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ABSTRACT 

The Dakota skipper, Hesperia dacotae (Skinner 1911) [Hesperiidae, Lepidopterida] is a 

rare prairie obligate butterfly with an affinity for anthropogenically undisturbed, grassland habitat 

with diverse native flora. Persistent threats include habitat fragmentation, destruction, and 

degradation. These and other threats have caused precipitous population declines and local 

extirpation across its range. Consequentially, the Dakota skipper is currently listed as Endangered 

in Canada and Threatened in the United States, and the province of Manitoba. Species distribution 

models (SDM) are a well-known technique which attempt to predict a species distribution on a 

landscape. These predictions can then be used to inform conservation actions such as guiding 

survey effort, land acquisitions, and reintroductions. The objectives of this project were to: 1) 

Compare Dakota skipper models using freely available high resolution remotely sensed products 

to those using more traditional environmental predictors. 2) Field validate both models to identify 

the most accurate model using efficient and economical methods. 3) Address issues of modelling 

rare species to produce a robust SDM for the Dakota skipper in Manitoba. I found that SDMs built 

from environmental variables generated from satellite imagery performed comparably to one 

produced from readily available geospatial information. I also found that field validation was more 

accurate for evaluating SDMs than purely statistical methods. I also produced usable SDMs for 

the Dakota skipper in the Interlake. Implications from this study are that the advantages of satellite 

imagery can be leveraged to create useable SDMs to guide conservation actions. This study also 

further supports the need to field validate an SDM over relying on model statistical output which 

can be misleading. 
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CHAPTER 1: INTRODUCTION 

The Dakota skipper, Hesperia dacotae (Skinner 1911) [Hesperiidae, Lepidoptera] is a 

small prairie obligate butterfly which prefers anthropogenically undisturbed habitat with diverse 

native flora (Royer and Marrone 1992; Swengel and Swengel 1999). It occurs in Minnesota, North 

and South Dakota, Saskatchewan and Manitoba, and is extirpated from Illinois and Ohio. In 

Saskatchewan, Dakota skipper was first recorded in 2001. Subsequent surveys found Dakota 

skipper present between Glen Ewan, Oxbow, and Roche Percee in the Souris River valley in 

Saskatchewan (Hooper 2003; COSEWIC 2014). In southern Manitoba, Dakota skipper is found in 

the Interlake and Oak Lake regions. It is likely extirpated from southeast Manitoba near Tolstoi, 

where it was last collected in 1987, and presumably last sighted in 2000 (Britten and Glasford 

2002; COSEWIC 2014; US Fish and Wildlife Service 2014).  

Habitat destruction and degradation, and extreme weather events are primary persistent 

threats that have resulted in the majority of population loss, followed by extreme fragmentation of 

remaining suitable habitat (Dana 1991; Environment Canada 2007; Henderson and Koper 2014), 

resulting in dramatic population declines with local and provincial/state level extirpation 

(COSEWIC 2014; US Fish and Wildlife Service 2014). As a result, Dakota skipper is now listed 

globally Endangered, Endangered in Canada, and Threatened in the United States, and the 

Province of Manitoba (Manitoba 1998; Canada 2018; Royer 2019; US Fish and Wildlife Service 

2014, 2021; Canada 2023). 

The Canadian Federal Recovery Strategy for the Dakota skipper (Environment Canada 

2007) sets recovery objectives and planning priorities for federally listed species. A high priority 

objective for the Dakota skipper is to create species distribution models to aid in identifying 

potential habitat to guide survey activities and counter habitat loss and degradation.  

Species distribution models (SDMs), also called element distribution models or habitat 

suitability models, relate species occurrence locations to a selection of biophysical variables at 

those locations and then use those relationships to predict distribution across a land region of 

interest (Elith and Graham 2009). The relative probability surface model output for the study area 
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is used to predict occurrences. Other model outputs include relative contribution of variables to 

the model and model performance statistics (Phillips et al. 2006; Phillips and Dudík 2008; Merow 

et al. 2013). 

Species distribution models are used in conservation science to more efficiently guide 

survey and conservation efforts to discover new occurrences, locate suitable habitat to support 

reintroduction efforts. They can also be used to help evaluate land acquisitions and prioritize 

habitat at risk of anthropogenic disturbance. They are also increasingly used to screen development 

projects for species at risk, and distribution changes due to climate change (Pielke 2003; Anderson 

and Martinez-Meyer 2004; Guisan et al. 2013; Lipsey et al. 2015; Fourcade 2016; Smeraldo et al. 

2017; Villero et al. 2017; Hunter-Ayad et al. 2020; Bellis et al. 2024; NatureServe 2024) and 

interestingly, to inform invasive species control (Jiménez-Valverde et al. 2011), and paleoecology 

research (Fløjgaard et al. 2009).  

Most modern SDMs leverage simultaneous advances in computer hardware, geographic 

information systems (GIS) technology, and greater access to digital data, and simultaneous 

advances in more sophisticated modelling software to produce more complex models (Guisan and 

Thuiller 2005; Beauvais et al. 2006; Lahoz-Monfort et al. 2010; Guisan et al. 2013). The general 

approach is to use SDM software with species occurrences and digital geospatial biophysical layer 

variable inputs to construct the species proximate niche space and extrapolate the average of the 

proximate niche across a study area (Elith and Leathwick 2009; Merow et al. 2013).  

A common approach to obtain these model variables is to use “pre-made” readily available 

physical/environmental spatial products the user is familiar with (e.g. Land use/land cover, soil, 

Forest Resource Inventory, digital elevation model, and climatic variables) (Rabe et al. 2002; 

Wintle et al. 2005; Royer et al. 2008; Elith and Leathwick 2009; Lahoz-Monfort et al. 2010; Lapin 

et al. 2013; Westwood et al. 2019; Dearborn et al. 2022). A different, or complementary approach, 

which is gaining traction with the greater accessibility of no-cost satellite imagery, is to create 

model variables solely from satellite imagery (Lahoz-Monfort et al. 2010).  
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 Advantages to variables created from satellite imagery include: (1) Imagery acquisition 

intervals for an area is often weeks or even days where common model inputs are often not updated 

for years and at considerable expense,  (2) Smaller refresh windows and an extensive archive make 

it easier to temporally match species observations with modelling variables, (3) Imagery often has 

comparable or better spatial resolution, (4) satellite imagery offers superior spatial coverage which 

is consistent across jurisdictional boundaries and available for areas missed by common model 

variables, (5) many variables can be generated from satellite imagery which cannot be created 

from common model inputs, and (6) these variables tend to be finer continuous scale variables (i.e. 

NDVI) than more coarsely classified common model variables (i.e. land use) which may not 

inform the model as well (Bellis et al. 2008; St-Louis et al. 2009; Lahoz-Monfort et al. 2010; Duro 

et al. 2014; St-Louis et al. 2014).  

 Previous studies have used satellite imagery as the sole generator of model variables 

(Bellis et al. 2008; Lahoz-Monfort et al. 2010; St-Louis et al. 2014; Halford et al. 2024). However, 

they lacked provisions to compare the resulting model to a model using common variables. Indeed, 

their study area was deliberately chosen because it was identified as an environmental layer “data-

poor region” (Lahoz-Monfort et al. 2010). The commonly used land cover variable was also 

criticized primarily for removing within-class habitat variability which may degrade species-

habitat relationship information needed for modelling. Two studies attempted to address the 

criticisms of using land use derived model variables by comparing them to NDVI (Duro et al. 

2014) and texture (Culbert et al. 2012) variables derived from Landsat imagery. However, in both 

studies, the focus was on narrowly comparing categorical land use variables to continuous NDVI 

and texture variables to describe overall species richness in a relatively large area, instead of 

creating rigorous SDMs for a species in a defined region. 

Past Dakota skipper research in Manitoba, Saskatchewan and the northern U.S. has 

generally focused on describing local biotic and abiotic site characteristics (Dana 1991; Rigney 

2013; Seidle et al. 2018) as well as some preliminary SDM studies to determine potential habitat 

range of Dakota skipper and Poweshiek skipperling, Oarisma poweshiek (Westwood et al. 2019; 
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Post van der Burg et al. 2020; Seidle et al. 2020; Dearborn et al. 2022) including additional 

modelling response to climate change (Barnes et al. 2024). 

This study compares the utility of these two different modelling approaches. I constructed 

and compared the performance of two SDMs within the same regional study area to identify 

suitable habitat for the Dakota skipper: One model made use of commonly available “traditional” 

geospatial model variables (the Common Model) while the other model used satellite imagery to 

create the variables (the Satellite Model).  

 As part of this study, I also validated the models by ground truthing model results, which 

has been shown to be a better indicator of model performance than by evaluating only model output 

statistics (Westwood et al. 2019; Dearborn et al. 2022) and which the other studies did not 

perform.  The objectives of this project were to: 1) Compare Dakota skipper models using freely 

available high resolution remotely sensed products to those using more traditional environmental 

predictors. 2) Field validate both models to identify the most accurate model using efficient and 

economical methods. 3) Address issues of modelling rare species to produce a robust SDM for the 

Dakota skipper in Manitoba. 

 

 

 

 

 



 

5 
 

CHAPTER 2: LITERATURE REVIEW 

2.1 Study Organism  

2.1.1 Description  

The Dakota skipper (Hesperia dacotae Skinner 1911) is a butterfly from the Skipper family 

(Hesperiidae) named for their distinctive fast, low zig-zag flight pattern above the grass canopy, 

described as “skipping”, much like a stone on water (Klassen et al. 1989; Layberry et al. 

2015). Dakota skipper was previously considered a subspecies of H. sassacus [Harris 1862] (Skinner 

1911) but was subsequently elevated to species level (Skinner and Williams 1924) 

There are 70 species of Hesperiidae in Canada which can be distinguished from other 

butterflies by their often dull colouration, thicker thorax, hooked antennae and relatively short wings 

and body size (Klassen et al. 1989; Layberry et al. 2015). The Hesperiidae is currently divided into 

six subfamilies, of which three are found in Canada. The Dakota skipper is one of 45 skippers that 

are part of the Branded skippers subfamily (Hesperiinae) and differentiated by their orange-brown 

tawny colouration, larger bodies and small wings. When resting, adults hold their forewings in the 

vertical plane and hindwings horizontally giving them an “X-Wing” fighter jet appearance (Star 

Wars: Episode IV - A New Hope 1977). Females and males in this subfamily have different wing 

colouration with the females usually being darker. The males also have a dark “brand” of scent scales, 

called a “stigma” found on the forewing, which the females lack. Adults have a wing-span between 

21 and 33mm. The males tend to be pale yellow-orange above with a brown border and relatively 

short stigma. The females can be greyish to brown above. Both are greyish brown below, with the 

male slightly more orange, with relatively less pronounced medial spots (Klassen et al. 1989; 

Layberry et al. 2015).  

Dakota skipper eggs are just over 1 mm in diameter, semi-hemispherical, and translucent 

white (Dana 1991). Larvae are 19 to 22 mm in length when fully grown, with a brown body, and a 

black head, spiracles, and legs. Lateral pits on the head casing distinguishes them from other 

Hesperia. Pupae are reddish-brown in colour (McCabe 1981).  
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Similar species with range and flight period overlap in Manitoba include Ottoe skipper 

(Hersperia ottoe WH Edwards, 1866), Long Dash skipper (Polites mystic WH Edwards, 1863), and 

Tawny-edged skipper (Polites. themistocles Latreille, [1824]) (Klassen et al. 1989; COSEWIC 2014; 

Layberry et al. 2015). Other similar species not within the range or flight period in Manitoba include 

Plains skipper (Hersperia assiniboia Lyman, 1892); Leonard’s skipper (Hersperia leonardus Harris, 

1862), and Indian skipper (Hersperia sassacus Harris 1862) (Klassen et al. 1989; COSEWIC 2014; 

Layberry et al. 2015).  

2.1.2 Biology and Life Cycle  

The flight period in Manitoba and Saskatchewan is generally between late-June to mid-July 

(Klassen et al. 1989; Dearborn and Westwood 2014; Layberry et al. 2015) and seems to be either 

earlier or comparable with populations further south in the U.S. depending on the year (McCabe 

1981). It may fly one or two weeks later in the western portion of its range in North Dakota (McCabe 

and Post 1977), possibly due to spring time variation (McCabe 1981). Observations made in late July 

2002 in Saskatchewan may have been due to an unusually cool spring (Hooper 2003).  

Adult males emerge about five days earlier than females, possibly due to longer larval 

development time for females due to egg formation (McCabe 1981). Mating occurs on the emergence 

date and the female will continually lay eggs throughout the two to four-week lifespan. Eggs hatch 

in about 10 days (range 7 to 20) depending on temperature (McCabe 1981). From July to October 

larvae will continue to develop with noticeably slower activity in the fourth or fifth instar as they 

enter diapause to overwinter. Diapause appears obligate as death occurred in most larvae which were 

artificially forced to develop further (Dana 1991). Post-diapause development occurs between May 

and June with two additional instars until pupation (Dana 1991).  

2.1.3 Behavior  

Newly hatched larvae crawl to the base of grass plants and make shelters on the stem at, or 

just below ground level out of silk and grass clippings. Shelters will be enlarged two to three times 

as the larvae grows. After diapause, one or two shelters are constructed horizontally on the ground 

and can reach several centimeters in length. Pupation usually occurs in specially constructed silk 
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chambers the size of the larva with a sealed entrance (Dana 1991). Most feeding occurs within the 

shelter with the larva harvesting food at night (McCabe 1981; Dana 1991) or at sunset or during 

overcast conditions (Dana 1991).  

During the day, adult males and females will regularly obtain flower nectar while pursuing 

other activities such as mating or oviposition. Adult males tend to perch on flowers waiting for 

females to pass by or will slowly fly around mating sites just above the grass canopy. A male will 

pursue a passing female often flying slightly above and ahead. They will alight on vegetation and the 

female will mate if receptive (McCabe 1981; Dana 1991). Males will also tend to pursue other males, 

different skipper species, and other insects such as moths. Engaged Dakota skipper males will tend 

to twirl around each other ascending two to three metres and often more laterally (McCabe 1981; 

Dana 1991).  

Perching and pursuit of other males led McCabe (1981) to conclude that Dakota skipper males 

were aggressively defending territories. However, Dana (1991) argued that, among other evidence, 

male perch fidelity is low, available perches are abundant and tend to give the same advantage, and 

that male pursuits tend to be more investigative than aggressive.   

Female oviposition occurs during the day. Females fly just above the grass layer and land in 

a bare patch of ground or on a rock. The female will then climb to a suitable blade of grass and affix 

a single egg usually to the underside of the blade, about two to four centimeters above the ground. 

After oviposition, the female climbs up the grass to fly (Dana 1991).  

2.1.4 Distribution and Population  

Global range of Dakota skipper (Figure 1) extends into west Minnesota, east North and South 

Dakota, southeastern Saskatchewan along the Souris River, and southern Manitoba. It is presumed 

extirpated from Illinois and Iowa (US Fish and Wildlife Service 2014). Within Manitoba there are 

two existing population areas, one in the Interlake region by Lundar, and another in the southwest by 

Oak Lake. A third population was once located in southeast Manitoba in the Manitoba Tall Grass 

Prairie Preserve near Tolstoi, but is now considered extirpated (COSEWIC 2014). Historically, 

Dakota skipper was likely distributed across the northern prairie landscape but subsequent habitat 



 

8 
 

destruction and extreme fragmentation has led to smaller isolated populations, which in turn are 

vulnerable to extirpation due to the inability of migration and establishment from other populations 

(Dana 1991). This idea is supported by recent genetic work which found current populations are 

isolated from each other but were likely connected in the recent past (Britten and Glasford 2002).  

Figure 1. Dakota Skipper Current and Historic International Range 

 

2.1.5 Status and Threats  

Globally the Dakota skipper is listed “G2-Imperiled” (NatureServe 2022) and uplisted from 

“Vulnerable” (WCMC 1996) to “Endangered” on the International Union for Conservation of Nature 

and Natural Resources (IUCN) Red List (Royer 2019). In Canada it is listed federally under the 

Species at Risk Act as Endangered (Canada 2018, 2023) uplisted from Threatened (COSEWIC 2014; 

Canada 2017). In Manitoba it is ranked as “S2-Rare throughout its range - may be vulnerable to 

extirpation” (MBCDC 2023) and is listed as Threatened under the provincial Endangered Species 
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and Ecosystems Act (Manitoba 1998). Saskatchewan does not have a formal provincial status but it 

is ranked “S1-Critically Imperiled” (SKCDC 2023).  

The United States Fish and Wildlife Service listed Dakota skipper “Threatened” under the 

Endangered Species Act (US Fish and Wildlife Service 2014, 2021) In Minnesota it was listed 

“Threatened” in 1984 and updated to “Endangered” in 2013 (MDNR 2018). In North Dakota it 

became listed as “Threatened” in 2014 via the federal Endangered Species Act (US Fish and Wildlife 

Service 2014; North Dakota Fish and Game 2021). It does not have a state status in South Dakota but 

is ranked “S2- Imperiled” by the South Dakota Natural Heritage Program (SDGFP 2022). Iowa lists 

Dakota skipper as “Endangered” however it is likely extirpated (US Fish and Wildlife Service 2014; 

Iowa Natural Resource Commission 2022). It is also likely extirpated from Illinois (US Fish and 

Wildlife Service 2014).  

These listings are due to a measured decline in range extent, number of sites, and numbers of 

individuals at sites (COSEWIC 2014; US Fish and Wildlife Service 2014, 2021).  Identified primary 

threats contributing to these declines include conversion of habitat to cropland, overgrazing and 

trampling from cattle, and pesticide drift from agriculture crop fields.  Some losses are also attributed 

to an increase in severity and frequency of flooding in the skipper’s low relief habitat.  (McCabe 

1981; Dana 1991; Swengel and Swengel 1999; Environment Canada 2007; Rigney 2013; US Fish 

and Wildlife Service 2021). Inappropriate application of management techniques such as timing, 

frequency, and extent of prescribed burning, and haying (McCabe 1981; Dana 1991; Swengel and 

Swengel 1999) are also threats. Management techniques and natural disturbance events can be 

especially damaging when not scaled to the inherently small habitat patch sizes. This reduces 

undisturbed habitat refugia which supports individuals both during and post-disturbance (McCabe 

1981; Dana 1991; Schilcht and Saunders 1995; Dana 1997; COSEWIC 2014). However, appropriate 

management including prescribed burning and haying can benefit the species (McCabe 1981; Dana 

1991; Swengel and Swengel 1999; Bates 2006).  

