality, iHS

values are expected to center around zero, whereas strong positive or negative values

indicate selection.

Using phased 1000 Genomes data for chromosome 1 combined with the ancestral

allele information from Ensembl, I calculated iHS scores across 26 human populations. I

limited the inclusion criteria to SNPs with a minor allele frequency (MAF) greater than

1% and availability of ancestral allele state. MAF filtering led to a substantial reduction,

resulting in only 20% of the original variants being eligible for iHS calculation.

The calculated iHS scores for the FAM72-SRGAP2 loci, including a ± 10 kb

flanking region, are depicted in Figure 14. Overall, the loci demonstrated a sparse

distribution of significant iHS scores, with a majority of significant scores being

associated with SRGAP2 paralogs. African populations exhibited the largest number of

selective sweep signals, although there were isolated signals in South Asian and

American populations. Notably, European populations showed no such signals.

Unfortunately, iHS calculation was not possible for FAM72C-SRGAP2D because of low

nucleotide diversity and long monomorphic sequence stretches.
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Figure 14 Population-specific integrated haplotype scores at FAM72-SRGAP2 loci,
extending ± 10 kb from the genes. Grey dots depict iHS values with an adjusted p-value

greater than 0.05, while statistically significant iHS scores are denoted with colors
corresponding to their respective superpopulation. Canonical gene structures are provided

for SRGAP2 (longer) and FAM72 (shorter) paralogs as reference.

Focusing specifically on the FAM72A-D genes, only three statistically significant

iHS scores were detected (Table 3). All three of these variants, residing within FAM72A

and FAM72D genes, displayed significance exclusively in African populations. Two

variants were situated in intronic regions, while the third was found in a 3’-UTR region.
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Table 3. Genomic localization of statistically significant iHS scores.

Gene
Genomic
position

Population Superpopulation
Genomic
context

iHS
-log10
(adj.

p-value)

FAM72A chr1:206197663 MSL AFR Intronic 5.079 2.499

FAM72D chr1:145112636 GWD AFR 3'-UTR 4.215 1.417

chr1:145102742 YRI AFR Intronic 4.444 1.552

3.3.4 Long-term balancing selection (β(1) score)

Long-term balancing selection (LTBS) is an evolutionary process, maintaining

allelic polymorphisms within a population across extensive temporal spans. LTBS may

be explained by heterozygote advantage, negative frequency-dependent selection, or

through ecological and spatially variable selection pressures. Balancing selection acts to

preserve genetic diversity within populations, contributing to the adaptive potential of

species in fluctuating environments (Bitarello et al. 2023).

Using the same dataset previously utilized for the iHS score analysis, I obtained

standardized β(1) values, categorizing the upper 2% as extreme values. There was a

notable variation in the number of significant values across different loci, as depicted in

Figure 15. FAM72A-SRGAP2 locus presented 611 significant β(1) values, predominantly

concentrated between introns 10 and 15 of SRGAP2, whereas no signals were detected in

the FAM72A gene body. The lowest number of statistically significant findings was

observed in the FAM72B-SRGAP2C locus, with just 10 signals situated in intron 3 of

SRGAP2C. In FAM72C-SRGAP2D and FAM72D-SRGAP2B 150 and 220 significant

values were observed, respectively.

In FAM72C, 59 extreme values were detected (Table S5). Broadly, the potential

signals of balancing selection are aggregated within two distinct regions. The initial
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region spanned 2kb within intron 2 of the gene, encompassing 56 extreme values from

African, American, and European populations. The second cluster of genomic positions,

exclusively detected in the Luhya population from Webuye, Kenya, was situated in the

third intron of FAM72C. In the case of FAM72D, three genomic positions were identified

within a 541 bp region, where these variants were concurrently categorized as intronic

variants of FAM72D and 2kb upstream variants of SRGAP2B.
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Figure 15. Population-specific β(1) values at FAM72-SRGAP2 loci, extending ± 10 kb
from the genes. Grey dots depict β(1) values within the lower 98%, while extreme β(1)

values from the top 2% are denoted with colors corresponding to their respective
superpopulation. Canonical gene structures are provided for SRGAP2 (longer) and

FAM72 (shorter) paralogs as reference.
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3.3.5 Linkage Disequilibrium (LD)

Linkage disequilibrium (LD) patterns reflect the action of evolutionary forces and

demographic processes acting genome-wide or locally. For example, when a beneficial

mutation arises, it can undergo a selective sweep, increasing in frequency along with the

nearby alleles, resulting in a characteristic pattern of high LD. This pattern reflects the

strength and recency of selection, with stronger and more recent sweeps creating larger

regions of LD. Conversely, purifying selection removes deleterious mutations, which can

also influence the LD patterns in the surrounding region. Balancing selection, on the

other hand, maintains multiple alleles in the population, producing high LD due to the

consistent frequencies of the selected alleles. To identify regions affected by these

processes, I calculated correlation coefficients for every SNP pair in four

FAM72-SRGAP2 loci.

The analysis provided a detailed look at how the average pairwise LD (linkage

disequilibrium) correlation coefficient varies significantly across different populations

and genes. We observed a range from 0.01 to 0.134 in these coefficients, with an overall

average of 0.039 across all populations and genes. Focusing on the individual FAM72

genes, the Peruvian population showed the highest LD correlation for both FAM72A (r2 =

0.134) and FAM72B (r2 = 0.087), while the Gambian Mandinka population had the lowest

for FAM72A (r2 = 0.025), and Sri Lankan Tamils for FAM72B (r2 = 0.031). For FAM72C,

the Yoruba population displayed the highest LD (r2 = 0.068), with Sri Lankan Tamils

having the lowest (r2 = 0.011). In the case of FAM72D, Colombians had the highest LD

(r2 = 0.039), and Southern Han Chinese had the lowest (r2 = 0.01).
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When the average pairwise LD correlation coefficients between the different

FAM72 genes were compared, a nearly two-fold difference between the FAM72A-B and

FAM72C-D pairs was observed, with the former having higher values. However, when

considering the median and interquartile range, FAM72B (0.00059, 0.0055) differed from

the other paralogs (0.00024-0.00028, 0.001-0.0012).

Additionally, I looked at the physical location of SNP pairs that were in

significant linkage disequilibrium (r2 ≥ 0.75). Here, the FAM72C-D genes had fewer

highly correlated genetic variants compared to the FAM72A-B pair. Interestingly, these

LD "hotspots" were mainly found in non-coding DNA regions, pointing to potential

regions crucial for regulating gene expression. I also explored how the number of strong

LD SNP pairs varied across different superpopulations. From this, a pattern emerged

showing that African populations had a higher number and greater variability of these

pairs, followed by South Asian populations, while European populations had the least

variability (Figure S4).

65



Figure 16. Distribution of variant pairs in strong LD (r2 > 0.75) across FAM72
paralogs. The black horizontal line represents a genomic region of FAM72A paralog with

a ± 2kb flanking region. The gene structure of FAM72 paralogs, alongside a truncated
version of SRGAP2 paralogs, is also depicted, according to the Ensembl gene model. The

curves are color-coded to represent the LD r2 values, while their intensity indicates the
prevalence of a particular SNP pair with a strong LD association across various

populations.

Next, my goal was to understand how the regulatory landscape is connected to the

regions rich in LD (linkage disequilibrium) that were identified, especially since almost

all the highest LD r2 pairs were localized in non-coding parts of the genes. I focused on

variants that consistently showed up in the top 2% LD r2 across different populations.

From these, I selected genomic positions that were in the upper 10% in terms of the

number of extreme LD pairs in each gene and grouped them into 100 bp LD hotspots. I

then used the Ensembl Regulatory Build (release 110) by Zerbino et al. (2015) to

annotate these intervals.

In line with the previous observations, the FAM72A-B genes had a larger number

of LD hotspots. The same high LD regions in the FAM72A gene were present across all

five superpopulations. However, in some non-African superpopulations, there were
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intervals in other paralogs that lacked strong LD signals. Through region-wise

annotation, two promoters and two enhancer regions were identified — both regulatory

features were only observed together in FAM72B. On the other hand, no regulatory

elements were detected in the FAM72D gene, even though one of the LD regions showed

the presence of transcription factor (TF) binding motifs (Table 4).

Using cell-type specific experimental epigenetic profiles integrated in the

Ensembl Regulatory Build, I determined that both promoter regions are active in most

cells, while both enhancers were mostly devoid of epigenetic marks (Table 4). Notably,

the enhancer from FAM72C consistently showed an activated state in certain types of

immune cells, such as monocytes, M0, M1, and M2 macrophages, but was either inactive

or repressed in other immune cells. Conversely, the enhancer in FAM72B was almost

entirely inactive, displaying signs of active chromatin only in human umbilical vein

endothelial cells.
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Table 4. Regulatory landscape of FAM72A-D LD hotspots.

Gene Genomic region P, n* SPþ Ensembl regulatory
features

Regulatory feature activity, n TF binding motifs
A⨀ P⟛ I⟤ R⧫

FAM72A chr1:206203200-
206203300

7 All Promoter
(ENSR00000018900)

105 3 10 0 ETV2::FOXI1, CELK1::FOXI1,
CERF::FOXI1, CFOXO1::ELF1,
CFOXO1::ELK1, CFLI1::FOXI1,
CETV5::FOXI1

chr1:206203900-
206204000

8 All ELK1::HOXA3,
CETV5::HOXA2,
CETV5::EVX1,
CHOXB2::ETV1,
CHOXB2::ETV4, TEAD4::PAX5

FAM72B chr1:121172100-
121172200

5 All Enhancer
(ENSR00000930116)

2 0 111 4 FOXL1, CFOXC1, CFOXC2

chr1:121184500-
121184700

8 All Promoter
(ENSR00000012566)

100 3 15 0 E2F1::EOMES, KLF14, CSP4,
CKLF16, CSP8, CSP3, CSP1,
E2F3::TBX21, HOXB2::TBX21,
HOXB2::RFX5

FAM72C chr1:143953800-
143953900

13 All Enhancer
(ENSR00000930227)

24 1 86 6 TBX19, CT, PAX6,
GCM1::PITX1, GCM2::HES7,
GCM2::SOX15, GCM2::PITX1

FAM72D chr1:145102300-
145102400

5 All N/A N/A N/A N/A N/A TEAD4::CLOCK,
CTEAD4::HES7, TEAD4::PAX5

* The count of populations in which a specified genomic segment contains positions identified among the upper 10% in terms of the
prevalence of strong linkage disequilibrium (LD) pairings.
Þ Superpopulations that encompass the populations listed in column “P”.
⨀ A regulatory element displays an active epigenetic signature, which can include evidence of open chromatin.
⟛A regulatory element contains an epigenetic signature with the potential to be activated.
⟤ A regulatory element does not contain analyzed epigenetic marks.
⧫ A regulatory element contains epigenetic marks of expression repression
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Chapter 4: Discussion

4.1 Phylogenetics and emergence of human-specific FAM72A paralogs

Globally, the estimates for the splits between FAM72A and FAM72B-D, and

between FAM72B and FAM72C-D caused by duplication events align with those

suggested by Dennis et al. (2012) — at 3.4 million years and 2.4 million years,

respectively, with a slightly younger BEAST estimate for the former — 3.16 Mya.

Additionally, the estimated age of a duplication that formed either FAM72C or FAM72D

is older than the one from Dennis et al. (2012) — 1.54 Mya (95% HPD 0.51-2.83 Mya)

versus 1 Mya (96%CI 0.4–1.3 Mya). However, due to the overlap in the wide credible

intervals in the present analysis, a confident sequence of gene duplication events remains

unknown. Yet, given the robust monophyletic nature of the FAM72A paralogs, a likely

sequence of events inferred from sequence divergence would be FAM72A's duplication

giving rise to FAM72B, which subsequently led to the genesis of either both FAM72C and

FAM72D or solely FAM72C, which then later duplicated into FAM72D.

The relaxed clock model estimated an average mutation rate of 6.8×10-4

substitutions per site per million years, although there is considerable uncertainty in this

estimate, as indicated by the wide credible intervals ranging from 3.1×10-4 to 11.1×10-4.

This rate contrasts with direct, genome-wide estimates of mutation rates from studies of

gorillas (6.5×10-4, 95% CI 5.1×10-4-7.9×10-4), chimpanzees (6.4×10-4, 95% CI

5.6×10-4-7.3×10-4) and humans (4.3×10-4) by (Besenbacher et al. 2019). The discrepancy

between these rates, along with the extensive high posterior density (HPD) intervals,

might reflect highly divergent mutation rates across different clades, suggesting faster
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evolutionary processes in the gorilla and chimpanzee lineages and notably slower rates in

the clades containing FAM72C and FAM72D.

Another notable observation is the young age of modern FAM72A-D haplotypes,

which seem to diverge in two waves: modern haplotypes of FAM72A and FAM72B started

to emerge around 450 thousand years ago (Kya) before the emergence of Homo sapiens

300 Kya (Hublin et al. 2017; Scerri et al. 2018), whereas FAM72C and FAM72D

haplotypes begun diverging around 190 Kya, coinciding with the emergence of

anatomically modern humans (Stringer 2016).

The greatest strength and limitation of estimating phylogenetic divergence times

using BEAST lies in the fossil calibrations, which are incorporated as prior probabilities

on the ages of nodes. These calibrations are critical to molecular clock analyses, and

empirical studies often face uncertainty in both the position and number of these

calibration points. As a result, these factors can significantly influence the outcome of the

analysis (Paradis 2013; Duchêne, Lanfear, and Ho 2014).

