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Abstract

Photogrammetry, the science of generating 3D models of objects from photographs, offers a

comprehensive method for acquiring, studying, and analyzing detailed information about the struc-

ture of objects. Utilizing the cost-effective Structure from Motion (SfM) technique, it is possible to

generate 3D models from numerous 2D images taken from various angles. Point clouds represent

a standard format for 3D data generated by depth sensors such as LIDARs and RGB-D cameras.

Despite their utility, high-quality 3D scanners, costing upwards of $70,000, remain relatively ex-

pensive for many researchers and practitioners within the agricultural sector. In response, we have

developed a low-cost, close-range photogrammetry rig, priced at $2,600, to support agronomists,

plant scientists, and breeders. This work outlines the development of our device, which integrates

a multi-camera system featuring the Arducam 64MP Autofocus Quad-Camera Kit, a rotary table

from Ortery, and a Raspberry Pi for comprehensive control and processing. Our scanner efficiently

captures detailed plant 3D data, offering a valuable tool for non-destructive, automatic, and robust

3D phenotyping. It is possible to use our device across various applications, including growth

monitoring and the extraction of plant traits. Specifically, we have leveraged the device to measure

the canopy volume of different wheat genotypes by computing the convex hull from the 3D data.

Furthermore, through our photogrammetry rig, we have developed a high-throughput, quantitative

trait index for wheat to identify distinct planophile and erectophile canopy architectures.

ii



Acknowledgments

First and foremost, my deepest appreciation goes to my co-supervisors, Dr. Christopher Bidi-
nosti and Dr. Michael Beck, for their exceptional mentorship, support, expertise and guidance
throughout my master’s journey and thesis work. Their vast knowledge and insightful feedback
were instrumental in both the successful completion of this work.

Besides my advisors, I am most grateful to Dr. Christopher Henry and Dr. Edward Cloutis for
reading my thesis and providing valuable comments.

Special thanks are extended to Dr. Karen Tanino, and Kalhari Manawasinghe for their contri-
butions and collaborative efforts.

My sincere gratitude also goes to Mitacs, EMILI, and The Faculty of Graduate Studies for their
financial support, which was crucial in allowing me to fully commit to my research.

Lastly, I cannot thank my parents and friends enough for their unwavering support and love,
which have been my constant source of strength and motivation.

iii



Contents

Abstract ii

Acknowledgments iii

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Problem Statement – Low-Cost Photogrammetry for Crop Phenotyping . . . . . . 4

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Review of Plant Phenotyping 7

2.1 Definition and Importance of Plant Phenotyping . . . . . . . . . . . . . . . . . . . 7

2.1.1 Introduction to Plant Phenotyping . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Current Importance and Applications of Plant Phenotyping . . . . . . . . . 11

2.2 Plant Phenotyping Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Traditional Plant Phenotyping Techniques . . . . . . . . . . . . . . . . . . 15

2.2.2 2D Imaging Plant Phenotyping Techniques . . . . . . . . . . . . . . . . . 16

2.2.3 3D Imaging Plant Phenotyping Techniques . . . . . . . . . . . . . . . . . 17

2.3 3D Plant Phenotyping with Photogrammetry . . . . . . . . . . . . . . . . . . . . . 20

3 Design and Implementation of the Photogrammetry Rig 23

3.1 Basic Principles and Hardware Requirements of Photogrammetry . . . . . . . . . 23

3.1.1 Structure from Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 General Design and Implementation of the Photogrammetry Rig . . . . . . . . . . 32

3.3 Full System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Raspberry Pi and Camera Kit . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Turntable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Aluminum Extrusion Structure . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



3.3.4 Featureless Background and Lighting Setup . . . . . . . . . . . . . . . . . 44

3.4 Initial Results and Proof of Concept of the Photogrammetry Rig . . . . . . . . . . 46

3.4.1 Experimental Setup and Methodology . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Software Implementation of the Photogrammetry Rig 57

4.1 Photogrammetry Rig Control Script . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 3D reconstruction with COLMAP . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Preprocessing Point Cloud Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Wheat Phenotyping with the Photogrammetry Rig 77

5.1 Distinguishing Planophile and Erectophile Traits in Wheat . . . . . . . . . . . . . 77

5.2 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Canopy Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Height and Maximum Radius Ratio . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 94

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References 97

v



List of Tables

3.1 Cost of hardware and parts for the photogrammetry rig. . . . . . . . . . . . . . . . 35

3.2 Settings of the photogrammetry rig for image capture . . . . . . . . . . . . . . . . 48

4.1 Photogrammetry rig control script parameters . . . . . . . . . . . . . . . . . . . . 60

4.2 Hardware specifications for 3D Reconstruction systems . . . . . . . . . . . . . . . 67

5.1 This table chronologically outlines the planting and imaging schedule for this study. 79

5.2 Settings of the photogrammetry rig for wheat image capture . . . . . . . . . . . . 80

vi



List of Figures

1.1 Schematic of a close-range photogrammetry rig . . . . . . . . . . . . . . . . . . . 4

2.1 Flowchart of the plant phenotyping scheme. . . . . . . . . . . . . . . . . . . . . . 9

2.2 Summary of HTP technologies used in agriculture and food science. . . . . . . . . 10

2.3 Summary of different types of HTP_technologies for different trait analysis . . . . 12

2.4 Example of other photogrammetry rigs . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Stereo camera pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Photogrammetry sparse model network . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Pipeline of the Sfm algorithm in COLMAP . . . . . . . . . . . . . . . . . . . . . 27

3.4 Example of key points from an image . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Example of image matching between two images . . . . . . . . . . . . . . . . . . 29

3.6 Sparse and dense point cloud data in COLMAP . . . . . . . . . . . . . . . . . . . 31

3.7 Complete assembly of the photogrammetry rig . . . . . . . . . . . . . . . . . . . . 34

3.8 Raspberry Pi High-Quality Camera coneected multi-camera adapter . . . . . . . . 37

3.9 Hardware of the Camera Kit and Raspberry Pi . . . . . . . . . . . . . . . . . . . . 38

3.10 Turntable with the checkered pattern . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Internal components of the turntable . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Close-up of the Raspberry Pi and HATs . . . . . . . . . . . . . . . . . . . . . . . 41

3.13 Aluminum extrusion structure model and design . . . . . . . . . . . . . . . . . . . 42

3.14 3D Diagram of the camera, 3D printed mount, and adjustable mount . . . . . . . . 43

3.15 Visual of the lights and background setup in photogrammetry . . . . . . . . . . . . 45

3.16 Growth chamber and the photogrammetry rig . . . . . . . . . . . . . . . . . . . . 47

3.17 Pre-processing of 3D point cloud data . . . . . . . . . . . . . . . . . . . . . . . . 49

3.18 Plant height measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.19 Plant height analysis of soybean . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.20 Visual of lettuce point clouds and canopy volume calculation . . . . . . . . . . . . 54

3.21 Visual of soybean point clouds and canopy volume calculation . . . . . . . . . . . 55

3.22 Canopy volume of lettuce and soybean . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



4.1 Gui app of the photogrammetry rig. Image capture, turntable control, plant name,
inspect images, start imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Photogrammetry imaging process . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Visual of the photogrammetry rig imaging pipeline . . . . . . . . . . . . . . . . . 62

4.4 Example of an image taken from the rig . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Images from 4 different viewpoints. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Binary images from 4 different viewpoints. . . . . . . . . . . . . . . . . . . . . . 64

4.7 Point cloud data pre-processing steps . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Visualization of plane segmentation process . . . . . . . . . . . . . . . . . . . . . 70

4.9 Orienting the point cloud data to the positive Z-axis . . . . . . . . . . . . . . . . . 71

4.10 Ring segmentation of the plant point clouds . . . . . . . . . . . . . . . . . . . . . 72

4.11 RGB thresholding of the point cloud data . . . . . . . . . . . . . . . . . . . . . . 74

4.12 Visual of a cleaned point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Early growth stages of wheat plants . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Visual of the wheat growth stages . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Gladius pot B6 erectophile visualization . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Brandon planophile visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Visualization of canopy volume at 60% . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Day 14 canopy volume analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Gladius erectophile visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8 Brandon planophile visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Visualization of canopy volume at 60% . . . . . . . . . . . . . . . . . . . . . . . 87

5.10 Day 35 canopy volume analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.11 Day 35 Gladius pot B6 point cloud and polar plots . . . . . . . . . . . . . . . . . . 89

5.12 Day 14 Brandon pot C4 point cloud and polar plots . . . . . . . . . . . . . . . . . 89

5.13 Height-to-radius ratio analysis on day 14 . . . . . . . . . . . . . . . . . . . . . . . 90

5.14 Day 35 Gladius point cloud and polar plots . . . . . . . . . . . . . . . . . . . . . 91

5.15 Day 35 Brandon point cloud and polar plots . . . . . . . . . . . . . . . . . . . . . 92

5.16 Height-to-radius ratio analysis on day 35 . . . . . . . . . . . . . . . . . . . . . . . 93

viii



1. Introduction

Climate change and population growth present imminent threats to food security. By 2050,

the world population will reach 9 billion [1]. Alongside the increasing population, the demand

for food is intensifying. To improve crop production and plant breeding effectively, the United

Nations Food and Agriculture Organization (FAO) estimates that global crop production will need

to increase by 60% to meet the demands of the world’s population by 2050 [2]. Researchers must

find more effective ways to assess crops and extract novel plant traits to address the urgent need for

improved crop yields and enhanced food security. In recent decades, crop yields have significantly

improved, mainly attributed to progress in breeding and genetics [3,4]. Accurate measurement and

analysis of a plant’s architecture is a critical and challenging task, but it is essential for developing

new crop varieties. Using imaging tools and analysis with artificial intelligence (AI) and computer

vision can potentially revolutionize food production in the agricultural industry [5]. These tools

are essential to help create crop plants optimized for higher yields, excellent nutritional value, and

greater resilience to environmental stressors.

However, traditional methods of plant analysis have limitations. These methods can be time-

consuming, labor-intensive, and prone to errors, resulting in inaccurate data that may hinder plant

research [6–8]. Furthermore, traditional methods can limit our ability to quantitatively understand

genetic traits that govern plant development, particularly over the entire life cycle of the plant.

Non-invasive and non-contact methods for plant analysis have become increasingly popular as

these methods enable a more thorough and accurate analysis of plant growth and development

without damaging the plant itself. Data can be collected throughout the lifetime of the plant,

providing a more comprehensive understanding of its traits and response to environmental factors.

Phenotyping measures and analyzes the physical and physiological characteristics of plants,
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including their growth, development, and response to environmental factors. Various parameters

are measured, such as plant height, width, length, plant canopy volume, and projected leaf area

[9]. Plant phenotyping is about understanding the relationship between the genes governing plant

development and the physical and physiological traits these genes manifest in plants. Researchers

can understand how different genetic variations interact with the environment to produce specific

phenotype outcomes by measuring and analyzing a wide range of plant traits. This information

can then be used to develop more effective plant breeding and genetics strategies and improve our

understanding of plant physiology. Phenotyping builds this relationship between genotype and

phenotype of plants by systematically measuring and analyzing physical and biochemical traits of

plants, allowing researchers to understand better how genetic factors contribute to the observable

characteristics of plants. The field of plant phenomics underpins this process and is an area of

research that is rapidly gaining popularity in the plant sciences [10]. Measuring plant traits in a

phenomic study is a critical step in the plant breeding process, as it provides a way to evaluate

the performance of different plant varieties and identify the most promising candidates for further

development.

Recent technological advances have paved the way for the integration of intelligent sensors,

big data, machine learning, and non-invasive technologies, which enable real-time data analysis on

an unprecedented scale [8, 11, 12]. Adopting these modern imaging techniques for plant breeding,

cultivation, and management of crops will assist in sustainably improving plant production [13,14].

Automated solutions for data acquisition have led to the development of platforms that combine

vehicles, robotics, imaging systems, and sensors to efficiently and accurately measure plants [15].

These platforms can cover large areas of field crops in a short amount of time, collecting vast

amounts of data. One key ingredient towards developing more efficient breeding strategies for

improving crop yields and quality is plant phenotyping [16, 17].

Incorporating imaging tools into phenotyping enhances the comprehensiveness and accuracy of

plant trait assessments. Two-dimensional (2D) imaging techniques effectively measure the struc-

tural traits of plants, enabling quantitative measurements of various traits, including plant surface
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area, leaf shape, leaf color, and leaf count [18, 19]. These techniques, encompassing visible light

and infrared imaging, are valuable for their simplicity and efficiency. However, 2D imaging can

lead to inaccuracies in complex or more extensive plants due to overlapping image features and

lack of depth-information [20]. Three-dimensional (3D) imaging techniques have been increas-

ingly employed to overcome these limitations. These techniques enable a more detailed capture

of the structure of plants, avoiding issues like self-occlusion of plant tissues. Additionally, 3D

imaging offers a more accurate measurement of plant traits by capturing information about plant

structures that are challenging to quantify with 2D images [21]. For instance, 3D imaging can

reveal the internal architecture of plants, such as leaf distribution within the canopy or the overall

plant architecture, providing deeper insights into plant growth and development.

Several 3D imaging techniques are commonly used in plant phenotyping, including Light De-

tection and Ranging (LiDAR), stereoscopic imaging, Time of Flight Cameras (ToF), and 3D re-

construction from multiple 2D images such as photogrammetry. Understanding the strengths and

weaknesses of each can help researchers choose the most appropriate method for their specific

phenotyping needs. For example, LiDAR provides high-resolution and accurate 3D point clouds

of plant structures but can be expensive and challenging to implement in field conditions [22].

Photogrammetry offers a cost-effective alternative offering a balance between cost and accuracy

that leverages computational techniques to generate 3D models; however, it may be less accurate

and more sensitive to environmental conditions, such as lighting variations [23].

Integrating various imaging techniques provides comprehensive and accurate assessments of

plant traits, reducing the time and labor involved in manual measurements. Two-dimensional imag-

ing techniques offer valuable insights into structural plant traits, while three-dimensional imaging

techniques address the limitations of 2D imaging, such as occlusion issues, and provide more de-

tailed information about plant structures. Photogrammetry balances cost and accuracy, making it

an attractive option for researchers to study plant growth, development, and response to environ-

mental factors. A typical schematic of a close-range photogrammetry rig is shown in Figure 1.1

and includes cameras, a rotary table for precise object positioning, a specialized lighting setup,
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Figure 1.1: Schematic of a close-range photogrammetry rig showing key components such as
cameras, a rotary table, and lighting. It demonstrates how the rig captures multiple 2D images
from various directions and angles to develop a digital 3D model. In this example, researchers
developed a digital 3D dental cast model with their photogrammetry system. (Image adapted from
Ref. [24].)

and the option for a backdrop. A photogrammetry rig, comprised of low-cost hardware, can offer

high-precision data of plant architectures, which is essential for conducting detailed morphological

studies. As our understanding of these imaging techniques advances, it will pave the way for more

efficient plant breeding strategies and sustainable agricultural practices, ultimately contributing to

global food security in the face of a growing population and climate change.

1.1 Problem Statement – Low-Cost Photogrammetry for Crop

Phenotyping

While valuable, traditional techniques for analyzing plant growth for phenotyping come with

several limitations that can impact the accuracy of results. A significant concern is the potential

damage or alteration to the plant during data collection, leading to skewed data. Besides being

labor-intensive, manual data collection is prone to errors, compromising result accuracy. Addi-

tionally, 2D imaging techniques commonly used in plant growth analysis are not able to capture
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the full complexity of plant morphology. For example, these techniques can only partially capture

the 3D structure of plants, often resulting in incomplete data representation.

Photogrammetry is a technique that involves capturing a series of photographs from differ-

ent angles and using them to create precise 3D models of objects. This method is particularly

beneficial in plant phenotyping because it enables detailed and accurate representations of plant

structures without physical contact or harm to the plant. By utilizing photogrammetry in plant

phenotyping, researchers can obtain comprehensive data about plant growth, morphology, and re-

sponse to environmental factors. Photogrammetry enables the generation of 3D models from plant

images, providing a more detailed analysis of plant structure and growth. Ensuring the accuracy

and reproducibility of 3D models generated from plant images is challenging and requires care-

ful calibration of imaging systems and sophisticated software tools. Therefore, there is a need to

develop robust protocols and tools to enable reliable measurement of 3D plant growth.

1.2 Thesis Contribution

The main focus of this thesis is to demonstrate and provide an overview of using a low-cost,

close-range photogrammetry rig in advancing plant phenotyping and developing new techniques

and methodologies for plant growth analysis, leading to more efficient and effective plant breeding

and crop management practices. The photogrammetry rig is designed to be user-friendly and func-

tional, offering researchers, plant scientists, and breeders an accessible and accurate 3D scanning

solution for analyzing their crop growth and improving their breeding techniques. In this work, we

have demonstrated the capabilities of the photogrammetry rig and developed a high-throughput,

quantitative trait analysis for wheat, capable of distinguishing between planophile and erectophile

canopy structures. The integration of this technology is a step forward in advancing the field,

highlighting the value of cost-effective photogrammetry techniques in the agricultural sciences.
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1.3 Thesis Outline

Chapter 2 reviews research on plant phenotyping, highlighting the significant techniques and

methods used for analyzing plant growth and development. This chapter provides insights into the

various systems for capturing plant phenotypic data.

Chapter 3 delves into the details of photogrammetry and 3D reconstruction of objects, pre-

senting a discussion of the underlying principles and concepts behind the photogrammetry process

as well as describing the photogrammetry algorithm, Structure from Motion (SfM) used for 3D

reconstruction. In this chapter, we cover the development process of the photogrammetry rig and

show some initial results that were achieved.

Chapter 4 details the software implementation for controlling the photogrammetry rig and post-

processing the point cloud data. This chapter thoroughly discusses the semi-automated process of

acquiring plant image data to generate 3D plant models with the rig.

Chapter 5 gives an overview of the methodology, data preparation, image acquisition, and

experiment done for wheat phenotyping with the photogrammetry rig.

In Chapter 6, we conclude our work and discuss future research directions. We summarize our

research’s essential findings and contributions and reflect on the broader implications of our work

in plant phenotyping.
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2. Review of Plant Phenotyping

2.1 Definition and Importance of Plant Phenotyping

2.1.1 Introduction to Plant Phenotyping

Phenotyping is a fundamental process in plant research that involves a set of methodologies

and protocols used to measure plant growth, architecture, and composition with accuracy and

precision at different scales of organization, from organs to canopies [9]. The term "phenotype"

was first introduced by Danish botanist Wilhelm Johannsen in the early 20th century. He defined

phenotype as an organism’s observable properties produced by the interaction of the genotype and

the environment [25]. Its ultimate objective is to describe the distinct correlation between the

genetic makeup of the organism, or genotype, and its observable traits, otherwise known as its

phenotype. This correlation is crucial in fields such as crop improvement, where identifying and

propagating beneficial traits can substantially bolster productivity and sustainability [17].