2.1.6 Habitat Affinity  
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Dakota skipper is considered a prairie obligate found in undisturbed (untilled, intact, remnant) 

and undegraded (little or no grazing or burning) prairie with high plant diversity (Royer and Marrone 

1992; Swengel and Swengel 1999) where they have available appropriate adult nectar and larval food 

and shelter plants and microhabitat physical conditions. Royer and Marrone (1992) and Royer et al. 

(2008) roughly generalise Dakota skipper habitat into “Type A lowland” and “Type B upland” classes 

based on topography, soil, and hydrology. Type A is described as wet-mesic tall grass prairie 

characterised by very little topographic change of a few meters over near-shore glacial lake deposits. 

Type B is described as dry-mesic mixed grass prairie on rolling hills over gravel moraines. Both types 

are further, and confusingly, subdivided into relatively drier “upland prairie” and wetter “lowland 

prairie” portions. The relatively dry upland prairie portions are overwhelmingly where Dakota 

skipper is found (Braker et al. 1985; Dana 1997; Swengel and Swengel 1999; Cochrane and Delphey 

2002; Webster 2003; US Fish and Wildlife Service 2014).  

In Type A prairies, drier upland prairies are in a patchy mosaic with wetter lowland prairie 

and non-prairie communities including lower relief wet meadows, grading down slope to, marshes, 

then open water. Shrub, Oak-Aspen stands tend to fill in any larger openings. The low relief and poor 

drainage can cause flooding from seasonal spring melts, but the upland prairie “islands” tend to 

protect the Dakota skipper to some degree (Royer et al. 2008). However, some upland portions can 

be inundated during prolonged precipitation events, or multi-year wet cycle (Rigney 2013). Soils tend 

to be calcareous and alkaline, suitable for cattle pasture or haying agricultural activities and less 

suitable for cropland (McCabe 1981; Webster 2007).   

Type B prairies have drier upland mixed grass or tall grass prairies on well drained hill sides, 

with the wetter lowland prairies occurring between where water can accumulate (Royer et al. 2008) 

on alkaline calcareous or sandy loam soils (Dana 1997). Type B prairie can be further classed into 

three variants when considering upland and lowland arrangement. Type B Variant 1 is described as 

steep river valley hills (Selby and Glenn-Lewin 1989; Cochrane and Delphey 2002; Webster 2007; 

Royer et al. 2008) created by the “dendritic growth of tributary ravines” (Dana 1991, 1997).  Soils 

tend to be calcareous to sandy loam (Dana 1997).  
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Variant 2 occurs on well drained flat upland areas adjacent to the valley slopes (Selby and 

Glenn-Lewin 1989; Dana 1997) and consist of loams (Dana 1991) and smaller exposed or near 

surface gravel (Selby and Glenn-Lewin 1989). Variant 1 and 2 on level uplands and valley slopes do 

not seem to have a complementary lowland prairie component except when viewed at a larger scale 

where lowland prairie and wet meadows are found on the valley bottom (Selby and Glenn-Lewin 

1989; Dana 1991, 1997).   

Variant 3 is described by (McCabe 1981; Braker et al. 1985; Dana 1997) as close calcareous 

gravel beach ridges creating a ridge and swale topography with mixed grass upland prairie on well 

drained ridges, and lowland prairie on poorly drained depressions.  

The steep nature and poor soils of the Variant 1 hills tend to protect these areas from 

destruction by crop agriculture and generally grazing is regulated to low and moderate levels (Braker 

et al. 1985; Dana 1991; Royer and Marrone 1992; Webster 2007). Variant 2 on flat uplands have 

tended to be destroyed by crop agriculture or severe grazing pressure (Selby and Glenn-Lewin 1989; 

Dana 1991, 1997).  

In Manitoba, almost all known Dakota skipper occurrences occur in Type A prairie (Webster 

2003, 2007; Rigney 2013; MBCDC 2017) and characterised by Webster (2003, 2007) as tall grass 

prairie, or tall grass transitioning to mixed grass prairie (Rigney 2013).  

Webster (2007) and Rigney (2013) noted that survey sites were similar floristically between 

the Interlake and south-west Manitoba regions, but both did not make comparisons to the south-east 

Manitoba region. Morden (2006) compared the Interlake and south-east Manitoba region and found 

plant species composition was significantly different between the Interlake and the south-east. The 

Interlake species abundance was more evenly distributed where the south-east was generally 

dominated by a few plant species. Adult and larval host plants were also more abundant in the 

Interlake than the south-east. Shrubs were also commonly dispersed throughout the south-east 

prairies but generally sparse in the Interlake making the Interlake prairies relatively open. 

In Saskatchewan, all occurrences have been discovered on Type B Variant 1 prairie (Webster 

2003, 2007; SKCDC 2017) characterised as steep river valley hillsides under some grazing pressure 
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(Webster 2007). Interestingly, Webster (2007) only found adults at the top and within “low relief” 

gully patches usually less than 200m2 and containing bluestem grasses (Schizachyrium scoparium 

(Michaux) Nash) and (Andropogon gerardi Vitman) and not on the more relatively exposed 

intervening mixed grass prairie, suggesting Dakota skipper was found in remnant tall grass prairie 

patches or transitioning to mixed grass prairie as found by Rigney (2013). Royer and Marrone (1992) 

observed similar use of tall grass prairie “microsites” on hill slopes in western North Dakota. 

Henderson and Koper (2014) provide an updated reconstruction of historical tall grass prairie in 

western Canada and conclude that “Fingers of tall-grass prairie extended further west along the lower 

slopes and floodplains of major melt-water valleys radiating into adjacent Saskatchewan and North 

Dakota” occupying mesic sites. They add that these prairies have been greatly disturbed and difficult 

to distinguish from mixed grass prairie. Herbel and Anderson (1959) also noted that sloped areas can 

be more resilient to grazing disturbance and Dana (1991) observed on sloped terrain, where grazing 

had ceased, tall grasses began re-establishing in mixed grass areas and that after five years developed 

a “tall grass character”. He also noted a greater tall grass component in areas on slopes that were 

originally excluded from grazing.  

2.1.7 Nectar and Larval Plants and Indicator Species  

Dakota skipper adults are likely opportunistic feeders and have been observed nectaring on a 

wide variety of forbs throughout their range (see McCabe 1981; Dana 1991; Swengel and Swengel 

1999; Webster 2003; Rigney 2013; US Fish and Wildlife Service 2014). These differences observed 

across their range and between studies is likely due to seasonal availability of favoured nectar plants 

and annual variability in Dakota skipper densities requiring, in some years, individuals to seek 

alternative, less favoured nectar sources (Swengel and Swengel 1999; Webster 2003).  

In Manitoba, Dakota skipper have been observed nectaring primarily on Black-eyed susan 

(Rudbeckia hirta L. or R. serotina Nutt.), Wood lily (Lilium philadelphicum L.), Hairbell (Campanula 

rotundifolia L.), Dogbane (Apocynum sp.) (Webster 2003; Rigney 2013) and Smooth camas (Anticlea 

elegans Pursh)(Webster 2007). In Saskatchewan Webster (2003, 2007) notes Purple cone flower 

(Echinacea angustifolia (DC) (Heller) as the primary nectar source.  
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Observations of wild larvae in situ in their habitat have never been recorded (Nordmeyer et 

al. 2021) however, Dana (1991) studied larvae hatched from collected eggs and placed on potted 

plants located in prairie habitat to show that Dakota skipper larvae can feed on a variety of grasses, 

and  were most frequently observed eating: Little bluestem (Schizachyrium scoparium (Michx.) 

Nash), Big bluestem (Andropogon gerardii Vitman), Prairie dropseed (Sporobolus heterolepis (A. 

Gray) A. Gray), Sideoats grama (Bouteloua curtipendula (Michx.) Torr.), to some extent on Sand 

millet (Dichanthelium wilcoxianum (Vasey) Freckmann), and Kentucky blue grass (Poa pratensis 

L.). 

Nordymeyer et al. (2021) studied larvae in the laboratory who were fed one of seven grass 

species from hatching to adulthood. Survivorship was greatest for larvae fed one of the five native 

grass species (Big bluestem Andropogon gerardii, Sideoats grama Bouteloua curtipendula, 

Porcupine grass Hesperostipa spartea, Little bluestem Schizachyrium scoparium, Prairie dropseed 

Sporobolus heterolepis) and poorest for larvae fed one of the two invasive grass species (Smooth 

brome Bromus inermis, and Kentucky bluegrass Poa pratensis) offered in the study. Smooth brome, 

which is pervasive in prairie habitat, had the lowest survivorship, smallest larval mass, and longest 

to reach maturity than larvae fed on the other six grass species. Additionally, of the five native 

grasses, Big bluestem and Little bluestem are generally associated as ideal larval hosts. However, in 

this study, larvae had poorer survivorship than the larvae fed the other three native grasses.  

Indicator plant species in Dakota skipper habitat could include the above nectar and larval 

hosts. Rigney (2013) conducted vegetation surveys at known Dakota skipper sites in the Interlake 

region finding five indicator plant species associated with Dakota skipper sites: Stiff goldenrod 

Solidago rigida, Creeping bentgrass Agrostis stolonifera, Creeping spikerush Eleocharis palustris, 

Rigid sedge Carex tetanica, and Trembling aspen Populus tremuloides. Webster (2007) used 

evidence of A. elegans, L. philadelphicum, R. serotina, and C. rotundifolia along with S. scoparium 

and A. gerardii to locate potential habitat in Manitoba, and E. angustifolia with S. scoparium and A. 

gerardii in Saskatchewan as they were easy to spot from the road. McCabe (1981) noted A. elegans 

as an “extremely good indicator” of alkaline prairie, the preferred habitat in North Dakota. Notably, 
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McCabe (1981) also considered hayed areas, lack of cattle grazing, and areas close to gravel quarries 

as indicators of potential habitat.  

Similar species with range and flight period overlap in Manitoba include Ottoe skipper 

(Hersperia ottoe WH Edwards, 1866), Long Dash skipper (Polites mystic WH Edwards, 1863), and 

Tawny-edged skipper (Polites. themistocles Latreille, [1824]) (Klassen et al. 1989; COSEWIC 2014; 

Layberry et al. 2015). Other similar species not within the range or flight period in Manitoba include 

Plains skipper (Hersperia assiniboia Lyman, 1892); Leonard’s skipper (Hersperia leonardus Harris, 

1862), and Indian skipper (Hersperia sassacus Harris 1862) (Klassen et al. 1989; COSEWIC 2014; 

Layberry et al. 2015). Garita Skipper (Oarisma garita (Reakirt)) and Long Dash skipper are present 

at most sites in Manitoba and Saskatchewan (COSEWIC 2003). 

In Minnesota and North Dakota documented predators include: Ambush bugs (Phymata sp.), 

flower spiders, (Misumena vatia Clerck and Misumenops carletonicus Dendale and Redner), orb 

weaver spiders (Araneidae: Misumenops spp.), and ants capturing larvae (Cochrane and Delphey 

2002, McCabe 1981; Dana 1991). The parasite, Ooencyrtus sp., has also been found in lab reared 

eggs from field collections. Potential predators include: Robber flies, dragonflies, birds, small 

mammals (Lederhouse et al. 1987). 

 

2.1.8 Habitat Suitability Modelling  

Niche Space Model Concept  

Hutchinson (1957) described the niche space concept as one of the “fundamental niche” and 

“realized niche” of a species. The fundamental niche contains all the environmental variables required 

for survival and propagation. The fundamental niche is generally regarded as theoretical since, due 

to species competition, disturbance, and biological or physical barriers, all the species’ environmental 

space cannot be occupied. The realized niche is then this redacted subset.  Niche space models 

attempt to approximate the realized niche space by using species occurrences and a subset of realized 

niche environmental variables, called environmental predictors, (Elith et al. 2006) and then project 

this modelled realized niche space to a geographic area (Phillips et al. 2006). Model output will 
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generally consist of statistics which measure model performance and a “response surface” or map 

showing the model’s prediction of species presence variability across an area. Output may also 

provide the relative contribution of each variable to constructing the model. Variable response curves 

are generated which describe the where along the full range of a variable’s values a species is likely 

to occur. 

Model Data Types  

Guillera-Arroita et al. (2015) placed model type occurrence data into four classes: presence 

only (PO), presence-background (PB), presence-absence (PA), and occupancy-detection (DET). 

Westwood (2017) includes species biology (SB), and abundance-absence (AA). Species biology data 

is information about a species physiology or ecology (e.g. temperature, habitat) usually obtained from 

expert opinion and research. It is then used to create a species profile for modelling.  

As the names imply, PO data consists of only presence occurrences. PO data is frequently 

used with a random background of samples taken from the geographic area, which changes the data 

to PB. PA contains both presence and absence occurrences. AA data is a variant of PA but contains 

measures of abundance instead of only presence. DET consists of detection and non-detection records 

generated from repeat visits to the same site or time-to-detection in a single visit. DET can be used 

to calculate probability of presence for different habitat types across the geographic region.  

Guillera-Arroita et al. (2015) noted that DET data is the most information rich followed by 

PA then PO. They reported that the most common data type (57%) used in SDM studies is PB. This 

has been attributed to the increased availability of digitized species occurrence data from museums, 

herbaria, and citizen science efforts (Elith et al. 2006; Westwood 2017) and better model performance 

than using PO data (Elith et al. 2006). Even when PA data is available, absences may be of suspect 

value (Anderson and Martinez-Meyer 2004) due to temporal or spatial surveying limitations. 

Model Types  

Burgman et al. (2005) locate habitat suitability models within the broader field of landscape 

ecology. They use the term “model specification” where Barry and Elith (2006) use the term “model 

frame” to recognize which model class is being used, and the associated errors and assumptions 
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inherent in that class. If the model frame is appropriate, then a good approximate relationship or 

linkage can be developed between the species of interest and the landscape.  

Model frame selection depends heavily on available data type. A mismatch can cause poor 

model performance. Given the vast number of modelling frames available for use (34 types in 100 

randomly chosen studies) and the preponderance of PO datasets available, it is perhaps best to focus 

initial efforts on models capable of using PO data (Guillera-Arroita et al. 2015).   

Model evaluation studies using standardized geographic regions and datasets have shown that 

multiple linear regression and machine learning types perform better than more established 

approaches using PB data including general linear models (GLMs), general additive models (GAMs), 

multivariate regression (MARs), and genetic algorithms (GARPs) (Elith et al. 2006; Hernandez et al. 

2006). This success is due to the newer methods’ increased capability in modelling non-linear 

complex environmental relationships (Barry and Elith 2006). Evaluation of this subset of model types 

ultimately found that machine learning approaches using maximum entropy models, and multivariate 

approaches using boosted regression trees  (Elith et al. 2006; Hernandez et al. 2006; Phillips et al. 

2009) performed the best.  

2.1.9 Environmental Predictors  

Predictor Types  

Modern environmental predictors are geospatial and include both vector (e.g. a soils layer) 

and raster data (e.g. satellite imagery) types. Conventional predictors usually include climate data, 

soils and land use/cover layer, and a digital elevation model. However, use of no-cost, high resolution, 

multispectral remotely sensed imagery is increasingly becoming an attractive addition or alternative 

option for SDM work, especially in areas lacking more traditional predictors (Lahoz-Monfort et al. 

2010).  

Derived Predictors  

Derived predictors are produced from “raw” predictor data and can be thought of as extracting 

certain information from the source data. Many varieties of derived predictors can be generated from 

digital elevation surfaces, satellite imagery (Lischke et al. 1998) and vector layers. For example, 
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slope and aspect layers can be generated from a digital elevation surface, and distance from nearest 

road can be derived from a road layer. Wintle et al. (2005) note that derived predictors can perform 

better than the raw products.  

Proximal and Distal Predictors  

Environmental predictors can be divided into “proximal” and “distal” types (Austin 2002). 

Proximal predictors are more physiologically meaningful as they are directly related to the actual 

environmental variable they represent, while distal predictors are relatively indirect, merely 

correlated to proximal predictors (Lischke et al. 1998; Austin 2002). For example, an average 

temperature surface may be considered more proximal than a total solar insolation surface. In most 

cases though, distal environmental predictors are more frequently used in modelling, as they are more 

readily available (Austin 2002).  

Evaluation of Environmental Predictors  

Model output usually shows the relative amount of information each variable contributes to 

creating a model as a percentage. Poorer performing variables, which are not contributing much to 

the model could be dropped in favour of other variables which may perform better. Additionally, to 

reduce model overfit, variable selection is often limited to one variable for every ten point 

observations. Therefore, removing poorly contributing variables will free up more points which could 

be allocated to the test sample which is used in cross-validation analysis (see section on model 

evaluation below). (Phillips et al. 2006; Phillips and Dudík 2008). Contribution scores could also be 

used to tease out variable correlations by selectively removing one of two or more variables which 

are suspected of being correlated before running the model building again and comparing overall 

model performance and variable contribution (Lahoz-Monfort et al. 2010).  

Model output also generates variable response curves which shows which range of values for 

a particular variable are predicted as being suitable for the species. Response curves can be used to 

describe the environmental conditions which might be present at a location with a high or low relative 

likelihood of occurrence (Phillips et al. 2006; Phillips and Dudík 2008).   
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2.1.10 Model Evaluation  

Evaluation via Model Output  

A common method of evaluating overall model performance is to use model statistics 

generated during output. The area under the receiver operator curve (ROC or AUC) is generally used 

as a measure of model performance (Elith et al. 2006; Phillips and Dudík 2008) and cross-model 

comparison (Elith et al. 2006; Phillips et al. 2009).   

AUC was borrowed from medical science used to evaluate the quality of a diagnostic test 

(Elith et al. 2006). i.e. the ability to successfully class true disease (true positives) from truly non-

disease (true negatives). However, as a diagnostic is never able to successfully classify all true 

positives as positives, nor all true negatives as negative, there will be some overlap resulting in false 

positives and false negatives. The AUC is the probability that a randomly chosen positive and 

negative pair are classed successfully. The curve plots a test’s true positive rate (sensitivity) by false 

positive rate (1-specificity) at changing thresholds cross the range of possible values. In a test that 

shows perfect diagnosis ability (perfect discrimination), the AUC value will be 1 (100% sensitivity 

and 100% specificity). The closer the curve passes through the upper left corner of the graph, the 

better its performance, while an AUC value of 0.5 shows that discrimination is no better than random 

(Hanley and McNeil 1982).  

In the case of species modelling, the AUC is the probability that the model will successfully 

class a randomly chosen positive occurrence and a randomly chosen negative (absent) occurrence. 