Another issue in Bayesian phylogenetic analyses is caused by the marginal priors

for node ages that might deviate from the specified calibrations. The priors guide the

Bayesian analysis by providing a starting point based on previous knowledge or

assumptions. However, when multiple calibrations are not entirely consistent with each

other either because of overlapping age intervals that they suggest for different nodes or

because the actual tree topology does not align perfectly with the calibrated points, the

marginal priors tend to deviate from the intended or specified calibrations, leading to

inaccurate estimates of divergence timing (Heled and Drummond 2012).
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In the present study, I limited fossil calibration to two prior distributions. For the

calibration of the human-chimpanzee split, I used an unusually wide uniform distribution

covering a span of 10 Myr and extensively overlapping with the prior for Homininae.

This range is broader than what is typically used in the field (Dennis et al. 2012; de

Manuel et al. 2016; Fontsere et al. 2022), and the rationale for these values is discussed

by Vries and Beck (2023). To potentially refine the estimates, incorporating additional

calibration points could be beneficial. For example, including FAM72 genes from archaic

hominins in the analysis might provide more calibration nodes.

The broad credible intervals (HPDs) encountered in divergence time estimates

may stem from analyzing the full gene sequence as a single entity. Variability in base

composition and mutation rates between the coding and noncoding regions of a gene can

result in skewed divergence time estimates (Foster 2004; Kainer and Lanfear 2015). To

address this issue, a more accurate approach could be adopted: partitioning the gene into

its introns and exons, and further subdividing exons into untranslated regions (UTRs) and

coding sequences (CDS). Partitioning allows the identification of the most likely

substitution models for each distinct segment. Applying these models to each partition

prior to the combined analysis in BEAST could potentially enhance the accuracy of the

estimated divergence times.

4.2 Diversity of FAM72A paralogs

The observed low average pairwise Fst values (0.061 for FAM72A, 0.076 for

FAM72B, 0.045 for FAM72C, and 0.052 for FAM72D) among the 26 populations from the

1000 Genomes dataset suggest a high homogeneity across the populations and loci

examined. This pattern of homogeneity could be attributed to the shared recent ancestry
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of human populations and possibly limited evolutionary divergence due to genetic drift or

ongoing gene flow (Rosenberg et al. 2002; Weise et al. 2022; Z. Xu et al. 2022). The

distinctively higher Fst value observed for the FAM72B gene between East Asian and

South Asian populations may indicate unique selective forces or historical demographic

events shaping its genetic variation differently (Campbell and Tishkoff 2008).

Population clustering analyses suggest that the FAM72A paralogs' genetic

variation primarily correlates with biogeographical ancestry. Yet, the genetic variation in

the FAM72D gene also correlates significantly with the Out-of-Africa model. The

clustering pattern of African populations reflects genetic diversity within the continent

and points to extensive gene flow among African populations. The Out-of-Africa model

posits a genetic bottleneck effect during the migration from Africa approximately 60-75

Kya (Mallick et al. 2016; van Eeden et al. 2021). However, the variability in partial R2 of

this model for the FAM72A-C genes implies that factors beyond a simple bottleneck

effect, such as different evolutionary forces, may have influenced these genes.

The haplotype analyses highlight the differentiation in the genetic architecture of

FAM72 paralogs. The predominance of certain haplotypes for FAM72C and FAM72D

across diverse populations suggests purifying selection (Figure 9). These haplotypes are

notably old and broadly represented, which does not align with the bottleneck effect

typically associated with the out-of-Africa migration. This indicates that other

evolutionary mechanisms have been at play. (Figure S2B).

Examining the spatial distribution of single nucleotide variants, FAM72A and

FAM72B have a higher number of intronic variants compared to FAM72C and FAM72D.

The young age of the FAM72C-D genes explains this difference. However, the abundance
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of promoter mutations in FAM72A-B may result from relaxed selection, potentially

leading to the diverse isoforms of these genes. Another potential explanation was

proposed by Kutzner et al. (2015), who predicted the emergence of a new long-coding

RNA in this region. Additionally, observations by Fraimovitch and Hagai (2023) that

transcription factor binding motifs in promoters of young mammalian duplicate genes are

initially quite similar but tend to diverge significantly over time also lend weight to the

hypothesis that the observed promoter mutations could drive the evolution of new gene

functions. As these promoters diverge, they may acquire unique regulatory features that

allow the expression of gene copies to become specialized or adapted to new roles — a

process that could be ongoing in the FAM72 gene family.

FAM72B is further distinguished from other paralogs by accumulation of 5’-UTR

and nonsynonymous coding variants, which might suggest ongoing relaxed selection of

this gene. Additionally, the nonrandom pattern of nonsynonymous substitutions,

particularly between the conserved 80th and 100th amino acid positions, hints at a potential

ongoing pseudogenization process. For example, the Cys92Tyr variant caused by

rs373032977, disrupts a predicted metal-binding site (Stewart and Bhagwat 2022),

emphasizing the possibility of functional loss in this gene in the future.

In contrast to FAM72A-B, FAM72C-D are extremely conserved. Along with

purifying selection, the observed sequence preservation of these genes can be maintained

by an extensive interlocus gene conversion (IGC). IGC is a homologous recombination

process that can cause non-allelic genes to become more similar to each other, effectively

"homogenizing” sequences across different loci. Indeed, Vollger et al. (2023) assessed the

distribution and frequency of interlocus gene conversion across human segmental
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duplications and identified contrasting patterns of IGC between FAM72 paralogs

(Figure 17). They observed large-scale, bidirectional IGC events that span several dozens

of kilobases in FAM72C-D. This extensive gene conversion could act to synchronize

genetic variants between the paralogs, maintaining their sequence conservation. On the

other hand, the FAM72A-B genes appear to undergo much smaller-scale IGC events,

limited to regions around 1 kilobase. Furthermore, the asymmetric roles in IGC among

these genes are notable. FAM72B’s status as a donor in IGC events being only once,

while the other genes participated as donors more frequently (6-8 times), suggests

differential evolutionary pressures or functional constraints on these genes. Meanwhile,

FAM72C was an acceptor in IGC events 12 times, whereas the others played this role 2-4

times each.

The diversity analysis conducted faced certain constraints, primarily due to the

decision to use phased VCF files. These files inherently lack singleton data because

singletons cannot be reliably phased. Consequently, this absence likely leads to an

underestimation of the true extent of population differentiation. Another limitation arises

from the composition of the gnomAD v3.1 dataset, which has a disproportionate

representation of European genomes. This bias potentially underestimates the full

spectrum of the gene's global diversity. Moreover, the gnomAD dataset is not harmonized

with the 1000 Genomes Project in terms of biogeographical ancestry or population,

making direct comparisons unfeasible.

To enhance the robustness of future analyses, several improvements can be made.

First, calculating Fst values at individual genomic positions could pinpoint specific

genomic positions that contribute to genetic differentiation. Additionally, assessing
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population-specific Fst and pairwise Fst values could aid in disentangling the

evolutionary history of the genes from the current population structure. This

comprehensive approach, which considers both historical and present-day population

dynamics was advocated by Kitada, Nakamichi, and Kishino (2021).

Figure 17. Interlocus gene conversion among FAM72A paralogs. The genes with
flanking regions are depicted. The individual gene bodies are differentiated by a unique

colour. Ribbons that link the loci signify specific IGC occurrences, with the color of each
ribbon denoting the donor gene sequence and the width indicating the extent of the

genomic region that underwent conversion.

4.3 Natural selection of FAM72A paralogs

The examination of FAM72A protein conservation across 58 taxa highlights

regions within the proteins that show high conservation, suggesting these are critical for

cellular functions. Specifically, amino acid sequences at positions 29-37, 66-80, and
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93-105 are highly conserved, hinting at their role in catalytic activity, ligand binding, or

macromolecule interaction. The functional importance of these regions is underscored by

the presence of predicted metal-binding sites and by studies in mice showing that

alterations in these sites disrupt binding with UNG2 (Stewart and Bhagwat 2022).

Moreover, 4 out of 5 fixed amino acid differences of FAM72 paralogs are located in

extremely conserved protein regions. The dN/dS ratio of fixed substitutions in FAM72C-D

relative to the ancestral FAM72A gene is 3 and 2, respectively. Kondrashov et al. (2002)

found that most paralogs are characterized by symmetrical selection, and have dN/dS << 1.

These findings may indicate a positive or relaxed selection (Zwonitzer et al. 2022), but

the small number of amino acid differences precludes definitive conclusions.

The analyses of Tajima's D, Fay and Wu's H, and Zeng's E distributions suggest

recent selective sweeps at FAM72 loci, particularly affecting FAM72C and FAM72D

genes. Low Tajima's D values across populations may reflect a narrowing of genetic

diversity, possibly due to strong selection or population growth. Zeng's E and Tajima's D

point to genes in a post-sweep recovery phase, where a selected haplotype becomes

predominant and then begins to accumulate new genetic variants. In contrast, Fay and

Wu's H identifies ongoing selective sweeps, placing FAM72C and FAM72D in the

post-sweep stage (Zeng et al. 2006).

A regional analysis around FAM72-SRAGP2 loci illustrates a mosaic of genetic

diversity. The short stretches of low Tajima’s D values associated with the FAM72A and

FAM72B loci indicate localized regions of low genetic diversity around exons.

Conversely, the stretches of low Tajima’s D values throughout the whole FAM72C gene
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may indicate the selection acting on noncoding sequences (Carlson et al. 2005; Naidoo et

al. 2018).

The results from the integrated haplotype score (iHS) analysis indicate signals of

recent positive selection, predominantly within the SRGAP2 paralogs across the sampled

human populations. These findings align with the existing literature that documents the

role of SRGAP2 in neural development and the evolution of cognitive functions in

humans (Dennis et al. 2012; Sporny et al. 2017). The significance of the SRGAP2 gene

family in the evolution of human-specific traits may be inferred from the selective sweep

signals predominantly found in African populations. The absence of significant iHS

signals in European populations suggests a possible population-specific selective history

or different selection pressures in non-African populations. However, the lack of iHS for

FAM72C-SRGAP2D due to low nucleotide diversity underlines the potential limitations

of using iHS in regions with monomorphic stretches, which can mask the presence of

selective sweeps.

The β(1) score analysis suggests the presence of long-term balancing selection

within the SRGAP2 loci and FAM72C and FAM72D genes. The density of significant β(1)

values in intronic regions of FAM72-SRGAP2 loci may indicate spatio-temporal variation

of fitness effects and selective pressures across the tissues and developmental stages

(Wegmann, Dupanloup, and Excoffier 2008). The observed signals in intron 2 of

FAM72C across diverse populations and the specific cluster in the Luhya population may

point to global and population-specific ecological or pathogen-related selection pressures

(Leffler et al. 2013). Additionally, the detected signals in noncoding regions of FAM72C

and FAM72D may result from genotype-by-genotype interactions between humans and
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viral pathogens leading to negative frequency-dependent selection (NFDS) (Bitarello et

al. 2018; Råberg 2023). During arm race between viral pathogens and a host organism,

pathogens typically evolve to target the most common host genotypes. As these prevalent

host genotypes become more susceptible to infection, they are naturally selected against

and decrease in frequency. This prompts the pathogens to adapt to other host genotypes,

which, in turn, also become targeted and selected against. NFDS perpetuates a dynamic

where multiple host alleles at specific genetic loci are retained over extended periods

because the pathogen continually shifts its focus from one common host genotype to

another, preventing any single allele from becoming universally dominant (Ebert and

Fields 2020).

The linkage disequilibrium (LD) analysis across the FAM72A paralogs showed

considerable variation in LD patterns among populations and between different genes.

The lower LD in African populations such as the Gambian Mandinka might indicate a

more extensive and older population history, consistent with the high genetic diversity

that is characteristic of many African populations (Campbell and Tishkoff 2008). The

outstanding prevalence of high LD in the Peruvian population can either reflect extensive

admixture (Medina-Muñoz et al. 2023) or signatures of positive pathogen-driven

selection that was reported in coast and rainforest Peruvian populations (Caro-Consuegra

et al. 2022).

LD hotspots, primarily in noncoding regions, may be implicated in gene

regulation. The fact that these hotspots were conserved across superpopulations for

FAM72A but varied for other paralogs may reflect widespread preservation of the

regulatory profile of the ancestral gene, but expression divergence of the derived genes
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(Loker and Mann 2022; Aubé, Nielly-Thibault, and Landry 2023). The presence of

transcription factor binding motifs in LD regions without identified regulatory elements

in FAM72D suggests alternative regulatory mechanisms, such as chromatin remodelling,

eQTLs or alternative splicing, may be at play. Ensembl Regulatory Build annotations

reveal that LD hotspots in FAM72C are linked to immune cell function, while those in

FAM72B are largely inactive, pointing to a possible diversification in function among the

FAM72 paralogs, potentially related to immune response.

The analysis of neutral test statistics faces a significant challenge due to the use of

phased VCF files that lack singletons, which are crucial as these statistics rely on the

variation in the site frequency spectrum. Moreover, the current approach to identifying

linkage disequilibrium (LD) hotspots might benefit from a less biased ad hoc approach

for cut-off choice. For instance, the LDna package (Kemppainen et al. 2015) represents

LD data as a network graph, with loci as nodes and the LD correlation coefficients as

edges. This package applies network analysis to discern clusters of loci that exhibit a

denser or stronger LD with each other than with the rest of the network.

The methodological limitations inherent to short-read sequencing are amplified

when analyzing segmentally duplicated genes with high levels of sequence similarity. In

such contexts, differentiating between nearly identical sequences becomes a significant

challenge, with short reads often leading to incorrect read mapping. Alignment ambiguity

presents an additional obstacle. With multiple possible locations for short reads to map to,

there is inherent uncertainty in variant calling. This uncertainty is particularly detrimental

when detecting selection signals, as it can obscure the signatures of evolutionary

pressures acting on these genes (Vollger et al. 2022). To overcome these issues, a shift
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towards long-read sequencing techniques would be beneficial. For instance, the Institute

of Molecular Pathology (Vienna, Austria) generated and recently released 1027

whole-genome sequences using Oxford Nanopore sequencing.