Phenotyping has a profound history in plant research and agriculture, with origins intertwined

with the inception of crop cultivation. Farmers unknowingly utilized phenotyping principles in

the earliest stages of agriculture by selectively choosing to propagate the most fruitful, robust,

or flavorful plants [26]. This practice guided the evolution of crop species over generations and

shaped the agricultural landscape [27]. During these initial stages, phenotyping was primarily

observational, heavily relying on easily discernible traits like plant size, fruit yield, seed quantity,

and disease resistance. This early form of phenotyping was fundamental for domesticating wild

species and creating the vast array of crop varieties that have sustained human civilizations for

millennia.
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As agriculture evolved into a more systematic and science-driven practice, phenotyping be-

came more refined and integral to plant breeding strategies. Phenotyping moved beyond merely

selecting high-yield plants; it now encompassed understanding the genetic underpinnings of these

advantageous traits and manipulating them for crop improvement. This shift was a landmark in

phenotyping history, paving the way for more targeted and effective breeding strategies. As plant

breeding science advanced, phenotyping became more systematic, including morphological traits

and physiological and biochemical characteristics.

The Green Revolution of the 20th century amplified the significance of systematic phenotyping,

which was crucial in developing high-yielding, disease-resistant crop varieties [28]. However, the

paradigm of plant research underwent a dramatic shift with the advent of the genomic revolution

in the late 20th and early 21st centuries. The innovation in genomic sequencing technologies

catalyzed an unprecedented surge in genotypic data. The resulting overflow of genetic information

highlighted the urgent necessity for High-throughput Phenotyping (HTP) technologies, capable

of matching the pace of genotypic data generation [16, 29]. A shift towards HTP is necessary to

bridge the widening gap between our understanding of the genotype and phenotype, a challenge

that traditional phenotyping methods need to be equipped to address. In this genomic era, the

ability to rapidly and accurately phenotype many plants has become increasingly critical. This

capability is essential to fully exploit the wealth of genotypic data and advance the understanding

of plant biology and breeding [10].

Figure 2.1 shows the phenotyping process, encompassing a sequence of interconnected steps

crucial to understanding and improving plant traits [8, 30, 31]. Beginning with the emergence of

the plant, environmental data is monitored and integrated with the selection of plant germplasm

and tailored experimental designs. The phenotyping workflows then systematically combine ge-

nomic data with quantitative measurements and specific phenotypic parameters, utilizing proximal

sensing and imaging techniques. The methodologies, for example, are captured in the Genotype

x Environment (GxE) analyses given by Ref. [8]. The entire process culminates in the extraction

and understanding of specific plant traits. The phenotyping flowchart provides a complete view
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Figure 2.1: A scheme illustrating the systematic process of plant phenotyping. The chart shows
the integral relationship between genomic data, environmental monitoring, proximal sensing, and
quantitative measurements. The interaction of these elements guides the Genotype x Environment
(GxE) analyses, which ultimately contributes to the targeted improvement of plant traits. (Image
adapted from Ref. [8] with modification.)

of the dynamic interaction between genetic and environmental variables, highlighting the essential

components and stages in the plant phenotyping process.

Despite its immense importance, phenotyping often poses a bottleneck to plant research and

breeding programs. This hurdle becomes particularly pronounced with the rapid advancements in

genotyping technologies, causing an overflow of genetic information. As emphasized in Ref. [16],

this disparity underscores the need for robust, HTP methods to match the pace set by genotyping.

One promising solution lies in the integration of imaging technologies into phenotyping. Innova-

tive imaging techniques, such as hyperspectral, thermal, red, green, blue (RGB), and 3D imaging,

can capture detailed, multilayered phenotypic data on a large scale, significantly accelerating data

acquisition [32]. Coupled with sophisticated image analysis algorithms, these methods can extract

valuable insights from raw image data, translating them into actionable phenotypic information.
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Figure 2.2 shows the array of HTP technologies used in plant phenotyping, showing the diverse

range of imaging and sensing methods utilized. HTP technologies are a crucial advancement in

the agricultural and food industries, encompassing various applications that extend from estimating

crop yields to assessing food quality after harvest. RGB imaging offers detailed visual assessments

of crops and food products, while near-infrared (NIR) technology delves into the chemical com-

position of materials, which is essential for understanding nutrient content and detecting diseases.

Fluorescence imaging provides insights into photosynthetic activity and plant health. Thermal

imaging is instrumental in identifying water stress and disease presence in crops by detecting tem-

perature variations. Multi- and hyperspectral imaging captures a broad light spectrum, revealing

the physiological state and health information of plants. Lastly, 3D imaging technologies offer

comprehensive spatial representations of plant structures, enabling precise volume and growth

measurements [33].

Figure 2.2: Diverse range of HTP technologies utilized in agriculture and food science, including
digital, near-infrared, fluorescence, thermal, multi/hyperspectral, and 3D imaging. These tech-
nologies are important for applications ranging from crop yield predictions to post-harvest food
quality assessments, revolutionizing the efficiency and sustainability of the food production sys-
tems. (Image adapted from Ref. [33].)

As a practice, plant phenotyping has been a cornerstone of plant breeding since the inception
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of agriculture and has evolved significantly with advancements in technology. It is at the forefront

of translating abundant genotypic data into meaningful, actionable information for plant biology

and breeding. Despite challenges such as the phenotyping bottleneck, the rapid development of

imaging technologies and robust data analysis tools offer promising solutions. Integrating these

technologies into phenotyping practices will improve crop breeding and drive future agricultural

innovation.

Genotyping and phenotyping should function together in an optimal setting, enriching and in-

forming the other. This relationship is especially evident when specific phenotypes, such as stress

resistance, are observed. Upon detection of these attributes, scientists can investigate the genome

of the plant to pinpoint the specific genes accountable for such beneficial traits, an approach re-

ferred to as forward genetics [34]. For example, researchers in the study by Atwell and colleagues

Ref. [35] found that by combining genome-wide association studies (GWAS) with HTP in a set

of Arabidopsis thaliana inbred lines, they could link 107 phenotypic traits to specific loci in the

genome of the plant. This work highlights the symbiotic relationship between genotyping and

phenotyping, as they mutually enrich and inform each other.

2.1.2 Current Importance and Applications of Plant Phenotyping

Plant phenotyping is crucial across various areas such as agriculture, plant genetics, plant phys-

iology, and bioengineering. It forms the basis for assessing reactions of plants to environmental

stresses, essential in developing resilient crop varieties capable of withstanding harsh conditions,

thereby contributing to sustainable agriculture. For instance, researchers applied HTP techniques

to examine the physiological response of wheat to high temperatures and drought stress, enabling

a deeper understanding of plant resilience under these adverse conditions Ref. [36]. Similarly, re-

searchers demonstrated image-based phenotyping as a non-destructive screening method to assess

different salinity tolerance traits in rice Ref. [37].

The shift towards predictive models in phenotyping holds potential for the future of plant
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research and agricultural production. By combining machine learning and artificial intelligence

with HTP, researchers can predict plant responses to various environmental conditions before they

occur [11]. When integrated with the voluminous data generated by HTP, these computational

methodologies act as catalysts for significant advancements in the field [38]. More specifically,

they equip researchers with the sophisticated tools needed to construct predictive models, thereby

ushering in a transformative era in phenotypic analysis. These models can simulate plant growth

patterns and performance across diverse environmental conditions with an accuracy that was pre-

viously unattainable. Integrating machine learning and artificial intelligence applied to phenotypic

data opens up novel avenues for plant science research. Figure 2.3 shows the relationship between

various imaging technologies and their plant phenotyping and trait analysis capabilities. This figure

presents an overview of how specific regions of the electromagnetic spectrum align with different

imaging systems, each tailored to capture distinct types of phenotypic data. The imaging systems,

categorized as I through V, encompass various techniques, including RGB, fluorescence, thermal,

multi/hyperspectral, and 3D imaging.

Figure 2.3: The alignment of specific regions of the electromagnetic spectrum with corresponding
imaging systems plays a role in determining the types of phenotyping data that these systems can
capture. The imaging systems, categorized as I, II, III, IV, and V, correspond to RGB, fluorescence,
thermal, multi/hyperspectral, and 3D imaging, respectively. (Image adapted from Ref. [33].)
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In one study, convolutional neural networks (CNN) were used to estimate wheat yield by an-

alyzing wheat spikes, a critical metric in grain production Ref. [39]. Also, researchers improved

maize yield predictions by integrating environmental data into genomic prediction models, identi-

fying temperature at the flowering stage, water intake during vegetative, grain filling stage, and soil

organic matter content as crucial yield predictors Ref. [40]. A further study utilized machine learn-

ing algorithms to predict soybean seed yields from hyperspectral reflectance data collected from

250 genotypes, indicating that certain growth stages and reflectance bands are optimal Ref. [41].

Precision agriculture has emerged as a vital practice, leveraging advanced phenotyping tech-

nologies for real-time crop monitoring and management. For instance, Baggio’s work on dis-

tributed wireless sensor networks has made strides in intelligent irrigation systems, enabling farm-

ers to make data-driven decisions about watering and fertilizing Ref. [42]. In a related study,

researchers worked on remote sensing approaches to predict wheat yield at the field scale with

high-resolution satellite imagery and crop stress-related indices, underscoring the role of space-

borne platforms in crop assessment Ref. [43]. These developments are part of an ongoing trend

toward technology-driven agriculture, where real-time insights and predictive analytics merge to

enhance crop productivity and sustainability.

Plant phenotyping also has a role in understanding climate change effects on crops, aiding in

identifying traits and genes that help plants survive in harsh conditions. In Ref. [36], researchers

developed machine learning models to predict wheat biomass and identified adaptive traits for

coping with high temperatures and water deficit, such as transpiration efficiency and changes in

carbohydrate and antioxidant metabolism. Another proposed a methodology for breeding wheat

varieties with deeper root systems to better use deep stored water in water-limited environments

Ref. [44]. This research can be seen as a response to climate change, where unpredictable rainfall

and water scarcity are expected to challenge traditional agricultural practices, requiring the devel-

opment of more water-efficient crop varieties. These findings can support breeding programs in

enhancing wheat resilience to climate change. This data can be used to breed crops designed ex-

plicitly for a shifting climate, underscoring the significance of plant phenotyping in plant science
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advancement and food security in the face of rapid climate change.

In agronomy, plant phenotyping is crucial in studying cultivation practices and their impact

on crop performance, including planting density, irrigation, fertilizer application, and pest man-

agement. Phenotyping and imaging technologies overcome the limitations of traditional methods,

enabling detailed, large-scale analyses of crop traits under various conditions, thereby enhancing

understanding of crop responses to diverse farming practices and environmental factors, refining

agricultural methodologies, and boosting productivity [45]. Through interdisciplinary collabora-

tions and the adoption of automation, remote sensing, and data integration, these cutting-edge

technologies facilitate a precise mapping of genetic factors tied to phenotypic variation [17], un-

derlining the significant impact of phenotyping in agronomy.

Building on these developments in agronomy, the integration of high-throughput and next-

generation phenotyping technologies opens a new chapter for this field. These advanced tools

allow an understanding of genotypes, phenotypes, and environmental factors, illuminating the

multifaceted mechanisms that govern crop resilience and productivity. These strategies range

from selective breeding of resistant varieties to cutting-edge genomic selection and gene editing

techniques. With the growing challenge of feeding a burgeoning global population amid climate

change, the critical role of phenotyping technologies in promoting sustainable, resilient, and pro-

ductive agricultural systems becomes increasingly apparent.

Plant height, a phenomic trait, is an essential morphological and developmental characteristic

that often correlates with overall plant growth and can indicate potential grain yield and biomass.

Researchers evaluated the performance of five different sensing technologies for field-based HTP

of sorghum height Ref. [46]. The technologies evaluated included an ultrasonic sensor, a LIDAR-

Lite v2 sensor, a Kinect v2 camera, an imaging array of four high-resolution cameras mounted on

a ground vehicle platform, and a digital camera mounted on an unmanned aerial vehicle platform.

The research confirmed the ability of these technologies to measure this trait precisely, facilitating

improved agronomic practices and more efficient crop management.
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2.2 Plant Phenotyping Techniques

2.2.1 Traditional Plant Phenotyping Techniques

Historically, phenotyping has been performed using traditional methods, which have relied

on manual, visual observations and assessments [16]. For instance, a researcher might measure

the height of a plant using a ruler or weigh a sample of seeds using a scale. These methods can

be time-consuming and labor-intensive as each plant must be individually measured and the data

manually recorded [10]. Traditional techniques often require physical contact with the plant. This

interaction can cause damage or stress, subsequently affecting the growth and development of the

plant. Despite these challenges, traditional phenotyping techniques have provided foundational

knowledge about plant traits, serving as the basis for much of our current understanding of plant

genetics and biology.

In addition to direct measurements, traditional phenotyping techniques often involve visual

assessments of plant characteristics, such as color, shape, or disease symptoms [17]. These assess-

ments are typically based on established scales or grading systems, which attempt to standardize

the subjective nature of visual observation. For example, in grading a quantitative trait index

designed to distinguish between erectophile and planophile leaf orientations, researchers rely on

subjective visual relative scales from 1 to 10. In this approach, a maximum score of 10 indicates

that all leaves at the top of the canopy are floppy, a median score of 5 denotes that half of the plants

are erect, and a minimum score of 1 is assigned when all leaves are in an erect position [47]. While

these visual assessments can provide helpful information, they are inherently subjective and vary

based on the judgment and experience of the observer. Visual assessments, like direct measure-

ment methods, can be demanding regarding time and labor, limiting their suitability for large-scale

studies or tracking changes over time.

The execution of traditional phenotyping techniques can become even more challenging when

15



dealing with the assembly of necessary genetic resources. Screening a population for a valuable

agricultural trait demands conducting replicated trials across multiple environments over various

seasons [45]. This process often requires destructive harvests at specified times or particular phe-

nological stages, which adds to the complexity and expense. Testing a promising candidate gene

for allelic variation in a mapping population also calls for precise phenotyping work. Due to the

intensive nature of traditional field phenotyping, many crop breeding programs have resorted to

taking a single measurement of final yield for replicated plots in contrasting environments across

multiple seasons. As technology advances, it opens doors to methods that build upon the foun-

dational knowledge provided by traditional techniques, offering more precise, scalable, and less

labor-intensive ways to study plant traits.

2.2.2 2D Imaging Plant Phenotyping Techniques

Emerging 2D image-based phenotyping technologies have revolutionized plant phenomics, ad-

dressing the limitations of traditional phenotyping methods. These innovative techniques have

significantly improved the efficiency, precision, and range of plant trait observation. With high-

resolution capabilities, contemporary 2D imaging methods facilitate the collection of multi-dimens-

ional, multi-parametric data, yielding unprecedented detail. Furthermore, the versatility of these

imaging systems, deployable in various settings from controlled environments like growth cham-

bers and greenhouses to open field conditions, significantly broadens the scope and context of

phenotyping studies [8]. The incorporation of time-lapse photography enables the exploration of

dynamic traits that evolve, such as plant growth rates or circadian rhythms [32]. These techniques

allow continuous monitoring of plant traits over time, enabling researchers to observe the growth

progression and stress impacts on individual plants in real-time.

Digital RGB cameras are integral to these advancements, which provide a wealth of invaluable

information despite their simplicity. They capture 2D snapshots of plants that can be analyzed for

an array of morphological traits. Depending on the application, images may be captured from vari-

16



ous perspectives—overhead, lateral, or multiple angles—generating a comprehensive visual profile

of the plant. A notable advantage of 2D digital imaging is its relatively low cost and high-speed op-

eration, which makes it particularly suitable for HTP [8]. The automation of image acquisition can

phenotype hundreds or even thousands of plants within a day, significantly increasing the produc-

tivity of large-scale breeding programs or genetic studies. Coupled with recent advancements in

image analysis software, the extraction of traits from these images has been streamlined, reducing

the need for manual intervention and the associated subjectivity.

Direct measurements from image data can shed light on several key traits. Biomass mea-

surement can indicate the health and productivity of the plant [48, 49]. Leaf characteristics often

influence the photosynthetic efficiency of the plant and can reflect adaptations to specific envi-

ronmental conditions [50, 51]. Yield-related traits directly affect agricultural productivity, with

significant implications for food security [52]. Lastly, the response of plants to biotic and abiotic

stress can significantly impact its survival and reproductive success, with potential consequences

for crop yield and resilience in the face of environmental changes [53].

Adopting 2D imaging in plant phenotyping thus represents a significant leap forward in plant

science. Its capacity to yield quantitative, time-sequenced data has made it an essential tool for

precisely characterizing plant phenotypes, offering insights into the fundamental processes that

govern plant growth, development, and responses to environmental stressors. These image-based

measurements enable a deeper understanding of plant biology, making it possible to link genetic

variations with plant performance traits.

2.2.3 3D Imaging Plant Phenotyping Techniques

Plant phenotyping research covers a range from broad plant canopies to individual organs and

benefits significantly from 3D imaging. By capturing both external and internal characteristics, 3D

imaging offers a more detailed and holistic approach than 2D imaging [54]. Here, non-destructive

3D imaging is invaluable as it allows continuous monitoring over time, discerning between genuine
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growth and simple plant movement at multiple scales [55]. This dynamic understanding of plant

development uncovers subtle changes over time that may be imperceptible to the human eye. As

the field integrates genomics, plant function, and agricultural traits, it greatly relies on the detailed

geometry and growth measurements of 3D imaging. This tool can assist researchers in dissecting

plant phenome complexity and associating genetic variations with phenotypic expressions.

Advances in 3D imaging and processing techniques significantly impact the agricultural sector

through increased automation and robotics. Autonomous systems are now being deployed for se-

lective harvesting, precise weeding, and targeted spraying operations [56]. In agricultural biotech-

nology, an ongoing effort is to enhance crop traits such as yield, drought resistance, pest, and

herbicide resistance by correlating genotypes with phenotypes [57]. These developments neces-

sitate advanced vision systems, where applications across domains like phenotyping, inspection,

process control, and robot guidance increasingly favor 3D methods over traditional 2D approaches.

Compared to 2D imaging, 3D offers a combined perspective of plant structures, gathering data

from the surface to the internal segments [19]. The ability to amalgamate data from various viewing

angles offers insights that might be challenging to achieve with a 2D model alone. One such

insight could involve resolving occlusions, which are areas in the structure of the plant hidden from

view [7]. By reconstructing the plant distance, orientation, and illumination, these methods could

help deal with the crossings of plant structures, where different plant parts overlap or intertwine.

The 3D models of reconstructed plants could be utilized to estimate the biomass of the plant [7,

58], prediction of yield parameters [59], identification of disease symptoms [60], quantification of

architectural traits such as for the leaf area, stem height, and canopy volume [7,61], and exploration

of plant responses to various stress factors [62].

LiDAR uses a pulsed laser to measure distances, providing detailed 3D data that includes in-

ternal plant structures such as branching architecture and leaf density [55]. A research initiative,

for instance, used a high-resolution portable scanning LiDAR to estimate wheat vertical plant area

density profiles at different growth stages Ref. [63]. In another study, researchers developed a
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method for rapidly mapping the Leaf Area Index (LAI) using ground-based laser rangefinders—a

LiDAR-based method—mounted on a vehicle Ref. [64]. The LAI, representing the ratio of leaf

area to a given unit of land area, is vital in assessing plant productivity and informing agricultural

management decisions. However, the high costs associated with LiDAR can limit its application.