However, some authors have criticized using the AUC for evaluating SDM model performance (Lobo 

et al. 2008; Jiménez and Soberón 2020). Suggesting that instead of reflecting good model 

performance, due to the spatial nature of species data and the uncertainty of pseudo-absences, the 

high AUC values may indicate that the species is restricted to a portion of the available environmental 

envelope offered from the predictors in comparison to a generalist species which may have lower 

AUC values (Elith et al. 2006; Lobo et al 2008). 

 For most species, observation data will include presence but will likely lack reliable absences 

or if recorded it can be difficult to interpret (Brotons et al. 2004; Guillera-Arroita et al. 2015). 
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Therefore, most SDMs that use presence only data also add a set of random background occurrences, 

also known as pseudo-absences, which replace the true absences (Phillips et al. 2006).  However, 

research shows that adding too many background points can artificially increase AUC values (Lobo 

et al. 2008) since background points can be a mix of both presences and absences.  

Increase in study area size also tends to inflate the AUC value (Elith and Burgman 2002). 

Pseudo-absences which are more geographically distant are less likely to occupy the target species’ 

environmental niche space which generates a higher number of true absences which will be 

discriminated by the model as such (Lobo et al. 2008; Jiménez and Soberón 2020). Similarly, drawing 

pseudo-absences from ever expanding background sampling areas, within the overall study area, also 

progressively inflated AUC values (VanDerWal et al. 2009) And related, using ever larger pseudo-

absence sample sets also tends to increase AUC values (Phillips and Dudík 2008) likely by behaving 

similarly to the larger size of the study area or background sample area: More environmentally distant 

locations can be sampled. 

Evaluation of AUC Derived from Cross-Validation  

AUC values derived from a cross-validation procedure where a portion of the species 

occurrences are retained to test model performance, is considered more accurate than values 

calculated from fitting the training data alone (Merow et al. 2013). However, cross-validation will 

tend to overfit the model leading to inflated AUC values (Elith and Burgman 2002; Anderson and 

Raza 2010). Overfit and AUC inflation occur because it can be difficult to find spatially independent 

training and testing datasets when working with species occurrences (Hijmans 2012).   

Evaluation Using Continuous Likelihood Values  

AUC values are considered rank based where the higher the AUC value the better the model 

performs. However, a model’s performance can also be tested using the correlation between the 

known occurrences and their predicted relative likelihood values. The Pearson correlation coefficient 

is the generally used correlation test (Elith et al. 2006; Phillips and Dudík 2008).  
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Evaluation Using Thresholding Model Results  

Categorizing the continuous probability surface produced by the model into two or more 

classes based on a threshold value is a common practice to evaluate model performance (Scherrer et 

al. 2020). Areas are classed into species presence/absence or categories such as high and low 

suitability for the species on either side of the threshold. A confusion matrix is then generated and a 

statistical test such as Cohen’s Kappa is applied (Merow et al. 2013). Thresholding has been criticized 

for strictly placing likelihood values into either/or bins which reduces model information and are 

often not reflective of a real division (Liu et al. 2005; Jiménez-Valverde and Lobo 2007; Merow et 

al. 2013; Scherrer et al. 2020). Threshold values are often semi-arbitrarily assigned for example, at 

0.5 where values above are considered suitable, and values below are considered unsuitable. Larger 

values are also selected to increase confidence that suitable areas are in fact suitable at the expense 

of excluding some areas (Liu et al. 2005). Model output results have also been used to apply a more 

objective threshold with some degree of success (Jiménez-Valverde and Lobo 2007), however some 

question the utility of thresholding and instead suggest using tests which incorporates the continuous 

nature of the relative likelihood surface (Merow et al. 2013; Dearborn et al. 2022).  

Evaluation via Field Ground Truthing  

Field validation involves gathering a test data set by surveying sites within the study area and 

assigning a species presence likelihood or suitability score to the sites based on site attributes which 

are correlated to species presence. Similar to model statistic evaluation, the test data is then compared 

to the relative likelihood values from the response surface by applying thresholds and also by using 

the continuous relative likelihood values (Dearborn et al. 2022).   

Field validation can be rightly ignored in studies where the objectives are to simply evaluate 

modelling techniques and responses (Araújo and Guisan 2006; Elith and Leathwick 2009; Warren et 

al. 2021). However, field validation is considered the gold standard for model evaluation for real 

world applicability (Araújo and Guisan 2006; Elith and Leathwick 2009; Jiménez and Soberón 2020; 

Westwood et al. 2019; Dearborn et al. 2022; Draper et al. 2019). Statistical evaluation or partial field 

validation where only highly suitable areas are surveyed should not be considered an appropriate 
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substitute (Barry and Elith 2006; Elith and Leathwick 2009; Boria et al. 2014).  Testing the model to 

an independent survey data set however is rarely done due to extra expense from field surveys, data 

management, and analysis (Araújo and Guisan 2006; Elith and Leathwick 2009; Westwood et al. 

2019; Dearborn et al. 2022).   

In contrast to a static one-time evaluation, an iterative workflow can also be set up, in 

collaboration with conservation managers where models are improved upon by informing field data 

capture which is used to inform modelling (Pielke 2003; Burgman et al. 2005; Barry and Elith 2006).  

Cross-model comparisons using AUC Values  

Cross-model comparisons are usually done to compare different modelling techniques, or 

assess different modelling parameters or decisions on model performance.  

The same statistical tests used to evaluate a model can be used to make cross-model 

comparisons. Models can be ranked based on AUC values. Also, non-parametric tests such as 

Pearson’s correlation coefficient and Wilcoxon tests are used by comparing known occurrences to 

predicted with the resulting test statistic used to compare models against each other. And lastly, 

Kappa type statics are generated for each model from confusion matrixes by thresholding known and 

predicted occurrences (Elith et al. 2006).  

However, cross-model comparisons tend to be highly constrained in space and time since 

AUC values are influenced by study area geographic extent and resolution, and target species among 

other model parameters (Araújo and Guisan 2006; Randin et al. 2006; Anderson and Raza 2010; 

Owens et al. 2013; Sousa-Silva et al. 2014). 

2.1.11 Using a Model  

As noted above, an AUC value higher than 0.5 indicates the model discriminates or classifies 

better than random (Hanley and McNeil 1982). Therefore, the higher the AUC value the better the 

model performs making it more useful to inform conservation management actions. However, there 

is no consensus on how high the AUC should be before model performance is considered adequate 

for application. An AUC of 0.8 is generally viewed that the model is useful, however arbitrary, that 

limit is assigned (Jiménez and Soberón 2020). Others note cut-offs at 0.75 (Elith and Burgman 2002; 
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Elith et al. 2006; Sousa-Silva et al. 2014) and 0.7 (Dearborn et al. 2022) above which the model is 

informative enough to be used for decision making.  

When using a SDM the focus is usually on the relative likelihood surface generated for the 

species. This layer is usually central to using the model for species-at-risk conservation because it 

shows locations where the species potentially occurs, and does not occur, within the study area. 

However, the continuous likelihood values are difficult to understand (Jiménez-Valverde and Lobo 

2007). Therefore, despite model evaluation generally discouraging thresholding, it is used here to 

make sense of the relative likelihood surface and be more useful for conservation work (Liu et al. 

2005; Lobo et al. 2008).  

Classification of the surface can be binary presence/absence or low, medium, and high classes 

(Phillips et al. 2006; Lahoz-Monfort et al. 2010; Anderson and Gonzalez 2011). These classes can 

also be quantified by area, as another method to cross-compare model results (Lahoz-Monfort et al. 

2010).   

2.1.12 Model Error, Bias, and Assumptions  

Models invariably simplify the linkages between a species and how it distributes on a 

landscape. There will always be some mismatch or error between the predicted distribution and what 

is real (Veregin 1989; Barry and Elith 2006). Producing a highly accurate model is the goal of most 

studies, so model error is generally maligned. Although error is not necessarily a bad thing. Burgman 

et al. (2005) state that “All models are false” and a proper understanding of model error informs the 

level of uncertainty or risk in conservation actions so that managers can develop robust plans. Model 

error can also inform error in ecological knowledge, which can subsequently be used to correct model 

error using an iterative approach.  

Species Occurrence Error and Bias  

Habitat suitability modelling relies heavily on the accuracy of the species occurrence data 

used to construct the species “realized niche” or the species “environmental envelope”, which is 

subsequently mapped across a landscape to predict suitable habitat locations (Guisan and 

Zimmermann 2000).  However, many authors discuss sample error (Veregin 1989; Hijmans et al. 
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1999; Rowe 2005; Elith et al. 2006; Graham et al. 2008) and sample bias (Hijmans et al. 2000; Reese 

et al. 2005; Araújo and Guisan 2006; Phillips et al. 2006), especially for modelling rare species, since 

occurrence data is usually sparse and extracted from surveys with other objectives in mind (Elith et 

al. 2006). Sample error generally refers to error made when collecting a sample. In the case of a 

Dakota skipper observation, examples of sample error could include: taxonomic, geographic location, 

location description, transcription, lack of absence data, and small sample size (Veregin 1989; 

Hijmans et al. 1999; Rowe 2005; Graham et al. 2008). Sample bias refers to unequal sampling effort 

and can be due to infrastructure (e.g. surveys confined near roadways), habitat (disproportional 

sampling in some habitats), hotspot (more sampling in areas of high species diversity), and species-

area (over or under sampling in an area a species occurs) (Hijmans et al. 2000; Reese et al. 2005; 

Phillips et al. 2009). Other biases include a currency bias, where too much time has elapsed since 

collection occurrence/absence data, or where there have been multiple negative observations since 

initial discovery, or reduced confidence that the habitat is still suitable. The occurrence would then 

provide false information to the model (Pearson et al. 2004; Phillips and Dudík 2008). Absence data 

bias refers to non-detection of a species at a location due to under sampling or previous disturbances 

(Hirzel and Guisan 2002).  

Both sample error and bias can degrade a model’s predictive performance (Pearson et al. 

2004; Reese et al. 2005). While sample error tends to affect performance directly, bias in geographic 

space can cause bias in environmental space and lead to model overfit to those biases (Phillips et al. 

2009; Boria et al. 2014). Model overfit may show excellent performance but could effectively be 

incomplete by emphasizing sample effort through bias, and underemphasizing results related to the 

species environment and distribution (Phillips et al. 2009; Boria et al. 2014).   

Some researchers (Guisan and Zimmermann 2000; Reese et al. 2005) suggest survey design 

should be developed with the expressed objective of modelling. However, most acknowledge that 

this is usually not realistic nor practical, (Lischke et al. 1998; Hijmans et al. 2000; Rowe 2005; Elith 

et al. 2006; Graham et al. 2008). Work is then usually done to mitigate these errors and biases (see 

Elith et al. 2006) or to at least acknowledge their existence and realize model performance may suffer 
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(Pearson et al. 2004; Reese et al. 2005). Others have tested spatial bias and found simulating close 

proximity to roads mimics a systematic sample design (Reese et al. 2005). Still others (Graham et al. 

2008) compared models using actual occurrences to the same occurrences with simulated locational 

error and found model prediction was degraded but robust enough to still be useful. Other studies 

suggest averaging the environmental predictor values around a point occurrence to account for spatial 

inaccuracies (Graham et al. 2008) or partition the dataset based on location accuracy (Pearson et al. 

2004).   

To reduce spatial bias, Boria et al. (2014) employed a priori spatial filtering which they 

showed reduced model overfitting, and increased model performance. Phillips et al. (2009) found 

spatially biased presence-absence data still outperformed presence only or pseudo-absence data. They 

then modelled absence data by using occurrence data from a “target group” of species that share 

similar survey methods and spatial bias to increase sample size.  

Static and Dynamic Models and Equilibrium  

Static models assume equilibrium or quasi-static state between the target species and the 

environment where dynamic models simulate a changing environment over time (Lischke et al. 

1998). Equilibrium can hold true in relatively short time frames, especially if there are no strong 

natural or anthropogenic disturbances, or succession (Lees and Ritman 1991; Brzeziecki et al. 1993), 

or if the species reacts slowly to change (Guisan and Zimmermann 2000).  Occurrence currency error 

as noted above can also violate the equilibrium assumption (Pearson et al. 2004; Phillips and Dudík 

2008).  

Despite these drawbacks, static models can be more simply constructed, represent larger study 

regions, and require less detailed knowledge about the species (Guisan and Zimmermann 2000). Also, 

in some cases, environmental predictors which account for dis-equilibrium can be included in static 

modelling (Lees and Ritman 1991).  

Dynamic models are generally considered more realistic but more complex to model because 

they include both space and time (Lischke et al. 1998). However relatively recent increases in 

computation and storage capacity in parallel with advances in a machine learning have made dynamic 
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modelling easier to implement. Advances include developing sophisticated “Digital Twins” models 

(Botín-Sanabria et al. 2022) which could be implemented in SDM research. 

Environmental Predictor Error  

Just as there are numerous environmental predictors available for modelling, there are also 

numerous environmental predictor errors which should be addressed, if possible, to avoid poor model 

performance (Reese et al. 2005). Predictor errors include: Resolution, spatial error, currency, 

intercorrelation, and relevancy (Lischke et al. 1998; Austin 2002; Barry and Elith 2006; Phillips et 

al. 2006; Lahoz-Monfort et al. 2010; Fourcade et al. 2014).  

Resolution error takes the form of geographic and environmental niche resolution (Lischke et 

al. 1998; Austin 2002; Barry and Elith 2006; Beauvais et al. 2006; Phillips et al. 2006; Lahoz-

Monfort et al. 2010). Predictors need to interact with the species at the geographic scale of the study 

(Lees and Ritman 1991). For example, applying climatic variables for a regional level study is likely 

inappropriate. At the study scale, too high or low spatial resolution of the predictor can also cause 

error and render a model less accurate (Lischke et al. 1998; Pradervand et al. 2014).  For example, 1 

km grid size at a regional level may be too coarse a grain size, resulting in the elimination of smaller 

features (Barry and Elith 2006). Alternatively, high resolution predictors, coupled with highly 

accurate occurrence data and a vagile species may cause information loss, necessitating other 

approaches such as averaging predictors across a larger area (Graham et al. 2008).  

Spatial error refers to locational accuracy, or how well located a predictor feature is in space 

(Barry and Elith 2006). For example, Landsat satellite images boast 30 m pixel resolution, however, 

Landsat 8 and 9 location error can be approximately 17 m to 30 m. Depending on the correction data 

available for Landsat 7, spatial error is generally greater (USGS 2024). Therefore, a pixel may 

actually represent one of eight 30 m patches of land adjacent to its current location. Vector soil layers 

are another example where spatial accuracy of the soil polygon features varies depending on the 

accuracy of original soils maps and the resolution they were digitized. Lower resolution results in 

coarser polygon borders that do not match actual physical locations of the soil they are meant to 

represent, as compared to higher resolution.  
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Currency or temporal error is also a concern (Barry and Elith 2006; Phillips et al. 2006). 

Predictors which are older or newer than the species occurrence may violate the species-environment 

equilibrium assumption.  

Intercorrelated predictors present another error type potentially contributing to model overfit 

(Fourcade et al. 2014) because they convey similar information. An example is two vegetation indices 

derived from the same imagery bands. Derived predictors like these are particularly vulnerable and 

intercorrelation should be measured and controlled by removing highly correlated predictors (Brotons 

et al. 2004; Lahoz-Monfort et al. 2010; Fourcade et al. 2014; Merow et al. 2014).   

A predictor also may not have information to contribute to modelling a species environmental 

niche (Austin 2002; Barry and Elith 2006). For example, distal predictors, such as slope or 

interpolated soil moisture data, may not adequately characterize a species proximal physiological 

trait such as moisture, nor have adequate resolution to inform a model.   

Finally, models construct an approximate niche space from a selection of predictors and, if 

the selection is satisfactory, will produce a model with usable predictive power. However, adequate 

predictors may simply not exist for a species, or when available lack of ecological knowledge about 

the species prevents their use. Also, given the vast number of predictor options, modelers may be 

ignorant of available predictors.  These are considered “missing” predictors and their absence may 

reduce model predictive power (Barry and Elith 2006). Building a useful model may still be limited 

by missing predictors despite leveraging the best available remote imagery and geospatial data and 

implementing the best current practices to create other novel predictor variables. For example, despite 

knowing that the Dakota skipper is a mixed and tall grass prairie obligate, it is currently difficult to 

detect tall grass prairie from remotely sensed imagery. 

2.1.13 Past and Current Work  

Previous studies have used satellite imagery as the sole generator of model variables (Bellis 

et al. 2008; Lahoz-Monfort et al. 2010; Culbert et al. 2012; St-Louis et al. 2014; Halford et al. 2024). 

However, they lacked provisions to compare the resulting model to a model using common variables. 

Indeed, their study area was deliberately chosen because it was identified as an environmental layer 
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“data-poor region” (Lahoz-Monfort et al. 2010). The commonly used land cover variable was the 

focus for two of the studies (Culbert et al. 2012; Duro et al. 2014)  which was criticized primarily for 

removing within-class habitat variability which may degrade species-habitat relationship information 

needed for modelling. Furthermore, classification removes the fuzzy boundary ecotone between 

habitats in favour of a hard-edge. And finally general concerns over classification standards, temporal 

currency, and expense in production of these layers (Bellis et al. 2008; St-Louis et al. 2014). These 

two studies attempted to address the criticisms of using land use derived model variables by 

comparing them to NDVI (Duro et al. 2014) and texture (Culbert et al. 2012) variables derived from 

Landsat imagery. However, in both studies, the focus was on narrowly comparing categorical land 

use variables to continuous NDVI and texture variables to pattern overall species richness in a 

relatively large area, instead of creating rigorous SDMs for a species in a defined region. 

My study area has many years of coverage for commonly used model variable layers which 

will be used to test the utility of the two quite different model approaches to identify Dakota skipper 

habitat. Also, none of the studies validated their models by direct field ground truthing the results as 

done in my study.  

My study also leverages newer sensor platforms (Landsat 8 and Sentinel 2) which offers 

higher spatial resolution and solves a previous issue with Landsat 7TM associated with degraded 

image quality (ESA (European Space Agency) 2015; USGS and NASA 2019). Both Common and 

Satellite models were generated using Maximum Entropy (MaxEnt) software (Phillips et al. 2006). 

MaxEnt is a “machine learning” modelling application which was chosen since it is freely available, 

commonly used by government and industry and relatively easy to operate (Fourcade et al. 2014). 

Studies which evaluated various modelling approaches found that machine learning models 

outperformed other types such as generalized additive models (Elith and Graham 2009; Dearborn et 

al. 2022).  MaxEnt also can use presence-only species data points, which is preferred given studies 

have shown that presence-only models also outperform models requiring presence and absence 

species points (Elith et al. 2006; Dearborn et al. 2022). Relying only on presence-only data also 
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eliminates the need for absence data which can be highly problematic to verify (Guillera-Arroita et 

al. 2015).   