An issue in tests for selective sweeps concerning recently duplicated genes is the

potential misinterpretation of their genetic signatures. Both selective sweeps and genetic

drift can lead to similar patterns of reduced heterozygosity. In selective sweeps, this

reduction occurs as beneficial mutations spread throughout a population, diminishing

variation in neighbouring genomic regions due to linkage disequilibrium. Conversely,

genetic drift can result in analogous patterns, especially within small populations where

chance can rapidly fix a duplicated gene. Fixations by drift can create extended regions of

genetic uniformity similar to those seen in selective sweeps, as the duplicated segment

will be identical by descent. The neighbouring alleles can rise in frequency in tandem

with the duplication, imitating the hitchhiking effect observed in selective sweeps.

Selective sweeps are typically distinguished by an excess of rare alleles because a

positively selected allele increases in frequency faster than recombination can introduce

new variations. The fixation of a duplicated gene can lead to a similar distortion in the

allele frequency spectrum (Kondrashov et al. 2002; Teshima, Coop, and Przeworski

2006; Thornton 2007).

4.4 General discussion

The analyses performed throughout this study reveal distinct evolutionary patterns

between the gene pairs FAM72A-B and FAM72C-D (Figure 18). Phylogenetic evidence

suggests that the FAM72A-B genes, along with the SRGAP2 and SRGAP2C genes, were

subject to strong selection pressures related to neocortex development up until about 450
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Kya, coinciding with the emergence of Homo sapiens (Hublin et al. 2017) This period

appears to have been followed by a relaxation in these selective pressures leading to

haplotype diversification. Conversely, the FAM72C and FAM72D genes continued to

evolve under constraint for an additional 200 thousand years, undergoing divergence

around the dawn of anatomically modern humans (Stringer 2016). The retention of the

FAM72C and FAM72D genes seems not to be linked to their cooperation with the

co-duplicated counterparts in brain development, as the related genes SRGAP2B and

SRGAP2D are either functionally redundant, highly variable, or have pseudogenized.

Figure 18. The summary of evidence for natural selection of FAM72A paralogs
generated in this thesis.

To account for the retention of the FAM72A gene duplicates, two hypotheses are

considered. The first, known as the "escape from adaptive conflict" (EAC) model, states

that the ancestral gene had two essential but conflicting functions. Post-duplication, each

gene could have specialized to improve one of these functions. The rapid build-up of
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fixed amino acid changes in highly conserved regions of FAM72C and FAM72D, but not

in the non-conserved C-terminus, might signal an evolutionary adaptation that favours the

retention of mutations beneficial to one of the ancestral gene's roles. However, this model

requires evidence of enhanced function in the ancestral FAM72A, which is not apparent

since there is neither coding divergence from the sister Homininae lineages (Figure 11)

nor divergence in gene expression (Shew et al. 2021).

The second hypothesis, the "innovation-amplification-divergence" (IAD) model,

suggests that the ancestral gene had a primary essential function and a secondary,

non-essential activity. If environmental changes made the secondary function

advantageous, gene duplication would offer an immediate evolutionary benefit, likely

leading to rapid fixation. Following fixation, the new gene could then specialize in the

advantageous secondary function (Andersson, Jerlström-Hultqvist and Näsvall 2015).

While the specific secondary activity of the ancestral FAM72A gene is not yet identified,

its expression in lymphoid tissues, which are the primary sites of activity for the derived

FAM72C-D genes, suggests that such a function exists. The dN/dS ratio pointing to

functional divergence in FAM72C-D and the low genetic variability combined with low

Tajima's D and Zeng's E values could indicate a fixation due to selective sweeps.

Furthermore, a high frequency of balancing selection signals in the intronic regions of

FAM72C and an LD hotspot in an intronic enhancer suggest regulatory divergence,

potentially leading to specific expression in immune tissues.

The present analysis provides an initial look at the complex evolutionary

trajectory of the human-specific FAM72A gene duplicates, but it is by no means

exhaustive. The evolutionary framework suggested for the recent history of the FAM72
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family is grounded in genomic data and theoretical models, but these require additional

empirical corroboration. Future research may diverge along two principal approaches.

Firstly, refining the present findings by utilizing data that is more comprehensive and less

prone to bias will be essential. More advanced computational techniques could refine our

understanding of the questions raised in this study. In-depth genomic analysis with

improved data will enable a more detailed reconstruction of the evolutionary history of

the FAM72A paralogs. Secondly, an in-depth examination of the cellular roles of the

duplicated genes is required. The identified signals of balancing selection and selective

sweep, along with the linkage disequilibrium (LD) hotspots discovered, need further

investigation for the expression quantitative trait loci (eQTLs), which may be the driving

forces of selection. Furthermore, these genomic regions should be analyzed for chromatin

immunoprecipitation sequencing (ChIP-Seq) peaks in relevant to the hypotheses tissues

and cells, such as neural progenitor cells and those involved in adaptive and innate

immunity, using publicly accessible data sets.

After gene duplication events, it's common for paralogs to exhibit different

coexpression relationships due to changes in their regulatory regions, leading to different

patterns of gene expression. For example, if one paralog of a duplicated gene pair is

highly coexpressed with genes involved in neurogenesis, while the other is coexpressed

with genes in antiviral response, it suggests a functional divergence where each paralog

has become integrated into different cellular processes. Gene coexpression networks

(GCNs), where nodes represent genes, and edges represent significant coexpression

relationships, typically inferred from large-scale transcriptomic datasets, can quantify the

extent to which the expression of genes is synchronized across multiple conditions. These
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measures are then used to build a network that can be analyzed to identify clusters or

modules of highly interconnected genes, suggesting a group of genes working together in

the same biological process. Thus, to address the functional divergence of FAM72A

paralogs, gene co-expression network of transcriptomes of neuronal progenitor cells,

activated B cells from germinal centers, and cells infected by a wide range of human

herpesviruses (herpes simplex virus type 1 or 2, cytomegalovirus, Epstein-Barr virus) can

be generated, followed determining whether these genes belong to the same or different

co-expression modules.
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Conclusions

In conclusion, this study of the recent evolutionary history of human-specific

FAM72A paralogs provides support for Hypothesis 1, demonstrating a sequential

duplication process where the ancestral FAM72A gene was duplicated to FAM72B,

subsequently giving rise to FAM72C and FAM72D (Figure 7). The evidence from

Bayesian divergence time estimation, structural conservation and divergence across these

paralogs support this hypothesis.

Hypothesis 2 anticipates the presence of opposing selective forces acting on the

FAM72A paralogs, with FAM72A and FAM72B showing patterns consistent with neutral

evolution or balancing selection, and FAM72C and FAM72D exhibiting signs of positive

selection. While findings indicate the overall asymmetric evolution of FAM72A-B and

FAM72C-D pairs, the more complex evolutionary patterns were observed. Specifically,

FAM72A and FAM72B paralogs appear to have been under relaxed selection allowing for

variation in amino acid composition, while FAM72C and FAM72D paralogs show

evidence recent selective sweeps. Yet, the findings suggest a complex mosaic of

evolutionary forces: while the protein functions have been preserved at the amino acid

level after fixation, there has been a simultaneous preservation of genetic variability in

non-coding regions, potentially contributing to regulatory flexibility and adaptability.

Hypothesis 3 predicts emergence of population-specific adaptive haplotypes in the

FAM72A paralogs, potentially driven by their role in the immune response. This study,

however, did not find definitive proof of such population-specific haplotypes that confer

localized advantage. While there is a suggestion of distinct haplotypes in FAM72B

between East Asian and South Asian populations, the lack of clear adaptive signatures
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may point to a more complex interplay between evolutionary forces and demographic

history.

Further research, incorporating deeper genomic analysis and exploration into gene

expression, is required to fully disentangle the evolutionary history of the FAM72 gene

family. More focused experimental and computational work could shed light on

population-specific variations and environmental interactions of FAM72A paralogs in the

context of the immune response.

86



References

Akiva, Pinchas, Amir Toporik, Sarit Edelheit, Yifat Peretz, Alex Diber, Ronen Shemesh,
Amit Novik, and Rotem Sorek. 2006. “Transcription-Mediated Gene Fusion in the
Human Genome.” Genome Research 16 (1): 30–36. https://doi.org/10.1101/gr.4137606.

Anderson, Marti J. 2001. “A New Method for Non-Parametric Multivariate Analysis of
Variance.” Austral Ecology 26 (1): 32–46.
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.

Andersson, Dan, Jon Jerlström-Hultqvist, and Joakim Näsvall. 2015. “Evolution of New
Functions De Novo and from Preexisting Genes.” Cold Spring Harbor Perspectives in
Biology 7 (June). https://doi.org/10.1101/cshperspect.a017996.

Andrä, Paul. 2020. “Analysis and Functional Characterization in Embryonic Mouse
Neocortex of a Set of Human-Specific Genes Expressed in Neural Progenitor Cells of
Fetal Human Neocortex.” Doctor of Medicine, Dresden: Dresden University of
Technology.

Arrigo, Nils, and Michael S Barker. 2012. “Rarely Successful Polyploids and Their
Legacy in Plant Genomes.” Current Opinion in Plant Biology, Genome studies molecular
genetics, 15 (2): 140–46. https://doi.org/10.1016/j.pbi.2012.03.010.

Atkinson, Elizabeth Grace, Amanda Jane Audesse, Julia Adela Palacios, Dean Michael
Bobo, Ashley Elizabeth Webb, Sohini Ramachandran, and Brenna Mariah Henn. 2018.
“No Evidence for Recent Selection at FOXP2 among Diverse Human Populations.” Cell
174 (6): 1424-1435.e15. https://doi.org/10.1016/j.cell.2018.06.048.

Aubé, Simon, Lou Nielly-Thibault, and Christian R. Landry. 2023. “Evolutionary
Trade-off and Mutational Bias Could Favor Transcriptional over Translational
Divergence within Paralog Pairs.” PLOS Genetics 19 (5): e1010756.
https://doi.org/10.1371/journal.pgen.1010756.

Bailey, J. A., A. M. Yavor, H. F. Massa, B. J. Trask, and E. E. Eichler. 2001. “Segmental
Duplications: Organization and Impact within the Current Human Genome Project
Assembly.” Genome Research 11 (6): 1005–17. https://doi.org/10.1101/gr.gr-1871r.

Barkman, Todd, and Jianzhi Zhang. 2009. “Evidence for Escape from Adaptive
Conflict?” Nature 462 (7274): E1–E1. https://doi.org/10.1038/nature08663.

Benayoun, Bérénice A., Elizabeth A. Pollina, Duygu Ucar, Salah Mahmoudi, Kalpana
Karra, Edith D. Wong, Keerthana Devarajan, et al. 2014. “H3K4me3 Breadth Is Linked
to Cell Identity and Transcriptional Consistency.” Cell 158 (3): 673–88.
https://doi.org/10.1016/j.cell.2014.06.027.

Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical
Society: Series B (Methodological) 57 (1): 289–300.
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

87



Besenbacher, Søren, Christina Hvilsom, Tomas Marques-Bonet, Thomas Mailund, and
Mikkel Heide Schierup. 2019. “Direct Estimation of Mutations in Great Apes Reconciles
Phylogenetic Dating.” Nature Ecology & Evolution 3 (2): 286–92.
https://doi.org/10.1038/s41559-018-0778-x.

Bitarello, Bárbara D, Débora Y C Brandt, Diogo Meyer, and Aida M Andrés. 2023.
“Inferring Balancing Selection From Genome-Scale Data.” Genome Biology and
Evolution 15 (3): evad032. https://doi.org/10.1093/gbe/evad032.

Bodenhofer, Ulrich, Enrico Bonatesta, Christoph Horejš-Kainrath, and Sepp Hochreiter.
2015. “Msa: An R Package for Multiple Sequence Alignment.” Bioinformatics 31 (24):
3997–99. https://doi.org/10.1093/bioinformatics/btv494.

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. “Trimmomatic: A Flexible
Trimmer for Illumina Sequence Data.” Bioinformatics 30 (15): 2114–20.
https://doi.org/10.1093/bioinformatics/btu170.

Bouckaert, Remco, Timothy G. Vaughan, Joëlle Barido-Sottani, Sebastián Duchêne,
Mathieu Fourment, Alexandra Gavryushkina, Joseph Heled, et al. 2019. “BEAST 2.5: An
Advanced Software Platform for Bayesian Evolutionary Analysis.” PLoS Computational
Biology 15 (4): e1006650. https://doi.org/10.1371/journal.pcbi.1006650.

Byrska-Bishop, Marta, Uday S. Evani, Xuefang Zhao, Anna O. Basile, Haley J. Abel,
Allison A. Regier, André Corvelo, et al. 2022. “High-Coverage Whole-Genome
Sequencing of the Expanded 1000 Genomes Project Cohort Including 602 Trios.” Cell
185 (18): 3426-3440.e19. https://doi.org/10.1016/j.cell.2022.08.004.

Campbell, Michael C., and Sarah A. Tishkoff. 2008. “AFRICAN GENETIC
DIVERSITY: Implications for Human Demographic History, Modern Human Origins,
and Complex Disease Mapping.” Annual Review of Genomics and Human Genetics 9:
403–33. https://doi.org/10.1146/annurev.genom.9.081307.164258.