Other 3D imaging sensor technologies offer valuable capabilities, including stereo vision and

structured light. Researchers used structured light approaches for trait analysis such as the num-

ber of leaves, plant height, leaf size, and internode distances Ref. [65]. Researchers in the study

Ref. [66] utilized a high-precision laser scanning system to non-invasively capture the 3D archi-

tecture of barley plants, focusing on traits such as leaf area, stem height, and overall plant volume,

thereby significantly advancing the capabilities of plant phenotyping and growth monitoring in

cereal crops. Stereo vision employs multiple cameras to capture different perspectives, provid-

ing detailed surface information at a lower cost. However, it can struggle with complex over-

lapping structures. Structured light sensors project a pattern onto the plant, and combined with

photogrammetry, generate high-resolution 3D models. They excel at capturing fine details of plant

morphology but are limited by their shorter working distances [54,55] and may impact the natural

physiological state of the plant and alter its original texture and color [67].

Advancements in 3D imaging technologies have profoundly impacted plant phenotyping, of-

fering more comprehensive and detailed insights into plant structure and behavior than ever before.

These technologies, ranging from LiDAR to stereo vision and structured light sensors, have broad-

ened the scope of phenotypic analysis, allowing for more accurate assessments of plant health,

growth, and productivity. The next section will focus specifically on photogrammetry, another

3D imaging technique that has shown significant promise in bridging the gap between detailed

phenotypic data acquisition and practical application in diverse agricultural and research settings.
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2.3 3D Plant Phenotyping with Photogrammetry

Structure from Motion (SfM) is an efficient photogrammetry technique that leverages sequen-

tial overlapping images to construct detailed 3D models. The cost-effectiveness and simplicity

in sensors and hardware, and straightforward application make SfM highly suitable for a wide

range of phenotyping tasks. This technique, which synthesizes high-resolution 3D models, has

become increasingly prominent due to its accuracy, cost-effectiveness, and versatility. SfM is a

non-invasive method that offers a comprehensive insight into plant morphology, which is crucial

for understanding various growth patterns and responses to environmental stimuli.

Despite its computational demands and challenges with complex, self-occluding plant struc-

tures, the affordability and the detail SfM offers in plant models have led to its wide adoption in

research. This utility of SfM is highlighted in several studies. For instance, researchers have uti-

lized SfM for the 3D analysis of cotton plants, allowing for precise measurements of stem height,

leaf width, and leaf length Ref. [68]. Similarly, another study estimated biomass in eggplant,

tomato, and cabbage crops using SfM, based on a 3D point cloud analysis of images collected

by unmanned aerial vehicles (UAVs) Ref. [69]. Researchers used SfM in growth analysis studies

in open field settings, particularly in measuring plant height and canopy in crops like maize and

sorghum Ref. [70].

In the context of specific plant trait analysis, SfM has been employed to study the shapes of

calyxes and achenes in strawberries [71]. In multi-plot research settings, SfM has been valuable in

quantitative trait locus (QTL) analysis for crops like pepper, assessing traits such as plant height

and leaf angle [72], understanding the drought response in soybeans, a significant aspect in the

study of plant stress tolerance [73]. In experimental field studies, the technique has been effectively

used for trait analysis in crops like maize and sorghum, focusing on the LAI, and in grapevines for

leaf area assessments [74, 75].

Open-source 3D plant phenotyping and photogrammetry techniques transform how researchers
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approach plant modeling, reconstruction, and analysis. By leveraging a combination of low-cost

hardware, such as programmable turntables and cameras, and open-source software, researchers

can create detailed 3D scans of individual plants with complex architectures. Furthermore, the

open-source nature of these techniques encourages collaboration and innovation within the sci-

entific community, making them accessible to researchers with various budget constraints. For

instance, researchers have developed a low-cost, open-source 3D scanning system and data pro-

cessing pipeline for accurately assessing the 3D architecture of chickpea plants, species with com-

plex branching patterns and small leaves Ref. [7]. Using photogrammetry techniques, they demon-

strated the capability of the system to measure vital architectural traits such as canopy volume

and growth rate with high accuracy (R2 > 0.99, mean absolute percentage error < 10%), offering

a promising tool for enhancing phenotyping in crop research. Figure 2.4 shows an example of a

close-range photogrammetry rig where researchers have created 3D plant models to study and test

optimum shooting angle. The photogrammetry rig consists of 10 cameras, a stable structure for

the cameras, two fluorescent lamps, a rotary table, and a black backdrop.

(a) Simple schematic of the close-range
photogrammetry rig

(b) The multi-camera photogrammetry
imaging system

Figure 2.4: Researchers developed an imaging system that uses photogrammetry to reconstruct a
digital 3D model of plants to test the optimal shooting angle. (a) The schematic of their system
showcases the layout and operational design. (b) A photograph of the actual system, which consists
of 10 cameras, two fluorescent lamps, a black backdrop, and a rotary table. (Image adapted from
Ref. [67].)
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Considering the cost, resolution, and operational flexibility balance, SfM is the superior choice

for 3D modeling in plant phenotyping. Unlike other methods, SfM strikes an optimal balance

between detailed data capture and cost-effectiveness, making it suitable for various phenotyping

tasks. Its use of standard cameras and the ability to process images into detailed 3D models aligns

well with the requirements of plant phenotyping, especially in projects constrained by budget and

resource availability. Therefore, SfM meets the technical demands of plant phenotyping and ad-

dresses the practical considerations of cost and ease of use.

This work will focus on integrating and applying these open-source 3D phenotyping and SfM-

photogrammetry techniques to advance plant phenotyping within the fields of plant biology and

agriculture. However, we aim to demonstrate a system that is semi-autonomous and affordable

for researchers, plant scientists, and breeders. The goal is to streamline the image capture process

and expedite the production of 3D phenomic data. This approach not only makes the field of

phenotyping accessible to a broader range of researchers but also enhances the precision of the

data collected. This thesis will encompass the entire workflow, from the hardware setup to the

intricacies of the software processing and the capabilities of the system to extract novel plant traits.

We see the photogrammetry rig as an invaluable resource for researchers, offering a multifaceted

tool for their research.
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3. Design and Implementation of the

Photogrammetry Rig

This chapter provides an in-depth examination of the hardware development and utilization

of the photogrammetry rig. Section 3.1 gives an overview of the basic principles and hardware

requirements of photogrammetry and describes the SfM algorithm. In Section 3.2, we briefly

summarize the design of the photogrammetry rig. Section 3.3 gives a complete system overview

of the photogrammetry rig, describing the hardware components in more detail and the price points

of the imaging system. Following that, in Section 3.4, we discuss initial results achieved with the

photogrammetry rig.

3.1 Basic Principles and Hardware Requirements of Photogram-

metry

Photogrammetry is a multidisciplinary field that merges the techniques of photography, optics,

and surveying to extract detailed information about physical objects and environments from photo-

graphic imagery. Traditional photogrammetry methods draw a parallel to human binocular vision,

where depth perception is achieved from two known relative points. However, depth, volume, or

3D features can also be discerned from a single observation point if there is movement between

the observer or the object [76, 77]. The fundamental principle underpinning photogrammetry is

triangulation. By capturing photographs from at least two locations, "lines of sight" are formed

from each camera to specific points on the object. These lines of sight, often called rays due to their

optical nature, are mathematically intersected to calculate the three-dimensional coordinates of the
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points of interest. Figure 3.1 shows a stereo camera pair used in stereoscopic photogrammetry

which enables the creation of 3D models and maps from 2D images. The accuracy of these mod-

els depends on various factors, including the quality of the photographs, the precision in camera

placement, and the sophistication of the software used for processing the images.

Figure 3.1: This diagram illustrates the components of a stereo camera system, including the left
and right cameras with their respective image planes, pinhole apertures, and image points. The
figure also highlights the camera distance, the object point derived from triangulation, and the
object surface being imaged. (Image adapted from Ref. [78].)

Structure from Motion, or SfM, is based on computer vision and allows photogrammetric re-

construction from images alone, providing a more flexible approach than traditional methods. In

contrast to traditional stereophotogrammetry, which depends on predetermined camera positions

and orientations, SfM can compute 3D information from overlapping images without requiring

prior knowledge of the camera or reference points in the scene [79]. This adaptability permits

using more affordable imaging platforms for aerial and terrestrial applications. The strengths

of SfM include automatic identification and alignment of features within images, irrespective of

scale, viewing angles, or orientations—beneficial in scenarios with small or unstable platforms.

Moreover, SfM algorithms can operate without preset camera positions or ground control points,

simplifying or automating camera calibration. This reduces the need for strict uniformity in im-

age overlap, camera positioning, and calibration. While SfM-photogrammetry often describes the

entire reconstruction workflow, from image capture to dense point cloud creation, it specifically

24



refers to a process that yields camera parameters and a sparse point cloud, which are fundamental

to the broader photogrammetric process.

Recent studies have focused on innovative applications and frameworks within the field. No-

tably, Ref. [80] presents a cost-effective, open-source SfM framework specially developed for

creating high-fidelity 3D models of arthropods and small-scale objects. Photogrammetry is ap-

plicable across a broad spectrum of industries and scientific disciplines. Empirical studies and

interdisciplinary projects have increasingly adopted photogrammetric techniques, contributing to

their respective domains. Substantial advancements have been achieved in the domain of cultural

heritage conservation, particularly in the digitization of museum specimens and artifacts. These

improvements are evidenced by the efficient and cost-effective 3D photogrammetry techniques and

pipelines, as highlighted in studies such as Refs. [81–85]. The scope of photogrammetry extends

to documenting archaeological sites, landscapes, features, and materials, enhancing its applica-

tion in historical and environmental research [86–89]. SfM-photogrammetry has also been used in

more technical fields, such as the aerospace industry [90], 3D shape measurement [91], and civil

engineering with a focus on bridge inspection [92].

Figure 3.2 demonstrates the 3D reconstruction of a Moses statue, showcasing the integration

of a camera network. It highlights the process of transforming 2D images captured from various

angles around the statue into a sparse point cloud, serving as a foundational step towards achieving

a detailed 3D model which facilitate the preservation and study of cultural heritage artifacts. In all

these studies, a common thread is the emphasis on essential equipment and techniques, such as a

high-quality camera, a stable tripod, attention to lighting and background, photogrammetry soft-

ware, the use of appropriate lenses for minimal distortion, control points for accurate alignment,

and powerful computing hardware for processing, and adequate data storage solutions. We have

chosen the SfM approach for our photogrammetry rig due to its flexibility in image capture and

ability to generate highly detailed models. Details of the SfM algorithm will be further elaborated

in the next section.
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(a) Sparse point cloud for the 3D reconstruction
of the Moses statue.

(b) Fully reconstructed Moses statue.

Figure 3.2: The setup for the 3D reconstruction of a Moses statue. (a) Illustrates the integration of
the camera network and the generation of the sparse point cloud from 2D images taken around the
subject. (b) Shows the fully reconstructed Moses statue after removing noise and outlier points.
(Image adapted from Ref. [83].)

3.1.1 Structure from Motion

SfM is a photogrammetric technique for estimating 3D structures from sequences of 2D im-

ages. It identifies common points or features across these images, utilizing perspective differences

to triangulate their 3D positions. The typical output of SfM includes a sparse 3D point cloud

accompanied by camera parameters such as position and orientation for each image. The pro-

cess follows an incremental approach, with an initial phase of correspondence search between

images leading to a second phase of iterative, incremental reconstruction. Hartley and Zisserman’s

work [93] provides an in-depth explanation of the SfM algorithm, which will be briefly summa-

rized in this section. Figure 3.3 outlines the pipeline of the SfM algorithm, starting from the initial

image input. The process is organized into several interconnected stages that begin with corre-

spondence search, feature extraction, and image matching, followed by geometric verification to

affirm the accuracy of matches. The pipeline then progresses into the incremental reconstruction

phase, including image registration, triangulation, and bundle adjustment. This thesis will uti-

lize COLMAP, a versatile and open-source photogrammetry platform photogrammetric software

featuring a SfM and Multi-View Stereo (MVS) pipeline, with both graphical and command-line

interfaces, capable of reconstructing ordered and unordered image collections [94].
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Figure 3.3: Full pipeline of the SfM algorithm. This process involves two stages, beginning with
correspondence search, which includes feature extraction, image matching, and geometric veri-
fication. The pipeline then progresses to the next stage, called incremental reconstruction. This
stage encompasses image registration, triangulation, and bundle adjustment with outlier filtering,
generating a point cloud. (Image adapted from Ref. [94] with modifications.)

The initial stage of SfM, the correspondence search, involves identifying scene overlaps in the

input images given by

I = { Ii | i = 1 . . .NI } , (3.1)

where I is a collection of images, each image in the set is denoted by Ii. The index i is used to

differentiate each image in the set, and it ranges from 1 to NI , with NI being the total count of

images in the set.

Each input image Ii is processed for feature extraction to generate a collection of local features

that describe the points of interest (key points) within it. The Scale-Invariant Feature Transform

(SIFT [95]) is a widely used method for feature extraction in SfM applications. SIFT identifies sets

of local features at specific locations within each image as shown in Figure 3.4. A requirement for

these features is their identifiability across multiple images, achievable only if they are invariant to
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geometric and radiometric transformations [94]. The feature extraction results in a set of critical

points and features for each image is given by

Fi =
{ (

x j, f j
)
| j = 1 . . .NF

}
, (3.2)

where Fi denotes the set of features in the i-th image, with x j representing the location of the j-th

key-point and f j its descriptor.

Figure 3.4: Image capture of wheat from the photogrammetry rig. This image shows the key points
extracted by COLMAP, highlighting areas for 3D model construction. Features, highlighted as red
dots, are essential for matching different images in the dataset, enabling COLMAP to reconstruct
the spatial geometry of the scene accurately. The extraction and identification of these points are
fundamental, allowing for the precise alignment and stitching of images to generate a cohesive 3D
model.

Once feature extraction is completed, the next step is to match these feature points across

different images to establish correspondences. In the feature matching stage, the goal is to iden-

tify commonalities between images, which indicate overlapping parts of the scene. A match is

established when two points in different images share the same descriptor, implying they repre-

sent the same point in the scene. SfM achieves this by utilizing the appearance descriptors of the

images, which encapsulate the features within them. This matching process involves evaluating
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each pair of images for scene overlaps; if such an overlap is detected, corresponding features be-

tween the images can be identified. The output is a set of potentially overlapping image pairs

C = {{Ia, Ib} | Ia, Ib ∈ I,a < b} and their associated feature correspondences Mab ∈ Fa×Fb [94].

Figure 3.5 illustrates the process of matching two images through COLMAP, green lines idicate

that a feature from image A is matched with the same feature on image B.

Figure 3.5: Two different angles on the vertical axis were capture with the photogrammetry rig
where (a) is from camera A and (b) is from camera B. Here the green lines indicate the identical
features found between the two different images. This step is essential for integrating numerous
images by pinpointing shared points of interest. By successfully matching these features across
various images, COLMAP can infer the spatial relationships and geometric configurations of the
scene.

The next stage involves geometric verification, which identifies a transformation that accu-

rately maps corresponding points between two images. Successful mapping leads to the geometric

verification of the image pair, signifying that the matched points correspond to the geometry of

the scene. These methods are contingent upon whether the intrinsic calibration parameters of the

cameras are known. Due to the presence of outliers in the correspondences established during the

matching phase, the application of robust estimation methods, such as RANSAC (Random Sam-

ple Consensus [96]), becomes essential in the geometry verification process. A transformation is

deemed geometrically verified if it successfully maps an adequate number of features between the

images. The output is a Scene Graph, whose nodes represent images and edges join the pairs of

images that are considered geometrically verified [97].

29



The next phase is incremental reconstruction, which is necessary, as a poor start can signifi-

cantly compromise the accuracy of the 3D model. Optimal initialization typically begins in densely

populated areas of the scene graph, utilizing correspondence redundancy to establish a solid foun-

dation. Starting in areas with sparse image data can impede the bundle adjustment, leading to

error accumulation and compromised results. This phase involves selecting images that have been

geometrically verified and feature the most matches to anchor the reconstruction. It also includes

setting the initial points and determining the poses of the first two cameras. Subsequent steps

of image registration, triangulation, and bundle adjustment iteratively refine the model by adding

new points. Each new image requires calculating the pose of the camera by correlating it with

established 3D points. This involves solving the Perspective-n-Point (PnP) problem, often using

RANSAC or similar methods to account for outliers, thereby laying the groundwork for the con-

tinuous enrichment of the model through triangulation [97].

The initial phase of the triangulation process identifies new images that share common points

with the reconstructed 3D point cloud. This process is crucial for adding new points to the recon-

struction, thereby increasing the density of the point cloud. It relies on pairs of registered images,

and the estimation of camera poses to compute the 3D coordinates of shared points. Central to this

phase is the application of the epipolar constraint, a geometric principle that restricts the search

for corresponding points between image pairs to the epipolar lines, thereby facilitating the accurate

determination of new point positions. This constraint is particularly vital in counteracting potential

inaccuracies introduced in earlier stages of the pipeline, notably the reprojection error. Reprojec-

tion error refers to the discrepancy between the observed image points and the projected points

derived from the 3D model, which can result from factors like camera calibration errors or inaccu-

racies in estimated camera poses. To mitigate the impact of these inaccuracies and ensure precise

triangulation, specialized algorithms that apply the epipolar constraint and minimize reprojection

error are used [97].

Following triangulation, bundle adjustment is used to refine the reconstruction by minimizing

camera error, pose estimation, and point triangulation. The purpose of bundle adjustment is to
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prevent inaccuracies in estimating the camera pose that propagates in the triangulation of points

[98]. This phase, which uses the Levenberg-Marquardt (LM) algorithm for non-linear least squares

optimization, aims to produce optimal values for the 3D coordinates of scene points and camera

calibration parameters. Bundle adjustment, which can be computationally intensive, is performed

locally and globally to manage processing time effectively, ensuring that errors do not accumulate

and adversely affect the reconstruction quality. Figure 3.6 shows a view of the model generated in

the graphical interface of COLMAP. It depicts spatial positioning of each camera and orientation

for the sparse model as shown in Figure 3.6(a) and the final dense point cloud as shown in Figure

3.6(b).

(a) Sparse point cloud (b) Dense point cloud

Figure 3.6: This figure shows two stages in 3D reconstruction using COLMAP: (a) illustrates the
sparse model generated, highlighting the camera viewpoints that contribute to its construction, and
(b) illustrates the dense point cloud, which represents a more detailed reconstruction derived from
the initial sparse model.

The goal is to concurrently refine the 3D coordinates of scene points {Pj}p
j=1 ⊆R and the cali-

bration parameters of each of the n cameras. This refinement aims to reduce the difference between

the actual image measurements and their expected projections based on the model. Specifically,

for pairwise point correspondences between images, we represent the unknown positions of scene
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points as {Pj}p
j=1 within the three-dimensional space, and the 3×4 camera projection matrices as

{Ci}n
i=1. Each matrix Ci incorporates the positional, orientation, and internal calibration details of

camera i. Moreover, the coordinates (xi j,yi j) ∈ R correspond to the observed projections of point

Pj on the image plane of camera Ci.