The Canadian Federal Recovery Strategy for the Dakota skipper (Environment Canada 2007) 

sets out recovery objectives and recovery planning priorities. SDM modelling is considered a high 

priority task to counter habitat loss and degradation and identify potential habitat to survey.   

Previous research has described local biotic and abiotic site/habitat characteristics during 

surveys (Schilcht and Saunders 1995; Swengel and Swengel 1999; Cochrane and Delphey 2002; 

Webster 2003, 2007) and as the main objective of their study (Dana 1991, 1997; Bates 2006; Morden 

2006; Royer et al. 2008; Rigney 2013). Four recent SDMs have been created for the Dakota skipper, 

however, all four used a mixture of common and satellite imagery derived environmental variables 

(Table 1). Three of the studies were situated in regions outside of the Manitoba Interlake area (Post 

van der Burg et al. 2020; Seidle et al. 2020; Barnes et al. 2024). The study by Seidle et al. (2020) 

was created for a region in south-western Saskatchewan and  the study by Barnes et al. (2024) Post 

van der Burg et al. (2020) was applied to three and four US states, respectively. In both cases the 

habitat is likely substantially different than that found in the Interlake area of Manitoba and therefore 

they cannot be directly comparable. Dearborn et al. (2022) generated models for two areas in 

Manitoba, one area being the Interlake using MaxEnt modelling software. However, they used a 

mixture of common and satellite imagery derived environmental variables which have relatively low 

spatial resolutions compared to the Sentinel 2 imagery used in this study.
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Table 1. Previous Dakota skipper SDMs with Environmental Variables 

Study Environmental Variables 

Post van der Burg et al. 2020 1. Land cover 

2. Soil series- Topographic slope 

3. Soil series- Drainage 

Seidle et al. 2020 1. Soil series- Class, bulk density, organic carbon, present sand,    

    percent silt, percent clay, A horizon depth, ammonium. 

2. Grasslands- Custom developed 

3. BIOCLIM- Variables BIO1 to BIO19 

Dearborn et al. 2022 1. Landuse- Distance to Cropland 

2. Landuse- Distance to Wetland 

3. Landuse- Grassland percent (moving window) 

4. Landuse- Distance to Forest 

5. Landuse- Grassland shared edge 

6. Mean spring surface temperature- MODIS 

7. Mean snowmelt date- MODIS 

8. Topographic wetness model- SRTM 

9. Soil series 

Barnes et al. 2024 1. Rangeland Analysis Platform-Landuse 

2. Potentially Undisturbed Lands Layer-Landuse 

3. GeoMorph90 

4. SoilGrids250v2.0 

5. AdaptWest-BioClim 

6. Sentinel 2-Indices 
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CHAPTER 3: METHODS 

3.1 Study Area 

The study area is located in the Interlake area of Manitoba, Canada centered on (97.60N 50.70W 

WGS84). The Interlake Study Area (IL) combines the Ecodistricts of Ashern, Gimli, Lundar, and 

the northern portions of Winnipeg and Portage (within the Interlake Plain and Lake Manitoba Plain 

Ecoregions) comprising approximately 24,800 km2 (ESWG (Ecological Stratification Working 

Group) 1995; Marshal et al. 1999) (Appendix 3). Ecodistricts are “distinctive assemblages of 

landform, relief, surficial geological material, soil, water bodies, vegetation, and land uses” 

(ESWG (Ecological Stratification Working Group) 1995). I chose to use Ecodistricts to define the 

study area since they describe relatively natural boundaries and homogeneous environments in 

contrast to a sized rectangle. Ecodistricts were used to constrain the areas to be modelled relatively 

close to the “geographic domain” of the modelling data. In other words, extending the study area 

outside of this domain, into more heterogenous environments, can degrade model performance by 

introducing variation in unknown environmental variables or disturbance regimes (Elith et al. 

2006; Randin et al. 2006). The study region contains of most of the known Dakota skipper 

Interlake occurrences and encompasses what appears to be the Type A habitat present in the 

Interlake. There is also additional area which superficially may contain suitable habitat and also a 

portion of area which is modified by agriculture but may contain smaller pockets of overlooked 

suitable habitat. I chose to exclude most of the southern portion of the Winnipeg Ecodistrict 

because this area of unsuitable habitat would likely reduce model accuracy and the extensive crop 

agriculture has likely eliminated any remaining suitable habitat (Jiménez and Soberón 2020).  

Climate influences of the study region include: The Lake Manitoba Plain Ecoregion has 

mean annual temperatures of 2 to 3 °C (mean summer 16 °C; Mean winter -12.5 °C) and mean 

annual precipitation of 450-700 mm. The Interlake Plain Ecoregion measures annual average 

temperature of 1 °C (mean summer 15.5 °C and mean winter -14.5 °C)  and mean annual 

precipitation is between 425-575 mm) (ESWG (Ecological Stratification Working Group) 1995).  
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The southern Interlake is heavily modified by agricultural land use and generally 

transitions from aspen parkland in the south to boreal forest to the north. The south and east 

portions of the study area are made up of predominately flat agricultural cropland with smaller 

aspen and oak woodlots which steadily transitions northward to a mosaic of cattle pasture, hayland 

meadows, lowland sedge meadows, and wetland with aspen forest. This area then transitions to 

mixedwood forests, and finally to predominately conifer forest and peat bogs (Manitoba Remote 

Sensing Centre 2006). While tall grass prairie habitat historically comprised the grassland 

component of this mosaic, the majority of the prairie in the study area has either been converted 

to cropland, hayland, degraded by pasturing animals, or has been subject to the introduction of 

invasive plant species (Henderson and Koper 2014).  

 

3.1.1 Modelling Approach 

MaxEnt species distribution modelling software was chosen to model Dakota skipper 

distribution in Manitoba. Previous studies which evaluated various model types found that 

machine learning models such as MaxEnt, Boosted Regression Trees, and Random Forest 

outperformed non-machine learning models such as generalized additive models and multivariate 

adaptive regression splines (Brotons et al. 2004; Elith et al. 2006; Phillips et al. 2009). Machine 

learning models have also been found to perform better with presence-only data compared to non-

machine learning modelling options (Elith et al. 2006; Phillips et al. 2009; Dearborn et al. 2022). 

Additionally, MaxEnt is user-friendly and is one of the most commonly employed tools in species 

distribution modelling research (Merow et al. 2013). 

MaxEnt predicts species occurrences by creating a relative probability surface of 

occurrence for a species within a study area from a set of species presence point locations. It does 

this by determining the mean values of a chosen number of biotic and abiotic environmental 

variables of existing species locations to create a set of environmental constraints. The chosen 

environmental variables are transformed to so-called features or functions which best describe the 

variable data. The software then compares the set of environmental constraints to mean values 
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found at a set of random background point locations taken across the study area and determines 

how well they agree with the constraints. The resulting model is validated with a retained set of 

species presence points. From all the model variants which satisfy the environmental constraints, 

MaxEnt selects the model of maximum entropy or the model which is least constrained. This tends 

to strike a balance between selecting an under-specified model which may be biased or lack 

predictive power and an over-specified model which may overfit the data leading to over-confident 

predictions and a model specific to only the input dataset. MaxEnt improves the discrimination of 

a set of randomly selected sites to the presence location constraints through an iterative approach. 

The selected model will then classify the entire study area creating the relative probability surface 

for a particular species (Phillips et al. 2006; Phillips and Dudík 2008). 

3.2 Species Occurrence Selection 

Dakota skipper occurrences were sourced from the Manitoba Conservation Data Centre 

and Environment and Climate Change Canada (Manitoba Conservation Data Centre 2018; 

Environment and Climate Change Canada 2021). These sources were chosen as they contained the 

best available current and historic occurrence information for Manitoba based on all known Dakota 

skipper surveys (Appendix 1. Dakota skipper survey references. Occurrences were compiled into 

geospatial vector point, polyline, and polygon feature representations using an internationally 

recognized data entry standard (NatureServe 2002). Point features describe low locational 

uncertainly (i.e. location captured using a GPS) and polyline and polygon features were used to 

describe observations with higher location uncertainty. For example, a buffer maybe applied to an 

observation with a poor location description or imprecise geographic coordinates to illustrate the 

uncertainty. Since point features are required for the analysis, the point feature occurrences were 

merged with the polyline and polygon features after first converting to centroid points. The 

locational uncertainty of the observations was retained in the attributes. Occurrences from both 

sources, generally located in the Interlake area were extracted regardless of year when observed 

(N=167 Year range: 1987 – 2020). Location and attribute information errors including taxonomic, 

geographic location, location description, and transcription (Veregin 1989; Hijmans et al. 1999) 
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were searched for and corrected where possible. Figure 2 illustrates the selection process. 

Specifically, duplicate observations both within and between datasets were first removed. Then, 

observations with a locational uncertainty of 100 m or greater were removed unless the centroid 

or a location within the uncertainty buffer could be found in habitat that looked reasonably suitable 

when viewed using current satellite or air photos. Remaining observations were then removed if 

the habitat was obviously unsuitable. For example, the point was retained if located in hay land or 

native pasture but was not retained in a woodlot, cropland or if the area was obviously disturbed 

which would indicate a land use change since the observation. Visit notes supplied by surveyors 

were used when available to inform habitat type and quality. Sample thinning was then employed 

to reduce spatial autocorrelation and potential model overfit which can occur if observations are 

spatially close (Boria et al. 2014). The older and/or less locationally accurate point within 30 m of 

another observation was removed (Lischke et al. 1998; Boria et al. 2014; Fourcade et al. 2014). 

Based on this screening process, of the initial 167 Interlake occurrences, 87 Dakota skipper 

occurrences were accepted into the study for the Interlake (Year range: 1995 - 2020; Average: 

2009; 40% from 2002, 23% from 2020, 6% 2018, and 31% from other years). Figure 3 shows that 

the general locations of the retained occurrences are concentrated in the centre and east of the study 

region, near the towns of Lundar and St. Laurent. 
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Figure 2. Dakota skipper occurrence location selection process, (Manitoba Conservation Data 

Centre 2018; Environment and Climate Change Canada 2021) 
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Figure 3. General locations of Dakota skipper occurrences in the Interlake study region used in 
model construction (each general location may represent one to many occurrences) 

 

 

3.3 Variable Creation and Selection 

3.3.1 Common Model Variable Creation 

I chose four geospatial layers commonly used in SDMs. Three of which were used in 

previous Dakota skipper SDMs and are listed in Table 2. Common model variables and displayed 

in Appendix 2. Common Model and Satellite Model variable maps including: Land use/Land 

cover, Soils, and the Shuttle Radar Topology Mission digital elevation model (SRTM DEM). The 
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fourth layer, the Forest Resource Inventory (FRI) is also commonly used in SDMs where available.  

All four layers are freely available on Manitoba Government websites (Manitoba Land Initiative 

2017; Manitoba Government 2022). Of these four layers, I only used the original Land use and 

SRTM DEM layers in the models. I did not use the FRI or Soils layers directly, however, from the 

FRI I created: Closest Forest Stand Area and Distance to Nearest Deciduous Forest. From the soils 

layer I created: Soil Ph, Soil Deposition Mode, and Soil Drainage (Table 2. Common model 

variables). Despite being the most current versions available, the Common Model variables are 

older compared to the oldest satellite imagery from 2016. The FRI is the oldest at 37 years with 

the most current being the land use layer at 10 years. Some portions of the soil survey layer are 

even older at 59 years. This supports the concern that Common Model variables lack timely 

updates.  

Table 2. Common model variables 

Variable 
Number  

Variable 
Abbreviation  

Variable 
Name  

Layer 
Used  

Resolution 
(m2)  

Software  Acquired  Source  

1  Landuse  Land use  Provincial 
land use 
layer  

30 ARC  
  

2004 to 
2006  

(Manitoba 
Remote 
Sensing Centre 
2006)  

2  Closest_stand_area  Area of 
closest 
deciduous 
stand  

Provincial 
FRI layer  

30 ARC  
  

1979 to 
1992  

(Manitoba 
Conservation 
1996)  

3  Dist_Deciduous  Distance to 
closest 
deciduous 
stand  

Provincial 
FRI layer  

30 ARC  
  

1979 to 
1992  

(Manitoba 
Conservation 
1996)  

4  Soil_PH  Soil pH  Provincial 
soil laye  

30 ARC  
  

1953 to 
1975  

(Agriculture 
and Agri-Food 
Canada 2017)  

5  Soi_mode_deposit  Soil 
deposition 
mode  

Provincial 
soil layer  

30 ARC  
  

1953 to 
1975  

(Agriculture 
and Agri-Food 
Canada 2017)  

6  Drainage  Soil 
drainage  

Provincial 
soil layer  

30 ARC  
  

1953 to 
1975  

(Agriculture 
and Agri-Food 
Canada 2017)  

7  DEM_SRTM30  SRTM 
DEM  

SRTM 
DEM  

30 ARC  2000  (Farr et al. 
2007)  
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Land Use Variable 

A land use raster mosaic covering the Interlake study area was created from combining 

portions of seven of the most current land use tiles covering various extents acquired from the 

Manitoba Remote Sensing Centre. The land use layers were created by the Centre from Landsat 

7TM+ satellite imagery acquired from 2004 to 2006 with 30 m pixel resolution. Appendix 4 lists 

the Manitoba Land use classification system includes 18 coarse land cover/land use classes 

representing natural vegetation and anthropogenic phenomena (Manitoba Remote Sensing Centre 

2006). The land use mosaic was added as a model variable “as is” with no secondary variables 

produced from the layer. An approximate 17 km2 portion of the upper north-east corner of the 

study area had no available coverage representing 6.8% of the total study area. 

Forest Resource Inventory (FRI) 

I created a vector mosaic of the Manitoba FRI encompassing the study region using 

portions of the most recent coverages of nine Forest Management Units: 1, 2, 10, 23, 40, 41, 43, 

and 45. The FRI was created from interpreting air photos at a scale of 1:15,840 production date 

range between 1979 and 1992 (Manitoba Conservation 1996). Preliminary analysis suggested that 

known Dakota skipper occurrences are associated with adjacent deciduous forest (i.e. Trembling 

aspen) stands next to grassland. Therefore, to model this relationship, a deciduous forest layer, 

defined as containing less than 25% conifer trees, was created from the FRI and the model 

variables, area of closest deciduous forest stand, and distance to closest deciduous forest stand 

were generated. To create the deciduous forest layer, I initially considered all FRI habitat classes 

including Forested and Non-Forested Land. Non-Forested Land was removed from the study even 

though some habitat types contained forest, tree species were not provided. The FRI further 

distinguishes Forested Land as either “Productive Forested Land” from “Non-Productive Forested 

Land”.  I only selected deciduous forest from Productive Forested Land since Non-Productive 

Forested Land habitat does not support deciduous trees or the deciduous habitat type was not 

considered applicable i.e. “Hardwood Treed Rock class.” (Manitoba Conservation 1996). 
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Soil variables 

Soil influences water and nutrient availability for plants and provides variable substrates 

for growth. I therefore wanted to represent soil variables in the SDM. 

A Manitoba Detailed Soil Survey, freely available from Agriculture and Agri-Foods 

Canada website (Agriculture and Agri-Food Canada 2017) was selected for the study. The 

polygons were digitized at 1:100 000 scale from various soil surveys conducted in Manitoba to 

create a comprehensive provincial soil layer. Just under half of the soil polygons are from detailed 

soil surveys with a 1:20,000 scale where the other polygons are soil reconnaissance surveys with 

scales at 1:100,000, 1:250,000, and 1:126,720. The detailed soil polygons are primarily in the 

lower southern portion of the study area particularly in the southeast. The study area contains four 

large area soil surveys ranging in year and scale of 1953 to 1975 and 1:100,000 to 1:126,720 

respectively (Agriculture and Agri-Food Canada 2017). 

The attributes soil pH, drainage, and mode of soil deposition were selected from the soil 

attribute table for use in the model and the layer clipped to the study area. 

Digital Elevation Model variable 

Elevation is thought to influence water drainage and retention on the landscape including 

floristic composition, soil development, and solar radiation absorption (Brown 1994; Rich and Fu 

2000; Farr et al. 2007; Elith and Leathwick 2009). For these reasons elevation was chosen as a 

model variable. 

I chose the Shuttle Radar Topography Mission (SRTM) Version 3-1. arcsecond data 

product captured in 2000 during a NASA Space Shuttle mission, which covered between 60N and 

60S latitude with a horizontal spatial resolution of approximately 30 m at the equator (Farr et al. 

2007) and is freely available as 1 x 1 arcsecond of latitude and longitude tiles or approximately 70 

x 110 km tiles with 27 m horizontal resolution in the study area (study area mean elevation = 264 

m; range: 212 m – 313 m) (United States Geological Survey 2015). The individual tiles were 

merged then clipped to the study area. The SRTM DEM was used because it had the best available 

resolution and coverage for the study region. Two other DEMs created for producing digital 
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orthophotos were not used because both had limited coverage for only southern Manitoba. The 

older DEM used for a 1998 ortho imagery series had 100 m cell resolution while a more recent 

ortho refresh, ending in 2014, produced an inferior DEM (Murray 2013 unpublished data). The 

SRTM DEM may better be classified as a digital surface model (DSM) because it will tend to 

overestimate ground elevation because vegetation and other features will differentially absorb the 

radar pulse then reflecting a portion of the beam back to the sensor before it reaches the ground. 

Research has been done to correct for this overestimate by determining to what extent various 

vegetation types absorb the radar beam (Carabajal and Harding 2006). However, the techniques 

were either too general (Zhao et al. 2018) or were specific to other habitats (Su et al. 2015).  

3.3.2 Satellite Model Imagery Sources 

Sentinel 2 remotely sensed satellite imagery and Shuttle Radar Topology Mission (refer to 

the DEM section under Common Model Variable Creation) imagery were the two sources for 

creating candidate variables for the Satellite model (See above section for details about the SRTM 

DEM). 

At the time of the study, Sentinel 2A multi-spectral imager (MSI) was one of a proposed 

pair of satellites (Sentinel 2A and Sentinel 2B) operated by the European Space Agency. Sentinel 

2A became operational in 2016 and, using a multi-spectral imager (MSI) “push broom” sensor, 

acquires 110 x 110 km2 tiles of 13 bands (4 10 m, 6 20 m and 3 60 m resolution) with, at the time, 

a ten-day return period between latitudes 56S and 83N.  It was selected because the imagery is 

freely available, provides extensive coverage, a short return period, has 13 image bands, and 

relatively high spatial resolution. 