Cantsilieris, Stuart, Susan M. Sunkin, Matthew E. Johnson, Fabio Anaclerio, John
Huddleston, Carl Baker, Max L. Dougherty, et al. 2020. “An Evolutionary Driver of
Interspersed Segmental Duplications in Primates.” Genome Biology 21 (1): 202.
https://doi.org/10.1186/s13059-020-02074-4.

Carelli, Francesco Nicola, Takashi Hayakawa, Yasuhiro Go, Hiroo Imai, Maria
Warnefors, and Henrik Kaessmann. 2016. “The Life History of Retrocopies Illuminates
the Evolution of New Mammalian Genes.” Genome Research 26 (3): 301–14.
https://doi.org/10.1101/gr.198473.115.

Carlson, Christopher S., Daryl J. Thomas, Michael A. Eberle, Johanna E. Swanson,
Robert J. Livingston, Mark J. Rieder, and Deborah A. Nickerson. 2005. “Genomic
Regions Exhibiting Positive Selection Identified from Dense Genotype Data.” Genome
Research 15 (11): 1553–65. https://doi.org/10.1101/gr.4326505.

Caro-Consuegra, Rocio, Maria A Nieves-Colón, Erin Rawls, Verónica Rubin-de-Celis,
Beatriz Lizárraga, Tatiana Vidaurre, Karla Sandoval, et al. 2022. “Uncovering Signals of

88



Positive Selection in Peruvian Populations from Three Ecological Regions.” Molecular
Biology and Evolution 39 (8): msac158. https://doi.org/10.1093/molbev/msac158.

Chahwan, Richard, Winfried Edelmann, Matthew D Scharff, and Sergio Roa. 2012.
“AIDing Antibody Diversity by Error-Prone Mismatch Repair.” Seminars in Immunology
24 (4): 293–300. https://doi.org/10.1016/j.smim.2012.05.005.

Charrier, Cécile, Kaumudi Joshi, Jaeda Coutinho-Budd, Ji-Eun Kim, Nelle Lambert,
Jacqueline de Marchena, Wei-Lin Jin, et al. 2012. “Inhibition of SRGAP2 Function by Its
Human-Specific Paralogs Induces Neoteny during Spine Maturation.” Cell 149 (4):
923–35. https://doi.org/10.1016/j.cell.2012.03.034.

Chen, Siwei, Laurent C. Francioli, Julia K. Goodrich, Ryan L. Collins, Masahiro Kanai,
Qingbo Wang, Jessica Alföldi, et al. 2022. “A Genome-Wide Mutational Constraint Map
Quantified from Variation in 76,156 Human Genomes.” bioRxiv.

Clark, James W., and Philip C. J. Donoghue. 2018. “Whole-Genome Duplication and
Plant Macroevolution.” Trends in Plant Science 23 (10): 933–45.
https://doi.org/10.1016/j.tplants.2018.07.006.

Conrad, Bernard, and Stylianos E. Antonarakis. 2007. “Gene Duplication: A Drive for
Phenotypic Diversity and Cause of Human Disease.” Annual Review of Genomics and
Human Genetics 8 (1): 17–35. https://doi.org/10.1146/annurev.genom.8.021307.110233.

Cortesi, Fabio, Zuzana Musilová, Sara M. Stieb, Nathan S. Hart, Ulrike E. Siebeck,
Martin Malmstrøm, Ole K. Tørresen, et al. 2015. “Ancestral Duplications and Highly
Dynamic Opsin Gene Evolution in Percomorph Fishes.” Proceedings of the National
Academy of Sciences of the United States of America 112 (5): 1493–98.
https://doi.org/10.1073/pnas.1417803112.

Crow, James Franklin, and Motoo Kimura. 1970. An Introduction to Population Genetics
Theory. Burgess Publishing Company.

Cunningham, Fiona, James E Allen, Jamie Allen, Jorge Alvarez-Jarreta, M Ridwan
Amode, Irina M Armean, Olanrewaju Austine-Orimoloye, et al. 2022. “Ensembl 2022.”
Nucleic Acids Research 50 (D1): D988–95. https://doi.org/10.1093/nar/gkab1049.

Danecek, Petr, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin
O Pollard, Andrew Whitwham, et al. 2021. “Twelve Years of SAMtools and BCFtools.”
GigaScience 10 (2): giab008. https://doi.org/10.1093/gigascience/giab008.

Davis, Jerel C., and Dmitri A. Petrov. 2005. “Do Disparate Mechanisms of Duplication
Add Similar Genes to the Genome?” Trends in Genetics: TIG 21 (10): 548–51.
https://doi.org/10.1016/j.tig.2005.07.008.

Dehal, Paramvir, and Jeffrey L. Boore. 2005. “Two Rounds of Whole Genome
Duplication in the Ancestral Vertebrate.” PLoS Biology 3 (10): e314.
https://doi.org/10.1371/journal.pbio.0030314.

89



Dennis, Megan Y., Lana Harshman, Bradley J. Nelson, Osnat Penn, Stuart Cantsilieris,
John Huddleston, Francesca Antonacci, et al. 2017. “The Evolution and Population
Diversity of Human-Specific Segmental Duplications.” Nature Ecology & Evolution 1
(3): 1–10. https://doi.org/10.1038/s41559-016-0069.

Dennis, Megan Y., Xander Nuttle, Peter H. Sudmant, Francesca Antonacci, Tina A.
Graves, Mikhail Nefedov, Jill A. Rosenfeld, et al. 2012. “Evolution of Human-Specific
Neural SRGAP2 Genes by Incomplete Segmental Duplication.” Cell 149 (4): 912–22.
https://doi.org/10.1016/j.cell.2012.03.033.

Dixon, Philip. 2003. “VEGAN, a Package of R Functions for Community Ecology.”
Journal of Vegetation Science 14 (6): 927–30.
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.

Dougherty, Max L., Jason G. Underwood, Bradley J. Nelson, Elizabeth Tseng, Katherine
M. Munson, Osnat Penn, Tomasz J. Nowakowski, Alex A. Pollen, and Evan E. Eichler.
2018. “Transcriptional Fates of Human-Specific Segmental Duplications in Brain.”
Genome Research 28 (10): 1566–76. https://doi.org/10.1101/gr.237610.118.

Duchêne, Sebastián, Robert Lanfear, and Simon Y. W. Ho. 2014. “The Impact of
Calibration and Clock-Model Choice on Molecular Estimates of Divergence Times.”
Molecular Phylogenetics and Evolution 78 (September): 277–89.
https://doi.org/10.1016/j.ympev.2014.05.032.

Eeden, Gerald van, Caitlin Uren, Marlo Möller, and Brenna M Henn. 2021. “Inferring
Recombination Patterns in African Populations.” Human Molecular Genetics 30 (R1):
R11–16. https://doi.org/10.1093/hmg/ddab020.

Fay, J. C., and C. I. Wu. 2000. “Hitchhiking under Positive Darwinian Selection.”
Genetics 155 (3): 1405–13. https://doi.org/10.1093/genetics/155.3.1405.

Feng, Qinghua, John V. Moran, Haig H. Kazazian, and Jef D. Boeke. 1996. “Human L1
Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition.”
Cell 87 (5): 905–16. https://doi.org/10.1016/S0092-8674(00)81997-2.

Feng, Y, C Li, J Steward, P Barbulescu, N Desivo, A Álvarez-Quilón, R Pezo, et al. 2021.
“FAM72A Antagonizes UNG2 to Promote Mutagenic Repair during Antibody
Maturation.” Nature In Press.

Fiddes, Ian T., Gerrald A. Lodewijk, Meghan Mooring, Colleen M. Bosworth, Adam D.
Ewing, Gary L. Mantalas, Adam M. Novak, et al. 2018. “Human-Specific NOTCH2NL
Genes Affect Notch Signaling and Cortical Neurogenesis.” Cell 173 (6): 1356-1369.e22.
https://doi.org/10.1016/j.cell.2018.03.051.

Fischer, Jan, Eduardo Fernández Ortuño, Fabio Marsoner, Annasara Artioli, Jula Peters,
Takashi Namba, Christina Eugster Oegema, Wieland B. Huttner, Julia Ladewig, and
Michael Heide. 2022. “Human-Specific ARHGAP11B Ensures Human-like Basal
Progenitor Levels in Hominid Cerebral Organoids.” EMBO Reports 23 (11): e54728.
https://doi.org/10.15252/embr.202254728.

90



Fontsere, Claudia, Martin Kuhlwilm, Carlos Morcillo-Suarez, Marina Alvarez-Estape,
Jack D. Lester, Paolo Gratton, Joshua M. Schmidt, et al. 2022. “Population Dynamics and
Genetic Connectivity in Recent Chimpanzee History.” Cell Genomics 2 (6): 100133.
https://doi.org/10.1016/j.xgen.2022.100133.

Force, A, M Lynch, F B Pickett, A Amores, Y L Yan, and J Postlethwait. 1999.
“Preservation of Duplicate Genes by Complementary, Degenerative Mutations.” Genetics
151 (4): 1531–45.

Fossati, Matteo, Rocco Pizzarelli, Ewoud R. Schmidt, Justine V. Kupferman, David
Stroebel, Franck Polleux, and Cécile Charrier. 2016. “SRGAP2 and Its Human-Specific
Paralog Co-Regulate the Development of Excitatory and Inhibitory Synapses.” Neuron
91 (2): 356–69. https://doi.org/10.1016/j.neuron.2016.06.013.

Foster, Peter G. 2004. “Modeling Compositional Heterogeneity.” Systematic Biology 53
(3): 485–95. https://doi.org/10.1080/10635150490445779.

Fraimovitch, Evgeny, and Tzachi Hagai. 2023. “Promoter Evolution of Mammalian Gene
Duplicates.” BMC Biology 21 (1): 80. https://doi.org/10.1186/s12915-023-01590-6.

Garrison, Erik, and Gabor Marth. 2012. “Haplotype-Based Variant Detection from
Short-Read Sequencing.” arXiv. https://doi.org/10.48550/arXiv.1207.3907.

Gautier, Mathieu, Alexander Klassmann, and Renaud Vitalis. 2017. “Rehh 2.0: A
Reimplementation of the R Package Rehh to Detect Positive Selection from Haplotype
Structure.” Molecular Ecology Resources 17 (1): 78–90.
https://doi.org/10.1111/1755-0998.12634.

Gibbs, Richard A., George M. Weinstock, Michael L. Metzker, Donna M. Muzny, Erica
J. Sodergren, Steven Scherer, Graham Scott, et al. 2004. “Genome Sequence of the
Brown Norway Rat Yields Insights into Mammalian Evolution.” Nature 428 (6982):
493–521. https://doi.org/10.1038/nature02426.

Glinos, Dafni A., Garrett Garborcauskas, Paul Hoffman, Nava Ehsan, Lihua Jiang, Alper
Gokden, Xiaoguang Dai, et al. 2022. “Transcriptome Variation in Human Tissues
Revealed by Long-Read Sequencing.” Nature 608 (7922): 353–59.
https://doi.org/10.1038/s41586-022-05035-y.

Goudet, Jérôme. 2005. “Hierfstat, a Package for r to Compute and Test Hierarchical
F-Statistics.” Molecular Ecology Notes 5 (1): 184–86.
https://doi.org/10.1111/j.1471-8286.2004.00828.x.

Guan, Yuanfang, Maitreya J Dunham, and Olga G Troyanskaya. 2007. “Functional
Analysis of Gene Duplications in Saccharomyces Cerevisiae.” Genetics 175 (2): 933–43.
https://doi.org/10.1534/genetics.106.064329.

Guo, Chunguang, Xiaodong Zhang, Stephen P Fink, Petra Platzer, Keith Wilson, James
K. V. Willson, Zhenghe Wang, and Sanford D Markowitz. 2008. “Ugene, a Newly
Identified Protein That Is Commonly over-Expressed in Cancer, and That Binds Uracil

91



DNA-Glycosylase.” Cancer Research 68 (15): 6118–26.
https://doi.org/10.1158/0008-5472.CAN-08-1259.

Hahn, Matthew W. 2009. “Distinguishing Among Evolutionary Models for the
Maintenance of Gene Duplicates.” Journal of Heredity 100 (5): 605–17.
https://doi.org/10.1093/jhered/esp047.

Hardwick, Simon A., Anoushka Joglekar, Paul Flicek, Adam Frankish, and Hagen U.
Tilgner. 2019. “Getting the Entire Message: Progress in Isoform Sequencing.” Frontiers
in Genetics 10. https://www.frontiersin.org/articles/10.3389/fgene.2019.00709.

Hasegawa, Masami, Hirohisa Kishino, and Taka-aki Yano. 1985. “Dating of the
Human-Ape Splitting by a Molecular Clock of Mitochondrial DNA.” Journal of
Molecular Evolution 22 (2): 160–74. https://doi.org/10.1007/BF02101694.

He, Xionglei, and Jianzhi Zhang. 2005. “Rapid Subfunctionalization Accompanied by
Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution.” Genetics
169 (2): 1157–64. https://doi.org/10.1534/genetics.104.037051.

Heide, Michael, Christiane Haffner, Ayako Murayama, Yoko Kurotaki, Haruka
Shinohara, Hideyuki Okano, Erika Sasaki, and Wieland B. Huttner. 2020.
“Human-Specific ARHGAP11B Increases Size and Folding of Primate Neocortex in the
Fetal Marmoset.” Science (New York, N.Y.) 369 (6503): 546–50.
https://doi.org/10.1126/science.abb2401.

Heled, Joseph, and Alexei J. Drummond. 2012. “Calibrated Tree Priors for Relaxed
Phylogenetics and Divergence Time Estimation.” Systematic Biology 61 (1): 138–49.
https://doi.org/10.1093/sysbio/syr087.