The bundle adjustment problem aims to minimize a least squares cost function defined as

minimize
{P j},{Ci}

∑
i∼ j

(
xi j−

CT
i1P j

CT
i3P j

)2

+

(
yi j−

CT
i2P j

CT
i3P j

)2

. (3.3)

Here, Cik ∈ R signifies the kth row of Ci for 1 ≤ k ≤ 3. The notation i ∼ j denotes that the scene

point j is observable by camera i. Pj is expressed in homogeneous coordinates as [Pj,1] ∈ R,

allowing for a unified representation of both translation and rotation in the projection calculations

[99]. The camera poses and parameters obtained from SfM are then applied to generate a densified

point cloud using an MVS algorithm [79].

3.2 General Design and Implementation of the Photogramme-

try Rig

The development of the photogrammetry rig involves numerous factors, including the arrange-

ment and number of cameras, lighting conditions, and attributes of the objects to be imaged. The

goal is to construct a uniform environment for capturing images of plants, enabling consistent im-

age capturing. Each design element enhances data capture efficiency, paving the way for effective

3D reconstruction. A typical photogrammetry rig incorporates a stationary or movable platform

with well-positioned cameras surrounding the subject. For the photogrammetry rig, we will con-

sider a movable platform, such as a rotary table, to obtain different viewpoints.

The subject and the desired resolution of the resulting 3D model influence the number and

layout of cameras within the rig. Camera arrangements may vary, ranging from simple circular
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patterns to more multi-row configurations tailored to the specific requirements of the subject being

imaged. This planning ensures sufficient overlap between images, crucial for accurate point align-

ment during reconstruction. This work will focus on four stationary cameras positioned at different

angles on the vertical plane, mounted on a fixed structure, to provide stability and consistency in

capturing the necessary viewpoints.

Lighting conditions are also important, requiring careful planning to distribute light uniformly,

reducing shadows and reflections that might compromise image quality. Various tools, such as

diffusers and reflectors, may achieve this balance. Additionally, it is essential to consider spe-

cific characteristics of the subject, including size, shape, color, and reflectivity. These elements

influence the camera and lighting arrangements, ensuring the rig is customized to highlight the

primary attributes of the subject. This customization facilitates accurate and reliable 3D modeling.

Two LED lights facing the subject with a featureless blue backdrop for the background would be

sufficient for the photogrammetry rig.

3.3 Full System Overview

Figure 3.7 shows two distinct views of the photogrammetry rig. As shown in Figure 3.7(a), the

back view illustrates the structural framework, revealing how the various components are arranged

and integrated. The positioning of the electronic components, including the Raspberry Pi and

the camera kit, is visible, demonstrating the placement of the main components of the rig. Here,

one can see the arrangement of the LED lights, positioned to provide uniform illumination. The

motorized turntable is central to the functionality of the rig, visible in the back view. The turntable

allows for a complete 360-degree rotation of the object being imaged, essential for capturing multi-

angled views. The main structure uses aluminum extrusion mounted on a plywood base, designed

to bear the weight of the entire setup and provide stability during image capture. Once the base

is firmly in place, attention is given to its leveling, ensuring it is perfectly horizontal. Next, the

turntable is placed onto the plywood base and interfaces with the Raspberry Pi and the stepper
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motor. Figure 3.7(b) complements this perspective by showing the operational setup of the rig and

the subject being imaged. The matte blue backdrop, serving as a featureless background, enhances

the clarity of the captured images by eliminating reflections.

(a) Back view (b) Front view

Figure 3.7: A view of the fully assembled photogrammetry rig, illustrating both the front and
back perspectives. Key components include two LED lights placed to ensure uniform illumination
across the subject. A matte blue backdrop is used to provide a neutral, reflection-free background,
enhancing image clarity. Central to the rig is the Raspberry Pi and camera kit, mounted for high-
quality image capture. Completing the setup is a motorized turntable, enabling a 360-degree rota-
tion of the object, which is crucial for capturing images from all angles.

At the core of the rig is the Raspberry Pi 4 4GB single-board computer, coupled with the

64MP Autofocus Synchronized Quad-Camera Kit, which can capture detailed images with an

autofocus feature. The Ortery PhotoCapture 360M, a motorized turntable controlled by a user-

programmable software, provides a rotationally stable platform for imaging objects. Additional

components include the Adafruit DC and Stepper Motor HAT, a 32GB microSD card for primary
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data storage, a 5V 3A USB-C power supply for consistent operation, and an 18mm x 24-inch x

48-inch plywood base for structural foundation. A featureless blue background of matte fabric

ensures a backdrop, highlighting the subject and enhancing the quality of the captured images.

Table 3.1 details the costs of the main components necessary for assembling the photogrammetry

rig, encompassing each part from the featureless background and lighting setup to the aluminum

extrusion structure, the turntable, Raspberry Pi and camera kit. The total cost for assembling the

rig, as outlined, amounts to approximately $2,642.14, which could be further reduced by selecting

a more affordable turntable option.

Part Brand Model Price Specs Description
Embedded
system

Raspberry
Pi

Raspberry Pi 4
Model B

$249.99 Quad-core Cortex-A72, 4GB
RAM, 40 pin GPIO header,
2-lane MIPI CSI camera port

Compact, low-cost computer board
ideal for embedded applications

4 RGB Cam-
eras

Arducam 64MP Auto-
focus Quad-
Camera Kit

$199 WiFi/Bluetooth, Res: 4056 x
3040 px, FOV diagonal: 84 ◦

High-resolution, auto-focus RGB
cameras for detailed image capture

Featureless
Background

Rose Brand 62" Poly Pro $15.20
/yard

Fabric, Chroma Key Blue Wrinkle-resistant fabric providing a
uniform backdrop for imaging

Stepper Motor Adafruit Stepper Motor
HAT - mini kit

$27.95 TB6612 chipset, 4.5VDC to
13.5VDC, unipolar or bipolar

Motor HAT (Hardware Attached on
Top) designed for precise motion
control with the Raspberry Pi

Turntable Ortery PhotoCapture
360M

$1,200 28.956 and 39.878 cm diam-
eter platforms,

Software-controlled rotary table for
consistent image capture angles

Aluminum
Extrusion

Misumi $950 aluminum alloy, Square
shape, 40mm main frame
and arms size, four side slots

Sturdy frame with stationary mounts,
angle brackets, nuts and screws

Table 3.1: Breakdown of the main components and associated costs for the photogrammetry rig
setup.

It is essential to position the turntable at the end of the base and ensure it rotates smoothly

without any wobbles. The Raspberry Pi is mounted on the aluminum extrusion structure of the rig

in a location that allows easy access for necessary adjustments or connections. The camera kit,

which consists of 4 cameras, is positioned on different viewpoints on aluminum extrusion arms

attached to the main structure of the rig. Each camera is aligned, ensuring an unobstructed view

of the subject. Special brackets hold the cameras in place, and their positioning is adjusted to

capture the subject from different angles, maximizing image coverage. The layout is designed to

maximize space utilization and functionality while prioritizing user-friendliness. This section has

outlined the construction of the rig and critical attributes. Subsequent sections will delve into the

specific hardware components of the photogrammetry rig.
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3.3.1 Raspberry Pi and Camera Kit

The Raspberry Pi was selected as the primary control and data acquisition system due to its

cost-effectiveness and modularity [100]. While compact in design, the Raspberry Pi’s computa-

tional power is remarkably robust, making it suitable for handling imaging datasets. Its quad-core

ARM Cortex-A72 processor ensures efficient image capture and device control, while the added

4GB LPDDR4 RAM handles tasks like managing extensive datasets. Beyond its raw processing

capabilities, the Raspberry Pi offers a user-friendly interface and a vast community of developers

and enthusiasts. The general-purpose input/output (GPIO) pins on the Raspberry Pi, which are

programmatically controlled through coding scripts, serve as a versatile hub for hardware interac-

tion and control, acting as digital signal pins on the integrated circuit that can function as inputs,

outputs, or both, controllable by software. They provide a direct interface with the System on Chip

(SoC), facilitating communication with various peripherals, from sensors and motors to special-

ized add-ons. Configurable as inputs or outputs, these pins allow the Raspberry Pi to read sensors,

control motors, actuate relays, and communicate with other systems. They also support commu-

nication protocols like I2C, SPI, and UART for intricate hardware interactions. The Raspberry

Pi also includes built-in Wi-Fi, Ethernet, and USB capabilities, allowing reliable connectivity and

streamlining data transfer significantly when offloading captured images to a server for further

processing.

The initial prototype of the photogrammetry rig utilized the Raspberry Pi High-Quality Cam-

era for image data capture, chosen for its high resolution and compatibility with the Raspberry

Pi system. The Raspberry Pi High-Quality Camera features a 12.3-megapixel Sony IMX477 sen-

sor, capable of delivering sharp images. Its adjustable focus lens and support for interchangeable

lenses offered versatility in capturing images under various conditions. Figure 3.8(a) illustrates

the components of the early prototype of our photogrammetry rig, showing the integration of the

Raspberry Pi High-Quality Camera with the Arducam multi-camera adapter [101] and the Rasp-

berry Pi. Figure 3.8(b) shows the Arducam multi-camera adapter, enabling up to four cameras to
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a single Raspberry Pi for simultaneous image capture. Details on the experimental results and the

conceptual validation achieved with this early prototype of the rig are shown in Section 3.4.

(a) The Raspberry Pi High-Quality Camera con-
nected to the Arducam multi-camera adapter and
the photogrammetry rig.

(b) Arducam multi-camera adapter supporting
four camera connections.

Figure 3.8: (a) View of the hardware components of the initial photogrammetry rig prototype with
the Raspberry Pi High-Quality Camera. (b) View the Arducam multi-camera adapter which allows
for the integration of multiple cameras into the Raspberry Pi system.

However, to further enhance the imaging capabilities of our rig, we decided to use the Arducam

64MP Autofocus Quad-Camera Kit HAT, as shown in Figure 3.9. This upgrade improved the

capacity of the system to capture high-resolution, detailed images. The Arducam kit includes four

64MP cameras, each equipped with autofocus functionality, dramatically expanding the imaging

potential of the rig as illustrated in Figure 3.9(a). The autofocus feature, in particular, adds a

layer of convenience and precision by automatically adjusting focus to ensure sharp images across

various distances and conditions. The integration of the camera kit and mounts with the Raspberry

Pi, as depicted in Figure 3.9(b), shows how these components connect to the aluminum extrusion

structure. The Camarray technology facilitates communication with the CSI port via a 15-22-

pin camera cable, maintaining the modularity of the rig and ease of use. Each camera module

is mounted on adjustable angle brackets, allowing for the precise positioning of the cameras at

various angles. This feature, combined with the 10x digital zoom, wide field of vision, and the

F1.8 aperture, significantly enhances the capability of the rig to images from multiple perspectives.
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(a) Arducam 64MP Autofocus Quad-Camera
kits including four cameras. (Image taken from

Ref. [102].)

(b) View of the camera kit connected to the
Raspberry Pi, along with the camera

mounts.

Figure 3.9: (a) Hardware components of the Arducam 64MP Autofocus Quad-Camera Kit, along
with the Raspberry Pi, where all four cameras connect to the kit. (b) Close-up view of the assem-
bled Raspberry Pi, camera kit, and camera mounts, attached to the aluminum extrusion structure
of the photogrammetry rig.

3.3.2 Turntable

The imaging system uses the PhotoCapture 360 turntable, a commercial rotary table designed to

capture multi-angled images from various viewpoints [103]. With dimensions of 15.7 x 15.7 x 4.1

inches and platforms of 11.4" and 15.7" diameters, this turntable can accommodate various object

sizes and can bear loads up to 25 lbs. The motorized rotation and advanced control mechanisms

of the turntable allow accurate rotational settings to achieve consistent 360-degree imaging. The

turntable has a rotational precision of±1 degree, ensuring precise positioning for capturing images

from specific viewpoints.

Figure 3.10 shows the turntable used in the imaging setup, which features a black and white

checkered pattern placed on the surface. The checkerboard design enhances the visual alignment
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during image capture and aids in the 3D reconstruction. The contrasting squares of the pattern pro-

vide reference points that allow for a more precise calculation of the spatial distance and depth in

the images. This pattern is especially beneficial for SfM, as it facilitates accurate feature detection

and matching across multiple images, leading to more accurate and detailed 3D point clouds.

Figure 3.10: The turntable in our imaging setup, is attached with a checkered pattern on its sur-
face, designed to improve both visual alignment during image capture and the efficacy of the 3D
reconstruction. This pattern provides reference points for accurate spatial measurement and depth
perception, aiding the SfM algorithm in feature detection and matching.

The PhotoCapture 360 Turntable is designed with a flat, horizontal platform anchored centrally,

enabling 360-degree rotations. The motorized feature of the turntable is central to its operation,

offering precise control over rotation dynamics. This control is managed through software, en-

suring uniform movement and precise image alignment. An essential part of the turntable is its

capacity to support substantial weight, maintaining a uniform and stable rotation throughout the

imaging sequence. The turntable includes peripheral rollers that evenly distribute the load, mitigat-

ing any oscillation and ensuring the stability of the subject. Considering that the primary subjects

being imaged are plants, known for their susceptibility to movement, the stability of the turntable

was essential. The slightest imbalance could manifest as movement, rendering the imaging less

effective. The selection of this turntable was driven by the necessity to establish a stable imaging
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environment, ensuring consistency and precision in capturing images from various angles. For the

project, we modified the PhotoCapture 360 Turntable to interface with a Raspberry Pi, as shown in

Figure 3.11, by re-configuring its internal wiring and utilizing the Adafruit DC and Stepper Motor

HAT [104].

(a) Interfacing with the Raspberry Pi and the
turntable.

(b) Internal components of the turntable.

Figure 3.11: The modified turntable shows the rewired internal components for direct interfac-
ing with the Raspberry Pi. The Adafruit DC and Stepper Motor HAT is used to interface with
the stepper motor inside the turntable and the Raspberry Pi. This image illustrates the technical
customization undertaken to adapt the functionality of the turntable, allowing control through an
open-source stepper motor library.

The Adafruit DC and Stepper Motor HAT is adept at controlling up to four DC or two stepper

motors, utilizing pulse-width modulation (PWM) for fine-tuning motor speeds. Its compatibility

with the standardized 2x20 connection port of Raspberry Pi models allows the HAT to overcome

the limited PWM output issue. This is achieved by using a dedicated PWM driver chip that utilizes

I2C communication. The efficient design of the chip requires only two GPIO pins (SDA and SCL)

to manage multiple motors, thus conserving valuable resources and enhancing the overall system

efficiency. Stackable connectors are provided in scenarios where the system complexity calls for

multiple HATs to enable a consolidated and efficient setup. This modularity and expandability
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proved instrumental for stacking the Arducam 64MP Autofocus Quad-Camera Kit on top of the

Adafruit DC and Stepper Motor HAT. Figure 3.12 illustrates the configuration of the imaging

system with the Arducam 64MP Autofocus Quad-Camera Kit stacked on top of the Adafruit DC

and Stepper Motor HAT, which is mounted directly on the Raspberry Pi. The entire setup is secured

on a 3D-printed mount attached to the aluminum extrusion frame.

Figure 3.12: The imaging system configuration showing the Arducam 64MP Autofocus Quad-
Camera Kit stacked on top of the Adafruit DC and Stepper Motor HAT, which is mounted on the
Raspberry Pi. The assembly is secured on a 3D-printed bracket affixed to the aluminum extrusion
frame of the photogrammetry rig.

The HAT powers the motors using TB6612 MOSFET drivers, which provide a stable 1.2A cur-

rent per channel and support peak currents up to 3A for short periods. Such robust power handling

is essential for consistent motor performance across various demands. Protective elements, such

as built-in flyback diodes, are crucial for safeguarding the system against voltage irregularities and

prolonging its service life. A polarity protection FET on the power pins also mitigates risks asso-

ciated with electrical misconnections. Delivered fully assembled and pre-tested, the HAT arrives

with all essential components, such as pre-soldered terminal blocks and a 2x20 pin lifter header,

facilitating quick integration with the Raspberry Pi. The Raspberry Pi powers and controls the
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stepper motor via the connected HAT. A Python script runs on the Pi, orchestrating the movements

of the stepper motor with high precision. This script enables the Raspberry Pi to dictate the speed,

direction, and number of steps the motor takes, allowing for control over the mechanical aspects

of the rig.

3.3.3 Aluminum Extrusion Structure

Figure 3.13(a) shows the T-slot aluminum extrusion structure central to the imaging system.

This schematic highlights the design, facilitating straightforward assembly and disassembly. It

features each movable mount with its corresponding lever aligned along the T-slot arms. This

design details underscore the integration of user-friendly operation and portability with the rig,

ensuring precise camera adjustments within a robust and dependable framework. Figure 3.13(b)

shows the model of our imaging system, capturing its early development. This phase of the project

was characterized by a focus on establishing a foundational design that would effectively meet the

basic requirements of the imaging process.

(a) View of the T-slot aluminum extrusion
structure

(b) The general design of the imaging
system

Figure 3.13: Diagram of the T-slot aluminum extrusion structure of the 3D imaging system, show-
ing the modular design that simplifies assembly and disassembly. Key features include adjustable
camera mounts with levers for precise alignment.

The framework of the imaging system is constructed from T-slot aluminum extrusions chosen
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for their modularity, lightweight properties, and superior strength-to-weight ratio. These extrusions

are precisely cut and assembled to form a sturdy frame that securely supports four cameras. The

adaptability of the camera mounts, facilitated by brackets and fasteners that move smoothly within

the T-slot channels, allows for easy and dynamic repositioning. Adjustments are made by simply

loosening and tightening these fasteners, enabling the camera mounts to slide along the arms of

the structure to the required positions. The main structural frame, extending 1 meter in length, is

designed with four arms dedicated to holding a camera. The arms, measuring 500 cm and 250

cm in length, are configured to support two cameras at the upper and lower positions respectively.

This arrangement places the cameras in an arc, enabling them to capture a hemispherical view of

the subject in a single rotation.

The modularity of the T-slot design is key to the customizable and scalable features of the

imaging system. It allows straightforward modifications, such as adding cameras or adjusting

mounts to suit different subjects, enhancing the versatility of the system. The central placement

of the Raspberry Pi and camera kit further demonstrates the ease of integration. Ergonomically

designed levers on the mounts enable manual repositioning of cameras for precise alignment, as

shown in Figure 3.14. Using aluminum contributes to the stability and vibration damping of the

imaging system, akin to a tripod, thus improving image clarity.

Figure 3.14: View of the camera mount system integrated into the aluminum extrusion structure,
showing the camera affixed to the 3D printed mount, which is screwed onto the adaptable brackets.
These mounts, characterized by their sliding brackets and fasteners, facilitate movement within the
T-slot, allowing quick adjustments. Levers enhance the flexibility of the system, positioning the
camera at the ideal shooting angle.
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3.3.4 Featureless Background and Lighting Setup

The background in a photogrammetry setup is critical to the success of the imaging process. A

featureless and neutral backdrop is essential for eliminating visual noise, ensuring that the focus

of the camera and the algorithms are concentrated on the subject. This singular focus is crucial

for accurately identifying points, a core aspect of 3D modeling. Patterns or distinct colors in the

background can lead to misinterpretations of the subject, introducing inaccuracies into the 3D

reconstruction. For our system, we chose a blue matte fabric from Poly Pro, valued for its uni-

formity and wrinkle-resistant qualities, ensuring a consistently smooth and distraction-free surface

for imaging. The chosen material should be non-reflective and matte, commonly in neutral tones,

to prevent interference with the imaging process. It must be large enough to surround the sub-

ject, with its alignment parallel to the imaging plane, which is essential for avoiding perspective

distortions and simplifying the post-processing workflow.