Easy access, province-wide coverage, and short return window makes it more likely that 

suitable cloud-free imagery can be acquired for a large study area and allows for image processing 

workflows to be easily transferred to creating SDMs to other areas of the province. Large 110 x 

110 km2 tiles reduce the number of tiles for a study area reducing potential edge issues and 13 

bands allows the creation of numerous indices. The more commonly used visible and near infrared 

bands have 10 m pixel resolution and the other 20 m and 60 m bands can be resampled to 10 m. 
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Higher resolution makes this imagery ideal for the Interlake study area where the mosaic of Aspen 

forest and grass meadows can be closely spaced and using higher resolution imagers can reduce 

“pixel bleed” which can lead to spurious interpretation by the modelling software algorithm. 

3.3.3 Satellite Model Imagery Processing 

Sentinel 2 tiles covering the study area were downloaded (European Space Agency 2023) 

which contained minimal cloud cover and acquired during the grassland growing season, between 

mid-June and mid-August.  

At the time of the study approximately two years of imagery was acquired due to the recent 

launch of the sensor. I sought to have complete coverage for the 2016 season, the earliest imagery 

available. However, two tiles from 2017 were substituted due to extensive cloud cover in the 

matching 2016 tiles. In all, eight tiles completed coverage of the study area consisting of six 

acquired in mid-June of 2016 and two acquired in early July of 2017. Figure 4 shows the spatial 

extent of imagery acquired for both years the date individual tiles were acquired. The 2016 

acquisition was in the west and north portion of the study region and the 2017 acquisition was in 

the eastern and more of the south portion.  The one-year difference in acquisition time was less of 

a concern than ensuring close season dates. There was also likely negligible land use change during 

this short time period. 

 

 

 

 

 

 

Figure 4. Extent of Sentinel 2 imagery for the study region. Information acquired in 2016 (red 
area) and 2017 (blue area) and the spatial extent and date individual tiles (delineated by thin black 
lines) were acquired. 
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ESA SNAP software (European Space Agency 2017) designed for Sentinel satellite 

imagery was used for viewing and processing the imagery. Since image processing was generally 

computer intensive I distributed work tasks across four virtual computers on Microsoft Azure 

cloud services (Microsoft Corporation 2018). Imagery is generally offered pre-processed to level 

“1C” which provides top of atmosphere (TOA) reflectance. Recognizing that atmospheric 

distortions may negatively affect modelling, I used the SNAP “sen2cor” plug-in (Mueller-Wilm 

et al. 2018) to obtain level “2A” or bottom of atmosphere (BOA) reflectance imagery. Level 2A 

BOA was used to create model variables when possible however some bands are dropped during 
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the 1C to 2A processing which are needed to produce some indices which necessitated using Level 

1C. 

The bands for the 1C TOA and 2A BOA tiles were resampled to 10 m resolution using the 

SNAP resample tool offered with the main software package designated “simple resolution”. The 

2A tiles were also resampled using the SNAP “super resolution plug-in “sen2res” (Brodu 2018; 

European Space Agency 2018). This plug-in produces a more sophisticated 10 m resolution 

product by using the existing 10 m bands to determine how best to unmix the 20 m and 60 m 

pixels. The process is loosely analogous to using a higher resolution panchromatic image (e.g. the 

Landsat panchromatic band) to pan-sharpen lower resolution bands. Three separate 10 m 

resolution mosaics were then created by merging the differently processed tiles: Level 1C TOA 10 

m Simple Resolution, Level 2A BOA 10 m Simple Resolution, Level 2A BOA 10 m Simple 

Resolution, and Level 2A TOA Super Resolution. 

I attempted a cloud free Level 2A BOA 10 m resolution mosaic for 2016 by creating a 

synthetic image using the SNAP sen2three processor (European Space Agency 2017, 2018). This 

processor takes a time-series stack of tiles, in this case all from the 2016 acquisition window, and 

systematically replaces “bad” pixels, such as cloud, with “good” pixels from another overlapping 

image acquired at a different time. Processing was computer and time intensive and upon visual 

inspection revealed that the processor replaced shadow as no-data pixels. This was particularly 

pronounced for cloud shadow. These errors made this imagery product unsuitable for the analysis 

and therefore was not used in the model. 

SRTM Version 3 1 arc-second tiles of the study area were obtained from EarthExplorer 

(United States Geological Survey 2018). ArcGIS Desktop (ESRI (Environmental Systems 

Research Institute) 2018) was used to merge the tiles to make a 30 m resolution mosaic. The 

commonly used DEM interpolator, Inverse Distance Weighted (IDW) was applied to resample 

from 30 m to 10 m pixel resolution to match the resolution of the Sentinel 2 imagery. The resulting 

30 m and 10 m SRTM DEMs mosaics were then clipped, maintaining a one-kilometer buffer from 

the study area boundary to reduce interpolation errors close to the boundary edge. 
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In all, five mosaics were created (Table 3. Imagery mosaics created from Sentinel 2A and 

SRTM tiles used to create model variables.Error! Reference source not found.) which were then 

used to produce the imagery only model variables. 

3.3.4 Variable Processing and Creation 

Variables derived from the Sentinel 2A imagery were created from functions using various 

band combinations from the same mosaic. The SRTM DEM was used with specific geoprocessing 

formulas to generate the other DEM related variables. In all, forty (40) candidate variables were 

created in total. Twenty-two (22) from the three Sentinel 2A mosaics (Level 1C TOA 10 m Simple 

Resolution, Level 2A BOA 10 m Simple Resolution, and Level 2A BOA Super Resolution). Ten 

variables were created from the two SRTM mosaics, SRTMDEMRes30m and 

SRTMDEMRes10m. Eight additional variables were created from the NDVI8a candidate variable 

which was initially created from the Level 2A SuperRes10m mosaic. These 40 candidate variables 

were then grouped into seven classes based on variable similarity (Appendix 5. . 

 

Table 3. Imagery mosaics created from Sentinel 2A and SRTM tiles used to create model variables. 

Remote 

Sensing 

Platform 

Input 

imagery 

Tiles 

Initial 

Resolution 

(m2) 

Output Mosaic Bands Final Resolution 

(m2) 

Processor 

Sentinel 2A 2A (BOA) 10m to 60m Level 2A 

SuperRes10m 

 10 SNAP super 

resolution 

resampling 

Sentinel 2A 1C (TOA) 10m to 60m Level 1C TOA Simple 

Res10m 

 10 SNAP regular 

resampling 

Sentinel 2A 2A (BOA) 

 

10m to 60m Level 2A BOA Simple 

Res10m 

 10 SNAP regular 

resampling 

SRTM SRTM 30m SRTMDEMRes30m  30 NA 

SRTM SRTM 30m SRTMDEMRes10m  10 ArcGIS IDW 

geoprocessor 
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3.3.5 Variables Derived from Sentinel Imagery 

Vegetation Group 

Eight vegetation indices were generated from the Sentinel 2 super resolution mosaic using 

the SNAP software (European Space Agency 2017). Three index formulas offered by the SNAP 

software were used to generate six vegetation indices. Each index was developed twice using the 

red and the red edge band respectively. The red band was simply swapped with the red edge band.  

These three indices include the common Normalized Difference Vegetation Index (NDVI) (Rouse 

et al. 1974; Lange et al. 2017) as well as two modified indices which improve on the original 

NDVI. The Atmospherically Resistant Vegetation Index (ARVI) (Huete and Jackson 1988; 

Kaufman and Tanre 1992) which reduces atmospheric noise the NDVI is prone toward and the 

Modified Soil Adjusted Vegetation Index (MSAVI) which reduces the influence of bare soil where 

vegetation is sparse (Huete 1988; Huete and Jackson 1988; Qi et al. 1994). 

Nonlinear Vegetation Index (NVI) applies a nonlinear relationship between the index and 

vegetation greenness instead of the linear relationship of other vegetation indices. The NVI tends 

to reduce saturation of dense canopies which is problematic with the NDVI without adding bands 

or constants to the equation. A simple NVI used in this study squares the near infra-red (NIR) band 

in the index formula (Goel and Qin 1994; Feng et al. 2019). 

Enhanced Vegetation Index (EVI) is similar to the NDVI however it corrects for 

atmospheric and background canopy noise to which the NDVI is susceptible to. The EVI is also 

more sensitive in lush vegetation which reduces oversaturation of greenness which can be 

problematic for the NDVI (Huete et al. 1994; United States Geological Survey 2018). 

Biophysical Group 

The biophysical group consisted of three candidate variables: Leaf Area Index (LAI), 

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and Fraction of Vegetation 

Cover (FVC). These variables are used to describe landscape biophysical properties for example, 

carbon, nutrient, hydrological, and energy cycles. They quantify vegetation cover, land 

degradation, and erosion (Liang and Wang 2019) and are therefore considered promising 
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candidates for the SDM to differentiate vegetation and land use in the study area. The variables 

were developed using the Sentinel 2 simple sample 10 m resolution mosaic in SNAP (Weiss and 

Baret 2016; European Space Agency 2017). 

The LAI attempts to measure top-down two-dimensional leaf area coverage in a single 

pixel. This index is used to measure biophysical processes such as carbon and nutrient cycles and 

productivity. (Goel and Qin 1994; Bréda 2003; Weiss and Baret 2016; Feng et al. 2019). 

FAPAR measures the portion of photosynthetically active radiation generally within the 

visible light spectrum range absorbed by vegetation and is generated from a vegetation index. 

FPAR is used to quantify various biophysical processes related to energy transfer, climate change, 

and hydrology cycle (Goward and Huemmrich 1992; Liu et al. 2015; Weiss and Baret 2016)  

FVC measures the amount of alive vegetation cover in a pixel. It is derived from a 

vegetation index (NDVI) and is used to measure land degradation, erosion, and desertification 

(Purevdorj et al. 1998; Weiss and Baret 2016).  

Brightness  

Surface Albedo measures the total radiative reflectance of a surface from the total incident 

solar radiation. It influences surface energy budget which in turn affects heat exchange 

(temperature) and hydrology which affects and is affected by biophysical processes (Zhang et al. 

2022). Efforts have been made to model fine scale Albedo measurements using moderately high 

resolution satellite imagery like Landsat and Sentinel 2 (Lin et al. 2022). I used a simple Albedo 

formula which sums pixel values across each band (Lahoz-Monfort et al. 2010) compare to 

(Naegeli et al. 2017). The resulting greyscale image shows fine scale albedo heterogeneity which 

may be useful when applied to an SDM for the above reasons.  

Brightness is related to soil indices and is used to modify vegetation indices to reduce soil 

background influences (Huete et al. 1985; Huete and Jackson 1988). Here I used two simple 

Brightness indices generated from the green, red, and near-infrared bands. Lighter shades indicate 

dry exposed soils and salt evaporites and more darker values tend to indicate increase in healthy 

vegetation and soil moisture (Escadafal 1989; Escadafal et al. 1989) 



 

46 
 

Water Indices 

Normalized Difference Water Index 2 (NDWI2) (McFeeters 1996) detects surface water 

using the difference in reflectance between the green and near-infrared bands. Infrared radiation is 

absorbed while green is reflected. Raster cell values greater than 0 are more likely surface water 

where <0 values are more likely dry land. NDWI2 originated from modifying the Normalized 

Difference Water Index (NDWI) which is used to measure water moisture in vegetation (Gao 

1996). The green and near-infrared reflective characteristics of urban buildup are similar to that of 

water which causes the NDWI2 to misclassify urban areas as surface water. The Modified 

Normalized Difference Water Index (MNDWI) (Du et al. 2016) attempts to improve on the 

NDWI2 by swapping the near-infrared band with a mid-infrared band which is not as absorptive 

to urban buildup. In testing, the MNDWI tends to reduce misclassification of urban areas (Du et 

al. 2016; Murray 2016) however the NDWI2 tended to overall sense surface water more effectively 

(Murray 2016). The MNDWI use of a mid-infrared band increases the pixel cell size to 30 m which 

needs to be resampled down to 10 m to be used with the green Sentinel 2A band. The resampling 

may result in a loss of information or incorrect 10 m pixel classification. 

Both the NDWI2 and the MNDWI were selected as candidate variables since they are 

relatively easy to generate and would inform the model for areas of surface water and therefore 

likely unsuitable habitat. These indices would also inversely identify drier upland areas which are 

associated with native tallgrass prairie and Dakota skipper occurrences but are generally a few 

meters elevated above the more flood-prone lowland areas and so are not easily detected with 

current DEM layers. The two variables were generated from the Sentinel 2A SuperRes10m mosaic 

in SNAP using the green (band 3), near infra-red (8), and shortwave infrared (band 11).  

Tasselled Cap 

Tasselled Cap is a relatively older analysis which produces three products: Brightness, 

greenness which is related to vegetation, and blueness or wetness related to water. High values for 

all three indices indicate brighter surface features, denser or more vigorously growing vegetation, 

and wetter areas (Kauth and Thomas 1976).  
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Brightness, Vegetation, and Wetness candidate variables were generated from a 6 band and 

a 13 band mosaics respectively, for a total of six Tasselled Cap candidate variables. SNAP was 

used to generate the 6 band and 13 band mosaics from the Sentinel 2A C1_simpsamp10m res 

mosaic and Tasselled Cap coefficients specific to the Sentinel 2A sensor (Shi and Xu 2019) were 

used to construct the raster formulas needed to make the six candidate variables. 

Tasselled Cap Brightness, Vegetation, and Wetness offer characterization of local biotic 

and abiotic site conditions and therefore were selected as candidate variables. The six variables 

were included in the Brightness group, Vegetation group, and Water/Moisture group respectively. 

NDVI8a GLCM variables. 

I chose Grey Level Co-occurrence Matrix (GLCM) texture analysis as it is an established 

texture analysis technique and is shown to generally improve image classification (Hall-Beyer 

2017, 2017). The analysis also produces image products which could indirectly characterize 

favourable Dakota skipper environmental conditions based on texture, thereby better informing 

the model. 

I used R GLCM package (Zvoleff 2019) to generate eight GLCM candidate variables from 

the NDVI8a which itself is a candidate variable and which was produced from the Superres 10 m2 

mosaic. Other indices and imagery could also have been used to generate their corresponding 

GLCM variables however this would have been labour and time prohibitive therefore only one 

index was analyzed with GLCM. The NDVI8a was chosen over the other variables because 

vegetation is an important indicator of Dakota skipper habitat and is a well-known vegetation 

index. The Sentinel 2A “red-edge” or Band 8a was used because it may provide more information 

about vegetation health or type to the index than other infra-red bands used in other NDVIs since 

the Band 8a spectrum range more closely matches the reflectance wavelength of plant chlorophyl. 

No a priori selection of texture variables was done since I assumed that all were favourable 

to inform the model and any subsequent correlation would be dealt with during variable selection. 

The eight variables are listed in Appendix 5. Model candidate variables created from Sentinel 2A 
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imagery and SRTM DEM. and include: Contrast, Dissimilarity, Homogeneity, Second 

Momentum, Entropy, Mean, Variance, and Correlation.  

GLCM requires consideration of many parameters before analysis can begin (Hall-Beyer 

2017, 2017). These include choosing: The GLCM texture analysis to perform, the imagery band 

to analyze, the size of the moving window applied to the image, and the offset direction and 

distance from the reference pixel to the neighbour pixel. I chose parameters which I thought would 

aid the model. I selected the generally applied 5-bit image rescaling or 32 grey levels for the 

analysis. Rescaling to less grey levels is used to reduce the number of potential pixel pairs and so 

reduce the number of zero pair matches in a window. This increases statistical validity. Thirty-two 

(32) or 5 bit or 4 bit are generally used in software and so 32 was selected to keep the image 

relatively complex. A 9 x 9 (90 x 90 m2) window was a compromise between a smaller window 

being more homogeneous and a larger window having too much heterogeneity. Visual inspection 

suggested that a 9 x 9 window would be suitable to detect local variability where the heterogeneity 

of the hill and swale mosaic can be experienced over relatively short distances from upland treed 

areas to grassland/hayland/pasture to moist sedge meadows to wetland and then open water. This 

window may also accurately model Dakota skipper adult behavior where local heterogeneity is 

more important than lower scale landscape variability. The (4, 4) pixel offset selected the 

partnering pixel four pixels to the northeast from the reference pixel. This shift moved the 

neighbour pixel away from the reference a bit so there might be some difference as would also 

increase variability due to the general physiography of the natural north-west to south-east oriented 

narrow bands of “hill and swale” patterning indicative to much of the study area. 

Variables Derived from SRTM 3-1 Arcsecond Imagery 

Elevation is thought to influence water drainage and retention on the landscape including 

floristic composition, soil development, and solar radiation absorption (Brown 1994; Fu and Rich 

2000; Rich and Fu 2000; Farr et al. 2007). For these reasons elevation and nine derived products 

were included as candidate variables generated from the two SRTM 3 mosaics.  
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The SRTM 3 10 m resolution mosaic was included as a candidate variable and also used 

to generate five other candidate variables using elevation surface analysis tools in ArcGIS (ESRI 

(Environmental Systems Research Institute) 2018). They included: slope, aspect and three 

curvature layers.  Slope measures the steepness of each raster cell in the SRTM 3 mosaic. The 

higher the slope value the steeper the slope. Aspect measures the direction of slope measured as a 

bearing from 0 to 359 degrees. Curvature describes the shape of the slope. Positive values indicate 

the slope surface is convex or curved upward where a negative value indicates that the surface is 

concave. Parallel curvature describes the curvature parallel to the direction of slope and 

perpendicular curvature models the curvature perpendicular to the direction of slope (Moore et al. 

1991). Slope accuracy was estimated to be within 10% of actuals measured along the Amazon 

river (Hendricks and Alsdorf 2004; LeFavour and Alsdorf 2005; Farr et al. 2007). 

Solar insolation affects Dakota skipper emergence and facilitates flight period activities 

(Dearborn and Westwood 2014). To model this requirement I generated four solar insolation 

candidate variables using ArcGIS Solar Radiation toolset (Fu and Rich 2000; Rich and Fu 2000; 

ESRI (Environmental Systems Research Institute) 2018). 

I used the SRTM 3 30m resolution mosaic to model total solar radiation instead of the 

SRTM3 10 m resolution mosaic to remove any error generated from the IDW resampling from 30 

m to 10 m propagating to the solar radiation variables. Solar radiation is quantified in watt 

hours/meter squared for each mosaic raster cell calculated across the study area. Total radiation 

includes: Direct radiation from the sun, reflected radiation from objects, and diffuse radiation 

which is direct radiation scattered by the atmospheric water vapour (clouds) and dust. 