Heyworth, Paul G., Deborah Noack, and Andrew R. Cross. 2002. “Identification of a
Novel NCF-1 (P47-Phox) Pseudogene Not Containing the Signature GT Deletion:
Significance for A47 Degrees Chronic Granulomatous Disease Carrier Detection.” Blood
100 (5): 1845–51. https://doi.org/10.1182/blood-2002-03-0861.

Ho, Nguyen Thi Thanh, Arne Kutzner, and Klaus Heese. 2019. “A Novel Divergent Gene
Transcription Paradigm—the Decisive, Brain-Specific, Neural |-Srgap2–Fam72a-| Master
Gene Paradigm.” Molecular Neurobiology 56 (8): 5891–99.
https://doi.org/10.1007/s12035-019-1486-5.

Ho, Nguyen Thi Thanh, Chinmay Satish Rahane, Subrata Pramanik, Pok-Son Kim, Arne
Kutzner, and Klaus Heese. 2021. “FAM72, Glioblastoma Multiforme (GBM) and
Beyond.” Cancers 13 (5): 1025. https://doi.org/10.3390/cancers13051025.

Hoegg, Simone, Henner Brinkmann, John S. Taylor, and Axel Meyer. 2004.
“Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the
Diversification of Teleost Fish.” Journal of Molecular Evolution 59 (2): 190–203.
https://doi.org/10.1007/s00239-004-2613-z.

92



Hublin, Jean-Jacques, Abdelouahed Ben-Ncer, Shara E. Bailey, Sarah E. Freidline, Simon
Neubauer, Matthew M. Skinner, Inga Bergmann, et al. 2017. “New Fossils from Jebel
Irhoud, Morocco and the Pan-African Origin of Homo Sapiens.” Nature 546 (7657):
289–92. https://doi.org/10.1038/nature22336.

Hsieh, PingHsun, Vy Dang, Mitchell R. Vollger, Yafei Mao, Tzu-Hsueh Huang, Philip C.
Dishuck, Carl Baker, et al. 2021. “Evidence for Opposing Selective Forces Operating on
Human-Specific Duplicated TCAF Genes in Neanderthals and Humans.” Nature
Communications 12 (1): 5118. https://doi.org/10.1038/s41467-021-25435-4.

Huerta-Cepas, Jaime, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia K
Forslund, Helen Cook, Daniel R Mende, et al. 2019. “eggNOG 5.0: A Hierarchical,
Functionally and Phylogenetically Annotated Orthology Resource Based on 5090
Organisms and 2502 Viruses.” Nucleic Acids Research 47 (D1): D309–14.
https://doi.org/10.1093/nar/gky1085.

Hughes, Graham M., Emma C. Teeling, and Desmond G. Higgins. 2014. “Loss of
Olfactory Receptor Function in Hominin Evolution.” PLOS ONE 9 (1): e84714.
https://doi.org/10.1371/journal.pone.0084714.

Hultqvist, Malin, Peter Olofsson, Jens Holmberg, B. Thomas Bäckström, Jesper
Tordsson, and Rikard Holmdahl. 2004. “Enhanced Autoimmunity, Arthritis, and
Encephalomyelitis in Mice with a Reduced Oxidative Burst Due to a Mutation in the
Ncf1 Gene.” Proceedings of the National Academy of Sciences of the United States of
America 101 (34): 12646–51. https://doi.org/10.1073/pnas.0403831101.

Human Protein Atlas. 2023. “RNA GTEx Tissue Gene Data.”
https://www.proteinatlas.org/download/rna_tissue_gtex.tsv.zip.

Jiang, Zhaoshi, Haixu Tang, Mario Ventura, Maria Francesca Cardone, Tomas
Marques-Bonet, Xinwei She, Pavel A. Pevzner, and Evan E. Eichler. 2007. “Ancestral
Reconstruction of Segmental Duplications Reveals Punctuated Cores of Human Genome
Evolution.” Nature Genetics 39 (11): 1361–68. https://doi.org/10.1038/ng.2007.9.

Jouffrey, V., A. S. Leonard, and S. E. Ahnert. 2021. “Gene Duplication and Subsequent
Diversification Strongly Affect Phenotypic Evolvability and Robustness.” Royal Society
Open Science 8 (6): 201636. https://doi.org/10.1098/rsos.201636.

Kainer, David, and Robert Lanfear. 2015. “The Effects of Partitioning on Phylogenetic
Inference.” Molecular Biology and Evolution 32 (6): 1611–27.
https://doi.org/10.1093/molbev/msv026.

Kalyaanamoorthy, Subha, Bui Quang Minh, Thomas K. F. Wong, Arndt von Haeseler,
and Lars S. Jermiin. 2017. “ModelFinder: Fast Model Selection for Accurate
Phylogenetic Estimates.” Nature Methods 14 (6): 587–89.
https://doi.org/10.1038/nmeth.4285.

93

https://doi.org/10.1038/nature22336


Katoh, Kazutaka, and Daron M. Standley. 2013. “MAFFT Multiple Sequence Alignment
Software Version 7: Improvements in Performance and Usability.” Molecular Biology
and Evolution 30 (4): 772–80. https://doi.org/10.1093/molbev/mst010.

Kemppainen, Petri, Christopher G. Knight, Devojit K. Sarma, Thaung Hlaing, Anil
Prakash, Yan Naung Maung Maung, Pradya Somboon, Jagadish Mahanta, and Catherine
Walton. 2015. “Linkage Disequilibrium Network Analysis (LDna) Gives a Global View
of Chromosomal Inversions, Local Adaptation and Geographic Structure.” Molecular
Ecology Resources 15 (5): 1031–45. https://doi.org/10.1111/1755-0998.12369.

Kimura, Motoo, and Tomoko Ohta. 1969. “The Average Number of Generations until
Fixation of a Mutant Gene in a Finite Population.” Genetics 61 (3): 763–71.

Kimura, Motoo. 1970. The Neutral Theory of Molecular Evolution. Cambridge
University Press.

Kitada, Shuichi, Reiichiro Nakamichi, and Hirohisa Kishino. 2021. “Understanding
Population Structure in an Evolutionary Context: Population-Specific FST and Pairwise
FST.” G3 Genes|Genomes|Genetics 11 (11): jkab316.
https://doi.org/10.1093/g3journal/jkab316.

Knaus, Brian J., and Niklaus J. Grünwald. 2017. “Vcfr: A Package to Manipulate and
Visualize Variant Call Format Data in R.” Molecular Ecology Resources 17 (1): 44–53.
https://doi.org/10.1111/1755-0998.12549.

Kondrashov, Fyodor A., and Alexey S. Kondrashov. 2006. “Role of Selection in Fixation
of Gene Duplications.” Journal of Theoretical Biology 239 (2): 141–51.
https://doi.org/10.1016/j.jtbi.2005.08.033.

Kutzner, Arne, Subrata Pramanik, Pok-Son Kim, and Klaus Heese. 2015. “All-or-(N)One
– an Epistemological Characterization of the Human Tumorigenic Neuronal Paralogous
FAM72 Gene Loci.” Genomics 106 (5): 278–85.
https://doi.org/10.1016/j.ygeno.2015.07.003.

Langergraber, Kevin E., Kay Prüfer, Carolyn Rowney, Christophe Boesch, Catherine
Crockford, Katie Fawcett, Eiji Inoue, et al. 2012. “Generation Times in Wild
Chimpanzees and Gorillas Suggest Earlier Divergence Times in Great Ape and Human
Evolution.” Proceedings of the National Academy of Sciences 109 (39): 15716–21.
https://doi.org/10.1073/pnas.1211740109.

Leffler, Ellen M., Ziyue Gao, Susanne Pfeifer, Laure Ségurel, Adam Auton, Oliver Venn,
Rory Bowden, et al. 2013. “Multiple Instances of Ancient Balancing Selection Shared
between Humans and Chimpanzees.” Science (New York, N.Y.) 339 (6127): 1578–82.
https://doi.org/10.1126/science.1234070.

Lenormand, Thomas, Thomas Guillemaud, Denis Bourguet, and Michel Raymond. 1998.
“Appearance and Sweep of a Gene Duplication: Adaptive Response and Potential for
New Functions in the Mosquito Culex Pipiens.” Evolution 52 (6): 1705–12.
https://doi.org/10.2307/2411343.

94



Li, Heng, and Richard Durbin. 2009. “Fast and Accurate Short Read Alignment with
Burrows-Wheeler Transform.” Bioinformatics (Oxford, England) 25 (14): 1754–60.
https://doi.org/10.1093/bioinformatics/btp324.

Li, Yupeng, Richard E. Higgs, Robert W. Hoffman, Ernst R. Dow, Xiong Liu, Michelle
Petri, Daniel J. Wallace, et al. 2019. “A Bayesian Gene Network Reveals Insight into the
JAK-STAT Pathway in Systemic Lupus Erythematosus.” Edited by Gang Han. PLOS
ONE 14 (12): e0225651. https://doi.org/10.1371/journal.pone.0225651.

Liu, George E., Mario Ventura, Angelo Cellamare, Lin Chen, Ze Cheng, Bin Zhu,
Congjun Li, Jiuzhou Song, and Evan E. Eichler. 2009. “Analysis of Recent Segmental
Duplications in the Bovine Genome.” BMC Genomics 10 (1): 571.
https://doi.org/10.1186/1471-2164-10-571.

Loker, Ryan, and Richard S. Mann. 2022. “Divergent Expression of Paralogous Genes by
Modification of Shared Enhancer Activity through a Promoter-Proximal Silencer.”
Current Biology 32 (16): 3545-3555.e4. https://doi.org/10.1016/j.cub.2022.06.069.

Lynch, Michael, and John S. Conery. 2000. “The Evolutionary Fate and Consequences of
Duplicate Genes.” Science 290 (5494): 1151–55.
https://doi.org/10.1126/science.290.5494.1151.

Maere, Steven, Stefanie De Bodt, Jeroen Raes, Tineke Casneuf, Marc Van Montagu,
Martin Kuiper, and Yves Van de Peer. 2005. “Modeling Gene and Genome Duplications
in Eukaryotes.” Proceedings of the National Academy of Sciences 102 (15): 5454–59.
https://doi.org/10.1073/pnas.0501102102.

Mahjani, Behrang, Rebecca Birnbaum, Ariela Buxbaum Grice, Carolina Cappi, Seulgi
Jung, Marina Natividad Avila, Abraham Reichenberg, et al. 2022. “Phenotypic Impact of
Rare Potentially Damaging Copy Number Variation in Obsessive-Compulsive Disorder
and Chronic Tic Disorders.” Genes 13 (10): 1796.
https://doi.org/10.3390/genes13101796.

Makino, Takashi, and Aoife McLysaght. 2010. “Ohnologs in the Human Genome Are
Dosage Balanced and Frequently Associated with Disease.” Proceedings of the National
Academy of Sciences 107 (20): 9270–74. https://doi.org/10.1073/pnas.0914697107.

Mallick, Swapan, Heng Li, Mark Lipson, Iain Mathieson, Melissa Gymrek, Fernando
Racimo, Mengyao Zhao, et al. 2016. “The Simons Genome Diversity Project: 300
Genomes from 142 Diverse Populations.” Nature 538 (7624): 201–6.
https://doi.org/10.1038/nature18964.

Manuel, Marc de, Martin Kuhlwilm, Peter Frandsen, Vitor C. Sousa, Tariq Desai, Javier
Prado-Martinez, Jessica Hernandez-Rodriguez, et al. 2016. “Chimpanzee Genomic
Diversity Reveals Ancient Admixture with Bonobos.” Science (New York, N.Y.) 354
(6311): 477–81. https://doi.org/10.1126/science.aag2602.

Medina-Muñoz, Santiago G., Diego Ortega-Del Vecchyo, Luis Pablo Cruz-Hervert,
Leticia Ferreyra-Reyes, Lourdes García-García, Andrés Moreno-Estrada, and Aaron P.

95



Ragsdale. 2023. “Demographic Modeling of Admixed Latin American Populations from
Whole Genomes.” American Journal of Human Genetics 110 (10): 1804–16.
https://doi.org/10.1016/j.ajhg.2023.08.015.

Minh, Bui Quang, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D
Woodhams, Arndt von Haeseler, and Robert Lanfear. 2020. “IQ-TREE 2: New Models
and Efficient Methods for Phylogenetic Inference in the Genomic Era.” Molecular
Biology and Evolution 37 (5): 1530–34. https://doi.org/10.1093/molbev/msaa015.

Moore, Richard C, and Michael D Purugganan. 2005. “The Evolutionary Dynamics of
Plant Duplicate Genes.” Current Opinion in Plant Biology, Genome studies and
molecular genetics / Plant biotechnology, 8 (2): 122–28.
https://doi.org/10.1016/j.pbi.2004.12.001.

Naidoo, Thijessen, Per Sjödin, Carina Schlebusch, and Mattias Jakobsson. 2018.
“Patterns of Variation in Cis-Regulatory Regions: Examining Evidence of Purifying
Selection.” BMC Genomics 19 (1): 95. https://doi.org/10.1186/s12864-017-4422-y.

Näsvall, Joakim, Lei Sun, John R. Roth, and Dan I. Andersson. 2012. “Real-Time
Evolution of New Genes by Innovation, Amplification, and Divergence.” Science 338
(6105): 384–87. https://doi.org/10.1126/science.1226521.

Neuberger, Michael S., Reuben S. Harris, Javier Di Noia, and Svend K. Petersen-Mahrt.
2003. “Immunity through DNA Deamination.” Trends in Biochemical Sciences 28 (6):
305–12. https://doi.org/10.1016/S0968-0004(03)00111-7.