Creating a custom lighting setup, often incorporating multiple diffused lighting sources, is a

critical aspect of photogrammetry. This is designed to effectively illuminate the object without

casting unwanted shadows or highlights on the backdrop, maintaining the featureless nature of the

background and ensuring that it complements the imaging of the object without introducing any

distortions or artifacts. Lighting is fundamental in photogrammetry and instrumental in determin-

ing the quality of the final model. Good lighting conditions are critical in accurately capturing

the texture and geometry of the model and minimizing potential errors during scanning. Adequate

lighting ensures that the subtle nuances of the object are clearly defined.

Using portable lights can ensure uniformity and prevent issues like tiling and blurring. This

consistency helps avoid the creation of unintended artifacts, and the flexibility to correct light tem-

perature post-processing allows for greater control over the final image quality, ensuring optimal

conditions for photogrammetry. Effectively managing shadows, refraction, and reflections is es-

sential in photogrammetry. Balanced lighting minimizes distortions in the 3D model, with strategic

placement and intensity of lights being vital for capturing the actual features of the object. Achiev-
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ing a balance in lighting is, therefore, crucial for accurately capturing the features of the object

and preventing any distortions or inaccuracies in the final model. Two LED lights were used and

pointed towards the plant subjects. This setup ensures the subject is well-illuminated from multiple

angles and minimizes shadows that could obscure details or introduce inaccuracies. As shown in

Figure 3.15 featuring the blue Poly Pro matte fabric backdrop alongside the LED lighting to en-

sure uniform illumination of the subject, a combination for minimizing visual noise and optimizing

focus for accurate 3D modeling.

Figure 3.15: The choice of a blue, non-reflective, and uniform backdrop ensures minimal visual
noise and optimal focus on the subject. The use of two LED lights, positioned to illuminate the
plant subjects, ensures uniform lighting across the subject, minimizing shadows and enhancing the
accuracy of images.
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3.4 Initial Results and Proof of Concept of the Photogramme-

try Rig

This section provides an overview of the initial findings and validation of the photogrammetry

rig designed for plant imaging and analysis. In Section 3.4.1, we explain the methodologies for

creating the datasets and implementing the photogrammetry rig for imaging. Following this, Sec-

tion 3.4.2 describes the specifics of the point cloud data preprocessing. Section 3.4.3 shows the

results from imaging with the photogrammetry rig, including the validation of 3D reconstruction

for plant height measurements of soybean using linear regression analysis and error calculations,

as well as the assessment of canopy volume measurements with the convex hull method for both

plant species.

3.4.1 Experimental Setup and Methodology

This experiment aims to demonstrate the effectiveness of the photogrammetry rig, presenting

initial results and validating its capabilities in capturing and analyzing plant height and canopy vol-

ume through comprehensive methodologies, data preprocessing, and analysis of imaging results.

The experimental setup involved growing one pot of each lettuce and soybean under controlled

conditions to ensure consistency in data collection. Over five weeks, the plants were subjected to

uniform environmental factors, including lighting, temperature, and watering schedules, to min-

imize external variability in growth patterns. Watering was carefully regulated, with each plant

receiving water every second day. This consistent hydration schedule was crucial for maintain-

ing plant health and uniform growth. The plants were grown in a growth chamber developed by

Conviron at the University of Winnipeg, where the temperature was controlled, with daytime tem-

peratures set to 25 °C and nighttime temperatures to 18 °C. The relative humidity was maintained

at 60%, creating an optimal growing environment.
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Imaging of the plants was conducted once a week throughout the five weeks. This regular

imaging schedule was essential for capturing the dynamic growth process and allowed for ana-

lyzing developmental changes over time. Images were taken with the photogrammetry rig and

processed for 3D reconstruction separately. The plants were taken out of the growth chamber, as

shown in Figure 3.16(a), imaged for an estimated 25 minutes and returned to the chamber after

imaging. Figure 3.16(b) shows the first prototype of our photogrammetry rig, showing the initial

setup used for capturing plant growth data with the high-quality camera module for the Raspberry

Pi. Manual adjustments were made to the cameras to fine-tune focus and position, ensuring the

images are high quality and accurate in the image capture.

(a) Various plants growning in the growth
chamber

(b) First prototype of the photogrammetry rig

Figure 3.16: For this experiment, plants are cultivated in the growth chamber, placed on the
turntable, and imaged by the photogrammetry rig. For the purposes of this experiment, only one
pot of lettuce and soybean are imaged.

Table 3.2 outlines the configuration of the photogrammetry rig utilized in this experiment and

details the settings essential for capturing high-quality images. These settings include the turntable

angle, set at 10 degrees to ensure a decent overlap between images, and the total number of images

148, indicating the depth of data collection. The camera resolution is specified as 4084 x 3051.

Additionally, camera settings include the focal length at 16 mm, aperture setting at f/5.6, and ISO

setting at ISO-143. The distance between the plant and rig was 1-2 meters to ensure the plant was

entirely in the shot and the background remained consistent. The total imaging time for each plant
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was recorded as 25 minutes, which is the time needed to get a full 360-degree view of the plant.

Setting Value
Turntable Angle 10◦

Total Images 148
Camera Resolution 4084 x 3051

Focal Length 16 mm
Aperture Setting f/5.6

ISO Setting ISO-143
Distance to Subject 1-2 m
Total Imaging Time 25 Minutes
Total Size on Disk 297 MB

Image Capture Delay 6 seconds

Table 3.2: This table details the specific settings and configurations of the photogrammetry rig
used. It includes parameters such as the turntable angle, camera resolution, focal length, aperture
setting, ISO setting, and distance to subject.

We utilized the default reconstruction settings of COLMAP but later in the project, Python

scripts were developed to interface with COLMAP, significantly streamlining the transition from

2D imaging to 3D reconstruction, thereby enhancing the ease and automation of the entire process

(more details in section 4.3). A desktop computer was utilized for the 3D point cloud recon-

structions, equipped with a 12-core/24-thread 3.5 GHz CPU, 32 GB of 3200 MHz RAM, and an

NVIDIA GeForce RTX 3060 GPU. The complete reconstruction of a dense point cloud for each

plant took approximately 120 minutes.

3.4.2 Dataset Preprocessing

Point clouds captured from the soybean and lettuce plants were subjected to a series of process-

ing steps to refine and prepare them for assessment. The initial step in this reprocessing involved

opening the point cloud data in MeshLab [105], an open-source software known for its effective-

ness in handling 3D data. Point clouds were scaled (using the diameter of the turntable), denoised

based on color (removing all but the green/brown points), aligned to the positive z-axis, and trans-

lated to the origin such that the "ground" of the point cloud is parallel to the X–Y plane, and any
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remaining non-plant points removed manually in Meshlab.

Figure 3.17 shows the 3D point cloud pre-processing stages, using a soybean plant as an exam-

ple. The process commences with the initial raw point cloud, captured by the photogrammetry rig

and depicted in 3.17(a), which includes the plant, the pot, the turntable, and some noise. Following

this, as shown in 3.17(b), is a calibration step where the diameter of the turntable is measured and

scaled with the actual diameter of the turntable. This measurement is essential for establishing

an accurate scale reference within the point cloud data. Subsequent processing stages involve ad-

justments to the data, as seen in 3.17(c), where the point cloud is translated and rotated to align

correctly with the origin and the positive z-axis. Figure 3.17(d) shows a cleaned and refined final

point cloud of the soybean plant.

(a) Initial 3D point cloud data of a soybean plant,
showing the structure of the plant before any
processing.

(b) Calibration stage showing the measurement
of the turntable diameter, crucial for accurate
scale setting in the point cloud data.

(c) Processed 3D point cloud showing transla-
tion and rotation to the origin, illustrating the
alignment of the normal vector to the positive z-
axis.

(d) Final cleaned 3D point cloud of the soybean
plant.

Figure 3.17: Example of the pre-processing workflow for the 3D point cloud data using soybean
scans. The process begins with translating the point cloud to the origin, removing points associated
with the turntable and plant pot, and aligning it along the positive z-axis. The point clouds are on
the positive z-axis and positioned at the origin of the coordinate system.
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3.4.3 Results and Discussion

Soybean Plant Height

Plant height measurements were only done with soybean because lettuce grows more flat and

outward, making it challenging to manually measure plant height accurately. The measured plant

height of soybean from the reconstructed point cloud model was validated with the actual measured

values using linear regression analysis to prove the system’s accuracy. The Root Mean Squared Er-

ror (RMSE) and Mean Absolute Percentage Error (MAPE) were used to quantify the model’s pre-

dictive accuracy. The RMSE measures the average magnitude of the errors, giving higher weight to

more significant errors. MAPE expresses the average absolute error as a percentage of actual val-

ues, offering a scale-independent accuracy measure. These calculations were performed using the

statistical functions available in the SciPy library [106]. Researchers note that the acceptable range

for measured morphological traits in phenotyping is 5–10%. This range is deemed acceptable as it

aligns with the error magnitude typically found in manual measurements. It is sufficiently low to

differentiate variations in relevant traits across imaging dates during development [68]. Equation

3.4 defines the RMSE for plant height as

RMSEplant height =

√
1
n

n

∑
i=1

(ĥi−hi)2, (3.4)

where ĥi is the measured plant height derived from the 3D point cloud generated by the pho-

togrammetry rig, hi is the actual plant height, and n is the number of plants or measurements taken.

Equation 3.5 defines the MAPE for plant height as

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ ĥi−hi

hi

∣∣∣∣∣×100%, (3.5)

where ĥi represents the predicted or measured plant height from the photogrammetry data, hi is the
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actual, observed plant height obtained through direct measurement, and n is the number of plants

or measurements.

In this study, plant height was a primary metric of interest. Plant height was quantified by

measuring from the base of the stem to the apex of the canopy. This measurement was computed

using the photogrammetric data by calculating the difference between the maximum (Zmax) and

minimum (Zmin) Z-axis values in the 3D point cloud, as demonstrated in Equation 3.6

H = Zmax−Zmin, (3.6)

this is visually shown in Figure 3.18, which illustrates the method for calculating plant height,

highlighting the importance of Zmax and Zmin in the process.

Figure 3.18: Diagram illustrating the method of measuring plant height, with Zmax representing
the topmost point and Zmin indicating the base. This aids in visualizing the procedure outlined in
Equation 3.6 for calculating plant height.

Figure 3.19(a) shows a linear regression analysis that illustrates the relationship between the 3D

point cloud measurements and the manually measured plant heights, demonstrating the reliability

of the photogrammetry rig. The analysis shows that height measurements from 3D reconstructions

were modestly lower, by about 4%, than those from manual validation measurements. The analysis

confirmed a correlation between the two sets of measurements given by R2 = 0.99, indicating

that the linear model with manual measurements can account for 99% of the variance in point

cloud measurements. An RMSE of 0.81 and a MAPE of 10.63% further quantify the precision
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and the average percentage error, respectively, illustrating a high level of accuracy in capturing

plant growth despite the inherent measurement errors. Figure 3.19(b) shows the soybean plant

growth over time, mapping out their development trajectory. The growth trajectory depicted a swift

increase in plant height, with a height of 17 mm observed within the first week after germination.

The growth rate then slowed, leading to a gradual rise in height to 242 mm by the end of the fifth-

week post-germination. These figures, obtained from RMSE and MAPE analyses, measure the

accuracy of the photogrammetry rig, showing its capability to track the growth dynamics of plants

precisely.

(a) Linear regression analysis of soybean plant
height, illustrating the correlation between mea-
sured and predicted heights.

(b) Graphical representation of soybean plant
height over time, shows the growth trajectory of
the plants.

Figure 3.19: (a) A linear regression analysis was performed on soybean plants to validate the cor-
relation between 3D point cloud measurements and manually measured plant heights, effectively
quantifying the accuracy and reliability of 3D measurements. (b) Additionally, tracking growth tra-
jectory of soybean over time sheds light on the dynamic patterns of plant development and shows
a linear relationship, offering insights into its growth rates.

Canopy Volume of Soybean and Lettuce

The canopy volume of soybean and lettuce was determined by analyzing the convex hull de-

rived from the 3D point cloud data. Let P= {p1, p2, . . . , pn} be a set of points in R. The convex hull

of P, denoted as Conv(P), is the smallest convex set that contains all points in P. A set C is convex

if, for any two points a,b ∈C, the line segment connecting a and b is entirely contained within C.
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The convex hull Conv(P) can be represented as the intersection of all convex sets containing P or

as the set of all convex combinations of points in P [107, 108].

The convex hull of a set of points in 3D space forms a convex polyhedron. To compute the

volume of this polyhedron, an effective method involves summing up the triangular pyramid (or a

tetrahedron) formed by an arbitrary fixed point within the hull, O, and the triangular faces on the

surface of the hull. A convenient choice for O is the centroid of the hull vertices, providing a point

well within the polyhedron. The volume of each tetrahedron, created by O and a triangular face

defined by points P1,P2, and P3 on the hull, can be determined by

Vtotal =
m

∑
i=1

Vtetrahedroni,

where m is the total number of triangular faces on the convex hull, and Vtetrahedroni is the volume of

the tetrahedron formed by the i-th triangular face and the point O. The volume of each tetrahedron

Vtetrahedroni can be calculated as

Vtetrahedroni =
1
3
×Area( fi)×Heighti.

Here, Area( fi) is the area of the i-th triangular face, and Heighti is the perpendicular distance from

O to the plane containing the i-th triangular face. This sum calculates the total volume of the

convex hull by summing the volumes of all tetrahedron. These calculations were performed using

the convex hull package in the SciPy library [106].

The dynamic growth stages of lettuce plants over three weeks are illustrated in Figure 3.20.

In the top row, Figures 3.20(a), 3.20(b), and 3.20(c) show the cleaned point clouds of the lettuce

plants at weeks 3, 4, and 5, respectively. These images show the structural development of the

plants, highlighting the progressive growth in size and architectural complexity. In the bottom row,

Figures 3.20(d), 3.20(e), and 3.20(f) illustrate the convex hull calculations at weeks 3, 4, and 5,

respectively.
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(a) Week 3 (b) Week 4 (c) Week 5

(d) Canopy Volume Week 3 (e) Canopy Volume Week 4 (f) Canopy Volume Week 5

Figure 3.20: The top row shows the cleaned point clouds for weeks 3, 4, and 5, illustrating the
structural development of the plants. The bottom row illustrates the same point clouds with convex
hull calculations, highlighting the changes in canopy volume over time. These visual represen-
tations help to quantify the growth patterns of the lettuce, demonstrating the effectiveness of 3D
modeling in tracking and analyzing temporal changes in plant morphology.

The dynamic growth and development of the soybean plants over three weeks are shown in

Figure 3.21. In the top row, Figure 3.21(a), 3.21(b), and 3.21(c), display the cleaned point clouds

of the soybean plants at weeks 3, 4, and 5 respectively. These images provide a detailed view of the

structural development and architecture of the plant, highlighting the gradual increase in size and

complexity. This visualization not only aids in understanding the phenotypic changes over time

but also underscores the precision of the photogrammetry rig in capturing intricate details. In the

bottom row, Figures 3.21(d), 3.21(e), and 3.21(f) illustrate the convex hull calculations for these

corresponding growth periods, offering quantitative insights into the volumetric expansion of the

canopy as the plants mature.

Figure 3.22(a) illustrates the canopy volume of the soybean plant, highlighting an exponential

growth pattern indicative of the rapid growth of the plants. The canopy volume increases from 0.97

cm3 one week post-germination to 1007.1 cm3 after five weeks. Similarly, Figure 3.22(b) shows

the growth trajectory of lettuce, with the exponential trend emphasizing the increase in canopy

volume. The lettuce canopy volume increased from 0.54 cm3 one week post-germination to 1307

cm3 by the fifth week. An exponential growth curve was fitted to both data sets, illustrating the
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(a) Week 3 (b) Week 4 (c) Week 5

(d) Canopy Volume Week 3 (e) Canopy Volume Week 4 (f) Canopy Volume Week 5

Figure 3.21: The top row shows the cleaned point clouds for weeks 3, 4, and 5, illustrating the
structural development of the plants. The bottom row presents the same point clouds with convex
hull calculations, highlighting the changes in canopy volume over time.

rapid expansion in canopy volume for soybean and lettuce plants within the initial five weeks post-

germination. These observations provide quantitative results of the exponential growth curves

characteristic of these developmental stages of the plant. This study aimed to demonstrate the

effectiveness of the photogrammetry rig in capturing and analyzing the canopy volume of lettuce

and soybean plants, emphasizing its potential to measure plant growth and development.
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(a) Graph depicting the canopy volume growth of
a soybean plant over time. The plot illustrates an
exponential increase in canopy volume.

(b) The canopy volume growth of a lettuce
plant. The exponential trend observed signifies
the growth of the plant.

Figure 3.22: Canopy volume growth in lettuce and soybean, as captured by a photogrammetry rig.
Each figure visually represents the exponential growth pattern in canopy volume, reflecting the
dynamic nature of lettuce and soybean development.
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4. Software Implementation of the

Photogrammetry Rig

This chapter outlines the technical framework and operational processes involved in the soft-

ware deployment of the photogrammetry rig. Section 4.1 outlines the software framework devel-

oped to operate the photogrammetry rig. In Section 4.2, we discuss the structured approach and

methodologies adopted for capturing images and generating datasets for 3D reconstruction. Sec-

tion 4.3 outlines the process of integrating COLMAP, leveraging its capabilities to facilitate 3D

reconstruction within the imaging pipeline. Section 4.4 details the software implementation on

the 3D point clouds, focusing on pre-processing the 3D data and preparing the data for 3D plant

phenotyping.

4.1 Photogrammetry Rig Control Script

The control software for the rig is developed to specifically address the requirements of the

imaging system. A Python script executes on the client side, utilizing a Graphical User Interface

(GUI) application to control the photogrammetry rig through the Tkinter library. This GUI allows

users to configure settings, initiate the image capture process, and inspect images. Integrated with

SSH (Secure Shell) and SFTP (SSH File Transfer Protocol), the GUI ensures secure and efficient

communication with the Raspberry Pi. Figure 4.1 shows the GUI application, highlighting its role

in facilitating the user management of the imaging process including camera options, turntable

adjustments, plant labeling, reviewing captured images and initiating the imaging sequence. The

script uses the Python package Paramiko and the socket library for managing remote commu-
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nications over the local network. It initializes SSH and SFTP clients, securely connects to the

Raspberry Pi using its IP, username, and password by adding its host key.

Figure 4.1: The GUI of the photogrammetry rig, created using the python package Tkinter, allows
users to manage and control various aspects of the imaging process, such as camera and turntable
settings, plant labeling, and image capture. It also provides functionalities for inspecting captured
images and commencing the full imaging sequence.