Total radiation was modelled for the four solar insolation variables differing only by 

temporal period. The variable Annual Radiation modelled total radiation for the entire 12 month 

year, summer radiation variable spanned six summer months (May to October), winter radiation 

for five months, from November to March, and flight time radiation variable included the months 

of June and July. 
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Since the study area spans more than one degree latitude, it was necessary to divide the 

study area into south and north regions, generate the four insolation layers separately for each 

region, then merge (Fu and Rich 2000; ESRI (Environmental Systems Research Institute) 2018). 

The four insolation variables were then resampled using IDW interpolation to 10 m2 resolution 

and clipped to the study area to remove the 1km buffer. 

 

3.3.6 Variable Selection 

To correct for model overfit in MaxEnt, one variable is usually included for every 10 

occurrence points (Harrell Jr. et al. 1996; Guisan and Zimmermann 2000). My goal was to run a 

maximum of seven variables to retain a sufficient portion of sample points (n=17) to cross-validate 

the model (Westwood et al. 2019). To achieve this, I performed correlation analysis on the 40 

candidate variables and subsequentially removed candidate variables which were highly correlated 

(between -0.7 and 0.7) within group or between groups (Elith et al. 2006; Dearborn et al. 2022). 

Following Lahoz-Monfort et al. (2010) then ran the remaining eleven variables together in MaxEnt 

and subsequentially removed the variable which contributed the least to the model. I then ran the 

remaining variables and once again removed the least contributing variable. I continued to do this 

variable attrition until model performance, measured by AUC, was worse than the previous model. 

I then chose the five variables and model from the second last run as the representative for the 

Satellite Model (Table 4. Satellite Model predictor variables final selection and variable maps in 

Appendix 2. Common Model and Satellite Model variable maps. 

 

Table 4. Satellite Model predictor variables final selection 

Variable 
Number 

Variable 
Abbreviation 

Variable 
Name 

Remote 
Sensing 
Platform 

Imagery Used Software Source 

1 TcapWET06  Tasselled 
Cap 
Wetness 6 
Bands  

Sentinel 2  C1_simpsamp10mres SNAP (Shi and 
Xu 
2019) 

2 ARVI8a Atmospheri
cally 
resistant 

Sentinel 2  SuperRes10m SNAP (Kaufm
an and 
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Vegetation 
Index  

Tanre 
1992)  

3 TcapGVI06  Tasselled 
Cap 
Greeness or 
vegetation 6 
Bands  

Sentinel 2  C1_simpsamp10mres SNAP (Shi and 
Xu 
2019)  

4 glcm_ent  GLCM 
Entropy 

Sentinel 2  NDVI8a  R (Zvoleff 
2019)  

5 SRTM DEM SRTM 
DEM 

STRMDE
MRes10m 

STRMDEMRes10m ArcGIS (Farr et 
al. 
2007)  

 

3.4 Model Selection 

3.4.1 Model Thresholding 

Thresholding classifies the continuous relative probability model output into two or more 

species suitability classes (e.g. Suitable/Unsuitable; High, Medium, Low). It generally aids in the 

interpretation of model results by clearly depicting areas as either: suitable or unsuitable, or 

indicating the species is present or absent which can make the model more useful in research and 

conservation applications than presenting the continuous relative likelihood layer. However, 

thresholding can lose model information, potentially introducing modeller bias and arbitrary non-

biologically meaningful categories (Liu et al. 2005; Jiménez-Valverde and Lobo 2007; Merow et 

al. 2014; Guillera-Arroita et al. 2015). 

Merow et al. (2014) is highly critical of using thresholds and recommends to only use the 

original continuous model relative probability or likelihood outputs. Liu et al. (2005) and Jiménez-

Valverde and Lobo (2007) are also critical of some threshold techniques but have attempted to 

find more robust thresholding procedures. Guillera-Arroita et al. (2015) conclude that thresholding 

is rarely needed and detrimental for most modelling purposes. However, if necessary, thresholds 

and the procedure should be selected based on conservation objectives. 

There are different techniques to threshold model likelihood surface outputs including 

assigning arbitrary breaks, using a threshold algorithm (Liu et al. 2005; Jiménez-Valverde and 

Lobo 2007; Merow et al. 2014) and classifying from a priori training areas from computer based 
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techniques (Dearborn et al. 2022). Regardless of thresholding method, the objective should be to 

limit commission and omission errors so that the chosen threshold discriminates “good” from 

“bad” as accurately as possible (Jiménez-Valverde and Lobo 2007). 

Following these broad guidelines, I chose to use the “Equal test of sensitivity and 

specificity” algorithm. This test finds the threshold where the difference between sensitivity and 

specificity is minimum which would presumably minimize commission/omission errors. This 

threshold is shown to perform relatively well compared to other thresholding methods (Liu et al. 

2005; Jiménez-Valverde and Lobo 2007; Phillips and Dudík 2008) and is an option available in 

the MaxEnt program. The thresholds produced from this test seemed rather low (Common = 0.32, 

Satellite = 0.23) out of a relative likelihood range from 0 to 1. Therefore, a higher threshold of 

0.80 for both models was also added to test model performance at a very high probability class 

(Table 5) despite possibly higher risk of commission (false-positive) errors.  

 

Table 5. Suitability category thresholds for the Common and Satellite models. 

Suitability Category Common Model Satellite Model 

Low 0 – 0.25 0 – 0.32 

Medium >0.25 – 0.80 >0.32 – 0.80 

High >0.80 - 1 >0.80 - 1 
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3.4.2 Field Validation 

Site Selection 

Candidate point sites (n=240) for field validation were randomly generated from within the 

study area stratified by 120 sites per model and 40 sites for each of the three model probability 

threshold classes (see Model Thresholding section). Point sites were the centroid location of a 

pixel square either the 30 m2 pixel for the Common Model or 10 m2 for the Satellite Model. Forty 

(40) sites per category ensured that 20 sites could be achieved to adequately perform statistical 

analysis while accounting for likely accessibility issues (I.e. landowner refusal/unable to contact 

or inaccessible due to terrain). I was blind to the condition or habitat suitability of a site before 

each location visit, only that the models predicted the locations as one of three (Low, Medium, 

High) threshold categories (blind sampling procedure). 

Site Evaluation 

I then evaluated the location for suitability to support Dakota skipper to gauge the accuracy 

of the model prediction. To evaluate the suitability of a site I used a list of indicator plant species 

(developed by Rigney 2013; Dearborn et al. 2022) that are indicative of high quality habitat for 

Dakota skipper and a series of physical and environmental factors present at the location (protocol 

also in Dearborn et al. 2022) to evaluate applicability to one of the three probability classes 

described above. A detailed indicator plant list and scores are listed in Appendix 6. Dakota skippers 

were not surveyed for at sites since detection or non-detection would not provide enough 

information to evaluate model performance. The data would likely be unreliable given its brief 

flight period is variable by time of emergence and duration and may also still go undetected at a 

site given its cryptic nature and circumstances during a survey or the entire field season.  Instead, 

plant suitability scores measure habitat information at a site and allow ranking sites by quality to 

support Dakota skippers which can be compared to the relative likelihood predictive layers 

generated by the models.  
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Site Survey Design 

Site evaluation consisted of employing either a detailed or rapid assessment protocol at 

each point location (For more information about sample protocol refer to Appendix 7). Detailed 

assessments were conducted when initial impression indicated that a site had high native floristic 

diversity and was not severely disturbed by cattle or not agriculture cropland. Detailed and rapid 

assessments were modified between Common and Satellite approaches due to the difference in 

pixel size. The intent was to establish a smaller quadrat square within the larger pixel to mitigate 

influence from the adjacent pixels when sampling for indicator plant species (Appendix 7 – Figure 

6) 

3.4.3 Model Validation 

I evaluated the environmental variables for each model by how much they contributed to 

model performance. This was done in two ways: By reviewing the percent contribution tables 

generated as model results output and also by the model output graphs which showed how each 

variable affected (increased or decreased) model gain when the variable was isolated or omitted 

from the other model variables when run. 

To evaluate individual model performance, and also to compare models, I rank compared 

the AUC values and also generated confusion matrixes for each model based on the threshold 

values assigned to each model to describe classification errors of omission and commission. 

Generally, a confusion matrix will display how two classifiers or raters classify cases or 

observations into the respective classes. One classifier is usually considered the reference that the 

other classifier, the candidate, is evaluated against. In this study the ground survey and the model 

are the reference and predictor classifiers respectively. The ground survey plant scores and the 

model relative likelihood values for each site are classified into the Low, Medium, and High 

prediction classes of the confusion matrix. If all sites are in the diagonal table cells then the two 

classifiers are in perfect agreement meaning the candidate classifier performs as well as the 

reference standard. Errors of omission occur when the candidate incorrectly classifies reference 

sites and errors of commission occur when the candidate incorrectly classifies candidate sites. 
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  In addition, I used the confusion matrices to calculate Cohen’s Kappa (Cohen 1960) k-

statistic for each model which provided a means to rank compare one model against the other and 

describe overall model performance. Cohen’s Kappa measures the proportion of agreement 

between two evaluators after chance agreement is removed, also referred to as a chance corrected 

measure of agreement. In this study the two evaluators are the model relative likelihood surfaces 

and the corresponding ground survey plant indicator scores thresholded and added to a confusion 

matrix. Kappa ranges from 0 to +1. A value of 0 indicates rater agreement was by chance with 

increasing values from zero meaning less of the agreement was due to chance with +1 meaning 

perfect agreement (Rosenfield and Fitzpatrick-Lins 1986). 

Kappa values from 0-0.2 is considered slight agreement between the classifiers while 0.2-

0.4 indicates fair agreement, 0.4-0.6 moderate agreement, 0.6 and above indicating substantial 

agreement. Other Kappa indexes have been developed to interpret the strength of agreement 

between candidate and reference classifier, however they have been criticized for being somewhat 

arbitrary (Landis and Koch 1977). However, Kappa can be used to rank two or more models based 

on their relative values. 

Due to the inherent issues with thresholding we also chose to use Pearson’s correlations 

coefficients to compare the relative likelihood surface pixel values at sample locations to the 

corresponding sample site vegetation suitability scores (Westwood et al. 2019; Dearborn et al. 

2022). Testing continuous data instead of arbitrarily classifying results into present-absent, high-

low, good-poor classes is shown to produce more accurate evaluations. Pearson’s correlation 

coefficient measures degree of agreement and provides a statistic to measure individual model 

performance and also rank order comparisons similar to Kappa (Elith et al. 2006; Phillips and 

Dudík 2008). A paired z-test was also applied to measure statistical difference between the two 

models if any differences exist. 

 Statistical analyses were performed using R Statistical Software v4.1.2 (R Core Team 

2021). The paired z-test on the Pearson correlations was calculated using the paired.r function in 

the psych R package (Revelle 2023). The Pearson correlations and Cohen’s Kappa were calculated 
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using cor.test and kappa2 functions respectively in the irr R package (Gamer et al. 2019). 

Geospatial data management and analysis was performed using SNAP (European Space Agency 

2017) and ArcGIS Desktop (ESRI (Environmental Systems Research Institute) 2018). Models 

were created using MaxEnt (Phillips et al. 2006). 
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CHAPTER 4: RESULTS  

4.1 Generation of Relative Likelihood Maps by Threshold Category  

Table 6 shows the percent of total area covered by the three relative likelihood classes 

calculated from the continuous relative likelihood surfaces produced from the Common Model 

and Satellite Model. The two modelling approaches differ in area assigned between the Medium 

and Low suitability categories of less than 5 percent, while each model has a similar area in the 

High category: 1.1 and 1.3 percentages, respectively. However, the distribution of suitable habitat 

(High likelihood category) in the Common Model is quite concentrated in the west central part of 

the study area while the distribution of suitable habitat in the Satellite Model is dispersed across 

the west and central part of the study area (Figure 4). The Common Model locates most of the 

suitable habitat to the northwest, of the Shoal Lakes, whereas the Satellite Model shows suitable 

spread over two prominent strips oriented southeast to northwest mostly in the central region of 

the study area.  

Table 6. Percent of total area and area (km sq) for the Common Model and Satellite Model by 

Relative Likelihood Category.  

Relative Likelihood Category Common Model Satellite Model 

High 1.1     (227)  1.3     (320)  

Medium 6.4   (1591)  9.3   (2291)  

Low 92.5 (22926)  89.4 (22126)  

Total Area (km sq)  24795  24737  

Common Model relative likelihood categories (High: 1 to 0.8; Medium:  <0.8 to 0.25; Low: <0.25 

to 0). Satellite Model: relative likelihood categories (High: 1 to 0.8; Medium:  <0.8 to 0.32; Low: 

<0.32 to 0).  

  

 

 

  

 

Figure 5. Distribution of High relative likelihood category in the Common and Satellite species 

distribution models in the Interlake region of Manitoba 

Common Model Satellite Model 
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4.2 Comparison of Species Distribution Model Performance   

With an average of 25 runs produced for each model type the average AUC values were 

quite high (Common Model 0.978 SD 0.001 and Satellite Model: 0.961 SD 0.006).  

The percent contribution of environmental variables used in the Common Model 

(Appendix 8 –Table 12) were: Land use (34%), soil deposition mode (21%), SRTM DEM (17%), 

soil drainage (14%), distance to deciduous (8%), soil Ph (5%), and area of closest deciduous forest 

stand (2%).   

The Jackknife test for the Common Model (Appendix 8 – Figure 7Table 12), shows that 

specifically, the SRTM DEM, land use, and soil drainage variables provide the most useful 

information to the model: When run individually SRTM DEM and land use contribute most to the 

model based on increased model gain. However, model gain decreases the most when land use and 

soil drainage variables are omitted followed by the SRTM DEM.  
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Review of the Common Model individual response curves (Appendix 8 – Figure 9Table 

12) for the environmental variables in isolation shows that the largest likelihood of species 

presence occurs where elevation (SRTM DEM) = 264 m (study area mean = 264 m; range: 212 m 

– 313 m), and Land use class is predominately 4 (grassland/rangeland). The likelihood of finding 

Dakota skipper is also linked (but to a lesser degree) to: 6 (marsh), 16 (roads/trails), and 11 (open 

deciduous forest); soil pH of 7.8, soil deposition mode of 11 (undifferentiated mineral) and a 

second lower peak for 7 (till), distance to deciduous near 100 m, soil drainage class of 5 (Poor), 

and area of closest forest stand (approximately 1000 ha).   

The percent contribution of environmental variables (Appendix 8 – Table 13) used in the 

Satellite Model include the SRTM DEM (45%), NDVI GLCM entropy (25%), tasseled cap wet 

(20%), tasseled cap green (10%), and ARVI8a (1%).  

The Jackknife test for the Satellite Model (Appendix 8 – Figure 8Error! Reference source 

not found.Table 12) shows that the SRTM DEM provides the most useful information to the 

model. Model gain is greatest when the SRTM DEM is the only variable and the model gain is 

reduced considerably when it is removed.   

Satellite model individual response curves (Appendix 8 – Figure 10Error! Reference 

source not found.Error! Reference source not found.Table 12) show highest likelihood of 

species presence is where elevation (SRTM DEM) = 264 m, NDVI GLCM entropy = 2.4, tasseled 

cap wet = -0.16, tasseled cap green = 0.02, and ARVI8a = 0.4. Excluding elevation, interpreting 

these values are not as straightforward as with the Common Model. The Entropy measures the 

amount of disorder, or in the context of GLCM analysis, variability in an image. Therefore, higher 

Entropy values indicates greater local variability (Hall-Beyer 2017). The GLCM entropy raster 

range is 0 – 4.2 and an average value 1.0. Therefore, local site variability where Dakota skipper is 

predicted is moderately high at 2.4. This may be described by the hill and swale topography at 

most known Dakota skipper sites where variability would be high due to the close arrangement of 

different vegetation types: Hayland-pasture grassland, deciduous or mixed forest, and wet meadow 

and wetland. The tasseled cap wet values across the study area range from -1.26 to 0.60 mean -
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0.08. Higher values indicates wetter areas (Kauth and Thomas 1976). The value -0.16 indicates 

predicted Dakota skipper areas are likely slightly drier than average in the study area which may 

describe the relatively drier upland Dakota skipper sites on hayland and pasture where the study 

area average would be lower due to wetlands and meadows. Tasseled cap greenness values across 

the study area range from -1.20 to 0.32 (mean 0.04). Higher values indicates denser or more 

vigorously growing vegetation (Kauth and Thomas 1976). The value of 0.02 indicates areas where 

Dakota skipper is predicted are slightly less green than average and may be indicative of the less 

densely vegetated haylands/ grasslands and pastures. A visual inspection of the greenness tasseled 

cap raster also indicates that the mean and maximum greenness values may also been boosted by 

the vigorous growth of plants in the agricultural cropland areas of the study. ARVI8a ranges from 

-0.7 to 0.9 average 0.48 for the study area. Low values can be interpreted as areas with no or sparse 

vegetation such as water or rock. Higher values generally indicate more dense, green vegetation 

such as temperate rainforest. Values of 0.2 to 0.4 generally indicate grassland or shrub (Weier and 

Herring 2000).  The value of 0.4 indicates Dakota skipper are predicted to be found in grassland 

(hayland/pasture) or shrub areas. The higher value may be due to locations being in close proximity 

to deciduous or mixed wood stands which is characteristic of the close arrangement of forest, 

grassland, and wet meadows discussed earlier and is common at known Dakota skipper locations.  

 

4.3  Ground Validation Results  

I surveyed a total of 128 sites between 2 July and 17 September 2021. From the 120 

candidate sites generated randomly for each model, I sampled 66 Common Model sites and 62 of 

the Satellite Model sites. The number of sites by model type and suitability categories are shown 

in  

Table 8.  

Table 7. Average site suitability score and plant species count by model and suitability 

threshold. Site suitability scores = sum of indicator plant species scores found at each site shows 

site plant suitability score totals averaged 11.3 (range 0 – 49). The Common Model suitability 
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scores averaged 12.2 (range 0 – 49) and the Satellite Model scores averaged 10.3 (range 0-49) and 

indicator plant suitability scores averaged 5.3. The Common Model averaged 5.7 (range 0 – 49) 

and the Satellite Model scores averaged 5.0 (range 0-49).  I classified survey sites into High, 

Medium, and Low suitability categories based on the total plant suitability score obtained from the 

ground survey. A site with High suitability was considered to have a total plant score of > = 30, 

while Medium sites had scores of <30 >=10 and Low sites were considered to have scores of <10 

(Table 7. Average site suitability score and plant species count by model and suitability threshold. 