Nicholas, Thomas J., Ze Cheng, Mario Ventura, Katrina Mealey, Evan E. Eichler, and
Joshua M. Akey. 2009. “The Genomic Architecture of Segmental Duplications and
Associated Copy Number Variants in Dogs.” Genome Research 19 (3): 491–99.
https://doi.org/10.1101/gr.084715.108.

Obenchain, Valerie, Michael Lawrence, Vincent Carey, Stephanie Gogarten, Paul
Shannon, and Martin Morgan. 2014. “VariantAnnotation : A Bioconductor Package for
Exploration and Annotation of Genetic Variants.” Bioinformatics 30 (14): 2076–78.
https://doi.org/10.1093/bioinformatics/btu168.

O’Connell, Jared, Deepti Gurdasani, Olivier Delaneau, Nicola Pirastu, Sheila Ulivi,
Massimiliano Cocca, Michela Traglia, et al. 2014. “A General Approach for Haplotype
Phasing across the Full Spectrum of Relatedness.” PLOS Genetics 10 (4): e1004234.
https://doi.org/10.1371/journal.pgen.1004234.

Ohno, Susumu. 1970. Evolution by Gene Duplication. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-86659-3.

Okamura, Kohji, and Kenta Nakai. 2008. “Retrotransposition as a Source of New
Promoters.” Molecular Biology and Evolution 25 (6): 1231–38.
https://doi.org/10.1093/molbev/msn071.

96



Otsuka, Hiroshi, Akira Fukao, Yoshinori Funakami, Kent E. Duncan, and Toshinobu
Fujiwara. 2019. “Emerging Evidence of Translational Control by AU-Rich
Element-Binding Proteins.” Frontiers in Genetics 10.
https://www.frontiersin.org/articles/10.3389/fgene.2019.00332.

Otto, Sarah P., and Paul Yong. 2002. “The Evolution of Gene Duplicates.” Advances in
Genetics 46: 451–83. https://doi.org/10.1016/s0065-2660(02)46017-8.

Paradis, Emmanuel. 2010. “Pegas: An R Package for Population Genetics with an
Integrated–Modular Approach.” Bioinformatics 26 (3): 419–20.
https://doi.org/10.1093/bioinformatics/btp696.

Paradis, Emmanuel. 2013. “Molecular Dating of Phylogenies by Likelihood Methods: A
Comparison of Models and a New Information Criterion.” Molecular Phylogenetics and
Evolution 67 (2): 436–44. https://doi.org/10.1016/j.ympev.2013.02.008.

Paten, Benedict, Javier Herrero, Stephen Fitzgerald, Kathryn Beal, Paul Flicek, Ian
Holmes, and Ewan Birney. 2008. “Genome-Wide Nucleotide-Level Mammalian Ancestor
Reconstruction.” Genome Research 18 (11): 1829–43.
https://doi.org/10.1101/gr.076521.108.

Paterson, A. H., J. E. Bowers, and B. A. Chapman. 2004. “Ancient Polyploidization
Predating Divergence of the Cereals, and Its Consequences for Comparative Genomics.”
Proceedings of the National Academy of Sciences 101 (26): 9903–8.
https://doi.org/10.1073/pnas.0307901101.

Perry, George H., Nathaniel J. Dominy, Katrina G. Claw, Arthur S. Lee, Heike Fiegler,
Richard Redon, John Werner, et al. 2007. “Diet and the Evolution of Human Amylase
Gene Copy Number Variation.” Nature Genetics 39 (10): 1256–60.
https://doi.org/10.1038/ng2123.

Perry, George H., Logan Kistler, Mary A. Kelaita, and Aaron J. Sams. 2015. “Insights
into Hominin Phenotypic and Dietary Evolution from Ancient DNA Sequence Data.”
Journal of Human Evolution 79 (February): 55–63.
https://doi.org/10.1016/j.jhevol.2014.10.018.

Pfeifer, Bastian, Ulrich Wittelsbürger, Sebastian E. Ramos-Onsins, and Martin J. Lercher.
2014. “PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in
R.” Molecular Biology and Evolution 31 (7): 1929–36.
https://doi.org/10.1093/molbev/msu136.

Płuciennik, Alicja, Michał Stolarczyk, Maria Bzówka, Agata Raczyńska, Tomasz
Magdziarz, and Artur Góra. 2018. “BALCONY: An R Package for MSA and Functional
Compartments of Protein Variability Analysis.” BMC Bioinformatics 19 (1): 300.
https://doi.org/10.1186/s12859-018-2294-z.

Råberg, Lars. 2023. “Human and Pathogen Genotype-by-Genotype Interactions in the
Light of Coevolution Theory.” PLOS Genetics 19 (4): e1010685.
https://doi.org/10.1371/journal.pgen.1010685.

97



Rambaut, Andrew, Alexei J Drummond, Dong Xie, Guy Baele, and Marc A Suchard.
2018. “Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.”
Systematic Biology 67 (5): 901–4. https://doi.org/10.1093/sysbio/syy032.

Rapoport, IA. 1940. “Mnogokratnye Linejnye Povtoreniya Uchastkov Khromosom i Ikh
Evolyucionnoe Znachenie.[Multiple Linear Repeats of Chromosome Segments and Their
Evolutionary Significance].” Zh. Obshchej Biologii 1: 235–70.

Rastogi, Shruti, and David A Liberles. 2005. “Subfunctionalization of Duplicated Genes
as a Transition State to Neofunctionalization.” BMC Evolutionary Biology 5 (April): 28.
https://doi.org/10.1186/1471-2148-5-28.

Regier, Allison A., Yossi Farjoun, David E. Larson, Olga Krasheninina, Hyun Min Kang,
Daniel P. Howrigan, Bo-Juen Chen, et al. 2018. “Functional Equivalence of Genome
Sequencing Analysis Pipelines Enables Harmonized Variant Calling across Human
Genetics Projects.” Nature Communications 9 (1): 4038.
https://doi.org/10.1038/s41467-018-06159-4.

Renaud, Gabriel. 2018. “Glactools: A Command-Line Toolset for the Management of
Genotype Likelihoods and Allele Counts.” Bioinformatics 34 (8): 1398–1400.
https://doi.org/10.1093/bioinformatics/btx749.

Renganathan, Senthil, Subrata Pramanik, Rajasekaran Ekambaram, Arne Kutzner,
Pok-Son Kim, and Klaus Heese. 2021. “Identification of a Chemotherapeutic Lead
Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with
Genome Stability, Centromere Formation, and Genome Editing.” Cancers 13 (22): 5870.
https://doi.org/10.3390/cancers13225870.

Rogier, Mélanie, Jacques Moritz, Isabelle Robert, Chloé Lescale, Vincent Heyer, Arthur
Abello, Ophélie Martin, et al. 2021. “Fam72a Enforces Error-Prone DNA Repair during
Antibody Diversification.” Nature 600 (7888): 329–33.
https://doi.org/10.1038/s41586-021-04093-y.

Rosenberg, Noah A., Jonathan K. Pritchard, James L. Weber, Howard M. Cann, Kenneth
K. Kidd, Lev A. Zhivotovsky, and Marcus W. Feldman. 2002. “Genetic Structure of
Human Populations.” Science (New York, N.Y.) 298 (5602): 2381–85.
https://doi.org/10.1126/science.1078311.

Russel, Patricio Maturana, Brendon J Brewer, Steffen Klaere, and Remco R Bouckaert.
2019. “Model Selection and Parameter Inference in Phylogenetics Using Nested
Sampling.” Systematic Biology 68 (2): 219–33. https://doi.org/10.1093/sysbio/syy050.

Savva, Renos. 2020. “The Essential Co-Option of Uracil-DNA Glycosylases by
Herpesviruses Invites Novel Antiviral Design.” Microorganisms 8 (3): 461.
https://doi.org/10.3390/microorganisms8030461.

Scerri, Eleanor M. L., Mark G. Thomas, Andrea Manica, Philipp Gunz, Jay T. Stock,
Chris Stringer, Matt Grove, et al. 2018. “Did Our Species Evolve in Subdivided

98



Populations across Africa, and Why Does It Matter?” Trends in Ecology & Evolution 33
(8): 582–94. https://doi.org/10.1016/j.tree.2018.05.005.

Schmidt, Ewoud R E, Justine V Kupferman, Michelle Stackmann, and Franck Polleux.
2019. “The Human-Specific Paralogs SRGAP2B and SRGAP2C Differentially Modulate
SRGAP2A-Dependent Synaptic Development.” Scientific Reports 9 (1): 18692.
https://doi.org/10.1038/s41598-019-54887-4.

Shao, Yong, Long Zhou, Fang Li, Lan Zhao, Bao-Lin Zhang, Feng Shao, Jia-Wei Chen,
et al. 2023. “Phylogenomic Analyses Provide Insights into Primate Evolution.” Science
380 (6648): 913–24. https://doi.org/10.1126/science.abn6919.

She, Xinwei, Ze Cheng, Sebastian Zöllner, Deanna M. Church, and Evan E. Eichler.
2008. “Mouse Segmental Duplication and Copy Number Variation.” Nature Genetics 40
(7): 909–14. https://doi.org/10.1038/ng.172.

Shen, Wei, Shuai Le, Yan Li, and Fuquan Hu. 2016. “SeqKit: A Cross-Platform and
Ultrafast Toolkit for FASTA/Q File Manipulation.” PLOS ONE 11 (10): e0163962.
https://doi.org/10.1371/journal.pone.0163962.

Shew, Colin J, Paulina Carmona-Mora, Daniela C Soto, Mira Mastoras, Elizabeth
Roberts, Joseph Rosas, Dhriti Jagannathan, Gulhan Kaya, Henriette O’Geen, and Megan
Y Dennis. 2021. “Diverse Molecular Mechanisms Contribute to Differential Expression
of Human Duplicated Genes.” Molecular Biology and Evolution 38 (8): 3060–77.
https://doi.org/10.1093/molbev/msab131.

Siewert, Katherine M., and Benjamin F. Voight. 2017. “Detecting Long-Term Balancing
Selection Using Allele Frequency Correlation.” Molecular Biology and Evolution 34
(11): 2996–3005. https://doi.org/10.1093/molbev/msx209.

Sikosek, Tobias, Hue Sun Chan, and Erich Bornberg-Bauer. 2012. “Escape from
Adaptive Conflict Follows from Weak Functional Trade-Offs and Mutational
Robustness.” Proceedings of the National Academy of Sciences 109 (37): 14888–93.
https://doi.org/10.1073/pnas.1115620109.

Spofford, Janice B. 1969. “Heterosis and the Evolution of Duplications.” The American
Naturalist 103 (932): 407–32.

Sporny, Michael, Julia Guez-Haddad, Annett Kreusch, Sivan Shakartzi, Avi Neznansky,
Alice Cross, Michail N. Isupov, Britta Qualmann, Michael M. Kessels, and Yarden
Opatowsky. 2017. “Structural History of Human SRGAP2 Proteins.” Molecular Biology
and Evolution 34 (6): 1463–78. https://doi.org/10.1093/molbev/msx094.

Stewart, Jessica A., and Ashok S. Bhagwat. 2022. “A Redox-Sensitive Iron-Sulfur
Cluster in Murine FAM72A Controls Its Ability to Degrade the Nuclear Form of
Uracil-DNA Glycosylase.” DNA Repair 118 (October): 103381.
https://doi.org/10.1016/j.dnarep.2022.103381.

99



Sudmant, Peter H., John Huddleston, Claudia R. Catacchio, Maika Malig, LaDeana W.
Hillier, Carl Baker, Kiana Mohajeri, et al. 2013. “Evolution and Diversity of Copy
Number Variation in the Great Ape Lineage.” Genome Research 23 (9): 1373–82.
https://doi.org/10.1101/gr.158543.113.

Tajima, F. 1989. “Statistical Method for Testing the Neutral Mutation Hypothesis by
DNA Polymorphism.” Genetics 123 (3): 585–95.

Tang, Haibao, Xiyin Wang, John E. Bowers, Ray Ming, Maqsudul Alam, and Andrew H.
Paterson. 2008. “Unraveling Ancient Hexaploidy through Multiply-Aligned Angiosperm
Gene Maps.” Genome Research 18 (12): 1944–54. https://doi.org/10.1101/gr.080978.108.

Teshima, Kosuke M., Graham Coop, and Molly Przeworski. 2006. “How Reliable Are
Empirical Genomic Scans for Selective Sweeps?” Genome Research 16 (6): 702–12.
https://doi.org/10.1101/gr.5105206.

Thornton, Kevin R. 2007. “The Neutral Coalescent Process for Recent Gene Duplications
and Copy-Number Variants.” Genetics 177 (2): 987–1000.
https://doi.org/10.1534/genetics.107.074948.

Uhlén, Mathias, Linn Fagerberg, Björn M. Hallström, Cecilia Lindskog, Per Oksvold,
Adil Mardinoglu, Åsa Sivertsson, et al. 2015. “Tissue-Based Map of the Human
Proteome.” Science 347 (6220): 1260419. https://doi.org/10.1126/science.1260419.

Van de Peer, Yves, Steven Maere, and Axel Meyer. 2009. “The Evolutionary Significance
of Ancient Genome Duplications.” Nature Reviews Genetics 10 (10): 725–32.
https://doi.org/10.1038/nrg2600.

Van de Peer, Yves, Eshchar Mizrachi, and Kathleen Marchal. 2017. “The Evolutionary
Significance of Polyploidy.” Nature Reviews Genetics 18 (7): 411–24.
https://doi.org/10.1038/nrg.2017.26.