The Photogrammetry Rig Control script, shown in Algorithm 1, outlines the pseudo-code for

controlling the photogrammetry rig via a software interface. The script initiates by defining the

get_ip_address() function, designed to ascertain the local IP address of the user on the client side.

This is achieved by establishing a socket connection to Google’s public DNS server at 8.8.8.8

using port 80, a method used to determine the external-facing IP address within its local network

of the machine. Furthermore, the script retrieves the hostname of the user by executing the shell

command ‘id -un’ through a subprocess, storing the result. It determines the IP address of the

Raspberry Pi, which is recognized by the hostname. To facilitate image management, the script sets

up several directories, with variables such as mask_folder, images_folder, and inspect_folder

pointing to specific paths designated for various image storage types.

Within the script, the InputGUI class is defined, which establishes the framework for the user

interface. This class contains several functions, including browse_folder(), submit(), inspect(),

and start_imaging(). Central to the script’s functionality are the inspect and image capture, which
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Algorithm 1 Photogrammetry Rig Control
1: function GET_IP_ADDRESS

2: Create a socket
3: Connect to a public DNS server
4: return the local IP address
5: end function
6: Retrieve main_hostname and main_ip_address
7: Define folder paths: mask_folder, images_folder, inspect_folder
8: Set Raspberry Pi hostname (pi_hostname) and user (user)
9: Resolve pi_hostname to IP (pi_ip_address)

10: SSH and SFTP Client Setup
11: Connect to the remote device using SSH
12: Create a new SFTP client
13: Class InputGUI
14: function BROWSE_FOLDER

15: Handle folder browsing
16: end function
17: function SUBMIT

18: Handle form submission
19: end function
20: function INSPECT

21: Handle image inspection
22: end function
23: function START_IMAGING

24: Start the imaging process
25: end function
26: Main Execution
27: Start GUI
28: Handle closing connections

handle capturing images using the connected cameras. The script uses libcamera, an open source

camera stack and framework for Linux, to capture images on the Raspberry Pi and i2cset to switch

between cameras. Following the image capture process, the script also translates the specified

angle parameter into steps, directing the Raspberry Pi to rotate the stepper motor accordingly. This

rotation facilitates the movement of the turntable, ensuring the subject is appropriately positioned

for each set of images. The script transfers all captured images to a local machine for inspection

and storage. At the end of the script, the SFTP and SSH connections to the Raspberry Pi are

closed, ensuring that the network resources are correctly released. Finally, the script enters the
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main loop of the Tkinter application, which keeps the GUI active and enables users to engage with

the application, configure their settings, and initiate the imaging process for the next subsequent

set.

The script interacts with a JSON file, to read and write configuration data, which includes the

hostnames, IP addresses, and camera settings. Table 4.1 provides an overview of the parameters for

the control script, highlighting the functionalities of each parameter within the system. It includes

boolean variables for enabling or disabling individual cameras, specifies the rotational angle for

the turntable, the time delay between image captures, and the labeling of the plants being imaged.

The GUI is designed for ease of use, featuring checkboxes for camera selection, entry fields for

setting angles, and buttons for essential actions like browsing folders, submitting data, and initi-

ating the imaging process. The table lists variables holding the directory path for saving images,

and network configurations. This ensures persistent storage of settings and parameters which is

essential for maintaining consistency between sessions and facilitating the reuse of configurations

for repetitive tasks.

Parameter Description
camera_a, camera_b, camera_c,
camera_d

Boolean variables to enable/disable
corresponding cameras

angle Rotation angle of the turntable in
degrees

capture_delay Time delay before taking another
set of images

plant_name Name of the plant being imaged
folder_path Path to the folder for saving images
main_hostname, main_ip_address,
pi_hostname, pi_ip_address

Network configurations for SSH
and SFTP connections

SSH and SFTP Clients Components for remote connec-
tions and file transfers

User Interface Functions Functions for GUI interactions such
as folder browsing, form submis-
sion, inspect images, image capture

Table 4.1: Key parameters for the imaging system store on the JSON file, detailing their respective
functionalities. Parameters include camera controls, turntable rotation angle, delay timing, plant
naming, and image storage paths. Additionally, it covers essential network configurations for
SSH and SFTP connections, facilitating secure and remote system operations. These functions
are crucial for the GUI, emphasizing the approach of the script in managing the operations of
photogrammetry rig.
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Figure 4.2 shows the whole pipeline for image capture using the photogrammetry control script.

The plant of interest is placed on the turntable to begin image capture, and the user establishes a

remote connection to the Raspberry Pi. In either case, one can retrieve each image directly after it

has been captured or in bulk after the turntable goes through each of its positions. After completing

a full rotation, the system automatically stops the turntable and the camera. The user then has the

option to review the captured images on the graphical interface. If necessary, the user can repeat

the image capture process after making any required adjustments. Once the user is satisfied with

the image quality, the data transfer process begins. The images are automatically transferred from

the Raspberry Pi to a connected computer or remote server for storage. Following the transfer, the

images are ready for the next phase of the pipeline

Figure 4.2: Flowchart of the photogrammetry imaging process, illustrating the steps from initial
setup to the final image transfer. This includes positioning the plant on the turntable, establishing
a remote connection to the Raspberry Pi, utilizing the graphical interface for image capture, and
options for image retrieval.

4.2 Image Acquisition

During image capture, the system creates three distinct folders to streamline data handling and

improve the workflow from the initial capture to 3D reconstruction. The first folder stores the raw

images as the cameras capture them. The second, labeled ‘mask images’, contains processed im-

ages used for segmentation to separate the subject from its background. The third folder, labeled

‘inspect images’, comprises images for quality and completeness checks before imaging. These

images are taken and inspected by the user to ensure the subject is position correctly. This pro-

cedure enhances data management efficiency and allows for the early detection and correction of

issues like blurring or improper exposure, ensuring that only high-quality images are utilized for
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3D reconstruction.

Figure 4.3 illustrates the imaging pipeline of the photogrammetry rig, detailing the process

from multi-angle image capture facilitated by the Raspberry Pi, camera kit, and the turntable to

the 3D reconstruction performed on a remote server. To ensure integration of this process with the

data management, the system employs a naming convention for the captured images in the form of

PlantType_CameraID_CaptureDate_SequenceNumber. This structured format includes the type

of plant being imaged, the specific camera used for the capture (e.g., Camera A, B, C, D), the date

of capture in a YYYYMMDD format, and a sequential number indicating the order in which the

image was taken. For example, a file named Wheat_CameraB_20230718_001 would represent the

first image of a wheat plant, captured by Camera B on July 18, 2023. This naming convention

facilitates easy identification and organization of the images, aiding in efficient data retrieval and

management.

Figure 4.3: Schematic of the imaging pipeline for the photogrammetry rig, showing the integrated
process from the multi-angle image capture with the Raspberry Pi and the camera kit. The setup,
connected to a rotary turntable, ensures precise positioning for optimal image collection. Following
image capture, images are processed and prepared by the Raspberry Pi before being sent to a
remote server for 3D reconstruction.

Figure 4.4 shows an image captured by Camera D of the photogrammetry rig. This image,

a close-up of a wheat plant, demonstrates the capabilities of the rig to capture the details and
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textures of the plant. The image, obtained under controlled lighting conditions, ensures that all

features of the wheat are distinctly visible. Capturing images from different viewpoints is essential

for creating a hemispherical representation of the subject. Each camera involves photographing on

both vertical and horizontal axes at every viewpoint. As shown in Figure 4.5, different perspectives

on the vertical axis were captured by the four cameras on the photogrammetry rig.

Figure 4.4: This image, captured by Camera D of the photogrammetry rig, illustrates a close-up
of a wheat plant. The capture showcases the ability of the rig to accurately render the texture and
features of the subject, while the blue backdrop and checkered pattern on the turntable and pot
enhance feature extraction.

(a) Camera A (b) Camera B (c) Camera C (d) Camera D

Figure 4.5: An example of images captured from four distinct elevational perspectives by cameras
A through D of the photogrammetry rig. Camera A represents the highest vantage point, with
each subsequent camera (B to D) capturing from progressively lower perspectives, showcasing the
vertical axis view of the plant.

Figure 4.6 shows a series of binary images corresponding to the same set initially shown in
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Figure 4.5. These images, labeled from Camera A to Camera D, are processed into binary format,

where the visual data is reduced to two distinct color values, typically black and white. In the

context of these images, the black areas (with a pixel intensity value of 0 in grayscale) represent

regions where no features will be extracted, effectively masking out irrelevant portions of the

scene. This binary processing is essential in SfM for isolating the areas of interest and enhancing

the efficiency of the feature extraction step. The distinction between the wheat plant and the

background in these images exemplifies the effectiveness of this binary transformation in preparing

data for subsequent photogrammetric analysis.

(a) Camera A (b) Camera B (c) Camera C (d) Camera D

Figure 4.6: An example of binary images taken by the photogrammetry system from all four
cameras of different viewpoints of wheat where no features will be extracted in these regions,
where the mask image is black (pixel intensity value 0 in grayscale).

Algorithm 2 processes images to create masks by first converting them from BGR to LAB color

space, focusing on the a and b channels. Thresholding is applied to the b channel with a binary

cutoff of 80, setting pixels ≥ 80 to 128 and the rest to 0, and to the a channel with an inverse

threshold of 140, setting pixels < 140 to 127, while all others are set to 0. The combined channels

form a composite mask with pixel values of 0, 127, 128, and 255, effectively differentiating be-

tween the background (0), features more prominent in the b channel (127), those in the a channel

(128), and the essential features present in both channels (255). A cutoff of 128 simplifies this to a

binary mask (0 for non-essential, 255 for crucial points). The algorithm then generates a filename

for each mask, storing them in a designated folder. These mask images are placed in the mask

image folders in the dataset. All image filenames must be identical, except for adding the .png

extension, so that COLMAP can correctly match each image with its corresponding mask. We

chose these threshold values to isolate the blue background in the images and highlight the plant,
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pot, and turntable. By generating image masks, COLMAP can accurately differentiate the subject

from its background, which is instrumental in the quality of the 3D models.

Algorithm 2 Image Masking for Background Removal
Function image_mask(image_dir, mask_folder):

Input: image_dir, mask_folder
Set current directory to image_dir.
images← Retrieve all .jpg files in directory.
For each image in images:

img← Load image.
lab← Convert img from BGR to LAB color space.
Extract ‘a’ and ‘b’ channels from lab.
Apply binary threshold at 80 to ‘b’ channel, setting pixels
≥ 80 to 128, others to 0.

Apply inverse binary threshold at 140 to ‘a’ channel, setting
pixels < 140 to 127, others to 0.

mask← Combine a_mask and b_mask.
Refine mask by setting values < 128 to 0, enhancing feature prominence.
filename← Generate mask filename.
Save mask in mask_folder with generated filename.

4.3 3D reconstruction with COLMAP

The graphical interface of COLMAP allows users to visually inspect and interact with recon-

structed models, whereas the command-line interface caters to advanced usage, offering scriptabil-

ity for automated workflows and parameter variations. Users can input these arguments directly

in the command line or through a file, where only the location of the file is used as an argument.

Regarding data storage and processing, COLMAP uses an SQLite database to store image paths,

features, feature matches, and camera information/parameters. The reconstruction process then

utilizes this database to generate a 3D model, saving it in a specified output folder as three binary

files: one each for cameras, images, and 3D points. These files can be subsequently accessed

through the COLMAP GUI for viewing and analyzing the reconstruction. The 3D point cloud data

are in PLY format (Polygon File Format), a data storage format that stores the information of the

3D structures.
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We created a script that interfaces with COLMAP, as shown in Algorithm 3. This script auto-

mates the process of 3D reconstruction by sequentially executing various COLMAP commands,

thus streamlining the workflow from image processing to the generation of 3D models. The initial

feature extraction step uses the COLMAP feature extractor with set parameters to identify points

in input images. This is followed by image matching, where the script utilizes the exhaustive

matcher in COLMAP to find correspondences between the features across various images. The

script executes the COLMAP mapper to construct a preliminary sparse 3D model based on the

matched features from the earlier stages. Subsequently, the script moves to image undistortion

and dense reconstruction preparation, where images undergo processing to correct distortions and

align accurately, preparing them for the next step. The dense reconstruction step involves running

the patch match stereo algorithm, a feature of COLMAP that refines the 3D model by densely

matching points across the image collection. The procedure completes with stereo fusion, the final

stage where the script integrates the depth maps into a 3D model, exporting it in PLY format.

Algorithm 3 COLMAP Interface Script
1: Input: WORK_SPACE, config
2: Set feature extraction parameters from config
3: Set matching parameters from config
4: Set mapper parameters from config
5: Set patch match stereo parameters from config
6: Set stereo fusion parameters from config
7: Feature Extraction:
8: Execute COLMAP feature extractor with parameters
9: Image Matching:

10: Execute COLMAP exhaustive matcher
11: 3D Mapping (Sparse Reconstruction):
12: Execute COLMAP mapper for sparse 3D modeling
13: Image Undistortion and Dense Reconstruction Prep:
14: Execute COLMAP image undistorter
15: Dense Reconstruction (Patch Match Stereo):
16: Execute COLMAP patch match stereo
17: Stereo Fusion:
18: Execute COLMAP stereo fusion to create 3D model
19: Output: 3D point cloud model in PLY format
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Table 4.2 shows the hardware specifications of two distinct systems used for 3D reconstruction

tasks in this work, utilizing the COLMAP interface script. It highlights key components such as

CPUs, RAM, GPUs, GPU device memory, PCIe bus speeds, and compiler configurations. System

1, featuring an AMD 12-Core Processor and NVIDIA Geforce RTX 3090 GPU, contrasts with Sys-

tem 2, which is equipped with an Intel Xeon CPU and NVIDIA Tesla V100 GPU, making it more

suited for data-intensive tasks due to its superior memory bandwidth and enhanced compute capa-

bility. The comparative analysis of reconstruction times reveals that System 1 completes the 3D

reconstruction in approximately 120 minutes, while System 2 exhibits more efficient performance,

accomplishing the task within 60-120 minutes. System 2, hosted on Digital Research Alliance of

Canada (DRAC), served as the primary platform for the majority of the 3D reconstruction compu-

tation in this work.

System 1 System 2
CPU AMD 1920X 12-Core Processor @ 3.50 GHz Intel Xeon(R) CPU @ 2.50GHz
RAM 32 GB 40 GB

NVIDIA Geforce RTX 3090 NVIDIA Tesla V100 GPU
GPU Compute capability 5.0 Compute capability 6.0

10496 CUDA cores 5120 CUDA cores
Peak memory bandwidth 80 GB/s Peak memory bandwidth 549 GB/s

GPU device memory 24 GB 12 GB
PCIe bus v3.0 x16 (8.0GT/s) v3.0 x16 (8.0GT/s)
C++ compiler Microsoft Visual Studio GCC C++ compiler

C++ 2015 compiler
CUDA compiler nvcc nvcc
Operating System Windows 10 Ubuntu-22.04.3
Reconstruction Time 120 minutes 60-120 minutes

Table 4.2: Comparison of hardware specifications between system 1 and system 2, utilized for 3D
reconstruction tasks in this work. The table outlines the differences in CPU, RAM, GPU, and other
key hardware components, reflecting the distinct computational capabilities of each system. The
full 3D reconstruction time took roughly 120 minutes for system 1 and 60-120 minutes for system
2

4.4 Preprocessing Point Cloud Data

A point cloud is defined as a set { Pi | i = 1, . . . ,n}, where each point Pi represents a vector

detailing its spatial location in (x,y,z) coordinates. The points within a point cloud are defined
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by their spatial coordinates and carry additional information such as color, intensity, and normals.

These correspond to RGB values, the light reflected to the sensor, and the orientation of the surface

at each point. In our approach to process the point cloud data, we utilized the Open3D library, a

toolset designed for the handling and analysis of 3D data [109]. Open3D offers many point cloud

processing functionalities, including filtering, downsampling, and segmentation. In Open3D, when

visualizing point clouds, meshes, or other 3D geometries, the three axes in 3D space represent the

default coordinate system; each is colored red, green, and blue to indicate the X, Y, and Z axes

respectively. Figure 4.7 shows a flowchart detailing the point cloud data pre-processing steps. The

process includes centering the point cloud, segmenting the plane of the turntable to find the normal

vector, rotating the point cloud to align with the z-axis, placing the base of the point cloud on the

XY-plane, segmenting the outer ring points of the turntable to find the point cloud diameter, apply-

ing color thresholding to distinguish plant from non-plant elements, removing the pot, turntable,

and any unnecessary points.

Figure 4.7: The point cloud is translated to center, followed by plane segmentation to identify the
turntable points and find the normal vector. Subsequent steps involve rotating the point cloud to
align with the positive z-axis and adjusting its position so that the bottom of the point cloud lies on
the XY-plane. The next step is segmentation of the outer ring points of the turntable and a color
thresholding step to exclude non-plant points, leading to the removal of the pot, turntable points,
and any irrelevant points, such as those reflecting the blue backdrop. This is done to refine the
dataset for further analysis.

Adjusting the points of a point cloud to center its orientation and ensure its base aligns with the

positive XY plane is essential for preparing accurate and consistent 3D point cloud datasets. The

process is done in three primary stages: centering the point cloud, adjusting its vertical position,

and translating the points such that the plane of the bottom of the point cloud aligns with Z = 0.

The first step, centering the point cloud, starts with the computation of the centroid, which is the

average position of all points within the point cloud. This is accomplished by calculating the mean
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of the X, Y, and Z points. The subsequent step involves translating every point in the cloud so that

this centroid aligns with the origin of the coordinate system. This translation is done by subtracting

the centroid to each point and reorienting the center of the point cloud to the origin.

Adjusting the vertical position of the 3D point cloud involves aligning the point such that its

elevation extends along the Z-axis. The objective is to align the normal vector of the turntable

with the positive Z-axis. This alignment is achieved with a rotational transformation applied to

the points in the cloud, calculated to minimize the angular deviation between the normal vector

of the plane and the Z-axis. Algorithm 4 uses a RANSAC-based approach to identify the most

fitting plane within a point cloud by maximizing the number of inliers within a specified distance

threshold. The process begins with the parameters: the point cloud, a distance threshold defining

the inliers, and the maximum iterations to refine the search for the optimal plane. Three points are

randomly selected from the point cloud to define a candidate plane.

Algorithm 4 Plane Segmentation in a Point Cloud
1: function SEGMENTPLANE(pointCloud, distanceT hreshold, maxIterations)
2: bestPlane← null
3: bestInliers← empty set
4: for i← 1 to maxIterations do
5: sampledPoints← Randomly sample 3 points from pointCloud
6: plane← Fit a plane to sampledPoints
7: inliers← empty set
8: for all point in pointCloud do
9: if Distance from point to plane < distanceT hreshold then

10: Add point to inliers
11: end if
12: end for
13: if Size of inliers > Size of bestInliers then
14: bestPlane← plane
15: bestInliers← inliers
16: end if
17: end for
18: return bestPlane, bestInliers
19: end function

The evaluation of the plane includes calculating each distance of the points to the plane and

identifying inliers within the distance threshold. The iteration yielding the largest set of inliers is
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deemed to have found the best-fitting plane. Upon concluding the iterations, the algorithm returns

the parameters of the identified plane alongside its inliers, signifying a successful segmentation of

a significant planar surface from the point cloud. Given the plane equation ax+ by+ cz+ d = 0,

the normal vector n⃗ can be directly obtained as n⃗ = [a,b,c]. As an example, Figure 4.8 shows the

plane segmentation process applied to a point cloud of a wheat plant taken 35 days post-planting.