Site suitability scores = sum of indicator plant species scores found at each site). High category 

sites were interpreted as generally containing a large portion of native plants, some of which are 

nectar and larval hosts for Dakota skipper. Medium category sites although having some plants 

present which support or are characteristic of typical Dakota skipper habitat lacked certain species 

or the quality or quantity of host plants was lower which was considered reflective of less desirable 

habitat. Sites in the Low Category lacked most of the larval or adult host plants capable of 

supporting or sustaining a long-term population of Dakota skipper (Dearborn et al. 2022).  Table 

7. Average site suitability score and plant species count by model and suitability threshold. Site 

suitability scores = sum of indicator plant species scores found at each site shows that the average 

number of plant indicator species per site match the average plot suitability scores per site by their 

respective suitability category. A detailed list of plant indicator species by site from the field survey 

is available on request.
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Table 7. Average site suitability score and plant species count by model and suitability threshold. 

Site suitability scores = sum of indicator plant species scores found at each site. 

Model Type 
Suitability 

Category 

Average Plot 

Suitability Score 

Average Number 

of Indicator Plant 

Species Per Plot 

Common Model 

Low   1.8   1.1 

Medium 17.5   8.5 

High 39.3 16.6 

All Categories 12.2   5.7 

Satellite Model 

Low   1.9   1.3 

Medium 19.2   9.4 

High 39.2 16.3 

All Categories 10.3   5.0 

    

 

Table 8. Survey sites by model type and suitability categories. 

Model 
Suitability Category    

Low  Medium  High  Total  

Common Model    23       23    20    66  

Satellite Model    22       23    17    62  

Total    45       46    37  128  

 

Table 9. Survey sites by model type and plant score suitability categories. 

Model 
Suitability Category     

Low  Medium  High  Total  

Common Model    36  20  10    66  

Satellite Model  39  17    6    62  

Total    75       37    16               128  

     

 

Pearson’s correlation coefficient estimates calculated from continuous model relative 

likelihood values and field sampled vegetation suitability scores at sample sites were strong to 

moderate: Common Model 0.64 (0.47-0.76; 95% CI) and Satellite Model 0.57 (0.36-0.71; 95% 

CI). A paired z-test found no statistical difference between these two model correlation coefficients 

(z = 0.62, p = 0.54). The z-test was used for these two independent datasets by transforming values 

to standard z-scores using the z-transformation.  
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 Confusion matrixes were generated for each model rating the relative likelihood categories 

to the reference plant score categories for each site (Table 10 and Table 11).  The accuracy of the 

Common model was 0.58 (0.44 – 0.70 95% CI) and Satellite model was 0.52 (0.39 – 0.66 95% 

CI). The results of the confusion matrix show both models over-assigned a Low rank plant site as 

a Medium category (13 sites classified as Medium likelihood of presence in both models were 

classified as Low quality sites by the plant scoring carried out during ground validation). However, 

both models performed better when discriminating Low and Medium plant score categories where 

there was agreement with 20 sites in the Low category and 9 and 8 sites respectively in the Medium 

category.  Both models also classed Low and Medium sites as High suitability rank in some cases.  

Table 10. Confusion matrix for Common Model. 

Relative 

Likelihood 

Categories 

Plant Score Categories 

Low Medium High 

Low         20          3           0  

Medium           13          9           1  

High           3          8           9  

 

Table 11. Confusion matrix for Satellite Model. 

Relative 

Likelihood 

Categories 

Plant Score Categories 

Low Medium High 

Low         20           2           0  

Medium         13           8           2  

High           6           7           4  

 

Cohen’s Kappa tests indicated both models were in fair agreement with the reference 

suitability categories. However, the Common Model performed better (k = 0.36) than the Satellite 

Model (k = 0.25). 
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CHAPTER 5: DISCUSSION 

I compared two SDMs for the Dakota skipper using different ways to generate model 

variables: One approach used readily available geospatial layers to create model variables while 

the other approach used only satellite imagery to generate variables. Although the Common Model 

performed nominally better than the Satellite Model, model performance metrics suggest that the 

two approaches were comparable based on statistics generated with the model (i.e. AUC) and other 

analysis performed including Accuracy, Kappa, and Pearson Correlation. The area of the study 

allocated by each model for each relative likelihood category (High, Medium, Low) were similar; 

AUC values for each model were high but also comparable between models; Confusion matrix 

accuracy measurements from the thresholded categories were also comparable including overall 

accuracy and Kappa statistics. Finally, Pearson’s correlation estimates from the continuous relative 

likelihood values were statistically similar.  

The Common Model high suitability category is concentrated around the Shoal Lakes north 

to Lundar which is in stark contrast to the more dispersed nature of the high suitability category 

for the Satellite model. A visual inspection of the environmental predictor land use classes show 

that the primary grassland/rangeland class and the three secondary predictor classes are not 

organized solely in that area. The soil variables show a topological error to the south indicated by 

a stark change in soil attributes. This error shows in the relative likelihood layer as an abrupt linear 

bound to the High suitability category running east-west which matches the error in the soil layer. 

However, the error likely only limits the extent of the High suitability category slightly to the south 

and has no influence on other areas. This is supported by the soil and other predictor variables that 

are relatively dispersed and do not show a particular concentration around the high suitability 

category coverage. The threshold level may also influence the spatial distribution of the study area 

classified as part of the High suitability category- higher thresholds may spatially constrain the 

distribution where a lower threshold may create a more dispersed pattern. This could be ruled out 

for this study since both models had the same High suitability thresholds set at 0.80. 
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The remarkably high AUC values for both models are likely from using cross-validation 

and large background sample of pseudo-absences both of which are known to inflate AUC values 

and lead to model overfit (Elith and Burgman 2002; Phillips and Dudík 2008; Anderson and Raza 

2010). The large ratio of withheld test data and the relatively high number of background points 

(10 000 points) may have exaggerated this effect.  Apart from measuring model performance, the 

high AUC values may indicate that Dakota skipper occupies a restricted environmental space 

within the defined study area and the provided environmental predictors compared to a more 

generalist species which would have lower AUC scores (Lobo et al. 2008). 

The inflated AUC values for both models underscores the need to field validate SDMs as 

done in this study and advocated by others (Westwood et al. 2019; Dearborn et al. 2022) to get a 

more realistic measure of model performance.     

It is also worth noting this study demonstrates that variable response curves derived from 

satellite imagery can also be translated relatively easily into useful values to describe predicted 

suitable site conditions. Interpreting these site conditions shows that, despite the differences in 

how the environmental variables were constructed for each model, the interpretation for both are 

generally in agreement: the SRTM variable, the only one used in both models, has the same 

likelihood of occurrence value for both models (264 m); the predominantly predicted 

grassland/rangeland class in the Land use variable is analogous to the ARVI8a ,entropy, tasseled 

cap wet and green values which indicate drier grassland/pasture areas as predominant but with 

some variability which can be associated with the secondary land use categories noted as being 

important in the Common Model. 

5.1 Study Limitations 

The study produced two usable SDMs for the Dakota skipper. However, there were some 

limitations encountered during the research. First, the modelling software required all predictor 

variables to have the same raster cell size resolution (30 m for the Common Model and 10 m for 

the Satellite Model). This necessitated up sampling some of the Sentinel 2A bands from 20 m and 

60 m resolution to 10 m resolution, and the SRTM DEM resampling from 30 m to 10 m. Error 
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from resampling low resolution to high resolution was reduced by generating most variables from 

the Super Resolution mosaic which resampled the 20 m and 60 m bands using a more sophisticated 

modelling technique than the regular resampling algorithm. The Super Resolution processor used 

the information in the existing 10 m bands (blue, green, red, and near infra-red) to inform how the 

lower resolution bands were resampled. 

The SRTM DEM derivatives evaluated in the Satellite Model were not evaluated in the 

Common Model. This could arguably have changed the predictor variables used to build the 

Common Model and subsequentially, performance. However, correlation analysis performed 

during Satellite Model variable selection showed that the STRM DEM and its derivatives were 

highly correlated resulting in the STRM DEM being selected for the model with the derivatives 

being were dropped. This would likely have been a similar outcome if the STRM DEM derivatives 

were included as candidate variables in the Common Model. 

Land cover was not available for the northeast corner of the study area. The lack of 

coverage supports the need for using remotely sensed imagery to create predictor variables. The 

missing portion was relatively small and covers what is unsuitable boreal and peatland habitat, 

according to visual inspection of satellite and airphoto imagery. Therefore, the missing land cover 

layer in the area likely did not appreciably affect model performance.  

SDM modelling is a sophisticated and highly technical research field requiring expertise 

in geomatics, statistics, data management, modelling, ecology, and field work. These specialized 

skills can be a barrier to conservation researchers interested modelling. Generating SDMs solely 

from remotely sensed imagery may be extra burdensome requiring additional technical knowledge 

to manage and manipulate remotely sensed imagery, and knowledge of indices and specialized 

software to produce model variables. 

 

 

5.2 Conservation Management Implications 
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This study supports using satellite imagery as the sole source of predictor variables for 

creating SDMs for conservation management actions. The advantages of remotely sensed imagery 

can be leveraged to generate SDMs for species include large spatial extent of available data in a 

consistent format. For example, it can be used in areas which do not have readily available geo-

spatial products. Reasons for geo-spatial information poor regions include: Administrative areas 

which do not have active geomatics programmes, or no economic incentives (i.e. forestry, 

agriculture, mining) to invest in products, and remote locations. Furthermore, creating SDMs may 

be hampered by geopolitical boundaries. For example, geo-spatial data maybe available in one 

jurisdiction but not the other. Or available in both but not compatible due to differences in methods 

used to create the products or differences in classification systems. Another advantage for 

conservation management is the relatively low cost of imagery and derive predictor variables. 

Many imagery products used for SDM work are freely available and easy to acquire. Deriving 

predictor variables can be done rather quickly, using minimal labour, on a mid-level computer, 

with opensource software.  Frequent imagery acquisition intervals can also be advantageous for 

conservation management. New SDMs can be made using current environmental predictors and 

older models can be updated faster without having to wait for a pre-made predictor to be released. 

5.3 Future Study Recommendations 

 Future work could involve continuing to build and compare both model types but with 

different species in other geographic areas. This would further validate using remotely sensed 

imagery, to create SDMs is a viable option.  

Experimentation with new remote sensing platforms, different indices, and other 

techniques could be done to create novel predictor variables. Through this process, new predictor 

variables which generate better performing models may be identified. 

Investigations generating a hybrid Dakota skipper model using the top performing 

variables from both models could be undertaken. This research could take advantage of work 

already carried out in this study, including  the developed predictor variables and ground validation 

surveys and may produce a model that performs better than the two parent models. 
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 To further test and validate the developed model, work could be conducted to survey for 

Dakota skipper in the Interlake. 

Work could be conducted to enhance and refine the indicator species list with further 

vegetation surveys at known Dakota skipper sites in the Interlake and incorporate the findings from 

(Nordmeyer et al. 2021) which found that some known larvae hosts were less healthy for larvae to 

feed on than other native plants. 

 Investigations of the ground validation plot data and/or the predictor variables from this 

study and Dearborn et al. (2022) could be merged and if this merged dataset could be used to build 

other Dakota skipper models or SDMs for other species.   
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APPENDICES 

Appendix 1. Dakota skipper survey references 

Year Reference 

1973 Hooper, R.R. 1973. The Butterflies of Saskatchewan. Museum of Natural History, 
Regina, Saskatchewan. 216 pp. 

1989 Klassen,P.,Westwood, A.R., Preston. W.B. and W.B. McKillop. 1989. The 
Butterflies of Manitoba. Manitoba Museum of Man and Nature. Winnipeg. 290 
pp. 

1995 David Delf-personal communication, Nov 7, 1995. 
1995 

Klassen, P. 1995. Personal communications (by phone) re locations and dates of 
Powesheik and Dakota Skipper occurrence (collection) records. Mimeo. 10 pp. 

2001 Britten, Hugh. 2001. Conservation genetics of the Dakota Skipper (Hesperia 
dacotae). Department of Natural Resources. Natural Heritage and Nongame 
Research Program. 26 pp. 

2002 Britten, H. B., and J. W. Glasford. 2002. Genetic population structure of the 
Dakota Skipper (Lepidoptera:  Hesperia dacotae): a North American native prairie 
obligate. Conservation Genetics 3:363-374. 

2002 Walleyn, A.  2002.  Habitat Use By Prairie Bird Species. 
2002 Britten, Hugh. 2002(?). Personal Communication to Manitoba Conservation Data 

Centre. Numbers and locations of Dakota Skipper (Hesperia dacotae) captured and 
released near Tolstoi, Manitoba. 

2003 
Webster, Reginald, 2003. 2002 survey of the dakota skipper, Hesperia dacota 
(Skinner). Microsoft Word 20pp. + report and data tables in Microsoft Excel. 

2006 Morden, C-Jae. 2006. Potential reintroduction of the Dakota skipper (Hesperia 
dacotae) into south-eastern Manitoba. Honours Thesis, Dept. of Biology, 
University of Winnipeg. 

2006 Richard Westwood. 2006. Survey of butterflies and skippers on W30-17-3W. 
2007 Bates, Lara. 2007. The influence of prescribed burning and grazing on the Dakota 

Skipper, Hesperia dacotae, habitat in south-eastern Manitoba. Honors Thesis, 
Department of Biology, University of Winnipeg. 

2007 Webster, Reginald P. 2007. Dakota Skipper, Hesperia dacotae (Skinner), survey in 
southeast Saskatchewan and southwest Manitoba during 2007. Prepared for 
Canadian Wildlife Service, Prairie and Northern Region, Environment Canada, 
Edmonton, AB. 

2009 Manitoba Conservation Data Centre. 2009. Skipper records identified from netted 
specimens collected by the Manitoba Conservation Data Centre. 2 records. In 
Microsoft Excel format. 

2012 C. Rigney. 2010-2012. Dakota skipper observeations from 2010 to 2012. 

2013 Richard Westwood. 2013. Field surveys for Dakota Skipper during 2013. 
2016 

Westwood, Richard. 2016. Personal communication to Colin Murray regarding 
Dakota Skipper surveys in Riding Mountain National Park. Email correspondence. 

2018 Canadian National Collection of Insects, Arachnids, and Nematodes. 2018. Search 
of the CNC database for Hesperia dacotae (dakota skipper) specimens. Conducted 
on: 2018MAY25 

2018 Murray, C., Carla Church, and Chris Friesen. 2018. Observations from 2018 field 
season. Unpublished data. Manitoba Conservation Data Centre, Wildlife Branch, 
Manitoba Conservation. 
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2020 Church, C., and Alanah Jones. 2020. Photos of skippers observed during Dakota 
Skipper Survey. Manitoba Conservation Data Centre, Wildlife Branch, Manitoba 
Conservation. 

2020 Church, C., Alanah Jones, Kathryn Yarchuk, Colin Murray and Chris Friesen. 
2020. Observations from 2020 field season: GPS points ESRI shapefiles, and field 
notes. Unpublished data. Manitoba Conservation Data Centre, Wildlife Branch, 
Manitoba Conservation. 

2020 Westwood, R. 2020. Personal communications, skipper identification of photos 
taken during Dakota skipper surveys. 

2021 Henault, Justis. 2021. Lepidopteran surveys Manitoba, 2021 report, data, 
locations, and tracks. PDF, excel, and kml files. 
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Appendix 2. Common Model and Satellite Model variable maps 

Common Model Variables Satellite Model variables 
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Appendix 3. Ecoregions and Ecodistricts within the study area 
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Appendix 4. Manitoba land use land cover classification system 

1. Agricultural      

  Cropland  

  

Lands dedicated to the production of annual cereal, seed and 

specialty crops. These lands would normally be cultivated on an 

annual basis.  

  

  

2. Deciduous  

    Forest  

Forest lands where 75% to 100% of the tree canopy is deciduous. 

Dominant species include trembling aspen (Populus tremuloides), 

balsam poplar (Populus balsamifera), and white birch (Betula 

papyrifera). May encompass small patches of grassland, marsh or 

fens less than two hectares in size. Dense forest canopy (>60%), 

open canopy (26-60%), sparse canopy (10-25%).  

3. Water Bodies  Consists of all open water – lakes, rivers, streams, ponds, lagoons  

  

  

4. Grassland/                

    Rangeland  

Lands of mixed native and/or tame prairie grasses and herbaceous 

vegetation. May also include scattered stands of shrub such as 

willow (Salix spp.), choke-cherry (Prunus spp.), saskatoon 

(Amelanchier spp.) and pincherry (Prunus spp.). Lands may be 

used for the harvesting of hay while others may be grazed. Both 

upland and lowland meadows fall into this class. There is 

normally (<10%) shrub or tree canopy.  

  

5. Mixedwood Forest  

Forest lands where 26% to 74% of the tree canopy is coniferous. 

May encompass treed bogs, marsh or fens less than two hectares 

in size. Dense forest canopy (>60%), open canopy (26-60%), 

sparse canopy (<26%).  

  

  

  

6. Marsh  

Wetlands comprised of various herbaceous species. Wetlands 
range from intermittent inundated (temporary, seasonal, semi-
permanent) to permanent depending on the current annual 
precipitation.  Common vegetation species include; sedge (Carex 
spp.), whitetop (Scolochloa festucacea), giant reed grass 
(Phragmites australis), prairie cordgrass (Spartina pectinata), 
mannagrass (Glyceria spp.), slough grass (Beckmannia spp.), 
cattail (Typha spp.), and bulrush (Scirpus spp.).  

  

7. Bogs  

Wetlands dominated by bryoid-mosses (ie. Spaghnum spp.) and 

ericaceous shrubs such as labrador tea (Ledum spp.). Tamarack 

(Larix larcina) and black spruce (Picea mariana) are also found 

with a sparse to dense (10 – 100%) canopy.  

  

8. Treed Rock  

  

Lands of exposed bedrock with less than 60% tree canopy. The 
dominant tree species include jack pine (Pinus banksiana), and/or 
black spruce (Picea mariana) with shrub cover such as alder 
(Alnus spp.).  
Open canopy (26-60%), sparse canopy (10-25%).  

  

  

9. Coniferous Forest  

  

  

Forest lands where 75-100% of the tree canopy is coniferous. Jack 

Pine, white spruce (Picea glauca) and black spruce are the 

dominant species in this class. May include patches of treed bog, 

marsh and/or fens less than two hectares in size. Dense forest 

canopy (>60%), open canopy (26-60%), sparse canopy (10-25%).  
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10. Wildfire Areas  

  

Forest lands that have been recently burnt (< 5 years) with 

sporadic regeneration and can include pockets of unburned trees.  