Vance, Zoe, and Aoife McLysaght. 2023. “Ohnologs and SSD Paralogs Differ in
Genomic and Expression Features Related to Dosage Constraints.” Genome Biology and
Evolution 15 (10): evad174. https://doi.org/10.1093/gbe/evad174.

Vollger, Mitchell R., Philip C. Dishuck, William T. Harvey, William S. DeWitt, Xavi
Guitart, Michael E. Goldberg, Allison N. Rozanski, et al. 2023. “Increased Mutation and
Gene Conversion within Human Segmental Duplications.” Nature 617 (7960): 325–34.
https://doi.org/10.1038/s41586-023-05895-y.

Vollger, Mitchell R., Xavi Guitart, Philip C. Dishuck, Ludovica Mercuri, William T.
Harvey, Ariel Gershman, Mark Diekhans, et al. 2022. “Segmental Duplications and Their
Variation in a Complete Human Genome.” Science 376 (6588): eabj6965.
https://doi.org/10.1126/science.abj6965.

Vries, Dorien de, and Robin M. D. Beck. 2023. “Twenty-Five Well-Justified Fossil
Calibrations for Primate Divergences.” Palaeontologia Electronica 26 (1): 1–52.
https://doi.org/10.26879/1249.

100



Walsh, J. B. 1995. “How Often Do Duplicated Genes Evolve New Functions?” Genetics
139 (1): 421–28.

Wegmann, Daniel, Isabelle Dupanloup, and Laurent Excoffier. 2008. “Width of Gene
Expression Profile Drives Alternative Splicing.” PLOS ONE 3 (10): e3587.
https://doi.org/10.1371/journal.pone.0003587.

Weir, B. S., and C. Clark Cockerham. 1984. “Estimating F-Statistics for the Analysis of
Population Structure.” Evolution 38 (6): 1358–70. https://doi.org/10.2307/2408641.

Weise, Jessica A., Jillian Ng, Robert F. Oldt, Joy Viray, Kelly L. McCulloh, David Glenn
Smith, and Sreetharan Kanthaswamy. 2022. “Genetic Differentiation between and within
Northern Native American Language Groups: An Argument for the Expansion of the
Native American CODIS Database.” Forensic Sciences Research 7 (4): 662–72.
https://doi.org/10.1080/20961790.2021.1963088.

Xu, Shuangbin, Lin Li, Xiao Luo, Meijun Chen, Wenli Tang, Li Zhan, Zehan Dai,
Tommy T. Lam, Yi Guan, and Guangchuang Yu. 2022. “Ggtree: A Serialized Data Object
for Visualization of a Phylogenetic Tree and Annotation Data.” iMeta 1 (4): e56.
https://doi.org/10.1002/imt2.56.

Yang, Ziheng. 1994. “Maximum Likelihood Phylogenetic Estimation from DNA
Sequences with Variable Rates over Sites: Approximate Methods.” Journal of Molecular
Evolution 39 (3): 306–14. https://doi.org/10.1007/BF00160154.

Yao, Yao, Lorenzo Carretero-Paulet, and Yves Van de Peer. 2019. “Using Digital
Organisms to Study the Evolutionary Consequences of Whole Genome Duplication and
Polyploidy.” PloS One 14 (7): e0220257. https://doi.org/10.1371/journal.pone.0220257.

Yokoyama, Shozo. 2008. “Evolution of Dim-Light and Color Vision Pigments.” Annual
Review of Genomics and Human Genetics 9 (1): 259–82.
https://doi.org/10.1146/annurev.genom.9.081307.164228.

Zeng, Kai, Yun-Xin Fu, Suhua Shi, and Chung-I Wu. 2006. “Statistical Tests for
Detecting Positive Selection by Utilizing High-Frequency Variants.” Genetics 174 (3):
1431–39. https://doi.org/10.1534/genetics.106.061432.

Zerbino, Daniel R., Steven P. Wilder, Nathan Johnson, Thomas Juettemann, and Paul R.
Flicek. 2015. “The Ensembl Regulatory Build.” Genome Biology 16 (1): 56.
https://doi.org/10.1186/s13059-015-0621-5.

Zhang, Liang, Jacqueline Wax, Renliang Huang, Frank Petersen, and Xinhua Yu. 2022.
“Meta-Analysis and Systematic Review of the Association between a Hypoactive NCF1
Variant and Various Autoimmune Diseases.” Antioxidants (Basel, Switzerland) 11 (8):
1589. https://doi.org/10.3390/antiox11081589.

Zwonitzer, Kendra D., Erik N. K. Iverson, James J. Sterling, Ryan J. Weaver, Bradley A.
Maclaine, and Justin C. Havird. 2022. “Disentangling Positive vs. Relaxed Selection in
Animal Mitochondrial Genomes.” bioRxiv. https://doi.org/10.1101/2022.10.05.510972.

101



Supplementary data

Figure S1. Multiple sequence alignment of FAM72A-D exons
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Figure S2. Genetic Lineage and Ancestry Distribution of FAM72. A. Phylogenetic
tree illustrating the evolutionary divergence among the FAM72 genes of great apes. B.

Ancestry composition of the predominant human FAM72 haplotypes, positioned in
relation to their branches on the phylogenetic tree.

Figure S3. Distribution of coding FAM72A-D mutations across five
superpopulations from the 1000 Genomes dataset. Variants are color-coded by their
consequence, pie charts are proportional to the frequency of a variant in a given
superpopulation
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Figure S4. Number of distinct SNPs with extreme LD values in populations. The
barplots representing superpopulations contain population counts of distinct genomic

positions in extreme LD.
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Table S1. Links to primary datasets used for the analysis.
Dataset Link

High coverage WGS 1000
Genomes phased multisample
VCF for chromosome 1

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2
504_high_coverage/working/20201028_3202_phased/CCDG_1415
1_B01_GRM_WGS_2020-08-05_chr1.filtered.shapeit2-duohmm-p
hased.vcf.gz

1000 Genomes .ped file
containing pedigrees and
ancestry information

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2
504_high_coverage/20130606_g1k_3202_samples_ped_population
.txt

Ensembl variation VCF for
chromosome 1

ftp://ftp.ensembl.org/pub/current_variation/vcf/homo_sapiens/hom
o_sapiens-chr1.vcf.gz

Ensembl 110 regulatory
features for Homo sapiens

ftp://ftp.ensembl.org/pub/release-110/regulation/homo_sapiens/ho
mo_sapiens.GRCh38.Regulatory_Build.regulatory_features.20221
007.gff.gz

Ensembl 110 transcription
factor binding motif features
for Homo sapiens

ftp://ftp.ensembl.org/pub/release-110/regulation/homo_sapiens/Mot
ifFeatures/homo_sapiens.GRCh38.motif_features.gff.gz

gnomAD v3.1 VCF for
chromosome 1

https://storage.googleapis.com/gcp-public-data--gnomad/release/3.
1.2/vcf/genomes/gnomad.genomes.v3.1.2.sites.chr1.vcf.bgz

Chimpanzee FASTQ files https://www.ebi.ac.uk/ena/browser/view/PRJEB15086
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ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/CCDG_14151_B01_GRM_WGS_2020-08-05_chr1.filtered.shapeit2-duohmm-phased.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/CCDG_14151_B01_GRM_WGS_2020-08-05_chr1.filtered.shapeit2-duohmm-phased.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/CCDG_14151_B01_GRM_WGS_2020-08-05_chr1.filtered.shapeit2-duohmm-phased.vcf.gz
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ftp://ftp.ensembl.org/pub/current_variation/vcf/homo_sapiens/homo_sapiens-chr1.vcf.gz
ftp://ftp.ensembl.org/pub/current_variation/vcf/homo_sapiens/homo_sapiens-chr1.vcf.gz
ftp://ftp.ensembl.org/pub/release-110/regulation/homo_sapiens/homo_sapiens.GRCh38.Regulatory_Build.regulatory_features.20221007.gff.gz
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Table S2. Description of 1000 genomes populations and the number of single nucleotide polymorphic sites identified in
each population.
Superpopulation Population code Population description Sample size Number of polymorphic SNPs

Chromosome 1 FAM72A FAM72B FAM72C FAM72D
AFR (African) ACB African Caribbean in Barbados 96 1618772 86 112 45 34

ASW African Ancestry in Southwest
US

61 1456092 76 93 38 26

ESN Esan in Nigeria 99 1488298 76 79 38 29
GWD Gambian in Western Division,

The Gambia
113 1574502 83 88 42 35

LWK Luhya in Webuye, Kenya 99 1522712 85 91 36 28
MSL Mende in Sierra Leone 85 1477686 75 90 42 32
YRI Yoruba in Ibadan, Nigeria 108 1541853 69 91 41 35

AMR (American) CLM Colombian in Medellin,
Colombia

94 1183641 60 62 30 27

MXL Mexican Ancestry in Los
Angeles, California

64 992144 35 60 21 16

PEL Peruvian in Lima, Peru 85 953031 36 52 26 16
PUR Puerto Rican in Puerto Rico 104 1343916 57 86 45 35

EAS (East Asian) CDX Chinese Dai in
Xishuangbanna, China

93 798230 41 42 29 22

CHB Han Chinese in Beijing, China 103 824783 43 31 19 22
CHS Han Chinese South 105 897218 47 42 27 32
JPT Japanese in Tokyo, Japan 104 772818 30 30 19 30

KHV Kinh in Ho Chi Minh City,
Vietnam

99 868685 41 40 27 27

EUR (European) CEU Utah residents (CEPH) with
Northern and Western

European ancestry

99 935214 52 52 18 26

FIN Finnish in Finland 99 827111 45 43 14 18
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GBR British in England and
Scotland

91 856167 37 44 17 20

IBS Iberian populations in Spain 107 1050948 44 63 21 26
TSI Toscani in Italia 107 924690 28 55 22 20

SAS (South
Asian)

BEB Bengali in Bangladesh 86 1004183 47 52 27 30
GIH Gujarati Indian in Houston,

TX
103 950558 46 53 26 22

ITU Indian Telugu in the UK 102 968233 49 49 21 25
PJL Punjabi in Lahore, Pakistan 96 1021591 44 51 26 26
STU Sri Lankan Tamil in the UK 102 980794 50 54 23 26
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Table S3. List of models tested by ModelFinder. The list is sorted by BIC scores.
Plus signs denote the 95% confidence sets, minus signs denote significant exclusion.

Model LogL AIC w-AIC AICc w-AICc BIC w-BIC
HKY+F+I -30546.801 61197.601

-
2.5×10-3 61197.886

-
2.52×10-3 61607.012

+
1.65×10-1

HKY+F+G4 -30546.812 61197.625
-

2.47×10-3 61197.910
-

2.49×10-3 61607.036
+

1.63×10-1

TPM3+F+G4 -30541.891 61189.781
+

1.25×10-1 61190.077
+

1.25×10-1 61607.066
+

1.61×10-1

TPM3u+F+G4 -30541.891 61189.782
+

1.25×10-1 61190.078
+

1.25×10-1 61607.066
+

1.61×10-1

TPM3+F+I -30541.895 61189.789
+

1.24×10-1 61190.085
+

1.25×10-1 61607.073
+

1.6×10-1

TPM3u+F+I -30541.896 61189.792
+

1.24×10-1 61190.087
+

1.24×10-1 61607.076
+

1.6×10-1

K3Pu+F+I -30545.065 61196.130
-

5.21×10-3 61196.425
-

5.23×10-3 61613.414
-

6.72×10-3

K3Pu+F+G4 -30545.072 61196.145
-

5.17×10-3 61196.441
-

5.19×10-3 61613.429
-

6.67×10-3

TN+F+I -30546.371 61198.741
-

1.41×10-3 61199.037
-

1.42×10-3 61616.025
-

1.82×10-3

TIM3+F+G4 -30541.442 61190.884
+

7.18×10-2 61191.191
+

7.17×10-2 61616.041
-

1.81×10-3

TN+F+G4 -30546.382 61198.765
-

1.4×10-3 61199.061
-

1.4×10-3 61616.049
-

1.8×10-3

TIM3+F+I -30541.446 61190.892
+

7.15×10-3 61191.199
+

7.14×10-2 61616.050
-

1.8×10-3

HKY+F+I+G4 -30546.508 61199.016
-

1.23×10-3 61199.311
-

1.24×10-3 61616.300
-

1.59×10-3

TPM3+F+I+G4 -30541.598 61191.197
+

6.14×10-2 61191.504
+

6.13×10-2 61616.354
-

1.54×10-3

TPM3u+F+I+G4 -30541.599 61191.199
+

6.13×10-2 61191.506
+

6.12×10-2 61616.356
-

1.54×10-3

TPM2+F+I -30546.739 61199.478
-

9.77×10-4 61199.774
-

9.81×10-4 61616.762
-

1.26×10-3

TPM2u+F+I -30546.739 61199.478
-

9.77×10-4 61199.774
-

9.81×10-4 61616.762
-

1.26×10-3

TPM2+F+G4 -30546.749 61199.498
-

9.67×10-4 61199.794
-

9.71×10-4 61616.783
-

1.25×10-3

TPM2u+F+G4 -30546.749 61199.498
-

9.67×10-4 61199.794
-

9.71×10-4 61616.783
-

1.25×10-3

TIM+F+I -30544.639 61197.278
-

2.93×10-3 61197.585
-

2.93×10-3 61622.436
-

7.39×10-5

TIM+F+G4 -30544.647 61197.294
-

2.91×10-3 61197.601
-

2.91×10-3 61622.451
-

7.33×10-5

K3Pu+F+I+G4 -30544.768 61197.535
-

2.58×10-3 61197.842
-

2.58×10-3 61622.693
-

6.50×10-5

TVM+F+G4 -30540.966 61191.932
-

4.25×10-2 61192.251
-

4.22×10-2 61624.963
-

2.09×10-5
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TVM+F+I -30540.98 61191.960
-