As shown in Figure 4.8(b) the point cloud has been translated to the center, with the turntable

highlighted in red to indicate that these points, representing a plane within the point cloud, have

been successfully segmented. Additionally, the red arrow visually illustrates the direction of the

normal vector relative to the segmented plane, showing the orientation of the turntable.

(a) Normal point cloud before segmentation. (b) The point cloud after plane segmentation and
translation to the origin of the coordinate system.

Figure 4.8: Visualization of the plane segmentation and repositioning of the point cloud to the
center coordinate system. (a) Shows the unprocessed point cloud of a wheat plant 35 days post-
planting. (b) Shows the point cloud after applying the plane segmentation, with the identified plane
highlighted in red to indicate the segmented area. A red arrow indicates the direction of the normal
vector of the plane, showing the orientation of the plane within the point cloud data.

The base of the point cloud is adjusted to sit on the positive XY plan by shifting upward by
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the absolute value |d| from the segmented plane equation. As shown in Figure 4.9, this adjustment

ensures that the lowest point of the point cloud sits at Z = 0, aligning the base with the segmented

plane. Also, the normal vector of the plane within the point cloud data was determined and used to

rotate the point cloud. As detailed in Algorithm 5, the process begins by defining the Z-axis as the

vector [0,0,1] and calculate the rotation axis by taking the cross product of the normal vector with

the positive Z-axis, resulting in a perpendicular vector to both. This rotation axis is then normalized

to a unit vector to simplify calculations. The algorithm proceeds to determine the rotation angle

required to align the normal vector with the Z-axis, which is achieved by calculating the arccos(θ)

of the dot product of the normal vector and the Z-axis. It then computes a rotation matrix using

this angle and the normalized rotation axis. This matrix is crucial for transforming the points, as it

rotates them by multiplying the points array with the transpose of the rotation matrix.

Figure 4.9: The process for orienting the point cloud data is to align the data with the positive
Z-axis. The normal vector of the plane within the point cloud data was determined and used to
rotate the point cloud. The point cloud is also shifted vertically by the absolute value |d| of the
plane equation such that the lowest point of the 3D model sits at Z=0.

The scale of the point cloud is established by dividing the real diameter of the turntable by the
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Algorithm 5 Align points with Z-axis
Require: points: an array of points to rotate
Require: normal_vector: the vector to align with the Z-axis
Ensure: rotated_points: an array of rotated points

z_axis← [0,0,1]
rotation_axis← cross(normal_vector,z_axis)
rotation_axis← normalize(rotation_axis)
angle← arccos(dot(normal_vector,z_axis))
rotation_matrix← R. f rom_rotvec(angle× rotation_axis).as_matrix()
rotated_points← dot(points,rotation_matrixT )

return rotated_points

diameter derived from the segmented outer points of the turntable in the point cloud data. Figure

4.10 shows the segmented outer ring of the turntable, where the segmented points are highlighted

in red as shown in Figure 4.10(a). Figure 4.10(b) shows the point cloud alongside the segmented

ring, showcasing the method used for ensuring the scale accuracy of the point cloud. Scaling is

essential for measurements and analyses of point cloud data, ensuring they reflect true real-world

dimensions.

(a) Segmentation of the outer ring from the
turntable.

(b) The complete point cloud view post-
segmentation, showing the position of the point
cloud and segmented turntable ring highlighted in
red.

Figure 4.10: Segmentation of the outer ring from the turntable, effectively highlighting the bound-
ary that surrounds the base of the turntable where the plants are placed. This step is done to
accurately determine the diameter of the turntable, ensuring the 3D model is precisely calibrated
and scaled.
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Segmenting the ring of the turntable within the point cloud, as outlined in Algorithm 6, involves

calculating the radial distance of each point from the center of the point cloud, thereby determin-

ing the spatial distribution of points based on their proximity to the origin. The process begins by

filtering the points within a specified Z-value range to isolate the turntable section. Subsequently,

it calculates the radial distance of each filtered point relative to the center of the point cloud, facil-

itating an analysis of point distribution based on proximity to this central point. By constructing a

histogram of these radial distances and organizing them into a specified number of bins, the algo-

rithm identifies the most common radial distance indicative of the area where the turntable ring is

most densely populated. This method, rooted in radial distance calculation and histogram analysis,

allows for the accurate segmentation of the outer ring of the turntable.

Algorithm 6 Segment Ring Points
1: function SEGMENT_RING_POINTS(pts, num_bins, z_min, z_max, tolerance)
2: filtered_pts← pts[(pts[:, 2] > z_min) & (pts[:, 2] < z_max)]
3: r← sqrt(filtered_pts[:, 0]2 + filtered_pts[:, 1]2)
4: hist, bin_edges← histogram(r, bins=num_bins)
5: max_bin_index← argmax(hist)
6: peak_radius← (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
7: ring_indices← where((r ≥ peak_radius - tolerance) & (r ≤ peak_radius + tolerance))
8: return ring_indices
9: end function

While the blue Poly Pro matte fabric provides a uniform backdrop as shown in Figure 3.15, it

also introduces an undesirable blue hue to the edges of objects in the 3D reconstructed model. An

essential step in the post-processing stage is the application of RGB color thresholding, designed

to eliminate these unwanted blue hues. By establishing specific thresholds within the RGB color

space, it becomes possible to identify and remove pixels that match the color range of the blue

background, thereby significantly improving the color of the final 3D model. Algorithm 7 selects

and filters points based on these RGB color thresholds. This is done by creating new arrays: one

for the spatial locations of the filtered-out points, referred to as filtered_points, and another for

their corresponding color values, named filtered_colors. These arrays are populated with the data

of points that did not satisfy the color criteria, effectively separating them from the rest of the
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point cloud. This separation is vital for applications that require point clouds with specific color

characteristics, as it allows for the exclusion of irrelevant or undesired data based on color. Figure

4.11 shows the RGB thresholding on a 3D point cloud. The unfiltered point cloud with visible blue

hues along the edges of the object as shown in Figure 4.11(a). Figure 4.11(b) shows applying the

RGB thresholding removing any blue hues from the point cloud data. .

(a) Unprocessed point cloud showing the original
state of the 3D model with visible blue hues along
the edges of the object.

(b) Processed point cloud after applying RGB
thresholding.

Figure 4.11: Techniques for RGB thresholding enhance the color fidelity of the 3D reconstructed
models. (a) The 3D point cloud is shown before applying RGB thresholding, where the blue hue
from the backdrop is visible along the edges the object. (b) Illustrates the model after processing,
highlighting and removing the blue hues, and improving the overall color accuracy of the model.
This process involves identifying and removing pixels within specific color thresholds and refining
the point cloud data to exclude irrelevant or undesired color data.

Algorithm 7 Filter RGB Points
1: function FILTERNONPOINTS(points, colors, lower_threshold, upper_threshold)
2: outside_threshold_indices ← ALL((colors < lower_threshold) OR (colors >

upper_threshold),axis = 1)
3: f ilteredpoints← points[outsidethresholdindices]
4: f ilteredcolors← colors[outsidethresholdindices]
5: return ( f ilteredpoints, f ilteredcolors)
6: end function
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The final process involves using Meshlab to refine the point cloud data by manually removing

the pot and turntable sections in the software and isolating the plant as the primary focus. Figure

4.12 shows a cleaned point cloud, illustrating the cleaning and alignment results, highlighting the

enhanced structure and uniformity of the point clouds. The refined output is a detailed represen-

tation of the plant, achieved through a series of steps: reorienting the dataset to align the normal

vector of the turntable to the positive Z-axis and position the points to be parallel to the XY plane,

scaling the point cloud using the diameter of the turntable as a reference; employing color-based

denoising to retain green and brown points; and filtering out all extraneous non-plant points.

Figure 4.12: A cleaned point cloud following refinement using Meshlab, highlighting the elimina-
tion of the pot and turntable to focus solely on the plant. The process encompasses reorienting to
align the point cloud with the Z-axis, scaling based on the diameter of the turntable, color-based
denoising to emphasize plant-relevant parts, and the removal of all non-plant elements.

In this chapter, we’ve outlined a comprehensive pipeline for operating the photogrammetry

rig, from controlling the rig to capturing and processing images for 3D reconstruction. By incor-

porating COLMAP and implementing preprocessing algorithms to 3D point clouds, our method

refines 3D plant data, establishing a framework for 3D plant phenotyping. These steps ensure the

transformation of point clouds into a dataset that accurately depicts the plant and makes it suited

for further analysis. In the next chapter, results from the wheat phenotyping analysis will be dis-

cussed, focusing on the evaluation and classification of wheat genotypes through height-to-radius
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ratio measurements and canopy volume calculations. This work automates the characterization of

wheat morphology, facilitating faster and more efficient plant breeding processes.
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5. Wheat Phenotyping with the

Photogrammetry Rig

This chapter presents an analysis of wheat canopy architecture through the classification and

differentiation of planophile and erectophile traits. Section 5.1 explains the experiment of classi-

fication and differentiation of wheat based on the canopy architecture, identifying planophile and

erectophile traits. In Section 5.2, we explain the methodologies for image acquisition and dataset

creation with the photogrammetry rig, detailing the procedures used to develop the 3D point cloud

datasets. Section 5.3 will discuss the results to assess and categorize the wheat cultivars based on

the height-to-radius ratio measurements and canopy volume calculations, associating these pheno-

typic traits with specific genotypes.

5.1 Distinguishing Planophile and Erectophile Traits in Wheat

Focus towards optimizing canopy architecture to enhance light capture, particularly during the

critical growth phases between stem elongation and flowering will likely lead to larger gains in

grain yield [47]. Furthermore, the impact of genetic variations in leaf angle on grain yield has

revealed that wheat with erect canopies outperforms planophile variants by achieving a 13% in-

crease in grain yield, attributed to an 11% rise in biomass. Wheat exhibiting an upright leaf angle

during vegetative growth phases exhibits significantly higher photosynthetic capacity, contributing

to improved biomass accumulation [110]. This show that wheat varieties with an erect canopy ar-

chitecture can potentially achieve superior grain yields compared to planophile types, highlighting

the important role of leaf angle and canopy structure in enhancing agricultural productivity.
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Given that the traits of erectophile and planophile canopies are genetically determined, early

identification of these characteristics can substantially enhance a breeders’ ability to select for erec-

tophile types efficiently, utilizing larger populations and requiring less greenhouse space. Current

selection methodologies, which rely on subjective rating scales ranging from 1 to 10, are inade-

quate for the precise and quantitative differentiation between erectophile and planophile types in

extensive field trials. Adopting more objective and quantitative assessment methods is impera-

tive for accurately identifying these traits. Understanding the fundamental mechanisms governing

erectophile and planophile morphologies will empower breeders to incorporate critical genetic

regulators into their breeding lines more effectively.

This study outlines the development of a quantitative trait index that leverages the ratio of plant

height to its maximum radius as a potential metric for distinguishing between planophile and erec-

tophile wheat phenotypes. Image data of wheat were imaged using the photogrammetry rig, and

3D datasets of each wheat genotype were generated. The metric was used to evaluate and compare

the different wheat genotypes by identifying planophile or erectophile characteristics. Further-

more, the analysis also includes an assessment of canopy volume for these genotypes, utilizing the

3D data to calculate the convex hull.

5.2 Methodology Overview

5.2.1 Data Preparation

In this study, we cultivated ten plants, each containing five seedlings from six distinct wheat

genotypes, all under controlled environmental conditions to guarantee uniform growth. The growth

chamber accommodated all 60 pots, with a watering schedule set for every second day to main-

tain adequate moisture levels for seedling development. The plants were grown under controlled

environmental conditions lighting, temperature, and watering schedules were uniform to ensure

minimal variability in growth. They were housed in the Conviron growth chamber at the Univer-
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sity of Winnipeg, with temperatures set at 25 °C during the day and 18 °C at night, and relative

humidity kept at 60%, providing an ideal growth environment. Figure 5.1 captures the initial

growth stages of the wheat plants from day 1 to day 7 within the growth chamber.

(a) Day 1 of wheat plants for the experiment (b) Day 7 of wheat plants for the experiment

Figure 5.1: The early growth stages of wheat plants involved in the experiment. (a) The initial
stage of the seedlings on day 1, illustrating their condition at the beginning of the experiment.
(b) Shows the development of these seedlings by day 7, highlighting the noticeable changes and
growth patterns that have occurred.

Table 5.1 shows the planting and imaging schedule of the six wheat genotypes, indicating when

each pot was planted and imaged. The imaging process was staggered throughout the week, initi-

ating with the imaging of the Chara and Gladius genotype on Tuesday, proceeding with Brandon

and Kukri on Wednesday, and concluding with Teal and Alsen on Friday. For this study, we fo-

cus exclusively on the data from days 14 and 35 to analyze critical growth phases for the canopy

volume and the height-to-radius (H/R) ratio measurements. The naming convention for the dataset

follows the format of WheatGenotype_PotNumber_CaptureDate, where ’PotNumber’ consists of

a letter indicating the wheat genotype followed by a numerical digit, denoting the specific pot.

Genotype Pot Number Planting Date Day 14 Image Capture Day 35 Image Capture
Chara A0-A9 2023/06/13 2023/06/20 2023/07/18
Gladius B0-B9 2023/06/13 2023/06/20 2023/07/18
Brandon C0-C9 2023/06/14 2023/06/21 2023/07/19
Kukri D0-D9 2023/06/14 2023/06/21 2023/07/19
Teal E0-E9 2023/06/16 2023/06/23 2023/07/21
Alsen F0-F9 2023/06/16 2023/06/23 2023/07/21

Table 5.1: This table chronologically outlines the planting and imaging schedule for this study.
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5.2.2 Data Acquisition

The photogrammetry rig, equipped with an Arducam 64MP Autofocus Quad-Camera kit, was

used to photograph the wheat plants. Plants were taken out of the growth chamber and imaged

for an estimated 25 minutes, and returned to the chamber. The setup facilitated automatic image

acquisition from each camera, automating movement of the rotary table after every four sets of

images were captured. The autofocus on the camera kit eliminates the need for any manual focus

adjustments on the cameras. Image sessions were scheduled for days 14 and 35 post-planting.

After the day 14 imaging session, plants were selectively thinned, leaving only the most robust

specimen in each pot for measurements on day 35. Table 5.2 outlines the configuration of the

photogrammetry rig used in this experiment, highlighting the crucial settings for optimal image

capture of the plants. The turntable was set to rotate at 10◦ to guarantee substantial overlap among

the 148 total images captured, facilitating thorough data collection. The resolution of the cameras

was set at 4084 x 3051, with specific settings including a 16 mm focal length, an aperture of f/5.6,

and an ISO level of 143. To capture the entirety of each plant while maintaining a consistent

background, the distance between the plant and the rig was kept within 1-2 meters. Completing a

full 360-degree imaging of each plant required a total of 25 minutes.

Setting Value
Turntable Angle 10◦

Total Images 148
Camera Resolution 4084 x 3051
Focal Length 16 mm
Aperture Setting f/5.6
ISO Setting ISO-143
Distance to Subject 1-2 m
Total Imaging Time 25 Minutes
Total Size on Disk 297 MB
Pause Before Image Capture 6 seconds

Table 5.2: Imaging parameters used for the photogrammetry rig for capturing wheat images, in-
cluding turntable angle, total number of images, camera resolution, focal length, aperture setting,
ISO setting, distance to subject, total imaging time, total size on disk, and image capture delay.
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For this study, 120 3D point clouds were reconstructed and refined, with image data offloaded

to a remote server on DRAC for processing, requiring an estimated 60-120 minutes per pot for

completion. Point clouds were generated using the COLMAP interface script as outline in the last

chapter. Figure 5.2 illustrates the growth stages of the Alsen wheat genotype at days 14 and 35

post-planting, showing both images and point cloud data. Figure 5.2(a) shows an image of the

Alsen genotype on day 14 and Figure 5.2(b) shows an image of the Alsen genotype on day 35.

Additionally, Figures 5.2(c) and 5.2(d) show the generated point clouds of the Alsen genotype on

days 14 and 35 day, respectively. Each point cloud dataset underwent a pre-processing stage as

detailed in the previous chapter. Point clouds were scaled (using the diameter of the turntable),

denoised based on color (removing all but the green/brown points), aligned to the positive z-axis,

and translated to the origin such that the ground of the point cloud is parallel to the X–Y plane.

The scale for each point cloud was calculated by dividing the diameter observed in the point cloud

by the actual diameter of the turntable. Any manually adjustments and removable of noise were

done using Meshlab such as the pot and turntable.

(a) Image of the Alsen genotype on day 14. (b) Image of the Alsen genotype on day 35.

(c) Point cloud of the Alsen genotype on day 14. (d) Point cloud of the Alsen genotype on day 35.

Figure 5.2: Illustration of the Alsen genotype at days 14 and 35 post-planting, depicted through
2D images and point cloud visualizations. These representations underscore the significant growth
phases and structural transformations observed, offering a comprehensive view of the developmen-
tal dynamics in this study. Note that images are not to scale.
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5.3 Results and Discussion

5.3.1 Canopy Volume

Day 14 Wheat Dataset

The convex hull method was used to determine the canopy volume, providing a quantitative

assessment of the spatial configuration and structural intricacy of each wheat genotype by encasing

the canopy of the plant within the smallest possible convex shape. In erectophile plants, the upright

orientation of leaves and stems leads to a compact, streamlined canopy at the top. Figure 5.3 shows

the Gladius cultivar on day 14 with an erectophile leaf orientation in the dataset. Specifically,

Figure 5.3(a) shows the reconstructed point cloud data, centralized on the XY plane and elevated to

the height of the pot, with both the pot and turntable removed. Figure 5.3(b) shows the application

of the convex hull algorithm on the point cloud assessing the canopy volume.

(a) Visual of Gladius pot B6. (b) Convex hull method applied to Gladius pot
B6.

Figure 5.3: Visualization of the 3D point clouds of the Gladius genotype, imaged on day 14 post-
planting. (a) Shows the erectophile leaf orientation of the Gladius genotype, showing the structural
arrangement of the plant. (b) The application of the convex hull method to assess the canopy
volume where the plant is envelope in the smallest possible convex shape.

For planophile plants the volume is larger because the horizontal orientation of leaves and
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stems would spread out more, occupying more space. Figure 5.4 shows the Brandon genotype

and its planophile leaf orientation. Figure 5.4(a) shows the fully reconstructed point cloud data,

centralized on the XY plane and elevated to the height of the pot, with the pot and turntable points

removed. Figure 5.4(b) illustrates the application of the convex hull algorithm to assess the canopy

volume, highlighting its accuracy in detailing the structural composition of the plant.

(a) Visual of Brandon pot C4. (b) Convex hull method applied to Brandon pot
C4.