  

11. Open Deciduous  

      Forest/Shrub  

Lands characterized by shallow soils and/or poor drainage which 

support mainly a cover of shrubs such as willow (Salix spp.), alder  

(Alnus spp.), Saskatoon (Amelanchier spp.) and/or stunted trees 

such as trembling aspen, balsam poplar and birch with a sparse 

(10-25%) to open canopy (26-60%).  

  

  

12. Forage Crops  

Agricultural lands used in the production of forage such as alfalfa 

and clover or blends of these with tame species of grass. Fall 

seeded crops such as winter wheat or fall rye may be included 

here. 

  

  

13. Cultural Features  

Cities, towns, villages and communities with place names. Also 

includes; cemeteries, shopping centres, large recreation sites, 

autowreck yards, airports, cottage areas, race tracks and rural 

residential.  

14. Forest Cutovers  Forest lands where commercial timber have been completely or 

partially removed by logging operations.  

15. Bare   

     Rock/Gravel/Sand  

Lands of exposed bedrock, gravel and/or sand dunes and beaches 

with less than 10% vegetation. Also includes gravel quarry/pit 

operations, mine tailings, borrow pits and rock quarries.  

16. Roads/Trails  Highways, secondary roads, trails and cut survey lines or right-of-

ways such as railways and transmission lines.  

  

  

17. Fen  

Wetlands with nutrient-rich, minerotrophic water, and organic 

soils composed of the remains of sedges (Carex spp.) and/or 

mosses (Drepanocladus spp.), where sedges, grasses, reeds and 

moss predominate but could include shrub and sparse tree canopy 

of black spruce and/or tamarack. Much of the vegetative cover of 

fens would be similar to the vegetation zones of marshes.  

  

  

18. Lichen Heath  

Lands characterized by an abundance of lichen (C. alpestris, C. 
mitis, C. rangerferina) and heath vegetation (L. decumbens, V. 
vitis-idaea, V.  
uglinosum, E. nigrum) located on well drained summits and upper 

slopes. The forest canopy is sparse (< 10%) with the dominant tree 

being black spruce. Lichen heath is typically found in the taiga 

shield ecozone.  

(Manitoba Remote Sensing Centre 2006)
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Appendix 5. Model candidate variables created from Sentinel 2A imagery and SRTM DEM. 

Var. 

Num

. 

Group 

Run 

Num. 

Group Run Name Candidate Var. 

Name Abbrev. 

Candidate Var. 

Name 

Remote Sensing 

Platform 

Imagery Used Software Source 

1 1 Water/Moisture NDWI2 Normalized 

Difference 

Water Index 

Sentinel 2 SuperRes10m SNAP (Du et al. 

2016) 

2 1 Water/Moisture MNDWI Modified 

Normalized 

Difference 

Water Index 

Sentinel 2 SuperRes10m SNAP (Du et al. 

2016) 

3 1 Water/Moisture TcapWET06 Tasselled Cap 

Wetness 6 

Bands 

Sentinel 2 C1_simpsamp10mres SNAP (Shi and Xu 

2019) 

4 1 Water/Moisture TcapWET13 Tasselled Cap 

Wetness 13 

Bands 

Sentinel 2 C1_simpsamp10mres SNAP (Shi and Xu 

2019) 

5 2 Vegetation NDVI8 Normalized 

Difference 

Vegetation 

Index 

Sentinel 2 SuperRes10m SNAP (Lange et al. 

2017) 

6 2 Vegetation NDVI8a Normalized 

Difference 

Vegetation 

Index 

Sentinel 2 SuperRes10m SNAP (Lange et al. 

2017) 

7 2 Vegetation ARVI8 Atmospherical

ly resistant 

Vegetation 

Index 

Sentinel 2 SuperRes10m SNAP (Kaufman 

and Tanre 

1992) 

         

8 2 Vegetation ARVI8a Atmospherical

ly resistant 

Sentinel 2 SuperRes10m SNAP (Kaufman 

and Tanre 

1992) 
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Vegetation 

Index 

9 2 Vegetation NLI NonLinear 

Vegetation 

Index 

Sentinel 2 SuperRes10m SNAP Indexdatabas

e.de and 

Sentinel hub 

custom 

scripts 

10 2 Vegetation TcapGVI06 Tasselled Cap 

Greeness or 

vegetation 6 

Bands 

Sentinel 2 C1_simpsamp10mres SNAP (Shi and Xu 

2019) 

11 2 Vegetation TcapGVI13 Tasselled Cap 

Greeness or 

vegetation 13 

Bands 

Sentinel 2 C1_simpsamp10mres SNAP (Shi and Xu 

2019) 

12 2 Vegetation EVI Enhanced 

Vegetation 

Index 

Sentinel 2 SuperRes10m SNAP (Huete et al. 

1994) 

13 2 Vegetation MSAVI2B8 Modified Soil 

Adjusted 

Vegetation 

Index 2 

Sentinel 2 SuperRes10m SNAP (Qi et al. 

1994) 

14 2 Vegetation MSAVI2B8a Modified Soil 

Adjusted 

Vegetation 

Index 2 

Sentinel 2 SuperRes10m SNAP (Qi et al. 

1994) 

15 3 DEM SRTM DEM SRTM DEM SRTM SRTMDEMRes10m ARC (Farr et al. 

2007) 

16 3 DEM SRTM DEM 

Slope 

SRTM DEM 

Slope 

SRTM SRTMDEMRes10m ARC (Farr et al. 

2007) 

17 3 DEM SRTM DEM 

Aspect 

SRTM DEM 

Aspect 

SRTM SRTMDEMRes10m ARC (Farr et al. 

2007) 
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18 3 DEM SRTM DEM 

Curve 

SRTM DEM 

Slope 

Curvature 

SRTM SRTMDEMRes10m ARC (Farr et al. 

2007) 

19 3 DEM SRTM DEM 

SCPara 

SRTM DEM 

Slope 

Curvature 

Parallel 

SRTM SRTMDEMRes10m ARC (Farr et al. 

2007) 

20 3 DEM SRTM DEM 

SCPerp 

SRTM DEM 

Slope 

Curvature 

Perpendicular 

SRTM SRTMDEMRes10m ARC (Farr et al. 

2007) 

21 4 Brightness TcapSBI06 Tasselled Cap 

Brightness 6 

Bands 

Sentinel 2 C1_simpsamp10mres SNAP (Shi and Xu 

2019) 

22 4 Brightness TcapSBI13 Tasselled Cap 

Brightness 13 

Bands 

Sentinel 2 C1_simpsamp10mres SNAP (Shi and Xu 

2019) 

23 4 Brightness Albedo Albedo Sentinel 2 SuperRes10m SNAP (Lahoz-

Monfort et 

al. 2010) 

24 4 Brightness BI Brightness 

Index 

Sentinel 2 SuperRes10m SNAP (Escadafal et 

al. 1989) 

25 4 Brightness BI2 Second 

Brightness 

Index 

Sentinel 2 SuperRes10m SNAP (Escadafal et 

al. 1989) 

26 5 Insolation TRADFLY Total 

Radiation 

Flight Time 

SRTM SRTMDEMRes30m to 

10m 

ARC (Fu and Rich 

2000) 

         

27 5 Insolation TRADSUM Total 

Radiation 

Summer time 

SRTM SRTMDEMRes30m to 

10m 

ARC (Fu and Rich 

2000) 
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28 5 Insolation TRADAN Total 

Radiation 

Total Annual 

SRTM SRTMDEMRes30m to 

10m 

ARC (Fu and Rich 

2000) 

29 5 Insolation Winter Total 

Radiation 

Winter time 

SRTM SRTMDEMRes30m to 

10m 

ARC (Fu and Rich 

2000) 

30 6 Biophysical 

Processor 

LAI Leaf Area 

Index 

Sentinel 2 L2ASimpSamp SNAP (Weiss and 

Baret 2016) 

31 6 Biophysical 

Processor 

FAPAR Fraction of 

Absorbed 

Photosynthetic

ally Active 

Radiation 

Sentinel 2 L2ASimpSamp SNAP (Weiss and 

Baret 2016) 

32 6 Biophysical 

Processor 

FVC Fraction of 

Vegetation 

Cover 

Sentinel 2 L2ASimpSamp SNAP (Weiss and 

Baret 2016) 

33 7 GLCM glcm_ent Entropy Sentinel 2 NDVI8a R (Zvoleff 

2019) 

34 7 GLCM glcm_secm Second 

Momentum 

Sentinel 2 NDVI8a R (Zvoleff 

35 7 GLCM glcm_homo Homogeneity Sentinel 2 NDVI8a R (Zvoleff 

36 7 GLCM glcm_dis Dissimilarity Sentinel 2 NDVI8a R (Zvoleff 

37 7 GLCM glcm_con Contrast Sentinel 2 NDVI8a R (Zvoleff 

38 7 GLCM glcm_mean Mean Sentinel 2 NDVI8a R (Zvoleff 

39 7 GLCM glcm_var Variance Sentinel 2 NDVI8a R (Zvoleff 

40 7 GLCM glcm_cor Correlation Sentinel 2 NDVI8a R (Zvoleff 
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Appendix 66. Detailed list of indicator plants and suitability scores. 

Type Common Name Scientific Name 

Highly 
abundant 
excellent 
habitat 

Indicator of 
excellent 
habitat 

Adult 
nectar or 

larval food 
species 

Native to 
North 

America 
Suitability 

Score 

Forb Yarrow Achillea millefolium 0 0 1 1 2 

Forb False dandelion Agoseris glauca 0 1 1 1 3 

Graminoid Quackgrass Elymus repens 0 0 0 0 0 

Graminoid Slender wheatgrass Elymus trachycaulus 0 1 0 1 2 

Graminoid Creeping bentgrass Agrostis stolonifera  1 0 0 0 1 

Graminoid Big bluestem Andropogon gerardi 1 1 1 1 4 

Shrub Kinnikinnick Arctostaphylos uva-ursi 0 1 0 1 2 

Forb Milkweed Asclepias spp. 0 0 1 1 2 

Forb Milkvetch Astragalus spp. 0 0 1 1 2 

Graminoid Smooth brome Bromus inermis 0 0 0.5 0 0.5 

Graminoid Nodding brome Bromus porteri  0 1 0 1 2 

Forb Harebell Campanula rotundifolia 1 0 1 1 3 

Forb Hairy goldenaster Heterotheca villosa 0 0 1 1 2 

Forb Canada thistle Cirsium arvense 0 0 1 0 1 

Forb Flodman’s thistle  Cirsium flodmanii 0 0 1 1 2 

Forb Dandelion Hawsbeard Crepis runcinata 1 1 1 1 4 

Graminoid Tufted hair grass Deschampsia cespitosa 1 1 1 1 4 

Graminoid Prairie dropseed Sporobolus heterolepis 1 1 1 1 4 

Shrub Wolf willow Elaeagnus commutata 0 1 0 1 2 

Graminoid Marsh spikerush Eleocharis palustris 1 0 0.5 1 2.5 

Forb Fleabane Erigeron spp. 0 0 1 1 2 

Shrub Wild strawberry Fragaria spp. 1 1 0 1 3 

Forb Great Blanketflower Gaillardia aristata 0 0 1 1 2 

Forb Northern bedstraw Galium boreale 0 1 0 1 2 

Forb Wild Licorice Glycyrrhiza lepidota 1 1 0 1 3 

Forb Sunflower Helianthus spp. 0 1 0 1 2 
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Graminoid Porcupine grass Hesperostipa spartea 0 0 1 1 2 

Forb Umbellate Hawkweed Hieracium umbellatum 0 1 0 1 2 

Forb Yellow Stargrass Hypoxis hirsuta 0 1 0 1 2 

Forb Tall Blue Lettuce Mulgedium pulchellum 0 0 1 1 2 

Forb Meadow Blazingstar Liatris ligulistylis 0 1 0 1 2 

Forb Wood lily Lilium philadelphicum 0 0 1 1 2 

Forb Lobelia Lobelia spp. 1 0 1 1 3 

Forb Sea milkwort Lysimachia maritima 0 1 0 1 2 

Forb Black medick Medicago spp. 0 0 1 0 1 

Forb White sweet-clover Melilotus spp. 0 0 1 0 1 

Graminoid Mat muhly 
Muhlenbergia 
richardsonis 

0 0 0 1 1 

Graminoid Switchgrass Panicum virgatum 0 1 0.5 1 2.5 

Forb Grass of parnassus  Parnassia glauca 1 1 0 1 3 

Forb Swamp lousewort Pedicularis lanceolata 0 1 0 1 2 

Forb Prairie-clover Dalea spp. 1 1 1 1 4 

Graminoid Common timothy Phleum pratense 0 0 0 0 0 

Graminoid Grass Poa spp. 0 0 0.5 0.5 1 

Forb Seneca Snakeroot Polygala senega 0 1 0 1 2 

Shrub Silverweed Potentilla anserina 1 0 0 1 2 

Shrub Shrubby cinquefoil  Dasiphora fruticosa 0 1 0 1 2 

Forb Seaside Crowfoot Halerpestes cymbalaria 1 0 0 1 2 

Forb 
Upright Prairie 
Coneflower Ratibida columnifera 

0 0 1 1 2 

Forb Black-eyed Susan Rudbeckia hirta 1 0 1 1 3 

Graminoid Little bluestem 
Schizachyrium 
scoparium 

1 1 1 1 4 

Forb Upland White Goldenrod Solidago ptarmicoides 1 1 1 1 4 

Forb Goldenrod Solidago spp. 1 0 0 1 2 

Forb Field Sow-thistle Sonchus arvensis 1 0 0 0 1 

Forb Rush aster Symphotrychum boreal 1 0 0 1 2 
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Forb Many-flowered aster 
Symphyotrichum 
ericoides 

1 0 0 1 2 

Forb Smooth aster Symphyotrichum laeve 0 0 0 1 1 

Forb Clover Trifolium spp. 0 0 1 0 1 

Forb White camas Anticlea elegans 0 1 1 1 3 

Graminoid Redtop Agrostis gigantea 0 0 0 0 0 

Graminoid Golden sedge Carex aurea 0 0 0.5 1 1.5 

Shrub Blue honeysuckle Lonicera caerulea 0 0 0 1 1 

Forb Evening primrose Oenothera biennis 0 0 1 0 1 

Graminoid River grass Scolochloa festucacea 0 0 0 1 1 

Forb Blue-eyed grass Sisyrincium montanum 0 0 0 1 1 

Forb Tall meadow rue Thalictrum dasycarpum 0 0 0 1 1 

Forb Vetch Vicia spp. 0 0 0 1 1 

Each indicator plant was scored on the following four criteria: (1) Highly abundant in excellent habitat, (2) An indicator of excellent 

habitat, (3) An adult nectar or larval food source, (4) Native to North America. The plant was awarded one point for each criteria it 

fulfilled, half a point if it partially fulfilled the criteria, and no point if it the criteria didn’t apply. The points awarded for each plant were 

summed providing a final overall suitability score. Detailed indicator plant list and scores listed in Appendix 1 (from Rigney 2013; 

Dearborn et al. 2022). 
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Appendix 77. Detail of Site Sample Design. 

 

Site evaluation consisted of employing either a detailed or rapid assessment protocol at 

each survey site.  Detailed assessments were conducted when an initial walk-about indicated that 

a site had high native floristic diversity and was not severely disturbed by cattle or not agriculture 

cropland. Detailed and rapid assessments were modified between Common and Satellite due to the 

difference in pixel size. The intent was to establish a smaller quadrat square within the larger pixel 

to mitigate influence from the adjacent pixels when sampling for indicator plant species (Figure 

6). 

Common Model detailed methods consisted of navigating to the point site using GPS and 

marking the centroid location. Four other locations were established 7.5m from the centroid at the 

four cardinal directions. A 1x1m quadrat was then centered over each cardinal location and 

presence of indicator plant species was recorded. Finally, a five-minute timed walk-about was 

conducted within the established 15 x 15 m square recording any indicator plant species 

encountered.  

Detailed assessment protocol for the Satellite Model sites consisted of marking the centroid 

location and marking four other locations 5m from the centroid location to the cardinal directions 

(northwest, southwest, southeast, southwest) making a 7 x 7  m square. An additional sixth location 

was marked at 3.5 m from the centroid along the northwest axis. Indicator plant presence-absence 

was evaluated at the two northwest points and the centroid point using a 1m x 1m quadrat. A five-

minute timed walk-about survey was then done within the 5 x 5 m area. 

Rapid assessment for the Satellite Model involved sampling the northwest point 3.5 m from 

the centroid and then the five-minute timed walk-about survey in the 7 x 7 m square. Rapid 

assessment for the Common Model entailed sampling for indicator plants at the north quadrat point 

and then the five-minute walk-about within the 15 x15 m square. 

Survey forms were designed in ESRI Survey123 (ESRI (Environmental Systems Research 

Institute) 2018) to collect site information, and digital maps were created for navigation and to 



 

104 
 

keep track of survey status for each site and overall progress. Photographs were captured of each 

site at the south corner looking north, east, and west. Aerial photographs were recorded using a 

DJI Phantom 4 UAV deployed at each site, flight conditions permitting, to photograph the site at 

30 m, 50 m, and 100 m altitude. 

 

Figure 6. Common and Satellite Model plot layout 
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Appendix 8. Common Model and Satellite Model run output 

Table 12. Common Model environmental variable relative contribution to the model. 

Variable   Percent Contribution  

Landuse   34.4   

Soil mode of deposition   20.7   

SRTM DEM   17.1   

Soil drainage   13.7   

Distance to deciduous forest     7.5   

Soil Ph     4.9   

Closest forest stand area     1.7   

  

Table 13. Satellite Model environmental variable relative contribution to the model. 

Variable   Percent Contribution   

SRTM DEM   44.7   

NDVI 8a   24.5   

Tasseled cap wetness   20.0   

Tasseled cap greenness   9.8   

ARVI 8a   1.0   
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Figure 7. Common Model Jackknife test for training and test data 

 
 

Figure 8. Satellite Model Jackknife test for training and test data 
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Figure 9. Common Model environmental variable response curves 
  

  

 

   

 

   

Curves show predicted suitability for Dakota skipper when each variable is modelled separately 
(red line and bar is the mean of 25 model runs, blue is +/- one standard deviation). X-axis is 
environmental variable value range; y-axis is model predictive change.
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Figure 10. Satellite Model environmental variable response curves 

     

  

  

Curves show predicted suitability for Dakota skipper when each variable is modelled separately 

(red line and bar is the mean of 25 model runs, blue is +/- one standard deviation). X-axis is 

environmental variable value range; y-axis is model predictive change. 
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