4.19×10-2 61192.278
-

4.16×10-2 61624.990
-

2.06×10-5

TN+F+I+G4 -30546.079 61200.159
-

6.95×10-4 61200.465
-

6.94×10-4 61625.316
-

1.75×10-5

TIM3+F+I+G4 -30541.151 61192.302
-

3.53×10-2 61192.620
-

3.51×10-2 61625.332
-

1.74×10-5

TIM2+F+I -30546.295 61200.589
-

5.6×10-4 61200.896
-

5.6×10-4 61625.747
-

1.41×10-5

TIM2+F+G4 -30546.305 61200.610
-

5.55×10-4 61200.917
-

5.54×10-4 61625.768
-

1.40×10-5

TPM2u+F+I+G4 -30546.446 61200.891
-

4.82×10-4 61201.198
-

4.81×10-4 61626.049
-

1.21×10-5

TPM2+F+I+G4 -30546.446 61200.891
-

4.82×10-4 61201.198
-

4.81×10-4 61626.049
-

1.21×10-5

TIM+F+I+G4 -30544.342 61198.683
-

1.45×10-3 61199.002
-

1.44×10-3 61631.714
-

7.14×10-7

GTR+F+G4 -30540.532 61193.064
-

2.41×10-2 61193.394
-

2.38×10-2 61633.968
-

2.31×10-7

GTR+F+I -30540.548 61193.096
-

2.37×10-2 61193.426
-

2.34×10-2 61634.000
-

2.28×10-7

TVM+F+I+G4 -30540.668 61193.336
-

2.11×10-2 61193.666
-

2.08×10-2 61634.240
-

2.02×10-7

TIM2+F+I+G4 -30546.003 61202.006
-

2.76×10-4 61202.324
-

2.74×10-4 61635.036
-

1.36×10-7

GTR+F+I+G4 -30540.236 61194.472
-

1.19×10-2 61194.814
-

1.17×10-2 61643.250
-

2.23×10-09

GTR+F -30553.937 61217.874
-

9.89×10-8 61218.192
-

9.82×10-8 61650.905
-

4.86×10-11

GTR+F+R2 -30548.113 61210.226
-

4.53×10-6 61210.567
-

4.45×10-6 61659.003
-

8.47×10-13

GTR+F+R3 -30543.716 61205.432
-

4.98×10-70 61205.798
-

4.82×10-5 61669.956
-

3.54×10-15

F81+F+G4 -30702.186 61506.372
-

2.23×10-70 61506.646
-

2.27×10-70 61907.909
-

7.56×10-67

F81+F+I -30702.208 61506.416
-

2.18×10-70 61506.690
-

2.22×10-70 61907.954
-

7.39×10-67

F81+F+I+G4 -30701.905 61507.810
-

1.09×10-70 61508.095
-

1.10×10-70 61917.221
-

7.19×10-69

K2P+I -30738.24 61574.480
-

3.62×10-85 61574.734
-

3.72×10-85 61960.271
-

3.22×10-78

K2P+G4 -30738.391 61574.781
-

3.12×10-85 61575.035
-

3.20×10-85 61960.573
-

2.77×10-78

K3P+I -30737.011 61574.022
-

4.56×10-85 61574.285
-

4.65×10-85 61967.686
-

7.91×10-80

K3P+G4 -30737.161 61574.322
-

3.92×10-85 61574.586
-

4.00×10-85 61967.986
-

6.81×10-80

TNe+I -30737.86 61575.720
-

1.95×10-85 61575.983
-

1.99×10-85 61969.384
-

3.38×10-80

K2P+I+G4 -30737.951 61575.902
-

1.78×10-85 61576.166
-

1.82×10-85 61969.566
-

3.09×10-80
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TNe+G4 -30738.011 61576.022
-

1.68×10-85 61576.286
-

1.71×10-85 61969.687
-

2.91×10-80

TIM3e+I -30735.571 61573.142
-

7.07×10-85 61573.416
-

7.18×10-85 61974.680
-

2.40×10-81

TIM3e+G4 -30735.783 61573.565
-

5.73×10-85 61573.839
-

5.81×10-85 61975.103
-

1.94×10-81

TIMe+I -30736.651 61575.302
-

2.40×10-85 61575.576
-

2.44×10-85 61976.840
-

8.14×10-82

K3P+I+G4 -30736.718 61575.436
-

2.25×10-85 61575.710
-

2.28×10-85 61976.973
-

7.61×10-82

TIMe+G4 -30736.798 61575.597
-

2.07×10-85 61575.871
-

2.10×10-85 61977.135
-

7.02×10-82

TIM2e+I -30737.516 61577.031
-

1.01×10-85 61577.305
-

1.03×10-85 61978.569
-

3.43×10-82

TNe+I+G4 -30737.572 61577.144
-

9.56×10-86 61577.418
-

9.71×10-86 61978.682
-

3.24×10-82

TIM2e+G4 -30737.692 61577.384
-

8.48×10-86 61577.658
-

8.61×10-86 61978.922
-

2.87×10-82

TVMe+I -30734.667 61573.334
-

6.43×10-85 61573.619
-

6.49×10-85 61982.745
-

4.25×10-83

TVMe+G4 -30734.789 61573.578
-

5.69×10-85 61573.863
-

5.74×10-85 61982.989
-

3.76×10-83

TIM3e+I+G4 -30735.279 61574.558
-

3.48×10-85 61574.843
-

3.52×10-85 61983.969
-

2.30×10-83

TIMe+I+G4 -30736.36 61576.719
-

1.18×10-85 61577.004
-

1.19×10-85 61986.130
-

7.82×10-84

TIM2e+I+G4 -30737.231 61578.461
-

4.95×10-86 61578.746
-

5.00×10-86 61987.872
-

3.27×10-84

TVMe+I+G4 -30734.372 61574.744
-

3.18×10-85 61575.040
-

3.19×10-85 61992.028
-

4.10×10-85

SYM+I -30734.446 61574.892
-

2.95×10-85 61575.188
-

2.96×10-85 61992.176
-

3.80×10-85

SYM+G4 -30734.561 61575.123
-

2.63×10-85 61575.419
-

2.64×10-85 61992.407
-

3.39×10-85

SYM+I+G4 -30734.151 61576.302
-

1.46×10-85 61576.609
-

1.46×10-85 62001.460
-

3.67×10-87

JC+I -30889.226 61874.453
-

2.64×10-150 61874.696
-

2.72×10-150 62252.370
-

1.20×10-141

JC+G4 -30889.237 61874.474
-

2.61×10-150 61874.717
-

2.69×10-150 62252.392
-

1.19×10-141

JC+I+G4 -30888.921 61875.843
-

1.32×10-150 61876.096
-

1.35×10-150 62261.634
-

1.17×10-143
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Table S4. Summary of FAM72 divergence dating using optimized relaxed clock model in BEAST.

Mean
Standard

error
Standard
deviation

Median
95% HPD

lower
95% HPD

upper
ESS

Posterior -30607.40 0.56 12.30 -30607.20 -30631.30 -30582.60 479.47
Likelihood -30562.00 0.11 4.26 -30561.70 -30570.60 -30554.20 1637.67
Prior -45.42 0.55 11.72 -45.07 -68.40 -21.78 449.21
Tree Likelihood -30562.00 0.11 4.26 -30561.70 -30570.60 -30554.20 1637.67
Tree.height 13.18 0.02 1.71 13.22 9.76 16.39 8778.71
Tree.treeLength 48.32 0.21 7.49 48.08 33.93 62.68 1243.47
kappa 5.18 0.02 0.51 5.14 4.20 6.18 851.52
FreqParameter.1 0.29 0.00 0.00 0.29 0.28 0.30 451.80
FreqParameter.2 0.22 0.00 0.00 0.22 0.21 0.23 407.16
FreqParameter.3 0.21 0.00 0.00 0.21 0.20 0.22 316.96
FreqParameter.4 0.28 0.00 0.00 0.28 0.27 0.29 412.75
ProportionInvariant 0.74 0.00 0.06 0.75 0.62 0.84 340.59
MutationRate 1.00 0.00 0.00 1.00 1.00 1.00 NaN
CalibratedYuleModel -7.45 0.40 7.26 -7.72 -21.63 6.45 326.74
BirthRateY 2.10 0.04 0.87 1.93 0.73 3.83 417.91
logP(mrca(Homininae)) -1.96 0.01 0.63 -1.72 -3.23 -1.51 9001.00
MRCA.Age(Homininae), Myr 13.18 0.02 1.71 13.22 9.76 16.39 8778.71
logP(mrca(Hominini)) -2.34 0.00 0.00 -2.34 -2.34 -2.34 1.25
MRCA.Age(Hominini), Myr 10.27 0.07 2.17 10.33 6.06 14.30 1116.24
Monophyletic(Homo sapiens) 0.98 0.00 0.16 1.00 1.00 1.00 9001.00
MRCA.Age(Homo sapiens), Myr 3.16 0.06 1.08 3.02 1.25 5.36 371.35
Monophyletic(Pan troglodytes) 0.99 0.00 0.09 1.00 1.00 1.00 9001.00
MRCA.Age(Pan troglodytes), Myr 1.38 0.03 0.58 1.29 0.44 2.57 521.87
Monophyletic(FAM72B-D) 0.96 0.00 0.20 1.00 1.00 1.00 8973.03
MRCA.Age(FAM72B-D), Myr 2.38 0.04 0.85 2.27 0.89 4.12 394.85
Monophyletic(FAM72C-D) 0.96 0.00 0.19 1.00 1.00 1.00 9001.00
MRCA.Age(FAM72C-D), Myr 1.57 0.03 0.63 1.48 0.51 2.83 454.87
Monophyletic(FAM72A) 0.98 0.00 0.13 1.00 1.00 1.00 8897.93
MRCA.Age(FAM72A), Myr 0.42 0.01 0.21 0.38 0.10 0.83 536.77
Monophyletic(FAM72B) 0.98 0.00 0.12 1.00 1.00 1.00 9001.00
MRCA.Age(FAM72B), Myr 0.48 0.01 0.22 0.44 0.15 0.93 582.29
Monophyletic(FAM72C) 0.98 0.00 0.12 1.00 1.00 1.00 8656.62
MRCA.Age(FAM72C), Myr 0.17 0.00 0.12 0.14 0.01 0.38 1190.35
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Monophyletic(FAM72D) 0.97 0.00 0.16 1.00 1.00 1.00 9001.00
MRCA.Age(FAM72D), Myr 0.20 0.00 0.12 0.17 0.03 0.42 828.01
ORCucldMean 0.00068 0.00001 0.00022 0.00064 0.00031 0.00111 273.69
ORCsigma 0.541 0.005 0.136 0.535 0.282 0.801 883.74
ORCRatesStat.mean 0.00 0.00 0.00 0.00 0.00 0.00 1367.00
ORCRatesStat.variance 0.0006 0.0000 0.0001 0.0006 0.0004 0.0008 402.42
ORCRatesStat.coefficientOfVariation 0.56 0.01 0.16 0.54 0.28 0.87 510.45
ESS — Effective Sample Size
HPD — Highest Probability Density
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Table S5. Genomic locations with extreme β(1) scores found in specific populations.
Gene Genomic position Population Superpopulation β(1) Percentile of

standardized β(1)

FAM72C chr1:143966782 ASW AFR 3.735 100
chr1:143966823 3.735 100
chr1:143967050 3.757 100
chr1:143967670 2.818 99
chr1:143967050 ESN AFR 2.642 99
chr1:143967102 2.642 99
chr1:143966370 GWD AFR 4.115 100
chr1:143966825 3.804 99
chr1:143966840 3.804 99
chr1:143966853 3.804 99
chr1:143967050 3.583 99
chr1:143967110 3.601 99
chr1:143967315 3.592 99
chr1:143967490 3.738 99
chr1:143967788 3.738 99
chr1:143966823 IBS EUR 6.947 100
chr1:143966825 7.92 100
chr1:143966840 7.92 100
chr1:143967202 6.803 100
chr1:143967289 5.116 100
chr1:143967295 5.116 100
chr1:143967410 5.116 100
chr1:143960403 LWK AFR 4.05 100
chr1:143960740 4.101 100
chr1:143960797 5.11 100
chr1:143966370 3.659 99
chr1:143966853 3.522 99
chr1:143967050 3.453 99
chr1:143967063 3.468 99
chr1:143967315 3.436 99
chr1:143967788 3.589 99
chr1:143966370 MSL AFR 3.9 100
chr1:143967050 3.783 99
chr1:143967110 3.783 99
chr1:143967315 3.812 99
chr1:143967670 3.288 99
chr1:143966370 PUR AMR 4.067 99
chr1:143966823 3.797 99
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chr1:143966825 3.797 99
chr1:143966840 3.797 99
chr1:143966853 3.797 99
chr1:143966857 3.797 99
chr1:143967016 3.774 99
chr1:143967202 3.648 99
chr1:143967788 4.124 99
chr1:143967050 YRI AFR 3.615 99
chr1:143967099 3.852 100
chr1:143967110 3.845 99
chr1:143967152 3.897 100
chr1:143967155 3.897 100
chr1:143967161 3.897 100
chr1:143967178 3.897 100
chr1:143967202 3.897 100
chr1:143967205 3.897 100
chr1:143967315 3.561 99
chr1:143967495 4.052 100
chr1:143967651 4.052 100
chr1:143967670 3.295 99
chr1:143967788 3.933 100

FAM72D chr1:145097288 GWD AFR 2.7 99
chr1:145096747 MXL AMR 2.769 99
chr1:145097083 YRI AFR 2.75 99

114