Figure 5.4: Visualization of the 3D point clouds for the Brandon genotype, captured on day 14
post-planting. (a) Shows the planophile leaf orientation of the Brandon genotype, giving a view
of the plant’s structural arrangement. (b) Demonstrates the effective application of the convex hull
method to determine the canopy volume where the plant is envelope in the smallest possible convex
shape.

In this study, we also determined the canopy volume of the top 60% by excluding the bottom

40% of points along the Z-axis. This approach, aimed at isolating and examining the upper portion

of the canopy, allows for a targeted analysis of the most light-exposed regions of the plant. In

erectophile plants, the canopy segment is often less voluminous due to the vertical orientation

of leaves and stems, which limits the horizontal spread of the canopy. On the other hand, the

upper 60% of planophile plants is likely to exhibit greater volume because of the leaves and stem

horizontal arrangement. As an example, Figure 5.5 shows the Kukri and Alsen wheat genotypes

at 60% canopy height, illustrating their erectophile and planophile leaf orientations, respectively.

Figure 5.5(a) illustrates the Kukri genotype and Figure 5.5(b) shows the convex hull method to

determine the canopy at volume 60% canopy. Additionally, Figure 5.5(c) illustrates the canopy

height at 60% for the Alsen genotype and Figure 5.5(d) shows the canopy volume.

The canopy volume was calculated for all plants showing the structural variations within the six
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(a) Canopy at 60% of Kukri pot D7. (b) Convex hull method applied to Kukri pot D7.

(c) Canopy at 60% of Alsen pot F4. (d) Convex hull method applied to Alsen pot F4.

Figure 5.5: The canopy volume at 60% height for both the Kukri and Alsen wheat genotypes, high-
lighting the distinct leaf orientations. The convex hull method is applied to quantify the canopy
volume of each genotype. In erectophile plants, the upper 60% of the canopy tends to be more com-
pact due to the vertical arrangement of leaves and stems. Conversely, the corresponding segment
of a planophile plant’s canopy is generally more expansive, attributed to the horizontal orientation
of its leaves and stems.

wheat genotypes as illustrated in Figure 5.6. For each wheat genotype, the average was calculated

across 10 pots and visually graded on a scale from 1 to 10, where 1 indicates a more erectophile

trait and 10 indicates a more planophile trait. Using this grading system, the wheat genotypes were

plotted from left to right, ranging from erectophile to planophile. This visual grading system for

the wheat genotypes was conducted by Kalhari Manawasinghe at the University of Saskatchewan.

As show in Figure 5.6(a), the data suggests that Teal and to a lesser extent Brandon and Alsen

exhibit more planophile traits, indicated by their larger and more variable canopy volumes. On

the other hand, Chara, Kukri, and Gladius tend to exhibit more erectophile traits, as seen in their

generally lower and less variable canopy volumes. Figure 5.6(b) shows the canopy volume of

the genotypes at 60% of the height, the data show that Brandon, Teal, and Alsen possess more

pronounced planophile characteristics in their upper canopy structures, likely benefiting from a
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growth pattern that emphasizes broad leaf and branch distribution to enhance light capture. In

contrast, Chara, Kukri, and Gladius seem to adhere more closely to erectophile traits, with their

canopy volumes at 60% height reflecting a growth orientation that prioritizes vertical development

over horizontal spread.

(a) Results of day 14 canopy volume. (b) Results of day 14 canopy volume at 60 % height.

Figure 5.6: Visuals of canopy volumes on day 14, utilizing the convex hull method on 3D point
cloud data, demonstrating the structural diversity among the different wheat genotypes. Each
data point is a measurement taken from the reconstructed 3D point clouds for each of the wheat
genotypes. The analysis highlights the canopy volume variations at full height and at the 60%
of the height. Each wheat genotype, averaged over 10 pots, was visually scored from 1 (more
erectophile) to 10 (more planophile).

Day 35 Wheat Dataset

Following a selective thinning process after day 14 to retain only the most robust plant in each

pot, canopy volume measurements were performed on the day 35 point cloud data. Figure 5.7

shows an example of the Gladius cultivar on day 35 with an erectophile leaf orientation in the

dataset. Figure 5.7(a) shows the point cloud data, aligned with the XY plane at a height matching

the position of the pot within the coordinate system, with unwanted points removed such as the pot

and turntable. Figure 5.7(b) shows the application of the convex hull algorithm on the point cloud

determining the canopy volume. The day 35 dataset showed a significant increase in plant size,

reflected quantitatively by the enlarged canopy volume.
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(a) Visual of Gladius pot B6. (b) Convex hull method applied to Gladius pot
B6.

Figure 5.7: Visualization of the 3D point clouds of the Gladius genotype, captured on day 35
post-planting. (a) Displays the erectophile leaf orientation of the Gladius genotype, illustrating the
plant’s structural configuration. (b) Demonstrates the use of the convex hull method for canopy
volume assessment, enveloping the plant in the minimal convex shape.

Emphasizing more planophile leaf orientation, Figure 5.8 features the Brandon genotype as an

example. Furthermore, Figure 5.8(a) shows the point cloud data, aligned with the XY plane at

the elevation of the pot, with all the pot and turntable points removed. Figure 5.8(b) highlights

the application of the convex hull algorithm to evaluate canopy volume, effectively illustrating its

accuracy in mapping the architectural structure of the plant.

(a) Visual of Brandon pot C9. (b) Convex hull method applied to Brandon pot
C9.

Figure 5.8: Visualization of the 3D point clouds for the Brandon genotype, captured on day 35
post-planting. (a) Shows the planophile leaf orientation of the Brandon genotype, giving a view of
the plant’s structural arrangement. (b) Showing the effective application of the convex hull method
to assess the canopy volume.

Figure 5.9 shows the Kukri and Alsen wheat genotypes at 60% canopy height, illustrating

their erectophile and planophile leaf orientations, respectively. Figure 5.9(a) illustrates the Kukri

genotype and Figure 5.9(b) shows the convex hull method to determine the canopy at volume 60%

canopy. Conversely, planophile plants such as the Alsen genotype exhibit a wider lateral spread,
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maximizing the surface area exposed, as shown in Figures 5.9(c) and 5.9(d), highlighting a growth

strategy to optimize light absorption across a broader canopy.

(a) Canopy at 60% of Kukri pot D7. (b) Convex hull method applied to Kukri pot D7.

(c) Canopy at 60% of Alsen pot F4. (d) Convex hull method applied to Alsen pot F4.

Figure 5.9: The canopy volume at 60% height for both the Kukri and Alsen wheat genotypes
highlights distinct leaf orientations. By employing the convex hull method, the canopy volume
for each genotype is accurately quantified. In erectophile plants, the canopy upper 60% exhibits
a denser structure, a result of the leaves and vertical alignment of the stems. On the other hand,
canopy volume at 60% height of the planophile appears broader, a characteristic stemming from
the horizontal spread of the leaves and stem.

Calculations of canopy volume among six wheat genotypes demonstrate structural differences,

illustrated in Figures 5.10 and 5.10(a). For day 35, data points were arranged and plotted accord-

ingly, with each wheat genotype visually scored on a scale from 1 to 10. Brandon and Teal exhibit

the most significant variation in canopy volumes, indicative of a planophile orientation character-

ized by a wider leaf distribution. Alsen presents considerable volumes with reduced variability,

hinting at a planophile characteristics. Conversely, Chara, Kukri, and Gladius exhibit smaller

canopy volumes, with Gladius particularly compact, suggesting erectophile characteristics due to

a more vertical leaf arrangement. At 60% height, as shown in Figure 5.10(b), the variability of

canopy volume in Brandon and Teal is notable, with Teal achieving some of the largest volumes in

the dataset, reflecting a pronounced planophile orientation. Alsen displays a broad range, including

high volumes, indicative of a substantial horizontal leaf spread in the upper canopy. Meanwhile,
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Chara, Kukri, and Gladius present lower volumes, consistent with an erectophile orientation.

(a) Results of day 35 of canopy volume. (b) Results of day 35 of canopy volume at 60 %
height.

Figure 5.10: Visuals of canopy volumes on day 35, utilizing the convex hull method on 3D point
cloud data to demonstrating the structural diversity among the different wheat genotypes. The
analysis highlights the canopy volume variations at full height and at the 60% of the height. Manual
grading of erectophile and planophile is also shown.

5.3.2 Height and Maximum Radius Ratio

Day 14 Wheat Dataset

The H/R ratio measures the vertical growth of a plant against its horizontal spread, determined

by converting point cloud datasets to cylindrical coordinates to find the maximum radius. This

process isolates a horizontal slice of the whole point cloud to identify the maximum radius, which

is the distance from the center of the point cloud to the max R value. A higher H/R ratio indicates

an erectophile, characterizing genotypes prioritizing vertical growth and exhibiting a taller stature

relative to the horizontal spread. For example, Figure 5.11(a) illustrates the height of the Glad-

ius genotype on day 14, where the height of the Gladius is quantified by the difference between

its maximum and minimum Z-axis values. Additionally, a polar plot, derived from cylindrical

coordinates, is shown in Figure 5.11(b) to determine the maximum radius.
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(a) Visual of height of Gladius pot B6. (b) Polar plot of Gladius pot B6.

Figure 5.11: Plots of the Gladius wheat genotype on day 14, emphasizing its structural traits
through direct visualization and polar coordinate representation. (a) Captures the vertical height of
the Gladius genotype, illustrating its height characteristic. (b) Shows the polar plot of the Gladius
wheat, offering a visual of its canopy spread.

A lower H/R ratio suggests a planophile orientation, indicative of genotypes exhibiting a more

expansive lateral spread relative to their height. Figure 5.15 shows the Brandon genotype, the

smaller height value combined with a larger radius is indicative of its planophile characteristics.

This trait is visually represented in Figure 5.12(a) where the 3D visualization emphasizes the rel-

atively lower vertical growth, while the polar plot in Figure 5.12(b) show the lateral spread of the

canopy, as evidenced by the larger radius.

(a) Visual of height of Brandon pot C4. (b) Polar plot of Brandon wheat pot C4.

Figure 5.12: Visual of the Brandon wheat genotype at day 14 post-planting, offering insights into
its planophile growth orientation through both 3D and polar plots. (a) Illustrates the plant height
of Brandon, a factor in computing the H/R ratio. (b) The polar plot provides a graphical depiction
of the canopy spread of Brandon.

Figure 5.13 shows the H/R ratio analysis for six wheat genotypes at day 14, revealing their
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growth orientations. The visual grading system among the wheat genotypes reveals a trend where

distinguishing features are evident, indicating variations in growth patterns. The ratio variation

underscores the balance between vertical growth and horizontal spread, with distinct peaks for

certain genotypes hinting at their adaptability and specific growth patterns. The H/R ratio val-

ues of Brandon and Teal suggest planophile traits, with Brandon maintaining a near 1 ratio and

Teal showing significant variability. Alsen and Kukri, with H/R ratios over 1.5 indicates erec-

tophile traits, though to a slightly lesser extent. Gladius and Chara, with the highest ratios, display

pronounced erectophile growth, emphasizing vertical over horizontal development. The 14-day

dataset contains 4-5 seedlings per pot, which may lead to inaccuracies in H/R values due to calcu-

lations encompassing the entire point cloud rather than individual plants. However, it is important

to consider that while the H/R ratio provides useful insights, it still offers a somewhat simplified

view of plant architecture.

Figure 5.13: The H/R ratio variation among the six wheat genotypes on day 14. The visual grad-
ing system highlights a trend in wheat genotypes, showing clear variations from erectophile to
planophile traits. Brandon and Teal show a moderate range of H/R ratios, suggesting they both
have planophile traits, with Teal displaying notable peaks that indicate flexibility and instances of
erectophile orientation. Alsen and Kukri exhibit higher H/R ratios, strongly suggesting an erec-
tophile growth. Gladius and Chara demonstrate more erectophile traits based on the highest H/R
ratios.
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Day 35 Wheat Dataset

For the day 35 dataset, as an example, Figure 5.14(a) shows the visualizations of the Gladius

wheat genotype. The 3D plot illustrates the vertical growth of the plant by calculating its height

through the range of Z-axis values. Additionally, Figure 5.14(b) shows a polar plot that maps the

radial distance R against the angle θ as well, and notably marks the position of the maximum R

value. This plot further emphasizes the erectophile characteristics of the plant by offering a dif-

ferent perspective on its structural form, focusing on the vertical rather than horizontal expansion.

At day 35 post-planting, these visualizations illustrate the significant growth of the wheat plants

and specifically the Gladius genotype and its characteristic erectile orientation, marked by a strong

emphasis on upward rather than expanding outward.

(a) Visual of height of Gladius pot B6. (b) Polar plot of Gladius pot B6.

Figure 5.14: Plots of the Gladius wheat genotype on day 35, emphasizing its structural traits
through direct visualization and polar coordinate representation. (a) Captures the vertical height
of the Gladius genotype, which is used to determine the H/R ratio. (b) Shows the polar plot of the
Gladius wheat, marking the position of the maximum R value.

In another example, Figure 5.15 depicts the Brandon genotype point cloud from the dataset,

illustrating the growth pattern and highlighting the planophile characteristics through a distinctly

shorter height and wider radius. Furthermore, the 3D visualization in Figure 5.15(a) shows the lim-

ited vertical development of the plant, a defining feature of planophile orientation, and illustrates

how this growth strategy optimizes horizontal space. The polar plot in Figure 5.15(b) illustrates

the lateral expansion of the canopy, as indicated by the extended radius.
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(a) Visual of height of Brandon pot C9. (b) Polar plot of Brandon wheat pot C9.

Figure 5.15: Visual of the Brandon wheat genotype at day 35 post-planting, offering insights into
its planophile growth orientation through both 3D and polar plots. (a) Illustrates the plant height
of Brandon, a factor in computing the H/R ratio, which indicates the growth pattern of the plant.
(b) The polar plot shows a graphical depiction of the canopy spread of the Brandon genotype.

Figure 5.16 analyzes the H/R ratios among the six wheat genotypes at day 35. Manual grading

for these genotypes is performed alongside H/R ratio analysis, providing a more nuanced under-

standing of the architectural tendencies of each genotype. Brandon exhibits a relatively moderate

range of H/R ratios, mostly hovering around 1 where as Alsen shows a trend towards higher H/R

ratios. This suggests a balance between height and spread. For Teal, the H/R ratios display variabil-

ity, interspersed with values closer to 1. This is underscored by values exceeding 1.5, suggesting

a growth pattern that favors height overspread. With H/R ratios frequently surpassing 1.5, Chara

demonstrates a clear erectophile growth pattern. Gladius and Kukri presents some of the highest

H/R ratios among the genotypes, strongly indicating an erectophile growth. This differentiation in

growth patterns underscores the genetic diversity within wheat cultivars and its potential implica-

tions for optimizing crop yields and resource efficiency.
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Figure 5.16: The H/R ratio variation among the six wheat genotypes on day 35 reflects their erec-
tophile or planophile growth. Manual grading complements the H/R ratio analysis, showing the
growth tendencies of each genotype. Brandon and Alsen show a moderate range of H/R ratios,
suggesting they both have planophile traits, with Teal displaying notable peaks that indicate flexi-
bility and instances of erectophile orientation. Chara exhibit higher H/R ratios, strongly suggesting
an erectophile growth. Gladius and Kukri demonstrate more erectophile traits based on the highest
H/R ratios.
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6. Conclusion

6.1 Summary

In this thesis, we developed an all-in-one, low-cost photogrammetry rig to advance 3D plant

phenotyping by incorporating novel techniques and methodologies to analysis plant development.

Conventional phenotyping methods, characterized by invasive sampling, labor-intensive measure-

ments, and inconsistent results, pose significant limitations to large-scale genetic studies by hin-

dering the understanding of plant genotype-environment interactions. Moreover, 2D imaging tech-

niques fall short in capturing the 3D complexity of plant morphology, often resulting in partial or

misleading data. Utilizing low-cost photogrammetry for 3D plant phenotyping enables researchers

to efficiently gather comprehensive data on plant growth, structure, and interactions with environ-

mental variables. Our imaging system, engineered for simplicity and high functionality, equips

researchers, plant scientists, and breeders with a robust and accessible means to perform 3D plant

scanning and phenotyping. Such advancements are expected to lead to more efficient and effective

plant breeding and crop management methods.

We detail the complete pipeline, covering the hardware setup, the software processing specifics,

and the capabilities of the system. We demonstrated the utility of the photogrammetry rig through

initial testing by validating 3D reconstruction measurements of soybean height. The analysis re-

vealed a strong correlation, evidenced by an R2 value of 0.99 and an RMSE of 0.81 and a MAPE

of 10.63% further quantify the precision and average percentage error, respectively, indicating a

highly accurate representation of plant growth. Additionally, we evaluated canopy volume mea-

surements of lettuce and soybean using the convex hull method, observing exponential growth over

five weeks.
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Building on our initial experiments, we further applied the photogrammetry rig to focus on

wheat phenotyping, explicitly aiming to develop a quantitative method to distinguish between

planophile and erectophile traits across various wheat genotypes. In addition to developing a

quantitative trait index leveraging the ratio of plant height to its maximum radius, canopy volume

assessment was used to achieve to differentiate between planophile and erectophile traits. This

targeted analysis enables a more nuanced understanding of wheat growth patterns and structural

characteristics, providing valuable insights for agricultural research and breeding strategies. In our

assessment, we identified that Brandon and Teal exhibit planophile characteristics, while Alsen

and Chara, display erectophile traits, albeit to a slightly lesser degree. Gladius and Kukri, on the

other hand, demonstrated the most pronounced erectophile characteristics among the genotypes

evaluated. Through these assessments, the photogrammetry rig emerges not just as a tool, but as a

vital resource for innovative research, providing a versatile instrument for researchers.

6.2 Future Work

Future research will investigate additional plant traits, automate and develop more robust meth-

ods to identify planophile and erectophile characteristics, develop algorithms for denoising and

segmenting plant organs. We aim to conduct further experiments to explore quicker 3D recon-

struction techniques and validate the accuracy of point cloud data measurements. Moreover, there

is a need to upgrade the hardware components of the rig and refine the image acquisition processes

to achieve faster and more efficient 3D reconstructions. Efforts will be made to foster a more

autonomous pipeline, reducing the need for user intervention. These improvements will reduce

the time required for data collection and increase the precision and accuracy of the 3D models

generated. Also, there is a need to enhance and refine the GUI of the system, focusing on im-

proving user interaction through the introduction of more intuitive controls and a wider range of

options, enabling users to efficiently configure and customize their imaging sessions according to

specific research needs. Integrating motors into the system to automate rotational and positional
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adjustments of the cameras will eliminate the necessity for manual camera repositioning during

imaging sessions. Finally, constructing an expanded backdrop will facilitate imaging larger plant

specimens.

In conclusion, this thesis presents a new tool for agricultural research and practice, laying the

groundwork for future innovations in 3D plant phenotyping. By lowering the barriers to entry for

accessing sophisticated 3D modeling tools, this work empowers researchers, agronomists, plant

scientists, and breeders to conduct more detailed, accurate, and efficient analyses of plant phe-

notypes, ultimately fostering informed decision-making and advancements in crop science and

agriculture.
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